当前位置: 仪器信息网 > 行业主题 > >

分布器

仪器信息网分布器专题为您提供2024年最新分布器价格报价、厂家品牌的相关信息, 包括分布器参数、型号等,不管是国产,还是进口品牌的分布器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分布器相关的耗材配件、试剂标物,还有分布器相关的最新资讯、资料,以及分布器相关的解决方案。

分布器相关的资讯

  • 广东省分布式能源系统重点实验室启动
    2010年3月31日,低碳技术论坛暨广东省分布式能源系统重点实验室启动仪式在东莞理工学院松山湖校区举行。省科技厅党组书记、厅长李兴华出席了启动仪式并致辞。启动仪式由东莞理工学院校长、省分布式能源系统重点实验室主任杨晓西教授主持。     广东省分布式能源系统重点实验室于2009年立项建设,依托于东莞理工学院,是在东莞市建设的第一个省重点实验室。实验室从我国能源资源特点出发,研究分布式能源系统和可再生能源的基础应用和关键技术中的前沿科学问题,开展相关领域技术的研究和开发,形成具有自主知识产权的核心技术。该实验室的建设将为今后在珠江三角洲地区、甚至在全国发展低碳经济提供技术支撑并拓宽新路。  李兴华厅长代表省科技厅对该实验室的成功启动表示祝贺。他指出,建设重点实验室体系,是广东完善区域创新体系,提升自主创新能力,尤其是增强原始创新能力的重要措施。实验室的启动有利于提升广东在低碳技术方面的科技创新能力,有利于推动低碳经济和低碳技术的发展。他希望东莞理工学院以此为契机,进一步整合全校优势科技资源,充分发挥产学研结合效应,不断提升自主创新能力,加大成果转化力度,助力产业升级调整,为我省综合竞争力提升和“科技强省”建设做出新的更大的贡献。  参加会议的还有:中国科学院院士徐建中研究员、东莞市吴道闻副市长、省科技厅科研条件与财务处李彪处长、卢景昌副处长、余亮副调研员等。
  • 吉大成功研制油田剩余油分布探测仪器
    由吉林大学仪器科学与电气工程学院林君课题组承担的吉林省科技发展计划重大项目“井—地网络化油水界面电阻率成像仪的研制”于近日通过专家鉴定,并经油田现场测试实验效果良好。  作为一种快捷、准确探测油田剩余油分布的专业仪器,该成像仪主要用于油田注水驱油和压裂注气前后的电阻率动态变化测试,从而解决石油开采、油田勘探及煤层气勘探等过程中的注水井调剖堵水效果探测、注水推进前沿和高渗透带探测、蒸汽驱动态监测、聚合物驱动态监测等问题 具有高精度、高效率、低成本、易施工等特点,在注水分布和剩余油分布研究中应用前景广阔。  据介绍,该成像仪可从强噪声中提取有用信号,实现微弱信号的检测 可实现多路信号的同步采集和数据高速传输 通过动态电阻率反演,不仅能看到压裂液(低阻体)前沿的推进过程,还能看到石油(高阻体)的聚集过程,为准确确定剩余油分布提供重要依据。  图为科技人员在调试相关仪器设备。
  • 《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》正式发布
    p  生物制药产业的高速增长离不开相关科学仪器、技术的创新与发展,从药物研发、药物临床开发再到药物生产和销售,每个环节对于生物制药相关科学仪器的需求是充分必要的。为了对国内生物制药实验室仪器品牌、品类分布等信息进行调研分析,为生物制药领域用户在选购仪器时提供帮助和指南,为生物制药相关仪器厂商在仪器研发、销售和推广活动提供决策参考,仪器信息网特组织了“中国生物制药科研仪器设备市场调研”活动。此次调研,面对的调研对象包括工业企业(如药厂、化工厂、研发机构等)、科研院所、大专院校、政府检测/监测/执法机构(如出入境检验检疫局、药品监督管理局、食品监督管理局等)、第三方机构(如CRO、CMO、检测机构等)与医疗机构等单位的生物制药实验室用户等。br//pp  《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》内容包含了span style="color: rgb(255, 0, 0) "生物制药产业规模及相关法律政策、生物制药实验室仪器市场调研分析、生物制药背景学位论文仪器市场调研分析、调研报告总结。/span/pp  《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》得到了广大生物制药领域用户的大力支持。近200位来自工业企业、科研院所、政府检测/监测/执法机构、第三方检测机构和医疗机构等领域的用户参与在线调研。同时,报告考察具有研究生教育能力的高校和研究院所共计52所,初步对近两年来生物制药相关博士学位论文和优秀硕士学位论文共计235篇进行数据统计。在此,谨对报告所有参与者表示最衷心的感谢!/pp  a href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=166" target="_blank" style="text-decoration: underline "strong报告链接:span style="color: rgb(255, 0, 0) "《中国生物制药实验室仪器品牌及品类分布调查报告(2018版)》/span/strongstrongspan style="color: rgb(255, 0, 0) "/span/strong/a/pp  span style="color: rgb(255, 0, 0) "strong欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部/strong/span/pp  span style="color: rgb(0, 112, 192) "strong报告节选:/strong/span/pp  一、 生物制药产业规模及相关法规政策/pp  1. 产业规模/pp  生物制药产业是应用基因工程、遗传工程、细胞工程及酶工程等现代生物技术的技术密集行业。目前现代生物制药产业.../pp  根据相关数据显示.../pp  二、 生物制药实验室仪器市场调研分析/pp  1.1调研样本地域分布情况/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/44aa4e0b-6be3-4e9d-95d2-39d431f94afe.jpg" title="image001.png" alt="image001.png"//pp style="text-align: center "调研样本地域分布情况/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/5e9aa13d-80f6-4153-bcbc-15d46382e916.jpg" title="image002.png" alt="image002.png"//pp style="text-align: center "调研样本单位性质分布/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/ee6f5841-4da7-428f-bf15-09c8a047f61d.jpg" title="image003.png" alt="image003.png"//pp style="text-align: center "仪器采购周期分布/pp  本次调研中,用户的仪器采购周期以...年为主,占比... 其次为...年,占比?采购周期为...年的用户占比.../pp  三、 生物制药背景学位论文仪器市场调研分析/pp  1.生物制药背景学位论文信息统计/pp  1.1生物制药科研领域学位论文/pp  根据生物制药各细分领域,如抗体工程药物、免疫细胞、血液制品、基因工程药物、疫苗、干细胞、小分子等,提炼出该领域25个核心关键词,统计自2000年来这些词汇作为学位论文主题出现频次.../pp  3.1仪器品类出现频率/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/47f56774-1bec-45bf-992b-e0990c542eea.jpg" title="image004.jpg" alt="image004.jpg"//pp style="text-align: center "仪器品类出现频率/pp  图为仪器出现频率较高的前30个品类,分别为?。