当前位置: 仪器信息网 > 行业主题 > >

苄醚

仪器信息网苄醚专题为您提供2024年最新苄醚价格报价、厂家品牌的相关信息, 包括苄醚参数、型号等,不管是国产,还是进口品牌的苄醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄醚相关的耗材配件、试剂标物,还有苄醚相关的最新资讯、资料,以及苄醚相关的解决方案。

苄醚相关的资讯

  • 【鉴知科普】光谱分辨率:揭示光的秘密
    在探索宇宙奥秘和理解地球环境的过程中,光谱分辨率扮演着至关重要的角色。它不仅是科学家们洞察物质世界的一扇窗,更是现代遥感技术中不可或缺的一部分。今天,就让我们一起走进光谱分辨率的世界,揭开它神秘的面纱。光谱分辨率是什么?光谱分辨率是指光谱分析仪可分辨出的最小波长间隔,也是其最小可分辨精度,通常以纳米(nm)或波数(cm-1)表示。例如光谱分辨率为1nm,代表设备可分辨出300以及301nm的光。在同一波谱范围内,分的越细,波段越多,光谱分辨率越高,例如1500nm的光波,可被分为300个波段,光谱分辨率为5nm,也可分为150个波段,光谱分辨率为10nm,越高的光谱分辨率可更容易区分和识别目标性质和组成成分。光谱分辨率的度量方式半峰全宽(Full width at half maximum)英文简称FWHM,也称作半高全宽、或半高宽、半波宽。指达到光谱峰高一半处的光谱宽度。如下图如何提高光谱分辨率呢?光谱分辨率受到多种因素的影响,主要包括:1. 光谱仪的光学系统:包括光栅、透镜、滤光片等,它们的性能直接影响到光谱分辨率。2. 探测器的性能:探测器的灵敏度、噪声水平和响应速度等都会影响光谱分辨率。3. 光源的稳定性:光源的稳定性对光谱分辨率有重要影响,光源的波动会导致光谱线的移动,从而影响分辨率。4. 环境因素:如温度、湿度等环境因素的变化也可能对光谱分辨率产生影响。光谱分辨率对我们有什么意义呢?光谱分辨率在科学研究和工业应用中具有广泛的应用,包括:1. 化学分析:高光谱分辨率的光谱仪可以用于化学物质的定性和定量分析。2. 环境监测:通过分析大气中的光谱线,可以监测大气成分的变化。3. 天文学:在天文学中,光谱分辨率对于研究恒星和行星的化学成分至关重要。4. 材料科学:光谱分辨率可以用来研究材料的光学特性,如反射率、透射率等。总之,光谱分辨率是一种重要的光学参数,用于描述光谱仪器的分辨能力。通过了解光谱分辨率的概念、测量方法和影响因素,可以更好地选择和使用光谱仪器,为各种科学研究和实际应用提供更准确、可靠的数据和结果。北京鉴知技术有限公司,简称“鉴知技术”, 是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
  • Omicron突变株序列公布, 这个基因突变最大!
    1月30日,COVID-19和SARS-CoV-2流行病学和基因组数据网站Outbreak.info更新了目前全球各大数据的新冠Omicron突变株测序结果,快来看看,你家试剂是否会漏检~(1)开放阅读框ORF1a和ORF1b开放阅读框的ORF1a和ORF1b RNA通过基因组RNA合成,再接着分别翻译合成pp1a和pp1ab蛋白。这两种蛋白会被蛋白酶裂解,形成16个非结构蛋白。非结构蛋白会形成复制-转录复合物,使用正链基因组RNA为模板进行复制,然后形成新的病毒粒子基因组。通过转录翻译合成结构蛋白(S蛋白、E外膜蛋白、M膜蛋白、N核衣壳蛋白)。S蛋白、E蛋白、M蛋白进入内质网,N蛋白与正链基因组RNA结合形成核蛋白复合物。在高尔基体内完成病毒颗粒的组装,然后通过高尔基体和囊泡释放新生成的病毒到细胞外,进而感染别的细胞。从已上传的11组Omicron突变株的测序数据来看,ORF1b在P314L和I1566V这两位点全部发生了突变。 (2)S蛋白基因S蛋白是冠状病毒最重要的表面蛋白,与病毒的传染能力及发病机制等密切相关。S蛋白的主要功能是与宿主细胞表面受体结合,引起自身构象变化,使疏水性的融合肽与细胞膜接近并融合介导病毒进入细胞内。S蛋白基因也是目前Omicron突变最多的地方,从报告数据来看, 突变达到24处。 去年曾有新冠研究人员称,他们在新冠病毒的S蛋白(刺突蛋白)中发现了4个插入片段,这4个片段是新冠病毒(2019-nCoV)所独有的,其他冠状病毒中没有这些插入片段。然而,作者声称,所有的4个插入片段中的氨基酸残基均与人类免疫缺陷病毒1型(HIV-1)的复制蛋白 gp120或 Gag中的氨基酸残基具有相同性或相似性。 HIV-1是导致人类艾滋病的主要病毒。有学者推测此次发现的 Omicron变异毒株就是艾滋病毒和新冠病毒“碰撞”的结果。但是,该病毒是否从HIV患者体内进化而来,目前并无确切研究说明。 (3)E基因和N基因新冠病毒主要由结构蛋白和非结构蛋白组成,结构蛋白包括 E 基因编码的包膜蛋白、M 基因编码的膜蛋白、N 基因编码的核衣壳蛋白、S 基因编码的刺突蛋白。 N蛋白与病毒基因组RNA相互缠绕形成病毒核衣壳,在病毒RNA的合成过程中发挥着重要的作用。同时,N蛋白相对保守,在病毒的结构蛋白中所占比例最大。N蛋白基因在冠状病毒内相对保守,会和其他病毒基因有交叉,容易导致单基因阳性。而ORF1ab基因具有较好的特异性,同时检测两个基因能有效避免误诊。从已经上传的测序数据来看,E基因的突变仅有1处,N基因的突变有4处,是否会影响到具体试剂盒的检测性能,就要看各个厂家自己的探针和引物设计的位置了。如何确定是否会漏检?目前大家所关心的点在于Omicron的出现是否会导致现有的检测试剂盒出现漏检的情况,据业内人士反馈,IVD试剂企业会在拿到Omicron(奥密克戎)毒株的全基因序列之后,检查引物是否在 Omicron毒株的保守区域,如果与引物互补配对的新冠RNA序列没有碱基突变,那么引物可能不需要调整。 我国获批的实时荧光定量 PCR 法试剂盒检测靶标主要针对新冠病毒基因组开放性读码框 ORF1ab、N 基因、E 基因保守区域进行引物设计,从目前数据来看,这三个区域的突变位点并不是很多。另一方面,很多引物设计软件都可以预测核酸扩增效率(Omicron序列已知),通过生信分析+软件模拟即可大致确定是否会出现漏检,当然更严谨起见,通过合成包含Omicron毒株全基因序列的质粒,用自家试剂盒进行检测也是非常重要的,但实际PCR检测结果的因素有很多,是否会产生漏检还要看真实样本的检测情况了。
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
  • 以2.65Å分辨率查看奥密克戎变体
    总部位于瑞士的研究人员最近发现了SARS-CoV-2奥密克戎变种中棘突蛋白的高分辨率冷冻EM结构,目前该变种已席卷欧洲和世界大部分地区。洛桑埃科尔理工学院生命科学学院病毒学和遗传学实验室的病毒学家迪迪埃特罗诺(Didier Trono)教授和同事们用200kV Glacios Cryo-Em仪筛选了蛋白质样本,然后最终数据收集在300kV Titan Krios G4上。特罗诺(Trono)及其同事在生物学评论(bioRXiv)预印本《cryo EM对Omicron SARS-COV-2变种棘突的结构分析及其对免疫逃避的影响》中写道:“数据是用CryoSPARC Live“实时”处理的,在距冷冻3小时后生成了第一张3D图谱。”预印本于2021年12月28日发布。a、 奥密克戎变体峰的冷冻电镜图谱。图谱染色对应于构成完整三聚体(A(绿色)、B(蓝色)和C(橙色))的每一个尖峰单体链。红色表示聚糖。单RBD up(单体C)的柔韧性几乎看不见。b、 奥密克戎棘突原子模型的侧面图为灰色,突变以黄色突出显示。c、 单体A的带状表示,突出显示灰色的不同区域(如图d所示)和黄色球体中的突变。突变被标记。红色标记的突变是与其他挥发性有机化合物共有的突变。d、 奥密克戎峰b区的俯视图,以黄色突出显示特定突变。[来自倪东春(Dongchun Ni)等人,bioRXiv(生物学评论)]。最近在Dubochet成像中心安装了电子显微镜,这是EPFL与洛桑大学(University of Lausanne)之间的合资项目。有了这些,研究人员能够在近原子尺度上观察奥密克戎变体的棘突蛋白的结构。DCI已经制作了一张分辨率为2Å的原始病毒棘突蛋白图像——他们声称这是迄今为止获得的最高分辨率——使科学家能够查看单个原子。EPFL和洛桑大学(University of Lausanne)的亨宁.蒂拉伯格(Henning Stahlberg)教授说:“我们现在可以准确地看到突变是什么使得奥密克戎变异体能完全抵制阿斯利康疫苗和辉瑞制药的一部分。”“在首次发现这种变异不到一个月后,确定奥密克戎的棘突蛋白的结构就像是在首次用望远镜观测后的几周内登上一颗行星,”特罗诺补充道。“这项技术的潜力非常惊人。”研究人员希望他们的cryo-EM数据将帮助科学家了解突变的棘突蛋白如何与ACE2细胞受体结合,从而为新疗法打开大门。Read the bioRXiv preprint here. About the authors: 丽贝卡.普尔博士(Dr Rebecca Pool)丽贝卡是《显微镜与分析》的新闻编辑,也是一名自由科学记者,拥有材料科学博士学位。她曾在《威利分析科学》、《自然光子学》、《SPIE光子学聚焦》、《物理世界》、《科幻一代》、《工程与技术杂志》、《世界钢铁》等杂志上发表文章。供稿:符斌
  • 解密丨冬奥会背后的光谱“秘密”,艺术和科技推动时代的婵变...
