当前位置: 仪器信息网 > 行业主题 > >

氧化锂

仪器信息网氧化锂专题为您提供2024年最新氧化锂价格报价、厂家品牌的相关信息, 包括氧化锂参数、型号等,不管是国产,还是进口品牌的氧化锂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧化锂相关的耗材配件、试剂标物,还有氧化锂相关的最新资讯、资料,以及氧化锂相关的解决方案。

氧化锂相关的资讯

  • 2011年88项有色金属测试国标将被制修订
    关于转发2010年有色金属国家标准制(修)订项目计划的通知各会员单位及有关单位:  根据国家标准委《关于下达2010年国家标准制修订计划的通知》(国标委综合[2010]87号)精神,现将2010年有色金属国家标准制(修)订计划下达给你们,并就有关问题通知如下:  一、请认真填写《落实任务书》,并于2月18日前报全国有色金属标准化技术委员会秘书处。  二、要严格按《落实任务书》的安排开展工作。各阶段工作进展情况要及时报全国有色金属标准化技术委员会秘书处,以便掌握工作进度。如有特殊情况,需推迟或撤销项目,必须写书面报告,报经全国有色金属标准化技术委员会批准。  三、标准制(修)订的程序和格式应严格按GB/T 1.1、GB/T 1.2、GB/T 20001.4和《有色金属冶炼产品、加工产品、化学分析方法国家标准、行业标准编写示例》的要求进行。上报报批稿时,应同时提供书面文本及符合《国家标准编写模板》的电子文本。  附件:1、2010年有色金属国家标准项目计划表.xls序号计划编号项目名称标准性质制修订完成时间技术归口单位起草单位采用国际标准代替标准120101192-T-610反射炉精炼安全生产规范推荐制定2012全国有色金属标准化技术委员会大冶有色金属公司  220101193-T-610高压油泵用铜合金无缝管推荐制定2012全国有色金属标准化技术委员会高新张铜股份有限公司  320101194-Q-610建筑用丙烯酸漆喷涂型材强制制定2012全国有色金属标准化技术委员会广东兴发铝业有限公司AAMA 2603:2005 420101195-T-610硫铁矿制酸烧渣回收铁推荐制定2012全国有色金属标准化技术委员会铜陵有色金属集团控股有限公司  520101196-T-610铝及铝合金预拉伸板推荐制定2012全国有色金属标准化技术委员会西南铝业(集团)有限责任公司EN 485 620101197-T-610钼化学分析方法 铝、镁、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、砷、镉、锡、锑、钨、铅和铋量的测定 电感耦合等离子体发射光谱法推荐制定2012全国有色金属标准化技术委员会北京有色金属研究总院  720101198-T-610钼化学分析方法 氢量的测定 惰气熔融红外检测法/热导法推荐制定2012全国有色金属标准化技术委员会金堆城钼业股份有限公司  820101199-Q-610镍冶炼安全技术规范强制制定2012全国有色金属标准化技术委员会金川集团有限公司、中国有色金属工业标准计量质量研究所  920101200-Q-610碳化钨粉安全生产规程强制制定2012全国有色金属标准化技术委员会厦门金鹭特种合金有限公司  1020101201-T-610铜加工生产企业安全应急预案推荐制定2012全国有色金属标准化技术委员会浙江海亮股份有限公司  1120101202-T-610铜矿山低品位矿石可采选效益计算方法推荐制定2012全国有色金属标准化技术委员会玉溪矿业有限公司  1220101203-T-610铜矿山酸性废水综合处理规范推荐制定2012全国有色金属标准化技术委员会北京矿冶研究总院  1320101204-T-610铜选矿厂废水回收利用规范推荐制定2012全国有色金属标准化技术委员会玉溪矿业有限公司  1420102195-T-610变形铝、镁合金产品超声波检验方法推荐修订2011全国有色金属标准化技术委员会东北轻合金有限责任公司ASTM B594-09GB/T 6519-20001520102196-T-610变形铝、镁及其合金加工制品拉伸试验用试样及方法推荐修订2011全国有色金属标准化技术委员会西南铝业(集团)有限责任公司ASTM B557MGB/T 16865-19971620102197-T-610变形铝及铝合金化学成分分析取样方法推荐修订2011全国有色金属标准化技术委员会东北轻合金有限责任公司EN486-2009、EN487-2009、EN576-2003、EN577-1995、EN14361:2004GB/T 17432-19981720102198-T-610变形铝及铝合金制品组织检验方法 第1部分:显微组织检验方法推荐修订2011全国有色金属标准化技术委员会东北轻合金有限责任公司ASTM E112:2004GB/T 3246.1-20001820102199-T-610变形铝及铝合金制品组织检验方法第2部分:低倍组织检验方法推荐修订2012全国有色金属标准化技术委员会东北轻合金有限责任公司ASTM E340-2000e1GB/T 3246.2-20001920102200-T-610导电用铜板和条推荐修订2011全国有色金属标准化技术委员会白银有色西北铜加工有限公司ASTM B 187M-GB/T 2529-20052020102201-T-610电解镍粉推荐修订2011全国有色金属标准化技术委员会金川集团有限公司 GB/T 5247-19852120102202-T-610金属粉末(不包括硬质合金粉末)在单轴压制中压缩性的测定推荐修订2011全国有色金属标准化技术委员会莱芜钢铁集团粉末冶金有限公司、钢铁研究总院ISO 3927:2001GB/T 1481-19982220102203-T-610金属粉末粒度组成的测定 干筛分法推荐修订2011全国有色金属标准化技术委员会济宁市无界科技有限公司、莱芜钢铁集团粉末冶金有限公司ISO 4497:1983GB/T 1480-19952320102204-T-610金属粉末压坯的拉托拉试验推荐修订2011全国有色金属标准化技术委员会莱芜钢铁集团粉末冶金有限公司 GB/T 11105-19892420102205-T-610铝及铝合金管材外形尺寸及允许偏差推荐修订2011全国有色金属标准化技术委员会西南铝业(集团)有限责任公司EN755.7-1998EN755.8-1998ANSI H35.2(M):2006GB/T 4436-19952520102206-T-610铝及铝合金冷拉薄壁管材涡流探伤方法推荐修订2011全国有色金属标准化技术委员会东北轻合金有限责任公司ASTM E215 - 98(2004)e1GB/T 5126-20012620102207-T-610铝及铝合金模锻件的尺寸偏差及加工余量推荐修订2011全国有色金属标准化技术委员会西南铝业(集团)有限责任公司 GB/T 8545-19872720102208-T-610铝及铝合金阳极氧化 用变形法评定阳极氧化膜的抗破裂性推荐修订2012全国有色金属标准化技术委员会国家有色金属质量监督检验中心ISO 3211:1977GB/T 12967.5-19912820102209-T-610铝及铝合金阳极氧化 着色阳极氧化膜耐紫外光性能的测定推荐修订2012全国有色金属标准化技术委员会国家有色金属质量监督检验中心ISO 6581:1980GB/T 12967.4-19912920102210-T-610镁及镁合金化学分析方法 锆含量的测定推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 2354:1976、ISO 1178:1976GB/T 13748.7-20053020102211-T-610镁及镁合金化学分析方法 硅含量的测定 钼蓝分光光度法推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 1975:1973GB/T 13748.10-20053120102212-T-610镁及镁合金化学分析方法 铝含量的测定推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 791:1973、3255:1974GB/T 13748.1-20053220102213-T-610镁及镁合金化学分析方法 锰含量的测定 高碘酸盐分光光度法推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 2353:1972、809:1973、810:1973GB/T 13748.4-20053320102214-T-610镁及镁合金化学分析方法 镍含量的测定 丁二酮肟分光光度法推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 4058:1977GB/T 13748.14-20053420102215-T-610镁及镁合金化学分析方法 铁含量的测定 邻二氮杂菲分光光度法推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 792:1973GB/T 13748.9-20053520102216-T-610镁及镁合金化学分析方法 铜含量的测定推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 794:1976GB/T 13748.12-20053620102217-T-610镁及镁合金化学分析方法 稀土含量的测定 重量法推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 2355:1972GB/T 13748.8-20053720102218-T-610镁及镁合金化学分析方法 锌含量的测定推荐修订2012全国有色金属标准化技术委员会中国铝业股份有限公司郑州研究院ISO 1783:1973、ISO 4194:1981GB/T 13748.15-20053820102219-T-610钼化学分析方法 铋量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.2-19843920102220-T-610钼化学分析方法 钒量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.20-19844020102221-T-610钼化学分析方法 钙量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会赣州有色冶金研究所 GB/T 4325.13-19844120102222-T-610钼化学分析方法 镉量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.1-19844220102223-T-610钼化学分析方法 铬量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.21-19844320102224-T-610钼化学分析方法 钴量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.7-19844420102225-T-610钼化学分析方法 硅量的测定 电感耦合等离子体发射光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.12-19844520102226-T-610钼化学分析方法 钾量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会洛阳栾川钼业集团股份有限公司 GB/T 4325.18-19844620102227-T-610钼化学分析方法 磷量的测定 钼蓝光度法推荐修订2011全国有色金属标准化技术委员会西北有色金属研究院 GB/T 4325.24-19844720102228-T-610钼化学分析方法 铝量的测定 电感耦合等离子体发射光谱法推荐修订2011全国有色金属标准化技术委员会北京有色金属研究总院 GB/T 4325.11-19844820102229-T-610钼化学分析方法 镁量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会赣州有色冶金研究所 GB/T 4325.15-19844920102230-T-610钼化学分析方法 锰量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.22-19845020102231-T-610钼化学分析方法 钠量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会洛阳栾川钼业集团股份有限公司 GB/T 4325.17-19845120102232-T-610钼化学分析方法 镍量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.8-19845220102233-T-610钼化学分析方法 铅量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.1-19845320102234-T-610钼化学分析方法 砷量的测定 原子荧光光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.5-19845420102235-T-610钼化学分析方法 钛量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.19-19845520102236-T-610钼化学分析方法 碳量和硫量的测定 红外碳硫连测仪法推荐修订2011全国有色金属标准化技术委员会洛阳栾川钼业集团股份有限公司 GB/T 4325.27-19845620102237-T-610钼化学分析方法 锑量的测定 原子荧光光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.4-19845720102238-T-610钼化学分析方法 铁量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.6-19845820102239-T-610钼化学分析方法 铜量的测定 火焰原子吸收光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.10-19845920102240-T-610钼化学分析方法 钨量的测定 电感耦合等离子体发射光谱法推荐修订2011全国有色金属标准化技术委员会北京有色金属研究总院 GB/T 4325.28-19846020102241-T-610钼化学分析方法 锡量的测定 原子荧光光谱法推荐修订2011全国有色金属标准化技术委员会金堆城钼业股份有限公司 GB/T 4325.3-19846120102242-T-610钼化学分析方法 氧量和氮量的测定 惰气熔融红外检测法/热导法推荐修订2011全国有色金属标准化技术委员会西北有色金属研究院 GB/T 4325.25-19846220102243-T-610铅及铅合金化学分析方法 铋量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.5-20006320102244-T-610铅及铅合金化学分析方法 碲量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.8-20006420102245-T-610铅及铅合金化学分析方法 钙量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.9-20006520102246-T-610铅及铅合金化学分析方法 铝量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.13-20006620102247-T-610铅及铅合金化学分析方法 砷量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.6-20006720102248-T-610铅及铅合金化学分析方法 铊量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.12-20006820102249-T-610铅及铅合金化学分析方法 锑量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.2-20006920102250-T-610铅及铅合金化学分析方法 铁量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.4-20007020102251-T-610铅及铅合金化学分析方法 铜量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.3-20007120102252-T-610铅及铅合金化学分析方法 硒量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.7-20007220102253-T-610铅及铅合金化学分析方法 锡量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.1-20007320102254-T-610铅及铅合金化学分析方法 锌量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究总院 GB/T 4103.11-20007420102255-T-610铅及铅合金化学分析, 方法 银量的测定推荐修订2011全国有色金属标准化技术委员会株洲冶炼集团股份有限公司、西北铜加工厂、陕西东岭锌业有限责任公司、北京矿冶研究院 GB/T 4103.10-20007520102256-T-610散热器冷却管专用纯铜带推荐修订2011全国有色金属标准化技术委员会菏泽广源铜带股份有限公司 GB/T 11087-20017620102257-T-610钛及钛合金饼和环推荐修订2011全国有色金属标准化技术委员会宝钛集团有限公司、宝鸡钛业股份有限公司 GB/T 16598-19967720102258-T-610钛及钛合金带、箔材推荐修订2011全国有色金属标准化技术委员会宝钛集团有限公司ASTM B265-2009aGB/T 3622-19997820102259-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 二氧化碳量的测定 酸碱滴定法推荐修订2012全国有色金属标准化技术委员会新疆昊鑫锂盐开发有限公司 GB/T 11064.12-19897920102260-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 氟量的测定 离子选择电极法推荐修订2012全国有色金属标准化技术委员会新疆有色金属研究所 GB/T 11064.15-19898020102261-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 钙量的测定 火焰原子吸收光谱法推荐修订2012全国有色金属标准化技术委员会新疆有色金属研究所 GB/T 11064.5-19898120102262-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 钙镁铜铅锌镍锰镉铝量的测定 电感耦合等离子体发射光谱法推荐修订2012全国有色金属标准化技术委员会赣州有色冶金研究所 GB/T 11064.16-19898220102263-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 硅量的测定 钼蓝分光光度法推荐修订2012全国有色金属标准化技术委员会四川天齐锂业股份有限公司 GB/T 11064.8-19898320102264-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 钾量和钠量的测定 火焰原子吸收光谱法推荐修订2012全国有色金属标准化技术委员会新疆昊鑫锂盐开发有限公司 GB/T 11064.4-19898420102265-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 硫化物量的测定 比浊法推荐修订2012全国有色金属标准化技术委员会四川天齐锂业股份有限公司 GB/T 11064.9-19898520102266-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 铝量的测定 铬天青S-溴化十六烷基吡啶分光光度法推荐修订2012全国有色金属标准化技术委员会新疆有色金属研究所 GB/T 11064.13-19898620102267-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 氯化锂量的测定 电位滴定法推荐修订2012全国有色金属标准化技术委员会四川天齐锂业股份有限公司 GB/T 11064.3-19898720102268-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 氯化物量的测定 比浊法推荐修订2012全国有色金属标准化技术委员会新疆有色金属研究所 GB/T 11064.10-19898820102269-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 镁量的测定 原子吸收光谱法推荐修订2012全国有色金属标准化技术委员会新疆有色金属研究所 GB/T 11064.6-19898920102270-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 氢氧化锂量的测定 酸碱滴定法推荐修订2012全国有色金属标准化技术委员会新疆昊鑫锂盐开发有限公司 GB/T 11064.2-19899020102271-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 砷量的测定 钼蓝分光光度法推荐修订2012全国有色金属标准化技术委员会新疆有色金属研究所 GB/T 11064.14-19899120102272-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 酸不溶物量的测定 重量法推荐修订2012全国有色金属标准化技术委员会新疆昊鑫锂盐开发有限公司 GB/T 11064.11-19899220102273-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 碳酸锂量的测定 酸碱滴定法推荐修订2012全国有色金属标准化技术委员会新疆昊鑫锂盐开发有限公司 GB/T 11064.1-19899320102274-T-610碳酸锂、单水氢氧化锂、氯化锂化学分析方法 铁量的测定 邻二氮杂菲分光光度法推荐修订2012全国有色金属标准化技术委员会新疆昊鑫锂盐有开发限公司 GB/T 11064.7-19899420102275-T-610铜精矿中有害元素镉含量的测定推荐修订2011全国有色金属标准化技术委员会大冶有色金属有限公司 GB/T 3884.6-20009520102276-T-610铜精矿中有害元素铅含量的测定推荐修订2011全国有色金属标准化技术委员会大冶有色金属有限公司 GB/T 3884.7-20009620102277-T-610铜精矿中有害元素砷含量的测定推荐修订2011全国有色金属标准化技术委员会大冶有色金属有限公司 GB/T 3884.9-20009720102278-T-610钨化学分析 钾量的测定推荐修订2012全国有色金属标准化技术委员会厦门钨业股份有限公司 GB/T 4324.18-19849820102279-T-610钨化学分析 钛量的测定推荐修订2012全国有色金属标准化技术委员会西北有色金属研究院 GB/T 4324.19-19849920102280-T-610钨化学分析 铁量的测定推荐修订2012全国有色金属标准化技术委员会西北有色金属研究院 GB/T 4324.6-198410020102281-T-610钨化学分析方法 铋量的测定推荐修订2012全国有色金属标准化技术委员会郴州钻石钨制品有限责任公司 GB/T 4324.2-198410120102282-T-610钨化学分析方法 氮量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.26-198410220102283-T-610钨化学分析方法 钒量的测定推荐修订2012全国有色金属标准化技术委员会北京有色金属研究总院 GB/T 4324.20-198410320102284-T-610钨化学分析方法 镉量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.1-198410420102285-T-610钨化学分析方法 铬量的测定推荐修订2012全国有色金属标准化技术委员会北京有色金属研究总院 GB/T 4324.21-198410520102286-T-610钨化学分析方法 钴量的测定推荐修订2012全国有色金属标准化技术委员会赣州有色冶金研究所 GB/T 4324.7-198410620102287-T-610钨化学分析方法 硅量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.12-198410720102288-T-610钨化学分析方法 磷量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.24-198410820102289-T-610钨化学分析方法 硫量的测定推荐修订2012全国有色金属标准化技术委员会洛阳栾川钼业集团股份有限公司 GB/T 4324.23-198410920102290-T-610钨化学分析方法 铝量的测定推荐修订2012全国有色金属标准化技术委员会赣州有色冶金研究所 GB/T 4324.11-198411020102291-T-610钨化学分析方法 氯化残渣量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.29-198411120102292-T-610钨化学分析方法 锰量的测定推荐修订2012全国有色金属标准化技术委员会赣州有色冶金研究所 GB/T 4324.22-198411220102293-T-610钨化学分析方法 钼的测定推荐修订2012全国有色金属标准化技术委员会北京有色金属研究总院 GB/T 4324.28-198411320102294-T-610钨化学分析方法 钠量的测定推荐修订2012全国有色金属标准化技术委员会厦门钨业股份有限公司 GB/T 4324.17-198411420102295-T-610钨化学分析方法 铅量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.1-198411520102296-T-610钨化学分析方法 砷量的测定推荐修订2012全国有色金属标准化技术委员会郴州钻石钨制品有限责任公司 GB/T 4324.5-198411620102297-T-610钨化学分析方法 碳量的测定推荐修订2012全国有色金属标准化技术委员会洛阳栾川钼业集团股份有限公司 GB/T 4324.27-198411720102298-T-610钨化学分析方法 锑量的测定推荐修订2012全国有色金属标准化技术委员会郴州钻石钨制品有限责任公司 GB/T 4324.4-198411820102299-T-610钨化学分析方法 铜的测定推荐修订2012全国有色金属标准化技术委员会北京有色金属研究总院 GB/T 4324.10-198411920102300-T-610钨化学分析方法 锡量的测定推荐修订2012全国有色金属标准化技术委员会郴州钻石钨制品有限责任公司 GB/T 4324.3-198412020102301-T-610钨化学分析方法 氧量的测定推荐修订2012全国有色金属标准化技术委员会株洲硬质合金集团有限公司 GB/T 4324.25-198412120102302-T-610钨化学分析方法 灼烧损失量的测定推荐修订2012全国有色金属标准化技术委员会厦门钨业股份有限公司 GB/T 4324.30-198412220102303-T-610锌粉推荐修订2011全国有色金属标准化技术委员会中冶葫芦岛有色金属集团有限公司 GB/T 6890-200012320102304-T-610锌精矿中有害元素镉含量的测定推荐修订2011全国有色金属标准化技术委员会中冶葫芦岛有色金属集团有限公司 GB/T 8151.8-200012420102305-T-610锌精矿中有害元素铅含量的测定推荐修订2011全国有色金属标准化技术委员会中冶葫芦岛有色金属集团有限公司 GB/T 8151.5-200012520102306-T-610锌精矿中有害元素砷含量的测定推荐修订2011全国有色金属标准化技术委员会中冶葫芦岛有色金属集团有限公司 GB/T 8151.7-200012620102307-T-610一般工业用铝及铝合金板、带材 第1部分:一般要求推荐修订2011全国有色金属标准化技术委员会西南铝业(集团)有限责任公司EN485.1:2008GB/T 3880.1-200612720102308-T-610一般工业用铝及铝合金板、带材 第2部分:力学性能推荐修订2011全国有色金属标准化技术委员会西南铝业(集团)有限责任公司EN485.2:2008GB/T 3880.2-200612820102309-T-610一般工业用铝及铝合金板、带材 第3部分:尺寸偏差推荐修订2011全国有色金属标准化技术委员会西南铝业(集团)有限责任公司EN485.4-1993EN485.3:2003GB/T 3880.3-200612920102310-T-610直接法氧化锌推荐修订2011全国有色金属标准化技术委员会湖南水口山有色金属集团有限公司 GB/T 3494-1996  2、标准制(修)订项目落实任务书.doc