离心机提及频率为?/pp  3.2 仪器品牌分布分析/pp  本次调研统计一共有...个国外和国产品牌,...该系列品牌占到本次统计总数的.../pp  3.3 TOP16仪器品类市场分布分析/pp  本次调研出现频率最高的前16个仪器品类分别为...分别对这16种仪器进行市场分布分析.../pp  四、 小结/pp  1.调研问卷结果分析/pp  由在线调研问卷结果可知,涉及仪器生产设备商...家,制药领域相关仪器品牌总曝光量达...余次,仪器曝光量高...次,仪器品类近.../pp  2.论文统计结果分析/pp  对科研仪器厂商来说,仪器品类在...地区占比最高,可能原因是.../pp  .../pp  span style="color: rgb(0, 112, 192) "strong报告目录/strong/span/pp  一、生物制药产业规模及相关法规政策 6/pp  1.产业规模 6/pp  2.生物制药行业产业链 6/pp  3.相关政策法规 7/pp  二、生物制药实验室仪器市场调研分析 9/pp  1.调研样本总体情况分析 9/pp  1.1调研样本地域分布情况 9/pp  1.2调研样本单位性质分布情况 10/pp  1.3调研样本用户与仪器的关系 10/pp  1.4调研样本细分领域分布情况 11/pp  1.5调研样本用户仪器采购周期分布情况 11/pp  1.6调研样本用户近期仪器采购计划 12/pp  2.生物制药实验室仪器品牌品类调研分析 13/pp  2.1调研样本仪器品牌知名度排行 13/pp  2.2调研样本生物制药实验室仪器品牌地域分布情况 13/pp  2.3调研样本仪器品类重要程度排行 14/pp  三、生物制药背景学位论文仪器市场调研分析 16/pp  1.生物制药背景学位论文信息统计 16/pp  1.1生物制药科研领域学位论文主题 16/pp  1.2生物制药领域学位论文年度发表篇数统计(2000-2017) 16/pp  2.生物制药相关学位论文背景信息 17/pp  2.1调研文献来源地区 18/pp  2.2调研文献省份分布 18/pp  2.3调研文献来源单位 19/pp  2.4调研文献导师分布 20/pp  3.学位论文中仪器品牌品类分析 21/pp  3.1仪器品类出现频率 21/pp  3.2仪器品牌分布分析 22/pp  3.3 TOP16仪器品类市场分布分析 24/pp  四、小结 34/pp  1.调研问卷结果分析 34/pp  2.论文统计结果分析 35/p
  • 北京国企加快分布式光伏开发建设 助力首都实现“双碳”目标
    “双碳”背景下,北京国企加快分布式光伏开发建设步伐。作为首都能源供应主力军的京能集团表示,“十四五”时期将大力提高北京市屋顶分布式光伏项目新增装机规模占比,服务首都绿色低碳发展。 今年发布的《北京市“十四五”时期能源发展规划》提出,要切实转变城市能源发展方式,落实可再生能源优先理念,大力推动能源新技术应用与城乡规划建设融合发展,发挥重点区域绿色低碳示范引领作用,加强重点领域光伏应用,加快推进整区屋顶分布式光伏开发试点,新增能源消费优先由可再生能源替代。北京铁路枢纽丰台站分布式光伏发电项目。 京能集团供图 日前,京能集团开展京内分布式光伏项目管理提升行动,发布了《京能集团北京市分布式光伏开发行动方案》。《方案》要求,京能集团所属企业要坚持服务北京,全面参与北京市分布式光伏开发行动,强化责任指标和全过程监督管控,落实市场化激励机制。根据北京分布式光伏项目开发建设运营特点,创新管理模式,在企业内推进开发设计标准化、设备集采标准化、施工质量标准化、运维监控标准化,进一步降本增效。各企业根据自身优势,协同开发、资源共享,形成整体合力,确保任务目标按期完成。 为加快京内分布式光伏项目开发,京能集团创新市场化激励机制,制定并实施了《北京市分布式光伏开发奖励办法(试行)》,明确对北京市分布式光伏项目开发中做出贡献的系统内人员和承担开发主体责任的管理团队给予奖励,重点支持北京市分布式光伏项目开拓。 京能集团以市场化运作方式成立北京京能清洁能源综合能源有限公司,并按照市场化运营机制目标,通过创新体制机制加强专业化管理,开展高效灵活项目开发,推动北京地区综合能源及分布式能源项目快速落地建设。 此外,京能集团还全面加强与市属国企及央企的战略合作,先后与金隅集团、北汽集团、首农集团、首钢建设投资公司、中铁投资集团等企业签订战略合作框架协议,建立战略合作伙伴关系,围绕“双碳”目标、京津冀协同发展契机和北京市“十四五”规划,发挥各自优势资源,在楼宇+光伏、交通+光伏、农业+光伏及综合能源开发等领域深入开展合作,携手加快京内分布式光伏项目开发。
  • 【重磅】全国科学仪器产业园区分布图
    “十四五”时期,科学仪器产业迎来发展高峰,各地抢抓机遇,大干快上,积极建设各类精密仪器产业园。仅2023年,仪器信息网就已跟进江苏省首批仪器仪表产业园、天津高端精密仪器产业园、上海张江高端装备精密仪器产业园等产业园的落成信息。叠加早前已发展的丹东仪器仪表产业园区、北京怀柔科学城、青岛科学仪器产业园、无锡量子感知产业园等,我国科学仪器产业集群建设已初具规模。  为此,仪器信息网特别绘制全国科学仪器产业园区分布图,为行业发展添一笔注脚。(注:本文仅统计省市级以上的产业园区,不含企业自建产业园,如有遗漏欢迎补充。) 详细视频:“十四五”全国科学仪器产园区分布情况  跟随仪器信息网来看各省市对于科学仪器产业园区的规划:产业集群  河南省  2023年,河南省人民政府发布《关于进一步做好计量工作的实施意见》,明确:加强新型传感器与高端仪器仪表核心材料、核心器件、核心算法和核心溯源技术研究,推动关键计量测试设备国产化,促进量子芯片、物联网、区块链、人工智能等新技术在计量仪器设备中应用。实施仪器设备质量提升工程,建设重点实验室,强化计量在仪器仪表研发、设计、试验、生产和使用中的基础保障作用。建立仪器仪表计量测试评价制度,推动计量器具制造企业转型升级。支持郑州、开封、许昌等地建设仪器仪表产业集群,培育具有核心技术和核心竞争力的仪器仪表品牌。  深圳市  深圳市明确到2025年,精密仪器设备产业增加值达到200亿元。在南山区布局研发设计环节,在光明区、宝安区、龙华区布局研发设计和生产制造环节。以光明科学城为核心,重点发展科学测试分析仪器,打造精密仪器设备产业基础和应用基础研究中心。发挥南山区大型科学仪器共享平台和创新型企业集聚优势,重点打造精密仪器设备研发创新集聚区。依托宝安区高端装备产业基础,重点发展工业自动化测控仪器与系统、信息计测与电测仪器等,打造覆盖精密仪器设备研发设计、生产制造、应用示范的全链条集聚区。发挥龙华区空间优势,培育未来精密仪器设备产业重要承载区。  北京市  怀柔区按照“整合统筹、功能优化、突出特色”的思路,以科学城为核心向外辐射,构建了“一核三区多点”的高端仪器装备和传感器产业空间格局。“一核”引领,即国家高端科学仪器装备产业基地,位于怀柔科学城中心区。  为支持怀柔区发展高端科学仪器和传感器产业,北京市将高端仪器装备和传感器产业列为全市十大高精尖产业体系的29个细分领域之一,出台《关于支持发展高端仪器装备和传感器产业的若干政策措施》及实施细则。2020年至2022年,市区两级在重点专项、空间建设等方面累计投资超100亿元。怀柔区目前已落地仪器和传感器相关企业286家。  广东省  《广东省制造业高质量发展“十四五”规划》指出,精密仪器产业集群纳入广东省“十四五”十大战略性支柱产业布局之一。以广州、深圳为核心,支持东莞、佛山、江门、肇庆、珠海、中山、汕头等市发挥生产制造优势,建设精密仪器设备生产基地,支持其他市做好产业配套发展。支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克激光器、离子源、真空系统、数据采集等关键核心技术。