    「 冬奥会背后的光谱“秘密”」小编的话:北京奥林匹克冬奥会及冬残奥会均已落幕,中国用科技与艺术向世界生动诠释了一场简约而又不简单,空灵而又壮观的视觉盛宴。相信大家对开幕式中“黄河之水天上来的巨幕”,“破冰而出的奥运五环”,“流光溢彩的联动地屏”印象深刻。这些绚丽夺目的艺术效果其实均由LED大屏幕呈现。值得一提的是,2008年北京奥运,鸟巢用的灯具50%左右都是进口;2022年,全场使用的所有灯具、LED产品已实现百%中国制造。 冬奥虽已落幕,科技永不落幕!伴随着盛会的收官,我们一起来探究一下,冬奥LED屏的奥秘。01 冬奥LED屏的来历?北京冬奥的地屏总面积10552平米,由4万多块50×50cm的LED模块组成,分别由利亚德、京东方和洲明科技承制。 02 有何特别之处?▲ 如此大的LED屏,它由多家品牌提供,不同品牌间的LED,设计与性能都有所差别。如何对几万个LED模块进行校正以实现各品牌显示的色彩、色温、亮度一致是一个难题。▲ 其次,它不仅是一块屏幕,同时也是一个舞台。因此也要满足舞台耐磨、结构承重、防水防寒、电气安全等特性。▲ 同时,舞台还实现了与演员表演的实时互动,实时捕捉演员行进轨迹,画面与演员无缝互动。03 光纤光谱仪能做什么?即便是同厂家、同批次的LED间,仍会存在10%左右的亮度偏差,再加上LED屏幕驱动IC的差异,因此要对其进行光学校正。4万多个LED模块的联合校正,便携式光纤光谱仪能实现在线快速测量。海洋光学Flame系列光谱仪搭配FOIS-1积分球、HL-3P校准光源及光纤即能完成整个测试系统的搭建。使用光纤光谱仪能对其进行主波长、发光效率、光通量、发光强度、色温、显色指数等参数进行检测,以协助工程师完成光学校正。光的波长(λ)光的波长是指光波在一个振动周期内传播的距离,是一个很重要的指标,决定了LED的发光颜色。目前LED的颜色主要有红色、绿色、蓝色、青色、白色、暖白、琥珀色等。光通量(lm)LED光通量是在单位时间内发射出的光量。单位:流明,即lm。采用积分球法测试光通量有两种测试结构。一种是将被测LED放置在球心,另外一种是将其放在球壁。发光效率(lm/W)发光效率是光通量与功率的比值。在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。发光强度(cd)发光强度简称光强,指的是从光源一个立体角(单位为Sr)所发射出来的光通量,即光源或照明灯具所发出的光通量在空间选定方向上分布密度。单位是坎德拉(cd)。结语微型光谱仪具有易于根据不同光谱范围和分辨率要求进行重新设置的优势。随着 LED 检测需求的提高,微型光谱技术和解决方案将与时俱进,为多种应用提供准确、灵活、低成本的解决方案。 【免责声明】本文部分图片取自互联网,如果是您的摄影作品,请留言告知本文作者或公众号运营者,我们会在文章评论区注明摄影人,或删去您拍摄的图片。
  • 奥影科普| 工业CT的密度/对比度分辨率
    在现代检测领域,精度是非常重要的技术指标。具体到工业CT设备,其精度通常指代的有三个指标:空间分辨率、密度分辨率、测量误差。关于空间分辨率的影响因素、计算方式在此前的推文中已经做了介绍,本篇,我们就来详细介绍工业CT的「密度分辨率」。一、密度分辨率密度分辨率(Contrast Resolution),又称对比度分辨率或低对比度分辨率,是CT系统区分不同物质密度差异的能力。它定量地表示为影像中能显示的最小密度差别,通常以百分比(%)表示。例如,当密度分辨率为2%时,意味着两种物质的密度差异达到或超过2%时,CT图像就能清晰地区分它们。二、工业CT密度分辨率的原理我们知道,当X射线穿过不同密度的物质时,会发生不同程度的衰减。CT系统正是通过收集测量这些衰减信号,并利用重建算法将其转换为图像。密度分辨率的高低取决于系统对这些微小衰减差异的敏感度和区分能力。在工业CT中,高质量的图像可达优于1%甚至更小的密度分辨率,使得工业CT能够发现更细微的缺陷,提高检测的准确性和可靠性。这意味着工业CT能够准确地区分材料内部的微小密度变化,如气孔、裂纹、夹杂等缺陷,为质量控制和缺陷检测提供强有力的支持。三、影响密度分辨率的因素密度分辨率的高低取决于多个因素,包括:噪声和信噪比噪声是扫描均匀物质时,其CT值的标准偏差。噪声使图像呈颗粒性,直接影响密度分辨率,尤其表现在低密度组织的可见度上。信噪比由探测器的效率和X射线剂量决定。效率越高、剂量越大,则信噪比越高,相对降低噪声,密度分辨率将提高。被检物体大小理论上,被检物体的尺寸大小并不会改变CT系统的密度分辨率(分辨能力),但是尺寸大小会影响到射线的衰减,这就在一定程度上会造成探测器在侦测信号方面存在差异,比如信噪比波动。当被检物体的几何尺寸较大时,这是因为较大的物体能够吸收更多的X射线光子,从而产生更明显的信号差异,使得不同密度的组织或物质更容易被区分开来。反之,如果被检物体较小,其吸收的X射线光子数相对较少,信号差异可能不够明显,导致图像在对比度上差异不明显。另外高密度物质对射线吸收后会造成射束硬化、金属伪影等干扰,同样也会影响设备的密度分辨力。探测器性能探测器的灵敏度、动态范围等性能参数对密度分辨率也有重要影响。高性能的探测器能够捕捉更多的细节信息,提高图像的密度分辨率。X射线剂量X射线源的能量直接影响其穿透能力和散射程度。选择合适的X射线源的剂量,可以在保证穿透深度的同时,减少散射和衍射对对比度分辨率的影响。四、密度分辨率测试密度分辨率的检测方法多种多样,在国标《GB/T 35386-2017 无损检测 工业计算机层析成像(CT)检测用密度分辨力测试卡》文件中,提供了空气间隙卡、固体密度差试样、液体密度差试样和圆盘卡四种测试卡。这些测试卡通过设计具有不同密度的材料组合,来模拟实际检测中可能遇到的密度差异。例如:固体密度差试样是在均制的圆柱形刚性基体材料(一般为钢、铝或塑料)的特定部位,按密度大小嵌入的一系列与基体不同的密度块。通过扫描这些试样,可以评估CT系统对固体材料密度差异的分辨能力。液体密度差试样在纯水的特定范围内加入可溶性介质(一般选用氯化钠),使介质溶液和纯水形成一定的密度差。
  • 复旦纳米固流法:光学显微镜分辨率提升至45纳米
    复旦大学材料科学系武利民课题组研究设计开发了一种新的纳米粒子组装方法——纳米固流体法,首次实现了将高折射率的二氧化钛纳米粒子组装成能工作于可见光波段的超材料光学器件。相关研究成果已发表于《科学进展》。  目前,绝大多数超材料采用金属材料来制备,这些金属超材料可较好地工作于微波和太赫兹波段。但在更高频率的近红外,特别是可见光波段,金属会吸收过多的光线并造成显著的能量损耗,从而限制了金属超材料在近红外和可见光波段的应用。因此,低损耗的非金属超材料的制备与应用是国际超材料研究领域的热点之一。  据悉,武利民课题组通过将15纳米的锐钛矿二氧化钛纳米粒子组装成半球形和超半球形固体浸没超透镜,在常规的光学显微镜下实现了45纳米的超分辨率显微成像,大大突破了光学显微镜的极限分辨率200纳米,并揭示了二氧化钛纳米粒子间的近场耦合效应在该可见光超材料中的重要作用。  这项研究提供了一种在纳米尺度操纵可见光的途径,未来将该组装方法与纳米印迹、微纳流体等技术结合,有望制备出紧凑、低成本的超材料光学器件,应用于隐身、光子计算机、近场光学检测及太阳能利用等领域。
  • 湖南毒米事件调查:湘江变毒水
    原标题:湖南毒米事件调查:湘江变毒水 检测标准缺失   5月18日,广州市食品药品监管局公布的“镉大米”检查结果,共涉及8批次大米和米制品。其中湖南涉事大米5批,仅湖南株洲攸县占4批次。   湖南省食品安全办公室昨天(5月21日)就“镉大米”事件对腾讯财经表示,目前,食品安全办公室正在组织人员对广东方面通报的涉事企业进行调查,调查范围包括污染面、污染源等,检查结果报省政府批准后会第一时间向社会公布。   同一天,攸县就此事举行新闻通气会。攸县食安办负责人表示,已经要求存在问题的企业在规定的时间内将有问题批次产品召回、下柜。同时,责令存在问题的企业停业整顿。食安办同时称,3家企业证照齐全,周围10公里内都没有重金属企业。但食安办并未能回应稻谷产地附近是否有重金属企业。   近日爆出的一系列信息显示,有毒大米从农田到餐桌的各个环节中,从种植的农民、收购稻米的量贩、加工大米的工厂、存储大米的粮库、卖粮的经销商直至本该承担监管责任的个别地方政府,对当地农作物重金属超标一事并非一概不知。尽管如此,重金属依然没有被列入粮食常规检测项目。   腾讯财经昨日也从湖南省政府一位官员处了解到,此前,在省政府的会议上,就已经讨论过关于农作物重金属过量的问题,“当时,主要是环保局和粮食局做了汇报”。   2007年的一个数据被重新审视。当年,南京农业大学农业资源与生态环境研究所教授潘根兴和他的研究团队在东北、西南、华北、华东、华中、华南六个地区县级以上市场随机采购大米样品91个。结果表明,10%左右的市售大米镉超标。   更早以前的2002年,农业部稻米及制品质量监督检验测试中心曾对全国市场稻米进行安全性抽检。结果显示,稻米中超标最严重的重金属是铅,超标率28.4%,其次就是镉,超标率10.3%。   十余年过去,“镉大米”的生命力依然顽强,到底哪一个环节出问题了?   有色金属产业污染难题   在一系列的食品安全问题发生后,以前似乎只存在于化学元素周期表里的“镉”开始被普及。《华尔街日报》这样描述镉对人们身体健康的影响:在20世纪60年代后期,日本曾爆发“骨痛病”,病因就是民众食用被铬污染的大米得了软骨症。   绿色和平污染防治项目主任马天杰认为,湖南的镉大米主要原因在于水污染,目前湘江沿岸的农民大多以湘江的水来灌溉,而湘江的水重金属含量是全国最高的。他认为,被污染的粮食产地可能不仅仅只有株洲。   而重要原因在于污水灌溉早年间被广泛应用。因此,镉大米在湖南的出现或许只是冰山一角。就在昨日,广州再次查出9批次镉超标大米,产地还包括了江西、广东。   攸县所在的株洲,是全国闻名的重工业城市,不但是“中国电力机车之都”,而且是亚洲最大的有色金属冶炼基地。   马天杰向腾讯财经表示,大米中的镉有三个来源,一是冶炼厂的烟尘进入土壤 二是化肥中的磷肥所致 三是水污染。而在马天杰看来,水污染正是造成湖南镉大米的主因。   腾讯财经查阅攸县招商引资的相关资料显示,攸县正在打造网岭循环经济产业园,该产业园积极承接株洲清水塘产业升级转移,努力打造成为产业转移承接地。   公开资料显示,株洲市石峰区的清水塘工业区,位于长株潭三市接合部,坐落在湘江边,是株洲市污染最为严重的地区。在国务院批准的《湘江流域重金属污染治理实施方案》中,清水塘工业区列入《国家湘江流域重金属污染治理专项规划》的重点项目就有17个。在清水塘,株冶集团是国家最大的铅锌生产基地。   而2011年5月11日攸县人民政府关于《攸县重点投资项目建设工作情况的汇报》其中提及,该县正在争取株冶集团产业转移落户,并已与株冶集团进行了多次衔接,株冶集团也派人到攸县网岭镇荷叶塘进行了现场察勘。网上还传出了株冶集团将铅锌粗加工生产线搬迁退至攸县的消息。   不过,株冶集团董秘刘伟清向腾讯财经表示,目前公司在攸县并没有任何项目,只是公司所在的清水塘被要求进行搬迁改造,而攸县也在打造网岭循环经济产业园,邀请株冶集团到攸县发展而已。   刘伟清进一步指出,公司所在的清水塘与攸县有两个多小时的车程,而且项目由环保局24小时在线监测,与毒大米事件没有任何关系。   湘江变毒水   湖广熟,天下足。然而,曾经的鱼米之乡已不再。   根据湖南省环保厅2007年公布数字,湘江流域汞、镉、铅、砷的排放量,就分别占到了全国排放量的54.5%、37%、6.0%和14.1%。   