当前位置: 仪器信息网 > 行业主题 > >

活性兰

仪器信息网活性兰专题为您提供2024年最新活性兰价格报价、厂家品牌的相关信息, 包括活性兰参数、型号等,不管是国产,还是进口品牌的活性兰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合活性兰相关的耗材配件、试剂标物,还有活性兰相关的最新资讯、资料,以及活性兰相关的解决方案。

活性兰相关的资讯

  • 兰州化物所药用植物活性成分研究取得新进展 分离鉴定出全新抗肿瘤活性基团
    天然产物一直是药物研发的重要资源。据领域权威期刊Journal of Natural Products 报道,1981至2019年,近50%上市药物的分子结构或核心药效结构来源于天然产物。其中,全新碳骨架天然产物的发现往往是创新药物研发的第一步。中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室杨军丽研究员团队,利用现代分离技术、结构鉴定技术和药物筛选技术,从藏族习用药材甘松(Nardostachys jatamansi)中分离鉴定了1个具有全新碳骨架的17个碳的螺[2.4]-3/5/7三环的类愈创木烷型倍半萜内酯类化合物Narjatamolide(图1),通过X-射线单晶衍射和ECD实验确证其绝对构型为1R,4S,5R,6S,7R,16S。这是首次从甘松中分离鉴定了含有α-亚甲基-γ-内酯基的倍半萜结构,该片段被认为是抗肿瘤活性基团。Narjatamolide可抑制肝癌细胞株BEL-7402、HepG2和Huh-7以及宫颈癌细胞株HeLa的增殖(IC50 = 5.67 ± 1.43, 21.84 ± 1.62, 25.5 ± 3.14, 15.46 ± 0.69 μM)。进一步研究发现该化合物可将BEL-7402细胞周期阻滞在G2/M期(J. Org. Chem. 2021, 86, 11006)。近期,该化合物被天然产物化学领域顶级学术期刊《Natural Product Report》(Nat. Prod. Rep. 2021, 38, 1715)评选为热点化合物。图1 甘松中发现的新骨架化合物Narjatamolide上述研究工作得到了国家重点研发计划、国家自然科学基金面上项目、甘肃省杰出青年基金、中科院西部之光交叉团队项目、兰州化物所“一三五”重点培育项目和兰州化物所青年科技工作者协同创新联盟合作基金的支持。
  • 蓝菲光学助力火星生命探测计划
    从人类第一次抬头仰望星空时,对宇宙的好奇心便永远种在了我们心底。浩瀚宇宙,除了人类还有其他智慧文明的存在吗?火星2020任务NASA火星漫游者毅力号于2020年7月从佛罗里达州卡纳维拉尔角空军基地发射升空,2021年2月在杰泽罗陨石坑登陆火星。这次任务预计将持续至少一个火星年(687个地球日)。该任务是火星探测计划的一部分,计划内容是对这颗红色星球进行长期的机器人探测。此次科学任务优先的目标,涉及包括火星是否存在生命等关键问题。这次任务还试图收集证据,展示未来人类探索火星所需的技术。其中包括测试从火星大气中产生氧气的方法,确定其他资源(如地下水),改进着陆技术,描述天气、灰尘和其他可能影响未来在火星生活和工作的宇航员的潜在环境条件。2021年2月18日,火星漫游者毅力号在一个巨大陨石坑的表面完美着陆。全副武装的漫游者毅力号装载了29个摄像头作为眼睛,这些摄像机分别负责帮助它寻找着陆点、检查降落伞的,或是帮助它安全地在火星地面行进...其中,承担研究火星地形任务的桅杆安装式摄像机系统“ Mastcam-Z”双摄像头系统,负责对火星上的近处和远处的物体进行详细检查。“ Mastcam-Z”可以放大(因此称为“ Z”)、对焦并以各种比例拍摄3D图片和全景图,能有效提升火星生命探索的效率与准确性。通过观察整个景观并识别出其他仪器值得仔细观察的岩石和土壤(杂岩),“ Mastcam-Z”协助漫游者号进行其他实验。他们还将为漫游者号发现重要的岩石,以便在火星表面进行采样和储存,从而将来把样品带回地球。作为火星2020任务的“两只眼睛”,研究人员在早期就发现由于处在火星的低光照度环境下(约为地球光照度的44%),摄像系统的成像品质将大打折扣。为解决这一问题,英国豪迈旗下的蓝菲光学联合亚利桑那州立大学研究出一套光源校准方案。蓝菲光学为Mastcam-Z提供了积分球光源,用于完美校准每个摄像机。Mastcam-Z团队通过蓝菲光学的积分球均匀光源准确地校准摄像机灵敏度,并将亮度设置为火星上典型的太阳光照射场景的相同水平。这一方案大幅提升了Mastcam-Z的成像品质,向基地输送了超高清晰度的影像数据。图 |Mastcam-Z摄像机正在对着蓝菲光学(Labsphere)积分球光源拍摄。 ASU地球与太空探索学院的Mastcam-Z首席研究员Jim Bell在对飞行相机进行测试后说:“Mastcam-Z将是首台可变焦的火星彩色相机,能有以超高的分辨率拍摄3D图像。在测试和校准过程中,我们发现这款摄像机的性能非常好-达到或超过了所有性能要求。”深耕光学领域,蓝菲光学对技术的探索和创新从不间断。如你想了解更多关于蓝菲光学的资讯,可前往蓝菲光学官网查阅详情。
  • 以“器”治毒,让新精神活性物质无所遁形---岛津新精神活性物质分析系列方案之二
    新精神活性物质(New Psychoactive Substances,缩写为NPS),又称“策划药(Designer Drug)”或”实验室毒 品“,是不法分子为逃避打击而对管制毒 品进行化学结构修饰得到的毒 品类似物,参考联合国毒 品和犯罪问题办公室(UNODC)的相关规定,可根据NPS的效果对其进行分类,主要类别如下:Stimulants兴奋剂类、Opioids阿片类、Synthetic cannabinoids 合成大麻素类、Dissociatives 解离型药物、Classic hallucinogens 迷幻剂、Sedatives / Hypnotics 镇静剂/麻醉药。上期分享了兴奋剂类毒 品的方案,本期继续围绕阿片类和合成大麻素类毒 品的分析检测需求,介绍岛津的系列设备及应用方案。Opioids (阿片类)相关行业标准应用案例LCMSMS检测血浆中的芬太尼及其类似物关联仪器:ATLAS LEXT+ LCMS-8045ATLAS LEXT前处理方案:样品管中加入1 mL经稀释过后的血液(稀释4倍体积),使用ATLAS-LEXT自定义程序进行液液萃取,步骤如下:&bull 样品中加入3 mL乙酸乙酯,混匀后离心,乳化检测;&bull 取3 mL上清至干净试管中,向样品中加入70 μL的10%NaOH溶液,混合均匀;&bull 再加入3 mL乙酸乙酯萃取,取3 mL上清液合并到干净试管中,加入70 μL的5%盐酸-甲醇溶液混匀后进行真空干燥;&bull 干燥后加入1 mL甲醇复溶,0.22 μm滤膜过滤后上机图1 ALTAL-LEXT样品前处理流程图实验结果:表1 8种芬太尼类物质的标准曲线(权重I/C)表2 基质加标实验结果(n=6)Synthetic cannabinoids (合成大麻素类)相关行业标准应用案例CLAM-LCMS联用系统测定尿液中5F-MDMB-PICA等9种合成大麻素类新精神活性物质关联仪器:在线蛋白沉淀CLAM-LCMS联用系统CLAM-2040+LCMS联用系统前处理:在CLAM工作站界面优化自动前处理参数、蛋白沉淀剂使用量、震摇转速、震摇时间、抽滤时间等。样品自动化程序具体操作为:(1)吸取20 μL甲醇活化过滤管,准备上样;(2)吸取标准曲线溶液或尿液样品30 μL上样;(3)吸取样本提取剂120 μL;(4)转速3000 rpm震摇60 s进行提取;(5)使用-50~-60 KPa的负压抽滤过滤罐90 s;(6)接收管转移至自动进样器,进样10 μL(详细流程如下图)图2 CLAM在线自动前处理过程实验结果:图3 尿液样品溶液中9种合成大麻素类物质MRM色谱图表3 校准曲线参数(权重1/C)如需更多相关方案资料,请与岛津联络获取。本文内容非商业广告,仅供专业人士参考。
  • 生物活性分子在种植体骨结合中的研究进展!
    生物活性分子在种植体骨结合中的研究进展!百欧博伟生物 良好的骨结合是人工种植体成功的关键,钛或钛合金人工种植体由于其较为理想的生物相容性和机械性能植入体内后与骨组织形成良好的骨结合而成为目前临床上应用最广的人工种植体。但钛类材料表面生物惰性的缺点不利于种植体骨结合的进一步提高,尤其对一些伴有系统性疾病如骨质疏松、糖尿病的缺牙患者,这些全身代谢性疾病使种植体周骨愈合能力下降,使种植体骨结合产生时间上的延迟或质量上的下降,导致种植体骨结合率下降。 因此,提高种植体骨结合率和初期稳定性进而提高种植体长期成功率仍是需要进一步研究的课题。其中种植体表面生物化学改性提高种植体骨结合率成为该领域近年来的研究的重要方向,方法是将生物活性分子如具有生物活性的蛋白、小分子多肽等采用一定的方式固定于种植体表面,通过其成骨诱导作用促进种植体周骨形成,提高种植体骨结合。本文就近年来应用于钛类人工种植体表面的生物化学改性方法以及几类主要生物活性分子对种植体骨结合作用及其机理的研究进展进行综述。 一、生物化学改性方法 1、物理吸附 物理吸附是在对种植体表面进行一定的粗糙处理后,将种植体浸入生物活性物质与磷酸缓冲盐溶液混合后的溶液中一段时间,使生物活性物质吸附在种植体表面。此法操作简单,对设备要求较低,但是吸附形成的作用力为静电力、范德华力或氢键,较难牢固结合在种植体表面,并且较难控制生物活性物质在种植体表面的均匀分布。 2、共价结合 生物活性物质可通过接枝分子共价结合在种植材料表面,接枝分子在种植材料表面形成自组装单分子层再与生物活性物质的某些基团共价连接,使生物活性物质稳定连接在种植材料表面。常见的接枝分子包括聚乙二醇、硅烷偶联剂、聚多巴胺、磷酸自组装单分子层等。此外,近些年人们通过噬菌体展示技术发现一些可以直接与金属钛共价结合的短肽(ATWVSPY、RKLPDAPGMHTW等)可以将某些生物活性物质(如层粘连蛋白衍生肽)连接在金属钛表面,从而对钛种植体进行表面改性。共价结合可以将生物活性分子稳定的结合在种植体表面,避免了初始爆发释放,但生物活性分子可能在共价结合的过程中发生构象的改变。 3、聚电解质多层 聚电解质多层由层层自组装技术将带相反电荷的聚电解质顺序吸附到带电表面制备而成。这种方法的特点是改变电解质沉积数量可以调控聚电解质多层的厚度,逐层组件可以将生长因子、蛋白质、遗传物质、抗体等直接集成到层中,或者可以用聚电解质预先络合各组分,然后组装成复合物。分子量大于10kDa的生物活性物质可以永久固定在聚电解质层中,随着聚电解质逐层的降解实现药物的逐渐释放。 二、钛种植体表面生物化学改性主要生物活性蛋白 1、胶原蛋白 胶原蛋白是骨组织细胞外基质中的主要成分,也是骨组织的钙化中心,可促进间充质干细胞中成骨相关基因的表达,进而诱导间充质干细胞向成骨方向分化,同时可以提高成骨细胞对骨基质的黏附。在钛片表面沉积磷酸钙和Ⅰ型胶原制备的矿化胶原涂层利于细胞伸展以及伪足的生长,可以有效促进成骨细胞的黏附及增殖。 此外,吸附有Ⅰ型胶原的钛片也更有利于促进小鼠前成骨细胞株MC3T3-E1黏附斑蛋白与护骨素基因的表达。将Ⅰ型胶原修饰的钛种植体植入SD大鼠胫骨内,HE染色发现4周后种植体周围形成的新生骨的密度要优于对照组。Ⅰ型胶原还可以参与携带药物,从而调控种植体骨结合过程。Li等通过层层自主装技术将Ⅰ型胶原和透明质酸修饰在钛纳米管表面,使管内的依诺沙星缓慢释放,抑制破骨细胞活性的同时还促进了种植体表面新生骨的形成。 2、非胶原蛋白 结合在胶原表面特定位点的非胶原蛋白,包括纤连蛋白(fibronectin)和层粘连蛋白(laminin)等在启动羟基磷灰石晶体成核、生长及调控无机相相变的过程以及促进细胞黏附、迁移和分化等过程中都发挥了至关重要的作用。越来越多的研究显示,将非胶原蛋白结合在种植体表面能够有效提高骨结合的效果。纤连蛋白能够增强对成骨细胞的粘附,进一步提升种植体表面微槽对细胞的粘附作用,加快成骨细胞的成熟,使种植体表面接触的间充质干细胞细胞呈现出成骨细胞自然成熟的多边形态。 Chang等将纤连蛋白吸附在钛种植体表面,发现其在诱导成骨细胞分化、增加骨形成量以及提升种植体初期稳定性方面较无纤连蛋白组有一定的提高。纤连蛋白上存在增强细胞活性的精氨酸-甘氨酸-天冬氨酸(arginine-glycine-asparticacid,RGD)序列和RGD协同序列(PHSRN)以及其中间一段有20个氨基酸的序列F20(PHSRNSITGTNLTPGYTITVYAVTGRGD)。 有学者推测是纤连蛋白中间的这一段活性序列在发挥促进骨结合的作用。