在广州、深圳、佛山、东莞、珠海等市布局建设精密仪器设备科技产业园区,支持中山西湾国家重大仪器科学园、东莞松山湖科技产业园区、广州生命科学大型仪器区域中心等各类专业园区(中心)建设。产业园  江苏无锡,江苏省传感器仪器仪表产业园  该产业园依托中国物联网国际创新园创建,为江苏省首家传感器领域省级仪器仪表产业园。进一步强链补链和提升产业集聚度,加快推进传感器新技术自主创新和国产化替代,加快培育具有自主知识产权和国际竞争力的传感器企业,助力提升江苏传感器产业核心竞争力  江苏淮安,金湖仪器仪表产业园  从石油装备配套仪表拓展到温度、压力、流量、液位、显示控制等五大类168种,并逐步向成套智能化系统拓展。  山东,青岛市精密仪器仪表产业园  规划在青岛高新区建设青岛市精密仪器仪表产业园,支持全市仪器仪表领域,特别是工业测控系统与装置、实验分析仪器、传感器及核心元器件三大重点领域上下游产业链项目向园区集聚,将更多的项目、技术、资金和人才等资源要素优先导入园区。连续三年由市财政每年出资1亿元用于园区建设。  上海,张江高端装备精密仪器产业园  该产业园位于浦东南北科创走廊中段,张江科学城中部核心位置,一期现有空间总建筑面积约21.3万平方米,二期规划面积1平方公里,在产业发展上将强化产业链、供应链自主可控,促进高端装备精密仪器产业集群式发展,助力构建高质量、现代化产业链体系。  湖南长沙,湖南省检验检测特色产业园科学仪器产业基地  湖南省检验检测特色产业园,集聚SGS、中大检测等检验检测头部企业近200家,先后获批国家检验检测认证公共服务平台示范区以及国家检验检测高技术服务业集聚区等国家级平台。  天津市津南区,天津高端精密仪器产业园  该项目投资总额5亿元人民币,整体占地面积144亩,主要引进精密仪器、智能装备制造、医疗器械、新材料、物联网、传感器等行业。该项目主动融入大学科技园建设,以海河教育园两所双一流大学,及十余所高职院校优势学科、科研实力、创新能力和人才团队为依托,以成熟技术的产业化发展为目标,重点引进与培育高端精密仪器领军企业,打造高端精密仪器装备全产业链专业化园区。  广东省中山市,西湾国家重大仪器科学园  将以“建成全球仪器科技创新高地”为目标,打造全国首个国家级高端仪器专业园区,建设国家级仪器产业专项孵化器及高端仪器科研成果产业化示范基地,并力争成为粤港澳大湾区产业园运营管理标杆园区。用10年时间使西湾国家重大仪器科学园在仪器研发能力、技术水平、仪器行业产值、高端人才集聚、科研成果转化达到国内及至国际领先地位。  江苏,无锡量子感知产业园  2020年2月28日,江苏省省级重大项目“无锡量子感知产业园”开工奠基,总投资约21亿元。未来将依托无锡量子感知研究所,以量子精密测量技术为核心,致力于打造“园中设计、园内制造”的科学仪器装备产业新模式,构建中国高端科学仪器装备全产业链园区。  广东省广州市,粤港澳科学仪器创新中心  2019年5月,广东省粤港澳大湾区高端科学仪器产业促进会筹备工作宣告正式启动,并将成立粤港澳大湾区高端科学仪器创新中心。中心拟采用“政产学研用金”发展道路,新建6个创新平台:产业研究院、技术研究院、企业孵化器、人才培养基地、应用示范中心、科普教育平台,将汇聚港澳及国内优势资源,实现高端科学仪器产业集聚。  上海市松江区,上海分析技术产业研究院  依托于启迪漕河经科技园、松江区政府创建,致力于科技成果转化与行业创新发展的综合性专业性科技创新机构。研究院位于G60科创走廊的松江新城总部研发功能区,建设科学仪器设备产业化基地和科技成果与转化中心,推动分析技术的创新应用,打造世界一流的分析技术产业集群。  辽宁(丹东)仪器仪表产业基地  2009年建立,省级重点产业基地,总规划面积8平方公里。现已建成40栋50万平方米标准厂房、4万平方米的研发检测中心、2万平方米的综合服务中心和10万平方米的辽宁仪器仪表学院。目前,产业基地已初步形成以自动化控制系统及设备为主,以专用仪器仪表和电子电工监测为辅,医疗与科学检测仪器、传感器及仪器仪表元器件等多种门类共同发展的独具特色的产业体系。
  • 日立发布荧光分布成像系统新品
    一、荧光分布成像系统(EEM View)简介 作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到日立F-7000/71000荧光分光光度计的样品仓内。入射光经过积分球漫反射后均匀照射到样品,利用荧光光度计标配的荧光检测器可以获得样品荧光光谱,积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光成分图像。 二、 荧光分布成像系统特点: 1. 可以全面测定样品的光谱数据(反射光、荧光特性)在不同光源条件下(白光和单色光)拍摄样品图像,(区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm),同时利用先进的光谱算法,分别显示荧光图像和反射图像, 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)2. 样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具荧光分布成像系统是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。荧光分布成像系统
  • 日立发布荧光分布成像系统新品
    1. 荧光分布成像系统(EEM View)简介作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到F-7100荧光分光光度计的样品仓内。入射 光经过积分球的漫反射后均匀照射到样品,利用F-7100标配的荧光检测器可以获得样品荧光光谱,结合积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光图像。 2. 荧光分布成像系统特点:? 测定样品的光谱数据(反射光、荧光特性)? 在不同光源条件下(白光和单色光)拍摄图像 (区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm)? 利用自主研发的分析系统1),分开显示荧光图像和反射图像? 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)1) 国立信息学研究所 佐藤IMARI 教授?郑银强副教授共同研究成果荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具总结以上为荧光分布成像系统的特点和功能结束,这是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。荧光分布成像系统
  • Nature | 内质网蛋白调控细胞器分布的分子机制
    胞内细胞器实时发生快速的结构和分布变化,这些改变受到细胞内部环境的调控,反过来作为调控手段去影响细胞内环境,进而执行复杂的细胞功能。细胞器分布的调节对细胞健康至关重要。细胞器通过motor和adaptor蛋白沿着微管双向移动,进而建立和维持其适当的分布和功能【1】。微管通过可逆的翻译后修饰(包括乙酰化、去酪氨酸化和谷氨酰化)获得调节特异性,这些修饰共同构成了微管蛋白密码(tubulin code)的关键元素【2】。研究表明,tubulin code参与微管cargo选择以及细胞器定向运动【2】,但细胞如何破译这些tubulin code以选择性地调节细胞器定位尚不清楚。内质网(Endoplasmic reticulum, ER)是一个由不同形态组成的相互连接的网络,在整个细胞质中混杂延伸,与其他细胞器形成丰富的接触。内质网形态失调与神经系统疾病和癌症密切相关。2021年12月15日,来自美国国立卫生研究院的Craig Blackstone团队在Nature杂志上在线发表了题为ER proteins decipher the tubulin code to regulate organelle distribution的研究论文,阐释了内质网蛋白调控细胞器分布的具体机制。