对此,2011年3月国务院批复《湘江流域重金属污染治理实施方案》,要求涉重金属企业数量和重金属排放量比2008年减少50%。   但是,就在《方案》实施一年后,全国政协委员、湖南省环保厅副厅长潘碧灵向媒体直指,方案实施太慢、资金筹措困难等问题。   这意味着,政府的规划并没有缺位,但执行过程中未必实现预期效果。   2012年湖南政府办公厅印发《〈湘江流域重金属污染治理实施方案〉工作方案(2012—2015年)》显示,相关规划项目856个,总投资505亿元。其中政府投入为主的项目共225个、298亿元,企业投入为主的项目共631个、207亿元。   腾讯财经从业内专家处了解到,通过各种途径进入湘江干流的重金属绝大部分被悬浮颗粒吸附,在水动力作用的搬运过程中逐步沉积河床中。这些重金属沉积起来的底泥,也是湘江流域饮用水最大的威胁。   事实上,早在2006年,株洲霞湾港在清淤过程中由于水利施工不当,导致含镉严重超标的底泥和污水排入湘江,使得湘江株洲霞湾港至长沙江段水质受到不同程度的污染。   根据《湖南省湘江流域生态环境综合治理规划》显示的数据,湘江流域河道底泥重金属污染累积性问题多、潜在性危机重。而株洲则被监测为湘江干流重金属污染程度最重的城市。   检测标准缺失   “重金属没有被列入粮食常规检测项目,关于大米的质量监管指标,更多考虑的是营养指标和保存指标。”一位不愿透露姓名的业内人士向腾讯财经表示。   据国家发改委等多部门共同颁布的《粮食质量监管实施办法(试行)》规定,对于正常储存年限内的粮食,仅有常规指标检验规定,对于色泽、气味明显异常的粮食,才要求增加相关卫生指标检验。但并没有对土地污染或对水稻生长的影响作相关要求。中国土壤污染调查数据被环保部以国家机密为由拒绝公布,长期以来,重金属没有被列入粮食常规检测项目。   事实上,早在7年前,长沙发往深粮集团的一批大米就被检出过镉超标。   现在看来,这一事件并不是偶然。上述业内人士表示,通常国家只要求在流通中进行质量指标的检测,如水分、杂质、碎米等,但并未要求对重金属、农药残留等进行检测,包括中储粮也不做卫生指标的检测。   据了解,国家在流通环节对粮食并没有卫生指标检测的要求,全靠生产企业的自身把关,而企业并不愿投资购置相关检测仪器。
  • Science:纳米范德瓦尔斯材料上的红外双曲变面研究
    2018年2月,西班牙Rainer Hillenbrand教授在《Science》上发表了题为:Infrared hyperbolic metasurface based on nanostructured van der Waals materials的全文文章,发现纳米范德瓦尔斯材料上的红外双曲变面特性,在红外可变平台设备的开发中取得重要进展。文章中Hillenbrand团队利用超高分辨散射式近场光学显微镜neaSNOM,对纳米氮化硼薄膜表面进行了精细扫描。该类型薄膜表面一般具有光学超表面特性,同时可以支持深度亚波长尺度的声子化激元。研究者在在这样的纳米结构基础上,通过neaSNOM优于10nm空间分辨率的光谱和近场光学图像观测到了发散化子束的不规则波前,如下图所示。图1 A为该项工作的原理示意,图1 B为该结构的形貌表征;图1 C、D为近场强度信号在该结构中的纳米成像并分辨对应HMS(实线)及hBN(虚线)结果。这些表征结果描述了hBN光栅功能面内的HMS。图1:散射式近场光学显微镜(neaSNOM)下声子化激元在20纳米的hBN-HMS的成像结果。C、D 即为近场强度信号在该结构中的纳米成像并分辨对应HMS(实线)及hBN(虚线)结果。该工作在光学超表面光学性质的研究,对于控制材料的等离子体化激元有着突出的意义,其中利用到一种特的相位和振幅信号分离技术,这种技术是超高分辨散射式近场光学显微镜neaSNOM申请,如下图,HMS-PHPs的波前成像结果显示其发散化子束的不规则波前,是双曲化子的重要特征。近场增强和限制可以有效操纵交换表面发射的热辐射。该项研究成果揭示了各向异性材料中化基元的不规则波前,与此同时,该类型纳米结构尺寸的范德华材料拥有优异的双曲线性质,使得红外可变平台设备的开发在未来的研究中将进一步成为可能。图2:散射式近场光学显微镜(neaSNOM)下HMS-PHPs的波前成像结果。C中近场成像结果获取于w = 1430 cm-1单色波长激发。★ 科普小知识 ★neaSNOM是德国neaspec公司推出的三代散射式近场光学显微镜(简称s-SNOM),其采用了化的散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。由于其高度的可靠性和可重复性,neaSNOM业已成为纳米光学领域热点研究方向的科研设备,在等离基元、纳米FTIR和太赫兹等众多研究方向得到了许多重要科研成果。★ 超高分辨成像技术的诸多特点,你知道吗? ★◆ neaSNOM是目前上成熟的s-SNOM成像产品◆ 保护的散射式近场光学测量技术——有的高10 nm空间分辨率◆ 的高阶解调背景压缩技术——在获得10nm空间分辨率的同时保持高的信噪比◆ 保护的干涉式近场信号探测单元◆ 的赝外差干涉式探测技术——能够获得对近场信号强度和相位的同步成像◆ 保护的反射式光学系统 ——用于宽波长范围的光源:可见、红外以至太赫兹◆ 高稳定性的AFM系统,——同时优化了纳米尺度下光学测量 ◆ 双光束设计——高的光学接入角:水平方向180°,垂直方向60°◆ 操作和样品准备简单 ——仅需要常规的AFM样品准备过程相关产品及链接1、超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C170040.htm 2、纳米傅里叶红外光谱仪 Nano-FTIR:http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 协变密度泛函理论研究获进展
    近日,中国科学院近代物理研究所核物理中心和德国慕尼黑工业大学合作,在协变密度泛函理论研究方面取得进展。研究团队提出了一组新优化的非线性点耦合相互作用(PC-L3R),可模拟核子与核子间的有效相互作用,用来定量分析原子核的粗块性质(bulk properties)。相关研究成果发表在《物理快报B》(Physics Letters B)上。随着近年来放射性离子束和探测器技术的蓬勃发展,新的实验揭示了大量处于丰中子及丰质子区域的奇特核结构现象。在理论上如何自洽地描述这些远离β稳定线的弱束缚原子核以及从理论角度对未来实验提供可靠且关键指引尤为重要。相对此前建构的点耦合相互作用,本研究考虑了更多的参考对象,包括91个在实验上已证实的球形原子核结合能,63个球形原子核的电荷半径,以及12组经验对能隙(由54个原子核提供)。同时,为了更好地再现实验上原子核结合能的奇偶振荡现象,科研人员针对中子和质子的对力强度、弥散度等进行了相应优化。研究表明,新建构的PC-L3R点耦合相互作用,不仅在结合能上可以给出更接近实验数据的描述,而且可以较好地再现实验上观测到的电荷半径。同时,对于同位素以及同中子素链的研究表明,PC-L3R可以平衡库伦场和同位旋矢量道对拉氏量的贡献。PC-L3R点耦合相互作用为未来的协变密度泛函理论研究提供了一组可靠的参考。研究工作得到中国科学院战略性先导科技专项(B类)、国家自然科学基金面上项目和中国科学院国际人才计划的支持。图1.91个球形原子核(红点),背景小方格代表实验上已经测量到结合能的原子核。(图/卢宁、蓝乙华)图2.91个球形原子核结合能的实验与理论相比均方根。在众多点耦合相互作用当中,PC-L3R点耦合相互作用给出最接近实验值的理论结合能。(图/蓝乙华)
  • PSC发布mIRage超高空间分辨红外成像光谱仪新品
    超高空间分辨红外成像光谱仪 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的红外光谱和成像采集系统mIRage。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μmx 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点:基于独家专利的光热诱导共振(PTIR)技术,mIRage突破了传统红外的光学衍射极限,空间分辨率高达500 nm;可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,但无任何荧光风险;非接触式测量,避免了交叉污染。 mIRage超高空间分辨红外成像光谱仪
  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • 毒潮新变:依托咪酯列管背后的打击与预防
    依托咪酯,是一种不溶于水的白色粉末状物质,为非巴比妥类静脉短效麻醉药,是麻醉诱导常用药物之一,主要适用于全麻诱导和短时手术麻醉。过去,不法分子常利用依托咪酯的麻醉作用,将其作为毒品的替代品进行非法制造和贩卖——将依托咪酯添加到普通香烟烟丝中或勾兑到电子烟油中,贩卖给吸毒人员和其他人员吸食,从而牟取暴利。涉依托咪酯滥用问题日渐突出,造成严重社会危害。  2023年10月1日起,依托咪酯被国家正式列管。这就意味着,贩卖依托咪酯就是贩毒,滥用依托咪酯就是吸毒,坚决打击涉依托咪酯违法犯罪刻不容缓。依托咪酯列管时间线  2023年2月13日  国家药监局、公安部和国家邮政局三部门下发通知,进一步加强复方地芬诺酯片等药品的管理。通知指出,近期我国部分地区出现复方地芬诺酯片、复方曲马多片、氨酚曲马多片以及右美沙芬口服单方制剂、依托咪酯注射剂的滥用问题,且滥用人群以青少年为主,严重危害公众身心健康和生命安全。  2023年9月6日  国家药监局、公安部和国家卫生健康委联合下发通知,将地达西尼、依托咪酯(在中国境内批准上市的含依托咪酯的药品制剂除外)列入第二类精神药品目录,自2023年10月1日起施行。  2023年10月7日  国家药品监督管理局官网发布了《国家药监局 国家卫生健康委关于加强依托咪酯和莫达非尼药品管理的通知》。  依托咪酯被列管检测方法抢鲜看  疑似吸食者样品需检测依托咪酯原型及代谢物,推荐采用LC-MS/MS方法来进行检测。  依托咪酯烟粉、电子烟主要添加依托咪酯原型,可采用GC-MS方法来进行检测,结合NIST谱库进行定性分析,同时兼顾定量分析。  滥用问题突出,依托咪酯被列管  《2023年中国毒情形势报告》指出,麻精药品等成瘾性物质替代滥用问题突出。疫情后,海洛因、冰毒等主流毒品价格依然较高,吸毒群体转向更易获取、价格较低、效果相近的麻精药品等成瘾性物质替代滥用,依托咪酯滥用问题尤为突出。  2023年9月6日,国家药监局、公安部、国家卫生健康委发布关于调整麻醉药品和精神药品目录的公告,将依托咪酯(在中国境内批准上市的含依托咪酯的药品制剂除外)列入第二类精神药品目录,该公告自2023年10月1日起施行。列入第二类精神药品目录,意味着其将受到更严格管制。  列管之后,非法吸食、走私、贩卖依托咪酯等将按涉毒违法犯罪行为处理。而我国刑法第347条规定,走私、贩卖、运输、制造毒品,无论数量多少,都应当追究刑事责任,予以刑事处罚。  今年6月21日,最高人民检察院发布6起惩治涉麻精药品等成瘾性物质滥用犯罪典型案例。其中一起为贩卖依托咪酯、容留他人吸食依托咪酯案。  2023年10月,被告人刘某永多次非法贩卖含依托咪酯电子烟弹给杨某茵(未满18周岁)、韦某健和李某宇,并容留杨某茵、杨某娟(均未满18周岁)吸食含依托咪酯电子烟。