  • 青岛睿谱离子色谱的新应用
    青岛睿谱离子色谱的新应用青岛睿谱是一家专门生产销售离子色谱及相关配件的公司,兼具离子色谱仪生产与离子色谱应用研究多重工作,为国产离子色谱行业发展贡献自己的力量;近期我们完成了三次实验,分别是氢氧化锂中阴离子的测定,塑料包装袋中溶出的ppb级别阴阳离子以及饮用水中的三种消毒副产物的检测。展望未来有相当大的使用前景,下面我做简单介绍,详细实验数据可在仪器信息网、青岛睿谱官网或公众号阅读;氢氧化锂中阴离子的测定;难点在于氢氧化锂的强碱性会影响色谱柱的分离,需要进行样品前处理以中和样品中的氢氧根离子。我们开创性的利用自动进样器等装置实现了样品的在线中和,并且做到样品的连续处理,连续分析。样品中主要检测氟/氯/磷酸根/硫酸根离子;为缩短分析时间,使用碳酸盐体系色谱柱,包括前处理时间能在15min内完成一次样品的检测;相应的本套前处理装置同样适合其他强碱性样品的在线中和处理。经过测试可稳定中和10%的氢氧化钠样品;本方法中和效果好,重复性好,回收率在95%-105%之间,操作方法简单,相关系数在0.999以上,定量准确,分析时间短。塑料包装袋中溶出的ppb级别阴阳离子;本方法难点在于痕量分析需要大体积进样,空白及样品的重复性。二是需要准确定量氟离子消除干扰峰,同时检测磷酸根需要使用梯度程序;同时还有铵离子的分析;适合于需要洁净环境的塑料包装袋的检测;我们使用的REEPO-HA1型色谱柱,使用梯度程序,在较低的淋洗液浓度下可将氟离子与附近的干扰峰分离,做到氟离子的准确定量,虽然由于不同离子含量差异较大,依然可以保持较好的分离度和准确性,相关系数均达到0.999以上;能在35min完成对包括磷酸根离子在内的7种阴离子的分析;500μL进样量也能实现较好的重复性;在保证钠离子与铵离子的分离的前提下15min内完成一次样品的阳离子分析;饮用水中的三种消毒副产物的检测消毒副产物是最近的热门,难点在于痕量分析需要大体积进样的同时使用自动进样器。我们使用的REEPO-HA1型色谱柱,使用等度程序,在较低的淋洗液浓度下可将亚氯酸盐、溴酸盐及氯酸盐分开,并可以保持较好的分离度和准确性,相关系数均达到0.999以上。MDL也能保持在1ppb以下。
  • 国标委发布47项材料、化妆品检测新标准
    近日,国家质量监督检验检疫总局、国家标准化管理委员会批准发布了《 金属材料 薄板和薄带 反复弯曲试验方法》、《化妆品中苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ的测定 高效液相色谱法》等83项国家标准。  其中47项标准涉及金属材料、染料、塑料、橡胶、化妆品等的检测方法。有关化妆品检测的标准均为初次制定,主要的检测方法为高效液相色谱法、气相色谱-质谱法等。 序号标准号标准名称代替标准号实施日期 1 GB/T 235-2013 金属材料 薄板和薄带 反复弯曲试验方法 GB/T 235-1999 2014-05-01 2 GB/T 238-2013 金属材料 线材 反复弯曲试验方法 GB/T 238-2002 2014-05-01 3 GB/T 2061-2013 散热器散热片专用铜及铜合金箔材 GB/T 2061-2004 2014-05-01 4 GB/T 2376-2013 硫化染料 染色色光和强度的测定 GB/T 2376-2003 2014-01-31 5 GB/T 2377-2013 还原染料 色光和强度的测定 GB/T 2377-2006 2014-01-31 6 GB/T 2387-2013 反应染料 色光和强度的测定 GB/T 2387-2006 2014-01-31 7 GB/T 2915-2013 聚氯乙烯树脂 水萃取液电导率的测定 GB/T 2915-1999 2014-01-31 8 GB/T 3994-2013 粘土质隔热耐火砖 GB/T 3994-2005 2014-05-01 9 GB/T 4348.1-2013 工业用氢氧化钠 氢氧化钠和碳酸钠含量的测定 GB/T 4348.1-2000 2014-01-31 10 GB/T 5071-2013 耐火材料 真密度试验方法 GB/T 5071-1997 2014-05-01 11 GB/T 5126-2013 铝及铝合金冷拉薄壁管材涡流探伤方法 GB/T 5126-2001 2014-05-01 12 GB/T 5249-2013 可渗透性烧结金属材料 气泡试验孔径的测定 GB/T 5249-1985 2014-05-01 13 GB/T 5475-2013 离子交换树脂取样方法 GB/T 5475-1985 2014-01-31 14 GB/T 5476-2013 离子交换树脂预处理方法 GB/T 5476-1996 2014-01-31 15 GB/T 10120-2013 金属材料 拉伸应力松弛试验方法 GB/T 10120-1996 2014-05-01 16 GB/T 11064.1-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第1部分:碳酸锂量的测定 酸碱滴定法 GB/T 11064.1-1989 2014-05-01 17 GB/T 11064.2-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第2部分:氢氧化锂量的测定 酸碱滴定法 GB/T 11064.2-1989 2014-05-01 18 GB/T 11064.3-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第3部分:氯化锂量的测定 电位滴定法 GB/T 11064.3-1989 2014-05-01 19 GB/T 11064.4-2013 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第4部分:钾量和钠量的测定 火焰原子吸收光谱法 GB/T 11064.4-1989, GB/T 11064.16-1989 2014-05-01 20 GB/T 11075-2013 碳酸锂 GB/T 11075-2003 2014-05-01 21 GB/T 11212-2013 化纤用氢氧化钠 GB/T 11212-2003 2014-01-31 22 GB/T 12652-2013 亚洲薄荷素油 GB/T 12652-2002 2014-02-15 23 GB/T 13531.4-2013 化妆品通用检验方法 相对密度的测定 GB/T 13531.4-1995 2014-02-15 24 GB/T 13748.1-2013 镁及镁合金化学分析方法 第1部分:铝含量的测定 GB/T 13748.1-2005 2014-05-01 25 GB/T 13748.4-2013 镁及镁合金化学分析方法 第4部分:锰含量的测定 高碘酸盐分光光度法 GB/T 13748.4-2005 2014-05-01 26 GB/T 13748.7-2013 镁及镁合金化学分析方法 第7部分:锆含量的测定 GB/T 13748.7-2005 2014-05-01 27 GB/T 13748.8-2013 镁及镁合金化学分析方法 第8部分:稀土含量的测定 重量法 GB/T 13748.8-2005 2014-05-01 28 GB/T 13748.9-2013 镁及镁合金化学分析方法 第9部分:铁含量测定 邻二氮杂菲分光光度法 GB/T 13748.9-2005 2014-05-01 29 GB/T 13748.10-2013 镁及镁合金化学分析方法 第10部分:硅含量的测定 钼蓝分光光度法 GB/T 13748.10-2005 2014-05-01 30 GB/T 14457.2-2013 香料 沸程测定法 GB/T 14457.2-1993 2014-02-15 31 GB/T 14458-2013 香花浸膏检验方法 GB/T 14458-1993 2014-02-15 32 GB/T 16579-2013 D001大孔强酸性苯乙烯系阳离子交换树脂 GB/T 16579-1996 2014-01-31 33 GB/T 16580-2013 D201大孔强碱性苯乙烯系阴离子交换树脂 GB/T 16580-1996 2014-01-31 34 GB/T 16598-2013 钛及钛合金饼和环 GB/T 16598-1996 2014-05-01 35 GB/T 16865-2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 GB/T 16865-1997 2014-05-01 36 GB/T 17519-2013 化学品安全技术说明书编写指南 GB/T 17519.2-2003 2014-01-31 37 GB/T 19277.2-2013 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分: 用重量分析法测定实验室条件下二氧化碳的释放量 2014-01-31 38 GB 19601-2013 染料产品中23种有害芳香胺的限量及测定 GB 19601-2004 2014-10-01 39 GB/T 20020-2013 气相二氧化硅 GB/T 20020-2005 2014-01-31 40 GB/T 27201-2013 认证机构信用评价准则 2013-12-01 41 GB/T 27202-2013 认证执业人员信用评价准则 2013-12-01 42 GB/T 27415-2013 分析方法检出限和定量限的评估 2013-12-01 43 GB/T 29640-2013 塑料 玻璃纤维增强聚对苯二甲酰癸二胺 2014-01-31 44 GB/T 29641-2013 浇铸型聚甲基丙烯酸甲酯声屏板 2014-01-31 45 GB/T 29642-2013 橡胶密封制品 水浸出液的制备方法 2014-01-31 46 GB/T 29643-2013 工业用氢氧化钠 实验室样品和进行项目测定用主溶液的制备 2014-01-31 47 GB/T 29644-2013 硫化橡胶 N-苯基-&beta -萘胺含量的测定 高效液相色谱法 2014-01-31 48 GB/T 29645-2013 塑料 聚苯乙烯再生改性专用料 2014-01-31 49 GB/T 29646-2013 吹塑薄膜用改性聚酯类生物降解塑料 2014-01-31 50 GB/T 29647-2013 坚果与籽类炒货食品良好生产规范 2014-02-01 51 GB/T 29648-2013 全自动旋转式PET瓶吹瓶机 2014-04-01 52 GB/T 29649-2013 生物基材料中生物基含量测定 液闪计数器法 2014-01-31 53 GB/T 29650-2013 耐火材料 抗一氧化碳性试验方法 2014-05-01 54 GB/T 29651-2013 锰矿石和锰精矿 全铁含量的测定 火焰原子吸收光谱法 2014-05-01 55 GB/T 29652-2013 直接还原铁 碳和硫含量的测定 高频燃烧红外吸收法 2014-05-01 56 GB/T 29653-2013 锰矿石 粒度分布的测定 筛分法 2014-05-01 57 GB/T 29654-2013 冷弯钢板桩 2014-05-01 58 GB/T 29655-2013 钕铁硼速凝薄片合金 2014-05-01 59 GB/T 29656-2013 镨钕镝合金化学分析方法 2014-05-01 60 GB/T 29657-2013 钇镁合金 2014-05-01 61 GB/T 29658-2013 电子薄膜用高纯铝及铝合金溅射靶材 2014-05-01 62 GB/T 29659-2013 化妆品中丙烯酰胺的测定 2014-02-15 63 GB/T 29660-2013 化妆品中总铬含量的测定 2014-02-15 64 GB/T 29661-2013 化妆品中尿素含量的测定 酶催化法 2014-02-15 65 GB/T 29662-2013 化妆品中曲酸、曲酸二棕榈酸酯的测定 高效液相色谱法 2014-02-15 66 GB/T 29663-2013 化妆品中苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ的测定 高效液相色谱法 2014-02-15 67 GB/T 29664-2013 化妆品中维生素B3(烟酸、烟酰胺)的测定 高效液相色谱法和高效液相色谱串联质谱法 2014-02-15 68 GB/T 29665-2013 护肤乳液 2014-08-01 69 GB/T 29666-2013 化妆品用防腐剂 甲基氯异噻唑啉酮和甲基异噻唑啉酮与氯化镁及硝酸镁的混合物 2014-02-15 70 GB/T 29667-2013 化妆品用防腐剂 咪唑烷基脲 2014-02-15 71 GB/T 29668-2013 化妆品用防腐剂 双(羟甲基)咪唑烷基脲 2014-02-15 72 GB/T 29669-2013 化妆品中N-亚硝基二甲基胺等10种挥发性亚硝胺的测定 气相色谱-质谱/质谱法 2014-02-15 73 GB/T 29670-2013 化妆品中萘、苯并[a]蒽等9种多环芳烃的测定 气相色谱-质谱法 2014-02-15 74 GB/T 29671-2013 化妆品中苯酚磺酸锌的测定 高效液相色谱法 2014-02-15 75 GB/T 29672-2013 化妆品中丙烯腈的测定 气相色谱-质谱法 2014-02-15 76 GB/T 29673-2013 化妆品中六氯酚的测定 高效液相色谱法 2014-02-15 77 GB/T 29674-2013 化妆品中氯胺T的测定 高效液相色谱法 2014-02-15 78 GB/T 29675-2013 化妆品中壬基苯酚的测定 液相色谱-质谱/质谱法 2014-02-15 79 GB/T 29676-2013 化妆品中三氯叔丁醇的测定 气相色谱-质谱法 2014-02-15 80 GB/T 29677-2013 化妆品中硝甲烷的测定 气相色谱-质谱法 2014-02-15 81 GB/T 29678-2013 烫发剂 2014-08-01 82 GB/T 29679-2013 洗发液、洗发膏 2014-08-01 83 GB/T 29680-2013 洗面奶、洗面膏 2014-08-01
  • 中科大突破全固态锂电池电解质在性能和成本上的双重瓶颈
    全固态锂电池可以克服目前商业化锂离子电池在安全性上的严重缺陷,同时进一步提升能量密度,对新能源车和储能产业是一项颠覆性技术。但是,由于全固态锂电池的核心材料—固态电解质—难以兼顾性能和成本,目前该技术的产业化仍面临巨大阻碍。6月27日,中国科学技术大学的马骋教授报道了一种新型固态电解质,它的综合性能和目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,很适合产业化应用。该成果以“A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries”为题发表在国际著名学术期刊《Nature Communications》上。为了满足实际应用的需求,全固态锂电池的固态电解质至少需要同时具备三个条件:高离子电导率(室温下超过1毫西门子每厘米),良好的可变形性(250-350兆帕下实现90%以上致密),以及足够低廉的成本(低于50美元每公斤)。但是,目前被广泛研究的氧化物、硫化物、氯化物固态电解质都无法同时满足这些条件。氧化物作为脆性陶瓷,普遍不具备可变形性。硫化物和大部分氯化物则成本高昂,至少在200美元每公斤的量级。这些材料中唯一的例外是氯化锆锂,但是它的离子电导率却远低于1毫西门子每厘米。   此次研究中,马骋教授不再聚焦于上述氧化物、硫化物、氯化物中的任何一种,而是转向氧氯化物,设计并合成了一种新型固态电解质—氧氯化锆锂。这种材料具有很强的成本优势。如果以水合氢氧化锂、氯化锂、氯化锆进行合成,它的原材料成本仅为11.6美元每公斤,很好的满足了上述50美元每公斤的要求。而如果以水合氧氯化锆、氯化锂、氯化锆进行合成,氧氯化锆锂的成本可以进一步降低到约7美元每公斤,远低于目前最具成本优势的固态电解质氯化锆锂(10.78美元每公斤),并且不到硫化物和稀土基、铟基氯化物固态电解质的4%。在具备极强成本优势的同时,氧氯化锆锂的综合性能和目前最先进的硫化物、氯化物固态电解质相当。它的室温离子电导率高达2.42毫西门子每厘米,超过了应用所需要的1毫西门子每厘米。与此同时,它良好的可变形性使材料在300兆帕压力下能达到94.2%致密,也超过应用所需要的水平(250-350兆帕下90%以上致密)。由氧氯化锆锂和高镍三元正极组成的全固态电池展示了极为优异的性能:在12分钟快速充电的条件下,该电池仍然成功的在室温稳定循环2000圈以上。   氧氯化锆锂的发现,使固态电解质在性能、成本两方面同时实现了突破,对全固态锂电池的产业化具有重大意义。审稿人认为这一发现“很有新意和原创性”,并且认为氧氯化锆锂材料“很有前景”,“有益于固态电池技术的商业化”。
  • 中国出入境检验检疫协会立项《煤炭品质快速测定 近红外光谱法》等6项团体标准
    各有关单位:根据《中国出入境检验检疫协会团体标准管理办法》的规定,经中国出入境检验检疫协会标准化委员会审核,现批准《煤炭品质快速测定 近红外光谱法》《化肥中6种有毒有害元素的测定 电感耦合等离子体质谱法》《全自动微量分液器校准规范》《锂辉石中氧化锂和三氧化二铁含量的测定 电感耦合等离子体光谱法》《生牛肉饼》《重金属矿区历史遗留固体废物(废渣)及周边土壤污染状况调查技术规范》6项团体标准的立项,特予公告。欢迎与上述标准有关的企业、科研机构、高等院校等相关单位参加标准的起草和制定工作,有意参与标准起草与制定工作的单位请与我协会标准化委员会秘书处联系。 联 系 人:张洁联系电话:010-82023326邮 箱:huiyuan@ciq.org.cn
  • 赛恩思碳硫仪牵手磷酸铁锂企业七星光电
    近年来新能源产业发展迅猛,四川赛恩思仪器已与多家新能源企业开展合作。近日,又一台HCS-801型碳硫仪在一家磷酸铁锂厂家---攀枝花七星光电科技正式投入使用。我公司HCS-878和HCS-801两代产品服务于同一公司。攀枝花七星光电科技有限公司现已建成并投产5000吨/年磷酸铁锂生产线,为国内规模前列的磷酸铁锂生产线,占全国40%的市场份额,可向全球客户提供多规格碳酸锂、氢氧化锂、氯化锂、金属锂、锂辉石及相关衍生产品。赛恩思HCS-801高频红外碳硫仪可检测产品的原料及成品的碳、硫含量,协助客户把关其产品质量。 碳、硫含量的差异会对磷酸铁锂材料本身的性能造成巨大的影响。利用高频红外碳硫仪对其进行碳、硫含量的测定是一种高效、便捷的方法。四川赛恩思HCS-801型高频红外碳硫仪测试数据准确,操作便捷,每小时可测量60个以上样品。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 共议分析检测技术|第二届江西省锂电产业技术交流会在宜春召开
    仪器信息网讯 2023年8月25日,由瑞士万通中国有限公司联合江西赣锋检测咨询服务有限公司、江西康帕斯科技有限公司共同举办的第二届江西省锂电产业技术交流会在江西宜春成功举办。会议旨在持续推进江西省锂电产业技术创新水平,着力体现和提高各锂电产业在分析技术创新,分析仪器升级及先进分析设备应用方面的最新成果,进一步提高相关分析检测人员的技术能力和水平。会议吸引200余位江西锂电行业相关企业、高校、科研单位、检测机构的专家及相关人员代表参会,仪器信息网作为支持媒体参会报道。会议现场会上,应对锂电行业的最新发展局面,十四位锂电产业、仪器技术专家分别分享了主题报告,分享了各自研究及工作的最新成果,并共同探讨了锂电行业发展现况及趋势,交流了锂电行业分析检测过程中遇到的相关问题及最前沿的技术手段。江西康帕斯科技有限公司总经理涂云峰致辞江西理工大学宜春锂电新能源产业研究院执行副院长 张骞报告题目:磁性异物对电池性能的影响锂离子电池中微量金属杂质会影响其安全性与使用寿命,动电池制造全过程须对金属磁性异物进行严格管控。张骞首先分享了磁性异物的来源和常见控制方法,接着重点介绍了磁性异物的分析检测方法。除了已有国标规定的电感耦合等离子体原子发射光谱法和扫描电镜能谱法,还结合案例分别介绍了光学显微镜-异物检测、工业CT技术、耐压测试、老化工艺检出金属异物等其他分析检测方法。瑞士万通高级应用工程师黄月华(左)、离子色谱产品经理李致伯(右)报告题目:瑞士万通在锂电产业上下游应用介绍首先,黄月华结合案例分别介绍了瑞士万通电位滴定仪和水分仪在锂电产业上下游的相关应用。电位滴定仪检测方面应用包括氢氧化锂/碳酸锂含量、残碱含量、磷酸铁锂中铁含量、镍钻锰三元材料的总量及分量等;水分仪应用包括微量水分测定、电解液水分测定、六氟磷酸锂水分测试等。接着,李致伯分享了瑞士万通离子色谱在锂电行业的应用及技术。表示,锂电池生产各阶段的质控方面,瑞士万通可提供全自动化的阴阳离子检测解决方案;抑制器作为阴离子分析的核心组件,其性能和寿命需要重点关注;瑞士万通燃烧炉离子色谱可用于电解液有机溶剂中阴离子的测定。江西赣锋检测咨询服务有限公司总经理 李强报告题目:锂电材料系列检测中的难点及方案李强首先从产业维度分析了锂电产业链各环节对检测分析的需求现状,如中上游材料供应产品检测、锂电池生产管理、废旧锂电回收利用等环节的相关检测需求等。接着依次介绍了锂原材料测试、锂盐产品测试、正极材料相关仪器测试技术应用现状、技术难点与应用展望。并结合锂电磁性异物含量测定、锂盐粒度测试、锂盐水分含量测试、磁性颗粒测试、三元材料测试、磷酸铁锂样品分析等实际案例进行了逐一探讨。赛默飞世尔科技(中国)有限公司工程师 贺静芳 报告题目:痕量元素助力电池产业分析技术及高效应用赛默飞拥有完整的锂电池行业解决方案,贺静芳主要介绍了赛默飞AA/ICPOES/ICPMS技术方面的锂电解决方案。接着结合赛默飞iCAP PRO系列ICP-OES的诸多优势,分别介绍了短期重复性-主量元素摩尔比、磷酸铁锂材料主量元素的测试、三元材料杂质元素测试、硫酸镍 电镍铅的检测、石墨烯负极杂质元素测试、锂电电解液测试等应用案例。江西银汇新能源有限公司/湖南省银峰新能源有限公司 胡俊平博士报告题目:钒电解液检测解析全钒液流电池具有安全性高、灵活配置、长时储能、资源丰富、易于管理、深度充放等特点。全钒液流电池储能广泛应用于社会生产生活各个方面。胡俊平主要介绍了钒电解液相关检测项目、检测标准及检测中遇到的问题及方法优化。如针对硫酸根检测方法优化方面,主要解决过滤杯壁底部残留、移液不准等问题。珠海真理光学仪器有限公司区域经理 苏琼报告题目:激光粒度仪在新能源电池材料中的应用 粒度检测是电池正负极粉体材料的重要技术指标,激光粒度仪成为新能源电池材料检测的必备仪器。LT3600系列是真理光学基于多年的科研成果开发的新一代超高速智能激光粒度分析系统,苏琼首先介绍了LT3600的多项技术优势,分享了锂电正极材料磷酸铁锂粒度测量的应用案例以及干法颗粒分散的机理与技术特点。江西省生态环境监测中心 乔支卫报告题目:锂电产业特征污染物排放监管要求及监控技术锂电产业的特征污染物主要包括氟化物、铊,乔支卫首先介绍了针对这两类特征污染物国内和国外的监管、监测要求及监管标准情况。接着分别介绍了两种特征污染物对应的监控技术情况,如氟化物常用分析方法包括分光光度法、离子选择电极法、离子色谱法等;铊的常用分析技术有原子吸收光谱法、分光光度法、电化学分析法、荧光光谱法、发射光谱法或质谱法等。北京普瑞赛司仪器有限公司技术总监 张鹏报告题目:光学及电子显微镜在锂电材料检测中的应用 普瑞赛司为蔡司材料显微镜中国总经销商,蔡司显微镜产品线提供从光镜到电镜及X射线显微镜等产品,为锂电研发与生产提供多尺度研究与表征的解决方案。张鹏结合蔡司显微镜产品特点,依次介绍了蔡司光学显微镜、电子显微镜以及X射线显微镜产品技术产品技术在锂电产业中的广泛应用及案例。北京莱伯泰科科技有限公司产品经理 周思佳报告题目:聚集前处理-锂电池产业链元素分析解决方案周思佳介绍了莱伯泰科全面前处理技术在锂电行业中的应用,从创新的湿法石墨消解4.0全自动消解,到创新的无机分析-超级微波消解系统,再到Minilab3000全自动标准液体处理等,最后也分享了莱伯泰科ICP-MS多元素分析LabMS 3000的锂电解决方案。九江天赐高新材料有限公司 韩玉英报告题目:绿色、安全、高效--含氟电解液生产链产品监测技术服务优化韩玉英首先介绍了九江天赐电解液产业链布局,接着分别介绍了布局中电解液原料测试、正极材料及再生回收、电解液的测试。电解液原料测试主要是针对溶剂、添加剂、锂盐、新型锂盐的测试;正极材料及再生回收测试项目主要包括磷酸铁、磷酸锂/硫酸锂、碳酸锂、氟化锂等;电解液的测试常规检测项目包括水分、游离酸、色度、密度、导电率等。北京普析通用仪器有限责任公司客服经理 邹志伟(左)、周鹏(右)报告题目:原子吸收和数字化软件在实验室的应用 邹志伟首先介绍了普析原子吸收光谱法在锂电行业检测中的应用,包括锂矿石中的氧化锂、氧化钾、氧化钠的测定等。接着分享了如何提高锂元素检测的稳定性和准确性,并解析了普析原子吸收常见的问题与故障排查。打通实验室数字化、智能化最后一公里,接着,周鹏介绍了普析实验室数字化技术与自动检测工具包 (DLabs),并从实验室数字化智能能化需求与方案、实验室数字化硬件搭建、青岛某实验室应用系统搭建案例与效果、DLabs系统关键性能能与可靠性指标等方面进行了详细介绍。安东帕中国有限公司应用工程师 宋薇琪报告题目:安东帕产品在新能源材料行业的应用宋薇琪分别介绍了安东帕主要产品技术在锂电制造流程中的应用进展。数字式密度计应用如测量正极材料前驱物固含量、测量负极浆料抗沉降性,黏度产品应用如对锂电三种材料黏度测量,拉曼光谱应用如对锂电进行元素分析。其他锂电解决方案相关仪器技术还包括多功能样品制备平台、超级微波消解系统等。展商一角
