当前位置: 仪器信息网 > 行业主题 > >

复合模

仪器信息网复合模专题为您提供2024年最新复合模价格报价、厂家品牌的相关信息, 包括复合模参数、型号等,不管是国产,还是进口品牌的复合模您都可以在这里找到。 除此之外,仪器信息网还免费为您整合复合模相关的耗材配件、试剂标物,还有复合模相关的最新资讯、资料,以及复合模相关的解决方案。

复合模相关的资讯

  • 复合膜袋涉及到的检测项目解析
    聚酯低密度聚乙烯药用复合膜袋是直接接触药品的塑料软包装,包装质量仪药品安全和药品疗效有密切的关系,直接影响消费者生命安全,所以聚酯低密度聚乙烯药用复合膜袋质量容不得半点差错。本文针对YBB00182002-2015《聚酯/低密度聚乙烯药用复合膜、袋》标准,具体涉及到相关的检测项目做个小小的推荐。1.水蒸气透过量选用适宜方法。第一法或第二法或第四测定,试验时PE层面向低湿度侧,试验温度38℃±2℃,相对湿度90%±5%,不得过5.5g,选择如下。2.氧气透过量:量测定法 (YBB00082003)法测定 试验试验时热封面向氧气低压侧,试验温度23℃±2℃。不得过1500cm3。3.机械性能:涉及到拉力试验机ETT-AM,测试要求:内层与次内层剥离强度取膜、袋适量,药用复合膜袋YBB00132002-2015内层与次与层剥离强度项下的方法测定,纵、横向剥离强度平均值均不得低于1.0N/15mm。4.热合强度:测试要求智能电子拉力试验机和热封仪配合使用可检测聚酯低密度聚乙烯药用复合膜袋的热合强度测试要求:膜:裁取100mm*100mm式样4片,将任意两个试片LDPE面叠合,置热封仪上进行热合,热合温度145-160,压力0.2-0.3MPa,时间1秒,照热合强度测定法测定,平均值不得低于7.0N/15mm.测试要求:袋:照热合强度测定法测定,平均值不得低于7.0N/15 mm.
  • 我国研制成功反渗透复合膜制备设备
    中科院长春应化所张所波研究员主持的中科院科研装备研制项目“海水淡化反渗透复合膜制备设备”近日通过了专家验收。专家组一致认为,该项目自主设计的中试海水淡化反渗透复合膜制备设备结构新颖,具有良好的调控性能,适用于反渗透复合膜制备工艺的研究,并能连续制备反渗透复合膜,为科学研究及工业化生产提供了基础研究平台。  反渗透海水淡化是解决水资源短缺问题的重要战略手段。反渗透复合膜是膜法海水淡化的关键材料,它可以将海水、苦咸水、污水转化为纯净的淡水,在工农业生产中发挥重要作用。但目前我国绝大多数的反渗透膜依赖进口,主要原因是缺乏先进的膜材料及精密的生产设备。反渗透膜制备设备是研究和生产反渗透膜的核心技术装备,装备的缺乏严重限制了我国膜材料的研究应用进程。因此研究发展具有国际先进水平的膜材料及制备设备具有重要意义。  在中国科学院科研装备专项的支持下,中科院长春应化所成立了由反渗透复合膜材料制备及设备制造的科研人员和工程技术人员组成的复合膜制备设备研究小组,于2009年开始了“海水淡化反渗透复合膜制备设备”的研究开发。经过2年多的研发,他们解决了设备的温度控制、张力控制、纠偏控制等关键技术问题,利用PCL实现对设备硬件系统和软件系统的协调优化,制备出集聚合、热交联、成膜、后处理等多种功能为一体的反渗透复合膜制备设备,填补了国内空白。目前,该设备已在相关单位进行了反渗透复合膜配方及工艺的研究,试用效果良好。该设备的成功研制不仅可以系统研究各种制备条件对膜性能的影响规律,深入了解成膜原理及关键影响因素,更有助于打破垄断,提升我国在膜材料制备方面的研究水平,为反渗透膜的规模化生产提供技术支撑。该项目研制期间申请发明专利3项,2项已获授权。
  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • 2025年全球电镜市场规模将达57亿美元 年复合增长7.34%
    p  strong仪器信息网讯/strong 近日,Grand View Research最新调研数据显示,到2025年,全球电子显微镜市场规模有望达到57亿美元。预计在此期间的年复合增长率为7.4%。/pp  半导体、生命科学和材料科学等领域研究投资的增加及由此带来电镜使用的增长将有效推动电子显微镜市场的增长。同时,发展中国家也为全球电镜市场巨头们提供了新的投资渠道,这也国家基础设施和研究投资的不断增加也在推进着对先进医疗设备的需求。/pp  根据其调研数据,2017年全球电子显微镜市场规模32亿美元,预计在预测期内将实现盈利的增长 /pp  预测期内,在所有电镜品类中,扫描电子显微镜(SEM)将以最快的年复合增长率增长 /pp  生命科学领域在2017年占据了最大的市场份额 /pp  由于资本的增加,预计在预测期期间,纳米科技领域将获得最高的年复合增长率 /pp  由于来自全球市场参与者投资的不断增加,预计亚太地区在预测期内将呈现高速增长。/pp  电镜广泛应用于半导体领域。在生命科学领域,它们可以应用于临床试验、毒理学、病理学、疾病诊断和各种其他分支学科。电镜还可以用于材料的表征,研究其内部结构,以及各种其他应用。它们被用于法医、食品工业、医疗保健和化学等行业。/p
  • 大连化物所开发出高性能光热转化石墨烯基复合相变材料
    近日,中国科学院大连化学物理研究所热化学研究组研究员史全团队通过合成策略开发出一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常较为复杂、耗时耗能,阻碍了其进一步的应用。基于此,科研人员通过简单直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还具有出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究成果以One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等的支持。  论文链接
  • 石墨烯助阵电子应用新进展 碳复合树脂或将被取代?
    p style="text-indent: 2em text-align: justify "莱斯大学的科学家已经为电子应用制造了一种更好的环氧树脂。在化学家James Tour的Rice实验室发明的环氧树脂与“超级”石墨烯泡沫材料相结合,比纯环氧树脂坚固很多,比其他环氧树脂复合材料导电性能更好,同时保持了材料的低密度。通过添加导电填料,可以改善目前使用中会削弱材料结构的环氧树脂。美国化学学会杂志期刊ACS Nano详细介绍了这种新材料。/pp style="text-indent: 2em text-align: justify "环氧树脂本身是绝缘体,通常用于涂料、粘合剂、电子、工业工具和结构复合材料中。通常添加金属或碳填料用于需要导电性的应用,如电磁屏蔽应用。但需要权衡的是:更多的填充物以重量和抗压强度为代价带来更好的导电性,而复合材料变得更难加工。/pp style="text-indent: 2em text-align: justify "莱斯(Rice)实验室的解决方案用一种由纳米级石墨烯制成的三维泡沫取代金属或碳粉,石墨烯是只有一个碳原子厚度的碳薄片。/pp style="text-indent: 2em text-align: justify "Tour实验室与莱斯大学的材料科学家PulickelAjayan、RouzbehShahsavari,北京航空航天大学的娄军和肇研合作,从环氧树脂注入三维支架的项目中汲取灵感,包括石墨烯气凝胶,泡沫和各种工艺的支架。/pp style="text-indent: 2em text-align: justify "新方案技术用聚丙烯腈(PAN)制成更强的支架,聚丙烯腈是一种粉末状聚合物树脂,用作碳源,与镍粉混合。在四步过程中,他们冷压材料使其致密,在炉子中加热使PAN变成石墨烯,化学处理所得材料以去除镍,并使用真空将环氧树脂拉入现有多孔材料中。/pp style="text-indent: 2em text-align: justify "“石墨烯泡沫是单层石墨烯,”Tour说。 “因此,实际上,整个泡沫是一个大分子。当环氧树脂渗透泡沫然后硬化时,由于嵌入的石墨烯支架,环氧树脂在一个位置中的任何弯曲都会在其他位置处对整料施加应力。这最终会使整个结构变硬。”/pp style="text-indent: 2em text-align: justify "据研究人员称,这种泡沫含量为32%的球形复合材料密度略高,但电导率约为每厘米14西门子(电导率或反向欧姆的衡量标准)。泡沫不会增加化合物的重量,但使其抗压强度是纯环氧树脂的7倍。/pp style="text-indent: 2em text-align: justify "石墨烯和环氧树脂之间的简单互锁也有助于稳定石墨烯的结构。Tour说: “当环氧树脂渗透石墨烯泡沫然后硬化时,环氧树脂被捕获在石墨烯泡沫的微米大小的区域。”/pp style="text-indent: 2em text-align: justify "实验室通过将多壁碳纳米管混合到石墨烯泡沫中来提高赌注。研究人员称,纳米管充当与石墨烯结合的增强材料,使复合材料的硬度比纯环氧树脂高出1732%,导电性能提高近三倍,约为41西门子(Siemens)/厘米,远远高于迄今报道的几乎所有基于支架的环氧树脂复合材料。/pp style="text-indent: 2em text-align: justify "Tour预计该工艺流程将针对工业规模进行扩展。 “人们只需要一个足够大的炉子来生产最终的部件,”他说。 “但一直都是这样的,通过冷压,然后加热来制造大型金属零件。”/pp style="text-indent: 2em text-align: justify "他说,这种材料最初可能会取代碳复合树脂,这种碳复合树脂用于预浸渍和加固从航空航天结构到网球拍等材料中的织物。/p
  • 重磅新品 禾信公司推出金属有机复合物专用质谱仪(MOC-TOFMS)
    p  金属有机复合物、自组装超分子化合物、短链双链DNA等,在食品、药物、蛋白质分析等领域都具有极其重要的作用,但是由于这些化合物“热不稳定”,一直是质谱检测的难题,进口仪器也无能为力。/pp  近日,由广州禾信仪器股份有限公司独立研制开发的具有完全自主知识产权的金属有机复合物高分辨飞行时间质谱仪MOC-TOFMS悄然上市,快速打破行业的寂静。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/58303cb5-664f-4984-992b-09fbe716dd98.jpg" title="001.jpg"//ppspan style="color: rgb(0, 112, 192) "strong  工作原理/strong/span/pp  液体样品经过电喷雾离子源电离产生离子,在电场牵引下通过低压分子离子反应器MIR,随后离子在射频四极杆RFQ里进一步碰撞冷却聚焦,再经直流四极杆DCQ及离子光学透镜LENS调制后,由高分辨飞行时间质量分析器进行检测分析。/pp  整套系统采用专利大气压接口,可以同时控制离子束能量分散和离子束与背景气体碰撞能量的大小,是目前全球少数的极柔和离子传输器之一。该技术与垂直引入反射式飞行时间分析器相连,整机性能完全媲美进口冷喷雾电离质谱仪器。/ppspan style="color: rgb(0, 112, 192) "strong  特点与优势/strong/span/pp  1) 柔性大气压接口专利技术,有效传输热不稳定分子离子 /pp  2) 三级差分真空系统,极大提高仪器灵敏度 /pp  3) 紧凑式“V”型飞行时间质量分析器,最优尺寸分辨比。/ppspan style="color: rgb(0, 112, 192) "strong  应用领域/strong/span/pp  药物研究、生物医学研究、环境与食品安全、功能材料研究、催化机理研究等。/ppspan style="color: rgb(0, 112, 192) "strong  应用案例/strong/span/pp  span style="color: rgb(0, 112, 192) "分析目的:/span鉴定金属有机复合物合成产物的分子结构,为合成路线提供数据支撑。