2024年1月4日,广东省高州市人民检察院对被告人刘某永依法提起公诉。2月25日,高州市人民法院以贩卖毒品罪、容留他人吸毒罪,数罪并罚对其执行有期徒刑3年6个月,并处罚金人民币1万元。  该案为依托咪酯列管后高州市司法机关办理的首批案件。检察机关通过依法提前介入侦查活动,引导侦查机关及时对所查获的烟弹和刘某永等人的尿液进行鉴定、检测,重点围绕含依托咪酯电子烟的购销经过,全面收集相关聊天记录等客观性证据,完善证据体系。因涉案人员作案手法隐蔽,惩治打击难度大,检察机关在办案中积极引导公安机关侦查取证,深挖毒品漏罪、漏犯,并及时追诉。因该案涉及未成年人贩毒、吸毒,为充分履行对未成年人保护的法律监督职责,检察机关在办案过程中多次与公安、教育、市场监管等相关职能部门会商,形成工作合力。检察机关还深入推进法治进校园工作,开展校园禁毒教育专题讲座,构建毒品犯罪预防教育全覆盖体系。该案还充分发挥了典型案例示范、引领和指导作用,通过检察机关“前哨”治理毒品问题,有效加强了对依托咪酯的管控。  贩毒方式更隐蔽,查处打击难度大依托咪酯被列管以来,从警方侦办的相关案件来看,存在运输手段、交易方式隐蔽的特点,如:通过快递、“闪送”等方式运输、贩卖,毒资支付、毒品交付网络化,这也进一步加大了公安机关对这类毒品犯罪的打击难度。  据湖南省临澧县警方公开消息,今年4月,禁毒民警在日常工作中发现一条涉毒线索,迅速抓获几名涉嫌吸食依托咪酯人员。随后,民警通过不断深挖,发现该案背后极有可能隐藏着一个贩毒团伙。办案民警介绍,该团伙成员反侦查能力极强,行踪不定,很难捕捉,并且对相关麻精药品列管非常了解,被抓后还企图辩解称交易的是非列管物质。在察觉到警方的步步紧逼之后,不惜卸下车牌、丢掉手机,仓皇出逃。民警始终循着线索研判分析,不放过任何蛛丝马迹,通过多种手段掌握该团伙贩毒证据。在相关部门的大力协助下,办案民警于7月初成功将3人抓获。  据犯罪嫌疑人供述,他们用聊天软件线上沟通,且约定只能以现金形式完成毒品交易,以此逃避公安机关追查。  而在一些案件中,犯罪嫌疑人为掩饰、隐瞒毒品犯罪所得,使用他人资金账户收款,其行为已构成贩卖毒品罪、洗钱罪。  据福建省福州市鼓楼区人民法院公开消息,近日,鼓楼区人民法院审结了一起“贩毒+洗钱”新型毒品犯罪案件。被告人翁某某、李某某系朋友。在2023年11月7日,翁某某通过微信联系朱某,欲向其出售含有依托咪酯的2个电子烟弹。后翁某某拜托其朋友李某某与朱某对接沟通拿货时间与地点。当日下午,朱某前往约定好的地点,为掩饰、隐瞒毒品犯罪所得,被告人翁某某、李某某要求朱某使用现金支付毒资,因朱某无现金,两个被告人遂使用不知情的朋友叶某某的微信收款码收取毒资共计1600元,并作为债务偿还给叶某某。鼓楼法院对2名被告人均判处有期徒刑6个月,并处罚金人民币5000元。  在司法实践中,毒品犯罪和洗钱犯罪往往相伴而生。根据我国刑法规定,为掩饰、隐瞒毒品犯罪、黑社会性质的组织犯罪、恐怖活动犯罪、走私犯罪、贪污贿赂犯罪、破坏金融管理秩序犯罪、金融诈骗犯罪的所得及其产生的收益的来源和性质,实施提供资金账户、通过转账或者其他支付结算方式转移资金等掩饰、隐瞒行为的,构成洗钱罪,情节严重的,处5年以上10年以下有期徒刑,并处罚金。  麻精药品“披新衣”,切勿掉入陷阱为获取暴利,一些不法分子将毒品“乔装打扮”,将其伪装成食品、饮料、电子烟等带入日常生活。尤其是近年来,电子烟在青年群体中流行,不法分子便抓住年轻人对新事物好奇、追求刺激的心理,将贩毒黑手伸向了这一群体。  今年6月,在湖南省邵阳市中级人民法院公布的一起案件中,2006年出生的小丽(化名),初中辍学过早进入社会,结识了有诈骗罪前科的申某,后二人发展成为男女朋友。在申某的引诱下,小丽开始吸食含依托咪酯成分的电子烟。2023年9月,小丽、申某与黄某等人一起到岳阳市购买了约10克依托咪酯,由他人将依托咪酯制成烟弹。2023年10月1日至10月3日,小丽在他人的蛊惑下,向其闺蜜赵某某和好友何某、阮某某3人各贩卖了一次“烟弹”,违法所得共计400元。其间,小丽容留何某等多人一起在其租住的公寓内吸食该烟弹一次,后小丽等人被公安机关抓获。由于小丽犯罪时已满16周岁、未满18周岁,且具有坦白、认罪认罚、积极退赃等情节,最终法院以贩卖毒品罪、容留他人吸毒罪,数罪并罚,决定合并执行有期徒刑1年2个月,并处罚金人民币7000元。本案中,小丽因交友不慎染上毒瘾,最终踏上贩毒的不归路。这也提醒广大青少年要提高警惕,谨慎交友,提高防范意识和自我保护意识,自觉远离毒品。  专家提示,“上头电子烟”指的就是掺入依托咪酯、合成大麻素等物质的电子烟,吸食后会出现眩晕、手脚抽搐、昏厥等现象。日常生活中,一旦听到“比普通香烟带劲”“抽了让人上头”这样的话,那就务必要对这种“烟”提高警惕了。披上“电子烟”的伪装,配以“时尚”“合法”“不成瘾”等噱头,很多青年群体往往难以分辨,进而掉入毒品陷阱,甚至有的为了获取毒资走上以贩养吸的道路。  对此,公众尤其是青少年,应时刻绷紧禁毒思想防线,切勿被含有依托咪酯等毒品成分的“上头电子烟”所迷惑,切勿以身试法,自觉做到拒毒、防毒。同时,遏制青少年毒品犯罪,还需要学校、家庭和社会的共同参与,形成毒品预防教育工作合力。  滥用危害巨大,警惕陷入成瘾泥潭滥用依托咪酯会影响人的情绪、思维和意志行为等,会对中枢神经系统、心血管系统、肝肾功能造成严重损害,长期并大剂量使用易导致呼吸暂停、死亡等严重后果。近年来,一些因吸食依托咪酯而导致的肇事肇祸案(事)件也时有发生。  6月25日,最高人民法院召开新闻发布会,发布10起相关典型案例,其中一起是吸食含有依托咪酯等成分的电子烟意识模糊后驾车并导致发生交通事故的案例。被告人聂某文于2023年7月19日16时许,在家中吸食含有依托咪酯、曲马多成分的电子烟后,无证驾驶小型汽车发生交通事故,在驾车前往交警大队接受进一步处理的途中,再次吸食该电子烟,导致意识模糊,继而又接连发生多起交通事故。  湖南省醴陵市人民法院审理认为,被告人聂某文以驾车冲撞的方式危害公共安全,侵害不特定多数人的生命、健康及财产安全,其行为已构成以危险方法危害公共安全罪,依法对其判处有期徒刑4年6个月。  本案系依托咪酯列管前被滥用引发次生犯罪的典型案例。法院依法对聂某文以危险方法危害公共安全罪定罪处刑,体现了对药物滥用引发的次生犯罪予以严惩的鲜明态度。本案还反映了含有成瘾性物质的电子烟对个人和社会的严重危害,警示社会公众自觉抵制各类成瘾性物质,杜绝侥幸心理。  吸食含依托咪酯等成瘾性物质的“上头电子烟”,吸食者从一天一两个烟弹到一天四五个甚至更多,最后只会日夜颠倒,身心俱损,生活一团糟,不但害了自己,还会让其背后的家庭笼罩在毒霾之中。  根据“广东戒毒”微信公众号发布的一起涉毒案例,00后的查某原本充满活力与朝气,却因为吸食了依托咪酯,被强制隔离戒毒两年。查某讲述,从2020年开始,他在广东中山市做酒吧营销,在鱼龙混杂的工作环境中,前来消费的顾客向他推荐了一种“上头电子烟”,其中加入的正是依托咪酯。借着酒劲,查某吸食了一大口,就此染上毒瘾。  “吸食以后会‘断片’,连自己做了什么都不知道。”查某说。不久后,查某就出现了免疫力严重下降、视力降低、记忆力减退的症状。因为多次吸食依托咪酯,查某出现精神障碍,原本健康的身体变得“残破不堪”。后来,他因为吸毒被责令社区戒毒,但在社区戒毒期间他仍不知悔改,最终被公安机关抓获并处强制隔离戒毒。得知他吸毒的消息后,父母让他以后不要再回家。民警了解相关情况后,及时联系其家属,帮助其修复家庭关系,经民警努力家人最终愿意给他机会改过自新。  专家表示,含有依托咪酯等成瘾性物质的“上头电子烟”伪装性、迷惑性大,与合成毒品相比,成瘾人群平均年龄更低,长期吸食会导致严重的精神障碍。对于毒品,千万不要抱有侥幸心理,不要轻易尝试“第一口”。
  • 揭秘臭气嗅辨师:用鼻子监控环境(图)
    [提要] 一年要尝试闻上千遍臭气样品,闻的臭气能装下180个2.5升可乐瓶子,他们就是靠鼻子来“吃饭”的嗅辨师,也被通俗称为“闻臭师”。”温丰功给记者算了一下,他们一年多则做200次恶臭测定实验,少则做100次,按照每年100次实验计算,每人每次要轮流闻9个3升装气袋子,一年折算下来,闻的气体能装下180个2.5升可乐瓶子。   一年要尝试闻上千遍臭气样品,闻的臭气能装下180个2.5升可乐瓶子,他们就是靠鼻子来“吃饭”的嗅辨师,也被通俗称为“闻臭师”。近日,记者走近这些用鼻子监控岛城生活环境的群体。   ■难忘事   第一次闻的是汗臭味   2003年8月份,烟台小伙子温丰功大学毕业后到青岛市环境监测中心站工作。两个月后,从不喜欢抽烟的他被单位选派到省环境监测中心站培训考试,那时候他才知道“嗅辨师”这个新名词。   “我们要分清楚5种标准臭味,分别是花香、汗臭、甜锅巴、成熟水果、粪臭气味。”温丰功还记得当时考试的情景,主考人把5条无臭纸中的3条一端浸入无臭液1厘米,另外两条浸入标准臭液1厘米,然后将5条浸液纸间隔一定距离平行放置,同时让被测者嗅辨。“我还记得,我当时闻出来的第一种气味是汗臭味,后来是花香味,最后这些气味全都闻出来后,考试才算合格。”温丰功说,这些无臭液和标准臭液是用液体石蜡来当溶剂,短时间闻出5种气味不算容易,不过自己从不抽烟,鼻子比较灵敏从而轻松过关,成为青岛第一个“闻臭师”。   “现在仪器有很多,怎么还需要靠鼻子来分析臭气呢?”记者提出这个问题,温丰功笑着说,现在的嗅辨仪只能测到硫化氢、甲硫醇、甲硫醚、氨等8种典型的恶臭污染物,而大家闻到的恶臭经常是多种气味混合在一起的,这个就需要更为灵敏的人鼻来判定。温丰功介绍,恶臭是个综合性的概念,一切刺激嗅觉器官,引起人们不愉快的损害生活环境的气体物质都称为恶臭,甚至香过头了的气体也属于恶臭。   ■细小事   每次测定他先闻原气   作为市环境监测中心站资格最老的“闻臭师”,温丰功每次做恶臭测定时都要第一个闻采集来的原气,不管臭到什么程度,然后再经过稀释后让其他同事一起来闻气做分析。“我干了9年了,闻的臭气也有很多,应该稀释到什么倍数,多少清楚一些,所以每次让我先来闻原气。”我国的实验室恶臭测定使用的是三点比较式闻臭法,每次闻气必须有6人来闻气袋里的臭气,每个人要闻3组气袋,每次稀释程度不同,直到闻不出来臭味为止。   记者在市环境监测中心站实验室里见到了这种3升装气袋,18个气袋子要分成6组,每个袋子上都带有A、B、C编号,每组中有两袋子充的是用活性炭净化的空气,另外一袋子是稀释后的臭气。温丰功和两名同事给记者演示了闻气的方法,3名“闻臭师”分别取下气袋上通气管的塞子,右手轻拍气袋,每个闻了 10秒钟。对气袋里的气体比较,他们要各自独立挑出有味气袋,全体嗅辨结束后,再进行下一级稀释倍数实验,每一次分析要进行三次闻气。“我们一个样品实验下来,至少需要一个小时时间,然后对这些数据进行统计分析,最终计算出臭味是否超标。”   温丰功给记者算了一下,他们一年多则做200次恶臭测定实验,少则做100次,按照每年100次实验计算,每人每次要轮流闻9个3升装气袋子,一年折算下来,闻的气体能装下180个2.5升可乐瓶子。   ■难受事   闻到恶臭头晕目眩   温丰功说,现在“闻臭师”的工作范围很广,除了工厂治污验收,还要测定一些固定污染源。“经常闻一些臭气,会不会损害自己的身体呢?”记者问。温丰功说,除了原气外,其他测定的都是稀释之后的臭气,每次只是轻轻闻一下,因此对闻臭师的身体影响不大。“嗅辨只是我们的一种工作,我们平常还要做其他大量的检测工作,并不是每天要闻很多臭气。”