研究人员证明了三种膜结合的内质网蛋白优先与不同的微管群体相互作用:CLIMP63结合中心体微管,KTN1结合核周多聚谷氨酰化微管,p180结合单谷氨酰化微管。这些内质网蛋白质的敲除或微管群的操纵和谷氨酰化状态改变均会导致内质网定位的显著变化,进而引起其他细胞器在胞内的重新分布。大多数关于ER shaping和细胞器接触的研究都集中在外周管状ER,而更致密的核周ER是如何形成和不对称分布的目前还不清楚。三种ER膜结合蛋白— CLIMP63,p180和KTN1—主要定位于核周ER,被认为是内质网片状形成(sheet-forming)蛋白【3】。作者首先探究了这三个蛋白在调控内质网形态和分布中的功能。如图1所示,在CLIMP63和KTN1单敲除细胞的外周ER中的致密基质或片状结构数量增加,该现象定义为“分散(dispersed)”表型;而p180敲除细胞中的ER则表现出一种相反的“聚集(clustered)”表型——其外周网络保持管状,但核周 ER 在核的一侧不对称地塌陷成较小的区域;CLIMP63-KTN1双敲导致更明显的“dispersed”ER,而CLIMP63-p180双敲细胞中的ER与野生型中的类似;值得注意的是,p180-KTN1双敲造成比p180单敲更多的ER聚集;在CLIMP63-p180-KTN1三敲的细胞中,高密度的ER基质或片状结构在核周区域富集。为了更好地定量评估ER形态和分布的变化,作者开创了互补算法(complementary algorithms),利用基于概率密度估计的统计方法来分析荧光标记的ER和其他细胞器的空间分布,使用实验得出的空间概率质量函数来量化图像上的荧光变化,以计算细胞器的径向分布和细胞不对称程度。数据显示,CLIMP63 和 KTN1 单敲除或双敲除增加了 ER 平均分布半径 (Mean distribution radius, MDR),说明ER 的外周分布更广;相反,p180敲除或p180-KTN1双敲增加了ER不对称性。其中微管MDR和不对称性仅略有变化。图1. CLIMP63、p180 和 KTN1 差异性调节 ER 形态及分布随后,作者通过co-sedimentation实验评估了多种ER蛋白与微管的结合能力。与预期的结果一致,CLIMP63、p180和KTN1均可以结合大量微管。作者发现,只有能够进行微管结合的野生型蛋白质或突变体才能恢复相应敲除细胞系中的ER形态。例如,CLIMP63错义突变体R7A,K10A和R70A不能结合微管或抑制CLIMP63敲除细胞中的ER分布缺陷,而结合微管的CLIMP63(H69A)可以拯救表型;对于KTN1,只有结合微管的缺失突变体可以抑制异常的ER表型;缺乏kinesin-1结合结构域的p180s仍然可以抑制p180-敲除细胞中的ER聚集表型。这些数据表明CLIMP63-、p180-和KTN1-敲除细胞中ER形态的改变可能都与微管结合改变相关。因此,作者推测这些蛋白质可以结合不同的微管群体,并采用邻近连接测定(proximity ligation assay, PLA)来可视化它们在细胞中的微管结合情况。作者使用centrinone B耗尽中心体微管,并通过敲除AKAP450去除高尔基源性微管。结果显示CLIMP63-microtubule association对中心体耗竭敏感,但高尔基体微管耗竭不敏感;KTN1-microtubule association对两者都敏感;p180-microtubule association对中心体或高尔基微管的消耗都不敏感。进一步分析证明,CLIMP63优先结合中心体微管,KTN1优先结合来自中心体或高尔基体的核周微管,p180优先结合更多的外周微管。为了获得调节特异性,微管经历可逆的翻译后修饰,包括乙酰化、去酪氨酸化和谷氨酰化【2】。虽然 CLIMP63、p180 或 KTN1 敲除不影响这些修饰的总体水平,但微管蛋白多聚谷氨酰化在中心体或高尔基体微管耗尽的细胞中降低。因此,作者纯化了含有微管结合域的p180、KTN1和CLIMP63片段,并在体外探究它们与谷氨酰化微管的结合。与KTN1相比,p180与单谷氨酰化微管表现出更高的体外结合,而p180和KTN1与多聚谷氨酰化微管结合能力相似。同时,KTN1更倾向于结合具有多聚谷氨酸链的微管,而不是具有多位点单谷氨酸链的微管。与p180和KTN1相反,CLIMP63对微管谷氨酰化的反应较差,不同的微管蛋白修饰或相互作用可能介导了CLIMP63与中心体微管的优先结合。总的来说,如图2所示,CLIMP63,p180和KTN1分别优先结合中心体、多聚谷氨酰化和谷氨酰化微管,进而协同调节ER分布。图2. CLIMP63结合中心体微管,KTN1结合多聚谷氨酰化微管,p180结合谷氨酰化微管。接下来,作者对其他细胞器的分布进行了分析。通过同时对六个细胞器的活体成像显示,大多数细胞器的分布与ER相似,提示 ER 可能广泛调节细胞器分布。值得注意的是,在CLIP63-,p180-和KTN1-敲除细胞中,所有细胞器都表现出与ER相似的分布变化:在CLIMP63-或KTN1-敲除细胞中更分散,在p180-敲除细胞中更不对称。此外,分散ER的CCP1过表达也增加了野生型细胞中溶酶体,线粒体和过氧化物酶体的MDR。最后,作者探究了在自噬过程中ER和溶酶体的迁移活动。核周溶酶体聚集是早期自噬的标志性事件,对于适当的自噬通量很重要【4-5】。与溶酶体类似,ER 在早期自噬期间迁移至核周,随后重新分布到外周。CLIMP63蛋白水平在早期自噬期间显着增加,CLIMP63敲除可以阻止ER向核周区域移动,并抑制自噬体-溶酶体融合和自噬降解,但并不影响溶酶体活性。p180和KTN1蛋白水平在早期自噬期间保持不变,KTN1-microtubule association不变,但p180-microtubule association增加,进而重新分布ER和溶酶体。p180-敲除细胞中的ER和溶酶体始终留在核周。作者还阐释了p180与微管结合的生理学意义,如图3所示,p180L的核糖体结合区(主要的异构体)包含41个带正电荷的十肽重复,该区域在正常细胞条件下(Normal)被核糖体占据,但在饥饿条件下(Starved),与核糖体发生解离,暴露出这些带正电的区域,随后结合微管。图3. (e) p180结构域组成;(f) p180在正常和饥饿条件下与微管结合。总的来说,该研究证明了CLIP63,p180和KTN1优先结合微管的不同子集以维持核周ER的特征性分布,从而解释了它们缺失的差异效应。微管在细胞器分布中起着关键作用,它们选择性分配细胞器的能力依赖于“tubulin code”。该研究表明:(1)ER分布是通过特定的膜结合蛋白介导的,与不同水平和类型的微管谷氨酰化有差异结合,广泛影响大多数其他细胞器的分布;(2)细胞不是通过赋予每个细胞器自己的感知和响应机制,而是通过将ER作为一线传感器和响应器来实现组织效率。作者认为可能还有其他ER蛋白也可以破译tubulin code,对ER在健康和疾病中的功能具有重要意义。原文链接:https://doi.org/10.1038/s41586-021-04204-9制版人:十一参考文献1. Barlan, K. & Gelfand, V. I. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb. Perspect. Biol. 9, a025817 (2017).2. Roll-Mecak, A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54, 7–20 (2020).3. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).4. Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).5. Jia, R. & Bonifacino, J. S. Lysosome positioning influences mTORC2 and AKT signaling. Mol. Cell 75, 26–38 (2019).