/pp span style="color: rgb(0, 112, 192) " 待测样品1:/span/pp  目标化合物分子式:Csub246/subHsub276/subFsub24/subNsub4/subOsub46/subPsub12/subPtsub4/sub/pp  目标化合物结构式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/fae951cf-2cd5-4de3-80c2-57b1601a2b05.jpg" title="002.png"//pp style="text-align: center "span style="color: rgb(0, 112, 192) " strong分子离子分子式最大丰度质荷比m/z/strong/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/3bf16853-b73c-47ac-85ce-bd489f0f1b31.jpg" title="004.png"/ /ppspan style="color: rgb(0, 112, 192) "  分析结果:/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/9bcb5748-33d3-4a9a-91fa-c6d72cd30981.jpg" title="005.png"//pp span style="color: rgb(0, 112, 192) " 待测样品2:/span/pp  目标化合物分子式:(Rhsub8/subAgsub2/subCsub120/subHsub132/subOsub16/subNsub8/subCsubl8/sub)sup6+/sup(SOsub3/subCFsub3/sub)sub6/sub (Csub6/subHsub4/subBrsub2/sub)/pp  目标化合物结构式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/95eef5c7-e06a-4f3c-99ec-e6d0b3aabdab.jpg" title="003.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong[M-4OTf]sup4+/sup模拟质谱图[M-3OTf]sup3+/sup模拟质谱图/strong/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/b267942d-cacf-4bfb-9b66-8d2dd100bbc8.jpg" title="006.jpg"//pp  span style="color: rgb(0, 112, 192) "分析结果sup(1)/sup:/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/1df41db8-cc21-4301-9d85-436bb55b0085.jpg" title="007.jpg"//pp  注:(1) Wen-Ying Zhang, et al. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule [J]. J. Am. Chem. Soc., 2016, 138 (33), pp 10700–10707/ppspan style="color: rgb(0, 112, 192) "strong  小结:/strong/span/pp  测试结果表明,用MOC-TOFMS对金属有机复合物检测有利于产生高价态准分子离子峰,适合热不稳定的金属有机复合物的精确质量检测。/ppbr//p
  • PD新模型:破坏线粒体复合物I功能足以诱导进行性帕金森症
    帕金森疾病(Parkinson’s disease, PD)是第二常见的神经退行性疾病,患者所表现出的运动功能障碍主要由黑质(substantia nigra, SN)中多巴胺能神经元丧失引起。尽管PD致病因素多样,但多项证据表明线粒体功能缺陷在其中的重要性,例如编码维持线粒体质量控制蛋白的PARK7、PARK6和PARK2基因突变能引起早发型PD【1】。多巴胺能神经元对线粒体功能障碍的易感性可部分归因于其高代谢需求,从而引起线粒体氧化磷酸化(OXPHOS)的持续刺激,然而这种巨大能量的提供是以线粒体氧化损伤增加为代价的。尸检研究表明,PD患者SN中mtDNA完整性的丧失与功能性线粒体复合物I(MCI)的丧失存在相关性。然而,这种MCI获得性损伤究竟是PD疾病进程中的一种副产品还是疾病的驱动因素还不得而知。2021年11月3日,来自美国西北大学Feinberg医学院的D. James Surmeier团队在Nature杂志上发表了一篇题为 Disruption of mitochondrial complex I induces progressive parkinsonism 的文章,这项研究通过选择性破坏小鼠多巴胺能神经元中MCI功能,发现MCI功能障碍足以导致进行性的帕金森病相关运动缺陷,且不同类型的运动功能损伤(精细动作和粗大运动)与不同部位(纹状体和黑质)多巴胺释放的相关性,挑战了长期以来存在的关于该疾病运动症状的观点。为了证明MCI功能障碍是否作为PD的驱动因素,该团队从小鼠多巴胺能神经元中特异性地敲除编码MCI催化核心亚基的Ndufs2基因。cNdufs2-/-小鼠在出生后20天(P20)仍表现出正常的粗大运动行为。但在随后10天中,SN多巴胺能神经元中的线粒体成为ATP的净消费者而非生产者,且线粒体嵴结构发生了明显改变。利用RiboTag方法分离多巴胺能神经元中的mRNA并进行测序发现,cNdufs2-/-小鼠中存在一种类似Warburg效应的代谢重编程,即编码促进糖酵解蛋白的基因上调,而与OXPHOS以及编码糖酵解抑制剂的基因下调。除了触发代谢重编程外,该团队还发现Ndufs2的缺失会导致与轴突生长和运输、突触传导、多巴胺(DA)合成和储存等相关的基因表达发生显着变化。对纹状体组织的液相色谱和质谱分析进一步验证cNdufs2-/-小鼠纹状体DA合成明显下降,此外,有助于驱动起搏的环核苷酸门控阳离子通道电流也明显减少。到P60,与多巴胺能信号相关的轴突蛋白的丢失由背侧纹状体扩大到腹侧纹状体,且cNdufs2-/-小鼠SN多巴胺能神经元胞体树突区域中的酪氨酸羟化酶表达降低至对照组一半左右,且DA释放量下降约75%。与在整个基底神经节中DA迅速耗尽的传统PD模型相比,cNdufs2-/-小鼠的病理分期能够评估DA释放的区域缺陷如何与行为相关联。随着背侧纹状体DA释放在P30左右下降到接近检测阈值,cNdufs2-/-小鼠失去了执行联想学习任务的能力,有趣的是,该任务可以通过P30时的左旋多巴治疗恢复,而P60的治疗则不能恢复。在通过小鼠从前爪去除粘合剂所花费的时间来评估精细运动技能的实验中,cNdufs2-/-小鼠完成任务时间明显延长,同时也表现出较差的旷场探索行为表现。此外,P60的cNdufs2-/-小鼠仅表现出轻微的步态障碍,到了P100才会表现出后肢张开、爪子位置异常和步幅改变等特征。而在P120-150期间,大约有40%的SN多巴胺能神经元丢失。需要注意的是,cNdufs2-/-小鼠在后期才出现粗大运动行为缺陷,这与SN DA而非背侧纹状体 DA释放变化平行。尽管有明确的临床证据表明纹状体DA耗竭对于PD患者的运动迟缓和僵硬是必要的【2】,但其充分性从未得到充分测试,因为传统的PD模型往往会导致整个基底神经节DA的快速耗竭。在此处通过对cNdufs2-/-小鼠的观察表明,背侧纹状体DA释放的丧失足以产生运动学习和精细运动缺陷,但并未达到类似于临床PD的运动症状水平。该团队通过分别向小鼠背侧纹状体或SN中立体定位注射携带AADC(可将左旋多巴转化为DA)的AAV,以及随后对小鼠旷场步态的分析,证明黑质多巴胺释放丧失对于粗大运动缺陷而言是必要因素。总的来说,这项研究不仅证明多巴胺能神经元中MCI功能丧失足以引发进行性的、轴突先行的功能丧失和左旋多巴反应性帕金森病,还证明背侧纹状体的DA耗竭对于联想运动学习和精细动作而言是必要的,但黑质的DA释放缺陷才会引起类似于临床PD患者表现出的粗大运动损伤特征。针对这项研究,来自美国格莱斯顿研究所的Zak Doric和Ken Nakamura在同期杂志上发表观点文章 Principles of Parkinson’s disease disputed by model 。他们指出González-Rodríguez等构建的基于线粒体功能障碍的帕金森疾病小鼠模型代表了目前可用的散发性PD最佳模型之一,它不仅可以研究复合物 I 缺陷在疾病中的作用,还可以提供一个模型来评估治疗策略的潜力。此外,该模型一个显著特征是多巴胺神经元在几个月中进行性退化,且轴突和胞体退化存在延迟,这种延迟便于详细研究两个不同部位多巴胺损伤所带来的影响。另一个相当大的进步是该模型证实纹状体多巴胺释放减少对于运动缺陷来说是必要而不充分的,也就是说,黑质多巴胺在维持粗大运动方面起着至关重要的作用。原文链接:https://doi.org/10.1038/s41586-021-04059-0https://doi.org/10.1038/d41586-021-02955-z
  • 为什么复合膜要用摆锤冲击试验机而不是落镖冲击试验机
    一、引言在材料科学领域,特别是在复合膜材料的性能测试中,冲击试验是评估材料抗冲击性能的重要手段。然而,对于复合膜这类特殊的材料,为何选择摆锤冲击试验机而非落镖冲击试验机,这背后有着一系列的科学依据和实际应用考量。二、摆锤冲击试验机与落镖冲击试验机的区别首先,我们需要了解摆锤冲击试验机和落镖冲击试验机的基本工作原理和区别。摆锤冲击试验机是通过释放预先设定高度的摆锤,使其自由下落并撞击试样,通过测量摆锤回弹的高度或试样破坏程度来评估材料的抗冲击性能。而落镖冲击试验机则是利用重力使落镖自由下落,通过调整落镖的质量和下落高度来模拟不同冲击能量,从而测试材料的抗冲击性能。三、复合膜的特性及其对冲击试验的需求复合膜是由两种或两种以上不同材料通过特定工艺复合而成的薄膜材料,具有优异的物理、化学和机械性能。由于其独特的结构和应用环境,复合膜对冲击试验有着特殊的需求。一方面,复合膜在实际使用中可能会遭受到来自各个方向的冲击,因此需要对其进行全方位的冲击性能测试;另一方面,复合膜的材料组成和结构特点决定了其对冲击能量的响应方式,需要采用能够准确模拟实际冲击情况的试验设备。四、摆锤冲击试验机在复合膜测试中的优势全方位冲击模拟:摆锤冲击试验机可以通过调整摆锤的释放角度和高度,实现不同方向和能量的冲击模拟,从而全面评估复合膜的抗冲击性能。高精度测量:摆锤冲击试验机采用高精度的传感器和控制系统,能够准确测量摆锤的回弹高度和试样的破坏程度,为复合膜的性能评估提供可靠的数据支持。可重复性高:摆锤冲击试验机的操作过程简单、稳定,试验结果的可重复性高,有利于对复合膜的性能进行准确、可靠的评估。五、落镖冲击试验机在复合膜测试中的局限性相比之下,落镖冲击试验机在复合膜测试中存在一定的局限性。首先,落镖冲击试验机主要模拟的是垂直向下的冲击情况,无法全面评估复合膜在多个方向上的抗冲击性能。其次,落镖冲击试验机的冲击能量调节范围有限,可能无法准确模拟复合膜在实际使用中遭受到的各种冲击情况。最后,落镖冲击试验机的操作过程相对复杂,试验结果的可重复性较低,不利于对复合膜的性能进行准确、可靠的评估。六、结论综上所述,摆锤冲击试验机在复合膜测试中具有明显的优势,能够全面、准确地评估复合膜的抗冲击性能。因此,在复合膜材料的性能测试中,摆锤冲击试验机是更为合适的选择。当然,在实际应用中,我们还需要根据具体的测试需求和环境条件来选择合适的试验设备和方法,以确保测试结果的准确性和可靠性。
  • 我国首次利用冷冻电镜技术获得生物大分子复合体全原子模型