此外,闻臭时他们会采取一些保护措施,不能直接凑到气袋上闻,要跟鼻子有点距离,然后轻轻扇动让臭味飞到鼻子里。   记者了解到,即便这样,前几年有一次在给一家垃圾场的臭气做恶臭测定时,还是让温丰功难受得吃不下饭。“那个垃圾场渗沥液散发的原气掺有海产品腐败、蔬菜腐烂等多种臭味,特别熏人,我闻了一点后就感觉头晕恶心,后来稀释了100倍才好一些,不过当天的午饭我没有吃下去。”   温丰功告诉记者,他们做出来的恶臭测定结果是具有法律效力的,环保部门要根据结果来责令有关企业作出整改措施。温丰功告诉记者,恶臭已经是我国主要污染之一,农贸市场、垃圾场、厕所、下水道等也是产生源。   ■有趣事   臭味也能变成香味   “有时候,我们也能闻到香味,那是臭气稀释后散发出来的。”温丰功说,一些恶臭在稀释到一定程度会变成香味。前两年,在给一家工厂的废气做恶臭测定时,刚开始还是臭味,到后来稀释到1000倍时,这种臭味就变成了一种淡淡的香味了,可能是应了哪句 “物极必反”的说法吧。   温丰功告诉记者,严格意义上的“臭”包括日常生活中的臭气和香气。通常情况下,不管是什么气体,超过正常值的20倍就是污染。有些香气浓度超高后,气味会比一般的臭气还难闻。   ■禁忌事   不能抽烟不能化妆   闻臭师不是件好差事,工作禁忌也不少。温丰功说,由于工作的特殊性,“闻臭师”这种职业并不是所有人都能胜任,从2003年以来参加考试的人群中,只有不到六成人过关。男的不能抽烟,女的不能化妆,还不能有呼吸道疾病,年龄要在18岁到45岁之间。   “要是有鼻炎的话,就不能担任这个工作,还有感冒期间也不能参加分析工作。”温丰功还告诉记者,根据规定,在需要监测的前一天以及监测过程中,闻臭师不能感冒,不能使用带有香味的物品,如化妆品、洗发水、沐浴液、香皂等,饮食也需要注意,不吃辛辣的、油炸的食品,葱、姜、蒜、辣椒等调味品更不能沾边。“工作时不能抽烟喝酒,是不是有些痛苦呢?”记者问。温丰功说,平常自己不抽烟,也不怎么喝酒,连吃火锅时都不吃香辣锅。“这是工作,我们做的工作跟岛城千家万户密切相关,这点小付出是值得的。”   温丰功说,站里的环境监测有很多项任务,恶臭测定只是其中一项监测,他的工资在3000元以上。9年来,市环境监测中心站的“闻臭师”已经发展到了近20人,其中六成是女性。记者了解到,由于人的嗅觉会随着年龄的增长减退,闻臭师拿到证书后,并不是终身制,还需要每隔三年重新检测一次,合格后方能在下一个三年周期内担任“闻臭师”。记者 陈勇 摄影报道   ■相关链接   靠鼻子“吃饭”的人   除中国之外,美国、英国、荷兰、比利时、日本等国家也设有“闻臭师”职业。美国“闻臭师”每天穿行在熙熙攘攘的人群中,闻他人身体散发出的异味,为人体体味研究实验提供详细的资料。荷兰“闻臭师”分布在工业区及居民区边缘的小屋,不时将头伸出窗外,嗅闻空气中是否有令人讨厌的气味,以便及时控制大气污染。日本“闻臭师”大多专门闻公共厕所,一旦臭味超标,就责成厕所管理员限时除臭。据了解,东京环保当局招募的“闻臭师”在地铁、车站、公厕等发现异味,可立即向环保当局报告,以责成专人限时除臭。从事这项工作的人员月薪可高达50多万日元,约合人民币3.8万元。
  • 我国科学家开发微米分辨率的肿瘤组织磁成像技术
    病理组织检测是诊断癌症的“金标准”。传统的光学成像技术容易受到样品光学背景强、检测信号稳定性差、定量不准确和不同光学方法不能共用等问题的影响。中国科学技术大学的研究团队开发了微米分辨率的肿瘤组织磁成像技术,相较于传统的光学成像检测方法,该技术具有高稳定性、低背景和肿瘤标志物绝对定量的特点。相关成果在《PNAS》发表,题为:A generalized linear mixed model association tool for biobank-scale data。  研究团队开发了组织水平的免疫磁标记方法,通过抗原-抗体的特异性识别,将磁颗粒特异标记在肿瘤组织中的靶蛋白分子上,将已完成磁标记的组织样品紧密贴附在磁显微镜的检测器上进行磁场成像,最后通过深度学习模型定量分析检测信号,实现微米分辨率的肿瘤组织磁成像。由于生物样本自身一般都没有磁场背景,而且磁信号的高稳定性便于样品的长期保存和重复检测,所以这项技术在分析含光学背景、光透过差和需要定量分析的生物组织时具备明显优势,是肿瘤组织检测领域的重要突破。  该研究成果不仅在肿瘤临床诊断方面具有广阔的应用前景,也为肿瘤相关研究提供了新的技术支撑。   注:此研究成果摘自《PNAS》,文章内容不代表本网站观点和立场。  论文链接:https://www.pnas.org/content/119/5/e2118876119
  • 清华大学新成果:同时实现深亚埃分辨的原子结构成像和亚纳米分辨的晶体取向成像
    近日,清华大学材料学院于荣教授课题组与李千副教授课题组在晶体取向成像方法和位错三维结构研究中取得进展。该研究基于课题组近期发展的自适应传播因子叠层成像方法,在自支撑钛酸锶薄膜中同时实现了深亚埃分辨的原子结构成像和亚纳米分辨的晶体取向成像,并揭示了钛酸锶中位错芯在电子束方向的结构变化。晶格缺陷是材料中的重要组成部分。相对于完美基体,缺陷处的对称性、原子构型、电子结构都发生变化,在调节材料整体的力学、电学、发光和磁性行为方面发挥着关键作用。然而,缺陷处的对称破缺和原子的复杂构型也给缺陷结构的精确测量带来障碍。比如,位错附近不可避免存在局域应变和晶体取向变化,但是用高分辨电子显微学表征晶体中的原子构型又要求晶带轴平行于电子束,否则分辨率会显著降低。这个矛盾一直是位错原子结构的实验分析中难以克服的困难。研究组通过自适应传播因子多片层叠层成像技术研究了钛酸锶中位错芯的原子结构。如图1所示,研究成功地将晶体倾转从原子结构成像中分离出来,同时实现了达到深亚埃分辨率的原子结构成像和亚纳米分辨率的晶体取向成像。图1. SrTiO3中位错的结构像和取向分布。a、叠层成像的重构相位。b、图a中相位图的衍射图,黄色虚线表示0.3Å的信息极限。c、叠加相位图的晶体倾转分布,白色箭头表示[001]方向在平面内的投影,黄色箭头表示位错核的横向移动。d、晶体在[100]和[010]方向的倾转的分布。标尺长1nm在图1中,位错芯看起来范围很小,只有一两个单胞。这种衬度在位错的高分辨成像中很普遍,人们通常认为这样的位错是沿着电子束方向的直线。然而,应用多片层叠层成像的深度分辨能力,可以看出该位错并不是一根直线,而是随着样品深度发生横向位移,形成位错扭折,如图2所示。图2. 刃位错的三维可视化。a、刃位错的相位图;标尺长5Å。b、图a中用A-B标记的分裂原子柱相位强度的深度变化。c、Sr、TiO和O原子柱的相位强度的深度分布。d、深度分别为2.4nm、6.4nm和12.0nm的相位图;标尺长5Å。e、图d中标记的原子柱的相位随样品深度的变化。f、位错扭折示意图该研究还比较了叠层成像和iCOM技术(其简化版即常见的iDPC技术),结果显示叠层成像在横向和深度方向的分辨率都显著优于iCOM和iDPC,如图3所示。图3.多片层叠层成像和系列欠焦iCOM的深度切片。a、多片层叠层成像和iCOM的深度切片;从上到下,切片深度分别为1nm、4nm和11nm;标尺长5Å。b、沿着位错扭折的势函数和相位图的横截面;从左到右分别是用于生成模拟数据集的势函数、多片层叠层重构的相位和系列欠焦iCOM相位;可以看出,iCOM的模糊效应显著大于叠层成像。c、图b中所示的原子柱的相位随样品深度的变化。黑色垂直虚线表示沿原子柱的转折点的真实位置(与图b中白色虚线所示位置相同);可以看出,iCOM在深度方向的模糊效应也大于叠层成像研究总结了多个位错芯的深度依赖结构与晶体取向分布,揭示了位错移动与薄膜形变方式的相互关系。如图4所示,当薄膜绕位错的滑移面法线方向扭转时,位错滑移;当薄膜绕位错的滑移面法线方向弯曲时,位错攀移。图4. SrTiO3中多个位错的晶体倾转分布。a、包含三个位错的区域的相位图。b、对应图a中区域的晶体倾转分布,其上叠加了相位图;黄色箭头表示位错的横向移动方向。图a和b中的标尺为15Å。c、晶体倾转与位错横向位移的相互关系;晶格矢量c由于倾斜矢量t变为c’,即c’=c+t;黑色方块用于说明应变状态;左边为扭转,右边为弯曲;在两种形变模式中,薄膜上部和下部的应变都是反向的,对应位错向相反方向的横向移动。图b中左上角的位错和图2中的位错对应于扭转模式;图b的中心和右上方的位错对应于两种模式的混合研究结果以“晶体取向的亚纳米尺度分布和钛酸锶位错芯的深度依赖结构”(Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3)为题于1月11日发表在学术期刊《自然通讯》(Nature Communications)上。清华大学材料学院2018级博士生沙浩治、2022级博士生马云鹏、物质科学实验中心工程师曹国平博士、2019级博士生崔吉哲为共同第一作者,于荣教授与李千副教授为共同通讯作者。物质科学实验中心程志英高级工程师在实验数据采集中提供了重要帮助。该研究获得国家自然科学基金基础科学中心项目的支持。
  • Analytical Chemistry封面文章 - 扫描电化学显微镜实现纳米级高分辨图像测试
    “根”本不一样的精彩——扫描电化学显微镜实现纳米级高分辨图像测试 近日,天津大学纳米中心(TICNN)马雷教授课题组的在读博士生刘根利用自主研制的~50 nm探针和最小化应用电压方案,实现了50 nm的电化学图像分辨率,从而解决了SECCM高分辨测试中液滴针尖的稳定性问题。其论文Topography Mapping with Scanning Electrochemical Cell Microscopy作为封面文章发表在Analytical Chemistry期刊上,原文链接:https://pubs.acs.org/doi/10.1021/acs.analchem.1c04692。SECCM纳米级高分辨率图像扫描电化学显微镜能够能够同时实现样本被研究表面局部形貌和电化学信息获取,扫描探针与样本通过半月形微液滴接触,对样本形貌无损伤,无需脱水,固化、金属喷涂等复杂的预处理。还可以通过移液管向材料表面进行定量物质传送,因此SECCM在纳米材料沉积、电化学微传感器和电催化等方面有广泛的应用前景。△图为2022年帕克AFM奖学金获得者刘根与Park NX10原子力显微镜合照 经过反复的测试与实验,该课题组利用自主研制的~50 nm直径探针及SECCM测试方案,最终得到了纳米级别的的高分辨率图像。同时也成功得到了~45 nm自组装单层金纳米颗粒的形貌和电化学产氢反应的活性图像。这项研究成果不仅能够在纳米尺度实现了SECCM的常规化测试,还能同时得到样品的形貌和电化学活性信息。该项研究成果为真正意义上的常规化测试迈出了坚实重要的一步,并极大扩展了SECCM在不同领域的应用。 工欲善其事,必先利其器。Park NX 10在该研究起到了重要作用。“SECCM测试中使用的是50 nm左右的小探针,这意味着pA级别的小电流。而且多数时候,这一数值会小于1.0 pA。这对体系的稳定性有着极高的要求。而Park NX 10体系则很好的满足了这一需求。此外,Park AFM体系的z-方向位移台,可以稳定地运行0.1 μm/s的进针速度,提供0.1 nm的高分辨率,这均满足了SECCM测量中对硬件的极高要求,极大地增加了测试的可行性和成功率。”刘根同学介绍道。在此,Park表示将竭心为用户推出易于操作、测量精准、升级创新的AFM,助力科研。并预祝马雷教授课题组能够取得更多优异的科研成果,为国家的纳米科技增光添彩!