将F20和纤连蛋白分别吸附到钛片上,发现二者对基质细胞系ST2粘附、增殖和分化能力的提升效果相似,此外还发现F20对成骨作用的促进可能与Erk信号通路有关。层粘连蛋白作为细胞与基质黏着的介质,参与调节细胞的黏附、生长和分化。 Bougas等将层粘连蛋白浸泡吸附在钛种植体表面后植入兔的股骨中,4周后发现种植体周围的骨结合程度得到明显提高。在一项层粘连蛋白对种植体骨结合作用的回顾性研究中,91%的研究都表明层粘连蛋白可以促进相关成骨相关标记物的表达和(或)种植体周围新骨形成。 3、生长因子 骨形态发生蛋白(Bone morphogenic proteins,BMP)是一组信号分子,是转化生长因子(transforming growth factor,TGF)-β超家族的成员,可以促进间充质干细胞向成骨细胞分化,促进骨缺损区新骨的形成。BMP-2修饰的脱蛋白牛无机骨块在犬牙槽嵴进行垂直覆盖提升术并同期植入种植体的第3个月时比未使用BMP-2的骨块显示出更高的骨矿化水平和更多的新骨形成量。 BMP-2缓慢均匀释放似乎有利于促进骨结合。Seo等发现在水凝胶环境中BMP-2的持续释放显著促进了钛种植体周围垂直骨的再生。Yang等利用肝素连接BMP-2与生长分化因子5(growth and differentiation factor-5,GDF-5)结合在钛片形成Ti-BMP-2-GDF-5涂层,肝素延长了BMP-2和GDF-5的半衰期,并且使其持续均匀释放30天,将MC3T3-E1细胞放置含有该涂层的表面,细胞增殖和碱性磷酸酶(alkaline phosphatase,ALP)活性显著增加,骨钙素(osteocalcin,OCN)、Ⅰ型胶原蛋白的表达也明显升高。兔体内实验显示植入兔股骨内的表面修饰有BMP-2和GDF-5的钛棒也表现出骨与种植体界面处新骨形成明显的增加。 但种植体表面的BMP-2剂量对种植体骨结合有一定的影响,高剂量的BMP-2会导致局部、暂时的骨损伤。在一项高剂量BMP-2(150μg/mL)治疗大鼠的临界大小的股骨缺损实验中,2周后观察到炎症和异常骨形成。Guillot等也发现当大剂量BMP-2(9.3μg)附着于种植体表面时,第4和第8周BMP-2修饰的种植体骨结合率都低于无BMP-2组。 TGF-β2和TGF-β3是TGF-β超家族的两个亚型,调节细胞的增殖和分化以及参与骨改建过程。在新西兰兔拔牙窝内即刻植入种植体,种植体周围增加TGF-β2以及牙髓干细胞,术后第4、8周骨涎蛋白、骨钙蛋白、Ⅰ型胶原表达水平明显提高,种植体骨结合率以及种植体周围骨小梁宽度明显增加。Kim等通过电喷涂技术将聚乳酸丙交酯(PLGA)/重组人类TGFβ2颗粒喷涂在阳极氧化钛种植体表面,种植体植入兔的胫骨第3周骨形态计量学分析发现实验组的种植体骨接触率(Bone-To-Implant Contact,BIC)和骨面积百分比明显高于未喷涂重组人TGFβ2的对照组。 血管内皮生长因子(Vascularendothelial growth factor,VEGF)可诱导成骨细胞和内皮细胞增殖,促进局部血管生成并且增加ALP的活性。Guang等将大鼠重组VEGF吸附于钛片表面,发现其可以明显促进大鼠成骨细胞的增殖,将大鼠重组VEGF修饰的钛种植体植入大鼠膝内,在第2周和第4周免疫组织化学检测发现CD31阳性和骨钙素阳性细胞的比例明显增多。 VEGF对放疗患者种植体骨结合也有一定的促进作用。将钛种植体植入经过15Gy射线辐射的兔胫骨中,在种植体中心的孔隙注射高表达BMP-2/VEGF165的慢病毒载体,第2周和第8周通过PCR分析发现Runt相关转录因子2(Runt-related transcription factor2,Runx2)、骨钙素、ALP和CD31表达水平增加,Micro-CT显示新骨形成量明显增加。 神经生长因子(nerve growth factor,NGF)是神经营养因子家族的成员,对交感和感觉神经元以及神经元嵴细胞有很强的促进作用。近年来研究发现,NGF还参与骨改建过程,对骨再生有一定的促进。将含NGF的明胶海绵应用于犬前磨牙缺损模型可以有效刺激骨的形成。在小鼠腿骨植入钛种植体区局部注射外源性NGF,可以促进小鼠股骨钛种植体植入早期的骨再生,加速早期骨胶原以及骨小梁的成熟,缩短种植体骨结合时间。但由于NGF半衰期较短,NGF多被用于种植体局部注射,用于种植体表面改性的研究还较少。 骨的改建由多种生长因子共同参与,BMP、VEGF、TGF、NGF等在促进骨生成方面有积极作用,控制生长因子在种植体表面的缓慢持续释放,增加其作用时间可以进一步促进成骨,并且多种生长因子的联合使用似乎可以取到更好的促进效果。 三、生物活性肽 生物活性蛋白因其固有的生物活性为种植体表面的生物功能化提供了选择,但是蛋白质分子存在免疫原性且缺乏良好稳定性,动物提取的蛋白也具有病原体传播和变异的风险。相比较而言,仅包含细胞结合序列的短肽可以发挥生物活性作用并能规避这些风险,具有良好应用潜能。它们易合成、纯化和存储消毒,与大分子蛋白相比具有成本效益,并且其活性不依赖于其三级结构。 下面着重于介绍4种具有促进细胞粘附、增殖和分化功能多肽或寡肽,如RGD,P-15,成骨生长肽(osteogenic growth peptide,OGP)以及胰岛素样生长因子(insulin-like growth factors-1,IGF-1)。RGD序列存在于纤连蛋白的细胞结合域,是细胞粘附所需要的最小序列,可以促进细胞的扩散粘附和增殖。 贻贝来源蛋白(mussel derived peptide,MP)是一种包含L-3,4二羟基苯丙氨酸(DOPA)结构的蛋白,可以作为接枝分子把RGD和肝素结合蛋白(heparin binding protein,HBP)固定在钛片上。Pagel等将人类骨肉瘤细胞(sarcomaosteogenic,SaOS-2)置于附着MP-RGD的钛片上培养,发现其可以促进SaOS-2黏附、生存和增殖,MP-RGD-HBP的促进作用则进一步增强。 将抗菌肽和RGD肽共同结合在钛种植体表面,不仅可以促进SaOS-2细胞的附着和扩散,同时阻止了细菌的生长。此外肽的结构也对骨结合过程也有一定影响,研究发现环状RGD相比线性RGD会引起垂直方向骨量的更明显增加,并且发现环状RGD可能是通过激活成骨细胞的黏着斑激酶(FAK),上调MARK信号通路c-fos转录阈值水平,进而促进成骨细胞的增殖。 P-15是模拟Ⅰ型胶原蛋白结合域合成的短肽(GTPGPQGIAGAGQRGVV),具有促进成骨细胞分化、增强细胞黏附、迁移和存活的功能。Fu等通过表面引发的原子转移自由基聚合(surface-initiated atom transfer radical polymerization,SI-ATRP)原位生长含酮聚合物,并通过肟化反应将P-15共价连接在钛表面。结果显示聚合物接枝P-15的实验组相比未含P-15的对照组在第6h展现出更高的细胞存活率,细胞核染色法检测24h细胞数显示共价接枝P-15的钛片吸附有更多细胞,21d茜素红S染色也显示P-15的存在增加了钙沉积。 Lutz等将P-15吸附修饰在钛棒表面并植入猪股骨中,组织形态计量学分析发现30d时相比未修饰的种植体展现出更高的BIC值。同样,将磷酸钙和P-15沉积吸附修饰的钛种植体植入成年比格犬的双侧胫骨中,1周时也呈现出比其它对照组更高的BIC值,提示P-15能够有效诱导种植体周围的骨形成。然而植入部位以及个体异质性对生物活性物质的作用可能会有一定的影响。Schmitt等对植入比格犬颌骨内的种植体中部、顶部以及顶部两侧进行骨形态计量学分析后,发现在第2d和7d,P-15修饰的钛种植体与对照组种植体周围的BIC无统计学差异,因此P-15以及其它生物活性物质在人体内对骨结合的促进作用仍需进一步验证。 成骨生长肽是由14个氨基酸组成的多肽(ALKRQGRTLYGFGG),能增强ALP活性,加速基质矿化、促进骨再生。沉淀吸附有成骨生长肽的钛片可以促进大鼠间充质干细胞的附着、增殖和成骨分化。当纤连蛋白与成骨生长肽共同附着于钛片时,成骨分化作用进一步加强。Lai等通过聚多巴胺将成骨生长肽共价连接在有钛纳米管的钛片上,在其上接种大鼠颅骨成骨细胞,相比未修饰成骨生长肽的钛片,ALP的水平明显提高,成骨相关基因表达增加。 IGF-1是一种与胰岛素结构相似的小分子肽,可作为骨骼生长的调节剂,具有促进细胞粘附的作用。Xing等将大鼠骨髓间充质干细胞接种在加载有IGF-1的明胶/壳聚糖聚电解质多层的钛种植体表面,检测发现ALP、Runx2、Ⅰ型胶原和骨钙素的mRNA的表达水平提高,细胞增殖以及基质矿化水平增加。 将IGF-1修饰的种植体植入骨质疏松模型大鼠股骨中,8周后通过亚甲蓝/品红和micro-CT观察,相比对照组,实验组新骨厚度和连续性明显增加,当IGF-1为100ng/mL时促进作用最强,为骨质疏松症患者的种植修复提供了新的策略。肽类生物活性物质克服了生物活性蛋白的诸多缺陷,降低了在体内被内源性酶降解的风险,在促进细胞的粘附,增殖和分化以及促进新骨形成增加种植体初期稳定性方面具有良好的效果,在种植体表面改性方面具有良好的应用潜力。但这些肽类生物活性物质发挥促进骨结合效果最恰当的浓度还有待进一步确定,如何使肽类活性物质在种植体表面更稳定的释放也有待进一步研究。 四、小结 生物活性分子在种植体表面的应用有助于提高种植体骨结合。这通过其促进成骨相关标记物表达,促进间充质干细胞向成骨细胞分化,增加细胞的粘附和增殖等方式证实,而且动物体内研究也表明种植体表面的生物活性分子增加了种植体周围新骨的形成,促进种植体骨结合,展示了良好的临床应用前景。目前聚电解质多层、水凝胶、纳米粒子以及微球等缓释系统的研究为生物活性物质更加稳定持久释放提供了更广阔的前景,但缓释系统在种植表面对生物活性物质的缓释效果仍需在进一步验证。 目前研究大多数都是体外或动物体内实验,由于体内影响因素较多,缺乏对其确切效果的临床证据,尚未转化为可供临床应用的产品。而且,这些生物活性分子用于种植体表面的制备方法、对种植体储存和消毒带来的难题以及体内吸收、降解等对骨形成的影响体等一系列问题尚需更多、更深入的研究来解决,尤其是大量的、严谨科学设计的体内研究有助于揭示其临床应用价值。欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 蛋白质免疫亲和活性浓度绝对测量方法的建立
    p style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: left text-indent: 2em "span style="text-indent: 2em "近期,中国计量科学研究院武利庆及其合作者杨屹、苏萍等发表系列文章(Anal.Bioanal.Chem. 412(2020)2777-2784、Talanta 178(2018)78-84、Microchem. J. 157(2020)104954),介绍了基于表面等离子共振光谱法和数字ELISA的蛋白质免疫亲和活性浓度绝对测量方法。/spanbr//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "蛋白质是一类重要的生物大分子,免疫分析是其常用的定量分析手段,在测量和质控中不仅关心目标蛋白的含量,更为关注它的活性与功能,其量值的准确对于保证人民大众健康与安全具有重要意义。活性浓度测量手段的匮乏限制了蛋白质产品活性量值的质控与标准的建立。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "针对这一难题,作者以G2-EPSPS、人肌红蛋白为例,通过表面等离子共振,在部分传质限制条件下,通过扩散速率等测定直接计算出可被抗体识别的目标蛋白浓度,即免疫亲和活性浓度;或采用寡聚核酸标记抗体,借助邻位连接技术和数字PCR技术,以数字ELISA的方式直接测定样本中目标蛋白的免疫亲和活性浓度。两种方法均无需外部标准品,是一种绝对测量手段。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 241px " src="https://img1.17img.cn/17img/images/202010/uepic/06042747-02ad-460f-82a4-752c907691ff.jpg" title="图片1.png" alt="图片1.png" width="600" height="241" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "图1 基于表面等离子共振技术的蛋白免疫活性浓度测定原理图span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/82c05090-1aa2-4789-9467-c4fd8c632095.jpg" title="图片2.png" alt="图片2.