  • 希格斯玻色子质量分布获迄今最精确测量
    大型强子对撞机(LHC)紧凑渺子线圈(CMS)国际合作组在最新一期《自然物理学》杂志上撰文指出,他们对希格斯玻色子的质量分布——“宽度”作了迄今最精确测量:3.2兆电子伏特。这与标准模型预测一致,但比此前测量更精确,此前测量仅指出其宽度必须小于9.2兆电子伏特。  在粒子物理标准模型中,希格斯玻色子赋予所有其他基本粒子质量,2012年LHC首次发现了希格斯玻色子。但希格斯玻色子的性质很难确定,因为它会很快衰变为其他粒子,且并不总是以相同质量出现。  CMS成员之一格雷格兰德斯伯格解释称,后者是海森堡不确定性原理的一个结果。该原理认为,任何在有限时间内存在的粒子都必须拥有可能的能量和质量范围——宽度,而非固定值。在几乎所有实验中,宽度非常小的粒子都拥有相同的质量,而宽度较大粒子的质量则非常不一致,物理学家迄今仅对希格斯玻色子的宽度进行了不精确估算。  在最新研究中,CMS合作组根据2016年至2018年LHC第二轮运行期间收集的数据,确定了希格斯玻色子的宽度。他们的策略是比较希格斯玻色子衰变为其他两个粒子的两个不同过程的数据。在一个过程中,一个质量异常巨大的希格斯玻色子衰变为两个Z玻色子。在另一种情况下,希格斯玻色子的质量为理论模型预测更常见的质量。通过比较,研究人员计算出希格斯玻色子的宽度可能为3.2兆电子伏特。  研究人员表示,准确测量希格斯玻色子的宽度可揭示理论预测中的差异,从而揭示新物理现象,比如与一些奇异暗物质粒子相互作用的希格斯玻色子。CMS团队希望2026年获得对撞机第三轮运行后的数据,改进其计算,更深入地揭示希格斯玻色子的“庐山真面目”。
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p  近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。/pp  作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。/pp  在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。/pp  中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title="LKsd-fyqtwzv2273554.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "与会专家合影/p
  • 【日立直播课第三期】荧光新技术-荧光分布成像系统介绍
    课程简介:日立经典款荧光分光光度计于2019年10月推出全新附件:荧光分布成像系统(EEM VIEW)。它拥有行业首创的技术,同时分析荧光光谱和反射光谱,将样品的光谱信息可视化,同时获得更加细致的光谱信息。亮点:1. 在不同光源(白光和单色光)下拍摄样品图像2. 获得样品的反射光谱和荧光光谱3. 利用独特的光谱处理算法,获得样品的荧光图像和反射图像4. 获得样品图像任意区域的光谱信息课程效果:获悉样品分析新技术,拓展企业或高校研发人员的应用思维。直播时间:3月10日 15:00-16:00培训费用:免费听课方式:日立微学院(提交此表单后扫码进群)
  • 药物片剂中成分的分布和内部空隙对其溶解的速度影响分析
    导 读药物片剂中成分的分布和内部空隙的状态会影响其溶解的速度,并导致其疗效的差异。在含有不同成分的多层药物的片剂中,药物层厚度的不均匀性可阻止各层获得足够的疗效。因此,片层厚度和压片角度是重要的质量控制标准。 实验方法使用XRAY透视和CT 扫描,对其内部进行扫描和分析。除了不需要任何特殊的预处理,X射线CT检查系统允许在不损坏样品的情况下获得内部信息。因此,它们可用于三维观察和分析药物层的分布状态或厚度。 实验方法使用XRAY透视和CT 扫描,对其内部进行扫描和分析。除了不需要任何特殊的预处理,X射线CT检查系统允许在不损坏样品的情况下获得内部信息。因此,它们可用于三维观察和分析药物层的分布状态或厚度。 具体案例数据本例描述了使用inspeXio SMX-90CT Plus台式微焦点X射线CT系统(图1)分析两种药片。图1 inspeXioSMX-90CT Plus台式微焦点X射线CT图2 样品照片:左边片剂A,右边片剂B 在本例中,观察到两种具有不同结构的片剂(片剂A和B)(图2)。片剂的透视图像如图3所示。片剂A (左) 片剂B(右)图3 片剂透视图图4片剂A的CT效果图(左)图5片剂B的CT效果图(右)图6高密度药物分离的片剂A 分析片剂图像的一个例子除了观察片剂内部外,CT X射线图像还可用于执行各种图像分析。在本例中,利用CT数据结合三维图像处理软件,分析药物的分布状态,分析药物的层厚。 图6所示为片剂A与高密度药物分离的区域。这些区域使用VGStudio MAX 3D图像处理软件(来自Volume Graphics GmbH)以及缺陷和夹杂物分析模块隔离。这种图像处理软件可以对分离的体积进行颜色编码,从而可以确定药物在三维空间的分布和每个体积的大小。 图7测量B片包衣厚度示例 图7示出了分析片剂B中的层厚度的示例。该分析是使用VGStudio MAX 3D图像处理软件与厚度分析模块一起执行的。厚度用从红色到蓝色的颜色进行颜色编码,其中最薄的区域用红色表示,最厚的位置用蓝色表示。这样可以直观地理解厚度变化的分布。 结论应用inspeXio公司的SMX-90CT-Plus结合三维图像处理软件,可以对片剂内部进行观察和特征分析。利用该系统对药物的分布和厚度进行定量和非破坏性分析,并对其他性质进行评价,对药物的开发尤其有用。inspeXio SMX-90CT Plus由于其紧凑的工作台设计和简单的操作,是一个非常有用的工具,可以快速、方便地获得关于药片内部的信息。 撰稿人:宁棉波
  • 负极材料粒度分布对锂离子电池性能的影响
    负极材料作为锂离子电池的核心材料,对锂离子电池的能量密度、充放电性能、循环性能、生产工艺等起着至关重要的作用。负极材料的主要技术指标包括粒度、比表面积、振实密度、真密度、灰分、pH值等。其中,粒度分布作为负极材料的重要技术指标,它还影响比表面积和振实密度,从而影响锂离子电池的生产工艺和综合性能。一、粒度分布对锂离子电池性能的影响负极材料的粒度分布主要从以下几个方面影响锂离子电池的生产工艺和性能:1、粒度分布影响体积能量密度负极材料的颗粒大小应当具有合适的粒度分布,体系中的小颗粒能够填充在大颗粒的空隙中,有助于增加极片的压实密度,从而提高电池的体积能量密度。2、粒度分布影响充放电性能负极材料的颗粒越小,锂离子嵌入时所需要克服的范德华力也就越小,嵌入越容易进行,而且颗粒越小,锂离子嵌入和脱出的通道越短,越有利于快速达到充分嵌锂状态,从而具有更好的充放电性能。3、粒度分布影响循环性能实验表明,颗粒越小的石墨负极有较大的初次容量,但不可逆容量也较大;随着粒径增大,初次充放电容量降低,不可逆容量减少。同时,石墨颗粒越小,与电解液接触的比表面积越大,初次充放电过程中形成的SEI膜所消耗的电荷就越多,不可逆容量损失也就越大。因此,合理的粒度分布不仅能够提升锂离子电池的初次容量和初次效率,而且能够提升锂离子电池的循环性能。4、粒度分布影响生产工艺负极材料的粒度分布会直接影响电池的制浆和涂布工艺。在相同的体积填充份数情况下,材料的粒径越大,粒度分布越宽,浆料的黏度就越小,这有利于提高固含量,减小涂布难度。颗粒的粒径以及分布宽度对浆料黏度的影响二、负极材料对粒度的要求在负极材料相关的标准中,对材料颗粒的粒度分布提出明确的要求,具体如下:三、欧美克高性能激光粒度分析仪如何满足锂离子电池材料粒度检测要求负极材料的研发、生产及来料检验普遍采用激光粒度分析仪进行粒度检测,选择高性能的激光粒度仪是获得准确粒度分布信息的重要保证。对于一款高性能的激光粒度分析仪,往往采用合理的光学结构、高性能的光电元器件以及科学的反演模型,从而体现出良好的重复性、重现性、真实性、分辨率等测试性能。珠海欧美克仪器有限公司从1993年开始从事激光粒度分析仪的研发、生产和应用,积累了丰富的激光粒度分析仪研发、生产和应用经验。从1999年开始,欧美克激光粒度分析仪系列产品在锂离子电池研发、生产领域逐步获得行业认可。下面,从几个小案例管中窥豹,看看欧美克如何匠心智造每一款产品,又是如何站在行业应用的角度为用户提供粒度解决方案的。1、大角散射光的球面接收技术(DAS)的应用确保散射光能信息的准确获取对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光能信息都准确地聚焦获取。以欧美克LS-609型激光粒度分析仪为例,在散射光能探测器的设计时,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式放置在与其散射角相对应的傅立叶透镜焦点位置,保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。大角散射光的球面接收技术(DAS)2、优良的测试性能准确反映出测试样品的细微差别(1)Topsizer对粉体材料的大、小颗粒具有高超的分辨能力欧美克Topsizer激光粒度分析仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。下图是应用欧美克Topsizer激光粒度仪对D50为0.1μm左右的超细隔膜材料氧化铝的粒度测试粒度分布图。(2)LS-609激光粒度仪具有优良的重现性下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。 此外,不同使用环境还可以选配不同的进样器,分析软件还具有用户分级、权限管理、数据完整性及可追溯功能,欧美克激光粒度分析仪真正做到了性能可靠、操作简单、维护量少,是值得信赖的高性能激光粒度分析仪。参考文献【1】沈兴志,珠海欧美克仪器有限公司,高性能激光粒度分析仪在电池材料测试中的应用【2】珠海欧美克仪器有限公司,激光粒度分析仪在锂离子电池行业中的应用【3】苏玉长,刘建永,禹萍,邹启凡,中南大学材料与工程学院,粒度对石墨材料电化学性能的影响【4】旺材料锂电,锂离子电池负极材料标准最全解读【5】中国粉体网,粒度对负极材料有什么影响?