  • 这个基因突变会致癌?揭开致病BRCA突变的神秘面纱
    作者:青岛大学附属医院王晓囡、邢晓明2013年,好莱坞知名女星安吉丽娜朱莉在《纽约时报》发表了一篇名为《My Medical Choice》的文章,讲到自己的母亲与癌症斗争了近十年,于56岁时去世。而她遗传了母亲的BRCA1突变基因,这使她患乳腺癌的几率高达87%,患卵巢癌的几率也达到50%。为了尽可能地降低患癌风险,她决定接受预防性双乳切除术。两年后她又选择预防性的切除了卵巢和输卵管。BRCA1突变真的这么可怕吗?我们一起走进BRCA以及他的家族HRR来一探究竟。01 BRCA基因是什么?BRCA是breast cancer这两个英文单词前两个字母的缩写,研究者于上世纪90年代先后发现了与遗传性乳腺癌有关的基因,分别命名为乳腺癌1号基因、2号基因,英文简称BRCA1/2。实际上,BRCA1/2是两种抑癌基因,通俗的讲也就是对人体有好处的基因,它们翻译出来的蛋白质就像故障工程师一样,兢兢业业的修补受损伤或者有缺陷的基因。哪里有基因的双链断裂,哪里就有他们忙碌的身影。其实人体内不是只有BRCA1/2具有基因修复功能,而是有一个负责基因修复的大家族,被称为HRR(同源重组修复)通路,它包含的基因有:BRCA1,BRCA2,ATM,ATR,BARD1,BLM,BRIP1,CDK12,CHEK1,CHEK2,FANCA,FANCC,FANCD2,FANCE,FANCF,FANCI,FANCL,FANCM,MRE11,NBN,PALB2,RAD50,RAD51,RAD51B,RAD51C,RAD51D,RAD52,RAD54L,RPA1等。BRCA1/2是其中比较关键的两个基因,是HRR通路中的中流砥柱。02 如何检测BRCA1/2基因有没有突变?穿刺或者手术切取的组织都会被送往病理科,由病理科的医生对其进行处理并最终制作成蜡块(由石蜡包裹着的组织块)。进行BRCA1/2检测,首先需要从蜡块中提取DNA或者直接从血液中提取DNA,然后通过生物学技术对DNA中的BRCA1/2基因进行测序。由于BRCA1/2基因没有热点突变,即它的突变不集中于某几个区域上,而是在所有区域都有可能发生,所以需要利用下一代测序技术(Next generation sequencing,NGS)对BRCA1/2基因进行全外显子测序。最后根据测序数据分析可能的BRCA1/2基因突变,判定是否携带BRCA1/2基因的突变。03 有BRCA1/2突变一定得肿瘤吗?当然不是啦。其实BRCA1/2的突变分为5类,只有被归为第五类和第四类的突变才可能导致肿瘤的发生。第五类的突变被称为致病性突变,有99%的可能导致肿瘤的发生,第四类的突变被称为可能致病性的突变,有95%-99%的可能导致肿瘤的发生。那为什么发生这两类突变的BRCA1/2基因就从原来的好基因变成坏基因了呢?这是因为发生了这些突变的BRCA1/2基因在翻译时遇到了麻烦,不能翻译出具有正常功能的BRCA1/2蛋白,导致其丧失修复基因双链断裂的能力,这会影响基因组的稳定性,并引起多种肿瘤的发生。有研究指出,BRCA1/2胚系突变可使女性患卵巢癌的风险提高10-30倍,也增加了人们患乳腺癌、前列腺癌、胰腺癌、黑色素瘤等多种癌症的风险。04 BRCA1/2突变会遗传吗?BRCA1/2突变分为体细胞突变和胚系突变两种类型。体细胞突变是指只有肿瘤细胞发生了突变,而人体其他部位的正常细胞则没有发生突变。这种突变不会遗传给后代。那胚系突变是什么呢?我们都知道每个人都是爸爸妈妈爱的结晶,精子和卵子结合形成受精卵,再经过妈妈十月怀胎的辛苦最终有了我们每一个个体。精子和卵子里有来自爸爸和妈妈的染色体,这两部分染色体汇集到一起就变成了我们自己的染色体。如果爸爸或者妈妈贡献给我们的染色体里含有BRCA1/2的突变,那么我们就遗传了这个突变。我们体内的每一个细胞(每个细胞都是从最初的受精卵分裂来的,都跟受精卵有相同的染色体)里都带有这个突变,我们的后代也有可能带有这个突变,这就是胚系突变。胚系突变是可以遗传的。05 怎么区分BRCA1/2的突变到底是体细胞突变还是胚系突变呢?抽取静脉血3ML,分离其中的白细胞,提取DNA进行检测,如果检测出BRCA1/2的突变,这个突变就是胚系突变。如果血液里没有检测到突变,却在肿瘤组织中检测到了,那这种突变就是体细胞突变。06 有BRCA1/2的致病性或者可能致病性突变应该怎么办?对于携带BRCA1/2胚系突变的正常人来说,可以找专业的医生进行遗传咨询,并加强高风险疾病(女性如乳腺癌、卵巢癌等;男性如前列腺癌、胰腺癌等)的筛查,做到早发现早治疗。或者根据医生的建议并结合自身状况,选择是否像安吉丽娜朱莉一样进行预防性切除术以降低患癌风险。同时建议对有风险的亲属如父母、兄弟姐妹、子女等进行遗传咨询并考虑是否进行基因检测。对携带BRCA1/2胚系突变的肿瘤患者来说,一方面可以做遗传咨询,另一方面可以选择相应的药物进行治疗。而对于BRCA1/2体细胞突变的患者来说,可直接进行药物治疗而不用做遗传咨询。07 PARP抑制剂为什么可以用来治疗具有BRCA1/2的致病性或者可能致病性突变的肿瘤患者?前面我们提到BRCA是修复DNA双链损伤的酶,而PARP则是一种修复DNA单链损伤的酶,它的全称聚腺苷二磷酸核糖聚合酶。PARP抑制剂可以选择性的抑制PARP介导的DNA单链损伤修复途径,使发生损伤的DNA单链进一步转化成DNA双链断裂。这个时候就需要BRCA闪亮登场,而如果BRCA基因发生致病性或者可能致病性的突变,如同前文所述,DNA双链断裂就得不到修复,DNA损伤不断积累,最终就导致了细胞的死亡,这被称为合成致死效应。所以在选择此类药物进行治疗前,一定要先进行基因检测,BRCA基因确实存在致病性或者可以致病性突变才可用药,用药才有效果。此外,上文我们提到BRCA1/2是HRR通路中的核心成员,其实HRR通路中的其他基因如果出现问题,如发生致病性或者可能致病性的突变,同样可以影响基因的稳定性,导致肿瘤的发生。2020年PARP抑制剂奥拉帕利获得美国FDA(美国食品药品监督管理局)批准一项新的适应症,即用于治疗HRR通路基因突变的前列腺癌患者。 了解了BRCA1/2的前世今生,揭开了它的面纱,是不是觉得它也没有那么可怕了呢?可能不是每个人都能像安吉丽娜朱莉那样喊出自己的医学宣言,但是知己知彼,百战不殆,了解它,走进它,干掉它,愿每一位患者都能战胜病魔拥抱健康。
  • 【实验室动态】QD中国北京实验室引进美国PSC非接触亚微米分辨红外拉曼同步测量系统-mIRage样机
    2020年,QD中国迎来了公司的十六个年头。为满足国内日益增长的红外仪器测试需求,更好的为国内的科研工作者提供专业技术支持和服务,Quantum Design中国子公司北京总部的样机实验室迎来了一个新的面孔——美国PSC公司(Photothermal Spectroscopy Corp., 前身Anasys)非接触亚微米分辨红外拉曼同步测量系统 mIRage。 mIRage 红外拉曼同步测量系统是一个全新的光谱测试系统,基于的光热诱导共振(PTIR)技术, mIRage产品突破了传统红外光谱系统的两大难题:1. 无需接触式的ATR部件及AFM探针技术,即可实现亚微米空间分辨的红外光谱和成像分析;2. 非接触的反射测量模式,提供媲美透射模式的IR谱图质量和标准的谱图数据库,大大简化了样品制备和图谱分析过程,并支持厚样品和液体样品的测试。 图 1. mIRage系统及O-PTIR技术原理示意图mIRage采用可调脉冲式中红外激光器激发样品表面,产生光热诱导热膨胀效应,然后将可见光聚焦到样品上作为“探针”探测产生的光热效应,从而实现快速、简易的样品探测,且不接触样品。基于O-PTIR技术,mIRage可支持多种红外测量模式,包括反射模式下高速的单点(图2 A)和线性扫描红外谱图(图2 B)以及亚微米分辨的单一波长下的高光谱成像(图2 C和D),分析样品目标位置上的化学组成及分布。 图2. mIRage系统数据示例(A)单一纤维不同位置的O-PTIR谱图. (B)高分子薄膜红外线性扫描谱图.(C)多层薄膜单一波长下的高光谱红外成像及谱图. (D) 数据存储单元单一波长下的O-PTIR成像, 用于污染检测 另外mIRage可与拉曼联用,实现同时同地相同分辨率的IR和Raman测试(图3A),无荧光风险;且可选配透射模块(图3B),用于观察液体样品,满足科研工作者的不同测试需求。图3. 血红细胞的O-PTIR和Raman同步谱图测试及成像. (B) 透射模式下观察液体样品(上皮细胞) mIRage非接触式亚微米分辨红外拉曼同步测量系统,可以快速,准确的实现样品亚微米尺度的红外光谱和成像检测,被广泛应用于多层薄膜、高分子聚合物、生命科学(骨头,细胞,头发等)、医药、法医鉴定、缺陷分析、微电子污染、食品加工、地质学及考古和文物鉴定等多种应用领域。更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!
  • Analytical Chemistry封面文章 I 扫描电化学显微镜实现纳米级高分辨图像测试
    “根”本不一样的精彩——扫描电化学显微镜实现纳米级高分辨图像测试近日,天津大学纳米中心(TICNN)马雷教授课题组的在读博士生刘根利用自主研制的~50 nm探针和最小化应用电压方案,实现了扫描电化学纳米级别的成像,有效的解决了SECCM高分辨成像中液滴针尖的稳定性问题。其论文Topography Mapping with Scanning Electrochemical Cell Microscopy作为封面文章发表在Analytical Chemistry期刊上。△SECCM 纳米级高分辨图像扫描电化学显微镜能够能够同时实现样本被研究表面局部形貌和电化学信息获取,扫描探针与样本通过半月形微液滴接触,对样本形貌无损伤,无需脱水,固化、金属喷涂等复杂的预处理。还可以通过移液管向材料表面进行定量物质传送,因此SECCM在纳米材料沉积、电化学微传感器和电催化等方面有广泛的应用前景。△图为2022年帕克AFM奖学金获得者刘根与Park NX10原子力显微镜合照经过反复的测试与实验,该课题组利用自主研制的~50 nm直径探针及SECCM测试方案,最终得到了纳米级别的的高分辨率图像。同时也成功得到了~45 nm自组装单层金纳米颗粒的形貌和电化学产氢反应的活性图像。这项研究成果不仅能够在纳米尺度实现了SECCM的常规化测试,还能同时得到样品的形貌和电化学活性信息。该项研究成果为真正意义上的常规化测试迈出了坚实重要的一步,并极大扩展了SECCM在不同领域的应用。工欲善其事,必先利其器。Park NX 10在该研究起到了重要作用。“SECCM测试中使用的是50 nm左右的小探针,这意味着pA级别的小电流。而且多数时候,这一数值会小于1.0 pA。这对体系的稳定性有着极高的要求。而Park NX 10体系则很好的满足了这一需求。此外,Park AFM体系的z-方向位移台,可以稳定地运行0.1 μm/s的进针速度,提供0.1 nm的高分辨率,这均满足了SECCM测量中对硬件的极高要求,极大地增加了测试的可行性和成功率。”刘根同学介绍道。△2022年帕克AFM奖学金证书在此,Park表示将竭心为用户推出易于操作、测量精准、升级创新的AFM,助力科研。并预祝马雷教授及其课题组在未来可期的日子里取得更多优异的科研成果,为国家的纳米科技增光添彩!