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "图2 基于数字ELISA技术的蛋白免疫活性浓度测定原理图/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "蛋白质免疫亲和活性浓度的绝对测定将有助于准确表征蛋白质与其抗体之间的相互作用,保证免疫分析的准确可靠,同时有助于蛋白质产品的活性量值的质控与标准的建立。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站a href="http://tdmsqs.ncrm.org.cn" target="_blank"http://tdmsqs.ncrm.org.cn/a注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/c475b4b8-ad00-4d02-bdea-04a9663c0909.jpg" title="图片5.png" alt="图片5.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "欢迎各位专家、同仁报名参会!/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:a href="http://tdmsqs.ncrm.org.cn。" _src="http://tdmsqs.ncrm.org.cn。"http://tdmsqs.ncrm.org.cn。/a /pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong学者简介:/strong/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "武利庆,研究员,中国计量科学研究院前沿计量科学中心蛋白质室主任/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "杨屹,教授,北京化工大学化学学院/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "苏萍,副教授,北京化工大学化学学院/span/p
  • 第四届国际振动光学活性学术大会
    第四届国际振动光学活性学术大会(VOA-4)于2014年10月29日在中国保定河北大学圆满落下帷幕,此次大会主要研究以及探讨振动光学活性技术在物理化学、生命科学以及生物、化学、制药、材料等领域的发展与应用。来自美国、英国、德国、法国、比利时、意大利、瑞士、捷克、日本、韩国等二十多个国家近百位该领域顶级科学家和学者专家出席了此次大会,其中包括英国皇家院士Laurence Barron 教授以及美国雪城大学荣誉教授Laurence Nafie教授。 大会开幕式 大会报告厅 英国皇家院士Laurence Barron 教授 大会主席美国雪城大学荣誉教授Laurence Nafie教授 齐爱华董事长主持大会邀请报告 VOA国际大会是由英国皇家院士Laurence Barron教授和美国雪城大学荣誉教授Laurence Nafie 教授共同发起的两年一届的国际科学盛会。首届VOA会议在英国曼彻斯特大学举办,随后两届分别在美国和意大利举行。今年首次于中国的河北大学召开,短短的四天里,相关领域的科学家以及学者们汇聚一堂,共同交流了各自最新的研究成果, 从而使得人类手性科学研究领域得到了更进一步的发展。目前,该会议已在国际生命科学、材料科学、药物化学、物理化学等领域拥有极高的知名度,以及推动力, 现今已得到了科学领域前沿的科学家们的广泛关注以及认可。 大会晚宴现场一撇左三:英国皇家院士Laurence Barron教授左四:华洋科仪董事长齐爱华女士右四:美国伊利诺伊大学 Timothy Kingderling 教授右二:中国河北大学化学与环境学院马刚教授 在此次大会开幕的前一天,华样科仪与美国BioTools公司邀请了世界顶级光谱专家与量子化学理论专家前来,为大会奉献了一场精彩的振动圆二色光谱技术理论与仪器操作实物专场讲座, 讲座内容丰富,互动热烈,效果空前绝佳。 大会报告嘉宾一览: 华洋科仪2014.11.01
  • 拉曼光谱解密细胞内结冰如何影响细胞活性
    冷冻保存技术是将细胞长期维持在稳定的状态,从而应用于各种疾病的诊断和治疗。据1970年代以来的研究显示,多种类型细胞冷冻保存后的存活率会随着冷冻速率的不同而不同。大多数种类细胞的存活率与冷冻速率呈倒U形关系:即当超过最佳冷却速率后,细胞存活率随冷冻速率的增加而迅速下降,当低于最佳冷却速率时,细胞存活率随冷冻速率的降低而迅速下降。在快速冷冻速率下,细胞内的冰晶形成(Intracellular ice formation,IIF)会对细胞造成损害,并随着冷冻速率的增加导致细胞活性丧失。然而,IIF的机制仍无定论,目前业内存在的主要有以下三个假设:(1)Mazur假设称细胞外冰晶可以穿过膜孔生长进而诱导细胞内冰晶形成;(2)Asahina则认为冷冻直接破坏细胞膜是导致IIF的原因;(3)Toner等人则提出表面催化形成晶核是造成IIF的原因。  传统低温光学显微镜技术是有限的,高速图像采集和双光子显微镜可以提高观察细胞冷冻的空间和时间分辨率,虽然可以在低温下观察细胞反应,却不能与每个细胞的活性相关联。显微拉曼光谱技术可对细胞进行无标记检测,并可用于细胞内水的热力学状态(即液态水与冰)等化学属性进行识别,因此可作为探究细胞冷冻反应的有力工具。此外,显微拉曼光谱的高空间分辨率和可区分细胞膜、线粒体等亚细胞结构的能力意味着该工具可用于进一步探究IIF及其成因,并通过拉曼光谱能够直接表征IIF对细胞活性的影响进而判别冷冻细胞后的活性。  明尼苏达大学研究团队在Biophysical Journal发表题为“CharacterizingIntracellular Ice Formation of Lymphoblasts Using Low-Temperature RamanSpectroscopy”的研究成果(图1)[1]。研究结果表明显微拉曼光谱技术可用于研究细胞在不同冷冻速率和冷冻液成分下的冷冻反应。通过拉曼光谱发现胞内冰晶形成并不一定会导致细胞死亡,但细胞内冰晶的数量及大小会影响细胞活性。另外研究还发现,细胞内冰晶形成靠近于细胞膜并靠近于细胞外冰晶,而通过增加细胞膜和细胞外冰晶间的距离可以减少IIF;实验使用细胞松弛素D破坏肌动蛋白细胞骨架以改变细胞膜的渗透性来增加胞内冰晶形成量,当存在胞内冰晶时,可以显著的观察到细胞内渗透梯度,这些观察结果揭示了细胞膜与胞外冰晶的相互作用是导致IIF的原因。图1 研究成果(图源:[1])  此项研究选用Jurkat细胞作为淋巴细胞的模型细胞,采用的共聚焦显微拉曼系统Alpha 300R配备:UHTS300光谱仪、600 l/mm光栅以及DV401 CCD检测器。激发光源波长为532 nm,100×物镜(NA=0.9),聚焦在被测物上的光功率为10mW,显微分辨率约为296 nm。将细胞冷冻至-50℃,并在成像前保持20分钟。每幅图像有60×60个像素,每个像素点采集的积分时间为0.2秒,因此,对整个细胞进行成像总共需要12分钟。分别在第20、80和140分钟时对相同细胞进行拉曼光谱成像采集,以排除来自激光照射带来的光损伤/光漂白的热量影响。  单细胞中细胞色素c的分布被作为冷冻状态下细胞活性的衡量标准,其拉曼成像结果与台盼蓝染色结果高度一致。细胞色素c的空间分布使用 Moran' s I量化,并被用作细胞活性的标记。Moran' s I是一种基于信号位置和强度的进行空间相关性度量的方法,其值为-1时表示信号完全分散,+1时表示信号完全相关,0时表示信号随机分布。细胞色素c在750、1127、1314和1585 cm-1处具有强烈的拉曼信号,本实验以1127 cm-1作为标记峰用于生成细胞色素c的拉曼成像,并通过吖啶橙/碘化丙啶(Acridine orange/Propidium iodide,AO/PI)染色验证解冻后细胞的活性。根据常见的细胞内、外物质的特征峰位置(表1,图2),整合每个像素的光谱来组合拉曼成像,表征冰晶的大小、冷冻保护剂的细胞内浓度以及外部冰与细胞膜的接近程度。表1 拉曼光谱的波数分布数据来源:[1]∣制表:生物探索编辑团队图2 不同物质的拉曼光谱(图源:[1])  注:1)海藻糖;2)葡聚糖;3)DMSO;4)=细胞色素c;5)冰;6)冷冻保存在10% DMSO中的Jurkat细胞。根据左边的特定信号渲染出右边图像,并以光学显微镜图像为参考。  结果发现:1  细胞色素c的拉曼光谱可表征细胞复温后活性  解冻后细胞复苏率与冷冻速率的之间的函数绘制曲线呈倒U形,可知“最佳”冷冻速率为1-3℃/min,当冷冻速率高于该曲线时认为是过快的,并会与IIF相关(图3A)。在冷冻细胞的不同焦平面上获得的拉曼成像显示,细胞中间(中心)的细胞色素c图像提供了最强的信号(图3B)。台盼蓝染色阴性细胞(活细胞)的细胞色素c局部拉曼信号强且最低Moran' s I值为0.65,而台盼蓝染色阳性细胞(死细胞)没有可区分的细胞色素c拉曼峰(图3C)。因此,可使用0.65的Moran' s I值作为区分活细胞和死细胞的阈值水平。图3 Jurkat细胞活性的拉曼检测(图源:[1])  注:(A)在10% DMSO中冷冻Jurkat细胞后的复苏率与冷冻速率的函数曲线图。(B)冷冻细胞在三个不同深度焦平面上细胞色素c的拉曼成像。(C)通过拉曼光谱检测冷冻后Jurkat细胞的活性并使用台盼蓝进行验证,对应的细胞色素c的拉曼特征、拉曼成像和计算的Moran' s I值。2  拉曼光谱可分析细胞内冰晶的形成  拉曼光谱测定了细胞在1、10和50℃/min冷冻速率下的细胞活性:以1℃/min冷冻保存后的细胞中有80%是活的,以10℃/min冷冻保存后的有60%的细胞是活的,而以50℃/min冷冻保存后的只有20%的细胞是活的(图4A)。每个细胞内冰的相对量可以根据冰的横截面积与细胞的横截面积的比值(Aic)来估计。Aic与不同冷冻速率相关性函数(图4B),Aic随着冷却速率的增加而增加。统计Aic与Moran' s I值的函数曲线图,结果表明活细胞中的冰晶比死细胞少,但存在群体上的差异(图4C)。图4 不同冷却速率下细胞内细胞色素C和冰晶的分布(图源:[1])3  基于拉曼图像可计算IIF的冰晶尺寸及位置  在不同冷冻速率下,大多数细胞仅存在小冰晶。图5 细胞内冰晶的拉曼成像(图源:[1])4  拉曼图像可表征冰晶、细胞膜和IIF的相互作用  分别将细胞以10℃/min的冷冻速率在10% DMSO或10% DMSO+10%葡聚糖中进行冷冻保存。通过拉曼成像分析IIF和Aic,细胞通常存在于相邻冰晶之间的未冷冻溶液中(图6A)。实验观察指定了两个不同的区域:1)细胞外冰晶靠近细胞膜的区域;2)相邻冰晶之间的区域,其中细胞膜远离细胞外冰晶(图6B)。通过测量细胞和细胞外冰晶之间的未冷冻溶液的厚度来表示细胞膜与细胞外冰晶的接近度(图6C)。图6 在10% DMSO或10% DMSO+10%葡聚糖中冰和Aic的拉曼图像(图源:[1])5  拉曼验证破坏细胞骨架增加了细胞内冰晶的形成量  质膜不是孤立地起作用,而是与细胞中的其他结构相互作用,特别是细胞骨架。为了确定破坏膜结构对IIF的影响,将Jurkat细胞放置于50以及250μM细胞松弛素D(Cytochalasin D,CD)中培养30分钟,然后在10% DMSO中以10℃/分钟的速率进行冷冻。对于存在CD的实验,在10个细胞中有2个中观察到大块冰晶(图7A)。约83%的细胞靠近细胞膜存在比例很高的细胞外冰晶,其中带有大块冰晶的细胞确认死亡,而带有小冰晶的细胞部分死亡部分存活。细胞内冰晶与细胞膜的空间定位确证在细胞外冰晶附近(图7B)。在所有实验条件下,IIF的细胞比例相同(100%),但结果显示Aic会随着CD浓度的增加而显著增加(图7C)。图7 细胞松弛素破坏细胞骨架对IF的影响(图源:[1])此项研究证实了拉曼光谱技术可用于研究细胞在不同冷冻速率、不同冷冻保护剂下的冷冻反应。此外研究还表明了IIF靠近于细胞膜,特别是与细胞外冰晶相邻的位置。随着靠近细胞膜且与胞外冰晶相邻的比例增加,IIF比例也会增加,并且随着细胞膜和胞外冰晶之间的距离减小,IIF比例也会随之增加,这些结果表明细胞膜和细胞外冰晶之间的相互作用是造成IIF的原因。该研究还进一步了解了冷冻保护剂的潜在作用机制,但是,研究中无法通过拉曼技术将细胞骨架与细胞内其他蛋白质成分区分开来,因此也无法明确IIF是否会损害细胞骨架。