  • 两院院士评选中国世界十大科技进展新闻揭晓
    p  由中国科学院、中国工程院主办,中国科学院学部工作局、中国工程院办公厅、中国科学报社承办,中国科学院院士和中国工程院院士投票评选的2015年中国十大科技进展新闻、世界十大科技进展新闻,2016年1月19日在京揭晓。/pp  此项年度评选活动至今已举办了22次。评选结果经新闻媒体广泛报道后,在社会上产生了强烈反响,使公众进一步了解国内外科技发展的动态,对宣传、普及科学技术起到了积极作用。/ppstrong  2015年中国十大科技进展新闻是:/strong/pp  1.首次实现多自由度量子隐形传态/pp  中国科学技术大学潘建伟、陆朝阳等组成的研究小组在国际上首次成功实现多自由度量子体系的隐形传态,成果以封面标题的形式发表于《自然》杂志。这是自1997年国际上首次实现单一自由度量子隐形传态以来,科学家们经过18年努力在量子信息实验研究领域取得的又一重大突破,为发展可扩展的量子计算和量子网络技术奠定了坚实的基础。国际量子光学专家Wolfgang Tittel教授在同期《自然》杂志撰文评论:“该实验实现为理解和展示量子物理的一个最深远和最令人费解的预言迈出了重要的一步,并可以作为未来量子网络的一个强大的基本单元。”该成果已被欧洲物理学会评为“2015年度物理学重大突破”。/pp  2.北斗系统全球组网首星发射成功/pp  3月30日,北斗系统全球组网首颗卫星在西昌发射成功,标志着我国北斗卫星导航系统由区域运行向全球拓展的启动实施。这颗卫星由中科院和上海市政府共建的上海微小卫星工程中心研制,是我国首颗新一代北斗导航卫星,入轨后将开展新型导航信号体制、星间链路等试验验证工作。这颗卫星实现了多个首创:首次使用中科院导航卫星专用平台,首次采用远征一号上面级直接入轨发射方式,首次验证相控阵星间链路与自主导航体制,首次大量使用国产化器部件以实现自主可控。由于采用一体化设计方法,按照功能链设计理念,整星分为有效载荷、结构和热控、电子学和姿态轨控等功能链,极大地提高了系统的可靠性和功能密度。/pp  3.“长征六号”首飞“一箭多星”创纪录/pp  9月20日7时01分,我国新型运载火箭“长征六号”在太原卫星发射中心点火发射,成功将20颗微小卫星送入太空。此次发射任务圆满成功,不仅标志着我国长征系列运载火箭家族再添新成员,而且创造了中国航天一箭多星发射的新纪录。此次“长征六号”运载火箭首飞,搭载发射了中国航天科技集团公司、国防科技大学、清华大学、浙江大学、哈尔滨工业大学等单位研制的开拓一号、希望二号、天拓三号、纳星二号、皮星二号、紫丁香二号等20颗微小卫星,主要用于开展航天新技术、新体制、新产品等空间试验,对于促进我国微小卫星发展和新技术试验验证等具有重要意义。/pp  4.首架国产大飞机下线/pp  中国自主研制的大型客机C919首架机11月2日在上海正式下线。C919飞机自主创新有5个标志,包括飞机总体方案、气动外形、飞机机体设计与制造、系统集成及工程项目管理等。研制人员针对气动布局、结构材料和机载系统,实现先进材料首次在国产民机上的大规模应用、数百万零部件和机载系统研制流程高度并行。在研发的集成创新过程中,全产业链上有将近20万人参与研发制造,其采用的新技术、新材料、新工艺辐射拉动了中国经济和科技发展、基础学科进步及航空工业发展。业内专家认为,C919总装下线对于中国民机产业发展、基础工业实力提升、发展制造强国具有深远的意义。按计划,该飞机将于2016年首飞。/pp  5.剪接体高分辨率三维结构获解析/pp  由中科院院士、清华大学教授施一公领导的研究组在《科学》杂志同时在线发表了两篇背靠背研究长文,分别报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,并在此结构基础上进行详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。这是科学家首次捕获到真核细胞剪接体复合物的高分辨率空间三维结构,并阐述相关工作机理。美国科学院院士、斯隆—凯特琳癌症研究中心教授丁绍?帕特尔评价说:“剪接体的结构是完完全全由中国科学家利用最先进的技术在中国本土完成,这是中国生命科学发展的一个里程碑。”/pp  6.首次发现外尔费米子/pp  中科院物理所方忠研究员带领的团队首次在实验中发现了外尔费米子。这是国际上物理学研究的一项重要科学突破,对“拓扑电子学”和“量子计算机”等颠覆性技术的突破具有非常重要的意义。外尔费米子是德国科学家威尔曼· 外尔在1929年预言的。不过,科学家们始终无法在实验中观测到这种粒子。2012年以来,该所理论研究团队首次预言在狄拉克半金属中或许可以发现无“质量”的电子。陈根富小组制备出具有原子级平整表面的大块TaAs晶体,丁洪小组利用上海光源同步辐射光束照射TaAs晶体,使得外尔费米子第一次展现在科学家面前。外尔费米子的半金属能实现低能耗电子传输,有望解决当前电子器件小型化和多功能化所面临的能耗问题。/pp  7.首次发现相对论性高速喷流新模式/pp  中科院国家天文台研究员刘继峰带领团队在国际上首次从超软X射线源发现相对论性高速喷流,打破了天文学界以往的认知,揭示了黑洞吸积和喷流形成的新方式。该成果发表于《自然》杂志。审稿人认为,此项工作是2015年度本领域内最重要的5大发现之一。“在超软X射线源中发现相对论性喷流出乎所有人的意料,这改写了我们对超软X射线源的认知和喷流形成的认知。”美国科学院院士、英国皇家学会院士、哈佛大学教授Remash Narayan评论说:“它的观测特征和人们猜想并进行了大量数值模拟的处于极高吸积率的黑洞完全契合,生动展示了黑洞吞噬物质过多后产生高速重子喷流和浓密吸积盘外流的情况。”/pp  8.攻克细胞信号传导重大科学难题/pp  中科院上海药物所研究员徐华强带领的国际团队利用世界上最强X射线激光,成功解析视紫红质与阻遏蛋白复合物的晶体结构,攻克了细胞信号传导领域的重大科学难题。这项突破性成果以长文形式在线发表于《自然》杂志。美国科学家在G—蛋白偶联受体(GPCR)信号转导领域作出的重要贡献获得了2012年诺贝尔化学奖。然而,GPCR信号转导领域还有一个重大问题悬而未决,即GPCR如何激活另一条信号通路——阻遏蛋白信号通路。研究团队创新性地利用了比传统同步辐射光源强万亿倍的世界上最亮的X射线——自由电子激光(XFEL)技术,用较小的晶体得到了高分辨率的视紫红质—阻遏蛋白复合物晶体结构,为深入理解GPCR下游信号转导通路奠定了重要基础。该研究为开发选择性更高的药物奠定了坚实的理论基础。/pp  9.首个自驱动可变形液态金属机器问世/pp  由刘静带领的中科院理化技术研究所、清华大学医学院联合研究小组,发现液态金属可在吞食少量物质后,以可变形机器形态长时间高速运动,实现了无需外部电力的自主运动。此发现在世界属首次,相关论文在《先进材料》杂志上发表。标志着中国在液态金属领域达到世界领先水平。这种液态金属机器完全摆脱了庞杂的外部电力系统,向研制自主独立的柔性机器迈出了关键的一步。《自然》杂志在其研究亮点栏目以《液态金属马达靠自身运动》为题进行了报道 《科学》杂志也在网站指出“可变形金属马达拥有一系列用途”。/pp  10.“永磁高铁”牵引系统通过首轮线路试验考核/pp  搭载着由中国中车研发的永磁同步牵引系统的中国首列“永磁高铁”在10月底通过整车首轮线路运行试验考核。这意味着我国高铁动力正发生革命性变化,成为世界上少数几个掌握“永磁高铁”牵引技术的国家。该牵引系统包括永磁同步牵引电机、牵引变压器、变流器、控制器等核心部件,其中电机采用世界新型稀土永磁材料,有效克服了永磁体失磁的世界难题 其巧妙设计的轴承散热结构能有效降低轴承温升,确保牵引动力运行的安全可靠 同时,采用了宽域高效的控制技术策略,实现高速方波弱磁控制和高速平稳重投 整个牵引系统体现节能高效系统特性匹配,节能10%以上。其研制成功不仅拉开了我国高铁“永磁驱动时代”的序幕,也为我国高铁参与国际竞争赢得了先机。/pp  strong2015年世界十大科技进展新闻是:/strong/pp  1.美国癌症基因组图谱计划完成/pp  美国一项从遗传学角度描述1万个肿瘤的庞大计划正式落下帷幕。作为在2006年开始的一个斥资1亿美元的试点项目,癌症基因组图谱(TCGA)如今是国际癌症基因组联盟中最大的组成部分,该联盟由来自16个国家的科学家组成,已经发现了近1000万个与癌症相关的基因突变。研究人员利用相关数据已经提出了对肿瘤进行分类的新方法,并发现了以前未被认识的药物靶点和致癌物质。相关研究将能够把病人的健康状况、治疗历史和对治疗的反应等详细的临床信息整合在一起。研究人员希望能够继续专注于测序,或扩充他们的工作,从而探索已经被查明的基因突变如何对癌症的形成与发展产生影响。癌症遗传学家Bert Vogelstein指出,几乎癌症研究的方方面面都受益于TCGA。/pp  2.埃博拉疫苗为接种者提供100%保护/pp  在几内亚进行的一项不同寻常的临床试验第一次显示,一种埃博拉疫苗可以保护人体免遭这种致命病毒的侵害。7月31日在线发表于《柳叶刀》杂志上的这项研究表明,注射这种由默克公司生产的疫苗能够在10天后对埃博拉病毒接触者提供100%的保护。科学家认为,这种疫苗将有助于最终结束在西非暴发的埃博拉疫情,该疫情已经持续了18个月之久。美国明尼苏达州双子城传染病研究与政策中心主任Michael Osterholm认为:“这将是载入史册的一项公共卫生成就。”/pp  3.发现调控细胞衰老的关键“开关”/pp  美国科学家最近利用人类成纤维细胞,找到了细胞衰老的一个关键“开关”,为一些疾病的治疗和干预提供了线索。哈佛大学医学院研究人员用快速高通量筛选技术,诱导人类成纤维细胞衰老以寻找调控该过程的未知基因与途径。他们的研究表明,NFKB的激活受到一个叫GATA4的转录因子调控。GATA4的过量表达会直接导致细胞衰老 GATA4的缺失则抑制细胞炎症反应,进而延缓衰老。GATA4在心脏等器官的发育中有非常重要的作用,但在细胞衰老中的功能还是第一次发现。GATA4这个节点的发现把下游的NFKB和上游的DNA损伤连接起来,形成一个调控衰老的完整网络。确定GATA4在细胞衰老以及相关炎症反应中的关键作用,为将来的相关治疗和干预提供了可能的途径和靶标。/pp  4.“终极电池”研究获重大进展/pp  多年来,锂-空气电池被业界誉为“终极电池”,因为理论上它可使电动车续航能力接近传统汽油汽车,甚至可用于电网储电。英国剑桥大学研究人员10月29日报告说,他们克服了困扰锂-空气电池的多个技术难题,把这项技术朝实用化方向推进了一大步。这项成果发表在《科学》杂志上。在最新工作中,剑桥大学的研究人员改用多层次的大孔石墨烯作为正极材料,利用水和碘化锂作为电解液添加剂,最终产生和分解的是氢氧化锂,而不是此前电池中的过氧化锂。氢氧化锂比过氧化锂要稳定,大大降低了电池中的副反应,提高了电池性能。/pp  5.最大太阳能飞机首次环球飞行/pp  “阳光动力”2号是全球最大太阳能飞机,于3月9日从阿联酋首都阿布扎比起飞,开始首次环球飞行。“阳光动力”2号从阿布扎比起飞后向东飞行,途经阿拉伯海、印度、缅甸、中国、太平洋、美国、大西洋、南欧和北非,最后于7月返回阿布扎比。“阳光动力”2号环球飞行总里程为3.5万公里,共停留12个城市。在环球飞行计划中,最困难的航段无疑是从中国至美国横跨太平洋五天五夜的不间断飞行。这是对飞行器整体设计的全面检验,更是对飞行员体能和心理状况的严酷挑战。“阳光动力”项目在其官方中文网站上说,“阳光动力”关心的不只是能源问题,“我们还希望以此鼓励每个人,无论是在个人生活中,还是在我们思考和处事的方式上,都能努力成为一名开拓者”。/pp  6.单个光子“纠缠”3000个原子/pp  美国麻省理工学院和贝尔格莱德大学的物理学家开发出一种新技术,使用单个光子成功实现了与3000个原子的纠缠,创下了迄今为止粒子纠缠数量的新纪录。该技术为创建更复杂的纠缠态奠定了基础,未来有望借此制造出运算速度更快的量子计算机和更精确的原子钟。相关论文发表在3月26日出版的《自然》杂志上。量子纠缠是一种奇特现象,理论上是指粒子在两个或两个以上粒子组成的系统中相互影响的现象,即使相距遥远,一个粒子的行为也会影响另一个的状态。科学家们一直在寻求方法让大量的原子实现纠缠,为功能强大的量子计算和精确的原子钟奠定基础。论文第一作者、麻省理工学院物理学教授弗拉丹· 卢勒狄克说:“我们开辟了一种新的纠缠态类别。”/pp  7.火星表面找到液态水的“强有力”证据/pp  美国航天局9月28日宣布,在火星表面发现了有液态水活动的“强有力”证据,为在这个红色星球上寻找生命提供了新线索。自2006年以来,美国火星勘测轨道飞行器多次在火星山丘斜坡上发现手指状阴影条纹。它们在火星温暖的季节里出现,并随着温度上升而向下延伸,到了寒冷季节就消失。美国航天局将其称为“季节性斜坡纹线”,并认为这种奇特的季节性地貌由盐水流造成,但一直没有找到直接证据。在新研究中,研究人员分析了火星勘测轨道飞行器获取的火星表面4处地点“季节性斜坡纹线”的光谱数据,发现这些阴影条纹达到最大宽度时便出现水合盐矿物的光谱信号。研究人员在发表于《自然· 地学》杂志的论文中写道:“‘季节性斜坡纹线’是现今火星水活动的结果,我们的发现强有力支持这一假设。”美国航天局副局长约翰· 格伦斯菲尔德表示:“我们非常激动,因为这项发现意味着今天的火星有可能存在生命。”/pp  8.新疫苗或有潜力遏制艾滋病感染/pp  《科学》和《细胞》杂志6月18日发表的两项研究认为,一种基于多轮免疫接种策略的试验性疫苗,也许有潜力遏制艾滋病病毒感染。这两项研究都是关于一种叫做“eOD-GT8 60mer”的免疫原。美国斯克里普斯研究所等机构对它进行了测试,结果显示它可结合并激活B细胞,而B细胞具有抗艾滋病病毒的作用。《科学》杂志还发表了第三项由康奈尔大学领衔的艾滋病研究,对一种人工分子复合物进行测试的结果显示,这种免疫原可激发兔子与猴子产生抗体,阻止一种艾滋病病毒株的感染。美国国家卫生研究院为这3项研究提供了资金,它在一份声明中评价说,这3篇论文代表着在研发艾滋病疫苗方面的“一个重要新起点”。/pp  9.全球海洋考察揭示大量新生命形式/pp  在对全球海洋微小生物进行了为期3年半的考察工作后,一个研究团队报告了这项调查的第一批成果,揭示了海洋浮游生物丰富而多样的面貌。研究人员于2009年9月从法国洛里昂乘船出发。他们在航程中的210个地方采集了约35000件样本,该项研究旨在对地球的上层海洋建立一个整体认识。科学家在5月22日出版的《科学》杂志上用5篇论文介绍了这一研究成果。包括一个超过4000万微生物基因的目录——大多数是之前未有报道的,以及约5000个病毒基因类型,同时还有对15万种真核生物(复杂细胞)的评估,这大大超过了目前已知的11000种真核浮游生物的数量。美国伊利诺伊州阿贡国家实验室微生物生态学家Jack Gilbert说:“整个项目提供了一个真正有价值的数据库,从而使我们能够以一种前所未有的方式探寻全球的海洋微生物生态系统。”/pp  10.人类探测器首次近距离飞过冥王星/pp  美国“新视野”号探测器于美国东部时间7月14日7时49分近距离飞过冥王星,成为首个探测这颗遥远矮行星的人类探测器。“新视野”号与冥王星最近时的距离约为1.25万公里。“新视野”号探测器于2006年1月升空,经过9年多长途跋涉,终于与冥王星“会面”。由于冥王星从未被来自地球的探测器近距离造访过,“新视野”号“看”到的一切都将被记录下来。此后,这个探测器还将继续前行,进入太阳系边缘神秘的柯伊伯带,这里可能隐藏着数以千计的冰冻岩石小天体。冥王星于1930年首次进入人类视野,曾被当作太阳系第九大行星。但国际天文学联合会于2006年对大行星重新定义,冥王星“惨遭降级”为矮行星。/p
  • 硫化锂电池原位电镜表征与循环稳定性调控研究获进展
    p  随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。/pp  硫化锂(Lisub2/subS)材料理论容量高达1166 mA h gsup-1/sup,是其它过渡金属氧化物和磷酸盐的数倍 其首次脱锂充电过程中所发生的体积收缩能给后续的嵌锂放电反应提供空间,保护了电极结构不受破坏 其可与非锂金属负极材料(诸如硅、锡等)组装电池,有效避免锂枝晶形成等问题所带来的安全隐患,是极具发展潜力的锂硫电池正极材料。然而,该材料电子/离子导电率低,反应中间产物多硫化物在电解液中的溶解引发穿梭效应等问题,限制了其在锂硫电池中的实际应用。/pp  近日,中国科学院苏州纳米技术与纳米仿生研究所张跃钢课题组自主研发设计了原位扫描/透射电镜电化学芯片,实现了其对硫化锂电极充电过程的实时观测 在充分理解Lisub2/subS充放电机理的基础上设计了高氮掺杂石墨烯负载硫化锂材料作为电池正极,并通过控制充电容量和电压,显著提升了Lisub2/subS的容量利用率及循环寿命,相关成果发表在Advanced Energy Materials 杂志上。/pp  研究人员为提高锂硫电池的容量利用率和循环寿命,通常会将硫填充至具有高比表面积和高导电性的多孔材料中(如:碳纳米管,多孔碳,石墨烯和碳纤维等)。张跃钢课题组在前期研究工作中发现氧化石墨烯上引入氮掺杂官能团,不仅可以有效减少多硫化物在电解液中的溶解,而且可优化多硫化物在沉积过程中的分布(Nano Letters,2014, 14, 4821-4827)。为了更好地改善Lisub2/subS的容量利用率以及循环寿命,该团队利用原位表征技术研究了Lisub2/subS溶解和再沉积机理,进而提出将最初活化电池电压调控到3.8 V,然后通过控制电压(1.7~2.4 V)和充电容量可有效阻止长链可溶性多硫化物的形成,该充放电调控方法让电极在充电过程中保留了一部分不可溶的Lisub2/subS作为种子,使得Lisub2/subS材料能够有效地活化和均匀地再沉积。此外,该研究通过在氮化处理前的氧化石墨烯表面包覆葡萄糖,有效增加了石墨烯的折皱率和弯曲率,进而为多硫化物提供了更多的负载位点 反应过程中利用氨水和高温氨气热处理的方法使得氮掺杂量提高至12.2% 该高氮掺杂石墨烯材料不仅具有高导电性,其表面氮官能团更能有效减少多硫化物的溶解,优化Li2S的均匀分布。利用该高氮掺杂石墨烯-Li2S复合正极材料所制备的锂硫电池在2000圈(1C)循环后其容量仍能保持318 mA h gsup-1/sup(按硫元素重量折算为457 mA h gsup-1/sup),3000圈(2C)循环后仍能保持256 mA h gsup-1/sup(按硫元素重量折算为368 mA h gsup-1/sup),是迄今为止所报道的最长循环寿命。/pp  该研究工作首次利用了新开发的原位扫描电镜和原位透射电镜芯片技术实现了对硫化锂电极充电过程的实时观测,并在研究/pp  Lisub2/subS充放电机理的基础上,开发新的电压-容量调控机制,设计了一种新型的高氮掺杂负载硫化锂的电极材料,为高能量的Lisub2/subS-C /Li 电池的应用打开了广阔的应用前景。/pp  该项研究工作得到了国家自然科学基金重点项目、中国科学院千人计划人才专项的大力支持。/pp  a href="http://onlinelibrary.wiley.com/doi/10.1002/aenm.201501369/epdf" target="_self" title=""原文链接/a/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/3d4cdfa8-d284-4598-81b3-9799a4671568.jpg" title="00000.jpg"//pp  负载于单层石墨烯电极表面的Lisub2/subS材料在LiTFSI-DOL/DME电解液中活化过程的原位观测SEM图/p
  • 聚焦前处理,直击痛点!莱伯泰科锂电池产业链元素分析一站式解决方案
    前言:锂电池目前是手机、笔记本电脑等便携式电子设备的主要移动电源,是电动汽车的优选动力。此外,锂离子电池还将用来应对太阳能和风能等可再生资源的间断性和流动性的不足,以弥合能源供需之间的矛盾。移动电子设备和电动汽车等不断提升的需求,对锂电池的能量密度、可循环性、充电速率、稳定性和安全性提出了更大的挑战。锂离子电池由阳极和阴极两个电极以及浸有电解液的隔膜组成。锂离子电池的能量密度、安全性和寿命与电极材料的化学组成和分解产物密切相关。为了提高电池的性能,对其成分进行元素分析是十分必要的,可以帮助我们更好地了解老化效应并延长电池使用寿命。商用锂离子电池通常是由含锂氧化物的阳极材料和含石墨的阴极组成。用作锂电池电极的某些无机材料非常难以消解,特别是石墨等含碳材料。样品消解的好坏直接决定了分析测试结果是否准确,样品消解和分析方法是对锂电池组件进行准确化学分析的关键,这将帮助解开和发现更多电池分解的秘密。在这本应用手册中,汇集了我们世界各地应用团队和用户对锂电池主要部件化学分析领域的经验和探索。我们聚焦于锂电池元素分析的样品消解前处理过程,微波消解由于其更高消解温度和压力,更高工作效率和更少腐蚀性试剂消耗,非常适合于锂电池元素分析的消解过程。尤其是对于各种难溶样品,直击痛点,实现了石墨等难溶材料的完全消解。常见样品类型:Lithium sources锂矿来源» 锂矿石:锂辉石» 锂矿石:锂云母» 锂矿石:透锂长石» 锂盐:碳酸锂» 锂盐:氢氧化锂Cathode materials阳极材料» LCO–锂钴氧化物» NMC–锂镍锰钴氧化物» NCA–锂镍钴铝氧化物» LFP–磷酸铁锂» LMO–锰酸锂» LNMO–锂镍锰氧化物Anode materials阴极材料» 石墨» LTO–钛酸锂氧化物» 硅氧化物(SiOx)» 石墨烯纳米管Electrolyte电解质» LiPF6–六氟磷酸锂Recycling material回收材料» Black Mass莱伯泰科元素分析一站式解决方案:部分详细解决方案如下所列:» 锂电池元素分析解决方案——石墨» 锂电池元素分析解决方案——锂辉石/锂云母/透锂长石(篇幅所限:更多内容请详询莱伯泰科,公众号留言即可)
  • 活动回顾|东西分析参加第二届固态电解质技术与市场发展论坛暨第七届先进电池电解质/隔膜材料技术国际论坛
    2024年6月12-13日,第七届先进电池电解质/隔膜材料技术国际暨第二届固态电解质技术与市场发展论坛在苏州召开。东西分析携AA-7050型原子吸收分光光度计参加了此次活动。第七届先进电池电解质/隔膜材料技术国际论坛暨第二届固态电解质技术与市场发展论坛由中国化学与物理电源行业协会和中国电子科技集团公司第十八研究所共同主办,论坛上,来自各地的专家学者和企业代表围绕“提升锂电行业新质生产力”的主题,就固态电解质技术、先进电池电解质/隔膜材料技术等方面展开深入讨论。他们通过分享最新的研究成果、技术进展和市场趋势,为与会者带来前沿的学术报告和技术分享。东西分析展台前,参观交流的观众络绎不绝。此次东西分析展出的展品是AA-7050型原子吸收分光光度计。这款仪器以其精准度高、操作简便、功能强大等特点,赢得了参观者的一致好评。在展台前,工作人员以专业的态度,耐心地向每一位观众介绍这款仪器在电池领域应用中的实际案例和检测效果。电池,作为可再生能源发电体系中关键组件,肩负着推动全球可持续能源发展的重要使命。为确保电池材料及产品的安全可靠性,从电池原材料至电解质的每一个环节,均需经过严格的精确分析测试。这些测试可以全面评估电池的性能、寿命及安全性,为电池行业的稳健发展奠定基础。东西分析公司,依托其丰富的质谱、光谱、色谱等多条产品线,为电池行业提供了一套全方位的分析测试解决方案。这些方案可以进一步提升电池的性能和品质,从而推动电池行业的健康发展,为可持续能源事业贡献力量。仪器推荐电池材料中重金属检测推荐仪器适合分析电池材料中的重金属含量,满足《GB/T 11064.4-2013、GB/T 11064.5-2013、GB/T 11064.6-2013碳酸锂、单水氢氧化锂、氯化锂中钾量、钠量、钙量和镁量的测定 火焰原子吸收光谱法》、《YS/T 1472.4-2021 富锂锰基正极材料中锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体发射光谱法》等检测需求。电池材料中有机成分检测推荐仪器气相色谱质谱联用仪适用于分析电池电解液溶剂及相关原料中的有机成分,比如环状碳酸酯(PC、EC)、链状碳酸酯(DEC、DMC、EMC)及羧酸酯类(MF、MA、EA、MA、MP等)。电池材料检测及产品中气体检测推荐仪器气相色谱可用于电池产气分析,电池电解液原料纯度分析等,符合《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《HG∕T 5786-2021 工业用碳酸丙烯酯》等标准检测要求。电池材料中离子检测推荐仪器离子色谱适用于分析电池电解液溶剂及相关原料中的氟离子,氯离子,硫酸根等,满足《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《GB/T19282-2014 六氟磷酸锂的分析方法》等标准的检测需求。请点击下方链接,获取电池行业的全面解决方案实用干货|助力锂电行业,共迎科技未来