  • 复合荧光材料的量子产率分布测量
    1. 引言量子产率是评价荧光材料发光效率的重要参数,复合荧光材料通常由两种或两种以上的材料组成,依据样品的量子产率分布可以确认每种成分的发光效率,助力于样品的精细化分析。 日立荧光分布成像系统能够同时获取样品图像和光谱信息,从而实现精细化测量,此次实验测定了复合荧光材料的量子产率分布。 2. 应用数据 2.1 附件介绍荧光分布成像系统是荧光分光光度计的新附件,包含软件和硬件两部分。入射光通过附件中的积分球均匀照射到样品,通过荧光分光光度计的检测器获取荧光光谱,利用积分球下方的CMOS相机同时获取样品荧光和反射图像。图1 荧光分布成像系统安装示例利用样品的反射图像计算出吸收量,利用荧光图像计算出荧光量,从而计算得到量子产率分布图像。 图2 量子产率分布图像计算过程 2.2 实验部分 实验材料 样品:复合荧光材料 测量设备:日立F-7100,荧光分布成像系统 结果与分析使用日立F-7100测定样品的三维荧光光谱,通过荧光分布成像系统的分析软件对样品三维荧光光谱进行平行因子分析(PARAFAC),得到如图两种成分。图3 样品的三维荧光光谱 通过荧光分布成像系统中的智能光谱算法,将拍摄的样品图像分离为反射成分图像和荧光成分图像,如图所示。图4 样品的拍摄图像和反射、荧光图像在荧光分布成像系统软件中,可以将不同激发波长下样品的图像信息保存为如下缩略图,直接用于文档中。图5 不同激发波长下的样品图像(缩略图)对获得的样品荧光图像和反射图像进行分区,如下图将样品测量区域分成5x5的格子,选取不同的格子,坐标系中便显示对应的光谱。图中选取的两个位置分别对应平行因子分离出的成分1和成分2。图6 样品的荧光图像和荧光光谱图7 样品的反射图像和反射光谱基于以上样品的荧光图像和反射图像,软件自动计算出对应的量子产率分布图像,如下图,通过点击图像中不同的区域,可以获得对应的量子产率曲线。图8 量子产率分布和不同激发波长的量子产率因此使用荧光分布成像系统将样品在不同激发波长下的拍摄图像分离为反射图像和荧光图像,可以计算出影响荧光材料发光效率的量子产率分布图,样品中黄色区域的量子产率约60%,红色区域的量子产率约35%。 3. 总结 荧光分布成像系统是日立首创的全新技术,与日立超高扫描速度的荧光分光光度计联用,助力客户实现更精细化的荧光分析。拨打电话400 630 5821,获取更多信息!
  • 全国土壤重金属分布规律研究获新进展
    北科院资源环境研究所副研究员乔鹏炜等针对不同省区重金属来源、扩散途径和土壤理化性质等开展调查分析,评估了它们对相应省区重金属空间分布的影响及规律,得出一系列结论,相关研究成果以《中国土壤重金属空间分布来源、扩散途径和受体属性的定量分析及其嵌套结构分析》为题,发表在中科院一区期刊Science of the Total Environment。 研究结论表明,采矿和选矿业是湖南、云南和辽宁土壤重金属的主要来源,这些地区有许多矿山,采矿活动频繁;工业生产和汽车尾气排放等是上海和浙江等经济发达的地区土壤重金属的主要来源;农药、化肥等归一化植被指数(NDVI)是农业相对发达的广东和安徽地区土壤重金属的主要来源。这些结果为确定国家范围内土壤污染修复和预防的修复和预防目标提供了依据。 乔鹏炜等以我国六种土壤重金属(As、Cd、Cr、Cu、Pb和Zn)为研究对象,识别了不同重金属的污染源,定量分析了扩散途径及受体性质对六种重金属空间分布的影响程度,确定各省重金属污染的来源、扩散途径和受体属性,并探讨了重金属的多尺度空间分布结构。 研究发现,土壤类型、采矿和选矿业、GDP(汽车尾气排放和工业生产)和归一化植被指数(NDVI)是六种重金属污染的主要来源,分别占Cr、Cd、Zn和As污染的92.93%、97.81%、99.30%和96.24%。其中,As的空间分布主要受扩散途径的影响,尤其是坡度的影响;Cd主要受受体性质和扩散途径的影响,尤其是土壤含水率的影响;Cr和Pb主要受受体性质的影响,尤其是土壤含水率及土壤有机碳的影响;Cu和Zn主要受土壤质地的影响。这些因素共同作用,导致我国的东—西和南—北方向均有两种嵌套尺度的空间分布结构。其中,较大尺度的空间结构对重金属的空间分布有更显著的影响,尤其是在东—西方向。 研究指出,要准确防治土壤重金属污染,不仅需要确定重金属的来源,还需要准确评估扩散途径和土壤理化性质对土壤中重金属空间分布的影响。因此,调查及监测全国范围内土壤重金属污染水平,并分析其分布结构及污染来源,对于全国土壤污染防治具有重要意义。 该项研究得到北京市自然科学基金面上项目资助。 相关论文信息:https://doi.org/10.1016/j.jhazmat.2023.130961
  • 分布式光纤应变监测仪取得重要进展
    p style="text-align: justify text-indent: 2em " 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。/pp style="text-align: justify text-indent: 2em "该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。 /p
  • 市场调查之国内食品检测机构分布情况
    仪器信息网讯 截止到2013年7月,根据国家质量监督检验检疫总局发布的统计数据,国内获取食品检验机构资质认定(CMAF)的检测机构总计3500-3900家(质检总局公布的数据是3503家,认监委肖亮在第五届中国第三方检测实验室发展论坛暨实验室展览会公布的数据是3827家),其中国家级获证机构410家。  图1 各省获证食品检测机构分布图  图2 食品检测机构系统系统分布百分比  2013年,全国疾控中心总计3522家,其中具有CMAF资质认证的中心数量为1625家,约占整体数量的46.14%。虽然从数据上看,具有CMAF认证的疾控中心在整个疾控体系中比例较高,但是目前的疾控中心基本是有原来的防疫站更名成立的,尤其是地市级和县级的疾控中心更是如此,并且这类拥有CMAF资质疾控中心大部分从事食源性疾病的检测,食品和农产品的质量安全检测能力薄弱。  由于大部制改革还在逐步整合,目前食品药品及技监系统均有从事食品检测的检测机构。根据国家产品质量技术监督管理总局公布的数据,技监系统和食品药品系统的获证食品检测机构总计1299家,具体省份分布请见下表:  表1 1299家技监、食品药品系统食品检测机构分布情况  民营的食品检测机构数量为116家,主要集中在上海、浙江、广东、山东等沿海城市。表2 116家民营食品检测机构分布情况 撰稿:孙立桐
  • 日立新品!荧光分布成像系统---测定万圣节贴纸
    日立新品!荧光分布成像系统---测定万圣节贴纸刚刚过去的BCEIA大会,日立发布了全球独创的荧光分布成像系统(EEM View),今天就用它来测定万圣节必不可少的南瓜贴纸。EEM View是日立全球首创在荧光分光光度计中加入CMOS相机的系统,能够同时获得样品的图像和光谱信息,突出亮点是可以获得样品图像任意区域的光谱性能。南瓜贴纸光谱信息鉴赏各式各样的南瓜贴纸中含有大量荧光粉,众所周知,这种贴纸暴露在黑暗中会发出荧光。图1所示便是这次鉴赏南瓜头贴纸的荧光分布成像系统,从图中可以清晰看到新附件的结构,CMOS相机位于积分球下方,样品安放在积分球上方,入射光经过积分球漫反射获得均匀光源,激发样品产生荧光。更多详细信息请点击:https://www.instrument.com.cn/netshow/sh102446/s913511.htm总结一般的荧光分光光度计测得的是样品区域表面平均化后的信息,只能获得一条荧光光谱,而日立荧光分布成像系统能够同时获取样品不同位置的光谱信息,有利于探究样品表面的光学性能分布。日立高新技术以‘让世界充满活力’为宗旨,致力于新技术的融合与开发,这次推出的新品荧光分布成像系统将对油墨、材料、化工、涂料以及LED等领域带来新的启发,新的探索方法。
