当前位置: 仪器信息网 > 行业主题 > >

紫外测

仪器信息网紫外测专题为您提供2024年最新紫外测价格报价、厂家品牌的相关信息, 包括紫外测参数、型号等,不管是国产,还是进口品牌的紫外测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外测相关的耗材配件、试剂标物,还有紫外测相关的最新资讯、资料,以及紫外测相关的解决方案。

紫外测相关的资讯

  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 三用紫外分析仪适用于哪些检测?
    利用荧光技术设计的紫外分析仪(三用紫外分析仪)主要是物质的定性方面的应用,包括: ⑴在科学实验工作中检测,许多主要物质如蛋白质、核苷酸等。 ⑵在药物生产和研究中,可用来检查激素生物碱,维生素等各种能;产生荧光药品质量,特别适宜作薄层分析和纸层分析斑点和检测。 ⑶在染料涂料橡胶、石油等化学行业中,测定各种荧光材料,荧光指示剂及添加剂,鉴别不同种类的原油和橡胶制品。 ⑷纺织化学纤维中可测定不同种类的原材料。如羊毛,真丝人造纤维,棉花,合成纤维,并可检查成品质量。 ⑸在粮油,蔬菜,食品部门,可用于检查毒素(如黄曲霉素等),食品添加剂,变质的蔬菜、水果、可可豆、巧克力、脂肪、蜂蜜、糖蛋等的质量。 ⑹在地质、考古等部门,可起到发现各种矿物质,判别文物化石的真伪。 ⑺在公安部门可检查指纹、测定密写字迹等。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 南通首用紫外仪检测用电设备
    连日来,在南通市多个变电站内,供电公司高压试验人员正运用新型紫外检测仪,对用电设备的放电情况进行检测。据悉,这也是当地首次将紫外检测仪用于放电&ldquo 诊断&rdquo 。  此前,电力设备放电检测都是使用超声波检测仪,这对电力设备的内部结构放电检测具有良好的效果,但对设备外表的放电状况却难以检测得到。而紫外检测仪则解决了这一难题,它对设备表面的电晕感应非常敏感,可识别因设备绝缘污染、安装不良等问题造成的电晕放电问题,有效提高设备的运行可靠性。  目前,南通供电公司已完成46座变电站相关设备的紫外检测工作。检测人员将对存在缺陷的设备跟踪监测,并抓紧实施余下24座变电站的紫外检测工作。
  • 选择紫外或紫外可见传感器时需要了解的 5 个问题
    分光光度法可适用于在线仪器,是监控水和污水处理设备的重要方法。分光光度法是一种测定分子对光的吸光度的方法,此方法在在线传感器上的应用已越来越准确和可靠。WTW IQ SensorNet系列紫外(UV) 和紫外可见(UV Vis)传感器具有适用于特定污水处理应用的内置出厂校准,不仅提高准确性,还可减少校准的频次。内置UltraCleanTM超声波清洗,减少校准频次的同时完全去除更换损耗品的必要(如试剂或刮刷),最大限度减轻了维护工作。本系列传感器甚至还支持通过单个传感器测量多个不同参数,如硝酸盐、亚硝酸盐、总悬浮物 (TSS)、紫外线透射率(UVT-254)、化学需氧量(COD)、生化需氧量(BOD)、总有机碳量 (TOC)和其他碳参数。 本系列传感器是水和污水处理设备的一项重要投资,为操作人员提供极大便利。但是如何选择合适的传感器?为确保选择最符合应用的传感器,来看一下选择紫外可见传感器时需要考虑的5个问题。紫外和紫外可见传感器的优势1、无需试剂,即可在线进行硝酸盐、亚硝酸盐、COD、BOD、TOC、UVT-254、NOx和TSS测量2、单个传感器最多可测量并显示五个参数3、UltraClean™ 超声波清洁技术可防止结垢,维护较为简单4、持久耐用的材质:钛和PEEK(聚醚醚酮)即使在最恶劣的条件下仍可保持稳定5、紫外和紫外可见传感器每次测量可扫描256个波长,从而实现更好的准确度和浊度补偿6、工厂已针对过程中的位置进行了校准(进水、二级处理、出水)7、用户可自行校准,从而在应用情况不理想时提高准确度参数硝酸盐:来自硝化过程中NH4转化的人类排泄物的生物污染物。亚硝酸盐:来自人类排泄物的生物污染物,是硝化过程中NH4和NO3的中间型。生化需氧量:微生物在分解流水中的有机废物时消耗的氧气量。被看做是对存在的有机物的量化,并且排放量受到国家污染排放消除系统(NPDES)的排放限制。总有机碳:样品中有机结合的碳量。被认为是对存在的有机物的量化和水质指标。与BOD或COD相比,该测试通常是表示有机物的一种更方便直接的方式。紫外线透射率:在254mm 波长处透射的紫外线百分比。该参数用于指示水中的有机物含量,通常与BOD、COD和TOC相关。该测量值通常用于在消毒过程中自动控制紫外线剂量。总悬浮物固体:水样中被过滤器捕集的悬浮颗粒的净重。该参数通常用作水质的指标,并用于定量分析活性污泥系统(混合液悬浮物,MLSS)中存在的微生物。需要测量什么及测量原因选择紫外或紫外可见传感器时,需要搞清楚的首要问题是测量什么及原因。需要测量什么参数?应用场景是什么?如何使用传感器?取决于应用场景,通过单个传感器监控多个参数可能更为有益。以下是紫外可见传感器在污水处理中最常见的一些应用。 氮硝酸盐氮和亚硝酸盐氮是生物脱氮除磷(BNR)应用中常见的测量参数。硝酸盐在工艺优化中扮演着多种角色,如确保高效地完成硝化、监控硝酸盐去除、控制脱氧区的碳投加量以及确保出水中的氮含量达到排放标准。亚硝酸盐的使用情况较少,因为它是硝化工艺的中间阶段。如果污水处理设备出现亚硝酸盐积累问题或使用快捷反硝化工艺,监控亚硝酸盐将会很有用处。碳碳参数在污水处理中同样具有广泛应用。COD、BOD和TOC是量化样品内碳含量的常见测量参数,其中BOD和TOC专属于有机碳。例如,通常会测量二级处理中的COD来监控有机物负荷。在二级处理中,COD可指示一级或二级处理的效率,或量化需要碳源(反硝化和除磷)的生物处理工艺中的有机碳含量。此外,监控污水处理厂收集系统或进水设施中的COD有助于确定重度负荷来源或提供预警探测。长期以来,这些碳参数的测定都需要昂贵或耗时的实验室程序,因此难以实际使用。如今,借助在线紫外可见传感器,我们便可以利用这些参数实现原本难以实现的工艺控制和预警检测。紫外和紫外可见传感器具有广泛的应用,在某些情况下,通过单个传感器获得多个参数将对操作人员有所助益。例如,TSS是曝气池的常见测量参数,指示微生物浓度(MLSS –混合液悬浮物)。利用包括 TSS与COD组合的传感器,操作人员即可获得用于监控食料与微生物比(F/M 比)的必要信息。使用单个传感器监控多个参数可从单个传感器获得更多有用数据,从而带来附加值。选择紫外可见传感器时,确保查看各传感器的可测参数列表(表1)。单波长传感器和光谱传感器有什么不同?一些制造商仅生产单波长传感器,而其他像WTW一样的制造商除单波长传感器外还生产光谱传感器,后者可提供更多参数和更高的准确性。前面我们一直在谈论光谱传感器,在光谱传感器中,每次测量时都将扫描256个波长的紫外光和可见光以获得所需参数的浓度。此类传感器通过测量每种波长处的吸光率来生成“光谱足迹”。然后,根据传感器中编制的算法将每个“光谱足迹”计算为以 mg/L 为单位的浓度(Smith, 2019)。相比于单波长传感器,光谱测量的精度和准确度更高,因为物质分子会吸收一段波长范围内的光,而并非仅吸收单个波长。附加波长具有许多优势,包括为每个参数提供更多吸收数据、使用一系列波长进行浊度修正,甚至有助于检测不同形式的有机分子。紫外可见光谱传感器扫描的256个波长跨越紫外和可见光范围,从200至720nm(图1)。紫外光谱传感器扫描的256个波长范围为200-390nm。