  • 护肤品中活性成分玻色因的分析检测
    护肤品中活性成分玻色因的分析检测秦旭阳 金燕玻色因(Pro-xylane,羟丙基四氢吡喃三醇)是一种从木糖衍生而来的糖蛋白混合物,而木糖大量存在于山毛榉树中,因此玻色因最初是从山毛榉树中提取分离得到的。玻色因通过促进胶原蛋白合成来增加皮肤弹性。皮肤会随着衰老而逐渐失去弹性,细胞的活性也开始下降,降低或不再生成促进胶原蛋白的合成。而玻色因可以激活粘多糖的合成,促进IV型和VII型胶原蛋白的合成,通过这种促进合成,增加胶原蛋白纤维数量,使我们的表皮层和真皮层更加稳固,紧密,让皮肤重新变得饱满充盈,变得更加紧致和富有弹性。 玻色因还可以通过刺激葡萄糖胺聚糖(GAGs)的合成来改善皮肤皱纹。皮肤细胞外基质中的GAGs以网状结构存在,可防止皮肤水分流失,连接皮肤中的各组织,维持皮肤的弹性和紧致。随着皮肤衰老,合成GAGs的能力不断下降,导致皮肤松弛,产生皱纹。而玻色因可以刺激葡萄糖胺聚糖(GAGs)的合成来改善皮肤弹性、有效缓解皮肤皱纹。 研究发现玻色因改善皮肤弹性和缓解皮肤衰老的功效,因此化妆品企业便进行大规模的人工合成,并添加进各种护肤品中,深受广大消费者的欢迎。 由于玻色因没有紫外吸收,一般采用通用型检测器进行检测。同时护肤品的基质较为复杂,容易产生干扰,因此对检测器灵敏度有着较高的要求。而CAD电雾式检测器作为新型通用型检测器,较传统紫外检测器、ELSD检测器等有着独特的优势:分析物既不需要发色团也不需要离子化,适用于不挥发及半挥发化合物的高灵敏度检测。CAD检测器有更高的灵敏度、更宽的线性范围、更好的重现性,非常适合作为主要检测手段。本实验利用Vanquish Core液相色谱系统和Charged Aerosol Detector H电雾式检测器来分析护肤品中的玻色因。 仪器配置:Vanquish Core系列泵:Quaternary Pump C自动进样器:Split Sampler CT柱温箱:Column Compartment C检测器:Charged Aerosol Detector H 色谱条件:分析柱:Shodex Asahipak NH2P-50 4E 4.6 mm×250 mm,5 μm柱 温: 30℃CAD检测器参数:过滤常数:3.6s,雾化温度:50℃,采集频率:5Hz流动相:乙腈:水(85:15)流速:0.8mL/min进样量:5µL稀释溶剂:乙腈:水(50:50) 实验结果与讨论:玻色因是由两个非对映异构体组成的混合物(Isomer 1和Isomer 2),故CAD图谱表现为两个峰。玻色因对照品色谱图Isomer 1和Isomer 2在0.0586~1.172mg/mL范围内线性良好,相关系数R2 0.999。对照品溶液连续进样5针,其中 Isomer 1峰面积RSD为1.94%,Isomer 2峰面积RSD为2.31%。本方法Isomer 1和Isomer 2检测限为0.0586mg/mL (S/N4),定量限为0.1172mg/mL(S/N10)。对照品检测限色谱图样品前处理简单,样品经溶剂稀释后可直接进样分析。两种护肤品精华液色谱图由实验结果可知,本方法利用CAD电雾式检测器检测护肤品中的玻色因,样品前处理简单,灵敏度高,分离度和重复性好,抗干扰能力强,适合常规的产品质量控制。
  • 德国公布化妆品中激素活性成分检测结果
    德国联邦环境和自然保护联盟7月25日发布消息称,经调查显示,6万个化妆品样品中,几乎三分之一产品含有激素活性成分。其中,含激素成分最严重的十家公司如下表所示:公司名称 检出率 主要品牌 拜尔斯道夫公司 46% 妮维雅 宝洁公司 46% 海飞丝 欧莱雅 45% 卡尼尔 科蒂集团 39% 兰嘉斯汀 汉高公司 30% 施华蔻,丝蕴 豪斯曼 27% Alterra, isana 米迪拜尔 22% Zoe I am 联合利华集团 19% 多芬,duschdas DmDrogerieMarkt (欧洲药妆零售连锁) 17% 艾薇德,芭乐雅
  • 利用预注石灰与活性炭的布袋除尘器脱除汞
    使用NIC产品制作的科学出版物:注:一, 此科学出版物是由我们的客户使用NIC产品完成。二, 此页仅供文摘参考。请参阅此展位友情链接以获取完整信息。 Process Safety and Environmental ProtectionVolume 148, April 2021, Pages 323-332利用预注石灰与活性炭的布袋除尘器脱除汞作者: MasakiTakaokaa , YingchaoChenga,b , KazuyukiOshitaa , TomoakiWatanabec , ShojiEguchida. Department of Environmental Eng., Graduate School of Eng., Kyoto University, C-cluster, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan b. Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan c. Nippon Instruments Corporation, 14-8, Akaoji-cho, Takatsuki, Osaka, 569-1146, Japan d. Taiyo Chikuro Industries Co., ltd., 6-21, Higashi Kouen, Hakata-ku, Fukuoka, 812-0045, Japan 文摘: 火葬场已被确定为目前尚未得到治理的汞排放源之一。然而,通过安装布袋除尘器(FF)以改变操作条件,从而去除火葬场烟气中的汞的效果却未得到深入研究。本研究采用连续排放监测设备记录了火葬场烟气通过增加预处理的FF和选择性催化反应器(SCR)前后的汞浓度,验证了将石灰与10%活性炭的混合物预先注入烟道的汞去除效果。经该除尘系统处理后,SCR出口处的汞浓度极低,最高排放浓度低于5 μg/Nm3,汞去除率达87.5-99.9%。FF表面的石灰与活性炭的厚层有效地抑制了SCR出口处的汞浓度峰值。FF入口处的平均汞浓度与遗体死亡年龄之间的关系表明,死亡年龄或为火葬场控制汞排放的关键因素之一。 有关详情,请浏览NIC仪器信息网友情链接。
  • 依托咪酯列入管制,拉曼光谱助力“烟粉”等新精神活性物质快检
    国家禁毒委员会办公室发布的《2021年中国毒情报告》中指出:“受du pin供应和流通数量‘双降’影响,国内主流du pin价格居高且普遍掺假,du pin买不到、吸不起、纯度低成为普遍现象,部分吸毒人员减量降频,或寻求麻精药品和非列管物质进行替代,或交叉滥用非惯用du pin以满足毒瘾。”随着du pin越来越难获得,吸毒人员开始吸食目前还未被列管的有麻醉、兴奋或抑制精神作用的麻精药品,其中就包括有麻醉作用的依托咪酯。吸食依托咪酯的途径一般有两种,在吸毒圈内,依托咪酯被称为“烟粉”,一种是将香烟中的部分烟丝取出来,另一种是将依托咪酯添加入普通烟油中。 公安机关现场缴获的含有依托咪酯的电子烟一般说来,依托咪酯的有效催眠剂量为0.3mg/kg,普识纳米基于表面增强拉曼原理自主研发了“烟粉”等新型du pin的检测方案,实现了ppb级别检测限,是低于有效剂量的快检手段。 拉曼光谱是指纹图谱,可以准确的对邮票进行检测,如下图。表面增强拉曼光谱(SERS)能对拉曼信号实现百万倍的放大,结合简单的前处理技术,能够实现依托咪酯的检测。 准确识别烟油中新精活物质-依托咪酯-实现50ppb检测限新精神活性物质滥用的社会危害性十分严重,相较于传统du pin,新精神活性物质成为du pin替代品,由此事带来的最大的风险是在不是du pin的表象下,非吸毒人员忽视了其中的危害,容易贪图一时的“上头”,或自主或被人怂恿而去吸食。新精神活性物质滥用危害严重,准确的du pin检测对打击du pin犯罪、侦破du pin案件、遏止du pin蔓延具有非常重要的意义。针对该案件犯罪手段新、du pin种类新、滥用方式新等特点,普识纳米针对公安机关对新型du pin的现场检测需求,开发出手持拉曼光谱仪(PERS-HR650D),以满足侦查现场的快速检测。普识纳米痕量手持拉曼,相较于其他检测快检手段,具有以下优势:1、具有数据库更新快:新精活数据库约300余种,新物种出现三天可出新检测方案),传统du pin及易制毒化学品数据库数量近300种。2、检测速度快:约1分钟(含前处理时间);3、操作简单:简单培训即可上手,现场即可检测,对检测环境没要求;4、检测结果一对多:一次检测,自动与谱图数据图逐一匹配;5、识别准确,重复性高。普识纳米痕量手持拉曼光谱仪除了对电子烟油新精活物质的快检,还能实现对烟草、酒水饮料、尿液中du pin物质的快速检测。
  • 上新福利!爱必信新品活性&含量检测试剂盒
    好消息!好消息! 爱必信活性&含量检测试剂盒上新啦! 本次上新包含200余个酶活性及小分子含量检测试剂盒,覆盖常见酶类如蛋白酶、激酶、连接酶、代谢酶类、凋亡相关酶类等100余种,以及金属离子、糖类、脂类、酸类、酮类、氨类、维生素类等100余种常见生物相关小分子,总有一款适合您! 我们的试剂盒支持多种样本类型,含血清, 血浆, 尿液, 唾液, 乳汁, 细胞培养上清, 组织提取物, 细胞裂解液, 其他生物液体样本等,或者食品, 果汁, 饮料, 其他农产品,动物饲料, 酶制剂, 面包改良剂混合物, 其他材料等。 本次上新福利,限时支持8折优惠,截止2021年5月31日,机会不容错过。产品信息:更多请点击》》货号英文名称中文名称abs580001Acid Phosphatase Microplate Assay Kit酸性磷酸酶 (ACP)abs580002Alanine Transaminase Microplate Assay Kit谷丙转氨酶 (ALT)abs580003Alkaline Phosphatase Microplate Assay Kit碱性磷酸酶 (ALP)abs580004Aspartate Transaminase Microplate Assay Kit谷草转氨酶 (AST)abs580005Glutamate Microplate Assay Kit谷氨酸abs580006Glutathione Microplate Assay Kit谷胱甘肽abs580007Lactate Dehydrogenase Microplate Assay Kit乳酸脱氢酶abs580008NAD/NADH Microplate Assay Kit辅酶ⅠNAD(H)abs580009NADP/NADPH Microplate Assay Kit辅酶ⅡNADP(H)abs580010Superoxide Dismutase Microplate Assay Kit超氧化物歧化酶 (SOD)abs580011Malondialdehyde Microplate Assay Kit丙二醛 (MDA)abs580012Hydrogen Peroxide Microplate Assay Kit过氧化氢 (H2O2)abs580013Polyphenol Oxidase Microplate Assay Kit多酚氧化酶abs580014Nitrate Reductase Microplate Assay Kit硝酸还原酶abs580015Trehalase Microplate Assay Kit海藻糖酶abs580016Pyruvate Microplate Assay Kit丙酮酸abs580017NADPase Microplate Assay KitNADP磷酸酶abs580018Phenylalanine ammonia-lyase Microplate Assay Kit苯丙氨酸解氨酶abs580019Na+/K+ ATPase Microplate Assay KitNa+K+-ATP酶abs580020Ca2+/Mg2+ ATPase Microplate Assay KitCa2+Mg2+-ATP酶abs580021Glutamine Synthetase Microplate Assay Kit谷氨酰胺合成酶 (GS)abs580022Starch Microplate Assay Kit淀粉abs580023Alpha-Amylase Microplate Assay Kitα-淀粉酶abs580024Beta-Amylase Microplate Assay Kitβ-淀粉酶abs580025Glucose Microplate Assay Kit葡萄糖abs580026Acid Invertase Microplate Assay Kit酸性转化酶abs580027Neutral Invertase Microplate Assay Kit中性转化酶abs580028Beta-1,3-Glucanase Microplate Assay Kitβ-1,3葡聚糖酶abs580029Trehalose Microplate Assay Kit海藻糖abs580030NADPH-Cytochrome c Reductase Microplate Assay KitNADPH-细胞色素C还原酶 Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • 中国技术经济学会批准发布《生物活性肽的鉴别和细胞活性测定》团体标准