  • “续航”新动力 | 助力锂电池产业升级——锂电产业一站式解决方案
    锂离子电池作为智能手机、笔记本电脑等电子电器设备,以及电动汽车、混合动力汽车等的电源,其性能的提升一直深受行业关注。日立科学仪器作为先进的技术企业,可为锂电领域的“研发”、“制造”、“品质管理”,以及当下广泛关注的“电池回收”等产业链环节,提供从仪器到零配件再到方案等全面解决方案。1. 研发(R&D):创新驱动,助力锂电池研发突破【背景介绍】国内新能源汽车产业经过几十年的发展,已经形成一定的产业规模并取得很大技术突破。动力电池作为新能源汽车核心部件,是新能源汽车产业发展的关键因素之一,动力电池综合性能的提升是重要的支撑。电池的化学性能、电性能、循环性能、安全性能、可靠性能等评价能力的迫切要求下,推动电池产业界在技术创新投入方面不断加码。日立科学仪器可以为锂电研发、制造、品质管理等提供电子显微镜、分析仪器产品与解决方案。【案例分享】浓度分析——原子吸收分光光度计ZA3000为了提高锂离子电池的性能,需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,对某些元素的检测灵敏度低, 而且使用成本较高。分析实例:正极活性物质相关分析左:正极活性物质中的组成元素摩尔比;右:原子吸收分光光度计ZA3000日立偏振塞曼原子吸收分光光度计ZA3000系列可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。分析实例:正极活性物质相关分析左:钴酸锂中的锂分析;右:钴酸锂中的钴分析分析实例:电解液(电解质)相关分析左:碳酸锂中的钠分析;右:六氟磷酸锂中的钾分析2. 制造:智能制造,提升锂电池生产效能【背景介绍】锂电是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。其生产环节需要经历多道复杂工序,这对提高生产效率、提高良品率等都提出很高的要求。同时,随着锂电产业的不断升级发展,智能制造、自动化、数字化等成为锂电制造当下的发展趋势。【案例分享1】高速检出隐藏于表面之下的微米级金属异物——X射线异物分析仪EA8000A原材料中的金属异物会使电池失效,甚至发生事故。X射线异物分析仪EA8000A具备强大的X射线异物检出能力,可以高效检出20μm级微小金属异物颗粒,并对其进行元素识别。这套异物检测系统能帮助用户提高成品率、提升锂电制造工序的效率、构建工序管理并不断改进,从而有效控制异物混入情况。X射线异物分析仪EA8000A(产品来自日立分析仪器(上海)有限公司)EA8000A在锂电领域的应用【案例分享2】成分和水分测试——自动电位滴定仪COM-A19自动电位滴定仪COM-A19可以高精度地测定氢氟酸、氢氧化锂、碳酸锂等电解液中的各种成分。锂电池电解液成分浓度测定案例左:氢氧化锂和碳酸锂的测试结果案例;右:自动电位滴定仪COM-A19对于非水相体系的锂电池材料而言,水分是一个关键指标,因为它不仅会对材料的稳定性有影响,而且可能引起一系列有害的反应。在自动滴定装置上增设“水分测定单元”,可以同时测定水分含量。另外,平沼的单室电解单元由于不需要阴极液,能够降低运行成本。锂电池原料:聚氨酯硬化剂多元醇中水分含量测定案例左:测试结果案例;右:MOICO-A19与卡式蒸发炉3. 品质管理:精准监控,确保锂电池卓越品质【背景介绍】锂电产品安全性至关重要,这决定了锂电行业对产品品控和管理的高规格要求,如何在生产环节中保证锂电产品的性能稳定性、均一性等尤为重要,精准的检测技术和分析手段此时便可以发挥重要的支撑作用。【案例分享】仅需3分钟即可观察影像——TM4000Plus IITM4000Plus II是日立台式扫描电镜系列中最新的型号。样品无需前处理,从放入样品到获得图像只需要短短几分钟。从形貌观察到元素分析,以及生成报告都可以迅速完成。尤为适合各工序的锂离子电池的品质管理。 上左:EDS颗粒分析;上右:日立台式扫描电镜TM4000Plus II;下:宽范围成分图4. 回收:环保先行,推动锂电池可持续发展【背景介绍】我国新能源汽车行业在“双碳”政策引导下进入规模化快速发展阶段。在电池需求大力拉升下,镍、锂、钴等金属价格持续上涨,,锂电回收不仅复合减污降碳的政策方向,且目前全球镍、锂、钴等原生矿产资源相对稀缺。通过对废旧动力电池的循环利用,可有效解决资源枯竭问题。如何推动锂电回收产业由规模速度型向质量效益型有序化转变已经成为当下的重要命题。【案例分享】:锂电材料综合评测—SEM和AFM联动分析SÆ Mic.是指将SEM、AFM的特点功能结合使用得到综合评价。在同一视野下,对锂离子电池正极材料进行测试。将SEM得到的成分信息和AFM的SSRM像的电气特性进行匹配,得到全面的样品信息。左:SEM-AFM联合观察SÆ Mic.;右:锂电正极材料的SEM/AFM同一视野下的测评观察锂电材料,SEM和AFM联用2023年,随着新能源汽车产业进入叠加交汇、融合发展新阶段,面对全球不断壮大的发展需求,动力电池产业进入新的发展阶段,电池的安全、可控、低碳等发展方向为对应检测技术提出越来越高的要求。日立科学仪器将在锂电解决方案的开发中不断加码,在锂电领域“研究开发”、“制造”、“检测”的价值链中,提供从仪器到零配件的高端及前沿的解决方案。携手广大客户,共同为锂电升级不断赋能。欢迎垂询日立科学仪器(北京)有限公司电话:400-898-1021邮箱:contact.us@hitachi-hightech.com 欢迎扫描下方二维码,官微更多产品内容等您来看!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 十问十答|关于液相色谱柱使用中的常见问题解答(二)
    第三期关于液相色谱柱使用中的常见问题解答(二)上一期的十问十答液相柱篇主要给大家总结了最常见液相柱使用中的问题与解答。本期小编继续为大家讲解的是关于特殊色谱柱使用上的常见问题。Q1、ShimNex HE SAX/SCX以及WP SAX/SCX色谱柱怎么活化?1. 需要使用至少20倍柱体积的流动相平衡色谱柱。2. 当流动相中缓冲盐浓度较高时候,为了防止盐在色谱柱或系统中析出,可使用20%的乙腈水溶液冲洗5倍以上柱体积作为缓冲,再过渡到流动相。3. 因为SCX色谱柱键合的基团是磺酸基团,容易与醇类物质发生酯化反应,所以流动相应当避免醇的使用。Q2. ShimNex HE CN 色谱柱的活化?氰基柱既可以用在正相模式,又可以用于反相模式。考虑到色谱柱寿命,推荐使用过程中固定为其中一种模式。因色谱柱出厂时使用庚烷:乙酸乙酯=90:10进行质控,所以如需要使用反相模式,请先使用异丙醇等将柱内的溶剂进行充分置换后再用相应的流动相进行活化操作。Q3. C4 色谱柱怎么活化?一般C4色谱柱的活化参照C18色谱柱,首次使用色谱柱前,应先用20倍柱体积以上的甲醇/乙腈充分活化。为确保数据的质量,分析前应使用至少 10 倍柱体积的流动相平衡色谱柱。 若流动相中缓冲盐浓度较高, 为了防止盐在色谱柱或系统中析出,应先使用与流动相构成比例相同或有机相比例较低的水溶液冲洗至少 5 倍柱体积,再过渡到流动相。Q4. ShimNex HE SAX/SCX以及WP SAX/SCX怎么冲洗?硅胶基质的离子交换色谱柱一般流失比较严重,寿命一般不是很好。所以色谱柱的清洗维护非常重要。色谱柱的污染可能会导致峰形的变化、峰分裂、肩峰、柱效的变化或背压增加等问题。请参考以下方法进行清洗:Q5. 硅胶基质色谱柱的保存 有什么注意事项?Q6. 氨基酸分析仪中,使用的Amino Na/Li型色谱柱,色谱柱怎么活化?在使用长期停止使用的色谱柱之前,用0.2M氢氧化钠水溶液冲洗数小时。Q7. 氨基酸分析仪中,使用的Shim-pack Amino Na/Li型色谱柱,色谱柱脏了的时候怎么冲洗?Q8. 使用的Amino Na/Li型色谱柱,色谱柱怎么保存?如果色谱柱超过半年不使用,建议使用以下流动相冲洗保存:使用0.2M的氢氧化钠(氢氧化锂)水溶液清洗色谱柱,用0.01%的辛酸的10%乙醇溶液置换色谱柱,最后将色谱柱保存在阴暗地方。Q9. Shim-pack Amino系列色谱柱有什么注意事项?有机相比例不高于10%,避免高温停泵(0.1-0.3 ml/min降至室温后再停泵)。Q10. Shim-pack Amino Na型和Li型色谱柱有什么区别?Shim-pack Amino-Na:大概可分析19个化合物,一针分析时间为90分钟,分析速度快,化合物少;Shim-pack Amino-Li:大概可分析38个化合物,一针分析时间为180分钟,分析速度慢,化合物多。课后小惊喜各位小伙伴如有更多关于液相柱选型相关问题或有更多相关知识补充,欢迎留言与我们交流。入围的精选留言的小伙伴我们将送出电脑支架一支!往期推荐十问十答第1期:关于液相色谱柱使用中的常见问题解答十问十答第2期:气相色谱柱的选型入门实验小妙招|关于气相毛细管柱的维护与保养探索抗体蛋白的质控奥秘|疏水作用色谱柱,让药物分析更高效
  • 紧急采购:HM5 血液分析仪及VS2 生化分析仪试剂
    国外某企业委托湖南某机构寻找中国优质厂家,采购,HM5 血液分析仪和 VS2 生化分析仪的试剂,具体明细如下:生化分析仪:试剂,与 Abaxis VetScan VS2 分析仪完全兼容描述:内部装有冻干试剂珠的塑料盘用于在 VetScan VS2 兽医分析仪中分析动物的肝素化血液、血清或血浆。该盘用于量化丙氨酸氨基转移酶(ALT)、白蛋白(ALB)、磷酸酶(ALP)、淀粉酶(AMY)、总钙(CA)、肌酐(CRE)、球蛋白(GLOB)、葡萄糖(GLU)、磷( PHOS)、钾 (K)、钠 (NA)、总胆红素 (TBIL)、总蛋白 (TP) 和尿素 (BUN)。光盘是单独的,不能重复使用。组成:该圆盘由封闭的比色皿和装有固体球形试剂珠的容器组成。试剂以冻干形式处于稳定且低危害的状态。珠子中的试剂浓度是无毒的,不会对人类和环境产生不利影响。包括酶、防腐剂和稳定剂在内的活性物质浓度小于1%;该圆盘包含一个容器,其中的稀释剂含有少于 0.5% 的水和浓度低于 1% 的防腐剂。面板中存在的化学物质:D-manit - 不超过 16.5%聚乙二醇 8000 - 不超过 8.8%聚乙二醇 2000 - 不超过 6.1%三氰酸钠 - 不超过 5.8%三(羟甲基)氨基甲烷 - 不超过 5.7%聚乙二醇 3400 - 不超过 5.6%葡聚糖 70 不超过 4.9%氯化钠 - 不超过 3.7%氢氧化锂,一水合物 - 不超过 2%五水硫酸铜 - 不超过 1.1%肌醇浓度 - 不超过 1%。血液分析仪试剂:用于血液分析仪试剂描述容量溶剂,稀释剂一种等渗盐溶液,用于稀释全血样本并在测试之间冲洗分析仪流体系统。9 升洗涤,清洗剂用于对某些物种和某些清洁程序进行分析。500 毫升清洁剂、净化剂用于液体系统清洁过程300 毫升溶解、裂解剂它用于获得三组分白细胞形式的溶血物并确定白细胞和血红蛋白的总数。300 毫升溶解、裂解剂 2用于全血稀释和白细胞差异溶血,以按体积将嗜酸性粒细胞与其他白细胞分离。 用于测定嗜酸性粒细胞、%嗜酸性粒细胞、嗜碱性粒细胞和%嗜碱性粒细胞。800 毫升相关图片:委托中方洽谈机构:公司名称:湖南中星科技有限公司姓名:樊占财 联系方式:15388055177
  • “十四五”规划第三代半导体弯道超车
    p style="text-indent: 2em text-align: justify "国家2030计划和“十四五”国家研发计划已明确第三代半导体是重要发展方向。由于第三代半导体材料更为优异,与国外差距相对较小,国家希望通过十四五规划,把三代半导体提升至战略高度,第三代半导体可能成为我国半导体产业发展弯道超车机会。/pp style="text-indent: 2em text-align: justify "目前我国第三代半导体市场和应用前景广阔。一方面,第三代半导体下游应用切中了“新基建”中5G基站、特高压、新能源充电桩、城际高铁交主要领域,另一方面,第三代半导体产品主要使用成熟制程工艺,在美国持续升级对我国半导体产业技术封锁的大环境中,第三代半导体有望成为我国半导体产业突围先锋,相关产业链上下游企业将充分受益。/pp style="text-indent: 2em text-align: justify "半导体设备需求及订单向上拐点或已到来。2020年行业有望较快成长,新增需求源自5G商用推动全球存储扩产及中国大陆整体晶圆、封测产能扩张,以下第三代半导体设备公司有望受益。北方华创主营半导体装备、真空装备、新能源锂电装备及精密元器件业务。中微公司正处于市场地位快速提升的高成长阶段,同时其突出的技术及研发实力在本土企业中稀缺度很高。捷捷微电深耕功率半导体行业25年,是国产晶闸管第一大供应商。三安光电2014年5月成立起,正式涉足半导体产业,填补了我国二代、三代化合物半导体砷化镓/氮化镓市场的空白,同时布局新兴 Mini/ Micro-LED芯片产业。/pp style="text-indent: 2em text-align: justify "伴随着国内第三代半导体设备企业技术进步和消费市场前景刺激,第三代半导体产业链将迎弯道超车机会。/pp style="text-align: justify text-indent: 0em "br//pp style="text-align: justify text-indent: 0em "原文:/pp style="text-align: justify text-indent: 0em "原文标题《第三代半导体产业链迎弯道超车机会 科技+消费仍是机构“心头好”》/pp style="text-indent: 2em text-align: justify "大盘持续震荡考验市场信心,赚钱效应下滑背后机会也更趋于集中。而在结构性机会背后,券商对四季度的机会普遍看好科技 + 消费 。 具体而言,半导体、国防军工、新能源汽车等被频繁推荐。投资者可在震荡中逢低关注上述板块中的龙头标的。/pp style="text-indent: 2em text-align: justify "第三代半导体/pp style="text-indent: 2em text-align: justify "产业链迎弯道超车机会/pp style="text-indent: 2em text-align: justify "国家2030计划和“十四五”国家研发计划已明确第三代半导体是重要发展方向。与第一、二代半导体材料Si、GaAs不同,以GaN、SiC为代表的第三代半导体材料具有高频、高效、高功率、耐高压、耐高温、抗辐射等特性,可以实现更好的电子浓度和运动控制,特别是在苛刻条件下备受青睐,在5G、新能源汽车、消费电子、新一代显示、航空航天等领域有重要应用。/pp style="text-indent: 2em text-align: justify "截止目前,A股公司已有45家确有第三代半导体产业链业务,或已积累相关技术专利。华安证券分析师尹沿技指出,由于第三代半导体材料更为优异,与国外差距相对较小,国家希望通过十四五规划,把三代半导体提升至战略高度,第三代半导体可能成为我国半导体产业发展弯道超车机会。/pp style="text-indent: 2em text-align: justify "国海证券分析师吴吉森认为,一方面,第三代半导体下游应用切中了“新基建”中5G基站、特高压、新能源充电桩、城际高铁交主要领域,另一方面,第三代半导体产品主要使用成熟制程工艺,在美国持续升级对我国半导体产业技术封锁的大环境中,第三代半导体有望成为我国半导体产业突围先锋,相关产业链上下游企业将充分受益。建议投资者关注北方华创、华峰测控、中微公司 器件领域重点关注斯达半导、捷捷微电、三安光电、闻泰科技、华润微,扬杰科技等。/pp style="text-indent: 2em text-align: justify "潜力股精选/pp style="text-indent: 2em text-align: justify "北方华创(002371)进一步加码主业/pp style="text-indent: 2em text-align: justify "公司主营半导体装备、真空装备、新能源锂电装备及精密元器件业务。公司现有四大产业制造基地,营销服务体系覆盖全球主要国家和地区。海通证券指出,2018年中国大陆市场设备投资额创历史新高,达到128.2亿美元,成为全球第二大的投资区域,预计2020年中国大陆设备投资将增长至170.6亿美元,未来依然是全球设备投资的主要地区,中国集成电路装备产业也将迎来一个“黄金时代”。公司非公开发行募集资金约20亿元将投入“高端集成电路装备研发及产业化项目”和“高精密电子元器件产业化基地扩产项目”的建设,进一步加码在高端集成电路设备领域的布局。/pp style="text-indent: 2em text-align: justify "中微公司(688012)细分领域领军者/pp style="text-indent: 2em text-align: justify "公司日益提升的国际竞争力和半导体设备产业需求复苏、本土晶圆厂扩产及技术成熟、5G产业发展为公司带来的新机遇。相比于成熟发展阶段的海外龙头,公司正处于市场地位快速提升的高成长阶段,同时其突出的技术及研发实力在本土企业中稀缺度很高。虽然估值存在较高溢价,但作为中国高端装备的“核心资产”,其投资价值仍值得关注。华泰证券指出,半导体设备需求及订单向上拐点或已到来,2020年行业有望较快成长,新增需求源自5G商用推动全球存储扩产及中国大陆整体晶圆、封测产能扩张,其中刻蚀、薄膜沉积设备受益程度较高,公司作为国产刻蚀设备领军者有望受益。/pp style="text-indent: 2em text-align: justify "捷捷微电(300623)业绩增长有基础/pp style="text-indent: 2em text-align: justify "公司深耕功率半导体行业25年,是国产晶闸管第一大供应商。公司立足功率半导体,在晶闸管基础上不断拓展产品品类,公司有望随着功率半导体的国产化替代加深实现持续快速成长。开源证券指出,2019年中国的功率半导体市场达到 144.8亿美元,主要市场份额为英飞凌、安森美、德州仪器等海外企业占据。MOSFET和IGBT作为功率半导体分立器件的最主要品种,国产替代空间巨大。2019年MOSFET占公司整体营收的15%,公司通过定增项目加码MOSFET、IGBT、新型片式元件、光电混合集成电路封测等产能建设,为业绩增长打下基础。/pp style="text-indent: 2em text-align: justify "三安光电(600703)拐点有望到来/pp style="text-indent: 2em text-align: justify "公司2014年5月成立三安集成,正式涉足半导体产业,填补了我国二代、三代化合物半导体砷化镓/氮化镓市场的空白,同时布局新兴 Mini/ Micro-LED芯片产业。公司即使在行业低谷,也依旧保持领先整个行业的利润率。申万宏源证券指出,三安集成业务与同期相比呈现积极变化,已取得国内重要客户的合格供应商认证,各个板块已全面开展合作,2019全年实现销售收入2.41亿元,同比增长40.67%。当前是公司利润率底部区间,行业供需改善拐点有望到来,长期看好公司LED新需求及化合物半导体的发展。/pp style="text-indent: 2em text-align: justify "国防军工/pp style="text-indent: 2em text-align: justify "行业迈入价值成长阶段/pp style="text-indent: 2em text-align: justify "二季度业绩明显回暖后,国防军工行业三季度业绩增长确定性依旧较高。可以看到,军工行业计划性更强、下游客户军方需求确定性更高、产业链相对封闭,科研生产的组织更加严密,受经济环境的影响相对较小。/pp style="text-indent: 2em text-align: justify "有行业分析师指出,军工板块逐步迈入价值成长阶段,基本面研究的重要性将越来越重要,标的股价走势与基本面关联度越来越高,自下而上选股将成为获得超额收益的关键。横向比较其它制造业,军工行业的优势在于长期成长确定性。比较而言,部分国家重点建设的装备、部分渗透率显著提升的产品、部分业务开拓能力强竞争优势突出的企业需求增速将显著领先于整个行业,选择这类高成长性的标的是核心策略。/pp style="text-indent: 2em text-align: justify "高景气叠加改革持续推进,国防军工行业基本面持续向上的确定性强。国海证券分析师苏立赞指出,建议关注景气度高、确定性强、业绩有望持续兑现的方向如主战装备上量、航空发动机、军工信息化等,以及具有较强改革预期的相关标的。具体来看,主战装备上量,一流军队建设需要大批先进武器装备的支撑,在装备补短板和型号上量的过程中,主战装备龙头及配套企业前景明确。建议关注中直股份、中航飞机、洪都航空、中航沈飞、中航机电等。航空发动机方面,随着新装和替换需求旺盛,预计未来十年国内军用航空发动机市场规模有望达数百亿美元。建议关注航发动力、航发科技、航发控制、华伍股份、钢研高纳等。/pp style="text-indent: 2em text-align: justify "潜力股精选/pp style="text-indent: 2em text-align: justify "中直股份(600038)有资金注入预期/pp style="text-indent: 2em text-align: justify "公司是直升机制造龙头,我国军用直升机总量仅为美国的1/6,直-20作为中型通用机型,参考“黑鹰”系列直升机在美军作为主力机型的装备比例,保守估计市场空间达680架。直-20有望加速列装,公司作为部件供应商将持续受益。开源证券指出,航空工业集团直升机板块仍有哈飞集团、昌飞集团的总装直升机整机与试飞业务、直升机运营及维修业务以及中航直升机设计研究所(602所)等资产在上市公司体外,资产质量相对优质。考虑到同类资产合并仍是大势所趋,未来公司体外资产的有望注入将带来上市公司盈利规模的提升和关联交易削减所致的盈利能力增强。/pp style="text-indent: 2em text-align: justify "中航机电(002013)平台优势明确/pp style="text-indent: 2em text-align: justify "公司背靠航空工业集团,2012年以来经过多次资产重组和整合,成为航空工业集团旗下航空机电系统的专业化整合和产业化发展平台,航空机电产品是公司最主要的业务。华创证券指出,公司航空机电产品有望保持稳健增长趋势,随着更加聚焦航空机电主业以及不良资产的剥离,公司盈利能力预计将有所提高,毛利率或将有所改善,期间费用率预计保持平稳略有下降。同时公司目前作为航空工业集团下属航空机电系统专业化整合和产业化发展平台的地位明确,体外尚有武汉仪表、609所和610所等优质企事业单位资产,未来资产整合仍可预期,优质资产的注入将进一步提升公司的质量。/pp style="text-indent: 2em text-align: justify "航发动力(600893)受益庞大市场需求/pp style="text-indent: 2em text-align: justify "公司是国内唯一军用航空发动机产品涵盖涡喷、涡扇、涡轴、涡桨、活塞全种类的企业,是三代主战机型发动机国内唯一供应商。全年业绩在紧密的生产交付节奏下仍将保持稳定较快增长。中信建投证券指出,我国军机正处于更新换代阶段,老旧机型换发与新机列装需求日益旺盛。大涵道比航发实行军民两用为未来发展趋势,公司现有技术或产品进军民用市场亦可期待,预计未来20年,我国民用市场航空发动机需求约为400亿美元。公司作为中国航空发动机集团整机上市平台,将直接受益于军民机庞大市场需求与政策资金红利,我们强烈看好公司未来发展前景。/pp style="text-indent: 2em text-align: justify "华伍股份(300095)业务快速增长/pp style="text-indent: 2em text-align: justify "公司是军机和航空发动机产业链重要配套企业,受益于主战装备上量,军工任务饱满,相关业务快速增长。2020年上半年公司航空零部件业务收入同比增长109%,业务进入快速增长期。随着主机厂规模不断扩张,公司迎来重大发展机遇,且公司正推进飞机零部件产能建设,配套层次有望提升至飞机零部件。国海证券指出,军品方面,下游主机厂需求旺盛,公司订单饱满,军工业务有望加速放量。民品方面,公司工业制动器快速增长,特别是风电制动器高速增长,风电抢装过后仍有望保持较快增长 轨交制动器有望成为新的增长点。/pp style="text-indent: 2em text-align: justify "新能源汽车/pp style="text-indent: 2em text-align: justify "市场数据持续向好/pp style="text-indent: 2em text-align: justify "从之前中国汽车工业协会发布的8月我国汽车产销数据来看,8月新能源汽车产销量分别为10.6万辆和10.9万辆,同比分别增长17.7%和25.8%,新能源汽车产销量同比保持快速增长。可以看到,2020年上半年新能源汽车市场恢复表现低于行业总体水平。下半年随着更多新车型的投放、新能源汽车下乡活动以及地方政府对新能源汽车消费的支持,新能源汽车市场将持续向好。/pp style="text-indent: 2em text-align: justify "之前工信部修改双积分管理办法,明确2021-2023年新能源汽车积分比例要求分别为14%、16%、18%,并增加引导传统乘用车节能措施、完善新能源汽车积分灵活性措施、丰富了关联企业认定条件等,促进新能源及节能汽车的共同快速发展,利好节能技术领先、新能源发展较快的技术优势企业及相关供应链。/pp style="text-indent: 2em text-align: justify "看好产业链长期成长,布局细分行业龙头。西部证券分析师王冠桥指出,我国新能源汽车规划和规模领跑全球,带动国内产业链同步成长。核心零部件如热管理、减速器等领域,国内供应商有望打破海外固有配套格局。