在这个波长范围内,紫外传感器将能够同时测定并区分硝酸盐和亚硝酸盐。硝酸盐和亚硝酸盐通常吸收短波长紫外光(250nm),有机分子的吸收峰主要出现在250-350nm的紫外波长范围内。380 - 720nm范围内的光吸收来自每次测量时都会测量和进行修正的浊度 (Smith, 2019)。不过,我们仍然有两种使用对单个波长的吸收率来确定特定参数浓度的单波长传感器。UVT-254传感器(或 SAC-254)测量 254nm 波长处的透光率或吸光度(%)。254nm的紫外光能够被有机分子吸收,因此该传感器对测定饮用水和污水内的有机物浓度趋势非常有用。使用 UVT-254传感器,可以输出经过准确校准的COD、BOD和TOC相关值,还会再测一个波长 (550nm) 用于浊度修正。NOx传感器使用单个波长测量硝酸盐(NO3-N)和亚硝酸盐 (NO2-N) 的总和,这足以满足一些生物脱氮除磷应用中的氮监控需求。尽管单波长传感器可以提供有用的数据和趋势,但与光谱传感器相比,其准确度和可重复性不佳。使用单波长进行测量和浊度修正时,此类传感器可能无法检测到某些形式的有机分子,无法区分硝酸盐和亚硝酸盐,也无法准确补偿浊度。单波长和光谱传感器各有优势,所以哪种更适合您的应用呢?使用单波长传感器能够以适中的价格获得有机物或氮氧化物的趋势数据,并且甚至有些应用专门需要用到单波长传感器,例如紫外线消毒需要UVT-254。然而,光谱传感器已针对特定应用(进水、二级处理、出水)进行校准,并且由于此类传感器扫描256个波长,从而准确性、可靠性都比单波长传感器更高,浊度修正也更准确。测量光程是什么?为什么很重要?测量光程是指光源和探测器之间的距离,在分光光度法测量中非常重要。测量光程(又称狭缝宽度)是根据比尔-朗伯定律计算光吸收率时的一个计算因子,并且受样品水浊度的影响极大。因此,紫外可见传感器通常具有固定的测量光程,并针对特定应用提供不同的狭缝。IQ SensorNet紫外可见传感器有2种测量光程可供选择:1mm和5mm(图 2)。1mm狭缝用于监控未经处理的污水和二级处理,因为这些应用通常浊度较高。5mm狭缝用于监控处理后的出水、低浊度污水,有时还可用于监控一些地表水或饮用水应用。取决于应用类型,其他制造商可能还会提供10-50mm的测量光程。选择YSI紫外可见传感器时,注意701型号传感器为 1mm测量光程(适用于未经处理的污水或活性污泥),705型号传感器为5mm 测量光程(适用于低浊度的处理后出水)。如何安装紫外可见传感器?紫外可见传感器一般比其他在线传感器更大、更沉,因此在确定安装选项时应特别考虑。与所有在线传感器相同,应基于安全性和可达性来选择安装位置和方式。要确保可以轻松接触到传感器,以便偶尔进行维护,因此有足够的操作空间非常重要。传感器的安装位置应符合要求的扶手和过道安全标准。同样,紫外可见传感器的安装也应易于使用,并使传感器易于操作。最后一点,由于传感器可能比较沉,安装的稳固性也非常重要,必须能够承受相应重量,尤其是对于存在堵塞问题的污水设备。紫外可见传感器在污水中最常见的安装方式为浸入式安装。浸入式安装通过将传感器直接浸入集水池或水流中,直接测量过程用水。WTW紫外可见传感器提供两种沉浸式安装选项:刚性安装或摆动/链条安装。刚性安装包括将紫外可见传感器固定至一个金属杆上,然后将金属杆安装至护栏或墙壁上。当需要较稳固的解决方案,如水比较湍急或水中有堵塞时,这种安装类型是最佳选择。对于一般的沉浸式安装应用,摆动和链条安装更具优势。使用这种安装,传感器将更容易操作,因为传感器悬挂在链条末端,通过链条便可轻松地在集水池中进行升降。摆动臂将传感器伸出集水池外面,但是也可容易接近,只需将传感器摆动至靠近护栏的位置就能够拆下传感器进行维护。 对于像处理后的污水出水、污水回用或饮用水等清水应用,流通池可能是最佳选择。在这些应用中,由于缺乏合适的位置或因NSF要求,不能使用沉浸式安装。使用流通池时,紫外可见传感器将采用壁挂式安装,流通池会形成一个腔体让水流经光学窗口。水流持续运送至传感器进行测量,然后排出。无论将WTW紫外可见传感器用于清水还是污水应用,选择最适合的安装选项都非常重要,这样既能够确保传感器正常运行,还可将维修工作量保持在最低限度。 如何维护?尽管紫外可见传感器的维护要求不高,且不需要试剂,但仍然需要偶尔进行保养以优化运行。相比于其他在线传感器,WTW紫外可见传感器具有所需维护工作量最少的巨大优势。本系列传感器具有内置的独特自动超声波清洗系统UltraCleanTM技术。该系统不仅有助于保持测试窗口长久清洁,而且整个系统都置于传感器内部,所以没有需要更换的密封件或挂刷。保持紫外可见传感器清洁对传感器性能至关重要。因此,紫外可见传感器通常带有自动清洁系统,这可有效降低传感器总的维护时间。WTW提供两种类型的自动清洁系统:一种是所有传感器中都已内置的UltraClean;另一种是空气清洁系统。UltraClean超声波清洁系统轻微振动传感器的光学窗口,清除堆积的固体。这种技术已被证明在具有较多固体的污水应用中非常成功,WTW的ViSolid(TSS)和VisoTurb(浊度)传感器中同样也应用了此技术。WTW紫外可见传感器的另一个自动清洁选项是空气清洁系统。该系统使用空气压缩机定期向光学窗口上喷放压缩空气,清除任何可能干扰测量的固体。WTW空气清洁系统直接与传感器相连,并且可以通过控制器进行编程控制,根据所需时间间隔进行清洁。两种自动清洁系统都能使传感器在废水应用中保持数周的准确读数。自动清洁系统非常有助于减少整体维护时间,但是为了达到最佳性能,仍然需要偶尔进行手动清洁。每两周从测量环境中取出紫外可见传感器进行一次手动清洁,可大大减少潜在的测量问题。手动清洁非常简捷,整个过程只需1分钟,包括用清水冲洗测量狭缝、使用清洗液清洗、用软布擦亮镜片然后彻底冲洗干净。此外,还应保持日常维护以确保传感器清洁。维护的另一方面是校准和验证。WTW紫外可见传感器使用实验室参照样品进行校准,用于调整传感器的原始信号与实验室浓度值相关联的斜率。如前文所述,光谱传感器已针对特定应用进行出厂校准,但也可以自行校准,使传感器的测量适应过程用水。单波长传感器也可对主要参数进行校准,但相关值(BOD、TSS、TOC 等)必须根据实验室测量值进行准确校准。应根据需要进行校准,例如当传感器首次安装、移动到新位置或传感器对参考样品的测量不准确时。WTW紫外可见传感器具有双通道测量系统,其中一个相同的参比通道用于监控并校正光源灯或探测器的老化,防止任何潜在校准漂移。这样可免去常规校准的麻烦,但是仍建议使用实验室参考样品对传感器测量值进行常规验证,以确保传感器的准确性。
  • 飞翔赛思获多项紫外测油仪软件著作权
    由北京飞翔赛思科技有限公司技术团队自主开发的Flyscience4000全自动紫外分光测油仪上位机软件和Flyscience4000全自动紫外分光测油仪萃取板软件,经过国家版权保护中心的严格审查,获得由国家版权局颁发的软件著作权登记证书。
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 方兴未艾的光谱“处女地”:现代军用紫外探测技术