    美国《国家科学院院刊》(Proceedings of the National Academy of Science, USA)1月10日在线发表了中国科学院生物物理研究所朱平研究组程凌鹏副研究员等人的研究论文——Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping。该发现对研究dsRNA病毒的mRNA加帽(Capping)机制有重要意义。这是我国首次利用冷冻电镜技术解析的生物大分子原子结构模型,也是目前已报道的国内最高分辨率的冷冻电镜三维重构结果。同时,这是世界上首次利用冷冻电镜的CCD图像(电荷耦合器件图像传感器,可将图像资料由光信号转换成电信号)获得的生物大分子复合体的全原子模型。  本工作是完全基于生物物理所生物成像技术实验室2010年4月建成并试运行的Titan Krios电镜及其附属设备完成的,用单颗粒图像处理技术获得了呼肠孤病毒科的质型多角体病毒近原子分辨率的三维结构(3.9埃),并独立构建了全原子模型。呼肠孤病毒科病毒是一类重要的双链RNA病毒,其感染宿主包括植物、无脊椎动物、脊椎动物和人类,其中的质型多角体病毒是其两个亚科之一。该研究解析了呼肠孤病毒科质型多角体病毒的近原子分辨率三维结构并构建了完整原子模型,确认了该病毒新生mRNA的流出通道,对研究双链RNA病毒的RNA加帽机制,新生mRNA的释放过程,以及呼肠孤病毒的蛋白衣壳的稳定性和进化具有重要意义。  中国科学院生物物理研究所在中国科学院蛋白质科学研究平台二期建设当中重点发展了生物大分子冷冻电镜三维重构研究平台,已经建成了具有世界先进水平的生物成像技术实验室,拥有目前最先进的300千伏Titan Krios场发射冷冻透射电子显微镜。该成果表明:我国独立开展的生物大分子冷冻电镜高分辨率研究工作达到了该领域的先进水平 和2010年10月孙飞研究组以封面形式发表于Structure的分子伴侣素结构等系列成果表明:中国科学院蛋白质科学研究平台生物成像技术实验室的成功建立,为进一步开展冷冻电子显微前沿研究奠定了坚实的基础,生物物理所生物成像技术实验室已跻身于达到近原子分辨率三维重构水平的极少数实验室行列。  本工作得到基金委国家自然科学基金、科技部国家重点基础研究973计划、以及中国科学院百人计划等项目资助,该文章链接为http://www.pnas.org/content/early/2011/01/05/1014995108。  该研究由中国科学院生物物理研究所生物大分子国家重点实验室朱平研究组和孙飞研究组、华南农业大学孙京臣副教授和中山大学张景强教授等合作完成。其中,生物物理研究所朱平研究组程凌鹏副研究员完成了冷冻电镜成像和结构解析等工作,黄晓星助理研究员协助完成了病毒纯化工作,孙飞研究组研究生张凯协助完成了原子模型构建工作,生物成像中心电子显微镜平台高级工程师季刚博士提供了电镜成像技术支持。     图片说明:质多角体病毒CPV的冷冻电镜图像(左上)和质型多角体病毒衣壳三维重构(中)。重构结果中彩色部分为组成该病毒的最基本的非对称结构单元。右图展示该非对称单元的放大图(右上)以及构建的原子模型(右下)。左下图展示的是部分氨基酸的三维重构电子密度图以及构建的原子模型,可以很清楚地看见氨基酸侧链。
  • 铝塑复合膜的热封工艺中,热封压力的具体数值范围是多少?
    铝塑复合膜的热封工艺中,热封压力是一个至关重要的参数,它直接影响着复合膜的热封效果和产品质量。本文将深入探讨铝塑复合膜热封工艺中热封压力的具体数值范围,并结合实际应用场景,为读者提供全面的指导和参考。一、热封压力的重要性在铝塑复合膜的热封过程中,热封压力是确保两层或多层材料在热封温度下充分熔融并紧密结合的关键因素。适当的热封压力可以使得材料之间形成稳定的化学键合,提高热封强度,从而确保复合膜的密封性和耐用性。二、热封压力的具体数值范围热封压力的具体数值范围并非一成不变,它受到多种因素的影响,包括复合膜的材料类型、厚度、热封温度、热封时间等。因此,在实际应用中,我们需要根据具体情况来确定合适的热封压力数值范围。一般来说,对于常见的塑料复合膜材料,如CPP(聚丙烯)、OPP(取向聚丙烯)、PET(聚酯)等,其热封压力范围大致如下:CPP(聚丙烯):热封压力范围通常在0.5~0.7kg/cm² 之间。由于CPP材料具有较好的热封性能,因此在较低的压力下即可实现良好的热封效果。OPP(取向聚丙烯):热封压力范围也在0.5~0.7kg/cm² 之间。与CPP相似,OPP材料同样具有较好的热封性能,但需注意其取向性对热封效果的影响。PET(聚酯):热封压力范围相对较高,通常在1.5~2.0kg/cm² 之间。PET材料具有较高的熔点和强度,因此需要较高的热封压力才能实现充分的熔融和结合。然而,这些数值范围仅供参考,实际应用中还需根据复合膜的具体情况和热封设备的特点进行调整。例如,对于较厚的复合膜或需要更高热封强度的应用场景,可能需要适当提高热封压力;反之,对于较薄的复合膜或需要更低热封强度的应用场景,则可适当降低热封压力。三、热封压力的调整与优化在实际生产中,为了获得最佳的热封效果和产品质量,我们需要对热封压力进行精细的调整和优化。这主要包括以下几个方面:根据复合膜的材料类型和厚度选择合适的热封压力范围。根据热封设备的性能和特点调整热封压力的具体数值。例如,不同型号的热封机可能具有不同的压力调节范围和精度,需要根据实际情况进行调整。结合实际生产过程中的观察和测试,对热封压力进行微调。例如,通过观察热封后的复合膜表面是否平整、无气泡、无虚焊等现象,以及测试热封强度是否符合要求等方式来评估热封效果,并根据评估结果对热封压力进行相应的调整。注意热封温度、热封时间和热封压力之间的协调配合。这三个参数共同影响着热封效果,需要在实际生产中根据具体情况进行综合考虑和调整。总之,铝塑复合膜的热封工艺中热封压力的具体数值范围需要根据实际情况进行确定和调整。通过精细的调整和优化热封压力等参数可以确保复合膜的热封效果和产品质量满足要求。
  • 电子剥离试验机检测复合膜剥离强度为10N/25mm符合特定标准
    一、引言复合膜剥离强度是衡量其性能的重要指标之一,而电子剥离试验机是检测这一指标的重要工具。在多个行业和领域中,对复合膜的剥离强度都有明确的标准要求。本文将探讨电子剥离试验机检测复合膜剥离强度为10N/25mm是否符合这些标准。二、剥离强度标准概述剥离强度通常以N/cm或N/mm为单位,表示单位宽度下剥离材料所需的力。对于复合膜来说,其剥离强度受到材料类型、生产工艺、使用环境等多种因素的影响。在不同的应用领域和行业中,对剥离强度的要求也有所不同。三、电子剥离试验机检测结果分析电子剥离试验机通过模拟实际使用中的剥离过程,测量剥离过程中所需的力量来评估材料的剥离性能。当电子剥离试验机检测复合膜剥离强度为10N/25mm时,我们需要根据具体的应用领域和行业标准来判断其是否符合要求。1.行业标准对照根据行业标准,我们可以发现10N/25mm的剥离强度在某些领域是符合要求的。例如,在胶带、电子绝缘材料等领域,手动剥离法标准值要求剥离强度达到或超过10N/25mm。这表明,在这些领域中,电子剥离试验机检测到的10N/25mm剥离强度是符合标准的。2.实际应用考虑除了满足行业标准外,我们还需要考虑复合膜在实际使用中的性能需求。如果10N/25mm的剥离强度能够满足复合膜在实际应用中的稳定性和可靠性要求,那么这一检测结果就是符合要求的。四、结论综上所述,电子剥离试验机检测复合膜剥离强度为10N/25mm在胶带、电子绝缘材料等领域是符合标准的。然而,在其他领域中,对剥离强度的要求可能有所不同。因此,在具体应用中,我们需要根据行业标准和实际使用需求来判断剥离强度是否符合要求。
  • 我国科学家揭示线粒体外膜转位酶复合体组装的分子机制
    线粒体是真核细胞能量代谢的主要场所,与动植物的生长发育密切相关,99%的线粒体蛋白由细胞核基因编码,在细胞质中合成。线粒体外膜TOM转位酶复合体负责绝大部分前体蛋白运输进入线粒体,再通过其他转位酶复合体分选至线粒体的各个部位。TOM复合体是由7个亚基组成的膜蛋白复合体,其组装过程是多步骤且高度动态的,需要线粒体外膜SAM复合物的协助。但是,SAM复合物如何协助TOM组装的分子机制尚不清楚。  为了探索TOM转位酶复合体的组装机制,作物遗传改良国家重点实验室殷平教授研究团队独辟蹊径,利用哺乳动物细胞重组表达系统重构了该组装过程,并实现精准控制,可人为地为组装按下“暂停键”。该方法使得研究者捕获了TOM组装过程中的多个中间态并获得其蛋白样品,攻克了该领域多年来无法获得稳定的TOM复合体中间态的难题。研究团队利用单颗粒冷冻电镜技术首次解析了两个重要中间态的高分辨三维结构,并结合功能分析阐明了SAM复合物协助组装以及释放TOM的分子机制。  该研究成果有助于理解TOM转位酶复合体的组装过程,更好地探究线粒体蛋白的生物发生,为线粒体疾病治疗和作物遗传改良提供理论基础。相关研究成果于近期发表在Science杂志上。
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 北航《Nature Materials》颠覆以往!室温下制备石墨烯复合材料
    石墨的断裂强度为130 GPa,杨氏模量为1.0 TPa。然而,这种优异的机械性能处于纳米级水平,对于宏观石墨烯片层组件来说还没有实现。这种性能退化是由以下原因造成的:不同片层之间的错位,以及由此导致的不良应力传递。许多研究集中在通过增加石墨烯排列和改善片层间相互作用来改善石墨烯片层阵列的机械性能。此外,利用微毛细管的剪切场对氧化石墨烯进行定向,然后在2500℃退火,可以得到拉伸强度为1.9 GPa的石墨烯带。然而这两种方法都需要较高的退火温度,可能不适合制造面内各向同性的薄板。学者们试图通过近室温组装获得高强度石墨烯片材,但是由于受到石墨烯层的错位而受挫,因为这会降低机械性能。虽然面内拉伸可以减少这种错位,但在释放拉伸时会重新出现。北京航空航天大学程群峰教授与德克萨斯大学达拉斯分校Ray H. Baughman教授领导的团队,提出使用共价键和π-π片层间桥接,来永久冻结拉伸诱导的石墨烯片排列。相关论文以题为“High-strength scalable graphene sheets by freezing stretch-induced alignment”发表在Nature Materials上。论文链接:https://www.nature.com/articles/s41563-020-00892-2本文所述的近室温工艺(低于50℃)或其改进可潜在地用于将廉价开采的石墨转化为高性能石墨烯复合材料,该复合材料适用于航空航天和汽车应用,这些领域轻量的特性尤其重要。目前制造的高强度、高模量和高韧性板材可使用简单的双面铸造工艺进行扩展。此外,研究已经表明,4 wt%的市售树脂或π-π桥联剂的单层厚度提供了有效的层压,能够制造无限厚的大面积片材。与机械强度高的替代材料相比,这些板材无需层压,可提供非常高的电磁干扰屏蔽性能。此外,所获得的高机械性能和高电导率的组合可以潜在地用于各种应用,例如为飞机机身提供雷击保护。拉伸诱导双轴取向过程中,顺序桥接可以产生具有高面内拉伸强度(1.55 GPa)的顺序桥接(SB)、双轴拉伸(BS)rGO片(称为SB-BS-rGO片)。图1a显示了SB-BS-rGO板的制造方法。图1b中示出了所得的SB-BS-rGO片材的结构模型。图1 | SB-BS-Rgo片的制造工艺和结构示意图研究人员使用广角X射线散射图(图2a、图2b)表征石墨烯片层排列,并用赫尔曼取向因子(f)描述。rGO片的f(0.810)比SB-BS-rGO片的f(0.956,图2e)低得多。rGO片的扫描电子显微镜(SEM)和透射电子显微镜图像显示石墨烯片之间存在大量大规模空隙(图2a-c),这可能是基于过滤的自组装和碘化氢还原过程造成的。图2 Rgo片和SB-BS-rGO片的结构特征对rGO片的原位拉曼测量(图3a)显示,当施加的应变低于0.6%时,向石墨烯片层的应力转移增加,然后保持到3.9%,其中增加的应变不会增加石墨烯片层上的应变。相比之下,对SB-BS-rGO薄片的拉曼测量(图3b)显示,在直至薄片断裂的整个应变范围内(大约2.8%),所施加的拉伸应变越来越多地转移到石墨烯薄片上。石墨烯片的紧密堆叠限制了它们的面外变形,减小了面内方向的负热膨胀的大小。rGO石墨烯片的负热膨胀的幅度小于SB-BS-rGO片(图3c),这与实验测量的紧密度一致。应力松弛提供了相关的动力学信息。SB-BS-rGO比rGO板具有更高的抗应力松弛能力(图3d)。图3 Rgo片和SB-BS-rGO片的拉曼、热膨胀、应力松弛和x光衍射数据拉伸力学试验表明,重叠的SB-BS-rGO片材在非重叠区域断裂,这不是由于重叠区域的剪切断裂而失效。此外,重要的是要注意的是,层压的SB-BS-rGO片在没有分层的情况下发生了断裂。即使忽略SB-BS-rGO片材的重叠区域,导出的抗拉强度、韧性和杨氏模量也接近于单个SB-BS-rGO片材的抗拉强度、韧性和杨氏模量(图4a)。图4 DB铸造SB-BS-rGO(DB)片和SB-BS-rGO(DB)片的机械和电气性能总的来说,研究人员通过连续共价键和π-π桥连冷冻石墨烯取向,得到了拉伸强度分别为1.47倍、2.50倍和1.41倍的平面内各向同性石墨烯片。该制备工艺在室温下完成,未来可能在廉价获得的石墨烯转化为高性能轻量的石墨烯复合材料,而这在航空航天和汽车应用中将会有极为重要和广泛地应用。