建议关注三花智控、先导智能、精锻科技。电池产业链逐渐复苏,龙头公司强者恒强,四大材料国产供应商有望充分受益,建议关注宁德时代、璞泰来。锂价格磨底,电池级碳酸锂基本逼近锂辉石生产成本,预计未来随着高成本的产能的不断出清和新能源汽车需求的持续增长,锂产品价格有望逐步回暖。看好锂行业龙头公司赣锋锂业。/pp style="text-indent: 2em text-align: justify "潜力股精选/pp style="text-indent: 2em text-align: justify "三花智控(002050)盈利增长空间打开/pp style="text-indent: 2em text-align: justify "公司是全球制冷部件的龙头企业,成立三十年来一直专注于生产和研发热冷转换、智能控制的环境热管理核心零部件。华金证券指出,2017年公司将三花汽零业务并表,开始布局新能源汽车热管理业务。公司汽零产品的客户质量优质,现在已相继成为特斯拉、沃尔沃、戴姆勒、比亚迪、吉利、蔚来汽车等新能源汽车厂商的一级供应商,现有的新能源订单业务也会集中在2020年开始放量。作为特斯拉供应商,公司盈利能力将直接受益于国产Model 3 销量的提升,而且随着Model Y车型的国产化进程加快,将继续开启公司的盈利增长空间。/pp style="text-indent: 2em text-align: justify "宁德时代(300750)竞争力进一步凸显/pp style="text-indent: 2em text-align: justify "公司主营新能源汽车动力电池,2019年全球市占率达28%。凭借成本和产品优势,公司积极开拓国内外市场,未来市占率有望进一步提升。公司还积极布局储能产业链上下游,未来有望率先步入储能发展的快车道。随着新能源汽车竞争力提升,预计到2025年动力电池需求量约1013GWh。新时代证券指出,公司竞争力强,经营方面,相比LGC等国际厂商,公司营业利润率持续为正。客户方面,公司成功开拓了特斯拉、大众、奔驰、宝马等国际一流整车厂,反映出公司强大竞争力。随着动力电池不断降本,未来公司的竞争力进一步凸显。/pp style="text-indent: 2em text-align: justify "先导智能(300450)产品市占率第一/pp style="text-indent: 2em text-align: justify "公司以薄膜电容器设备起家,2008年切入锂电设备市场,核心设备锂电池卷绕机国内市场份额达60%以上,稳居行业第一。2017年收购珠海泰坦新动力后,可提供前中后段整线生产设备,公司客户包括松下、索尼、三星 SDI、LG 化学、特斯拉、CATL、比亚迪等全球知名企业。申万宏源证券指出,公司拟定增25 亿元用于产能提升,宁德时代将全额认购,交易完成后CATL将持有公司7.29%股权,成为公司战略投资者。引入宁德时代将极大提高公司长期业绩的确定性,伴随CATL扩产公司业绩成长性再次被打开,锂电设备龙头蓄势待发。/pp style="text-indent: 2em text-align: justify "赣锋锂业(002460)深度绑定特斯拉等/pp style="text-indent: 2em text-align: justify "公司从中游锂化合物制造起步,后进军上游锂资源,加速拓展下游锂电池生产,目前已形成垂直整合的业务模式。覆盖上游锂资源开发、中游锂盐深加工以及金属冶炼、下游锂电池制造及退休锂电池综合回收利用等多个方面。多个业务板块间通过发挥协同效应,提升资源利用率,公司营运效率及盈利能力。华安证券指出,目前公司氢氧化锂设计产能为3.1万吨,为满足近期市场对电池级氢氧化锂的需求,公司通过发挥自身柔性生产线优势,持续释放产能,2019 年氢氧化锂产能利用率高达99.39%。深度绑定特斯拉、德国宝马、大众等欧美终端车企,氢氧化锂销售未来可期。/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/5f2ab726-e026-4904-b781-d5e14f7c5e80.jpg" title="半导体材料与器件.jpg" alt="半导体材料与器件.jpg"//a/p
  • 551项国家标准项目拟立项 一大批与仪器分析密切相关
    p  日前,国家标准委标准技术司发布通知,551项拟立项国家标准项目公开征求意见,征求意见截止时间为2020年11月20日。/pp  551项拟立项国家标准项目中,数十条涉及了仪器分析检测方法,包括电感耦合等离子体质谱法、波长色散X射线荧光光谱法、辉光放电质谱法、高效液相色谱法、火焰原子吸收光谱法、光电直读光谱法、X射线衍射法等。/pp  仪器信息网摘录部分如下:/ptable width="605" border="1" cellpadding="0" cellspacing="0" align="center"colgroupcol width="72"/col width="343"/col width="134"/col width="119"//colgrouptbodytr class="firstRow"td width="72"序号/tdtd width="343"div项目中文名称/div/tdtd width="134"div/divdiv制修订/div/tdtd width="119"div/divdiv截止日期/div/td/trtrtd width="72"1/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=8DDB0BABE68C0DD4E05397BE0A0AFCC2" target="_blank"铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒、碲含量的测定 电感耦合等离子体质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"2/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=8EDE2388F723F96FE05397BE0A0A6F77" target="_blank"镁及镁合金化学分析方法 第23部分:元素含量的测定 波长色散X射线荧光光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"3/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=900B7C6FF62F4ACDE05397BE0A0AD0E8" target="_blank"钨精矿化学分析方法 第19部分:氟含量的测定 离子选择电极法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"4/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=8EDE2D838EF0FD19E05397BE0A0A8A1D" target="_blank"镁及镁合金化学分析方法 第24部分:痕量杂质元素的测定 辉光放电质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"5/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=900B83F831044E6BE05397BE0A0A359B" target="_blank"钨精矿化学分析方法 第20部分:汞含量的测定 催化热解–冷原子吸收分光光度法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"6/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=8F835CFDCC44B34EE05397BE0A0ACE78" target="_blank"塑料 导热系数和热扩散系数的测定 第4部分:激光闪光法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"7/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=99048EA81D8A7960E05397BE0A0AC963" target="_blank"枸杞及其制品中枸杞多糖的测定 离子色谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"8/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=99044DAE4C755846E05397BE0A0AA0D7" target="_blank"农产品水溶性提取物中金属离子消除方法 离子交换法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"9/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=99046DD2FF30672FE05397BE0A0A9C60" target="_blank"海参及其制品中海参多糖的测定 高效液相色谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"10/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=990101907816933BE05397BE0A0A6064" target="_blank"苹果及苹果制品中根皮苷的检测方法 高效液相色谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"11/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=95B3D5DC4C57B715E05397BE0A0ACDFC" target="_blank"水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱(ICP-MS)法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"12/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=97BE53E9E28A164FE05397BE0A0A42EF" target="_blank"珠宝玉石鉴定 紫外可见吸收光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"13/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE85B46FD61100FE05397BE0A0ABA8E" target="_blank"镍合金化学分析方法 第4部分:铬含量的测定 硫酸亚铁铵电位滴定法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"14/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9E30B44BCCB17A55E05397BE0A0A6243" target="_blank"低碳脂肪胺含量的测定 气相色谱法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"15/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A016E121F55262D9E05397BE0A0A7F13" target="_blank"金矿石化学分析方法 第15部分:铜、铅、锌、银、铁、锰、镍、钴、铝、铬、镉、锑、铋、砷、汞、硒、钡和铍含量的测定 电感耦合等离子体质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"16/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9C24B9E3AA5B1FC5E05397BE0A0A091B" target="_blank"细胞培养过程中苯乙烯单体、2-氯乙醇残留量测定GC-MS法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"17/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE8A79367752C2BE05397BE0A0A59C6" target="_blank"铅精矿化学分析方法 第20部分:氟含量的测定 离子选择电极法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"18/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE845D0984E07C2E05397BE0A0A8B89" target="_blank"镍合金化学分析方法 第3部分:铌含量的测定 电感耦合等离子体原子发射光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"19/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A1CDE597A8883117E05397BE0A0ACACD" target="_blank"硅基MEMS制造技术 纳米厚度膜抗拉强度检测方法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"20/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE845D0984E07C2E05397BE0A0A8B89" target="_blank"镍合金化学分析方法 第3部分:铌含量的测定 电感耦合等离子体原子发射光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"21/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE74C9F49DC84ADE05397BE0A0A8983" target="_blank"钨精矿化学分析方法 第15部分:铋含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"22/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A21D1460FE09A231E05397BE0A0A573E" target="_blank"木薯叶片中黄酮醇的测定 高效液相色谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"23/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE72F6AEA3579BAE05397BE0A0A9852" target="_blank"钨精矿化学分析方法 第10部分:铅含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"24/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9B70673F30937C8DE05397BE0A0A513A" target="_blank"金化学分析方法 第12 部分 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"25/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A0F56B518C59A3CBE05397BE0A0A546D" target="_blank"中药材和中药饮片中农药多残留快速检测方法-热解析电喷雾质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"26/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE8220B4A2BD45AE05397BE0A0A6390" target="_blank"镍合金化学分析方法 第1部分:钼含量的测定 电感耦合等离子体原子发射光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"27/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE88FF3D77823F9E05397BE0A0A65F1" target="_blank"镍合金化学分析方法 第8部分:钴、铬、铜、铁和锰含量的测定 火焰原子吸收光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"28/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE80C91E641CC27E05397BE0A0A3AD8" target="_blank"锌精矿化学分析方法 第25部分:银含量的测定 酸溶解-火焰原子吸收光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"29/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A003E7946DF1D089E05397BE0A0A73AA" target="_blank"空气中挥发性有机物在线监测飞行时间质谱仪的性能测定方法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"30/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE703E58DE569D0E05397BE0A0A7D0A" target="_blank"钨精矿化学分析方法 第4部分:硫含量的测定 高频感应红外吸收法和燃烧-碘量法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"31/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE8A2CEA38C2C2DE05397BE0A0AA907" target="_blank"锡化学分析方法 第11部分:银、镍、钴含量的测定 火焰原子吸收光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"32/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9B9D8316924BA113E05397BE0A0A270A" target="_blank"纺织染整助剂产品中有机卤素含量的测定/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"33/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE6FDEF20116729E05397BE0A0A82FF" target="_blank"钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"34/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE71EF0D9F071BDE05397BE0A0A7578" target="_blank"钨精矿化学分析方法 第6部分:湿存水含量的测定 重量法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"35/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE76939DD388F45E05397BE0A0A4624" target="_blank"碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第16部分:钙、镁、铜、铅、锌、镍、锰、镉、铝、铁、硫酸根含量的测定 电感耦合等离子体原子发射光谱法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"36/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE7778C078394A4E05397BE0A0A4C8D" target="_blank"海绵钛、钛及钛合金化学分析方法 第29部分:铝、碳、铬、铜、铁、锰、钼、镍、硅、锡、钒、锆含量的测定 光电直读光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"37/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE72AA4C8E2770BE05397BE0A0A790C" target="_blank"钨精矿化学分析方法 第8部分:钼含量的测定 硫氰酸盐分光光度法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"38/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE7457814688212E05397BE0A0AF822" target="_blank"钨精矿化学分析方法 第12部分:二氧化硅含量的测定 硅钼蓝分光光度法和重量法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"39/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE75294FA1B8759E05397BE0A0AC481" target="_blank"碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第2部分:氢氧化锂含量的测定 酸碱滴定法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"40/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE76120661B8C9FE05397BE0A0A8A00" target="_blank"碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第9部分:硫酸根含量的测定 硫酸钡浊度法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"41/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE78282831E9771E05397BE0A0A60AA" target="_blank"铌铪合金化学分析方法 痕量杂质元素含量的测定 电感耦合等离子体质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"42/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9A59314629054CE6E05397BE0A0A4980" target="_blank"工业用乙烯、丙烯中微量氧的测定 电化学法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"43/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE7C9CD40CCB1CDE05397BE0A0A05C2" target="_blank"铅精矿化学分析方法 第11部分:汞含量的测定 原子荧光光谱法和固体进样直接法/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"44/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9AE7F71EBC05C443E05397BE0A0A3212" target="_blank"碲锌镉化学分析方法 锌、镉含量的测定 电感耦合等离子原子发射光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"45/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=9B14597DC9D5F2C7E05397BE0A0A5B06" target="_blank"半导体单晶晶体质量的测试 X射线衍射法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"46/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=96CCAD66C4E6D8C7E05397BE0A0AED3F" target="_blank"稀土金属及其氧化物中稀土杂质化学分析法 第6部分: 铕中镧、铈、镨、钕、钐、钆、铽、镝、钬、铒、铥、镱、镥和钇的测定/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"47/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A623DC55EB498438E05397BE0A0A4695" target="_blank"离子型稀土矿混合稀土氧化物化学分析方法 第1部分:十五个稀土元素氧化物配分量的测定/a/tdtd width="134"修订/tdtd width="119"2020/11/20/td/trtrtd width="72"48/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A63F5FEA7D6B9A73E05397BE0A0AFFBD" target="_blank"核酸靶序列定量 qPCR法和dPCR 法的性能评价要求/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"49/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A34BF2C7449E09D4E05397BE0A0AE45C" target="_blank"铁矿石 波长色散X射线荧光光谱仪 精度的测定/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"50/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A6270B38A709519FE05397BE0A0A3C74" target="_blank"硬质合金 钴粉中钙、铜、铁、钾、镁、锰、钠、镍和锌含量的测定 火焰原子吸收光谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"51/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=A3B36B0B500E1F87E05397BE0A0A580A" target="_blank"农产品中生氰糖苷测定-液相色谱串联质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/trtrtd width="72"52/tdtd width="343"a href="http://std.samr.gov.cn/gb/search/gbDetailed?id=AE50469CEAF1FD6AE05397BE0A0AE73F" target="_blank"土壤质量 土壤中22种元素的测定 酸溶-电感耦合等离子体质谱法/a/tdtd width="134"制订/tdtd width="119"2020/11/20/td/tr/tbody/tablepbr//p