    紫外是指在电磁频谱中10~400nm波长范围的一段,其波长在电磁频谱中位于可见光谱紫光区的外侧,是在1802年由德国物理学家里特发现。由于只有波长大于200nm的紫外辐射才能在空气中传播,所以通常讨论的紫外辐射效应及其应用均在200~400nm范围内(大气层中的“紫外窗口”)。  军用紫外探测技术是利用近地大气中的“日盲区”(波长小于300nm的紫外辐射由于同温层臭氧吸收,基本上达不到地球近地表面,造成太阳光中的紫外辐射在近地表面形成盲区)和大气层中的“紫外窗口”来实现的。  图1 紫外是波长比可见光短,但比X射线长的电磁辐射,波长范围在10纳米至400纳米,能量从3电子伏特至124电子伏特之间。它的名称是因为在光谱中电磁波频率比肉眼可见的紫色还要高而得名,又俗称紫外光。  早在20世纪60年代,美国空军就开始了利用紫外波段探测洲际导弹发射的研究工作(导弹发动机的尾焰会产生紫外光子)。理论上,只要能够对导弹发动机的羽烟紫外辐射进行精确测量,就能够有效发现是否有导弹发射。但是,由于科研人员发现难于确定这些紫外辐射信号强度是否强于自然辐射,再加上紫外辐射特有的“非热态”,导致无法建立相关的信号模型和算法理论,紫外探测难以付诸实施,研究工作只能转向易于建立信号模型的发动机羽烟红外特征探测。  一直到20世纪80年代,在美国的“导弹防御计划”下,研究人员再次考虑利用紫外辐射来探测导弹发射的可行性。也是在这一时段,相关的基础研究也取得了进展,特别是利用地球观测卫星获取了自然背景辐射的精确数据,高灵敏度的紫外阴极、电荷耦合器件(CCD)和高增益微通道板的研究也获得了突破,这使得军用紫外探测技术成为了可能。  因此,进入20世纪90年代之后,军用紫外探测技术进入实质性研究和应用开发阶段,被誉为21世纪最具影响力的军用技术之一的紫外告警技术异军突起,并且已经逐步成为一种标准配置而越来越多的出现在各类高价值武器平台(也包括部分大型民用客机)上。  目前,军用紫外探测技术主要在战术导弹告警、天基紫外预警和紫外超高谱侦察等几个方面展开:战术导弹告警,航空兵在空中格斗、低空突防、近距支援、对地攻击和起飞着陆等阶段,很容易受到红外制导空空导弹和便携式防空导弹的攻击,由于缺乏有效的红外制导导弹逼近告警,75%的战损都是因为飞行员在没有发觉处于导弹威胁之中而被击落的。  作为对抗红外制导导弹中最为关键的导弹逼近告警(MAWS)就需要能够在大范围空域内能够连续地快速告警,并且虚警率极低。而紫外探测技术就能胜任这样的应用,通过被动接收导弹发动机工作时产生的紫外辐射,就可以对导弹的发射或者逼近进行实时告警以及精确定向,及时提醒飞行员采取机动规避和对抗措施。此外,由于紫外告警设备结构简单、不需要制冷、不需要扫描、重量轻、体积小和勤务性能好,所以现在不但可以装在各种战斗机、攻击机、武装直升机和大型民航客机上,地面部队的主战坦克和步兵战车也都开始配备。  图2 20世纪80年代,在美国的“导弹防御计划”下,研究人员再次考虑利用紫外辐射来探测导弹发射的可行性。  天基紫外预警,弹道导弹对国家安全的威胁是严重的,因此需要对其采取积极的防御手段,特别是对其进行有效的早期预警。天基紫外预警就是利用搭载在地球同步轨道预警卫星上的紫外探测系统,在弹道导弹的助推段就及时发现导弹发动机羽烟的紫外辐射,对敌方来袭弹道导弹进行可靠的早期预警和跟踪。美国的导弹防御研究人员也表示,相比传统的天基红外探测,星载紫外探测器不需要制冷、体积也更小、耗电量低、成本更低,更适合在条件受限的太空环境下应用。  紫外超广谱侦察,是一种基于方位和光谱的三维信息探测技术,可在紫外波段内以高光谱分辨率(小于10nm)对目标进行监视探测,获取目标的细微特征,获得常规侦察手段难以得到的目标信息,是现代光电侦察技术经历了单波长、多波段之后的一个新飞跃。  目前,美国陆军研究实验室基于声光可调谐滤波器设计的AOTF超光谱成像侦察仪已经可以覆盖了紫外波段,并且在反伪装侦察、生物战剂告警(生物战剂的主要生物色基—芳香烃氨基酸能够强烈吸收紫外辐射,产生很明显的荧光谱)等方面展示出了巨大优势。
  • 合肥研究院高性能紫外光探测器研究取得进展
    p  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李广海课题组在高性能紫外光探测薄膜器件方面中取得进展,相关结果发表在ACS Applied Materials & Interfaces上,并申请国家发明专利2件。/pp  紫外探测器在空间天文望远镜、军事导弹预警、非视距保密光通信、海上破雾引航、高压电晕监测、野外火灾遥感及生化检测等方面具有广泛的应用前景。在实际应用时,由于自然环境的不确定性,待测目标的紫外光强度通常不高,环境中存在着大量对紫外光具有强吸收和散射能力的气体分子或尘埃,导致最终到达探测器可检测的紫外光信号非常弱。因此,提高紫外探测器对弱光的探测能力至关重要。探测率(detectivity)是衡量探测器件对弱光检测能力的重要指标,探测率由响应度(responsivity)和暗电流密度共同决定。响应度越高,暗电流密度越低,器件的探测率越高。高探测率更有利于弱紫外光的探测。然而,对于大部分半导体光导探测器而言,响应度高的器件常伴随着较高的暗电流 提高材料质量,减少缺陷可降低器件暗电流,但响应度随之减小。因此,器件探测率难以提升,限制了光导探测器在弱紫外光检测方面的应用。/pp  针对上述问题,李广海课题组的副研究员潘书生等在前期透明高阻薄膜的研究基础上,提出以中间带半导体为核心材料构筑紫外探测器的新方法。中间带具有高态密度,能够有效俘陷本征缺陷在导带上产生的电子,从而降低器件暗电流 另一方面,光照时,中间带上储存的载流子能补充到价带上,并被光激发至导带贡献光电流,因此中间带半导体材料紫外探测器能够实现在降低暗电流的同时,保持器件较高的响应度。采用磁控反应溅射技术,沉积Bi掺杂SnO2薄膜,并通过优化实验设计和参数,构筑出了基于中间带半导体薄膜的光导型紫外探测器件。性能测试结果显示,器件暗电流降低至0.25nA,280nm波长紫外光响应度达到60A/W,外量子效率为2.9× 104%,探测率达到6.1× 1015Jones,紫外—可见光抑制比达103量级。器件的动态范围高达195dB,这说明Bi掺杂SnO2薄膜光导探测器可检测极其微弱的紫外光(等效每秒300紫外光子),对较强的紫外光也可探测。/pp  该研究工作得到了国家自然科学基金与合肥研究院固体所所长基金的支持。/pp style="text-align: center "img width="450" height="349" title="W020170907540355593507.jpg" style="width: 450px height: 349px " src="http://img1.17img.cn/17img/images/201709/noimg/1086db54-ce3a-4a29-b90b-ed2b9dbbf2f4.jpg" border="0" vspace="0" hspace="0"//pp  Bi掺杂SnO2薄膜光导探测器件性能:(a) 响应度,(b) 外量子效率,(c) 探测率和 (d) 噪声等效功率。/pp/pp/p
  • 液相维护小贴士:紫外检测器篇