  • 赛默飞与TSI签署战略合作协议--联手打造大气复合污染检测解决方案
    近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)与全球气溶胶研究先驱美国TSI集团中国公司(以下简称:TSI)签署战略合作协议,携手在中国推广PM2.5颗粒物监测分析和大气复合污染监测整体解决方案,帮助中国客户实施更精确、更智能的大气监测。 通过本次合作,TSI公司的气溶胶粒径分布谱仪、浊度仪等产品将被集成到赛默飞PM2.5颗粒物监测分析和大气复合污染监测整体解决方案中,从而全面实现PM2.5颗粒物质量浓度、数量浓度、粒径分布、光学性质和化学成分的全方位分析;双方有望实现空气污染与灰霾性质、数量等复合状况的进一步判定;同时为政府部门研究灰霾成因,对症下药实施具体削减方案提供有力依据。 作为全球环境检测领域的领导者,赛默飞进入中国30年来始终积极支持中国环境监测事业,逐步将这一先进技术和成功经验转移或借鉴到中国。多款通过美国环保署(U.S. EPA)认证的高品质产品和整体解决方案,可提供不同的监测方法满足客户对数据多样化的需求。近期新推出的新品颗粒物排放连续监测系统 (PM CEMS) 综合了光散射法和质量微天平方法的优点,可以满足日益严格的精度要求,使工业污染排放的颗粒物连续监测成为可能;此外,涵盖受体样品采集、样品管理、样品分析的整体解决方案,能够帮助环境监测客户快速建立颗粒物源解析方法、时刻提供全分析流程的技术支持、及时输出高质量的分析测试数据。 美国TSI公司自1967年在美国明尼苏达大学国家颗粒技术实验室配合下生产出全世界第一台气溶胶分析仪以来,陆续推出了一系列粒子测量和分析仪,其中许多都是与世界著名的气溶胶科学家一同开发并由TSI公司独家生产的。可以说TSI公司能够为气溶胶的基础研究及工业与民用、环境与健康等应用提供最全面的粒子仪器产品大家族。TSI公司气溶胶分析仪器覆盖了2.5纳米-20微米粒径范围内的纳米颗粒、亚微米及微米颗粒、超微米粉尘等。 赛默飞与TSI建立战略合作关系,从污染防治以及安全影响评价的角度而言,在更高的层次满足了中国客户和大众的需求,将能开创多方受益的互赢局面。“环境问题始终是全球面临的最重要挑战之一,节能减排不仅仅只是一句口号,” 赛默飞世尔科技中国总裁兼全球环境和过程监测业务总裁迈世福先生表示,“双方的合作也不会止步于此,我们将会不断进行研发和创新,推出有助于实现节能减排这一目标的高效产品,满足客户降低成本,减少对环境影响等需求,最终实现帮助客户使世界更健康、更清洁、更安全的使命。” 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn 关于TSITSI公司是一家设计并制造流体测量、环境颗粒物及其它环境参数实时监测的高科技精密仪器的跨国公司,是流体测量和环境监测领域的技术领航者,产品涉及基础研究、环境监测、劳动保护、生物医药及工业生产等诸多领域,能满足工业、政府部门、大学及研究机构等不同层次的需求。 TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有分公司和代表处,并在其服务的全球各个市场均建立了当地机构。每天,我们专业的员工都在把科研成果转化成现实。欲了解更多信息,请登录 www.tsi.com
  • 赛默飞世尔科技显微红外在复合材料方面的应用
    傅立叶变换显微红外光谱仪在各个化学相关领域,如材料、法医、化工、医学、电子等行业已得到越来越广泛的应用。尤在物证鉴定、失效分析、材料分析和研究、倒置工程等领域已成首选的分析工具之一,其作用不可替代。 刚刚上传了我公司沈怡博士的文章:傅立叶变换显微红外光谱仪Nicolet iN10TM 在复合材料分析上的应用,欢迎有兴趣的广大客户朋友浏览下载。
  • 药品包装用镀铝复合膜剥离强度测试仪对于包装材料检测有何意义
    在药品生产领域中,包装材料的质量和安全性一直是备受关注的重点。其中,镀铝复合膜作为一种常见的药品包装材料,其剥离强度成为衡量包装质量的关键指标之一。而镀铝复合膜剥离强度测试仪作为专业检测工具,在保障药品包装安全方面发挥着不可替代的作用。一、提升药品包装质量的精准检测镀铝复合膜剥离强度测试仪采用先进的测试原理和技术,能够准确测量镀铝复合膜与药品之间的剥离力。通过这一测试,可以及时发现包装材料存在的潜在问题,如粘合力不足、易剥离等,从而确保药品在运输和储存过程中不易受到外界污染或损坏。同时,测试仪的精确性也为药品生产企业提供了可靠的数据支持,有助于企业优化生产工艺,提升产品质量。二、保障患者用药安全的重要屏障药品包装的安全直接关系到患者的用药安全。如果药品包装材料剥离强度不足,可能导致药品在使用过程中意外泄漏或破损,进而引发药品污染、剂量不准确等问题。而镀铝复合膜剥离强度测试仪的应用,则能够在源头上保障药品包装的完整性和安全性,有效避免患者因包装问题而导致的用药风险。三、推动药品包装行业的技术创新随着药品包装技术的不断发展,对包装材料性能的要求也在不断提高。镀铝复合膜剥离强度测试仪的出现,不仅为药品生产企业提供了有效的检测手段,也推动了药品包装行业的技术创新。通过不断研发和优化测试技术,可以进一步提高药品包装的可靠性和安全性,满足市场对高质量药品包装的需求。四、降低生产成本与风险,提升市场竞争力镀铝复合膜剥离强度测试仪的使用,有助于药品生产企业在生产过程中及时发现并解决包装材料问题,从而避免因包装问题导致的生产延误、退货等风险。这不仅可以降低企业的生产成本,还可以提高企业的生产效率和产品质量,进而提升企业在市场上的竞争力。五、行业标准化与规范化的推动者随着镀铝复合膜剥离强度测试仪在药品包装行业的广泛应用,其对行业标准化和规范化的推动作用也日益显现。通过制定统一的测试标准和操作规范,可以确保药品包装材料的质量和安全性得到有效控制。同时,这也为行业内的企业提供了一个公平竞争的平台,有助于推动整个行业的健康发展。综上所述,镀铝复合膜剥离强度测试仪在药品包装材料检测中具有重要的意义。它不仅能够提升药品包装的质量和安全性,保障患者的用药安全,还能够推动药品包装行业的技术创新和规范化发展。因此,对于药品生产企业而言,积极采用镀铝复合膜剥离强度测试仪进行包装材料检测,无疑是一种明智的选择。
  • 研究| “真菌树”状AgNWs@BNNS/芳纶纳米纤维导热复合膜
    01研究背景随着5G、物联网等电子信息技术的快速发展,电子电气系统正朝着超薄、高性能、智能化、功能一体化的方向发展,内部集成发热元件数量持续增加,同时导致了热量快速积累,严重影响其稳定性和使用寿命。这迫切需要设计和开发高导热聚合物复合材料,以满足先进电子或电气设备/组件对高导热/散热、优良机械性能、耐腐蚀和轻量的需求。研究人员通常在导热系数(λ)较低的聚合物基体中加入单一或混合类型的高导热填料,以有效提高聚合物复合材料的λ。由于氮化硼纳米片(BNNS)具有良好的理论λ和优异的电绝缘性能,在高导热和电绝缘复合材料中具有广泛的应用前景。银纳米线(AgNWs)是一种一维纳米材料,具有优异的导热性、导电性和高抗弯性等特点,广泛应用于触摸屏、热界面材料、电磁干扰屏蔽材料等领域。在作者之前的研究工作中,制备了BNNS/芳纶纳米纤维(ANF)仿珍珠层状的导热结构复合薄膜,在填料分数为50 wt% 时,水平和垂直导热分别可达3.94 W/(mK)和0.62 W/(mK), 是纯ANF膜的5.8倍;用多元醇合成了高导热AgNWs方法,并采用真空辅助过滤技术制备AgNWs/纤维素导热复合薄膜,当AgNWs质量分数为50 wt%时,水平导热为6.5 W/(mK),为纯纤维素膜的2.4倍。异质结结构因为有望加强填料间的搭建,减少填料的聚集,在导热复合材料领域备受关注。将BNNS和AgNW结合(BNNS包覆AgNW)有望解决导热,绝缘,抗弯折等多功能性挑战。然而,该异质结结构一直未被报道,因为AgNW的长径比大且存在弯折,很难将BNNS包覆在AgNW上并稳定的调控形貌。02成果掠影西北工业大学顾军渭教授研究团队通过“溶剂热法-原位生长法”制备出“真菌树”状银纳米线@氮化硼纳米片(AgNWs@BNNS)异质结构导热填料,再与化学解离制备的芳纶纳米纤维(ANF)复合,经“抽滤自组装-热压”法制备出AgNWs@BNNS/ANF导热复合膜。当真菌树状AgNWs@BNNS异质结填料的质量分数为50 wt%时,其ANF导热复合膜具有最高9.44 W的导热系数和136 MPa的高拉伸强度。同时具有额外的电加热性能(低供电电压下的高焦耳加热温度5 V、240.6℃)以及10 s的快速响应时间、优异的电稳定性和可靠性(1000次、6000 s拉伸-弯曲疲劳工作下稳定和恒定的实时电阻)。研究成果以“Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers”为题发表于《Angewandte Chemie International Edition》期刊。03图文导读真菌树状异质结氮化硼纳米片及其复合材料的制备。AgNWs和AgNWs@BNNS填料的XPS谱和XRD谱。AgNWs和AgNWs@BNNS填料的SEM图、AFM图和通过有限元分析的整体温度分布。AgNWs@BNNS TEM图。AgNWs@BNNS/ANF复合纤维膜的导热系数。50% wt% AgNWs@BNNS/ANF复合膜的焦耳加热性能。不同工作电压下的时变表面温度(a)、定制表面温度(b)和红外热图像(c)。50 wt% AgNWs@BNNS/ANF复合膜的不同应用场景效果。
  • 大连化物所采用一步法合成策略开发出高性能光热转化石墨烯基复合相变材料
    近日,大连化物所热化学研究组(DNL1903)史全研究员团队通过简单易行的合成策略,开发了一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常比较复杂、耗时且耗能,阻碍了其进一步的实际应用。针对此问题,史全团队通过一种简单而直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还展现出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究以“One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency”为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。该工作的第一作者是大连化物所DNL1903硕士研究生李艳更。上述工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等项目的支持。  文章链接:https://doi.org/10.1016/j.cej.2021.132439
  • “2017特种粉末冶金及复合材料制备/加工第二届学术会议”第二轮通知