  • 开学第一课,赶紧get一波行业“干货”
    什么是火焰光度法? 火焰光度法是某些元素被火焰激发后,发射一定波长的光,依所发射光的强度测定其含量的过程。但是并非所有元素都可以通过火焰光度法来检测。只适用于碱金属、碱土金属等测定。 BWB火焰光度计基本原理就是应用了火焰光度法,通常使用它来测量水溶液中各类离子的浓度。通俗来说就是确定水性溶液中的化学物质。因此,火焰光度法依然在世界许多行业中使用。食品工业 从上个世纪开始,食品中盐含量已开始受到严密监控,因为盐过多的摄入会导致高血压和许多其他健康问题。通过使用火焰光度计就能轻松准确的检测到食品中的钠钾含量。 在食品工业中另一个常见的用途就是检测水中是否存在糖。这是通过使用钾标准液进行的,将钾标准液与可能含有糖的水混合。如果在温度升高过程中检测到钾离子浓度升高,则表明存在该水质中含有糖。 这就是所谓的间接定性测定,因为不是直接确定样品中糖的浓度,而是确定溶液中是否存在糖。如果想确定其浓度可以使用专门测量糖分的BWB-Sugar型。 医疗保健 在人体血液中,锂的含量是对人体的调节至关重要。其碳酸锂通常用于治疗躁郁症,如果没有适当调节,则可能导致糖尿病、中枢神经系统以及肾功能衰竭。 另外,火焰光度计也通常用来检测人体尿液样本的离子水平,根据其成分含量的变化,来判断人体肾脏功能的优劣。 土壤环境 钠是土壤的重要组成部分,也是植物生长的重要有益元素,但其含量易受外界影响而发生变化。土壤中可交换性钠为存在于矿物结构中的钠,是土壤中钠含量最易发生变化的形式。通过对土壤中可交换性钠的测定与调节,可实现对于土壤的改良。 因土壤环境化学研究的样品量极大,故采用火焰光度法进行土壤中可交换性钠含量的检测是科研检验单位最为经济实用的检验方法。 生物制药 药品直接关系着人民群众的身体健康和生命安全,确保药品安全就是最大的民生,所以药品中元素含量测定的准确性至关重要。 对于一些液体药品制剂,钾钠含量是必检项目。钾钠含量的测试方法在2015版《中国药典》通则56中有明确规定,这些药物多为血液制品。血液透析液中钾钠的测定在国际标准ISO13959-2009血液透析和相关治疗用水和国家药业标准YY 0572-2015血液透析及相关治疗用水中也对其进行了规范。火焰光度法是制药行业和药检系统必用的检测方法。 水泥建材 由于钾钠的含量对于水泥的强度等性能有着显著的影响,如钾钠含量偏高时,水泥熟料早期强度提高,但后期强度(28天强度)下降明显,故水泥中的钾钠含量分析一直是水泥企业质检部门、水泥新材料研究机构的必检项目。其检验方法现行的国家标准为:GB/T 176-2008《水泥化学分析方法》。 能源锂业 随着人类对环境污染的认识,新能源的需求和市场越来越广。锂电已经发展的相当成熟,作为锂电池生产的上游部分—电极材料(钴酸锂、锰酸锂、磷酸铁锂)的需求量非常巨大。 这些电极材料中锂的化合物含量都会对最终生产出的电池性能造成影响。所以要造出好电池需要精准合适的检测设备。由于这些材料中锂化合物都在10000-20000ppm或更高浓度,所以火焰光度计成了不二之选。 玻璃检验 钠钙硅玻璃sodalime glass是以氧化硅(Si02)、 氧化钙(CaO)、氧化钠(Na2O)为主要成分的玻璃。这一系统的玻璃由于原料便宜、容易成型、有较好的化学稳定性,因而应用广泛,其产量在世界各国均占玻璃制品产量的50%以上。 氧化钾是玻璃的微量成份,钠是玻璃制造中的助熔剂, 玻璃生产需要稳定的化学成份组成,故在玻璃制造企业质检部门以及相关政府质检部门需要对玻璃中的钾钠含量进行检测。其检验方法现行的国家标准为:GB/T 1347-2008《钠钙硅玻璃化学分析方法》。 制糖工业 甜菜制糖即以甜菜为原料,经提汁、清净、蒸发、结晶和分蜜等工序制成白绵糖、白砂糖等蔗糖制品。其在制糖工业中占有着重要的地位。 由于钠、钾离子妨碍蔗糖结晶,故制糖企业质检部门会对清净工艺后的糖液进行严格检测,以保证蔗糖结晶与提高蜜中糖分。BWB-Sugar专为制糖企业设计的火焰光度计,其在线检测功能和4-20mA 双线信号输出支持SCADA监视控制和数据采集系统,可实现制糖工艺的在线监控。 葡萄酒业 根据国际葡萄与葡萄酒组织(OIV)酿酒法规与检验标准-2008规定,葡萄酒中的钾、钠含量应使用火焰光度计进行检测,严格测量其各成分含量。 BWB-Wine专为葡萄酒企业设计的火焰光度计,可进行K、Na、Ca三种元素同时检测,同时可配备自动稀释器与自动进样器,以满足大通量样品检测的需要。 核工业 核电站冷却系统水中锂含量的测量与控制是化学监督的重要环节,冷却剂系统设备和管道的表面虽然都是由不锈钢材料制成,但如果水中含有氧或其它有害物质,仍然会使这些材料受到腐蚀,缩短设备使用寿命,而固体腐蚀产物经中子照射后变成了新的辐射源。 冷却剂中的PH值的高低对材料的腐蚀速率具有很大影响,水呈弱碱性时对不锈钢材料的腐蚀速率最低,大亚湾核电站是通过控制回路氢氧化锂的含量来调节水的PH值呈弱碱性,以避免或减少材料受到腐蚀。 而B-Li协调控制限值运行区域往往只有0.2mg/kg(ppm),这就要求对锂含量的测量极为准确。 BWB-Nuclear火焰光度计采用4通道光阵列式全锂检测,最大程度避免了单通道检测的随机误差,显著提升测锂结果的准确性与可靠性。
  • 2024年3月份有268项标准将实施 ——“酒驾”新标引入GC-MS检测
    2024年3月份有268项标准将实施——“酒驾”新标引入GC-MS检测我们通过国家标准信息平台查询到,在2024年3月份将有268项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在3月份新实施的标准中,与冶金矿产相关的标准有77个,占据了29%,紧随其后的领域为化工塑料和农林牧渔食品类标准。在冶金矿产所实施的77个标准中,主要包括铁矿石、金属及其合金、设备用钢材产品标准、铜矿和钨精矿等标准。化工塑料有59个标准将实施,主要涉及各类化学试剂标准、塑料性能相关标准等。在3月份新实施的标准中,包含了多品类科学仪器,如:液相色谱 - 串联质谱仪 、气相色谱 - 质谱联用仪 、杜马斯燃烧仪 、电感耦合等离子体质谱仪 、波长色散 X 射线荧光光谱仪 、电感耦合等离子体原子发射光谱仪 、氢化物发生原子荧光光谱仪 、火焰原子吸收光谱仪 、火花源原子发射光谱仪 、离子色谱仪 、电位滴定仪 、电离飞行时间质谱 仪 、X 射线衍射 仪 、傅立叶变换红外光谱 仪 以及一些无损检测方法等。另外需要值得我们关注的是关于血液、尿液中酒精相关物质检测,即“GB/T 42430-2023 血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验 ”,对于此标准相关信息可以参见:存在误读:《GB/T 42430-2023 非酒驾新标准 ——该标准将于 3 月 1 日起实施 》。具体2024年3月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(2个)GB/T 42951-2023 计时仪器 硬材料 制造的手表外观件 一般要求和试验方法 GB/T 42947-2023 手表机心的可靠性试验方法 农林牧渔食品标准(38个)DB36/T 917-2023 余干辣椒生产技术规程 DB36/T 820-2023 茶树 菇 固体菌种 DB36/T 791-2023 灵芝仿野生栽培技术规程 DB36/T 790-2023 茶树 菇 栽培技术规程 DB36/T 447-2023 洗涤企业星级评定规范 DB36/T 352-2023 农业机械农田作业规范 DB36/T 1853-2023 平卧菊三七 茶加工 技术规程 DB36/T 1852-2023 茯苓规范化生产技术规程 DB36/T 1851-2023 红花油茶优树及无性系选优技术规程 DB36/T 1850-2023 水稻机械化收获减损技术规范 DB36/T 1849-2023 木薯种茎越冬贮藏技术规程 DB36/T 1848-2023 红壤旱地饲用木薯生产技术规程 DB3710/T 192-2023 西洋参种苗移栽技术规程 DB3710/T 191-2023 西洋参种子质量分级 GB/T 13093-2023 饲料中细菌总数的测定 GB/T 16984-2023 大麻原麻 GB/T 20705-2023 可可液块及可可饼块质量要求 GB/T 20706-2023 可可粉质量要求 GB/T 22427.7-2023 淀粉黏度测定 GB/T 14699-2023 饲料 采样 GB/T 29344-2023 灵芝孢子粉采收及加工技术规范 GB/T 42959-2023 饲料微生物检验 采样 GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱 - 串联质谱法 GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥 GB/T 42958-2023 肥料产品使用说明编写指南 GB/T 42956-2023 饲料中泰乐菌素、 泰万菌素 、替 米考星 的测定 液相色谱 - 串联质谱法 GB/T 42957-2023 氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定 GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱 - 串联质谱法 GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱 - 质谱联用法 GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法 GB/T 13882-2023 饲料中碘的测定 GB/T 42828.3-2023 盐碱地改良通用技术 第 3 部分:生物改良 GB/T 13883-2023 饲料中硒的测定 GB/T 42828.2-2023 盐碱地改良通用技术 第 2 部分:稻田池塘渔农改良 GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程 GB/T 42828.1-2023 盐碱地改良通用技术 第 1 部分:铁尾砂改良 GB/T 42817-2023 农产品产地土壤改良剂使用技术规范 GB/T 42812-2023 连作障碍土壤改良通用技术规范 环境环保标准(13个)DB36/T 1843-2023 污染源水质自动采样系统技术规范 DB36/T 1842-2023 土壤和沉淀物 镧 、 铈 等 16 种稀土元素的测定 微波消解 — 电感耦合等离子体质谱法 DB36/T 1841-2023 土壤 3 种四环素类抗生素的测定 高效液相色谱 — 三重四 极 杆质谱法 DB36/T 1840-2023 水质 涕 灭威的测定 高效液相色谱 — 三重四 极 杆质谱法 DB36/T 1839-2023 水质 碘化物的测定 电感耦合等离子体质谱法 DB36/T 1836-2023 工业固废胶结大粒径碎石路面基层技术规范 DB36/T 1835-2023 钨 选矿厂废水处理与回用技术指南 GB/T 42868-2023 船舶中水回用处理装置技术条件 GB/T 25922-2023 封闭管道中流体流量的测量 用安装在充满流体的圆形截面管道中的涡街流量计测量流量 GB/T 10833-2023 船用生活污水处理系统技术条件 GB/T 18659-2023 封闭管道中流体流量的测量 电磁流量计使用指南 GB/T 4795- 2023 船用舱底水 处理装置 GB/T 42660-2023气溶胶颗粒数量浓度 凝结核颗粒计数器的校准医药卫生标准(21个)WS/T 815—2023 严重创伤院前与院内信息链接标准 WS/T 814—2023 患者体验调查与评价术语标准 WS/T 813—2023 手术部位标识标准 WS/T 825—2023 血站业务场所命名标准 WS/T 401—2023 献血场所配置标准 YY/T 1915-2023 免疫层析试剂盒实验室检测通则 WS 818—2023 锥形束 X 射线计算机体层成像( CBCT )设备质量控制检测标准 WS 817—2023 正电子发射断层成像( PET )设备质量控制检测标准 WS 816—2023 医用质子重离子放射治疗设备质量控制检测标准 YY/T 0567.6-2022 医疗保健产品的无菌加工 第 6 部分:隔离器系统 DB36/T 850-2023 育婴服务质量规范 DB36/T 1847-2023 黄瓜靶斑病综合防治技术规程 DB36/T 1846-2023 家畜化脓隐秘杆菌病诊断技术规范 DB36/T 1844-2023 豇豆 品种抗煤霉病 鉴定技术规程 DB3710/T 190-2023 花生病虫草害绿色防控技术规程 GB/T 42821-2023 贝类包纳米虫病诊断方法 GB/T 42429-2023 法庭科学 发射药中有机成分检验 液相色谱 - 质谱法 GB/T 29636-2023 疑似毒品中甲基苯丙胺检验 GB/T 42430-2023 血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验 GB/T 24437-2023 假肢、矫形器配置机构的等级划分与评定 GB/T 41170.1-2023造口辅助器具的皮肤保护用品 试验方法 第1部分:尺寸、表面pH值和吸水性石油天然气标准(3个)GB/T 42678-2023 石油天然气工程用热轧型钢 GB/T 19831.3-2023 石油天然气工业 套管扶正器 第 3 部分:刚性和半刚性扶正器 GB/T 42834-2023 油气管道安全仪表系统的功能安全 运行维护要求 冶金矿产标准(77个)GB/T 6150.12-2023 钨 精矿化学分析方法 第 12 部分:二氧化硅含量的测定 硅 钼 蓝分光光度法和重量法 GB/T 42677-2023 钢管无损检测 无缝和焊接钢管表面缺欠的液体渗透检测 GB/T 6730.87-2023 铁矿石 全铁及其 他多元素含量的测定 波长色散 X 射线荧光光谱法(钴内标法) GB/T 34213-2023 蓝宝石单晶用高纯氧化铝 GB/T 42675-2023 抗菌不锈钢焊接钢管及管件 GB/T 26038-2023 钨基高 比重合金板材 GB/T 3884.18-2023 铜精矿化学分析方法 第 18 部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化铝、氧化镁、氧化钙含量的测定 电感耦合等离子体原子发射光谱法 GB/T 3114-2023 铜及铜合金扁线 GB/T 23611-2023 金及金合金靶材 GB/T 469-2023 铅锭 GB/T 26063-2023 铍铝合金 GB/T 27683-2023 铜及铜合金切削 屑 料及其回收规范 GB/T 42673-2023 钢管无损检测 铁磁性无缝和焊接钢管表面缺欠的磁粉检测 GB/T 23609-2023 海水淡化装置用铜合金无缝管 GB/T 20564.14-2023 汽车用高强度冷连轧钢板及钢带 第 14 部分:低密度钢 GB/T 20564.13-2023 汽车用高强度冷连轧钢板及钢带 第 13 部分:中锰钢 GB/T 42672-2023 金属和合金的腐蚀 表层海水暴露试验环境因素监测方法 GB/T 42664-2023 钢管无损检测 焊接钢管焊缝纵向和 / 或横向缺欠的自动超声检测 GB/T 22638.11-2023 铝箔试验方法 第 11 部分:力学性能的测试 GB/T 42661-2023 金属和合金的腐蚀 模拟海洋环境中钢筋应力腐蚀敏感性试验方法 GB/T 5482-2023 金属材料 动态撕裂试验方法 GB/T 29918-2023 稀土系储氢合金 压力 - 组成等温线( PCI )的测试方法 GB/T 42795-2023 高应变海洋油气输送管用钢板 GB/T 6730.85-2023 铁矿石 化学分析用有证标准样品的制备和定值 GB/T 6730.84-2023 铁矿石 稀土总量的测定 电感耦合等离子体原子发射光谱法 GB/T 42654-2023 铜及铜合金海水冲刷腐蚀试验方法 GB/T 42656-2023 稀土系储氢合金 吸放氢反应动力学性能测试方法 GB/T 5776-2023 金属和合金的腐蚀 金属和合金在表层海水中暴露和评定的导则 GB/T 3620.2-2023 钛及钛合金加工产品化学成分允许偏差 GB/T 6150.15-2023 钨 精矿化学分析方法 第 15 部分: 铋 含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法 GB/T 8180-2023 钛及钛合金加工产品的包装、标志、运输和贮存 GB/T 24179-2023 金属材料 残余应力测定 压痕应变法 GB/T 6150.10-2023 钨 精矿化学分析方法 第 10 部分:铅含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法 GB/T 10322.1-2023铁矿石 取样和制样方法GB/T 713.2-2023 承压设备用钢板和钢带 第 2 部分:规定温度性能的非合金钢和合金钢 GB/T 42796-2023 钢筋机械连接件 GB/T 713.7-2023 承压设备用钢板和钢带 第 7 部分:不锈钢和耐热钢 GB/T 713.5-2023 承压设备用钢板和钢带 第 5 部分:规定低温性能的高锰钢 GB/T 42794-2023 镍铁 碳、硫、硅、磷、镍、钴、铬和 铜含量 的测定 火花源原子发射光谱法 GB/T 20899.15-2023 金矿石化学分析方法 第 15 部分:铜、铅、锌、银、铁、锰、镍、钴、铝、铬、镉、锑、铋、砷、汞、硒、钡和 铍含量 的测定 电感耦合等离子体质谱法 GB/T 42662-2023 钢管无损检测 焊接钢管用钢带 / 钢板分层缺欠的自动超声检测 GB/T 713.1-2023 承压设备用钢板和钢带 第 1 部分:一般要求 GB/T 6609.25-2023 氧化铝化学分析方法和物理性能测定方法 第 25 部分: 松装和 振实密度的测定 GB/T 24187-2023 冷拔精密单层焊接钢管 GB/T 20490-2023 钢管无损检测 无缝和焊接钢管分层缺欠的自动超声检测 GB/T 26725-2023 超细碳化钨粉 GB/T 26053-2023 碳化物基热喷涂粉 GB/T 5166-2023 烧结金属材料和硬质合金弹性模量的测定 GB/T 8151.26-2023 锌 精矿化学分析方法 第 26 部分:银含量的测定 酸溶解 - 火焰原子吸收光谱法 GB/T 42916-2023 铝及铝合金产品标识 GB/T 42913-2023 金属和合金的腐蚀 金属材料嵌入在盐、灰烬或其他固体中的高温腐蚀试验方法 GB/T 42914-2023 铝合金产品断裂韧度试验方法 GB/T 42912-2023 金属和合金的腐蚀 金属材料在静态浸入熔盐或其他液体条件下的高温腐蚀试验方法 GB/T 42901-2023 钢筋机械连接件试验方法 GB/T 42904-2023 金属和合金的腐蚀 海水 管路动水腐蚀试验 GB/T 42900-2023 金属材料 高应变速率高温压缩试验方法 GB/T 6730.86-2023 铁矿石 放射性核素的测定 电感耦合等离子体质谱法 GB/T 42899-2023 海洋工程结构钢可焊性试验方法 GB/T 713.4-2023 承压设备用钢板和钢带 第 4 部分:规定低温性能的镍合金钢 GB/T 713.6-2023 承压设备用钢板和钢带 第 6 部分:调质高强度钢 GB/T 15677-2023 金属 镧 及 镧 粉 GB/T 3624-2023 钛及钛合金无缝管 GB/T 6150.4-2023 钨 精矿化学分析方法 第 4 部分:硫含量的测定 高频感应红外吸收法和燃烧 - 碘量法 GB/T 6150.8-2023 钨 精矿化学分析方法 第 8 部分: 钼 含量的测定 硫氰酸盐分光光度法 GB/T 6150.6-2023 钨 精矿化学分析方法 第 6 部分:湿存水含量的测定 重量法 GB/T 5246-2023 电解铜粉 GB/T 3884.12-2023 铜精矿化学分析方法 第 12 部分:氟和氯含量的测定 离子色谱法和电位滴定法 GB/T 3251-2023 铝及铝合金产品压缩试验方法 GB/T 16865-2023 变形铝、 镁及其 合金加工制品拉伸试验用试样及方法 GB/T 6609.27-2023 氧化铝化学分析方法和物理性能测定方法 第 27 部分:粒度分析 筛分法 GB/T 17899-2023 金属和合金的腐蚀 不锈钢在氯化钠溶液中点蚀电位的动电位测量方法 GB/T 2988-2023 高铝砖 GB/T 5224-2023 预应力混凝土用钢绞线 GB/T 28415-2023 耐火结构用钢板和钢带 GB/T 713.3-2023 承压设备用钢板和钢带 第 3 部分:规定低温性能的低合金钢 GB/T 42915-2023 铜精矿及主要含铜物料鉴别规范 GB/T 6609.35-2023氧化铝化学分析方法和物理性能测定方法 第35部分:比表面积的测定 氮吸附法化工塑料标准(59个)GB/T 11064.9-2023 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第 9 部分:硫酸根含量的测定 硫酸钡浊度法 GB/T 42670-2023 炭素 材料洛氏硬度测定方法 GB/T 42671-2023 炭素 材料表面粗糙度试验方法 GB/T 13021-2023 聚烯烃管材和管件 炭黑含量的测定 煅烧和热解法 GB/T 684-2023化学试剂 甲苯GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌) GB/T 669-2023 化学试剂 硝酸锶 GB/T 9722-2023 化学试剂 气相色谱法通则 GB/T 1270-2023化学试剂 六水合氯化钴(氯化钴)GB/T 678-2023 化学试剂 乙醇(无水乙醇) GB/T 686-2023化学试剂 丙酮GB/T 42789-2023 硅片表面光泽度的测试方法 GB/T 42787-2023 增材制造 用 高熵合金粉 GB/T 42790-2023 丙烯酸共聚聚氯乙烯树脂 GB/T 42667-2023 精细陶瓷室温等双轴弯曲强度试验方法 双环法 GB/T 42665-2023 多孔陶瓷球形压痕强度试验方法 GB/T 42666-2023 电子染料液晶调光玻璃 GB/T 33061.6-2023塑料 动态力学性能的测定 第6部分:非共振剪切振动法GB/T 33061.5-2023塑料 动态力学性能的测定 第5部分:非共振弯曲振动法GB/T 33061.7-2023塑料 动态力学性能的测定 第7部分: 非共振扭转振动法GB/T 33061.4-2023塑料 动态力学性能的测定 第4部分: 非共振拉伸振动法GB/T 11064.16-2023 碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第 16 部分:钙、镁、铜、铅、锌、镍、锰、镉、铝、铁、硫酸根含量的测定 电感耦合等离子体原子发射光谱法 GB/T 42919.1-2023塑料 导热系数和热扩散系数的测定 第1部分:通则GB/T 7139-2023塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 5758-2023 离子交换树脂粒度、有效粒径和均 一 系数的测定方法 GB/T 23981.2-2023 色漆和清漆 遮盖力的测定 第 2 部分:黑白格板法 GB/T 14796-2023天然生胶 颜色指数测定法GB/T 8291-2023 胶乳 凝块含量( 筛余物 )的测定 GB/T 1653-2023 邻、对硝基氯苯 GB/T 30652-2023 硅外延用三氯氢硅 GB/T 21888-2023 C.I. 