    小伙伴们大家好,之前我们讨论了泵和进样器的维护之后,今天我们来聊聊检测器。有人说Chemistry代表Chem is try很有意思。化学的美妙在于它的无限可能性。中学化学老师曾经说过“结构决定性质,性质决定用途。”扩展到我们的分析工作中,也决定了分析手段,所有的分析都有规律可循,缘分“结构”注定!在色谱实验室中紫外检测器是必备的,70%以上的物质都可以用紫外检测器来分析,今天我们就扒一扒紫外可见检测器。一、紫外检测器的原理紫外-可见光检测器(UV-Vis Detector, UVD)是应用最广泛的检测器,遵循的原理是朗勃比尔定律。吸光度(A)=摩尔吸光度(ε)×光程(b)×浓度(c)。吸光度定义为透射率的负对数,它是透射光与入射光的强度之比。吸光度(A)= lg(1/透射率(T))。紫外检测器的灵敏度与溶剂的影响、背景吸收、示差折光效应有关,不同种类溶剂有其截止波长,溶剂的质量好坏对其截止波长有影响,溶剂质量与含紫外吸收的杂质、溶解在其中的氧气、缓冲液溶质的紫外吸收等因素有关;背景吸收减少线性范围、许多溶剂会产生背景吸收。常见结构的紫外吸收紫外可见检测器还有个Plus的兄弟——二极管阵列检测器。光电二极管矩阵检测器简称PDA(Photo-Diode Array),有的品牌也称为DAD(Diode Array Detector),一般来说,紫外检测器比DAD的灵敏度高约1倍。但DAD也有它的优势,一是可以对未知物进行波长扫描确定zui佳吸收波长,二是可以同时检测多个波长,三是可以进行峰纯度的检査。 紫外检测器与DAD的区别为:紫外检测器是光源发出的光先分光,让特定波长的光通过狭缝,这样光的强度可以调节,然后通过流通池,光束被流通池里的样品吸收,未吸收的光达到光电二极管,产生电流变化,DAD光源发出的光不分光,让全波段波长的光通过狭缝,然后通过流通池,光束被流通池里的样品吸收,未吸收光被分光,各种波长的光落在不同位置的二极管上,各二极管产生电流变化。因为是后分光,所以DAD不同波长处光强度并不一致,波长分辨率也不及单波长的紫外检测器,需要通过其他手段来提高某些波长的灵敏度。二、紫外检测器的优缺点切勿用裸手触摸石英灯泡,因为在后来打开灯时指纹会不可避免地损坏灯。灯的位置在设备中精确确定,不需要进一步调整。灯更换后的组装步骤与拆卸相同,只是按相反的顺序。打开本机并点亮灯,如果没有发生错误,请关闭灯,然后进行新灯泡的校准。更换钨灯的步骤近似,感兴趣的小伙伴可以单聊。以Wisys5000为例清洗流通池窗片/更换流通池窗片污染的流通池会降低光的传输,增加噪声,很难使信号归零。最简单的清洗方法是用合适的溶剂冲洗拆除的流通池。清洗前必须从仪器取出流通池。根据污染物的特性选择互溶性系列的溶剂。它可以使用有机和无机溶剂和稀释酸溶液(如用1:10 到 1:20的稀硫酸或硝酸溶液)。此操作完成后用纯溶剂冲洗流通池。连接流通池到系统,当有液体流过时,观察是否泄漏。如果有必要更换有裂纹或受污染的窗片,或改变制备流通池的光学路径,拧下螺钉,拆下流通池盖并取出窗片和密封件。使用干燥的注射器往里推空气可以更好的移除密封的流通池窗片,不要用手触摸窗片。指纹会阻挡紫外线辐射的通道,并有可能损坏的窗片表面。将干净的窗片插入到流通池中,以便在流通池中调整所需的光路。检查垫片的完好情况 和密封件的密封面是否有窗片碎片或任何其他杂质。损坏的密封件须更换。今天的话题就扒到这里了,下期见。
  • 美军拟研发拉曼紫外激光器用于生化探测(图)
    美军的生物联合防区外检测系统(JBSDS)。JBSDS是防区外化学与生物威胁监测的应用实例,利用激光雷达(LIDAR)来探测一定距离外的气溶胶。DARPA希望通过LUSTER项目开发出小巧的大功率紫外激光器来实现类似功能。  中新网3月6日电 据中国国防科技信息网报道,美国国防高级研究计划局(DARPA)启动了一项新研究,旨在开发出一种结构小巧、性能可靠的紫外线探测设备。  该研究项目名为&ldquo 战术有效的拉曼紫外激光光源&rdquo (LUSTER)。DARPA向业界寻求设计方案,以开发结构紧致、高效低成本、可灵活部署的深紫外(deep UV)激光生化战剂探测新技术。这种新技术可以节省空间、降低重量和功率需求,也比当前的同类装置要敏感很多。DARPA的目标是:新紫外激光器的体积不超过目前激光器的1/300,同时效率提高10倍。  拉曼光谱分析是利用激光来测量分子振动、从而迅速准确地识别未知物质的方法。紫外激光的波长特别适合进行拉曼分析,但美国国防部当前所使用的战术紫外线探测系统体积庞大、价格昂贵,其性能也有限。  DARPA项目经理丹格林介绍说,目前探测系统的体积和重量太大,需要用卡车运送,而LUSTER项目的目标是开发出具有突破性的化学与生物战剂探测系统,可以单兵携带,并且效率大幅提高,同时,DARPA希望新系统的价格也能在目前探测系统价格基础上&ldquo 抹去几个零&rdquo 。  目前&ldquo 紧凑型中紫外技术&rdquo (CMUVT)项目已经完成,DARPA希望在此基础上研制LUSTER。CMUVT项目研发出了创纪录的高效大功率中紫外线发光二极管,紫外线波长接近LUSTER的紫外光波长。 但发光二极管对化合物识别的灵敏度有限,因此DARPA希望LUSTER项目能够开发出新的激光技术,使其准确度和灵敏度不低于当前昂贵的激光系统,而其稳定性和成本又与发光二极管相当。  格林透露,除了用于探测战场或国内大规模恐怖袭击中可能出现的化学与生物战剂,紫外激光器还有许多其他用途,例如医疗诊断、先进制造和紧凑的原子钟。  LUSTER项目可考虑采用多种不同的技术方法,只要他们能够发出220-240纳米波长的深紫外光,其功率输出大于1瓦,功率转换效率大于10%,导线宽度小于0.01纳米。
  • 紫外临边成像光谱仪:探测大气层的“天眼”
    紫外临边成像光谱仪的“环形天眼”紫外临边成像光谱仪的“前向天眼”  人眼看到的大气是透明的,我们看不到大气的变化,更看不到有多少有害气体如妖魔鬼怪般潜伏在大气层中伺机而动。  天宫二号有一对“天眼”,不仅能看到人眼所能看到的可见光,更将视野扩展到人眼所不能及的紫外光。在“天眼”的注视下,大气中的一切都无所遁形。  “臭氧层在地球上空形成一把保护伞,它将太阳光中99%的紫外线直接过滤掉,有效避免地球生物被紫外线伤害,但也正是这层臭氧阻碍了紫外仪器在地面上对臭氧层以上的大气层进行探测,因此我们需要在地球上边安置洞悉大气的‘天眼’——紫外临边成像光谱仪,在太空对地球大气进行‘层析’式探测研究。”紫外临边成像光谱仪主任设计师、中科院长春光机所研究员王淑荣向《中国科学报》记者介绍说。  王淑荣说,通过“天眼”,我们可以看到整个大气层的密度、臭氧、气溶胶、有害气体等的垂直分布及其变化,同时还能监测中层大气的状态与扰动,我们可以了解太阳活动、大气与地球天气及气候的关系,同时还能观测全球环境变化,这一切对于科学和人类生活都非常重要。  天宫二号上的“天眼”有两个,一个叫“前向”,一个叫“环形”,同时对地球大气层进行天底和临边探测。  王淑荣打了个比方:假如将大气层比作一处美景,天底观测便如在它头顶盘旋的小鸟,能看到的是轮廓和总量,而临边观测则相当于仪器与地球边缘大气并肩而立,可以细致欣赏品味它的层次美。  “前向天眼”具备紫外-可见-近红外大气临边成像光谱探测功能,可以对地球临边大气进行切片式探测,反应大气痕量气体的垂直分布信息,并可以获得很高的垂直分辨率。“环形天眼”具备同时对天底大气和临边大气多方位探测的功能,通过反演计算可以获取大气痕量气体多方位的时空分布,进而为大气环境监测和大气科学研究等提供服务。  当前国际上已有的紫外临边探测仪器大多是单个方向(前向),个别有前向和侧向。然而这些探测的明显局限是只能得到一个很窄径迹上的数据,相邻轨道之间有巨大空隙,全球覆盖的时空代表性差,不能获得较密的时空覆盖,不能揭示中小尺度变动特征。就如管中窥豹,可见一斑而难知整体。  天宫二号紫外临边成像光谱仪将“前向”和“环形”组合探测,实现了垂直对地的天底探测和对地球切线方向的临边多方位探测组合及反演比对,实现了对地球大气的多方位、高光谱、多时空分辨率观测,达到比一般临边探测更高水平的层析反演,在国际上是首创。  “该项技术验证及科学实验为下一步空间大气临边成像光谱探测的业务化运行奠定了基础,将在大气痕量气体监测、天气预报、空间天气和物理等领域具有广泛的应用。”王淑荣说。
  • 如何利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验?