    p style="text-align: center "strong2017特种粉末冶金及复合材料制备/加工第二届学术会议/strong/pp  strong各相关单位:/strong/pp  为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。/pp  strong中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司/strong等单位定于span style="color: rgb(255, 0, 0) "2017年12月7-10日在湖南省长沙市/span共同举办“span style="color: rgb(0, 176, 240) "strong2017特种粉末冶金及复合材料制备/加工第二届学术会议/strong/span”。/pp  span style="color: rgb(255, 0, 0) "strong材料工业/strong/span是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。/pp  span style="color: rgb(255, 0, 0) "strong本次会议旨在/strong/span促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。/pp  span style="color: rgb(255, 0, 0) "strong本次会议将邀请/strong/span国家相关部委、中国有色金属工业协会、中国有色金属学会领导,中国工程院、中国科学院院士和知名专家、学者和企业代表就国家相关政策和技术水平的发展做专题报告。欢迎各企业单位、科研院所、高等院校、设备厂家积极参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f4151a0a-4db3-4e68-b036-343e7692c4ea.jpg" title="微信图片_20171118195259.jpg"//pp style="text-align: center "  span style="text-decoration: underline "strong现将有关事项通知如下/strong/spanbr//pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong组织机构/strong/span/pp  span style="color: rgb(255, 0, 0) "strong主办单位/strong/span/pp  中国有色金属学会/pp  中南大学/pp  中国科学院金属研究所/pp  西北有色金属研究院/pp  株洲硬质合金集团有限公司/pp  span style="color: rgb(255, 0, 0) "strong联办单位/strong/span/pp  新型陶瓷纤维及其复合材料国家级重点实验室/pp  硬质合金国家重点实验室/pp span style="color: rgb(255, 0, 0) "strong 承办单位/strong/span/pp  湖南省宁乡高新技术开发区管理委员会/pp  粉末冶金国家重点实验室/pp  北方中冶(北京)工程咨询有限公司/pp  span style="color: rgb(255, 0, 0) "strong支持单位/strong/span/pp  北京工业大学 江西理工大学 华南理工大学 昆明理工大学华中科技大学 广东省科学院 河南科技大学 上海交通大学 北京理工大学 西北工业大学 西安交通大学 哈尔滨工业大学 山东科技大学 西安理工大学 南昌航空大学 北京航空航天大学 合肥工业大学广东省材料与加工研究所 先进结构功能一体化材料与绿色制造技术工业和信息化部重点实验室/pp  (...陆续更新中)/pp  span style="color: rgb(255, 0, 0) "strong支持媒体/strong/span/pp  《中国有色金属学报(中英文版)》《金属学报》/pp  《稀有金属材料与工程(中英文版)》《中国金属通报》/pp  《稀有金属(中英文版)》/pp  《有色环保》中冶有色技术网/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "时间、地点/span/strong/pp  span style="color: rgb(255, 0, 0) "strong时间/strong/span:2017年12月7-10日(其中7日全天报到,8-9日大会及分会学术交流,10日去宁乡考察。)/pp  strongspan style="color: rgb(255, 0, 0) "地点/span/strong:湖南省长沙市长沙融程花园酒店/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "拟邀嘉宾及演讲方向/span/strong/pp  span style="color: rgb(255, 0, 0) "strong拟邀嘉宾/strong/span/pp  strong中国有色金属工业协会领导/strong/ppstrong  中国有色金属学会领导/strong/pp  strong黄伯云/strong 中南大学、中国工程院院士/pp  strong何季麟 /strong郑州大学、中国工程院院士/pp  strong屠海令/strong 北京有色金属研究总院、中国工程院院士/pp  strong王华明 /strong北京航空航天大学、中国工程院院士/pp  strongspan style="color: rgb(255, 0, 0) "大会部分报告/span/strong(陆续更新...)/pp  strong杨 锐 /strong中国科学院金属研究所所长/pp  发言题目:钛基复合材料和粉末冶金近净成形研究进展/pp  strong周科朝 /strong中南大学副校长/pp  发言题目:高强耐蚀铜合金的连铸与加工制备技术研究进展/pp  strong关绍康/strong 郑州大学副校长/pp  发言题目:高速连铸连轧新工艺生产高性能铝合金板材的研究与开发/pp  strong易健宏/strong 昆明理工大学副校长/pp  发言题目:新型粉末冶金复合材料/pp  strong范景莲/strong 中南大学教授/pp  发言题目:超高温轻质难熔金属基复合材料/pp  strong王 军/strong 新型陶瓷纤维及其复合材料国家重点实验室主任/pp  发言题目:耐高温透波陶瓷纤维制备/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "分会场部分报告(陆续更新...)/span/strong/pp  span style="color: rgb(255, 0, 0) "strong粉末冶金专题分会场/strong/span/pp  strong张德良/strong 东北大学教授/pp  发言题目:通过粉末加工和热机械固结制备超细结构金属基纳米复合材料/pp  strong梁淑华 /strong西安理工大学教授/pp  发言题目:CuW系假合金在高压电器中的应用/pp  strong蔡晓兰/strong 昆明理工大学冶金与能源工程学院教授/pp  发言题目:高能球磨设备与金属基复合粉体制备技术/pp  strong郎利辉 /strong北京航空航天大学机械工程及自动化学院教授/pp  发言题目:钛合金粉末的热等静压数值模拟研究/pp  strong张朝晖/strong 北京理工大学博士生导师/pp  发言题目:放电等离子烧结机理及其应用研究进展/pp  strong白玉龙/strong 西安龙华微波冶金有限责任公司董事长/pp  发言题目:不颠覆,无突破,微波技术在有色金属冶炼上的应用/pp span style="color: rgb(255, 0, 0) "strong 硬质合金专题分会场/strong/span/pp  strong杜 勇/strong 粉末冶金国家重点实验室教授/pp  发言题目:硬质合金的集成计算材料工程/pp  strong王社权 /strong株洲钻石切削刀具股份有限公司 副总经理、研究员/pp  发言题目:立方相成分对梯度硬质合金结构的影响---理论计算和实验研究/pp  strong周武平/strong 安泰科技股份有限公司总裁兼党委书记/教授级高工/pp  发言题目:矿用硬质合金研究进展/pp  strong邓 欣 /strong广东工业大学教授/pp  发言题目:非常规硬质合金及超硬材料研究/pp  strong张 立/strong 中南大学粉末冶金研究院教授/pp  发言题目:从2017Plansee会议看硬质合金的国际发展动态/pp  strong时凯华/strong 自贡硬质合金有限责任公司研发中心主任/博士/pp  发言题目:欧洲陶瓷材料研究新进展/pp  strong张 颢/strong 株硬集团研发中心副主任/高级工程师/pp  发言题目:钻掘硬质合金制备技术发展动态和展望/pp  strong龙本夫/strong 厦门金鹭特种合金有限公司经理/硕士/pp  发言题目:碳酸钴煅烧工艺对氧化钴性能的影响/pp  strong李 毅/strong 江苏泰尔新材料股份有限公司总工程师/博士/pp  发言题目:基于石蜡改性的环境友好型硬质合金成型剂的研究/pp  strong王明智 /strong燕山大学材料学院研究员/pp  发言题目:过渡族金属共价键化合物的合金化—高熵化合物及其应用/pp  strong乔竹辉/strong 中国科学院兰州化学物理研究所研究员/pp  发言题目:硬质合金宽温域摩擦磨损机理研究及自润滑硬质合金的设计制备/pp  strong张 聪/strong 北京科技大学助理研究员/pp  发言题目:Ti(C,N)基金属陶瓷相图热力学数据库及其组织结构设计/pp  高温、难熔金属专题分会场/pp  strong王金淑/strong 北京工业大学教授/pp  发言题目:稀土钼金属陶瓷次级发射材料研究/pp  strong李树奎/strong 北京理工大学教授/pp  发言题目:新型穿甲弹弹芯材料研究/pp  strong沙江波/strong 北京航空航天大学教授/pp  发言题目:放电等离子烧结Nb-Si基合金的组织与性能研究/pp  strong曹顺华 /strong中南大学教授/pp  发言题目:连续梯度钨铜材料制备技术/pp  strong秦明礼 /strong北京科技大学教授/pp  发言题目:高性能金属钨制品的精密制备技术/pp  strong韩胜利 /strong广东省材料与加工研究所高级工程师/pp  发言题目:增塑挤压-熔渗烧结制备W-Cu合金组织性能研究/pp  strong胡 鹏/strong 北京工业大学教授/pp  发言题目:球形钨粉的热等离子制备及其烧结性能研究/pp  strong王伟丽/strong 西北工业大学研究员/pp  发言题目:快速凝固高熵CoCrFeNiMnx合金组织演化规律及其性能特征/pp  strong孟军虎/strong 中国科学院兰州化学物理研究所研究员/pp  发言题目:高熵合金基高温自润滑复合材料的设计制备和减摩耐磨机制/pp  span style="color: rgb(255, 0, 0) "strong金属基复合材料专题分会场/strong/span/pp  strong张 荻 /strong上海交通大学教授/pp  发言题目:待定/pp  strong耿 林/strong 哈尔滨工业大学教授/pp  发言题目:金属基复合材料构型设计与调控/pp  strong武高辉/strong 哈尔滨工业大学教授/pp  发言题目:金属基复合材料尺寸稳定设计及应用/pp  strong马宗义/strong 中国科学院金属研究所研究员/pp  发言题目:高体份金属基复合材料制备与应用/pp  strong彭华新/strong 浙江大学教授/pp  发言题目:金属-陶瓷复合材料的组织调控/pp  strong赵乃勤 /strong天津大学教授/pp  发言题目:三维网络碳纳米增强相的构筑与复合/pp  strong王慧远 /strong吉林大学教授/pp  发言题目:待定/pp  strong王快社/strong 西安建筑科技大学教授/pp  发言题目:累积叠轧制备Ti/Ni多层结构复合材料界面扩散及性能研究/pp  strong郑开宏/strong 广东省材料与加工研究所教授/pp  发言题目:铁基复合材料制备技术及应用合/pp  strong肖伯律/strong 中国科学院金属研究所研究员/pp  