    各相关单位:根据《中国技术经济学会团体标准管理办法》的有关规定,中国技术经济学会批准《生物活性肽的鉴别和细胞活性测定》团体标准。现予以发布,详细信息见下表:序号标准编号标准名称实施日期1T/CSTE 0379-2023生物活性肽的鉴别和细胞活性测定2023-09-01 中国技术经济学会2023年8月15日2023(53号文)关于批准发布《生物活性肽的鉴别和细胞活性测定》团体标准的公告.pdf
  • 北化徐福建团队:阳离子光敏剂烷基链长度对活性氧抗菌机制的影响
    近日,北京化工大学材料科学与工程学院徐福建教授团队和济宁医学院的李敬博士在Adv. Mater.上发表了题为“Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms”的研究论文。阳离子光敏剂与带负电荷的细菌和真菌具有良好的结合能力,在抗菌光动力疗法(aPDT)中应用广泛。然而,阳离子光敏剂对病原菌,尤其是真菌与哺乳动物细胞不具有选择性,往往会存在生物安全性的问题。同时,由于缺乏对相同光敏剂的系统性研究,目前尚不清楚细菌的哪些生物活性分子位点是光动力的有效损伤位点。因此,以小檗碱(BBR)为光敏剂核心,设计并合成了一系列具有不同烷基链长度的阳离子聚集诱导发光(AIE)衍生物(CABs),用于灵活调节阳离子光敏剂对细胞活性物质的选择性。BBR核心可以有效地产生活性氧(ROS),并在生理环境中实现高性能的aPDT。通过精确调节烷基链长度,实现了CABs在细菌、真菌和哺乳动物细胞中的不同结合、定位和光动力杀伤效果。研究发现,aPDT更有效的损伤位点是细胞内活性物质(DNA和蛋白质),而不是细菌膜。中等长度烷基链的CABs在光照下能有效地杀死革兰氏阴性菌和真菌,同时仍然保持良好的生物安全性。通过HOMO-LUMO实验证明烷基链长度的改变并不会改变核心BBR的AIE性能,但是随着烷基链的增长,CABs更容易形成分子间聚集体。与此同时,随着烷基链的增长,CABs与细菌的结合速率与结合量增加。CAB-8光照时的抗菌性能提升更明显。进一步的激光共聚焦定位实验证明,烷基链长调控CABs在细菌内的定位,CAB-8进入细菌,CAB-10卡在膜上。通过分子动力学模拟实验发现,CAB-10比CAB-8要克服更大的自由能,导致CAB-10卡在细菌膜上。透射电镜冷冻切片证明,CABs的定位调控杀伤,CAB-8损伤菌内活性物质,CAB-10损伤细菌膜上。进一步通过液质联用、DNA彗星实验以及β-半乳糖苷酶检测证明:CAB-10(膜上)膜损伤程度大于CAB-8(膜内),CAB-8(膜内)对DNA、酶损伤程度大于CAB-10(膜上)。随着烷基链的增加,CABs进入真菌的能力增强:CAB-10>CAB-8 CAB-6。同时,烷基链越长,CABs进入哺乳动物细胞的能力越强,具体表现为CAB-10的细胞毒性远大于CAB-8和CAB-6。综上所述,CAB-8可以很好的平衡光动力杀菌和生物相容性,具有高效杀菌性和生物安全性。该研究通过烷基链的定位调控,解决了阳离子光动力抗菌材料对细菌、真菌、哺乳动物细胞不具有选择性造成的生物安全问题,同时证明了相对于细菌膜来说,细菌内部的活性物质是光动力更为有效的氧化位点。本研究有望为构建具有良好选择性的高性能阳离子光敏剂提供系统的理论和研究指导。北京化工大学材料科学与工程学院博士生郑良和博士生朱艺文为本文的共同第一作者。材料科学与工程学院徐福建教授和俞丙然教授、济宁医学院的李敬博士为本文的通讯作者。北京化工大学为第一完成单位。本研究工作得到了国家重点研发计划,国家自然科学基金,和北京市优秀青年科技人才计划的资助。
  • 快速高效判断病毒活性,何惧“疫”军突起
    农历庚子年春节,“疫”军突起,新型冠状病毒(2019-nCoV)肆虐中华大地,全国上下正在面临一场疫情阻击战。医务工作者日以继夜救治病患,科研人员加班加点投入到抗击新冠病毒的相关研究中。在病毒学研究中,病毒空斑实验(virus plaque assay)将各稀释度的病毒液接种到单层细胞培养环境中,吸附2小时后,在单层细胞上覆以琼脂糖,病毒感染细胞并在细胞中增殖,使细胞破裂死亡。由于固体介质的限制,释放的病毒只能由最初感染的细胞向四周扩展。经过几个增殖周期,便形成一个局限性病变细胞区,即病毒空斑。理论上,当病毒液充分稀释后,获得的每个空斑均源于最初感染细胞的一个病毒颗粒。空斑实验是病毒滴定,筛选病毒突变株,检测病毒抗体和抗病毒药物研究的常规手段。区别于传统的只检测病毒颗粒的PCR和免疫荧光方法,病毒空斑实验检测有活性的感染性病毒颗粒,即空斑形成数(PFU)。目前,病毒空斑实验主要还是通过人工计数的方式在6孔,12孔或24孔板里实现。这样的操作速度慢,主观因素大,出错率高;尤其当病毒活性比较高时,很难准确统计出空斑数。相比之下,利用成像配合自动计数的方法可以提高病毒空斑的检测通量,提升计数的准确性。如下图所示,用AlexaFluor™ 488染色的病毒进行空斑实验,在病毒空斑形成后通过明场成像和荧光成像,可以看到感染后病毒引起宿主细胞的结构改变,也称为细胞病变效应(CPE)。这类效应可能是或者细胞裂解导致单层(溶斑)出现孔洞(A),也可能是形态改变如细胞脱离(非溶斑)(B)。利用模块化的分析算法,计算机可以非常准确地判断出这两种细胞病变状态。如图C中,红色标注的是溶斑空洞,而蓝色的则是非溶斑的细胞脱离。为了验证计算机分析的准确性,研究人员进行了人工计数和计算机分析的比对实验。将病毒按不同倍数进行稀释,进行空斑实验。实验完成后,由3名分析人员进行人工计数,同时利用EnSight™ 多模式检测仪进行成像和空斑计数分析(下图)。实验结果显示:人工计数和自动图像分析都具有非常好的线性回归,其R2值非常相似。但是当病毒稀释倍数很低(病毒浓度高)的时候,人工计数就很难实现了 ,如下图中的1:20和1:10两个病毒浓度点(图D)。从空斑计数结果看(图E),第一次实验在人工可计数的病毒浓度下,计算机分析和人工计数值基本一值;但第二次实验中,在1:160和1:640两个病毒浓度下,2号分析人员明显高估了空斑的个数。这也说明人工计数存在一定的主观性,具有计数值偏离真实值的风险。以上实验是使用珀金埃尔默的EnSight™ 多模式检测系统完成的。结果表明成像自动分析可以显著提升病毒空斑实验的通量以及实验结果的准确性和稳定性。珀金埃尔默公司的EnSight™ 多模式检测仪是一款集传统酶标技术和高速微孔成像于一体的系统。EnSight™ 成像模块专为高速高效的细胞成像而设计,采用先进的sCMOS相机以降低信号背景噪音,激光自动聚焦以快速成像,固态光源 (LED) 以进行短时照明;配备高内涵(HCS)图像分析内核的软件Kaleido™ ,使图像数据准确地转化成数字信息。同时,EnSight™ 的Alpha和TR-FRET等模块,可以在成像的同时检测同一样品中其他生化指标,让研究变得多维度,让科研人员对实验结果有更好的把握。扫描下方二维码,即可下载珀金埃尔默EnSight™ 多模式检测系统相关资料。
  • 质谱和光谱是解决新精神活性物质现场微痕量检测的有效方法
    5月25日,普拉瑞思在北京参加并学习了毒pin毒物、新精神活性物质的现场查缉及实验室快速分析研讨会,这次活动展现了质谱现场检测的前瞻实力,清谱科技作为业内领xian的现场质谱解决方案提供商,为缉毒等工作带来了“检测利器”,我们也看到了业内zui顶jian团队的研发实力。与此同时,光谱方法也是质谱之外另一种现场检测的有效技术,普拉瑞思公司专注于表面增强拉曼光谱技术的研究及应用,开发了多种增强基底及配套前处理方案,广泛应用于食品安全、公共安全、药品安全等多个领域。我司的增强拉曼方法为新精神活性物质含量检测提供了上百种的解决方案和数据库,为目前国内领xian的解决方案提供商。公司拥有完善的研发团队和技术积累,已获得国jia级、省级多份检测、检验报告,覆盖硬件、软件、检测能力、试剂等多个方面。1. 检测能力介绍1.1 普通拉曼数据库接近8000种:现有毒pin、精神药品、麻醉品的常量数据库约360种,检测项目齐全,涵盖如芬太尼类、卡西酮类、大麻类、阿片类、苯丙胺类等;另外有易制毒化学品、易燃易爆品、危险化学品、一般化学品、毒气及毒剂、珠宝矿物、聚合物、食品包材及添加剂等不同种类约近8000种常量数据库。1.2 增强拉曼数据库约300种:食品类增强数据库约200种,包括非食用化学物质、滥用食品添加剂、兽药残留、农药残留、保健品非法添加、化妆品非法添加、环境污染物、植物激素、抗生素类药物残留等多个类别,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。 表1食品类增强拉曼数据库类别统计表毒pin类增强数据库约100种,包括传统毒pin类、新精神药品类、麻醉品类等,例如芬太尼类、卡西酮类、苯丙胺类、吗啡类、大麻素类、哌嗪类等。适用于常见的生物样品检材比如毛发、唾液、尿液等,环境样品如污水、废水等,食品检材如饮料、糖果、咖啡、面粉、调味料等样品中均可实现快速、灵敏检测,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。预计未来6个月内,微痕量毒pin数据库将在现有基础上新增检测项目100项以上,其中新增芬太尼结构类似物20种以上、卡西酮结构类似物15种以上、苯胺类结构类似物10种以上、合成大麻素等50种以上。表2 毒pin类增强拉曼数据库明细表2. 检测案例介绍案例1:食品检材、污水及生物检材中芬太尼的测定-表面增强拉曼光谱法污水、饮料等液体类样本:向10毫升离心管中加入1毫升样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。毛发,体毛等:按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。面粉、奶粉、咖啡粉等固体类:向10毫升离心管中加入1克样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中加入4增强试剂A,待测液,增强试剂B2,混匀,置于检测池中,开始检测。上述解决方案的标准品检出限为0.001ppm,实际样品中的最di检出限可达0.01ppm。 图1 样品中芬太尼的表面增强拉曼光谱图 图2 样品中不同种类芬太尼的表面增强拉曼光谱图 3. 总结普拉瑞思科学仪器(苏州)有限公司拥有强大的产品研发能力,在拉曼光谱仪快速检测行业领域具备完善、齐全的检测方案,在食品安全、公共安全、药品安全等领域均有深厚技术积累和对应的产品方案,不仅具有多种类别的常量拉曼数据库,另外还配备目前国内最全面的毒pin类增强拉曼数据库,对芬太尼类等新精神活性物质有齐全的检测和解决方案,可为各级食药、公安、海关、口岸等部门提供强大技术保障。
  • 来自火星的中红外TDLAS技术