酸性红 131 (酸性艳红 P-9B 150% ) GB/T 42923-2023玻璃纤维增强塑料制品 纤维长度的测定GB/T 42922-2023塑料 有机溶剂可萃取物的测定 化学方法GB/T 42920-2023 塑料 纤维增强塑料复合材料耐火特性和防火性能的评定 GB/T 42921-2023 光学功能薄膜 聚对苯二甲酸乙二醇酯( PET )薄膜 保护膜黏着力测定方法 GB/T 42924.4-2023塑料 烟雾产生 燃烧流腐蚀性的测定 第4部分:使用锥形腐蚀计的动态分解法GB/T 42924.1-2023塑料 烟雾产生 燃烧流腐蚀性的测定 第1部分:通用术语和应用GB/T 42919.6-2023塑料 导热系数和热扩散系数的测定 第6部分:基于温度调制技术的比较法GB/T 42918.1-2023塑料 模塑和挤出用热塑性聚氨酯 第1部分:命名系统和分类基础GB/T 42919.3-2023塑料 导热系数和热扩散系数的测定 第3部分:温度波分析法GB/T 649-2023 化学试剂 溴化钾 GB/T 42952.1-2023 流体输送用热塑性塑料管材 尺寸和公差 第 1 部分:公制系列 GB/T 42948-2023 日用防护聚乙烯手套 GB/T 42946-2023普通图像印刷纸的稳定性要求GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定 GB/T 42945-2023纸浆 细小纤维质量分数的测定GB/T 42943-2023 纸浆模塑制品技术通则 GB/T 42919.4-2023塑料 导热系数和热扩散系数的测定 第4部分:激光闪光法GB/T 28638-2023 城镇供热管道保温结构散热损失测试与保温效果评定方法 GB/T 42917-2023 消光制品用聚氯乙烯树脂 GB/T 42732-2023 纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法 GB/T 42653-2023 玻璃高温黏度试验方法 GB/T 23271-2023 二硫化钼 GB/T 42911-2023 碳纤维增强复合材料 密封压力容器加速吸湿和过饱和调节方法 GB/T 42910-2023 无机胶粘剂高温压缩剪切强度试验方法 GB/T 42674-2023 光学功能薄膜 微结构厚度测试方法 GB/T 42657-2023 红外光学玻璃红外折射率温度系数测试方法 垂直入射法 GB/T 42655-2023 连续纤维增强陶瓷基复合材料高温压缩性能试验方法 GB/Z 42842.1-2023 微细气泡技术 清洗应用 第 1 部分:表面盐(氯化钠)污渍清洗的试验方法 轻工纺织标准(12个)GB/T 42699.2-2023纺织品 某些动物毛纤维蛋白质组定性和定量分析 第2部分:还原蛋白质多肽分析基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)法GB/T 17640-2023 土工合成材料 长丝机织土工布 GB/T 18887-2023 土工合成材料 机织 / 非织造复合土工布 GB/T 2910.12-2023 纺织品 定量化学分析 第 12 部分:聚丙烯腈纤维、某些改性聚丙烯腈纤维、某些含氯纤维或某些聚氨酯弹性纤维与某些其他纤维的混合物(二甲基甲酰胺法) GB/T 42908-2023 纺织染整助剂产品中有机卤素含量的测定 GB/T 42950-2023皮革 色牢度试验 耐唾液色牢度GB/T 42949-2023 皮革 色牢度试验 旋转摩擦色牢度 GB/T 42701-2023 纺织品 天然彩色棉的鉴别 化学显色法 GB/T 42705-2023 纺织品 苯残留量的测定 GB/T 28189-2023 纺织品 多环芳烃的测定 GB/T 42942-2023 汽车内饰用纺织材料 肖伯尔耐磨试验方法 GB/T 17928-2023皮革 物理和机械试验 针孔撕裂强度的测定电力半导体标准(24个)GB/T 42676-2023 半导体单晶晶体质量的测试 X 射线衍射法 GB/T 1555-2023 半导体单晶晶向测定方法 GB/T 42709.19-2023半导体器件 微电子机械器件 第19部分:电子罗盘GB/T 6616-2023 半导体晶片电阻率及半导体薄膜薄层电阻的测试 非接触涡流法 GB/T 24582-2023 多晶硅表面金属杂质含量测定 酸浸取 - 电感耦合等离子体质谱法 GB/T 31958-2023 非晶硅薄膜晶体管液晶显示器用基板玻璃 GB/T 42907-2023 硅锭、 硅块和 硅片中非平衡载流子复合寿命的测试 非接触涡流感应法 GB/T 42905-2023 碳化硅外延层厚度的测试 红外反射法 GB/T 42906-2023 石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法 GB/T 42902-2023 碳化硅外延片表面缺陷的测试 激光散射法 GB/T 1553-2023 硅和锗体内少数载流子寿命的测定 光电导衰减法 GB/T 35306-2023 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法 GB/T 29314-2023 电动机系统节能改造规范 GB/T 12971.1-2023 电力牵引用接触线 第 1 部分:铜及铜合金接触线 GB/T 12971.2-2023 电力牵引用接触线 第 2 部分: 钢铝复合 接触线 GB/T 10593.2-2023 电工电子产品环境参数测量方法 第 2 部分:盐雾 GB/T 7251.1-2023 低压成套开关设备和控制设备 第 1 部分:总则 GB/T 42729-2023 锂 离子电池和电池组安全使用指南 GB/T 42728-2023 锂 离子电池组安全设计指南 GB/T 42861-2023 鼓包型抽芯 铆钉通用规范 GB/T 7251.2-2023 低压成套开关设备和控制设备 第 2 部分:成套电力开关和控制设备 GB/T 42744-2023 微波电路 电调衰减器测试方法 GB/T 29057-2023 用区熔 拉晶法和 光谱分析 法评价 多晶硅棒的规程 GB/T 29327-2023 1000kV 电抗器保护装置技术要求 能源标准(1个)GB/T 42847.2-2023 储能系统用可逆模式燃料电池模块 第 2 部分:可逆模式质子 交换膜单池与电堆性能 测试方法 机械车辆标准(12个)GB/T 26947-2023 步行式托盘搬运车 GB/T 42711-2023 立体停车库无线供电系统 技术要求及测试规范 GB/T 24748-2023往复式内燃机 飞轮 技术条件GB/T 40261.1-2023 热环境的人类工效学 交通工具内热环境评价 第 1 部分 : 热应激评估原理与方法和等效温度测定 GB/T 34033.3-2023船舶与海上技术 船舶防污底系统风险评估 第3部分:船用防污底涂料应用和去除过程中防污活性物质的人体健康风险评估方法GB/T 42827-2023家用和类似用途的交流换气扇及其调速器 性能测试方法GB/T 28561-2023 船舶电气设备 自动化、控制和测量仪表 GB/T 6473-2023 立式外拉床 精度检验 GB/T 27543-2023 步行式升降平台搬运车 GB/T 17421.1-2023机床检验通则 第1部分:在无负荷或准静态条件下机床的几何精度GB/T 25198-2023 压力容器封头 GB/T 17421.2-2023 机床检验通则 第 2 部分:数控轴线的定位精度和重复定位精度的确定 其他标准(6个)GB/T 42659-2023表面化学分析 扫描探针显微术 采用扫描探针显微镜测定几何量:测量系统校准GB/T 42658.4-2023表面化学分析 样品处理、制备和安装指南 第4部分: 报告表面分析前纳米物体相关的来历、制备、处理和安装信息GB/T 17601-2023 耐火材料 耐酸性试验方法 GB/T 42898-2023 建材产品中半挥发性有机化合物( SVOC )释放量的测试 GB/T 10671-2023 固体材料产烟的比光密度试验方法 GB/T 42887-2023数码照相机 拍摄时滞、快门时滞、拍摄速度和开机时间的测量 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有超过80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • “Easy选型”第六期直播回顾 首次曝光!如何避雷ICP-OES采购选型那些“坑”
    无论是实验室建设,实验室扩项,或业务扩张,实验室用户都会经常面临选型问题,如何从琳琅满目的品牌和型号中选择出满足需求,又可靠的产品,是用户非常关心的问题。为帮助300万+用户解决选型的痛点和困惑,仪器信息网特开设“Easy选型”直播节目,本期是“Easy选型”的第六期,本期聚焦电感耦合等离子体发射光谱(ICP-OES)这一仪器品类,邀请到北京矿冶研究总院研究员冯先进、安捷伦公司高级应用技术专家欧阳昆、安捷伦资深原子光谱应用工程师倪英萍共同做客直播间,从选型原则、技术进展、行业标准、市场表现、用户口碑、使用反馈、应用支持、售后服务、案例分享、真机测评等多个维度,为用户了解技术采购带来一些实用经验。直播现场仪器信息网编辑 叶建(左)、北京矿冶研究总院研究员 冯先进(中)、安捷伦公司高级应用技术专家 欧阳昆(右)北京矿冶研究总院研究员 冯先进北京矿冶研究总院研究员冯先进老师自1991年从北京矿业研究所毕业就开始接触ICP-OES等,当时的老仪器远没有现在的好用,冯老师等当年就尝试了对ICP-OES自行改造,自此就与ICP-OES结下不解之缘,至目前已经有三十多年的ICP-OES的使用经验。冯老师认为,计算机技术的发展和中阶梯光栅光谱仪的发展对于促进ICP光谱发展到新的阶段起到了很大的作用,而流程工业分析和专用仪器将会是未来ICP光谱的发展方向。对于当前的ICP质谱、ICP光谱、原子吸收市场,冯老师从标准出发进行分析,目前现行的原子吸收标准大约700多项(废止400多项)、ICP光谱标准大约500多项(废止约几十项)、ICP质谱标准大约200多项(废止约几十项),说明这几类仪器还无法做到互相替代,各类仪器近年来的销售量都在稳步增长,其中ICP光谱因其多元素测定的优点,测的类别相对较多。对于ICP-OES采购选型的建议,冯老师提出了“稳、准、快、易、廉”五点,即可靠性好、测量结果准(涉及分辨率、样品处理、人员培训、环境等)、大通量、易操作、性价比好,强调仪器采购“一份钱一分货”。最后,冯老师还提醒,不要盲目听信销售人员的承诺,一定要带样品实地考察,货比三家、深入了解。此外,售后服务内容,如响应时间、到场时间等,有可能的话也要写在合同里。安捷伦公司高级应用技术专家 欧阳昆安捷伦公司高级应用技术专家欧阳昆专注于ICP光谱将近40年,最初接触ICP光谱都是靠自己一点点摸索,没想到一干就是一辈子,一直没有离开这个行业。欧阳老师认为,传统光栅向中阶梯光栅的演变和固态检测器的发展是ICP光谱发展两大重要里程碑。对于ICP-OES采购选型的建议,欧阳老师认为应充分考虑稳定、灵敏、多样化、抗干扰、智能化等因素,只有充分考察适用分析需求,才能选到最适合和最好的ICP光谱,而不是盲目的比指标和性能说明,同时也要兼顾仪器拓展、成本、效率、售后支持、易操作、仪器设计和研发等因素。两位老师解答观众问题安捷伦资深原子光谱应用工程师 倪英萍安捷伦资深原子光谱应用工程师倪英萍谈到了ICP-OES选型避坑的思考。ICP-OES的特点是适用于多元素、高通量、基体杂、对检出限无过高要求的检测场景。用户判断如何选择适合自己的ICP-OES需要考虑两大基本问题:要测定多少样品/元素以及仪器的检出限,并根据应用领域、样品类型、应用特点进行选型。性能好的ICP-OES应当符合“稳、准、快、易、廉”的标准,这些因素与ICP核心部件(如样品引入系统、等离子体激发源、光学系统、检测器等)紧密相关。仪器信息网运营经理 张葳仪器信息网运营经理张葳介绍了如何利用仪器信息网大数据进行ICP-OES采购选型。张葳认为,ICP-OES采购选型要货比三家,最好是和厂商提前沟通好元素类型和范围并现场测样,现场测试时应关注厂商检测方法的重复性、处理过程、操作的难易程度和便捷性,多测几次看重复性,根据结果对比看能否满足要求。此外,应将厂商的售后服务的能力、形式和规模纳入考虑的范围,不同厂商间售后工程师的人数差别巨大,应通过对比选择合适的厂商,尤其疫情下最好选择在本市能够快速响应的厂商。ICP-AES/ICP-OES用户关注十大品牌ICP-AES/ICP-OES用户关注十大仪器安捷伦资深原子光谱应用工程师 倪英萍安捷伦资深原子光谱应用工程师倪英萍老师介绍了如何利用ICP-OES解决复杂样品元素的分析难题。复杂样品涉及物理或基体干扰、电离干扰、光谱干扰、长期漂移等情况,在分析检测时会出现诸多问题,倪英萍老师以碳酸锂和氢氧化锂中杂质元素的测定、NCM前驱体中单质铜的测定、有机物直接分析、六氟磷酸锂电解液测试等案例,详细解析了如何解决复杂样品的准确分析。倪英萍老师解答观众提问有奖调研至此,仪器信息网“Easy选型”第六期节目圆满结束,该系列节目将在未来定期为广大网友带来多种仪器的选型直播,敬请关注下一期8月30日的选型直播。扫描下方二维码预约:
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 盘点! 2024年63项光谱新标准已正式实施
    7月1日,作为全国标准发布实施的重要节点,仪器信息网特地对2024年正式实施的光谱国家标准、行业标准及地方标准进行梳理,共63项。这些标准覆盖了近红外光谱、拉曼光谱、电感耦合等离子体原子发射光谱、X射线荧光光谱法、原子吸收光谱、傅立叶变换红外光谱、红外吸收光谱、原子荧光光谱法等等分析方法。这些标准的实施,旨在提升我国光谱分析技术的准确性和可靠性,进一步保障和促进社会各领域的发展。并且他们的应用范围极为广泛,涉及食品、环境、材料、石油、制造业、农业、林业、牧业、渔业、水利、公共设施管理、科学研究和技术服务业等重要领域。具体新实施的标准整理如下:近红外光谱相关标准标准号标准名称实施日期NY/T 4427-2023饲料近红外光谱测定应用指南2024-05-01DB37/T 4708—2024沉积物中有机碳含量的测定 可见-近红外光谱法2024-05-11FZ/T 01057.10-2023纺织纤维鉴别试验方法 第10部分:近红外光谱法2024-07-01DB15/T 3461—2024毛绒纤维回潮率试验方法 近红外光谱法2024-07-14拉曼光谱相关标准标准号标准名称实施日期SN/T 5643.2-2023出口食品中化学污染物的快速检测方法 第2部分:碱性嫩黄O的测定 拉曼光谱法2024-05-01SN/T 5643.3-2023出口食品中化学污染物的快速检测方法 第3部分:苋菜红的测定 拉曼光谱法2024-05-01SN/T 5643.4-2023出口食品中化学污染物的快速检测方法 第4部分:西布曲明的测定 拉曼光谱法2024-05-01GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-01SN/T 5644.1-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第1部分:总则2024-07-01SN/T 5644.2-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第2部分:孔雀石绿和结晶紫2024-07-01SN/T 5644.3-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第3部分:恩诺沙星和环丙沙星2024-07-01SN/T 5644.4-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第4部分:多菌灵2024-07-01SN/T 5644.5-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第5部分:噻菌灵2024-07-01SN/T 5644.6-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第6部分:腈菌唑2024-07-01SN/T 5644.7-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第7部分:毒死蜱2024-07-01SN/T 5644.8-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第8部分:三唑磷2024-07-01SN/T 5644.9-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第9部分:地虫硫磷2024-07-01SN/T 5644.10-2023出口食品中农用化学物质的快速检测方法 拉曼光谱法 第10部分:亚胺硫磷2024-07-01原子发射光谱法相关标准标准号标准名称实施日期DZ/T 0452.1-2023稀土矿石化学分析方法 第1部分:二氧化硅、三氧化二铝、三氧化二铁、氧化钙、氧化镁、氧化钾、氧化钠、二氧化钛、氧化锰、五氧化二磷、锶和钡含量的测定 偏硼酸锂熔融—电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0452.2-2023稀土矿石化学分析方法 第2部分:铝、铁、钙、镁、钾、钠、钛、锰、磷及15个稀土元素含量测定 混合酸分解―电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.1-2023铌钽矿石化学分析方法 第1部分:铌、钽和钨含量的测定 封闭酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0453.3-2023铌钽矿石化学分析方法 第3部分:铌、钽、铁、锰和钨含量的测定 酸溶-电感耦合等离子体原子发射光谱法2024-01-01DZ/T 0454.3-2023钛铁矿化学分析方法 第3部分:铝、钙、镁、钾、钠、钛、锰、铬、锶、钒和锌含量的测定 混合酸分解-电感耦合等离子体原子发射光谱法2024-01-01GB/T 11064.16-2023碳酸锂、单水氢氧化锂、氯化锂化学分析方法 第16部分:钙、镁、铜、铅、锌、镍、锰、镉、铝、铁、硫酸根含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 6730.84-2023铁矿石 稀土总量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42906-2023石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 3884.18-2023铜精矿化学分析方法 第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化铝、氧化镁、氧化钙含量的测定 电感耦合等离子体原子发射光谱法2024-03-01GB/T 42794-2023镍铁 碳、硫、硅、磷、镍、钴、铬和铜含量的测定 火花源原子发射光谱法2024-03-01GB/T 43861-2024微波等离子体原子发射光谱方法通则2024-04-25GB/T 3260.11-2023锡化学分析方法 第11部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-01GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-01GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法2024-06-01YB/T 6157.1-2023铌铁分析方法 第1部分:钽、磷、铝和钛含量的测定 电感耦合等离子体原子发射光谱法2024-07-01YB/T 4174.2-2023硅钙合金分析方法 第2部分:磷含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43607-2023钯锭分析方法 银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法2024-07-01GB/T 43603.1-2023镍铂靶材合金化学分析方法 第1部分:铂含量的测定 电感耦合等离子体原子发射光谱法2024-07-01GB/T 43574-2023化学纤维 重金属含量的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法2024-07-01X射线荧光光谱相关标准标准号标准名称实施日期GB/T 6730.87-2023铁矿石 全铁及其他多元素含量的测定 波长色散X射线荧光光谱法(钴内标法)2024-03-01SN/T 5643.1-2023出口食品中化学污染物的快速检测方法 第1部分:砷、镉、汞、铅含量的测定 X射线荧光光谱法2024-05-01NY/T 4435-2023土壤中铜、锌、铅、铬和砷含量的测定 能量色散X射线荧光光谱法2024-05-01GB/T 43309-2023玻璃纤维及原料化学元素的测定 X射线荧光光谱法2024-06-01GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)2024-06-01DB36/T 1919-2023水质 无机元素的现场快速测定 便携式单波长激发-能量色散X射线荧光光谱法2024-07-01HG/T 6227-2023催化裂化催化剂化学成分分析方法 X射线荧光光谱法2024-07-01原子吸收光谱相关标准标准号标准名称实施日期GB/T 8151.26-2023锌精矿化学分析方法 第 26 部分:银含量的测定 酸溶解-火焰原子吸收光谱法2024-03-01GB/T 6150.10-2023钨精矿化学分析方法 第10部分:铅含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01GB/T 6150.15-2023钨精矿化学分析方法 第15部分:铋含量的测定 氢化物发生原子荧光光谱法和火焰原子吸收光谱法2024-03-01NY/T 4433-2023农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法2024-05-01NY/T 4434-2023土壤调理剂中汞的测定 催化热解-金汞齐富集原子吸收光谱法2024-05-01GB/T 3286.12-2023石灰石及白云石化学分析方法 第12部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-01GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-01GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-01其他光谱相关标准标准号标准名称实施日期DB42/T 2120-2023土壤中氨氮、亚硝酸盐氮和硝酸盐氮的测定 气相分子吸收光谱法2024-01-29GB/T 20150-2023红斑基准作用光谱及标准红斑剂量2024-03-01GB/T 35306-2023硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法2024-03-01GB/T 29057-2023用区熔拉晶法和光谱分析法评价多晶硅棒的规程2024-03-01YY/T 1896-2023光谱辐射治疗设备波长范围界定方法2024-05-01GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1部分:红外吸收光谱法2024-06-01GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第3部分:原子荧光光谱法2024-06-01GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-01GB/T 19502-2023表面化学分析 辉光放电发射光谱方法通则2024-07-01为了展现最新的光谱仪器技术及相关的应用,促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2024年7月16-19日举办“第十三届光谱网络会议, 简称iCS2024)”。点击报名》》》报名后,再成功邀请3人报名,即可领取纸质书《光电光谱分析技术与应用》一本或《近红外光谱实战宝典》一本,数量仅限20本,每人仅限参加一次,先到先得!(领取方式:联系助教微信13260310733)福利活动时间:6月25日-7月15日24:00会议地址:https://www.instrument.com.cn/webinar/meetings/ics2024/
  • 如何有效测试各类油品的氧化稳定性和抗氧化效果
    各种类型的食用油可用于烹饪和在厨房使用。油的范围包括植物油,如葵花籽油、大豆、花生、棕榈、椰子、橄榄油、混合油到动物脂肪,如鲑鱼油。抗氧化剂通常用于提高保质期和保存食用油和脂肪的质量。它们通过各种机制参与或干扰脂质自氧化反应级联来抑制氧化反应。不同的油有不同的氧化率,抗氧化剂在提高其保质期和保持其质量方面有不同的效果。利用VELPOXITEST油脂氧化分析仪进行了分析,检测每一种测试油的不同特点。油的氧化稳定性和抗氧化剂的添加食品最重要的质量改变之一是由于游离或酯化的不饱和脂肪酸对氧的吸收。脂肪的自动氧化是一种由光、高温、金属痕迹和有时影响产品保质期的酶促进的化学反应。防腐剂和其他物质被添加,以抵消和减缓这一食用产品的质量改变过程。抗氧化剂通常用于提高保质期和保护食用油和脂肪的质量。它们通过参与或干扰脂质自氧化反应级联来抑制氧化反应。意大利VELP油脂氧化分析仪OXITEST方法和对各种类型的油品进行的分析OXITEST氧化稳定性反应器被用来测定各种样品的氧化稳定性,不需要进行初步的脂肪分离。OXITEST方法是一项公认的分析技术,用于测定食品、脂肪和油的氧化稳定性。对各种类型的油进行了测试,以分析氧化稳定率,并比较所有含有和不含有抗氧化剂的油的配方。
  • 土壤氧化还原电位仪(土壤氧化还原电位仪的作用)
    前言: 土壤氧化还原电位仪是一种专门用于测量土壤中氧化还原势(Eh)的专业仪器,其在揭示土壤健康状况、指导农田管理和环境保护等方面具有重要价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C307153.htm 一、【实时检测土壤,评估土壤环境】 土壤氧化还原电位仪可以实时准确地测定土壤的氧化还原电位值,这一参数反映了土壤环境中电子转移活动的程度。通过持续监测和分析,能够判断土壤是处于氧化还是还原状态,进而评估土壤肥力水平、污染物降解能力及微生物活性等多方面土壤健康状况。 二、【指导科学施肥与改良措施】 利用土壤氧化还原电位仪得到的数据,农业生产者可以更准确地了解土壤对养分的有效性以及潜在的重金属污染风险。据此调整施肥策略,避免过度施肥导致的土壤酸化或盐碱化问题,并采取针对性的土壤改良措施,提高农作物产量与品质,实现土壤资源的可持续利用。 三、【环保治理与生态修复的重要工具】 在土壤污染治理和生态修复领域,土壤氧化还原电位仪同样发挥着关键作用。通过对受污染土壤Eh的动态监测,可为污染物迁移转化规律的研究提供依据,指导实施有效的土壤修复方案。此外,在湿地保护、矿山复垦等领域,该仪器也能帮助科学家和工程师深入理解并调控土壤系统的氧化还原过程,促进生态环境恢复。
  • 您的二氧化碳培养箱带有氧化铜内腔么?