    要利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验,可以按照以下步骤进行:1.准备样品:将彩色涂层板切割成适当的尺寸,确保其适应QUV试验机的样品架。同时,应注意保护样品表面以免划伤或损坏。设置试验条件:根据所需的试验条件,根据试验机的指引或使用手册,设置合适的光照强度、温度和湿度参数。这些参数应该基于所模拟的实际使用环境。2.安装样品:将切割好的彩色涂层板样品固定到试验机的样品架上,确保样品表面与试验机光源之间的距离是均匀且适当的。3.运行试验:启动试验机,根据设定的试验条件,让样品暴露在QUV试验机的紫外光源下。试验的时间可能根据需求而有所不同,可以根据具体情况进行设置。4.监测和评估:定期监测样品的变化,包括颜色变化、表面质量、表面结构、光泽度和物理性能等。这可以通过视觉观察、光谱测量和物理性能测试等方法进行。5.结果分析:根据试验数据和观察结果,评估彩色涂层板的紫外老化性能。比较试验后的样品与未经紫外老化的对照样品的差异,并分析可能的原因。通过QUV紫外老化试验,可以帮助评估彩色涂层板在长期暴露于紫外环境下的耐候性能和色彩稳定性,以指导产品改进和选用合适的材料或材料配方。在进行试验前,最好理解QUV试验机的使用方法和样品的实际使用条件,以确保试验结果的准确性和可靠性。QUV紫外老化加速试验机QUV紫外老化加速试验机是简单、可靠、易用的紫外老化试验机。世界各地使用的QUV紫外加速老化试验机数以万计,它是世界上使用广泛的紫外老化试验机。QUV紫外老化加速试验机使用特殊的荧光紫外灯管模拟阳光的照射,用冷凝湿度和水喷雾的方法模拟露水和雨水,真实地再现由阳光造成的材料损伤。损伤类型包括褪色、光泽消失、粉化、龟裂、开裂、模糊、起泡、脆化、强度减小和氧化。QUV可方便地容纳多达48个样品(75mm x 150mm),完全符合国际、国家和行业规范,确保了测试程序的可靠性和可重复性。
  • 新品发布|红相科技TD120紫外成像仪:紫外增强 精准定位
    近日,红相科技发布一款新品——TD120紫外成像仪。TD120是一款具备紫外双视场光学变焦的升级型紫外成像仪,具备小巧便携、操作简单、抗干扰能力强等特点。该产品采用红相专利全日盲技术,配备500米激光测距和环境传感器,可做到完全不受日光影响,满足全天候、全视域的检测需求。其特有的紫外增强模式,更能精准定位电晕、电弧等微小放电,辅以专业的分析和报告软件,为变电站和高压输、配电线路预防性检测提供有效帮助。产品特性紫外双视场 支持2倍光学变焦11.2°×8.4°/5.6°成4.2°双视场,兼顾看远察近。更高灵敏度紫外灵敏度达到2.0×10-18watt/cm2,干扰度小的场所可开启特有的紫外增强模式,算法优化、精度提高,更精准检测微小放电。增强环境传感器,500米激光测距精准测距有效减少测量误差,环境参数补偿,更有助放电强度分析和历史对比分析。人体工学设计,小巧便捷可旋转手柄,可调节目镜,支持单手操作和三脚架固定操作,便于现场检测。加大5.5寸液晶显示屏智能菜单,自定义功能键1920×1080高像素产品参数紫外光光学特性最小紫外光灵敏度2.0×10-18watt/cm2最小放电灵敏度1.0pC@15m波长范围240-280nm视场角11.2°×8.4°/5.6°成4.2°双视场光子计数支持放大倍数2×/4×/8×成像功能液晶显示屏5.5°AMOLED液晶屏紫外增强模式支持接口视频输出HDMI激光测距500米,可同步近距离传感器可自动息屏温湿度传感器自动同步Type-C数据传输蓝牙/WIFI/GPS有4G支持扩展三脚架接口1/4“-20电源系统外接电源DC:9V-12V电池类型锂电池电池工作时间4h连续(常温)环境参数工作温度-20℃~+55℃存储温度-30℃~+60℃湿度90%(无凝结)防护等级IP54物理特性尺寸305mm×169mm×160mm重量2.5KG配置标准配置紫外热像仪,电池,充电器,SD卡,SD卡读卡器,视频线,USB线,适配器,U盘,安全箱,耳机说明书,保修卡,合格证可选配置三脚架关于红相科技浙江红相科技股份有限公司创立于2005年10月,是一家专注红外、紫外、气体成像技术创新和产业化的高新技术企业、国家重点软件企业。十多年来,为全球100多个国家提供了数十万套红外热像仪、紫外成像仪、气体成像仪,产品专业应用于电力、国防、环保、疫情防控等领域,为社会和人类安全保驾护航。2020年初新冠疫情突然爆发,公司生产的人体测温红外热像仪为疫情防控做出重要贡献,工信部将其列为疫情防控物资重点保障企业,受到各级政府书面嘉奖。秉持“为客户创造价值、为奋斗者提供平台、为社会进步贡献力量”核心价值观,以“使世界更安全”为愿景,矢志成为一家受人尊敬的、全球卓著的专业公司和红外、紫外、气体成像技术的领跑者。
  • 航天科工紫外成像漏电检测仪问世
    记者日前从中国航天科工集团公司二院获悉,该院207所自主研发的紫外成像漏电检测仪近日正式面世并投入市场。该产品可为高压设备的运行评估和维修决策提供可靠依据。  紫外成像漏电检测技术是近年新兴的一种远距离检测高压线路、输电设备状态的新技术,它主要通过检测电力高压设备电场发射的紫外线,发现引起电场异常的设备缺陷,观察放电情况并判断危害。  207所研制的这款紫外漏电检测仪,将紫外和可见光技术结合形成融合图像,可快速发现、精确定位漏电位置。该产品还创造性地搭载无人机平台,适合对远距离、大范围的高压输电线进行空中巡检,在电力系统、高铁等领域有广泛应用前景。
  • 重金属快检新法:紫外可见光谱+比色检测
    近年来,作为百姓赖以生存的&ldquo 菜篮子&rdquo 、&ldquo 米袋子&rdquo 的耕地土壤和水源正在承受越来越多的重金属污染,以致于&ldquo 镉大米&rdquo 、&ldquo 毒海鲜&rdquo 、&ldquo 毒蔬菜&rdquo 事件屡见不鲜。如何避免这些被重金属超标的产品流入餐桌?重金属离子检测成了餐桌安全的&ldquo 最后防线&rdquo 。吴爱国研究员  在中科院宁波材料技术与工程研究所的实验室中,吴爱国研究员和他的团队,正在对一项全新的重金属离子快速检测技术开展研发。如果一切进展顺利,这项技术将大大改变目前重金属离子的检测手段,对于构筑餐桌安全&ldquo 最后防线&rdquo 将起到重要作用。  吴爱国团队正在努力的新技术,被称为&ldquo 纳米贵金属比色法&rdquo 。一次偶然的机会,吴爱国团队发现一些含纳米颗粒的溶液遇到重金属离子后会呈现不同颜色。基于这个发现,吴爱国在省自然科学基金杰出青年项目支持下开展了深入研究。纳米贵金属比色法和便携式紫外光谱仪  经过4年多的不懈努力,他们终于找到了系统性快速便捷检测重金属的方法,并采用了&ldquo 紫外可见光谱+比色检测&rdquo 的组合手段,原理上已经实现了对重金属溶液的快速、便携式的现场检测。  &ldquo 用眼睛定性、用紫外可见光谱定量&rdquo 是新方法的特色。吴爱国团队利用经过修饰后的贵金属纳米粒子遇到重金属离子后会出现颜色变化的特性,将不同的重金属离子试剂制作成类似于pH试纸样式的溶液,使用者可以通过对特定溶液颜色深浅对比知道重金属污染离子的种类,进而通过便携式紫外可见光谱仪,则可以知道污染的严重程度。  相比于传统的检测手段,&ldquo 纳米贵金属比色法&rdquo 费用低廉、便于携带、易于现场操作等优点,使得快速、实时的现场检测成为可能,可极大提高检测效率。  据吴爱国介绍,传统重金属离子检测技术主要依托于大型的检测设备且需要在标准的检测实验室中进行,因此整个过程往往需要1天时间。检测试剂遇不同重金属离子呈现颜色各异  而他们团队正在研发的检测方法,将来百姓只要在家里根据说明书进行操作就可做测试:几瓶含有不同试剂的溶液以及不到A4纸大小的紫外光谱仪,短短几个小时内便可知道买回来的蔬菜、瓜果等是否被重金属离子污染。  在节省了大量时间的同时,新的检测方法更涉及常见的重金属离子的种类。据了解,通常人们所谓的重金属离子污染,主要是指铜、汞、铅、铬(VI)、锰、钴、镍、镉等造成的污染,这些金属离子中任何一种超标都能引起人的头痛、头晕、失眠或精神错乱等症状,甚至诱发癌症。而新研发的方法,对于上述几种重金属离子都能做出反映。  据了解,在浙江省自然科学基金杰出青年项目的资助下,吴爱国团队的研究已经进入到对实际样品的研究测试阶段。吴爱国表示希望这项新技术在各方面的共同努力下,尽快能够跨过基础研究到技术实用化的鸿沟,以便构筑起餐桌安全的&ldquo 最后防线&rdquo ,真正地将&ldquo 毒大米&rdquo 、&ldquo 毒蔬菜&rdquo 等污染食品拒之于&ldquo 桌&rdquo 外。
  • 浅谈紫外检测器中不同光程流通池在应用上的区别
    一枚合格的流通池,必须经得住长期压力,任劳任怨,经历成百上千次测试,一块面板上不止一颗螺丝钉,一台检测器却只有一枚流通池。一枚合格的流通池,需要满足以下要求:1获得理想的检测限;2获得理想的噪音、漂移和信号;3还在于成百上千次的检测后,质量如一,稳定可靠。流通池示意图我们先来看看紫外检测器的工作原理,紫外检测器的检测原理基于朗伯—比尔定律,吸光物质的吸光度与流通池的光程长度和浓度成正比。比尔—朗伯定律数学表达式:A=lg(1/T)=KbcA为吸光度,T为透射比(透光度),是出射光强度比入射光强度。K为摩尔吸光系数。它与吸收物质的性质及入射光的波长λ有关。c为吸光物质的浓度,单位为mol/L。b为吸收层厚度(流通池的长度),单位为cm。当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度A与吸光物质的浓度c及吸收层厚度(流通池的长度)b成正比,而与透光度T成反相关。检测器流通池的长度越长,光程越长,响应越高,检测限越低。定量分析的准确度很大程度上取决于浓度检测线性范围。分析液相的流通池光程通常比制备液相的流通池光程大,以获得低浓度下更好的响应。紫外检测器的光路示意图下面我们用一个实验来验证一下0.5mm, 1.25mm和3mm等三种不同光程的流通池,在同一色谱条件下,对同一个样品进行分析后,形成的色谱图的差异。由上图我们可以知道,使用较长光程的流通池检测同一个样品,生成的信号越强,获得更高的峰高,更好的响应。尽管通常增加光程会使噪声提高,但噪音提高幅度很小,信噪比还是会增大,一般适用于分析型液相色谱应用。使用小光程的流通池,峰高降低,但对某些峰有一定的分辨率,噪音较小,在应用上,一般适用于制备型液相色谱。