    2012年8月6日,好奇号(Curiosity Rover)在火星的伊奥利亚沼(Aeolis Palus)成功着陆。作为人类第四辆成功着陆的火星漫游车,好奇号不仅延续了人类对这颗红色星球的探索热情,而且再次引发了人类对火星是否有生命痕迹的疑问和关注。为了探测盖尔撞击坑内(Gale)的环境是否曾经能够支持生命,好奇号配备了当时最为专业和先进的科学仪器,其中包括火星样本分析仪(SAM)。图1. 好奇号在火星夏普山山脚下的自拍,图片来源于维基百科SAM旨在通过探索与生命相关的分子和元素化学,研究火星现在和过去的宜居性。目前地球上已知的所有生物都属于碳基生物,因此SAM主要通过寻找有机化合物、除碳以外的轻元素的化学态和同位素示踪剂来研究火星的碳化学。SAM由三套仪器组成,即四极杆质谱仪(QMS)、气相色谱仪(GC)和可调谐激光光谱仪(注:NASA称之为TLS,工业界习惯称TDLAS)。四极杆质谱仪和气相色谱仪可以在气-质联用(GC-MS)的模式下一起工作,对有机化合物进行分离(GC)和最终鉴定(QMS)。TDLAS可以获得二氧化碳中C和O的精确同位素比,并测量甲烷及其碳同位素的微量含量。图2. 火星样本分析仪,图片来源于NASA图3显示的是可调谐激光光谱仪(TDLAS)的光学原理图和实物照片。从图中可以看出,TDLAS由3部分构成:含有光源和其他光电器件的前端光学室,样品吸收池以及探测器室。这三个腔室通过窗片分隔。TDLAS采用双光学通道,通道1使用3.27 μm的中红外激光器进行甲烷测量,通道2使用2.78 μm DFB激光器进行水和二氧化碳测量。样品吸收池采用赫利奥特池(Herriott Cell),物理长度为20厘米。激光在吸收池两端的镜片之间来回多次反射后进入探测器室。2.78μm激光在池内来回反射43次,光程达到8.93米;3.27μm激光在池内来回反射81次,光程达到16.8米。赫利奥特池的使用极大地增加了气体吸收的光程,使得甲烷测量达到百亿分之一的灵敏度(约0.1ppbv),也使得仪器更加小型轻便,TDLAS总重量只有3.7千克。图3. 可调谐激光光谱仪(TDLAS),图片来源于NASA2018年6月7日,美国宇航局(NASA)利用TDLAS测量的甲烷浓度数据,确认了火星大气中的甲烷背景水平存在季节性的周期变化。科学家推测这些甲烷可能来源于地质过程中的化学反应,甚至火星地下的微生物或其他形式的生命,但是到目前为止没有证据证实这些猜测。2019年6月下旬,TDLAS检测到了好奇号登陆火星以来的zui高甲烷浓度,达到了惊人的21ppb,是甲烷背景浓度的40倍左右!这让火星大气中甲烷的来源问题更加扑朔迷离。图4. 火星大气中的甲烷的周期变化,图片来源于维基百科 好奇号火星车上拍摄的火星上的一天。图5、火星上的日出、正午、日落及夜空图6、新一代火星车“毅力号”将于今年7月中旬(大约40天之后!)发射升空作为“好奇号”发现火星甲烷本底异常的续集,新一代火星车“毅力号”将于今年7月中旬(大约40天之后!)发射升空。肩负着人类成为多行星物种(Multi-Planetary Species)梦想的侦查兵,“毅力号”旨在更好地了解火星地质并寻找古代生命的迹象。该任务将收集和存储一组岩石和土壤样本,这些样本可能会在将来的火星任务中被带回地球。“毅力号”还将测试新技术,以使未来的火星机器人和人类火星探索受益。 “毅力号”的主要目标• 探索一个与以往任务存在地质差异的着陆点• 评估远古火星的宜居性• 寻找古代生命的迹象,尤其是在我们已知的能在时间长河中保存生命迹象的特殊岩石中• 收集岩石和土壤样本,这些样本可以通过未来的火星任务返回地球• 展示和验证用于未来机器人和人类火星探索的新技术——如火星无人机等 任务时间表• 于2020年7月至2020年8月在佛罗里达州卡纳维拉尔角空军基地发射• 由美国宇航局的ULA Atlas 541火箭提供发射服务• 2021年2月18日在火星上降落,降落点位于一个曾经充满杰泽罗火山口(Jezero Crater)的 古代三角洲湖泊地区• 花至少一个火星年(两个地球年)探索着陆点周围区域 想了解更多星辰大海高科技?请关注“海尔欣科技”,让小编带你飞~~
  • 关闭CML干细胞活性有望攻克白血病干细胞
    美国亚特兰大12月9日召开的第54届美国血液协会年会暨博览会上,天普大学医学院报告了他们在研究慢性骨髓性白血病(CML)治疗方面的进展。他们设计出一种关闭CML干细胞活性的方法,以此遏制病情的进一步发展。研究人员指出,该发现有望带来攻克癌症干细胞耐药性的个体化新疗法。  在CML中,骨髓干细胞中的基因ABL1和BCR融合在一起产生了一种叫做BCR-ABL1的酶,在其驱动下产生了过多白细胞。尽管在治疗上,伊马替尼(imatinib)是一种比较成功的药物,但患者始终处在病情复发的风险中。论文高级作者、天普大学医学院微生物学与免疫学教授托马斯· 斯科斯基解释说,白血病有一个小型干细胞库来对抗治疗,残余的白血病干细胞会积累大量致命的DNA变异,并能够有效地自我修复,从而在DNA中埋下致命隐患,最终导致病情恶化。  为此,研究小组用了一种不会伤害正常细胞的方法攻击了白血病干细胞修复DNA的路径,而正常细胞的修复机制与白血病细胞不同。他们用小鼠做了一系列实验,显示出瞄准一种特殊的蛋白质RAD52,能遏制白血病干细胞的自我修复过程。&ldquo 我们希望这种方法能根除白血病干细胞,治愈慢性骨髓性白血病患者。&rdquo 斯科斯基说。  &ldquo 我们早期的研究也发现,RAD52基因是白血病发展的关键因素。&rdquo 论文第一作者、该校微生物学与免疫学博士后金伯利· 克莱姆说,小鼠骨髓细胞在缺乏RAD52时,CML会停止发展,这表明CML要依靠RAD52来实现自身DNA修复。  一种最普遍的DNA损伤是&ldquo 双链断裂&rdquo ,当RAD52蛋白发生变异时,就不能再与DNA结合修复断裂。研究人员用一种&ldquo 适配子&rdquo 加入到BCR-ABL1阳性骨髓细胞中,发现RAD52被阻止与DNA结合,白血病骨髓细胞会累积过多的双链断裂,最终死亡,而适配子对正常细胞则没有影响。  克莱姆说:&ldquo 用这种方法,最终可能生产出一种小分子抑制剂,从其致瘤根源上瞄准白血病细胞。&rdquo 斯科斯基补充说,该方法也有望扩展到其他癌症。
  • 发布东晶全自动石灰活性度检测仪A6-LA105新品
    A6-LA105全自动石灰活性度测定仪1、简价石灰的活性度是指它在熔渣中与其它物质的反应能力。用石灰在熔渣中的熔化速度来表示。通常用石灰与水的反应速度表示。具体也可以说在标准大气压下10分钟内,50克石灰溶于40摄氏度恒温水中所消耗4N HCl水溶液的毫升数就定义为石灰的活性度。目前石灰活性度平均值一般可以超过300 ml/4N-HCl,可以显著缩短炼钢转炉初期渣化时间,降低吨钢石灰消耗,并对前期脱P极为有利。炼钢实践表明,这种石灰可以提高脱磷脱硫效率80%,同时缩短冶炼时间,在3-5min之内可以完全与钢水中酸性物质反应完毕,而一般石灰的方应时间至少要6-10min。此外提高炉龄40%以上,炉料的消耗也降低5-8kg/t钢,以1000万t计算,每年节约1500万左右,生产效益显著(以上数据仅供参考)。石灰活性度一般采用酸碱滴定法测定,应客户的需求,在符合行业标准YB/T 105-2014(替代YB/T105-2005老标准)的前提下对石灰石活性度测定仪的研制和开发该设备目前,国内石灰石活性度还是人工滴定,其存在问题如下:1)检测过程繁琐不便洁。2)检测数据值及精度难以得到保证,同时,容易产生人为偏差。3)不能进行历史数据查询。自动活性度滴定仪则是采用计算机与PLC结合的方式,操作简便,工作稳定,测量结果偏差极小。同时具备人性化的操作界面和数据文件存储、查询等功能。设备还汲取国内外同类产品测定仪的最新技术,基于我们公司顾问专家常年从事化检事业的多年经验研发出的新一代产品,本设备最大的特点:1.体积减小、重量轻;2.电气整体设计简洁而合理,器件布局层次分明,线路简约而清晰,给维护和调试工作带来了许多便利;3.机械运动动作优化,大大降低了故障频率,提高了设备长期正常运行的可靠性;4.自动化程度提高,开放了大量用户使用窗口,在满足用户自动测试的同时也降低了维护人员繁琐的维护工作,大大降低了维护费用。2、技术参数技术参数 人机界面 人机界面是完成用户直接参与控制和了解设备内部详细资源的窗口,通过该人机界面,用户可以对本设备进行丰富的参数配置,功能执行,自动校正等人性化功能,详细请参阅后章节。 基本工作原理 该设备基于上位计算机和PLC的程序设计,计算机作为人机对话的窗口丰富地反映了设备的基本工作状况,可以按照用户的需要对该设备进行基本设置等功能。PLC作为该设备控制的核心器件,主要负责控制设备的升降、搅拌、滴定等。本设备包含自动/手动两种工作方式,用户选择自动方式可以自动按照预编程好的工作模式进行:用户选择手动方式可以手动点动调试各个部件的工作情况。 自动试验程序:烧杯放入拨杯定位架里,按下启动键,烧杯左转30度到热炉上,然后供水2000ML加热。加热到40度水温后,拨杯器右转60度,到搅拌工位,搅拌泵和PH电极下降到设定位,人工加石灰,搅拌,蠕动泵供给盐酸并计量,测PH值。电脑全程记录变化。试验运行10min时完成并搅拌泵自动上升,拨杯器左转30试到原点,取出烧杯。 1、PH值检测器,0-14.00PH,分辨率0.01PH,工业型; 2、计量精度:0.5mL 3、搅拌器速度:300 r/min; 搅拌浆杆:Φ6×-250mm 搅拌叶片:0.5×10×60mm 材质:四氟 4、工作电压AC220V±10% 50HZ±5%; 工作环境5℃≤环境温度≤40℃,湿度≤85%,无强磁场,无剧烈振动。 5、工作台面:500*700mm 6、升降机行程:0-300mm,功率:90w 7、蠕动泵:步进电机0-2000r/s 8、烧杯移位:400w伺服电机 9、烧杯加热:1000w陶瓷电子炉 10、温度控制:红外线测控仪 量程0.5-200度。 11、水位限量:XKC-Y25超声壁外测定3、设备结构及工作原理3.1结构及组成部分3.1.1搅拌电机:搅拌电机出轴速度为300转/分,符合国标要求的270-300转/分。搅拌电机出轴连接着一根搅拌棒,可以深入到下面溶液内进行搅拌,可以充分搅拌溶解在烧杯内的石灰石等物质。3.1.2注酸口:注酸口是使用耐酸碱材料加工而成的,对酸液或碱液具有耐腐蚀能力,滴定的酸液的软管可以插入该注酸口,酸液通过该口流入下面的烧杯内。3.1.3 PH计:PH计是测量下面烧杯内溶液内的电极传感器,通过和仪表连接在一起,可以实时测试溶液内的PH值,该PH计设置有保护罩,在长期不使用的时候,请使用保护罩将其罩住,以保持PH计的湿润。pH/ORP计的使用,很大程度上取决于对电极的维护。首先应经常清洗电极,确保其不受污染,并每隔一段时间对电极进行重新标定,以纠正电极在使用过一段时间后所产生的斜率误差,标定操作请参见后面相关章节。其次,无论在反应过程还是放料后,都应确保电极浸泡在被测溶液中,否则会缩短其寿命;同时还必须保持电缆连接头清洁,不能受潮或进水。活化:如果电极储存在干燥的环境下,则使用前必须用蒸馏水浸泡24小时,使其活化,否则标定和测量都将产生较大误差。清洗:发现电极受到污染影响测量精度时,可用细软的毛刷轻刷电极头部,再用清水清洗。 创新点:自动化程度高,滴定准确,无人为影响的误差东晶全自动石灰活性度检测仪A6-LA105
  • 欧盟公布已获许可的生物杀灭剂活性物质清单
    根据BPD指令和BPR法规,已经取得许可的活性物质清单已经在欧洲化学品管理局(ECHA)网站上发布。根据该清单,截止2013年9月1日,共有48个活性物质的49个用途已经取得许可。其中获得许可活性物质中,产品用途类型只有5种,数量最多的为木材防腐剂(PT - 8)23个,其次是杀鼠剂(PT - 14)12个,杀虫杀螨剂(PT - 18)10个,趋避剂和引诱剂(PT - 19)3个, 另外还有1个为杀黏菌剂(PT - 12)。其它17个类型的用途尚未有活性物质通过评审。  这五种产品用途类型,在中国都归为农药进行监管。在这些欧盟许可的木材防腐剂活性物质中,大部分品种在中国作为大田农药使用,如目前作为农药杀菌剂注册数量激增的醚菌酯,被业界看好的最新杀虫剂多杀菌素,以及因对蜜蜂的不良影响而可能遭到欧盟禁用的烟碱类杀虫剂吡虫啉,噻虫嗪等。对于中国这些活性物质的生产商,可以考虑欧盟的生物杀灭剂市场。  根据BPR法规,目前正在评审中的活性物质,仍可接续留存于欧盟市场直到该物质获得许可或排除决议之后的180天。也就是说,尽管其它类的生物杀灭剂暂时没有获得许可使用的活性物质,但是欧盟市场上仍旧可以使用现有的正在评审中的活性物质。活性物质清单的发布,对欧盟市场的冲击暂时尚未显现。但是随着活性物质评审的加快,根据之前的评审结果来看,预计欧盟市场上可用活性物质将急剧减少,不仅会对工业企业产生影响,对普通消费者来说,也面临着难以选择适用的生物杀灭剂产品,比如消毒湿巾,家用消毒剂等。  在该清单中,除了提供每个物质英文通用名称,EC号码,CAS号,产品类型,评审成员国等信息之外,查询者还可通过链接转到决议指令及评估报告。  详情参见:http://echa.europa.eu/information-on-chemicals/biocidal-active-substances
  • Nature子刊:有机半导体也能实现高SERS活性!