    随着哺乳动物细胞培养、细胞分析和细胞治疗的热潮不断涌来,二氧化碳培养箱的需求也在不断增长。二氧化碳培养箱是在箱体内模拟一个生物体内的环境让细胞或组织生长。培养箱要求稳定的温度(37°C)、稳定的二氧化碳水平(5%)、较高的相对湿度(95%),从而对细胞或组织进行高效的体外培养。二氧化碳培养箱中适宜的培养环境,也为微生物生长提供了良好的环境,如何降低培养箱中的微生物污染,是使用二氧化碳培养箱需要重点考虑的问题。 氧化铜会使细胞内产生游离氧,从而引起氧化损伤,DNA损伤,细胞器膜破坏,从而抑制微生物生长。氧化铜对多种微生物,如对弧菌、大肠杆菌、枯草杆菌、金黄葡萄球菌、绿脓杆菌、沙门杆菌等的生长都有明显的抑制作用。 氧化铜纳米材料的粒径为1-100nm,具有抗菌和抗生物活性特点,喷涂于培养箱内层表面,可制成抗菌层。WIGGENS二氧化碳采用高科技纳米喷涂技术,为客户提供带有纳米氧化铜涂层的培养箱内腔体。可以有效的抗菌,抑菌,减少二氧化培养箱在使用过程中的污染问题,让您的细胞培养更放心。
  • 氧化安定性测定仪检测氧化安定性的主要目的
    氧化安定性测定仪测试的一般原理是在一定量的测试油样中,放入金属片作为催化剂,在一定的温度下输入一定量的氧气,经规定的试验时间后,测定油样氧化后的酸值、黏度、沉淀物和金属片的质量变化以及酸值达到规定值所需试验时间。  润滑油的氧化安定性除了主要取决于自身的化学组成外,还与测试的温度、氧压、金属催化片、金属接触面积、氧化时间等条件有关。因此须根据所测试润滑油品的实际使用环境来选择合理的试验条件,目前常用的测试方法GB/T加抑制剂矿物油的氧化特性测定法。该方法概要为检测试样在水和铁-铜催化剂存在的条件下,在95℃条件下与氧反应,定期测定试验的酸值,酸值达到2.0mgKoH/g或试验时间达到10000h,试验结束,使酸值达到2.0 mgKOH/g的试验时间称为试样的“氧化寿命”。由于GB/T试验时间较长,在实际检测中也多采用SH/T润滑油的氧化安定性的测定-旋转氧弹法来评价不同批次相同组成润滑油氧化安定性的连续性或润滑油的剩余氧化试验寿命。  氧化安定性的检测目的:  1.监测润滑油的氧化安定性的变化,防止因润滑油的氧化变质,生成更多有机酸,使设备润滑部件发生腐蚀。  2.防止因润滑油氧化严重所产生的更多油泥、胶质和沥青质,增大润滑油的黏度,不利于设备的润滑和散热。也防止因过多的油泥堵塞油路而影响润滑油的流动,增加设备的磨损。  3.润滑油的氧化变质还会使油品的添加剂发生裂解失效,使油品的有关理化性能发生劣化,如油品的泡沫性、乳化性、抗磨性能等都会明显下降。
  • 第十七届二氧化硫 氮氧化物 征文与参会报名通知
    关于召开“第十七届二氧化硫 氮氧化物汞污染防治暨细颗粒物(PM2.5)监测技术研讨会”征文与参会报名通知  各有关单位:  当前我国大气环境形势十分严峻,在传统煤烟型污染尚未得到控制的情况下,以臭氧、细颗粒物(PM2.5)和酸雨为特征的区域性复合型大气污染日益突出,区域内空气重污染现象大范围同时出现的频次日益增多,严重制约社会经济的可持续发展,威胁人民群众身体健康。“十二五”时期,我国工业化和城市化仍将快速发展,资源能源消耗持续增长,大气环境将面临前所未有的压力。为深入贯彻落实国家《节能减排“十二五”规划》和《重点区域大气污染防治“十二五”规划》,促进重点区域大气污染联防联控,全面提升我国大气环境质量改善的综合技术能力,我会联合浙江大学等单位拟定于2013年5月16-17日在浙江省杭州市举办“第十七届二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)监测技术研讨会”。会议的主题:推进大气污染联防联控,改善大气环境质量。  现将研讨会的有关事项通知如下:  一、会议征文及研讨的主要议题  (一)区域管理机制与政策  1. 大气复合污染控制政策与措施   2. 区域大气质量管理体系建设   3. 区域大气污染联防联控机制建设与运行管理   (二)大气污染防治技术与设备  1. 重点行业多污染物协同控制技术   2. 城市群大气复合污染综合防治技术与集成示范   3. 燃煤工业锅炉高效脱硫、脱硝、除尘技术及设备研发   4. 水泥行业窑炉低氮燃烧改造和脱硝技术   5. 钢铁行业烧结烟气同时脱硫脱硝脱及高效除尘技术   6. 催化剂关键原材料和催化剂再生及催化剂处理技术   7. 大气汞排放污染防治技术   8. 光化学烟雾、灰霾的污染机理与控制对策研究   9. 烟气脱硫脱硝装置中防腐技术。  (三)烟气在线监测技术与设备  1. 固定污染源烟气排放连续监测系统及检测方法   2. 重点污染源自动监测系统和运行维护   3. 烟气污染在线监测仪器及设备。  (四)细颗粒物(PM2.5)监测技术与设备  1. PM2.5源解析及污染控制对策与技术   2. 细颗粒物(PM2.5)的监测方法及技术开发   3. 空气细颗粒物应急检测技术及仪器应用。  二、特邀报告  1.拟邀请相关部委领导介绍我国“十二五”期间大气污染联防联控及空气质量管理相关政策与措施   2.拟邀请相关领导就我国细颗粒物(PM2.5)污染防治相关政策进行解读与分析   3.邀请知名专家就我国烟气脱硫、脱硝技术创新与运行管理领域作主旨报告演讲。  三、会议形式  会议将安排大会特邀主旨报告、特邀专家报告、专题交流、墙报交流、成果展示等学术交流活动。  四、论文征集  1.请按照会议征文及研讨的内容提交论文,论文摘要不超过500字,全文不超过5000字,所投稿件应符合“第十七届二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)监测技术研讨会”的征稿要求,如与相关要求不符,主办单位有权删改。  2.论文文件格式为word文档。具体要素包括:论文题目、作者姓名、工作单位、论文摘要、关键词、正文、主要参考文献等。  3.请在论文后面标注作者的通讯地址、邮政编码和电话,以便进一步沟通。  会前将印刷论文集作为会议资料,请拟提交论文人员在2013年4月15日前提交电子版论文全文至desox2@163.com信箱。  五、企业展览  会议设置了大气污染防治相关企业推介展览环节,将邀请国内外知名公司与企业参与,展示企业文化、技术成果和成功经验。  六、参会人员  1.相关政府管理部门、行业协会、学会、社团、环境监测站、环境信息中心、环评机构 燃煤锅炉、燃煤炉窑、电力、钢铁、水泥、石油、化工等主管部门、设计单位、高校、科研院所等方面的专家、学者和相关技术人员   2.环境监测仪器设备生产企业 脱硫、脱硝、脱汞、除尘、防腐等工艺研发、工程设计、设备制造、施工运营、安装调试、环保咨询、环境污染治理公司相关领导和技术人员。  七、会务费用  会议费:1800元/人,学生1200元/人(含会务、餐饮、晚宴、茶歇、论文资料等费用)。住宿统一安排,费用自理。  八、会后考察  会后将安排工程考察和生态考察。  九、联系方式  (一)中国环境科学学会  饶 阳 王国清 张鹏  电话:010-68637874  手机:13381170552  传真:010-68630714  邮箱:desox2@163.com  (二)浙江大学环境与资源学院 官宝红  电话:0571-88273687  邮箱:guanbaohong@zju.edu.cn  附件:1.会议组织形式  2.参会回执表  附件一:  会议组织形式  一、组织机构  指导单位: 环境保护部  中国科学技术协会  主办单位: 中国环境科学学会  浙江大学  支持单位: 清华大学  中国电力企业联合会  中国钢铁工业协会  中国水泥协会  中国电力投资集团公司  协办单位: 浙江天蓝环保技术股份有限公司  浙江省环境科学学会  浙江省工业锅炉炉窑烟气污染控制工程技  术研究中心  二、学术委员会  1、主席  王玉庆 中国环境科学学会理事长  2、副主席  郝吉明 中国工程院院士、清华大学教授  3、委员  柴发合 中国环境科学研究院副院长研究员  杨金田 环境保护部环境规划院副总工程师  林 翎 中国标准化研究院资源与环境分院院长  吴忠标 浙江大学环境与资源学院教授  李俊华 清华大学环境学院教授  闫克平 浙江省工业锅炉炉窑烟气污染控制工程技术研究中 心副主任  尹华强 国家烟气脱硫工程技术研究中心主任  高 翔 国家环境保护燃煤大气污染控制工程技术中心主任  徐明厚 煤燃烧国家重点实验室主任  段钰锋 东南大学能源与环境学院教授  何 洪 北京工业大学催化化学与纳米科学研究室主任  岑超平 环保部华南所大气环境与污染防治中心主任  杜云贵 烟气脱硝产业技术创新战略联盟理事长  刘汉强 国电新能源技术研究院创新技术研究中心副主任  三、会议组织委员会  王志轩 中国电力企业联合会秘书长  张长富 中国钢铁工业协会副会长  孔祥忠 中国水泥协会秘书长  许纲熙 浙江省环境科学学会秘书长  吴险峰 环保部污染物排放总量控制司大气总量处处长  程常杰 浙江天蓝环保技术股份有限公司总经理  四、会议执行主席  任官平 中国环境科学学会秘书长  吴忠标 浙江大学环境与资源学院教授  五、会议秘书处  姜艳萍、王国清、张鹏、饶阳  电 话:010-68637874  手 机:13381170552  邮 箱:desox2@163.com  网 址:www.chinacses.org www.dsdne.net  附件二:  第十七届二氧化硫、氮氧化物、汞污染防治暨细颗粒物(PM2.5)监测技术研讨会 参会回执表  时间:2013年5月16日-17日 地点:浙江杭州单位名称 邮 编 通讯地址 手 机 姓 名 部 门 职 称 电 话 传 真 电子邮箱 是否提交论文 是否出席会议 是否确定大会发言否参会代表登 记姓 名职 称手 机电子邮箱 提交论文题 目 大会发言题 目 发言人 职务或职称 发票抬头 是否参加会后考察 备 注 费用总计: 元人民币,付款日期: 年 月 日款项请汇至大会指定帐号:开户名:北京国研中科环境科技有限公司开户行:建行玉泉支行帐 号:11001018000059261219参会单位签字或盖章: 日期:2013年 月 日联系人:张鹏 饶 阳 王国清电 话:010-68637874 13381170552传 真:010-68630714 邮 箱:desox2@163.com   注:准备参会的代表收到通知后请及时将参会回执表反馈过来,以便为您安排参会事宜。
  • 日立高新SU8010观察氧化铝晶体上外延生长的氧化铁晶体
    本例是氧化铝晶体上外延生长的氧化铁晶体的观察例。这个样品是给陶瓷品上彩用的颜料(红褐色),主要成分是刚玉(Al2O3)和氧化铁(Fe2O3)。为了弄明白它为什么能成长出如此漂亮的结构和其生长原理,用SEM进行观察就变得非常重要。  左图是用Upper探头拍的背散射电子的照片,通过成分对比度可以判断出Al2O3的周围存在着Fe2O3。另外,对Al2O3处放大后(右图)可以发现很细微的台阶结构。本例采用日立高新SU8010场发射扫描电子显微镜进行观察,关于此仪器请参考:http://www.instrument.com.cn/netshow/SH102446/C138451.htm 关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合n性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • 赫施曼助力石灰石及白云石中氧化钾和氧化钠含量的测定
    石灰石及白云石的质量指标对冶金工艺的质量有显著影响,如氧化钾、氧化钠对高炉中球团矿的膨胀裂化和焦炭的加速催化作用,因此其含量需要准确测定和控制。根据GB/T 3286.12-2023,测定灰石及白云石中氧化钾和氧化钠含量的方法是火焰原子吸收光谱法。其原理是:试样用盐酸、氢氟酸和高氯酸分解,蒸发至近干,用盐酸溶解盐类,稀释定容。在原子吸收光谱仪上,采用空气-乙炔火焰,分别在波长766.5nm和589.0nm处测量钾、钠的吸光度,采用校准曲线法分别计算钾、钠的质量分数。实验涉及试料的分解、标准曲线的配置:试料的分解:将试料(称取 0.50g试样,精确至 0.0001g)置于250mL聚四氟乙烯烧杯(容量250mL)中,用少量水润湿,用赫施曼瓶口分液器加入10 mL盐酸(1+1)。2 mL高氯酸(ρ=1.67g/mL),5mL氢氟酸(ρ=1.15g/mL),低温加热至冒高氯酸白烟,继续加热蒸发至近干,取下,稍冷。再用瓶口分液器加入5mL盐酸(1+1),20mL水,低温加热至盐类溶解,取下,冷却。移入100mL塑料容量瓶中,用水稀释至刻度,混匀。标准曲线的配置:采用20mL规格的opus电子瓶口分配器,stepper模式,设置2组分液体积,第一组1.00、2.00、4.00、6.00mL,第二组8.00、10.00mL,然后按分液键,将6个体积的钾标准溶液(30μg/mL)和钠标准溶液(30μg/mL)分别加入100mL塑料容量瓶中,另设一个不加的做空白对照;再向每个容量瓶中加入10mL底液(20mg/mL,以Ca计),用瓶口分液器加入5mL盐酸(1+1)用水稀释至刻度,混匀。此校准溶液钾、钠的含量范围为0~3.0μg/mL。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的酸(包括氢氟酸等强酸)、碱、有机试剂等的移取。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 哪些方法可以测定柴油的氧化性?
    1、按SH/T0175方法进行测定  方法概要:将以过滤过的350mL试样,注入氧化管,通入氧气,速率为50 mL /min在93℃的温度下氧化16h。然后将氧化后的试样冷却到室温,过滤得到的可过滤的不溶物。用三合剂把粘附性不溶物从氧化管上洗下来,把三合剂蒸发除去,得到的粘附性不溶物。可过滤不溶物和粘附性不溶物的量之和为总不溶物量硫含量2、按GB/T 380方法进行测定  方法概要:将适量样品在灯中燃烧,用0.3%碳酸钠水溶液吸收燃烧生成的二氧化硫,并用0.05N的盐酸标准溶液滴定吸收液,用溴甲酚绿甲基红作滴定指示剂酸度3、按GB/T 258方法进行测定  方法概要:容量法,本方法系用沸腾的乙醇抽出轻柴油中的有机酸,然后趁热用0.05N氢氧化钾乙醇溶液滴定,中和100亳升石油产品所需氢氧化钾的毫升数称为酸度十六烷值4、按GB/T 386方法进行测定  十六烷值是指与柴油自燃性相当的标准燃料中所含正十六烷的体积百分数。标准燃料是用正十六烷与2-甲基萘按不同体积百分数配成的混合物。其中正十六烷自燃性好,设定其十六烷值为100,α-甲基萘(1-甲基萘)自燃性差,设定其十六烷值为0。也有以2、2、4、4、6、8、8-七甲基壬烷代替α-甲基萘(1-甲基萘),设定其十六烷值为15,十六烷值测定是在实验室标准的单缸柴油机上按规定条件进行的。十六烷值高的柴油容易起动,燃烧均匀,输出功率大;十六烷值低,则着火慢,工作不稳定,容易发生爆震。一般用于高速柴油机的轻柴油,其十六烷值以40-55为宜;中、低速柴油机用的重柴油的十六烷值可低到35以下。柴油十六烷值的高低与其化学组成有关,正构烷烃的十六烷值高,芳烃的十六烷值低,异构烷烃和环烷烃居中。当十六烷值高于50后,再继续提高对缩短柴油的滞燃期作用已不大;相反,当十六烷值高于65时,会由于滞燃期太短,燃料未及与空气均匀混合即着火自燃,以致燃烧不完全,部分烃类热分解而产生游离碳粒,随废气排出,造成发动机冒黑烟及油耗增大,功率下降。加添加剂可提高柴油的十六烷值,常用的添加剂有硝酸戊酯或已酯。
  • 二氧化碳转化制一氧化碳研究取得新进展
    近日,中国科学院大连化学物理研究所研究员肖建平团队与中国科学技术大学教授曾杰团队、电子科技大学教授夏川团队合作,在二氧化碳(CO2)转化制一氧化碳(CO)研究中取得新进展。团队研发出单原子合金催化剂Sb1Cu,实现了CO2高活性、高选择性还原制备CO,并探究了该过程的理论机理。相关研究成果发表在《自然—通讯》上。利用可再生能源实现CO2高效电还原,是减缓温室效应并实现“双碳”目标的重要手段之一。肖建平团队在前期工作中发现了CO2电催化还原制甲酸的双顶点活性趋势,并揭示了单原子合金Pb1Cu电催化CO2还原制甲酸的高活性原因。本工作中,肖建平团队探究了单原子合金催化剂Sb1Cu电催化CO2还原表现出高CO选择性的原因。研究发现,Sb1Cu电催化CO2到CO的活性位为与单原子Sb相邻的Cu位点,并揭示了Sb1Cu相比于Cu可以有效减弱CO*的吸附能,降低CO*的覆盖度,抑制C-C偶联反应,从而提升了CO的选择性。通过电荷外插值法,肖建平团队计算了不同工作电势下的反应能垒,通过微观动力学模拟得到的理论速率也和实验结果有较好的吻合。该研究为设计高活性和特定选择性电催化材料提供了新思路。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制