  • 环境监测总站紫外吸收水质在线监测仪合格目录更新
    从中国环境监测总站获悉,中国环境监测总站公布紫外(UV)吸收水质在线监测仪认证检测合格厂家名录(截止2015年6月23日),此次目录包括2012年至2015年认证合格的12个厂家的12台仪器,其中国产厂商仪器7台。具体名录如下:紫外(UV)吸收水质在线监测仪适用性检测合格名录(截止2015年6月23日)序号单位名称仪器名称报告编号1北京中自控环保科技有限公司CAC-A型紫外扫描式水质在线自动监测仪质(认)字No.2012-0572杭州微兰科技有限公司VLUV-201型紫外(uv)吸收水质在线监测仪质(认)字No.2012-0583广州市怡文环境科技股份有限公司EST-2006型紫外(UV)吸收水质自动在线监测仪质(认)字No.2013-0044宇星科技发展(深圳)有限公司YX-UV型紫外吸收水质在线自动监测仪质(认)字No.2013-0255上海泽安实业有限公司K301 A型全光谱紫外(UV)吸收水质分析仪质(认)字No.2013-0686维赛仪器(北京)有限公司IQ Sensor Net型紫外(UV)吸收水质在线监测仪质(认)字No.2013-0697堀场(中国)贸易有限公司OPSA-150型紫外(UV)吸收水质自动在线监测仪质(认)字No.2013-0888德菲电气(北京)有限公司SA-9型紫外-可见光连续光谱水质分析仪质(认)字No.2014-0049江西夏氏春秋环境投资有限公司CQ-UV型紫外扫描式水质自动在线监测仪质(认)字No.2014-04010北京利达科信环境安全技术有限公司KS2201型紫外(UV)吸收水质自动在线监测仪质(认)字No.2014-04111岛津企业管理(中国)有限公司UVM-4020型紫外吸收水质在线分析仪质(认)字No.2014-06612上海恩德斯豪斯自动化设备有限公司CAS51D型紫外(UV)吸收在线水质分析仪质(认)字No.2014-122相关阅读:环境监测总站公布最新环境空气自动监测系统合格目录时隔一年半 环境监测总站再次更新数采仪合格目录环境监测总站CEMS合格名录更新环境监测总站水质自动采样器合格名录更新
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
  • 空间中心紫外臭氧总量探测仪成功监测雾霾天气
    1月7日至16日和1月28日至31日,我国中东部大部分地区持续出现雾霾天气。由国家空间科学中心自主研制的紫外臭氧总量探测仪利用吸收性气溶胶指数AAI(The Absorbing Aerosol Index)成功对雾霾进行监测。中国气象局正是利用该风云三号气象卫星紫外臭氧总量探测仪实现了对雾霾事件的全过程监测。图1和图2为1月29至30日的雾霾监测情况。  由于雾霾的发生时常伴随着云等亮背景信息,因此利用可见光光学遥感卫星准确的监测雾霾具有较大的困难。风云三号紫外臭氧总量探测仪具有实时、大范围雾霾环境监测能力,相对于地面监测,卫星AAI指数可以监测连续空间分布的雾霾天气及其移动发展趋势,在空间覆盖方面具有优势,为雾霾的空间分布研究提供实时、大范围观测资料。该技术即将被中国气象局纳入雾霾天气业务监测运行系统。  AAI值的大小与大气中对紫外线具有吸收作用的气溶胶含量密切相关。普通云或者冰雪AAI指数很小甚至是负值,而雾霾对紫外具有强烈的吸收作用,AAI指数会明显增大,因此通过AAI可以很好地克服云或冰雪的影响,对雾霾进行监测。图1 紫外臭氧总量探测仪雾霾监测图像2013年1月29日10:15(北京时)  图2 紫外臭氧总量探测仪雾霾监测图像2013年1月30日10:15(北京时)
  • 各级各类生态环境监测机构:石油类紫外法完成扩项了吗?
    p  2019年1月10日,国家市场监管总局认可与检验监督管理司批准了25家省级环境监测机构石油类紫外法检测能力。这是环保评审组的创新思路,首次开展的文审扩项评审显著提高了工作效率,解决了各省级环境监测机构亟需集中认证新项目的难题。/pp  2018年10月10日,生态环境部发布《水质 石油类的测定 紫外分光光度法(试行)》(HJ970-2018),此标准从2019年1月1日起正式实施。石油类是《地表水环境质量标准》(GB3838-2002)中24项必测基本项目中的一项,是所有开展地表水质量监测工作监测机构必须通过资质认定的项目。由于新标准的发布和实施间隔时间短,全国范围内大规模开展扩项现场评审的难度很大。为解决各省级环境监测机构对此方法的扩项需求,环保评审组经与国家市场监管总局认可与检验监督管理司反复沟通,打通了文审扩项通道。/pp  2018年12月28日,环保评审组组织专家对29家监测机构提交的文审材料进行集中审核,包括仪器检定、标准物质、关键试剂、人员培训、方法验证以及实际样品测试6个方面。经严格审核,25家机构通过审核,监测资质能力获批。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/04a551ee-cd6d-4bc1-965c-21cac284f7e2.jpg" title="评审现场.jpg" alt="评审现场.jpg"//pp style="text-align: center "  评审组文审现场/pp  目前,已有多个省份借鉴此方式向当地质监部门申请开展该方法的文审扩项。环境监测方法标准更新较快,各级各类生态环境监测机构应注意尽快与当地监督管理部门沟通,及时完成新项目、新方法的扩项/变更事宜。/p
  • 天宫二号紫外临边探测专项载荷研制通过验收
    p  6月23日,天宫二号紫外临边探测专项载荷在轨指标评价评审会在北京召开,评审组一致同意紫外临边探测专项载荷通过评审。/pp  评审组由北京大学、国家卫星气象中心、北京应用气象研究所、中科院空间总体部、西安光机所、长春光机所和大气物理所等单位专家组成。/pp  评审组专家认为:紫外临边探测专项在国际上首次提出并实现了环形探测新模式,采用环形+前向联合探测新体制实现了多方位、多波段同时大气成份探测,两台载荷的功能和性能指标满足研制任务书要求,考核评定为成功。/pp  天宫二号紫外临边探测专项载荷由中科院长春光学精密机械与物理研究所负责研制。该专项载荷搭载于天宫二号,于2016年9月15日发射升空。发射成功后10小时,该专项载荷加电,1小时10分钟后温控达到稳定状态。中科院大气物理所作为用户单位,在测试项目及内容覆盖了全部功能、外部、内部接口,并满足任务书要求的基础上开展了在轨指标评价工作。空间实验室在轨运行期间,该载荷对地球边缘大气层进行紫外-可见-近红外光谱临边探测,获取地球临边光谱数据。通过大气成分临边反演技术,获取大气成分如O3的垂直分布,并对大气气溶胶等信息进行反演试验性探索。/pp  天宫二号紫外临边探测专项载荷由紫外前向光谱仪和紫外环形成像仪构成,如下图所示,二者具有强互补性。环形成像仪提供大气辐射多方位空间分布与动态的宏观结构,前向光谱仪提供某一方位的精细结构。这是国内首次采用临边观测方式进行大气探测,并且可以实现对大气密度和臭氧等大气痕量气体浓度的同时遥感。/pcenterimg alt="天宫二号紫外临边探测专项载荷研制通过验收" src="http://images.ofweek.com/Upload/News/2017-07/10/nick/1499658005903068332.jpg" width="400" height="141"//centerp style="TEXT-ALIGN: center"  紫外前向光谱仪和紫外环形成像仪/pp  紫外临边探测专项的研制与空间实验室的在轨试验,为地球环境与气候预测、空间天气学应用和紫外姿态敏感单元研究等开辟了新方向,为空间大气临边成像光谱探测的业务化运行奠定基础。该专项载荷在大气痕量气体监测、大气与环境预报、空间天气等领域具有广泛的应用前景。/p
  • 【环境监测行业】2020年度最热关键词 - TOP1 紫外吸收法
    top1 紫外吸收法 上榜理由2020.4.24《固定污染源烟气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法》(HJ 1045-2019)标准实施2020.5.15《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》(HJ 1131-2020)《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》(HJ 1132-2020)两项标准发布2020.8.15《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》(HJ 1131-2020)《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》(HJ 1132-2020)两项标准实施 紫外吸收法相关标准密集发布,意味着紫外烟气分析仪将迎来广阔的市场的火爆标准方法的实地应用离不开相关设备的支持!MH3200紫外烟气分析仪,自2019年以来,2020口碑销量双丰收,各大环保类相关网站搜索量位居前列! 执行标准HJ 1131-2020《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》HJ 1132-2020《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》HJ 1045-2019《固定污染源废气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法》JJG 968-2002 《烟气分析仪检定规程》 优势1台仪器——3种方法——7种气体测量集紫外吸收法(SO2、NO、NO2、NH3)、红外吸收法(CO2)、电化学法(CO、O2)等多种烟气检测技术于一体,快捷高效。热湿法真空枪管全程加热,避免水损失,准确度高,安全可靠。一体化整机一体化设计,管线连接简便,携带方便。高清大屏4.3寸触摸彩屏,操作简单高效。自动反吹内置可充电锂电池,断电后自动反吹维护,无需人工操作。云平台数据交互手机电脑远程监控,规范质控管理,紧跟大数据时代步伐。 好啦,本周的关键词就聊到这里,下周小编将为大家带来年度热词TOP2“VOC检测”,我们下周见啦!