发言题目:铝基复合材料变形加工图研究/pp  strong王祖敏/strong 天津大学教授/pp  发言题目:金属-半导体界面的原子传输与相变/pp  strong杨亚锋/strong 中国科学院过程工程研究所研究员/pp  发言题目:陶瓷包覆型粉体的设计、制备及应用/pp  strong魏秋平/strong 中南大学副教授/pp  发言题目:金刚石/铜复合材料的研究/pp  strong何春年/strong 天津大学教授/pp  发言题目:碳材料增强金属基复合材料的设计与强韧化机制/pp  strong黄陆军/strong 哈尔滨工业大学教授/pp  发言题目:多级多尺度钛基复合材料设计与调控/pp  strong贾均红/strong 中科院兰州化学物理研究所研究员/pp  发言题目:金属基宽温域润滑复合材料的设计---AgTMxOy相的原位分解和摩擦诱导重生/pp  strong陈体军/strong 兰州理工大学教授/pp  发言题目:粉末触变成形制备芯—壳结构粒子增强铝基复合材料的研究/pp  span style="color: rgb(255, 0, 0) "strong铜合金及铜基材料专题分会场/strong/span/pp  strong李 周/strong 中南大学教授/pp  发言题目:高性能铜合金设计及应用/pp  strong牛立业/strong 中铝洛阳铜业有限公司教授级高工/pp  发言题目:汽车电阻焊电极用弥散强化铜合金材料工艺研究/pp  strong王强松/strong 北京有色金属研究总院教授/pp  发言题目:铜合金材料特种应用/pp  strong阮 莹/strong 西北工业大学教授/pp  发言题目:多孔铜的结构特征与力学性能研究/pp  strong赵红彬/strong 宁波博威合金材料股份有限公司研发总监/pp  发言题目:致力于社会资源和环境压力降低的高性能铜合金研究/pp  strong王鹏云 /strong中国船舶重工集团公司第七二五研究所高级工程师/pp  发言题目:国内外电阻焊电极用弥散铜性能评价指标体系对比及应用/pp  strong周登山/strong 东北大学讲师/pp  发言题目:杂微量元素Ti抑制纳米晶铜基复合材料中的氧化物颗粒粗化和铜晶粒长大/pp  strongspan style="color: rgb(255, 0, 0) "高性能轻合金材料专题分会场/span/strong/pp  strong杨院生/strong 中国科学院金属研究所研究员/pp  发言题目:纳米析出相增强镁合金/pp  strong王俊升/strong 北京理工大学教授/pp  发言题目:ICME技术用于高强铝合金的设计/pp  strong赵永庆/strong 西北有色金属研究院教授/pp  发言题目:高强钛合金研制/pp  strong王卫国/strong 福建工程学院教授/pp  发言题目:高纯铝再结晶晶界界面匹配研究/pp  strong周吉学/strong 山东省科学院新材料研究所研究员/pp  发言题目:镁合金及镁-铝异种材料连接件整体表面处理技术/pp  strong吴伊平/strong 江南工业集团有限公司总经理/pp  发言题目:大规格TC11钛合金件热处理工艺试验/pp  strong王建华/strong 常州大学材料科学与工程学院教授/pp  发言题目:Al-3P变质Al-18Si合金显微组织与力学性能研究/pp  strong李庆林/strong 兰州理工大学教授/pp  发言题目:稀土变质过共晶Al-Si合金微观组织及力学性能的研究/pp  strong冯小辉/strong 中科院金属所副研究员/pp  发言题目:碳纳米管增强镁基复合材料研究/pp  strong罗天骄/strong 中科院金属所副研究员/pp  发言题目:固溶和淬火处理对挤压态ZK60镁合金残余应力的影响/pp  strong杨 昭/strong 江南工业集团有限公司工程师/pp  发言题目:TC11钛合金材料验收检验中的试样热处理问题/pp  span style="color: rgb(255, 0, 0) "strong增材制造与特种成形技术专题分会场/strong/span/pp  strong史玉升/strong 华中科技大学教授/pp  发言题目:智能金属材料及其增材制造技术/pp  strong伍尚华/strong 广东工业大学教授/pp  发言题目:复杂形状陶瓷零部件的增材制造技术/pp  strong刘 奇/strong 重庆材料研究院有限公司教授级高工/pp  发言题目:3D打印用钨铼合金粉体材料制备及性能研究/pp  strong吴文恒/strong 上海材料研究所副主任/pp  发言题目:增材制造金属粉末的制备与检测/pp  strong邱耀弘/strong 安泰(霸州)特种粉业有限公司 MIM技术项目科学顾问/副教授/pp  发言题目:跃进的不锈钢粉末之成形技术/pp  strong张 升/strong 中国航空工业集团公司北京航空制造工程研究所博士/pp  发言题目:激光选区熔化成形大尺寸钛合金制件技术研究/pp  strong林 峰/strong 清华大学教授/pp  发言题目:粉末床电子束选区熔化(EBSM)技术/pp  strong钱 波/strong 华东理工大学副教授/pp  发言题目:SLM实时预熔重熔的新型工艺研究/pp  strong胡梦龙/strong 江苏昆山工业技术研究院副主任/pp  发言题目:高性能陶瓷光固化成型技术/pp  strong杜开平/strong 北京矿冶研究总院博士/pp  发言题目:3D打印用Inconel 718合金粉末的制备及应用技术/pp  span style="color: rgb(255, 0, 0) "strong表面涂层与防护专题分会场/strong/span/pp  strong彭 晓/strong 南昌航空大学研究员/pp  发言题目:促进金属材料热生长-Al2O3膜的方法探索/pp  strong李争显/strong 西北有色金属研究院教授/pp  发言题目:钛表面防护涂层技术的发展/pp  strong崔洪芝/strong 山东科技大学教授/pp  发言题目:耐磨蚀涂层高通量等离子熔射制备技术及应用/pp  strong李伟洲/strong 广西大学研究员/pp  发言题目:铌合金C103表面复合涂层的高温抗蚀性/pp  strong邱万奇/strong 华南理工大学教授/pp  发言题目:低温反应溅射沉积α-(Al,Cr)2O3薄膜/pp  strong朱圣龙/strong 中国科学院金属研究所研究员/pp  发言题目:抑制涂层-基体间互扩散的高温防护涂层研究/pp  strong鲍泽斌/strong 中国科学院金属研究所研究员/pp  发言题目:活性元素Zr改性铂铝涂层高温氧化及其腐蚀性能研究/pp  strong杨冠军/strong 西安交通大学教授/pp  发言题目:航机燃机热障涂层结构设计与制备调控方法/pp  strong王建强/strong 中国科学院金属研究所研究员/pp  发言题目:高耐蚀耐磨HVAF喷涂铝基非晶涂层研究/pp  strong耿树江/strong 东北大学教授/pp  发言题目:(Cu,Fe)3O4尖晶石涂层的制备及性能研究/pp  strong陈明辉 /strong东北大学教授/pp  发言题目:高温搪瓷涂层/pp  strong张小峰 /strong广东省新材料研究所博士/pp  发言题目:Al-ZrO2原位反应改善热障涂层性能/pp  strong何 健/strong 北京航空航天大学博士后/pp  发言题目:γ' +β双相Ni-Al-Hf合金氧化膜/合金界面钉扎物的不同形成机制/pp  strong董志宏/strong 中国科学院金属研究所金博士/pp  发言题目:Cr12MoV合金钢空心阴极放电辅助离子渗氮研究/pp  strong高丽红/strong 北京理工大学副教授/pp  发言题目: 基于等离子喷涂的反射型激光防护涂层研究/pp  strong石 佳 /strong北京航空航天大学博士/pp  发言题目:等离子物理气相沉积热障涂层生长机理及制备技术研究/pp  span style="color: rgb(255, 0, 0) "strong先进粉末冶金及复合材料青年科技工作者学术交流分会场/strong/span/pp  strong杨亚锋/strong 中国科学院过程工程研究所研究员/pp  发言题目:粉末冶金钛合金的致密化和杂质控制/pp  strong王玉敏 /strong中国科学院金属研究所副研究员/pp  发言题目:复合材料整体叶环损伤失效机制研究/pp  strong刘 涛/strong 中南大学粉末冶金研究院副教授/pp  发言题目:CuCrZr与Cu的低温扩散连接/pp  strong罗来马/strong 合肥工业大学副教授/pp  发言题目:液相法W-Y2O3复合粉体制备与烧结特性研究/pp  strong牛红志/strong 东北大学副教授/pp  发言题目:TiH2颗粒为原料制备低成本低氧含量PM -TC4钛合金及其生成过程/pp  strong谭 鑫/strong 中机国际工程设计研究院有限责任公司高级工程师/pp  发言题目:密度泛函理论计算在材料表面性能研究中的应用/pp  strong宋晓杰/strong 山东科技大学材料科学与工程学院博士研究生/pp  发言题目:原位合成Ti2AlC(N)增强TiAl基复合材料的显微组织和力学性能研究/pp  strong魏 娜 /strong山东科技大学材料科学与工程学院博士研究生/pp  发言题目:TiO2基复合薄膜的制备及其对金属的光电化学防腐研究/pp  strong张犁天 /strong中国科学院力学研究所博士生/pp  发言题目:铜铬合金激光表面细晶化及其电性能/pp  strong黎毓灵/strong 华南理工大学材料科学与工程学院硕士研究生/pp  发言题目:靶功率对YG10x上反应直流磁控溅射沉积纳米W-N涂层显微结构的影响/pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong会议安排及说明/strong/span/pp  1、本次会议代表收取注册费2400元/人、在校学生凭学生证收取注册费1400元/人,包括会务、论文审稿、出版、专家演讲资料费、餐费、考察费。/pp  2、本次会议以学术成果、论文、口头交流及墙报为主,大会分为特邀报告与分会报告(大会主旨报告30分钟,分会邀请报告25分钟、一般报告20分钟,分别包含5分钟提问与讨论时间)。/pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong会议说明与其它/strong/span/pp  1、会议将设置分会场,鼓励年轻学者展示研究成果,促进年轻学者之间的交流和学习,请提前联系会务组,以保证会议议程安排。/pp  2、食宿安排:会议推荐酒店,请代表自行联系预定房间,用餐为会议统一安排。/pp  3、欢迎国内外有关公司及机构支持、赞助本次会议。我们将以会议论文集刊登广告、提供小型展位等多种形式宣传支持、赞助单位,为支持、赞助单位提供广大市场、拓展业务的良机。/pp  4、请参会代表务必将回执发至span style="color: rgb(0, 176, 240) "ysgc@china-mcc.com/span或发送传真至span style="color: rgb(0, 176, 240) "010-88796961/span,没有报名回执不能保证会议资料。/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "组委会联系方式/span/strong/pp  联系人:许 飞/pp  手 机:13439831435/pp  电 话:010-68807312/pp  传 真:010-88796961/pp  邮 箱:xufei627@163.com/pp  网 址:www.china-mcc.com/p
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • 电子拉力试验机测试复合膜剥离强度的参数配置要与电子剥离试验机一致吗