  • 清华大学张强锋团队开发冷冻电镜密度图分辨率估计的AI算法
    冷冻电镜已成为解析生物大分子结构的最主要技术之一。在冷冻电镜密度图的质量评估中,一个关键的指标是分辨率,即可以通过一致性测试的最精细结构细节的大小。由于样品异质性和辐射损伤等因素的影响,冷冻电镜密度图在不同区域的分辨率是可以不同的;因此,研究者因此引入了局部分辨率的概念。快速、准确、有效地评估冷冻电镜密度图的局部分辨率可以为三维重构和下游结构分析提供指导。目前可用的局部分辨率估计方法存在一些限制,比如需要人工进行参数调整、耗时较长,以及在某些情况下需要以半折密度图 (half map) 作为输入,无法对单个密度图估计局部分辨率等 。 近日,清华大学生命科学学院/北京生物结构前沿研究中心张强锋课题组在Journal of Molecular Biology期刊发表题为: CryoRes: Local Resolution Estimation of Cryo-EM Density Maps by Deep Learning 的研究论文。在该研究中,他们开发了一个基于深度学习框架的人工智能算法——CryoRes,可以直接从单个冷冻电镜密度图中估计出局部分辨率。 CryoRes建立在残差3D U-Net的架构之上,可以在端到端的预测框架下执行精确的局部分辨率估计。通过在1174个实验获得的冷冻电镜密度图数据上进行监督式训练,CryoRes学习到了密度图体像素特征与分辨率之间的关系,从而实现了无需额外输入直接进行局部分辨率的估计。 相对于目前广为使用的基于FSC的方法blocres,CryoRes局部分辨率估计的平均均方根误差为2.26Å,显著优于当前最先进的分辨率估计方法。此外,CryoRes还能够为每个密度图生成大分子表面,其精度比ResMap估计的大分子表面的准确率高12.12%。此外,相较于其他方法,CryoRes克服了一些限制,例如需要输入half map或大分子表面的信息,实现了全自动、无参数、超快速的局部分辨率估计。 另外,CryoRes也适用于冷冻电子断层图数据的局部分辨率估计。CryoRes可在https://cryores.zhanglab.net 上免费使用。图:CryoRes框架 清华大学生命科学学院/北京生物结构前沿研究中心张强锋副教授和清华大学生命科学学院博士后徐魁为论文通讯作者,清华大学生命科学学院2021级博士生代沐芷为论文第一作者,2018级博士生董卓尔为该工作做出了重要贡献。另外,清华大学生命科学学院/北京生物结构前沿研究中心闫创业副教授和2021级博士生孔方也为该工作提供了宝贵的意见和帮助。本工作得到国家自然科学基金、中国博士后科学基金、清华-北京生命科学中心博士后基金、北京生物结构前沿研究中心、清华-北大生命科学联合中心、上海期智研究院的支持。 论文链接:https://doi.org/10.1016/j.jmb.2023.168059
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 非接触式亚微米分辨红外拉曼同步测量系统
  • 新品来袭 | “空间和时间的结合”— 纳米分辨和飞秒级别的光谱
    时间是和客观实体的运动相联系的,对时间认识的广度和精度反映的是人类对客观认识的广度和精度。从孔夫子的“逝者如斯夫”到现代科学限普朗克时间,人类从未放弃对时间的不断思索。1923年,H. Hatridge等人次通过液相反应流动管实现了优于秒时间分辨的实验,由此发展而来的停-流法将时间分辨进一步提高到数十毫秒并延用至现今诸多科学实验。1960年代开始,随着红宝石激光器技术的广泛应用,超短脉冲技术不断突破,人类对光谱研究的时间分辨也正式步入皮秒乃至飞秒,激发态分子内能量转换过程、液相化学反应过程、激发能的系间跃迁速率、振动态弛豫等一系列相关科学方向的研究因此得以蓬勃发展。时间和空间是相互关联的,根据爱因斯坦的狭义相对论,任意运动过程是通过速度将空间和时间联系在一起的,只有在限速度下我们才可以确认时空分割的精度。随着超快时间光谱研究的深入,科学家们自然地将空间分辨纳入到了时间分辨的讨论范围,于是一种同时结合高时间分辨和高空间分辨的技术手段应运而生。德国neaspec公司在10纳米空间分辨光谱技术上,利用的双光路设计,集成二路超快激发光,实现了高50飞秒的超快光谱测量,次将超高的时间分辨和空间分辨进行了统一。 图一:AFM探针上的双光路设计确保时间分辨光谱的实现 2014年,该设计理念在实验室成功搭建并商业化后,先在红外光谱领域中被广泛应用于半导体载流子激发-衰减过程,黑磷表面化电子-空穴生成,相变材料光诱导响应速度等一系列微纳领域超快过程的研究。近年来,太赫兹光谱技术逐渐兴起,由于其具有能量低,生物友好,兼有电子学和光子学特点等特性而受到广泛关注。neaspec公司也于今年推出了一款全新的基于太赫兹TDS技术的纳米超快光谱,实现了在太赫兹波段的pump-probe集成。图二:A. 纳米超快光谱在一维纳米线中对载流子衰减过程的研究;B. 纳米超快光谱在多层石墨烯中泵浦激发消逝过程的研究 参考文献:[1]《超快激光光谱学原理与技术基础》,2013,北京化学工业出版社[2] Artifact free time resolved near-field spectroscopy, 2017, Optics Express, 24231[3] Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump?Probe Nanoscopy, 2014, Nano Letter, 894[4] Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, 2014, Nature Photonics, 841
  • 轻松实现5纳米空间分辨率——牛津仪器TKD技术助力纳米析出相研究
    轻松实现5纳米空间分辨率——牛津仪器TKD技术助力纳米析出相研究 结构、成分和工艺决定了材料的性能表现。随着现代电子显微分析技术的发展,特别是大面积能谱和CMOS-EBSD系统商业化的巨大成功,纳米尺度下材料的成分、结构分析已不再是TEM的特权。近日,东莞理工学院王皓亮老师团队通过牛津仪器新一代光纤耦合CMOS-EBSD探测器Symmetry S2,在SEM下轻松表征了Ti22Nb合金中的纳米析出相,TKD空间分辨率达到5 nm。 Ti-Nb体系拥有独特的宽温域线性零膨胀特性,在航空航天、微电子器件、光学仪器等对尺寸稳定性提出严苛要求的高价值工程结构中展现出巨大应用前景。得益于Ti22Nb中a' ' iso析出相在晶向的热收缩特性,调控该相的体积占比和择优取向有助于获得热胀系数为零的合金体系。由此可见,全面理解a' ' iso的析出机理至关重要,而简单、快速、准确的显微分析技术则为材料研发提供了有力支持。简介 近日,东莞理工学院王皓亮老师团队在Scripta Materialia发表了题为Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb的科研成果。文章作者借助中子衍射、STEM-EDS和TKD研究了a' ' iso的析出行为,同时澄清了a' ' iso与基体的晶体学取向关系。牛津仪器应用技术专家王汉霄博士为此项工作提供了全面的电子显微学技术支持,分别使用Symmetry S2 CMOS-EBSD和Ultim Max大面积能谱系统在纳米尺度表征了Ti22Nb合金的组织结构和元素分布。文章摘选 图1显示了Symmetry S2在常规EBSD模式下采集的IPF面分布图。淬火态(water quenched, WQ)Ti22Nb的显微特征以板条状a' ' 马氏体为主,原高温β相晶界仍清晰可见,母相晶粒直径约50 μm。淬火内应力导致晶格发生局部扭转,具体表现为单个晶粒内IPF颜色的微小波动。冷轧态(cold-rolled, CR)样品的位错密度更高,弯曲交错的变形带揭示了较大的塑性应变。Symmetry S2 所采用的CMOS相机技术和光纤板设计使其兼备高速和高灵敏度特点,是表征大变形样品的利器。图1 :(a, b)淬火态和(c, d)冷轧态Ti22Nb合金的IPF-TD图叠加BC图;(e)热应变曲线 进一步研究表明,冷轧态样品在350 ℃保温10 min后,热胀系数降低至零。为阐明背后的机理,论文作者探索了温度梯度对微观组织的影响,如图2(a-c)所示。a' ' 的板条形貌在250-300 ℃仍得以保留(a' ' ↔β,~150 ℃),升温至350 ℃后出现大量纳米级针状析出物。受限于块体样品的电子-物质交互作用体积,最终选择在Symmetry S2的TKD模式下表征这些析出相,加速电压和步长分别为30 kV和5 nm。EBSD/TKD模式切换仅需一键即可完成,且无需重新校准系统。图2:(a-c)温度对冷轧态样品显微组织的影响,BSE图像;(d)TKD结果,Tmax = 350 ℃样品的IPF图叠加带对比度图;(e)同步采集的STEM-EDS面分布图;(f)晶体学位向关系。 高空间分辨率TKD结果表明,a' ' 相(最小针宽仅10 nm)在β基体中高度弥散分布,且两相满足 a' ' //β关系。图2(e)是利用Ultim Max大面积能谱探测器同步采集的STEM-EDS元素面分布图,结果显示相较于基体而言,针状析出物富含钛元素。综合上述晶体学和化学成分信息,论文作者推测针状析出相与文献中报道的a' ' iso一致,并将图2(c)样品的线性零膨胀特性归因于通过扩散相变形成的a' ' iso。 王皓亮老师团队借助中子衍射、EBSD、TKD和STEM-EDS,在纳米-微米尺度下研究了Ti22Nb合金的显微组织特点,为设计宽温域线性零膨胀钛合金提供了坚实的理论指导。Symmetry S2 CMOS-EBSD和Ultim Max大面积能谱系统的高分辨率优势,在本项工作中发挥出重要作用。
  • 国内首台纳米角分辨光电子能谱实验站建成启用
    近日,张江大科学装置集群再添科研利器。由上海科技大学负责设计研发和建设的上海同步辐射光源纳米角分辨光电子能谱(NanoARPES)实验站顺利通过了中国科学院组织的工艺测试验收。该实验站是上海同步辐射光源二期工程中纳米自旋与磁学线站的重要组成部分。这是我国首台NanoARPES装置,实验站的建成填补了国内相关研究设施的空白,总体参数性能达到国际顶尖水平。  NanoARPES技术通过将同步辐射光斑尺寸聚焦到百纳米量级(传统的ARPES光斑的1/100)获得具有空间分辨能力的角分辨光电子能谱,极大地拓展了ARPES的研究体系和范畴。NanoARPES既可高效率地探测极小尺寸的样品或具有相分离的多晶畴材料电子结构,又可开创性地研究样品边缘/畴界等局域空间的电子特性;对于低维材料人工异质结(如Moire体系)电子结构、拓扑量子材料边缘态等前沿科学问题探索更具有独特的优势。目前NanoARPES实验站仅在发达国家同步辐射光束线上部署运行,如美国ALS BL7、英国DIAMOND I05、法国SOLEIL ANTARE、意大利ELETTRA Spectromicroscopy。  国家“十二五”重大科技基础设施项目“上海光源线站工程”部署规划建设“纳米自旋与磁学线站”,其中NanoARPES实验站是国内首套同类装置,由上海科技大学负责建设。从初步设计,建设测试实验站(上海光源BL03U支线)到最终装置搭建历时近6年时间。在整个过程中项目团队自主创新,团结协作,克服了旋转真空腔设计、光路定位与诊断、样品位置精密操纵及稳定性、低温性能等多重技术难关,顺利按时完成项目的建设。  由来自中国科学技术大学、上海交通大学、中国科学院高能物理研究所和复旦大学的5名专家组成项目工艺测试专家组,详细审核了测试内容、测试方法和测试大纲,听取了项目研制报告和自测报告,并进行了现场测试。测试结果表明:NanoARPES实验站的实测光斑、能量分辨率、光通量等各项指标均达到或优于设计指标。其中,实验站水平/竖直方向的空间分辨率均优于200nm,能量分辨率优于10meV@91eV/30K。总体性能达到国际顶尖水平。  NanoARPES实验站的顺利建成及工艺验收意味着我国在此项光子科学先进测量手段上打破了国际垄断,为国内科学家开展相关研究提供了一流的研究平台。目前,该实验站已开始进行系统优化调试并开展了初步科学实验测试,将在不久的将来向全世界的科研用户开放。NanoARPES实验站200nm空间分辨率实测结果 NanoARPES实验站的设计与建设由上海科技大学物质学院陈宇林-柳仲楷项目团队完成。其中副研究员王美晓具体负责实验站的整体设计、搭建和工程项目推进;工程师王峰完成多自由度压电陶瓷样品台的研发、改进和液氦温度低温冷头的设计;机械加工中心主任、物质学院副研究员刘芳和大科学中心高级工程师刘鹏为项目的难点攻关和技术改进进行技术支持;特聘教授陈宇林,助理教授柳仲楷负责项目整体的规划、设计和协调管理。课题组内的博士后、研究生、本科生同学为实验站的搭建投入了大量的工作。上科大物质学院及拓扑物理实验室、大科学中心、机械加工中心为项目建设提供了有力的支持。上海光源二期工程团队提供了束线建设及技术支持。
  • 纳米尺度如何实现高时空分辨率表征?——访苏州纳米所刘争晖
    2023年8月25日,由北京卓立汉光仪器有限公司主办的第四届“逐梦光电”国产光电分析仪器研制与应用研讨会成功召开。来自全国各大知名高校及研究院的“政、用、产、学、研”不同领域的近百名专家学者出席了本次会议。会议期间,仪器信息网特别采访了中国科学院苏州纳米技术与纳米仿生研究所教授级高级工程师刘争晖。据了解,刘争晖主要研究纳米测试分析表征技术,即如何对纳米材料在纳米尺度上的光学电学性质进行表征。这一领域是传统测试技术延伸,一般传统分析测试表征技术,尤其是光学表征技术,由于受到光学衍射极限的限制,表征极限在微米尺度,而很多纳米材料的缺陷、结构等都是在纳米尺度发挥作用。因此需要一定的分析测试手段和设备来表征纳米尺度上的光电转换等信息。纳米尺度测试分析表征技术当前重要的方向是如何将空间技术和时间技术相结合,以实现高时空分辨率的表征。为此,刘争晖将光学系统和扫描探针系统相结合,通过光学脉冲激发和光谱检测技术来达到高时间分辨率。以下为现场采访视频:
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • 中国高端仪器取得突破,光学显微镜的分辨率提高到60纳米!