  • 长春光机所研制出高性能微米线日盲紫外探测器
    器件的结构示意图以及各项性能指标  近日,中科院长春光学精密机械与物理研究所研究员赵东旭带领的团队采用氧化锌/氧化镓核/壳微米线,研制出具有雪崩增益的高灵敏度日盲紫外探测器。  日盲光谱区是指波长在200~280nm波段的紫外辐射,由于太阳辐射在这一波段的光波几乎完全被地球的臭氧层所吸收,即在这个波段大气层中的背景辐射几乎为零,所以称为“日盲”。  在该光谱范围内,由于具有极低的背景噪音,同红外探测技术相比,紫外探测具有虚警率低、不需低温冷却、不扫描、告警器体积小、重量轻等优点。因此此项探测技术有着极其广泛的应用前景及应用需求,可用于紫外天文学、天际通信、火灾监控、汽车发动机监测、石油工业和环境污染的监测等。  赵东旭团队研发出的高性能微米线日盲紫外探测器对日盲紫外光具有高灵敏度、高探测度、高量子效率和高速的响应,为目前同类器件当中性能最好的结果,其主要性能高于目前商业Si(硅)雪崩二极管。团队对器件的性能进行了深入的研究,发现器件具有雪崩增益,其增益高达104。  该团队多年从事于半导体微纳结构光电器件的研制,在微纳光探测器的研究中积累了丰富的经验,先后制备出基于仿生叶脉结构的高灵敏度紫外光探测器,以及基于交叉结构的,具有高光谱选择性的氧化锌p-n同质结紫外光探测器等。
  • 合肥工业大学研发新型深紫外光电探测器 光谱选择性优异
    目前,我国深紫外光电探测技术由于受传统器件结构等限制,仍存在易受环境影响、光电性能较差、器件响应速度和信号利用率难以兼顾等问题。  近日,合肥工业大学电子科学与应用物理学院科研团队,成功研发出新型深紫外光电探测器,开创性地将透光性好、电子迁移率高且电阻率低的电子材料石墨烯和高质量β -氧化镓单晶片引入深紫外光电探测器中,并提出一种全新的器件MSM结构,实现了对半导体与金属电极接触性能的大幅提升。器件光谱响应分析结果表明,该器件具有优异的光谱选择性,在深紫外光区域响应非常明显。器件性能分析结果则显示,该器件能够在深紫外光区域的光电转化效率及探测率大幅度提升。该深紫外光电探测技术将在刑侦检测、电网安全监测、森林火灾告警等领域应用前景广阔。
  • 长春光机所研制出高性能微米线日盲紫外探测器
    日盲光谱区是指波长在200~280nm波段的紫外辐射,由于太阳辐射在这一波段的光波几乎完全被地球的臭氧层所吸收,即在这个波段大气层中的背景辐射几乎为零,所以称为&ldquo 日盲&rdquo 。在该光谱范围内,由于具有极低的背景噪音,同红外探测技术相比,紫外探测具有虚警率低、不需低温冷却、不扫描、告警器体积小、重量轻等优点。因此此项探测技术有着极其广泛的应用前景及应用需求,可用于紫外天文学、天际通信、火灾监控、汽车发动机监测、石油工业和环境污染的监测等。近日,中国科学院长春光学精密机械与物理研究所研究员赵东旭带领的团队采用氧化锌/氧化镓核/壳微米线,研制出具有雪崩增益的高灵敏度日盲紫外探测器(Nano Lett. 2015, 15, 3988&minus 3993)。  氧化锌/氧化镓核壳结构微米线采用一步CVD生长法制备。这种方法所生长的核壳结构微米线,核层氧化锌和壳层氧化镓都是高晶体质量的单晶,并且两种材料的界面非常陡峭,无明显界面缺陷和位错的存在。通过在核层与核层分别制备金属电极,就构成了异质结结构的日盲紫外探测器件。器件的响应峰值在254 nm,响应截至边266nm,对日盲紫外光具有高灵敏度、高探测度、高量子效率和高速的响应。在-6 V的电压驱动下,器件的明暗电流比可以达到106以上,响应度可达到1.3× 103 A/W, 探测率为9.91× 1014 cm· Hz1/2/W,响应时间小于20 &mu s,该结果为目前同类器件当中性能最好的结果,其主要性能高于目前商业Si雪崩二极管。通过对器件的性能进行深入的研究,发现器件具有雪崩增益,其增益高达104。  该团队多年从事半导体微纳结构光电器件的研制,在微纳光探测器的研究中积累了丰富的经验,先后制备出基于仿生叶脉结构的高灵敏度紫外光探测器(Nanoscale, 2013, 5, 2864),以及基于交叉结构的,具有高光谱选择性的氧化锌p-n同质结紫外光探测器等(J. Mater. Chem. C, 2014, 2,5005)。器件的结构示意图以及各项性能指标
  • 针对烟气检测紫外吸收新规,乐氏科技提供最优解决方案
    为您解答!烟气检测紫外吸收法新规定生态环境部发布HJ1131-2020 《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》、HJ 1132-2020 《固定污染源废气氮氧化物的测定 便携式紫外吸收法》自2020年8月15日起实施。 符合标准: 该分析仪性能指标均符合国家环保局颁布的烟气测试仪的有关规定。采用紫外吸收光谱技术和化学计量学算法测量O2、SO2、NO、NO2、NOx、NH3、H2S等气体的浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳 定性,特别适合高湿低硫工况测量,具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。 【乐氏科技 技术解决方案】德国Fodisch UVA17m便携式高温紫外烟气分析仪测量原理: UVA17m便携式高温紫外烟气分析仪采用国际上目前 最先进成熟的原态采样,原态分析方法。实现污染源大气污染物的快速,无损,原态的高精度测量。整个分析全程高温取样、高温过滤、高温快速分析,无需气体干燥、稀释冷却等前处理,直接分析样品,有效减少过程损失,测量结果更加真实可靠。 适用场合:UVA 17m 便携式高温紫外烟气分析仪,适用于垃圾焚烧、脱硫脱销、催化剂生产以及燃烧器排放分析。尤其针对烟气 的超低排放、高温高湿低硫检测、氨逃逸等复杂工况的监测及检测,有极高的 适用性,广泛应用于环境监测以及热工参数测量等部门。仪器优势: 原态分析方法:全程高温取样、高温过滤、高温分析——最大限度的减少过程损失。 高温采样预处理:全程185℃——从源头解决烟气温度低、湿度大、易损失的问题。 先进的光学系统:采用紫外吸收光谱技术测量——不受烟气中水蒸气影响,具有极高的测量精度和稳定性。 强大的软件功能:丰富的化学计量学算法,完善的数据处理——数据结果拥有强大的保障。 消除与干扰: 采用高温测量法(无需使用制冷器,避免样气冷凝损失) 热湿态分析,全程高温加热 185℃,水呈气态,不除水, 避免了除水过程中低浓度NO2-SO2-H2S-NH3等气体的溶解,尤其适合脱硫脱硝后低浓度NO2,SO2以及氨逃逸测 量,不存在H2O对测量数据的交叉干扰。 补充亮点: UVA17m便携式高温紫外烟气分析仪的出现,弥补了电化学、普通红外、低温紫外等烟气测量分析技术上的不足,具有高精度、抗干扰、能力强、耐腐蚀、免除水等特点。尤其符合目前中国环保形势对污染企业减排净化工作的要求。
  • 风云三号F星发射成功 将开启紫外高光谱探测新篇章