    p  SERS(表面增强拉曼光谱)作为一种超高灵敏度、超快速的无损检测光谱技术,在食品安全、环境监测等痕量有毒有害物质检测领域发挥越来越多的作用。/pp  众所周知,SERS增强机理主要分为两种。一种是电磁场增强机理,依靠纳米结构的金、银、铜等金属的局域表面等离子共振实现拉曼信号的增强。另一种是化学增强机理,依靠增强基底与分子间的电荷转移实现拉曼信号的增强。/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/5fae9991-8b2d-4115-90fa-84a8fcb42e77.jpg"//pp style="text-align: center "图1. 增强机理/pp  Zhongqun Tian et al. Nanostructure-based plasmonenhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials 2016./pp  目前而言,大部分SERS检测体系还是以电磁场增强机理为主,需要设计具有不同形貌和尺寸的币族金属纳米结构。如何开发不需要金属的高活性SERS基底材料,则成了一项更为艰巨的任务。/pp  有鉴于此,George C. Schatz, Antonio Facchetti, Hakan Usta, Gokhan Demirel等人合作开发了一种具有高SERS活性的有机半导体材料。/pp style="text-align: center "img title="02.jpg" style="width: 600px height: 345px " src="http://img1.17img.cn/17img/images/201708/noimg/fa6d37dd-fc18-4425-8f31-6513a0bdd7a2.jpg" width="600" hspace="0" height="345" border="0"//pp style="text-align: center "图2. 纳米结构的DFH-4T薄膜/pp  研究人员通过气相沉积技术,利用一种π-共轭的有机半导体α,ω-diperfluorohexylquaterthiophene (DFH-4T),设计制备了一种类似常春藤的超疏水纳米结构薄膜。这种不含金属的有机半导体分子薄膜对亚甲基蓝可以实现3.4× 103的拉满信号增强。/pp style="text-align: center "img title="03.jpg" style="width: 600px height: 462px " src="http://img1.17img.cn/17img/images/201708/noimg/46ed5791-4e79-4850-8de9-a6c1abe0a135.jpg" width="600" hspace="0" height="462" border="0"//pp style="text-align: center "图3. 纳米结构DFH-4T薄膜的SERS增强/pp style="text-align: center "img title="04.jpg" style="width: 600px height: 357px " src="http://img1.17img.cn/17img/images/201708/noimg/1677d0dd-2708-4812-b535-377d04ae7285.jpg" width="600" hspace="0" height="357" border="0"//pp style="text-align: center "图4. 纳米结构DH-4T薄膜的SERS增强/pp  量子力学计算和对比实验表明,π-共轭的核心氟碳取代以及独特的DFH-4T薄膜形貌对SERS增强起到主导作用。/pp  进一步,研究人员在DFH-4T薄膜表面涂覆一层金膜,实现了1010左右的增强系数,可以检测到 10-21摩尔级别的待测物。/pp style="text-align: center "img title="05.jpg" style="width: 600px height: 359px " src="http://img1.17img.cn/17img/images/201708/noimg/418a2811-2d12-4a28-8177-ebb617a97fc6.jpg" width="600" hspace="0" height="359" border="0"//pp style="text-align: center "图5. Au@ DFH-4T薄膜的SERS增强/pp  总之,这项研究为SERS基底材料的设计以及痕量物质的超灵敏无损检测带来了新的方向!/pp style="text-align: right "(来源:纳米人 路漫 )/p
  • 小科普:肺功能和肺泡表面活性物质
    存在于肺泡内液气界面的肺表面活性物质的生理意义有:防止肺水肿、维持大小肺泡的稳定性和降低吸气阻力。肺表面活性物质还有减弱表面张力对肺毛细血管中液体的吸引作用,防止液体渗入肺泡(肺水肿)。根据Laplace定律,P=2T/r(P是肺内的压力,T是肺泡表面张力,r是肺泡半径)。假设大、小肺泡的表面张力一样,那么肺泡内压力肺泡半径成反比,大的肺泡,压力小;小的肺泡,压力大。如果这些肺泡彼此连通,小肺泡塌陷,大肺泡膨胀,肺泡将失去稳定性。但实际并未发生这种情况,这因为肺泡存在着表面活性物质→降低肺泡表面张力→防止小肺泡的塌陷+防止大肺泡的膨胀破裂,保持大小肺泡的稳定性,有利于吸入气在肺内得到较为均匀的分布。此外,肺泡表面活性物质能降低表面张力,即促进肺扩张→降低吸气阻力。肺弹性阻力使肺具有回缩倾向,故成为肺扩张的弹性阻力,肺组织的弹性阻力仅约占肺总弹性阻力的1/3,而表面张力的约占2/3。因此,表面张力对肺的张缩有重要的作用。肺弹性阻力的来源:肺弹性阻力来自肺组织本身的弹性加回缩力和肺泡内侧的液体层同肺泡内气体之间的液-气界面的表面张力所产生的回缩力。肺充气时,在肺泡内衬液和肺泡气之间存在液-气界面,从而产生表面张力。球形液-气界面的表面张力方向是向中心的,倾向于使肺泡缩小,产生弹性阻力。肺泡表面活性物质由肺泡Ⅱ型细胞合成并释放,分子的一端是非极性疏水端,另一端是极性亲水端,是复杂的脂蛋白混合物,主要成分是二棕榈酰卵磷脂(DPPC)。DPPC分子垂直排列于液-气界面,单分子层分布在液-气界面上,并随肺泡的张缩而改变其密度。肺泡表面活性物质的密度越大,降低表面张力的作用越强。成年人患肺炎、肺血栓时,表面活性物质减少→表面张力↑→肺泡塌陷→肺不张。初生儿因缺乏表面活性物质,发生肺不张和肺泡内表面透明质膜形成,造成呼吸窘迫综合症,导致死亡。现在已可应用抽取羊水并检查其表面活性物质含量的方法,协助判断发生这种疾病的可能性,采取措施,加以预防。例如,如果含量缺乏,则可延长妊娠时间或用药物(糖皮质类固醇)促进其合成。
  • 北京包装饮用水行业协会立项《活性氢水》和《活性氢水抗氧化性测定 ABTS法》两项团体标准
    各有关单位:根据《北京包装饮用水行业协会团体标准管理办法》的相关规定,协会于 2023 年5月5日组织专家对《活性氢水》和《活性氢水抗氧化性测定 ABTS法》两项团体标准进行了立项评审。该标准由青春永驻(北京)生物科技有限公司提出,经专家评估,所申报的团体标准符合立项条件,现批准立项。请各团体标准编制单位、企业按照专家评审意见和《北京包装饮用水行业协会团体标准管理办法》的工作要求,抓紧组织实施,积极推进团体标准编制工作,按计划完成编制工作。负责人:高志芳联系电话: 13520400567邮箱:gaozfang@163.com北京包装饮用水行业协会2023年5月6日
  • Sapphire平台助力SARS-CoV-2 Mpro抑制剂和活性探针研究
    2020年10月22日,由Wioletta Rut 、Katarzyna Groborz、Linlin Zhang和Xinyuanyuan Sun等在《nature chemical biology》期刊发表了《SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging》的文章。SARS-CoV-2的主要蛋白酶(Mpro)是关键的抗病毒药物靶标,作者首先获得了该蛋白酶的荧光底物(HyCoSuL)靶向库,并确定了P4-P2位点的底物特异性,比较了SARS-CoV和SARS-CoV-2主要蛋白酶的底物偏好性。其次,作者设计并合成了一种有效的SARS-CoV-2抑制剂(Ac-Abu-dTyr-Leu-Gln-VS)和两种活性探针,其中一种探针与SARS-CoV-2 Mpro配合物的晶体结构被确定。最后,作者观察了SARS-CoV-2 Mpro在COVID-19感染患者鼻部咽上皮细胞中的活性。这些数据为COVID-19有效诊断和治疗的化合物设计提供了支撑。在本次研究中,作者使用美国Azure Biosystems Sapphire平台检测SARS-CoV-2 Mpro 探针的敏感性,其中抑制剂是Ac-QS5-VS(Ac-Abu-dTyr-Leu-Gln-VS),活性探针是Bodipy-QS5-VS(Bodipy-PEG(4)-Abu-dTyr-Leu-Gln-VS)。Sapphire以其超高的分辨率,更宽的动态范围和更高的检测灵敏度助力此项研究。▲ Sapphire双模式多光谱激光成像系统☑ 双模式成像:扫描检测和CCD成像双模式。☑ 4个固态激光器激光激发:488nm(蓝色)、520nm(绿色)、658nm(红色) /685nm/638nm、784nm(NIR),给用户更多荧光选择。☑ 唯一的3种检测器设计:PMT,APDs和CCD检测器,PMT检测器用于蓝色荧光检测和磷屏成像;3个独立的APD检测器用于绿色、红色荧光检测和双近红外荧光检测,高分辨CCD用于高灵敏化学发光检测。☑ 扫描方式:4通道同时扫描,扫描更快速。☑ 分辨率更高:可达10微米的分辨率,成像更清晰。☑ 动态范围更宽:同时定量低丰度蛋白和高丰度蛋白,定量更准确 。
  • 中国首次火星探测火星全球影像图发布
    4月24日,在2023年“中国航天日”主场活动启动仪式上,国家航天局和中国科学院联合发布了中国首次火星探测火星全球影像图。  本次发布的影像图为彩色,包括按照制图标准分别制作的火星东西半球正射投影图、鲁宾逊投影图和墨卡托投影加方位投影图,空间分辨率为76米,将为开展火星探测工程和火星科学研究提供质量更好的基础底图。  天问一号任务获取的包括影像图在内的一批科学探测数据,将为人类深入认知火星作出中国贡献。
  • 美科学家证实生命可在火星恶劣环境下生存(图)
    火星上的奥林匹斯山,是太阳系内的最大火山。在美国俄勒冈州的山区,细菌以在火山岩橄榄石中发现的铁为食。火星上也存在橄榄石 俄勒冈州的熔岩管。科学家在高海拔山脉的冰冷熔岩管内发现细菌。这种细菌生活在冰冷且含氧量较低的环境下,以铁为食,而不是正常食物  北京时间12月22日消息,生命能够在冰冷的火星繁衍生息吗?美国俄勒冈州大学的一组科学家给出了肯定的答案。研究过程中,他们从俄勒冈州山区的冰冷溶岩管——环境与红色星球表面类似——收集细菌样本,结果发现细菌能够在这种恶劣环境下繁衍生息。  这些细菌以在岩石中发现的橄榄石中的铁为食,能够在氧量较低和完全没有有机食物存在情况下生存。在火星岩石中,科学家同样发现了橄榄石。研究论文作者、美国俄勒冈州大学的博士生艾米-史密斯表示:“这些细菌来自于地球上一个最常见的细菌家族。你可以在洞穴,自己的皮肤上,海底或者任何地方发现这个家族的成员。这一次发现的细菌拥有惊人的生存能力,能够在类似火星的环境下繁衍生息。”  科学家证实,经过长时间的进化,这种细菌能够适应严酷的生存环境。在室温和正常的氧水平条件下,这种细菌以糖等有机物质为食。在移除这些食物同时将温度降至接近零度和降低氧水平后,这种细菌开始以在熔岩管中发现的橄榄石作为能量之源。橄榄石是存在于地球和火星火山岩中的常见矿物。  研究论文作者、俄勒冈州大学地球、海洋与大气科学学院教授马丁-菲斯克表示:“在此之前,我们从未发现细菌以在火山岩中发现的一种常见矿物为食的现象。在火山岩直接暴露在空气中和温度较为温暖情况下,大气中的氧抢在细菌之前让铁发生氧化。”在熔岩管中,细菌被冰覆盖,与大气隔绝开来,铁不会发生氧化,最后成为细菌的食物。  用于收集细菌样本的熔岩管是在俄勒冈州卡斯卡德山脉Newberry陨坑附近发现的,海拔高度大约在5000英尺(约合1524米)左右。这些细菌生活在熔岩管内大约100英尺(约合30米)处的岩石的冰中,所处环境含氧量极低,温度接近零度。包括菲斯克在内的科学家表示,火星地下可能存在类似环境,细菌能够在这种环境下生存。  菲斯克曾对来自火星的一颗陨石进行分析,结果发现了细菌新陈代谢迹象。不过,他并没有在陨石中发现任何生命体。他指出在Newberry陨坑的熔岩管中也发现类似迹象。他说:“熔岩管内的环境并不像火星那么恶劣。在火星上,温度几乎达到冰点,氧水平更低,液态水无法在地表上存在。根据科学家的假设,温度较高的火星地下可能存在水。虽然不太可能在火星上复制这项研究发现,但研究表明细菌能够在类似环境下生存。根据直接观测和卫星图像,我们在火星岩石中发现橄榄石。我们的研究显示橄榄石能够支持微生物存在。”