    在材料科学领域,复合膜的剥离强度测试是一项至关重要的工作。为了确保测试结果的准确性和可靠性,选择适合的试验机以及配置恰当的参数显得尤为重要。那么,电子拉力试验机在测试复合膜剥离强度时,其参数配置是否需要与电子剥离试验机保持一致呢?电子拉力试验机和电子剥离试验机虽然在功能上有所重叠,但它们在设计和专用性上可能存在差异。在测试复合膜剥离强度时,参数配置是否需要一致取决于具体的测试要求和设备的能力。以下是一些关于参数配置的考虑因素:测试目的:首先明确测试的目的和所需的测试精度。不同的测试目的可能需要不同的测试参数。设备能力:检查电子拉力试验机的功能是否包含剥离强度测试,并确认其测量范围、精度和分辨率是否满足测试要求。标准遵循:遵循相关的国家或国际标准,如GB 8808-88《软质复合塑料材料剥离试验方法》等,这些标准会规定测试的具体参数,包括速度、温度、试样尺寸等。试样准备:确保试样的准备符合测试标准要求,包括试样的尺寸、形状和预处理条件。测试速度:剥离强度测试通常有特定的测试速度要求,如100mm/min±5mm/min。电子拉力试验机应能够调节到这一速度。夹具选择:使用适合复合膜剥离测试的夹具,确保试样在测试过程中稳定且受力均匀。环境控制:测试环境的温度和湿度可能会影响结果,因此需要控制环境条件或使用具有环境控制功能的设备。数据记录:确保电子拉力试验机能够记录并分析测试过程中的数据,包括最大剥离力、平均剥离力等。设备校准:定期对设备进行校准,以保证测试结果的准确性和可靠性。安全操作:无论是使用电子拉力试验机还是电子剥离试验机,都应遵循安全操作指南,确保操作人员的安全。总的来说,虽然两种设备在某些方面可能具有相似性,但在进行复合膜剥离强度测试时,应根据具体的测试标准和设备功能来配置参数。如果电子拉力试验机具备进行剥离强度测试的所有必要功能,并且能够满足测试标准的要求,那么可以认为其参数配置应与电子剥离试验机一致。如果存在差异,应根据实际情况进行调整,以确保测试的有效性和准确性。
  • 食品包装复合膜袋T型剥离180度剥离力试验机采用立式还是卧式的区别介绍
    食品包装复合膜袋在进行T型剥离测试时,通常会使用剥离力试验机来评估复合膜的粘接强度和剥离性能。剥离力试验机可以是立式的,也可以是卧式的,两者在结构和操作方式上存在一些差异:立式剥离力试验机:立式试验机的测试行程通常是垂直方向的,这种设计使得立式机更加节省空间,适合空间有限的实验室或测试场所。立式结构便于观察测试过程,操作者可以更直观地看到复合膜袋在剥离过程中的变形和破坏情况。由于立式试验机的力臂较短,它通常具有较高的测试精度和较小的误差范围。立式试验机的维护和清洁相对简单,垂直的测试行程也有助于减少机器在操作过程中的移动。卧式剥离力试验机:卧式试验机的测试行程是水平方向的,这种设计可以提供较长的测试行程,适合进行大范围或连续的剥离测试。卧式试验机通常具有较大的负载能力,适合测试粘接强度较高的复合膜材料。水平的测试行程可能导致操作者在观察剥离过程时不如立式直观,但一些卧式机配备了透明的观察窗口,以便于观察。卧式试验机在进行180度剥离测试时,由于其结构特点,有时可以更有效地模拟实际使用中剥离动作。在选择立式还是卧式剥离力试验机时,食品包装企业应考虑以下因素:测试需求:考虑测试的频率、复合膜袋的粘接强度范围以及所需的测试行程长度。空间限制:根据实验室的空间大小和布局选择适合的试验机。操作便利性:考虑试验机的易用性,包括样品安装、测试过程观察和数据记录。维护成本:评估两种试验机的长期运行和维护成本。总的来说,立式和卧式剥离力试验机各有优势,食品包装企业应根据自身的具体需求和条件来选择最合适的设备。通过精确的T型剥离测试,可以确保食品包装的质量和安全性,保护食品免受污染,延长保质期。
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4, G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(20%的序列覆盖率)。此外,在MS2的谱图中并没有观察到单体的峰,这说明共价键的断裂比蛋白质的展开和亚基的分离更快,这种效应也在之前的可溶性蛋白和膜蛋白研究中呈现。为了探究位点裂解的偏好,作者将片段离子丰度通过电荷态进行了归化一,发现了高频的断裂位点来自于经典的选择性断裂位点X|P和D|X,而剩余的断裂往往发生在A|G、F|G和V|G的位点,说明N端到甘氨酸有更高的断裂偏好。为了观察断裂的位置和蛋白质的二级结构之间的关系,作者沿着氨基酸序列构建了每个片段相对于原点位置的相对丰度图,多个电荷态的离子则通过归化一的方法进行求和。(图3)由此观察到了大多数的片段断裂出现在跨膜区域的α-螺旋处,其中8号α-螺旋的T|P和V|G,以及6号α-螺旋的L|G和F|G断裂产生了丰度最高的几个片段。此外,将这些片段的相对丰度映射到三聚体的结构上发现,片段来自于蛋白质的内部而非表面。分子动力学的研究表明了其中的机制,在高温下蛋白质的跨膜区域的α-螺旋保持了稳定的结构,而非跨膜区域的α-螺旋则失去了大部分的螺旋结构。先前的研究表明了α-螺旋外侧的质子化的氨基酸可以稳定α-螺旋的结构。由此,作者推测质子不光可以稳定蛋白质的螺旋结构,而且可以沿着蛋白质的骨架迁移来诱导电荷远程破碎。  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 飞纳电镜邀您参加 2017 特种粉末冶金及复合材料制备/加工第二届学术会议
    为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司等单位定于2017年12月7-9日在湖南省长沙市共同举办“2017特种粉末冶金及复合材料制备/加工第二届学术会议”。 介绍 材料工业是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。本次会议旨在促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。 飞纳电镜对粉末冶金材料的分析 微观形貌+成分高效检测设备不锈钢粉末金属粉末3D打印金属粉末铜粉铜锡合金粉飞纳电镜的展位号:7期待您的参与!
  • 飞纳电镜与您相约 2018 特种粉末冶金及复合材料制备/加工第三届学术会议
    为了推动材料产业的技术创新,引领材料工业升级换代,2018 年 12 月 21 日 - 23 日,“2018 特种粉末冶金及复合材料制备/加工第三届学术会议”旨在促进学术界、产业界、企业界的沟通与联系,围绕材料产业的进展展开讨论。时间:2018 年 12 月 21 日 - 23 日地点:长沙市融程花园酒店分会场设置先进粉末冶金材料分会场高温、难熔金属及硬质合金材料分会场金属基、陶瓷基复合材料分会场高性能轻合金材料分会场增材制造和特种制造分会场表面涂层与防护分会场数值模拟仿真、性能检测与微结构表征分析技术分会场先进凝固科学与技术分会场放电等离子烧结 (SPS) 技术分会场台式扫描电镜在粉末冶金领域的应用一、粉体形貌、粒度观察 同样是黑色的金属粉末,在高倍下呈现出不同的微观结构,这些微观结构将影响金属粉的烧结、力学性能等 铜锡合金粉末在高倍下展现出不同形貌,有的呈树枝状 (左),有的呈多孔疏松结构(右)二、烧结件缺陷检查使用飞纳电镜软件 “超大视野自动全景拼图” 进行烧结件缺陷检查。45张扫描电镜图拼成一张大图,实现大面积杂质位置自动寻找三、金属粉体粒度统计飞纳电镜的颗粒统计分析测量系统软件可以轻松获取、分析图片,并生成报告。借助该软件,用户可以收集到大量亚微米颗粒的形貌和粒径数据。凭借远超光镜的放大倍数,颗粒软件全自动化的测量,可以把工业粉末的设计、研发和品管提升到一个新台阶。 借助颗粒系统软件,用户可随时获得数据。因此,它加快了分析速度,并提高了产品质量。了解更多精彩内容,欢迎大家到飞纳电镜展位与飞纳工程师一起探索。飞纳电镜展位号:10号
  • 盛泰仪器全自动运动粘度计助力新奥石墨烯技术研发团队打造高端节能复合材料
    盛泰仪器全自动运动粘度计助力新奥石墨烯技术研发团队打造高端节能复合材料 新奥石墨烯技术有限公司(以下简称“公司”)是新奥集团旗下的直属公司,总部位于河北廊坊。公司在廊坊和鄂尔多斯建有石墨烯、碳纳米管、复合材料的研发及生产基地,获批河北省碳纳米材料技术创新中心,并设立了江苏新奥碳纳米材料应用技术研究院。 公司以市场为导向,打造了一支具有强大技术开发和产业化能力的核心科研团队。 新奥石墨烯技术研发团队经过市场调研和国外品牌全方位对比 对盛泰仪器ST204系列全自动运动粘度计的质量、性能、稳定性非常满意。2021年07月18日,盛泰仪器技术工程师前往新奥石墨烯进行安装调试 工程师凭借丰富的经验,对全自动运动粘度计的结构、原理以及操作方法、维护保养、仪器运行过程中的注意事项进行了多方面详细培训,并分享了设备在行业应用中的经典案例。现场实验人员也依次使用ST204系列运动粘度计进行了实验操作和数据分析,对仪器的质量、性能、稳定性、应用、软件操作和数据分析都非常满意。ST204系列全自动运动粘度仪自动模式具有自动恒温,自动抽提,自动计时,自动计算,自动打印,自动清洗,自动烘干等一系列全自动功能,使用时只需一次注样点击启动即可完成试验。ST204系列全自动运动粘度计可在许多不同行业中多种应用包含:药品:混悬剂,药膏,明胶和糖浆建筑行业材料:水泥,密封剂,涂料和砂浆。石油和天然气工业材料:燃料油,钻井液,沥青等造纸涂料,油漆,油墨,陶瓷,洗涤剂,粘合剂和树脂的化学药品等洗发水,睫毛膏,指甲油,凝胶,乳液,洗发水,面霜等化妆品和个人护理产品含有海藻,淀粉,饮料,果酱,乳制品和巧克力食物等 十多年来,盛泰仪器始终秉承以“顾客至上”为宗旨,以“价格合理、诚实守信”为经营方针。坚持技术创新,拥有丰富的仪器知识的技术团队和经验丰富、细心周到的售后服务团队。
  • “2017特种粉末冶金及复合材料制备/加工第二届学术会议”邀请函及征文通知
    p  strong“2017特种粉末冶金及复合材料制备/加工第二届学术会议”邀请函及征文通知/strong/pp 各相关单位:/pp  为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司等单位拟于2017年12月7-9日在湖南省长沙市共同举办“2017特种粉末冶金及复合材料制备/加工第二届学术会议”。/pp  材料工业是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。本次会议旨在促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。/pp  本次会议将邀请国家相关部委、中国有色金属工业协会、中国有色金属学会领导,中国工程院、中国科学院院士和知名专家、学者和企业代表就国家相关政策和技术水平的发展做专题报告。欢迎各企业单位、科研院所、高等院校、设备厂家积极参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/6f827689-e88e-46e3-a7e5-e1b5bc6f976a.jpg" title="1.jpg"//pp 现将有关事项通知如下,详情见附件:/pp style="text-align: right "  中国有色金属学会 中南大学 中国科学院金属研究所/pp style="text-align: right "  西北有色金属研究院 株洲硬质合金集团有限公司/pp style="text-align: right "  2017年10月/pp  strong附件一/strong/pp  一、组织机构/pp  主办单位:中国有色金属学会/pp  中南大学/pp  中国科学院金属研究所/pp  西北有色金属研究院/pp  株洲硬质合金集团有限公司/pp  联办单位:新型陶瓷纤维及其复合材料国家级重点实验室/pp  硬质合金国家重点实验室/pp  承办单位:湖南省宁乡高新技术开发区管理委员会/pp  粉末冶金国家重点实验室/pp  北方中冶(北京)工程咨询有限公司/pp  支持单位:北京工业大学 江西理工大学 北京航空航天大学/pp  吉林大学 昆明理工大学 华中科技大学/pp  广东省科学院 河南科技大学 上海交通大学/pp  (陆续更新中)/pp  支持媒体:《中国有色金属学报(中英文版)》/pp  《稀有金属材料与工程(中英文版)》/pp  《稀有金属(中英文版)》、《中国金属通报》/pp  《有色环保》、中冶有色技术网/pp  strong二、会议时间、地点/strong/pp  时间:2017年12月7-9日 地点:湖南省长沙市(详见二轮通知)/pp  strong三、分会场设置及征文内容/strong/pp  (一)会议暂设以下分会场/pp  1、粉末冶金分会场 /pp  2、硬质合金分会场 /pp  3、高温、难熔金属分会场 /pp  4、金属基复合材料分会场 /pp  5、铜合金及铜基材料分会场 /pp  6、高性能轻合金材料分会场 /pp  7、增材制造与特种成形技术分会场 /pp  8、表面涂层与防护分会场 /pp  9、新型陶瓷材料分会场 /pp  10、先进粉末冶金及复合材料青年科技工作者学术交流分会场。