    8月3日11时47分,长征四号丙运载火箭在酒泉卫星发射中心成功发射,顺利将风云三号F星(又称:风云三号06星)送入预定轨道,发射任务取得圆满成功。风云三号F星由中国航天科技集团八院抓总研制。记者从八院了解到,作为上午轨道卫星风云三号C星的接替星,风云三号F星上搭载了10台功能强大、性能先进的遥感仪器,观测能力得到显著提升,尤其是新研的2台紫外高光谱探测仪,将开启我国风云卫星紫外高光谱探测新篇章。王淇俊 摄台风暴雨捕捉更精准近年来,极端气象灾害给全球带来巨大的生命财产损失。台风暴雨区域的大气温湿度分布可以描绘台风暴雨位置及强度等信息,台风暴雨区域大气温湿度分层越精细,台风暴雨信息刻画越精准。卫星高频次、高精度获取大气温湿度廓线信息,不仅对数值天气预报精度的提高和气候变化预测与评估具有重要的意义,还对区域和中小尺度天气、短临天气,特别是台风、暴雨等重大灾害性天气预报精度的提高具有重要贡献。风云三号F星搭载了先进的微波温度计、微波湿度计、红外高光谱大气探测仪三台仪器探测大气温湿度廓线。相比风云三号C星,F星的大气垂直探测通道数量提升近47倍,微波温度计大气探测通道17个,微波湿度计大气探测通道15个,红外高光谱大气探测仪探测通道达3000多个。通道越多,大气垂直分层探测越精细,也就意味着这台大气温湿度“CT机”垂直分层能力显著提升,对大气温湿度分层认知更精准。同时,微波和光学大气探测仪器深度联合,将充分发挥微波通道不受天气影响及高光谱探测通道更精细的优势,可探测人眼难以捉摸的大气温湿度廓线信息,为大气做更精准的“三维扫描”,可提示未来几小时哪些区域将会发生强对流等极端天气,更加精准地捕捉台风、暴雨等大气温湿度分层信息,全面提升我国在全球数值预报、防灾减灾等方面的综合能力。风云三号F星在轨效果图(中国航天科技集团八院供图)“俯瞰、侧视”双管齐下痕量气体是大气中浓度低于十万分之一的粒子,主要有臭氧、一氧化碳、二氧化碳、二氧化硫等,对全球大气环境及气候变化起着潜移默化的作用。卫星对全球大气痕量气体时空分布特征和变化趋势进行动态监测,能对全球大气环境治理和应对全球气候变化起到重要作用。风云三号F星装载了2台新研制的紫外高光谱遥感设备。其中,紫外高光谱臭氧天底探测仪用于紫外可见光波段探测。仪器正面“俯视”地球大气,犹如一台“超广角CT机”,可以实现每天一幅全球大气微量成分探测图像,能为气候变化研究和环境监测提供重要数据支撑。该仪器探测通道数量近千个,幅宽达2900公里,空间分辨率优于7公里,相比国内外同类型紫外探测仪器,其在光谱分辨率和空间分辨率均有大幅度提升,达到国际同类载荷先进水平。紫外高光谱臭氧临边探测仪则是通过对大气侧面扫描,获取大气垂直廓线信息。这是我国首台利用临边观测模式进行紫外可见波段高光谱大气探测的业务载荷,主要用于气候变化、大气化学以及大气环境研究。该仪器探测通道数量达2000余个,垂直分辨率优于3公里,性能指标达到国际同类载荷先进水平,填补了我国风云卫星紫外高光谱临边大气探测的空白。
  • 西安光机所球基中紫外光谱仪顺利完成全部探测实验任务
    2022年9月28日凌晨两点,由中国科学院空天技术研究院自主研制的临近空间科学实验平台在我国青海省柴旦地区“鸿鹄专项“外场实验基地顺利放飞。由西安光机所空间科学微光探测技术实验室研发的科学载荷——中紫外光谱成像仪(MUV Spectral Imager,简称MUVSI)搭载此平台顺利升空,这也是MUV投入使用后的最后一次探测实验任务。MUVSI连续工作约12小时,系统工况稳定,获得了我国青海柴旦地区上空约30km高度大气紫外辐射背景的数据,当日傍晚顺利回收。MUVSI是西安光机所紫外光学技术团队第一次针对临近空间气球平台开发的光学仪器。为适应临近空间长周期工作和大动态范围目标探测的需求,研发团队先后突破了紫外宽谱段成像光学、高杂光抑制比光机结构设计、高灵敏低噪声紫外敏感ICCD器件等多项核心技术,保障了MUVSI探测谱宽达到210nm,光谱分辨率优于2nm,动态范围10000:1等综合性能指标。MUVSI在确保光学性能和力学性能的前提下,大胆采用紫外凹面变线距光栅替代传统光谱仪中的准直色散成像模组,将光学元件总数降低至2片,极大地减少光学表面带来的光能损失,同时降低了装调难度,为载荷提前半年交付提供了重要支持。MUVSI还首次尝试了高压电子学在临近空间特殊气压环境下的绝缘密封防护技术,通过反复工艺摸索和地面低气压模拟放电实验,形成了一套有效的高压(≥6000V)电子学防护方法,解决了高压电子学长期以来在低气压环境(70-5Hpa)可靠性低、故障率高的难题。另外,MUVSI还通过装载团队自研的太阳敏感器和自动增益控制算法,实现了在无遥测信号时的载荷智能参数调整,进一步保障了高质量数据的获取。增强型探测器模组2022年度放飞期间部分大气背景数据MUVSI自2019年完成正样研制,共计参加鸿鹄专项青海外场放飞实验四次,获得了近百小时有效数据,为该领域科学研究提供了宝贵的直接观测数据,也是西安光机所紫外光学技术在工程应用的一次重要尝试。该载荷技术有望在球基大气紫外辐射特性遥感、近场尾焰特性分析等重要领域得到应用。
  • VIQUA紫外杀菌系统
    雨水收集早已不是新鲜概念,全球各国在雨水收集方面的经验颇丰。海绵城市是城市雨水管理概念在国际范围内中国化的体现。外国对海绵城市建设的探索可以追溯到19世纪,20世纪70年代开始大规模进行海绵城市建设。巴黎的排水系统早在1852年就列入了建筑规划;1859年伦敦地下排水系统开始建设,6年完成,全长2000千米。1972年以前,美国还没有防洪防涝体系,之后由于污染和城市内涝等原因,开始规划建设大型排水系统。由于1974年的洪灾,澳大利亚在1975年就开始了城市内涝系统的规划建设;日本东京在1992年就开始了 “地下神庙”的建设。雨水收集回用系统中的紫外线消毒器的优点这种灭菌可以在1-2秒内将细菌和病毒的灭菌率提高到99%-99.9% 这种消毒是广泛的,可以高效杀死细菌和病毒 消毒过程中没有二次污染。紫外线消毒和灭菌技术不需要化学药品 这种消毒方法不会对水体和周围环境造成二次污染 操作安全可靠, 因此雨水收集系统中的紫外线消毒器没有安全问题 消毒方法成本低廉,并且操作和维护成本高。紫外线消毒设备需要更少的空间 总投资相对较少,可处理数千吨水,成本仅为氯消毒的一半,因此可降低运营成本。紫外专家VIQUA的解决方案VIQUA紫外杀菌系统针对雨水收集回用有多种方案,您可以选择带有前置过滤和紫外杀菌器的集成系统,亦可选择独立的紫外杀菌系统以匹配现场应用。END
  • 我国科学家研制出耐极端环境日盲紫外光电探测器
    记者近日从中国科大了解到,该校微电子学院龙世兵教授课题组基于低成本非晶氧化镓材料,通过缺陷和掺杂工程实现了极端环境下依然表现超高灵敏度的日盲探测器。该方法为高性能、耐极端环境日盲紫外探测器的研制及应用提供了一种可行的参考。相关成果日前在线发表在《先进材料》杂志上。 氧化镓作为新兴的超宽禁带半导体材料,具有热稳定性好、禁带宽度大、紫外吸收系数大、材料易加工等优点,是日盲紫外探测较为理想的候选材料。然而,基于非晶氧化镓材料开发高环境耐受性的高性能日盲紫外探测器还需解决其材料稳定性差、缺陷密度高、漏电流大、持续光电导效应明显等问题。 课题组通过一系列研究,成功设计出高性能且耐极端环境的氧化镓日盲紫外光电探测器。与常规非晶富镓氧化镓器件相比,工程化处理的器件暗电流降低107倍、探测率提升102倍、响应速度提升。同时,得益于子带隙吸收的抑制,探测抑制比提升了105倍,显示出器件优异的光谱选择性。在高温、高压、高辐射等极端条件下,器件依然保持较高的探测性能,实现了高温下的清晰日盲成像验证。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制