  • 最新 | 我国团体标准行业、产业分布情况
    图1 团体标准行业分布情况图2 团体标准产业分布情况 2021年10月份,共有281家社会团体在平台上声明公开了844项团体标准。其中,制造业数量最多,共有104家社会团体声明公开了294项团体标准,占比34.83%;其次为农、林、牧、渔业,共有65家社会团体声明公开了160项团体标准,占比18.96%;第三为信息传输、软件和信息技术服务业,共有21家社会团体,声明公开了54项团体标准,占比6.40%。 截至2021年10月31日,共有5516家社会团体在全国团体标准信息平台注册,声明公开团体标准30376项。图1 声明公开执行标准行业分布情况图2 声明公开执行标准地域分布情况 2021年10月份,企业标准信息公共服务平台新增注册3167家企业,新增声明公开执行标准31635项,涉及产品54585种。 截至2021年10月31日,344144家企业在企业标准信息公共服务平台累计声明公开执行标准信息2065485项,涉及产品共计3504663种。
  • 青花瓷微区元素分布的扫描分析
    X射线荧光分析(XRF)作为一种重要的元素分析方法已经在环境科学、地球科学、生命科学、文化遗产的科技研究等学科中发挥了重要的作用。由于微分析技术在这些学科中例如分析单颗粒大气污染物、生物单细胞等成分分析方面具有独特的优势,其应用一直都受到科学研究工作者的重视。常见的微分析技术主要是扫描电子微探针(EPMA)、扫描质子微探针(&mu PIXE)和同步辐射X射线荧光分析(SRXRF)等,一般最简单产生微束的方法就是通过微小的狭缝来限制束流以产生微束,但是这种方法会造成用于激发分析样品的元素X射线强度减小,并且能量利用率极低。下图为常规的X射线光源采用狭缝和使用X光透镜两种方式产生直径为50&mu m微束光斑分析直径同样为50&mu m大气单颗粒物的X射线荧光分析谱,从图中很明显看出常规的X射线光源通过采用狭缝的方式产生微束来分析样品的可能性是很小的。但由于同步辐射装置所提供的X射线能量高、亮度大,采用狭缝的方法产生微束可以使用在同步辐射X射线荧光分析上,如北京同步辐射X射线荧光分析系统就是采用狭缝的方式来产生微束来满足环境科学、生命科学等对微分析技术的需求。比较复杂的聚焦方法是利用光学聚焦系统,设备比较复杂,成本比较高,其应用有很大的限制性。  自20世纪80年代以来,随着X光透镜技术的发展,X光透镜具有聚焦性能好、成本低、设备比较简单、能量利用率高,并且可以以成像的方式显示样品中元素分布等优点,于是便和X射线荧光分析系统有机地结合在一起。目前比较常见的有两种结合方式,一种是X光透镜和同步辐射X射线荧光分析系统相结合,另一种是X光透镜和常规的X射线荧光分析谱仪相结合,这两种结合主要都是利用X光透镜的优点,使X射线荧光分析系统具有束斑小(束斑的直径可以达到10~50&mu m)、光强度可以达到~107光子/秒、所需要的样品量少、分析速度快、散射本底小、探测极限低、可以分析厚靶样品中几十个&mu g· g-1的微量元素等优点。下图为使用X光透镜的微束X射线荧光分析美国国家标准局研制的玻璃有证标准参考物质(SRM NIST610)各元素的探测极限。由于微束XRF具有比常规的X射线荧光分析更多的优点,因而使其应用范围越来越广泛。如工业上汽油中含硫量的测量 大气中单颗粒物的成分测量 参与植物新陈代谢过程中某些元素如Mn,Ca,Zn,Rb等在不同年龄的松针中从顶部到根部的分布 古陶瓷和青铜器中焊接物等微区的成分分析等。由于同步辐射X荧光分析需要大型加速器提供同步辐射光源,设备比较昂贵,机时比较有限。而使用X光透镜的微束X射线荧光分析系统与此相比设备比较简单,成本低、使用比较方便,因此研究使用X光透镜的微束X射线荧光分析在环境科学、地球科学、生命科学、文物保护等方面具有重要的意义。  微束X射线荧光分析在文物样品分析中有广泛的应用前景。  古陶瓷是由古代的土壤和岩石经过加工烧制而成,其化学成分主要是由Na2O、MgO、Al2O3、SiO2、K2O、CaO等组成,其中SiO2和Al2O3的含量之和在80%以上,因此古陶瓷样品主要是由Si和Al等氧化物组成的轻基体。在实验中既要准确的测量出Na和Mg,又要测量出Rb、Sr、Y、Zr等重元素氧化物的含量,其实验条件的选择是非常关键的。对于Na、Mg、Al和Si等元素需要在真空中或氦气的气氛下探测器才能探测到其被激发的特征X射线。由于文物样品的特殊性,一般采用在探测器和被测样品之间形成氦气的光路来测量或者直接在大气中测量。本工作是在大气中直接分析被测样品,同时也就意味者Na、Mg、Al、Si等元素的特征X射线没有被探测器探测到。  实验工作是在两种条件下测量:第一种条件是在电压35kV,电流10mA,测量时间为300s,探测器与样品之间的距离为25mm 第二种条件是电压为40kV,电流10mA,测量时间120s,探测器前加1mm的准直器来降低散射造成的本底,探测器与样品之间的距离为42mm。测量国家有证标准参考物质GBW07406(GSS-6)的谱如下图所示。从谱图上看,在探测器加准直器更能降低散射本底,提高探测极限。  青花瓷是中国古陶瓷中具有很高艺术价值的瓷器,但对青花瓷的产地、年代、钴料的来源、制造工艺及其真伪辨别等问题一直缺乏系统的研究。由于微束分析的一系列的优点,用微束X射线荧光分析扫描分析了一块明代青花瓷残片中青花部位的元素分布,样品的照片见下图。  实验装置如下图,采用旋转阳极靶和会聚X光透镜组成激发样品的微束X射线源,SiPINX射线探测器收集样品中激发出的元素特征X射线,采谱活时间为5min,每隔50&mu m测量一个点,扫描面积为1mm× 35mm AXIL程序进行峰的拟合和本底的扣除。  对比青花部位和白釉部位的MXRF谱图可知,青花部位与白釉部位有差异的元素为主要为K、Ca、Fe、Co、Ni 以这五种元素的峰面积为变量,Matlab程序做图得到青花瓷五种元素的分布图。从几种元素的微区分布图对比青花瓷图片,可以看出Mn和Co的分布基本上和青花瓷釉色的深浅相一致的,Fe元素的分布基本上与青花瓷釉色的变化没有明显关系。相关性分析表明,Mn和Co有非常好的相关性,而Ni与Mn和Co没有相关性。  本文摘编自程琳、金莹著《现代核分析技术与中国古陶瓷》一书。
  • 最新!全国各省份认证证书数及分布情况
    一、整体概况2021年8月 有效认证证书全国分布图 截至2021年8月,我国有效认证证书数为282万张,获证企业数83万家。其中证书数10万以上的省份六个,分别为广东531848张、江苏380822张、浙江374850张、山东213464张、上海117665张和北京109872张。二、领域分布2021年8月获证证书按领域统计情况认证项目证书数组织数合计2899711845861管理体系认证合计1522152728978质量管理体系认证729818682181环境管理体系认证345696335841职业健康安全管理体系认证294262289092食品农产品管理体系认证3909830293信息安全管理体系认证2387523013信息技术服务管理体系认证1188311632测量管理体系认证41593996森林认证1093310540能源管理体系认证75807344知识产权管理体系认证2737227336其它管理体系认证2747620426产品认证合计1326186162246强制性产品认证43870149138食品农产品7429436396自愿性工业产品81319185767服务认证合计5137339806国家推行的服务认证139135一般服务认证5123439695三、地域分布2021年8月获证证书按地域统计情况