    显微镜是重要的科学仪器,显微镜的诞生,拓宽了人类的眼界,带领人类进入微观世界。利用显微镜,人类可以看到细胞机构、微生物、材料的微观机构等,在此基础上进行研究和分析,从而产生大量发明和发现,推动了科学的发展。自显微镜发明以来,科学家们不断提升显微镜的性能,新技术层出不穷,更强大的显微镜能够进一步提升科技水平。由于显微镜对科学有着重大贡献,显微镜领域的多项重大发明都获得了诺贝尔奖。1953年,荷兰人弗里茨塞尔尼克因因相衬显微技术而获得了诺贝尔物理学奖。1986年,德国人恩斯特鲁斯卡作为透视电子显微镜的发明人,获得了诺贝尔物理学奖。1986年,德国人格尔德宾宁和荷兰人海因里希罗雷尔研制出扫描隧道显微镜,获得了诺贝尔物理学奖。2014年,美国人艾力克贝齐格、美国人莫尔纳尔和德国人斯特凡赫尔凭借超分辨荧光显微镜,获得了诺贝尔化学奖。2017年,瑞士雅克杜博歇、德国人约阿希姆弗兰克、英国理查德亨德森研发出低温电子显微镜,获得了诺贝尔化学奖。其中超分辨荧光显微镜的出现,使得光学显微镜进入纳米级尺度。现在,中国研究团队进一步提升光学显微镜的性能,在光学超分辨显微成像技术领域取得突破性进展。哈尔滨工业大学仪器学院和北京大学未来技术学院合作,在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,该显微镜是目前活细胞光学显微成像中分辨率最高的超分辨显微镜,并实现564帧/秒、成像时间达到1小时以上。中国团队提出了一种计算显微成像算法,可以突破光学衍射极限,加上荧光成像的前向物理模型以及压缩感知理论,同时结合稀疏性与时空连续性的双约束条件,开发出稀疏解卷积技术,提高了时空分辨率和频谱,从而研发出超快结构光超分辨荧光显微镜系统。这项技术适用于大多数荧光显微镜成像系统模态,能够实现近两倍的稳定空间分辨率提升,将在生物科学领域发挥重大作用。麦克奥迪、舜宇光学科技、永新光学和广州晶华光学是目前国内光学显微镜市场份额排名靠前的企业,均为中国企业。但国内高端光学显微镜市场主要被徕卡、蔡司、尼康、奥林巴斯等国外企业占据。随着中国光学显微镜实力不断提升,中国企业有望改变高端光学显微镜市场竞争格局。结语中国通过引进和吸收国外技术,取得了巨大进步,想要进一步提升国家竞争力,就必须自主创新,自主创新需要从基础研究做起,而基础研究离不开科学仪器,研制科学仪器就是打好发展基础。
  • 马耀光研究员团队提出一种具有皮米量级分辨率的微纳光纤锥光谱仪
    近日,浙江大学光电学院的马耀光研究员在微型高性能光谱仪研究中取得了新进展。研究团队提出了一种具有皮米量级分辨率的微纳光纤锥光谱仪。在这种光纤锥光谱仪中,精心设计的光纤锥几何参数使得输入光激发的少数传播模,可以随着光纤锥的非绝热形变发生耦合、演化过程,进而快速形成大量的高阶模式。这些新形成的高阶模式同时也会随着光纤锥的渐变直径被截止而转化为泄漏模,从而在探测面形成复杂的光学散斑。光谱信息也在这个过程里被编码进散斑图案之中。可以利用基于Transformer的MobileViT模型,快速、高效、准确的对输入光谱进行还原。经测试,光谱仪可以工作在450-1100nm的波段范围内,对输入光的分辨率可达1 pm 数量级。该光谱仪以相对较低的制造难度与成本,在毫米级的空间尺度下实现了皮米级的波长分辨能力。自牛顿利用棱镜观察到色散现象以来,针对光谱技术的研究就在人类发展历程中占据了重要地位。随着光谱分辨率的提高与光谱理论的完善,光谱技术逐步从科学实验领域扩展到了分析应用上,在生物传感、环境监测、天文、医疗等领域都发挥着重要的作用。但是传统光谱仪体积庞大、价格昂贵,因而在实际应用中较难推广。对光谱的测量往往需要使用非常专业的设备或者在专业的检测机构才能进行。近年来,随着微纳技术的发展,微型光谱仪凭借其体积小、重量轻、操作便捷、结构简单、价格低廉等特点,逐渐被人们所重视。但是,针对光谱仪的低成本、小体积、高性能等要求存在内在的制约关系:减小分光和探测元器件的尺寸将导致光谱仪的分辨率、灵敏度及动态检测范围显著下降,同时有可能增加器件的制造难度与成本。如何利用计算光谱技术进行光谱编码与解码是打破这一内在限制的重要前提。微纳光纤(MNFs)是研究纳米尺度光与物质相互作用的优秀平台之一。利用其简洁的几何形貌、强光场约束等优点,研究人员利用自制的光纤拉锥机精确控制光纤锥尺寸,对其内部的传导模式产生有效调控,如图1a所示。a) 基于微光纤锥的光谱编码结构利用非绝热近似下的陡变光纤锥,将输入的少量低阶模式快速转变为大量高阶模式。产生的高阶模式的数量和权重均为输入光场频率的函数。因而,随着高阶模式被光纤锥的渐变直径逐步截止,光谱信息就会随着泄漏的光场被编码进探测到的复杂散斑图案之中。多模光纤拉制的光纤锥内支持的传导模式众多,再加上锥区模式耦合带来的自由度,散斑结构非常复杂,波长的微小改变也会使得散斑有非常明显的变化,从而可以在较小的尺寸内实现高分辨的光谱识别如图1b、c所示。图1光谱仪结构。(a)微型光谱仪图片(b,c)微纳光纤锥区泄漏模图案映射在衬底上的侧视图和俯视图1. 光纤纤芯直径、光纤锥度、锥区长度、拉伸长度等结构参数对光线锥泄漏散斑具有重要的影响。输入光在芯径更大的光纤中,可以激发更多的模式,因此在后续的模式演化过程中可以产生更复杂的散斑,包含更多的光谱特征。图2的仿真结果也验证了这一点。图2 不同纤芯直径拉制得到的光纤锥的散斑仿真。纤芯直径分别为(a)8.2 μm(b)62.5μm(c)105μm2. 在微纳光纤束腰直径一致的情形下,锥区长度越短,锥区角度越大。如图3所示。随着锥区变短,散斑尺寸缩小,由Nyquist采样定理可知,对于一定大小的探测器单元尺寸,系统可以采集的散斑精细结构的质量会随之变低。例如当锥长为750 μm时,散斑尺寸仅为~2 μm。图3 不同锥区长度的光纤锥散斑仿真。锥区长度分别为(a)6000 μm(b)3000μm(c)1500μm(d)750μm3. 通过优化拉制光纤的纤芯直径,拉制过程中的拉伸长度与锥区长度等参数,研究人员在300*600 μm的小尺寸内,得到信息足够丰富的散斑。散斑图样由互补金属氧化物半导体(CMOS)传感器(CIS)直接获取,如图2a所示。利用自制的微纳光纤拉锥平台和转移平台,研究团队可以高效率、高精度地制备所需要的微纳光纤,并且将其与CIS探测器进行一体化集成。使得最终的样品在保证高集成度的同时,具有良好的稳定性与重复性。并且,制备的光谱仪核心元件的成本不到15美元。b) 基于深度学习的高精确度光谱复原研究人员发现重构型光谱仪的算法选择对重构结果也有较大影响,为了可以实现快速、低功耗的光谱重构,我们采用基于Transformer架构的MobileViT模型进行了训练,用于最终的图像分类与光谱重构。最终,光谱仪准确地恢复了450-1100 nm光谱范围内(受限于实验中采用的CMOS的工作带宽300-1100 nm 与神经网络训练过程中可用的输入光谱范围450-1200nm的交集)被测光谱信息,平均峰值信噪比(PSNR)为46.7 dB。重建的窄带光(彩色实线)和商用光栅光谱仪的地真光谱(图4(a)黑色虚线,Ocean Optics, LEDPRO-50)显示出很高的一致性。单色光的中心波长误差约为0.0223%。线宽误差约为7.37%。并且,光谱仪在图4b、c所示的性能极限测试中也展示出很好的表现:在工作带宽的测试中,可以准确恢复半高全宽为90 nm的光谱。在对于分辨极限的测试中,可以准确还原间隔1.53 pm的双峰信号。图4 光谱仪性能表征。(a)450-1100 nm波长范围内光谱恢复(b)连续光谱的恢复(c)窄双峰的恢复c) 高精度的高光谱探测能力因为微纳光纤尺寸小、光束缚能力强的特点,可以在一个传感器上集成多个微纳光纤锥,实现高光谱成像功能。图5a展示了在CIS上集成20个光纤锥的样品。结合机械扫描的采样方式,可以对例如图5b中的图像,进行高光谱采集。如图5c、d所示,采得的光谱信息具有很好的准确度和色彩还原度。图5 光谱仪高光谱表征。(a)20通道高光谱成像仪(b)彩色贴片图及高光谱复原结果(c)b中各个色块的光谱还原图(d)b中不同色块的CIE 1931色彩空间坐标研究团队利用轻量级Transformer架构的神经网络模型,对微纳光纤锥区泄漏模的干涉散斑进行优化与采集,简洁地实现了基于微纳光纤锥的光谱信息编解码架构,进而构建出一种尺寸在亚毫米量级,分辨率在皮米量级的低成本、高性能微型光纤锥光谱仪。此外通过在CIS上集成多个微纳光纤锥,可以实现高光谱成像的功能。未来,如果在标定过程中进一步考虑偏振态的影响,我们可以同时获得未知光的光谱和偏振态。论文所提出的光谱仪可应用于食品检验、药物鉴定、个性化健康诊断等领域,成本低廉。 本研究得到了国家自然科学基金和浙江省自然科学基金的资助。论文通讯作者为马耀光研究员,共同第一作者为硕士生岑青青和博士生片思杰。硕士生刘鑫航、唐雨薇、何欣莹也为论文工作做出了重要贡献。本论文的完成单位为浙江大学光电科学与工程学院、极端光学技术与仪器全国重点实验室、杭州国际科创中心、浙江大学嘉兴研究院智能光电创新中心。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制