  • Affinité的P4SPR仪器快速检测抗体活性
    抗体的质量受pH、温度、和细胞培养代谢物等工艺参数的影响[1]。抗体等生物药需要进行质量控制,以确保质量和安全。这些生物药不仅需要通过串联质谱等物理化学方法进行表征,而且还必须研究它们的生物活性。传统方法例如酶联免疫吸附测定(ELISA)[1] [2])被用于活性测定。然而,这些检测不能提供动力学和亲和力数据[1]。另一种方法是表面等离子体共振(SPR)技术。SPR是一种表征蛋白质的强大技术,作为一种无标记技术,利用它可以实时检测蛋白质相互作用,并且样品使用量少[2]。大型SPR系统已被用于蛋白质质量控制[2] [3]。尽管如此,大型SPR设备的使用仍然有限,仪器需专人使用,操作复杂,耗材成本高[4]。另一方面,个人型SPR设备可以让科学家快速的检测样品,轻松获得验证质量所需的有价值的动力学和亲和力数据,而不影响灵敏度和特异性。在本应用中,我们演示了如何使用个人型SPR设备(P4SPR™)轻松确定哪种来源的抗核衣壳抗体与SARS-CoV-2核衣壳重组蛋白具有最佳的结合性能。Djaileb等人在ChemRXiv论文中描述了更详细的实验过程[6]。图1显示了固定SARS-CoV-2核衣壳蛋白检测抗核衣壳抗体的方案。通常,金传感器表面用Afficoat[4]修饰。用EDC / NHS处理,然后用醋酸钠洗涤。将SARS-CoV-2核衣壳重组(rN)蛋白溶液(10μg/ mL)添加到表面并处理20分钟;再次用醋酸钠洗涤。蛋白质修饰的表面被1M乙醇胺封闭10分钟(pH 8.5)以减少非特异性吸附。通过运行缓冲液(RB)对其进行平衡。随后,将来自不同来源的抗体制造商的抗核衣壳抗体溶液(10 μg/mL)(表1)手动注入传感器,并在每个通道(图2,通道A-C)收集SPR响应信号,一次进样获得3次重复试验数据。在引入新的抗体溶液之前,使用运行缓冲液和甘氨酸溶液进行洗涤。使用AntiRBD(受体结合结构域)作为对照(图2,通道D),以校正温度和体折射率的任何波动。SPR偏移的差异根据测量开始到结束的共振单位(RU)差异确定[6]。结果和讨论整个实验测试4种不同来源的抗体抗核衣壳所花费的总时间2.5小时。每次注射的平均时间约为18分钟,注射和再生的平均总时间为25分钟。图3显示了所有3个样品通道中抗核衣壳抗体第一和第二来源的SPR响应。可以清楚地看到抗核衣壳抗体与SARS-CoV-2核衣壳重组蛋白的互作响应。图4显示了所有四次进样的平均信号曲线图。图5显示了各种来源(按进样顺序)的抗核衣壳抗体(即浅蓝色的RU强度)互作强弱。很明显,AB1,批次B(注射#2)表现出最高的SPR响应或活性。此外,值得注意的是,如果使用浓度梯度的抗体或分析物,还可以通过手动进样轻松确定解离平衡常数(KD)。结论很明显,个人型SPR仪器可以快速对抗体进行质控,从而选择哪种抗体更适合于下一步的实验。这样可有效保障研究者的实验进展。同时,P4SPR也为生物制药产品进行质量控制提供了一种快速简便的方案。P4SPR优势Affinité 仪器的 P4SPR™ 是一种用户友好型仪器,可用于对蛋白质进行一般质量控制。无论蛋白质供应来自新供应商还是已经储存了一段时间,P4SPR™都可以轻松区分高活性和低活性蛋白质。此外,抗体样品不需要复杂的样本制备,可以稀释后直接注射样到仪器中。由于其多通道的功能设计,P4SPR 可提供快速、实时的数据和精度。参考文献1. M. Zschatzsch, Paul Ritter, Anja Henseleit,Klaus Wiehler, Sven Malik, Thomas Bley,Thomas Walther, Elke Boschke, "Monitoringbioactive and total antibody concentrationsfor continuous process control by surfaceplasmon resonance spectroscopy," Eng. LifeSci., vol. 19, pp. 681-690, 2019.2. Pranavan Thillaivinayagalingam, JulienGommeaux, Michael McLoughlin, DavidCollins, Anthony R. Newcombe,"Biopharmaceutical production: Applicationsof surface plasmon resonance biosensors," J.Chromatogr. B, vol. 878, pp. 149-153, 2010.3. C. Gassner, F. Lipsmeier, P. Metzger, H. Beck, A.Schnueriger, J.T. Regula, J. Moelleken,"Development and validation of a novel SPRbased assay principle for bispecific molecules,"J. Pharm. Biomed. Anal., vol. 102, pp. 144-149,2015.4. "Affinité Instruments," [Online]. Available:https://affiniteinstruments.com/5. H. Wang, Jing Shi, Youchun Wang, Kun Cai, QinWang, Xiaojun Hou, Wei Guo, Feng Zhang,"Development of biosensor-based SPRtechnology for biological quantification andquality control of pharmaceutical proteins," J.Pharm. Biomed. Anal., vol. 50, pp. 1026-1029,2009.6. Abdelhadi Djaileb, Benjamin Charron, MaryamHojjat Jodaylami, Vincent Thibault, JulienCoutu, Keisean Stevenson, Simon Forest,Ludovic S. Live, Denis Boudreau, Joelle N.Pelletier, Jean-Francois Masson, "A Rapid and Quantitative Serum Test for SARS-CoV-2 Antibodies with Portable Surface Plasmon Resonance Sensing,"http://doi.org/10.26434/chemrxiv.12118914.v1, April 15, 2020.
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 清谱科技携Miniβ 小型质谱分析系统参展“新精神活性物质的现场查验和实验室快速分析及安全防护”培训会
    2020年10月29日,由中国出入境检验检疫协会主办的“新精神活性物质的现场查验和实验室快速分析及安全防护”培训会在杭州召开,北京清谱科技有限公司(以下简称清谱科技)携Mini β小型质谱分析系统参展,清谱科技宋蓓为与会者带来了《芬太尼等新精神活性物质的小质谱现场快检技术》的报告。中国出入境检验检疫协会郗军老师主持了本次大会并为大会致辞,中国药物滥用防治协会张锐敏副会长、清华大学精密仪器系欧阳证教授、杭州市公安局禁毒支队沈坚等为与会者带来了精彩的报告。 会议现场 清华大学精密仪器系欧阳证教授报告题目:毒品现场检测之质谱技术发展欧阳证教授表示新型精神活性物质的管控是一场分析化学家与有机化学家的“对决”。清华大学精密仪器系、上海市公安局物证鉴定中心、上海市刑事科学技术研究院达成三方友好协议,在共同关注领域,比如毒品、管制药品、新精活性物质等快速鉴定技术研究及其它共同关注的领域开展战略性合作。质谱对于毒品检测具有高确定性,尤其是离子阱质谱仪的小型化对毒品的现场快速检测更是利好。欧阳证教授对目前市场上质谱仪中离子分析器的类型、离子阱分析器小型化的技术发展和原位电离技术等进行了讲解,并介绍了小型质谱分析系统在芬太尼监管和术中检测的应用。北京清谱科技有限公司 宋蓓报告题目:芬太尼等新精神活性物质的小质谱现场快检技术本报告就芬太尼等新精神活性物质的小质谱现场快检技术进行了详细的介绍。借助质谱检测的高可拓展性和原位电离技术,清谱科技的Mini β小型质谱分析系统极大的降低了质谱分析的复杂性,突破现场人员、场地的限制,无需样品前处理、第一时间完成芬太尼类及其他管制成分的快速准确识别检测。与此同时,还配备极具官方性的新型合成毒品及新精神活性物质二级质谱数据谱库,其中数据库中包含的芬太尼类物质及其前体远远超过了国家管控的25+3种,且具备检测上万种芬太尼及其变体的能力。Mini β小型质谱分析系统精准可靠,能够快速识别管制成分,支持痕量采样,具有高灵敏度和高可拓展性,提升了现场检测结果的准确性。Mini β小型质谱不仅能看到管控成分的质量信息,还可以推断出结构信息,这种双重保障能够提升定性结果的准确性,减少误判几率。随后,报告也列举了Mini β小型质谱分析系统的部分应用案例,包括食品中管制成分的检测、海关执法现场对通关人员或行李物品表面的痕量样品进行快速采样检测等。清谱科技展台Mini β小型质谱分析系统 Mini β小型质谱分析系统无需样品前处理,约1分钟生成检测报告,突破了检测场地、检测时间和专业人员的限制,实现一键式操作快速自动分析。采用PCS原位电离样品盒进样和非连续大气压接口(DAPI)技术,其精准可靠的质量分析系统提供了高动态范围和多级串联质谱测量能力,性能强劲的射频系统极大拓展了小型质谱的质量范围。纳克级灵敏度为痕量样品检测保驾护航,痕量样品模拟测试达1ng/cm2。串联质谱确保了检测的准确性,除毒品质量信息外,串联质谱还可显示结构信息,避免了传统方法的假阳性问题。芬太尼类新精神活性物质质谱库对于芬太尼检测,通过标准物质建库,已将200余种芬太尼类物质纳入谱库,而专有的算法使Mini β小型质谱分析系统具备检测约5万种芬太尼及其变体的能力。
  • 德研制新方法以生产药用大麻活性成分
    德国多特蒙德工业大学8月19日发表公报说,该校研究人员开发出一种用生物手段生产药用大麻的活性成分——四氢大麻酚的新方法。  研究人员先是在药用大麻中找到能促使四氢大麻酚产生的基因,然后提取该基因,再植入特定微生物中,接着在培养皿中让这些微生物不断繁殖,最后促使这些微生物生产出四氢大麻酚。研究人员表示,与传统的四氢大麻酚生物合成制造法相比,新方法更经济简便。  四氢大麻酚是药用大麻的主要活性成分,它可应用于癌症、多发性硬化症等疾病的治疗中。在德国,由于法律限制,人们只能从四氢大麻酚含量仅为0.2%的药用大麻——纤维汉麻中提取这种物质,因此德国四氢大麻酚年产量仅为20千克,但德国每年的医用需求量在一吨以上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制