/pp  (二)征文内容/pp  1、 难熔金属材料 /pp  2、 高温、高熵合金材料 /pp  3、 先进金属结构材料 /pp  4、 粉末冶金材料 /pp  5、 钛和钛合金材料 /pp  6、 先进轻合金材料 /pp  7、 金属基复合材料 /pp  8、 高性能陶瓷材料 /pp  9、 多孔金属材料 /pp  10、 碳纤维复合材料 /pp  11、 智能仿生与超材料 /pp  12、 硬质合金、特种合金材料 /pp  13、 新型摩擦材料 /pp  14、 3D打印用材料 /pp  15、 金属间化合物材料 /pp  16、 表面涂层与防护技术 /pp  17、 金属注射成型、变形加工控制技术 /pp  18、 金属构件增材制造工艺技术 /pp  19、 合金微观组织控制和成型加工技术 /pp  20、 异质材料连接技术 /pp  21、 材料计算模拟与测试技术 /pp  22、 机械制造加工料料及应用 /pp  23、 高端材料解决方案 /pp  24、 其他与会议主题相关于议题。/pp strong 四、会议安排及征文说明/strong/pp  1、本次会议以学术成果、论文、口头交流及墙报为主,大会分为特邀报告与分会报告(大会主题报告30分钟,分会邀请报告25分钟、一般报告20分钟,分别包含5分钟提问与讨论时间)。/pp  2、本次会议面向全国征文和摘要,论文和摘要请发送E-mail到:ysgc@china-mcc.com,论文截止日期为11月15日,摘要集出版日期为11月25日,本次会议不印刷论文集,只印刷摘要集,参会代表可选择投递摘要或者全文,优秀论文会后将推荐至核心期刊发表,欢迎广大科研技术人员投稿。如需申请报告的代表,请务必11月15日前提交中英文摘要,摘要投稿截止后,将所有摘要分类整理,发给组委会及各分会场主席,负责摘要的遴选和优秀论文的推荐工作,确定分会场特邀报告及一般报告的人选。具体的摘要的名称与格式要求,见附件三。/pp  strong五、注册费用/strong/ptable border="0" cellpadding="0" cellspacing="0"tbodytr style=" height:19px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " height="19" valign="top" width="94"p style="text-align:center line-height:33px"strongspan style="font-size:19px font-family: 宋体"代表类型/span/strong/p/tdtd style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="19" valign="top" width="183"p style="text-align:center line-height:33px"strongspan style="font-size:19px font-family:宋体"2017/span/strongstrongspan style="font-size:19px font-family:宋体"年11月10日前/span/strong/p/tdtd style="border-style: solid solid solid none border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px padding: 0px 7px " height="19" valign="top" width="295"p style="text-align:center line-height:33px"strongspan style="font-size:19px font-family:宋体"2017/span/strongstrongspan style="font-size:19px font-family:宋体"年11月10日后或现场缴费/span/strong/p/td/trtr style=" height:19px"td style="border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height="19" valign="top" width="94"p style="text-align:center line-height:33px"span style="font-size:19px font-family:宋体"普通代表/span/p/tdtd style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="19" valign="top" width="183"p style="text-align:center line-height:33px"span style="font-size:19px font-family:宋体"¥ 1900/span/p/tdtd style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="19" valign="top" width="295"p style="text-align:center line-height:33px"span style="font-size:19px font-family:宋体"¥ 2400/span/p/td/trtr style=" height:19px"td style="border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height="19" valign="top" width="94"p style="text-align:center line-height:33px"span style="font-size:19px font-family:宋体"学生代表/span/p/tdtd style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="19" valign="top" width="183"p style="text-align:center line-height:33px"span style="font-size:19px font-family:宋体"¥ 1000/span/p/tdtd style="border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height="19" valign="top" width="295"p style="text-align:center line-height:33px"span style="font-size:19px font-family:宋体"¥ 1400/span/p/td/tr/tbody/tablep  strong六、 关于会议说明与其它/strong/pp  1、会议将设置分会场,鼓励年轻学者展示研究成果,促进年轻学者/pp  之间的交流和学习,请提前联系会务组,以保证会议议程安排 /pp  2、食宿安排:会议推荐酒店,自行安排住宿,用餐为会议统一安排 /pp  3、欢迎国内外有关公司及机构支持、赞助本次会议。我们将以会议/pp  论文集刊登广告、提供小型展位等多种形式宣传支持、赞助单位,/pp  为支持、赞助单位提供广大市场、拓展业务的良机 /pp  4、请参会代表务必将回执发至ysgc@china-mcc.com或发送传真至/pp  010-88796961,没有报名回执不能保证会议资料,回执模板见附件。/pp  strong七、组委会联系方式/strong/pp  联系人:许飞 手机:13439831435/pp  电话:010-68807312 传真:010-88796961/pp  邮箱 :xufei627@163.com 网址:www.china-mcc.com/p
  • 2020-2025年全球汽车工业用复合材料市场复合年均增长率将达11.5%
    根据美国Research And Markets 1月25日发布的最新全球汽车工业用复合材料市场分析报告,全球汽车工业复合材料市场预计将从2020年的54亿美元增长到2025年的93亿美元,2020年至2025年之间的复合年均增长率(compound annual growth rate,CAGR)为11.5%。对轻量化和节能汽车的需求以及电动汽车的新兴发展是推动汽车工业复合材料市场增长的主要因素,而提高OEM厂商对严格的政府排放控制法规的认识则是汽车复合材料市场增长的机会。但是,COVID-19疫情对汽车复合材料的负面影响对汽车行业市场增长产生了不利影响。就增强纤维类型而言:玻璃纤维复合材料仍然是汽车工业复合材料最大的细分市场。玻璃纤维具有强度、耐久性、柔韧性、稳定性、重量轻、耐热、耐温、防潮等优点,是汽车工业复合材料生产厂家的首选材料。例如,在汽车中,玻璃纤维可用于不同的应用,如车身底部系统、前端模块、甲板盖、保险杠横梁、发动机罩仪表板和风道,以及其他车身部件。但是在2020年至2025年预测期内,预计碳纤维复合材料价值和产量的复合年增长率最高。就应用结构件类型而言:车身结构是汽车工业复合材料的最大应用。放置在整体式车身外表面上的车身复合材料被称为车身外部零件。外部零件包括主要部件如保险杠、挡泥板、前端模块、门板和引擎盖等。在汽车工业中使用复合材料是一个新兴趋势,因为这些复合材料有助于实现高性能性能,如高刚度、轻量化和高强度重量比。使用复合材料制造的外部零件具有刚性,因此在发生事故时提供最小的损坏风险。复合材料也有助于减轻外部部件的重量,从而使整个车身的重量减轻,并使其更省油。外部零件位于车身外表面,由于暴露在恶劣环境和极端天气下,更容易磨损。在外部部件中使用复合材料,如挡泥板、发动机罩、保险杠横梁、行李厢盖和其他部件,增加了汽车的耐久性,确保了较长的使用寿命并降低了维护成本。就轻量化汽车的类型而言:非电动汽车仍然是汽车工业复合材料应用最大的车型,包括宝马、奥迪、雷诺、保时捷、大众、菲亚特克莱斯勒等众多车企,均在在其高端非电动汽车中使用复合材料。例如,保时捷GT3 Cup II车型制造了CFRP组装支架,而宝马和菲亚特克莱斯勒则在其轻型仪表盘支架以及阿尔法罗密欧4C跑车的整个底盘中使用碳纤维复合材料和玻璃纤维增强聚丙烯(PP)复合材料。德国汽车制造商已经开发出Rodeo概念车,这是一款基于经典保时捷911 safari拉力赛车的全轮驱动碳纤维越野车。全球OEM采取的这些举措一直在推动汽车复合材料在非电动汽车中的应用。就汽车工业复合材料区域而言:欧洲是领先的汽车复合材料市场。欧洲汽车复合材料市场的增长是由该地区汽车行业中老牌汽车制造商的存在、工业扩张以及该地区汽车工业引进的工业4.0技术推动的。汽车工业是欧洲地区的主要产业之一,比其他任何地区都高。欧盟是全球最大的汽车生产国之一,该行业是研发领域最大的私人投资者,每年约投资574亿欧元,欧盟汽车工业的营业额占GDP的7%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制