  • 孔径分布问题:BJH报告解读
    表征材料孔径的分布对于实验测量来说具有重要的意义,BJH 是目前使用历史最长、普遍被接受的孔径分布计算模型,它基于 Kelvin 毛细管凝聚理论发展而来。BJH 法是通过简单的几何计算应用 Kelvin 方程的经典方法,它假设孔径是圆柱孔。在这种方法使用了 60 年后,随着 MCM-41 模板孔径分子筛的问世,人们突然发现 BJH 法有着极大误差,低估孔径可达 20%。因此,ISO 15901《固体材料孔径分布与孔隙率的压汞法和气体吸附法测定——第 2 部分:气体吸附法分析介孔和宏孔》对 BJH 的使用提出了明确的限定条件,采用 Barret、Joyner 和 Halenda 方法计算介孔孔径分布。由吸附等温线计算孔径分布的代数过程存在多个变化形式,但均假定:(1)孔隙是刚性的,并具有规则的形状(比如,圆柱状);(2)不存在微孔;(3)孔径分布不连续超出此方法所能测定的最大孔隙,即在最高相对压力处,所有测定的孔隙均已被充满。 下面我们来详细了解一下我们的 BJH 报告:上图是一份 BJH 吸附报告表格。表中第一个部分代表的分别是所选择的 BJH 测试方法(采用吸附或脱附支)及适用孔径范围、厚度曲线以及一些设定参数。其中 BJH 校准方法、厚度曲线在软件中提供了多种可选择的项目,可根据分析需求进行选择(如下两图所示)。表格的第一列是孔径范围。出具报告时,可选择根据测试需求,指定孔径范围进行报告,也可选择按照采集的数据点进行报告。如下图所示:表格的第二列是第一列孔径范围内的平均孔径。表格的第三列是孔体积增量。表格的第四列是累积孔体积。孔体积增量相加即得累积孔体积。如上述表格中:0.004472+0.002826≈0.007297(含四舍五入)表格的第五列和第六列分别是孔面积增量和累积孔面积。孔面积增量相加即得累积孔面积。BJH 报告的第二个内容即累积孔体积图,如下图所示。Larger代表的是一种作图方式,还可选择Smaller。在Larger这个图中,含义是:大于等于 1.78nm 的孔的累积孔体积为 0.0525。在Smaller这个图中,含义是:小于等于 238nm 的孔的累积孔体积为0.0525。BJH 报告的第三个内容,即 BJH 吸附 dV/dD 孔体积分布图和 dV/dlogD 孔体积分布图(如下两个图所示)。两个报告的含义是一样的,只是前者更能体现出小孔区域的信息,后者能更清晰的体现出大孔区域的信息。BJH 脱附的报告内容与 BJH 吸附报告内容完全一致,只是使用的计算点为等温线的脱附支而已,而 BJH 的吸附报告采用的计算点是等温线的吸附支。
  • 草莓中农药残留分布分析
    作者:UDO LAMPE、JUAN HAMDI、ABRAHAM WELDAY、SEBASTIAN BIHL、J.-PETER KRAUSE博士草莓之所以受欢迎,部分原因是它们含有大量的健康物质,如膳食纤维和多酚。然而,草莓是最具挑战性的园艺作物之一。种植者必须管理害虫问题的多样性和复杂性,化学植物保护剂,特别是防虫、防螨和防病剂,一直是维持作物产量和质量标准的关键组成部分。为了保护消费者免受残留物的不利影响,欧盟委员会制定了最大残留水平(MRL)。如果按照良好农业惯例施用农药,则代表预期的最高残留浓度。因此,当局认为符合MRL的产品是安全的,并且可以合法销售。除了公共法规外,主要食品零售集团还制定了私人标准。在某些情况下,这些规格比官方MRLs或其他参数(如急性参考剂量)低得多(在某些情况下为1/3或更低)。因此,在常规对照分析中,实验室必须对水果进行分析,以评估MRL的合法适销性。2014年第752号欧盟法规规定,对于浆果和小水果,去除冠叶和茎(葡萄干除外)后,MRL适用于整个产品。如果是草莓,必须去掉冠层叶子。然而,文献中未发现有关水果和叶子之间残留物分布的数据,因此也未发现加工过的叶子对可食用部分残留物浓度的影响。没有迹象表明必须通过大幅度切割或精确移除冠的程度。最近一项研究的目的是调查叶和果实之间的农药残留分布,以评估冠叶未完全移除的风险。材料和方法草莓(500克盒),从当地超市购买,按照农药残留测定的多残留法进行加工和分析。与常规方法将冠叶与水果的一小部分分开相比,在本研究中,只有冠叶(绿色部分)被完全移除,而水果没有任何部分移除,见图1。图1 冠叶(绿色部分)被完全移除,果实没有任何其他部分水果的可食用部分用搅拌机均质(Mycook 1.8,Taurus Professional)。将绿色部分填充到低温研磨机(Retsch CryoMill)的瓶子中。将瓶子冷却至约-30摄氏度(冷震霜SF 51,Nordcap),然后在没有进一步冷却的情况下将冻结的绿色部分研磨3分钟,见图2。之后,按照QUEchERs的方法,通过溶剂萃取萃取农药。采用气相色谱法结合串联质谱法(德国安捷伦)对农药进行测定。用同样的方法处理果肉。农药残留浓度根据产品的千克鲜重(mg/kg)计算为毫克农药。图2 水果的可食用部分用搅拌机均质结果与讨论共准备了30盒草莓用于调查。仅去除冠叶的方法导致叶和果实之间的平均重量比为0.012,见图3。叶面和果实间的农药残留浓度比在6到277之间,变化很大。这种变化是由于样品的选择不具体,可能在处理、果实生长、贮藏等方面有所不同,并影响比例。此外,52%的样品中,残留量仅在叶子中测量,而在水果中未测量。通常可以检测到草莓的典型残留物,并用于评估分布情况,见图4。农药的发现越多,因子的变化越大。由于未满足统计要求,因此无法计算平均分布系数。但结果清楚地表明-残留在叶片中的农药浓度远高于在果实中的农药浓度。如果将冠叶的一小部分与果实一起分析,会发生什么情况?计算的最高因子为277。如果将整个草莓均质化,残渣浓度将增加4.2倍。只有10%的冠叶会将浓度增加1.3倍,这对于MRL较低的农药来说至关重要,并可能导致假阳性结果。草莓的冠状叶应在冠状叶下方进行清楚的切割,以确保完全去除。消费者也应这样做,以避免不必要的残留物摄入。图3 仅去除冠叶的方法导致叶与果实之间的平均重量比为0.012。图4 通常可以检测到草莓的典型残留物并加以利用用于评估分布。• Cyprodinil 嘧菌环胺• Fludioxonil 氟二氧嘧啶• Fluopyram 氟吡仑• Pyrimethanil 乙胺嘧啶• Trifloxystrobin 三氧斯特罗宾原文:Pesticide Residue Distribution in Strawberries——A methodological approach,FOOD QUALITY & SAFETYBY UDO LAMPE、JUAN HAMDI、ABRAHAM WELDAY、SEBASTIAN BIHL、J.-PETER KRAUSE,PHD供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 60年来中国两院院士籍贯分布
    p  近日,2015年两院院士的增选结果引发了大家很大的讨论,大家也一直都听闻说江浙地区历来高产院士,可是对于江浙地区究竟出了多少院士其实并没有太直观的概念。/pp  青塔本期统计分析了从1955年中科院学部成立以来和1994年中国工程院成立以来的两院院士籍贯分布,从中我们可以一窥端倪。/pp  本次统计的区间为1955年到2015年这60年来当选的两院院士籍贯,其中包括了外籍华裔院士(非华裔的不做统计),双院士的情况只统计一次,从结果上看籍贯为江苏的院士人数高达450人,籍贯为浙江的院士人数也高达375人,远远超出其他省份,另外广东籍贯的院士也有145人,山东的有143人,福建的则有139人,另外籍贯为湖南和安徽的院士人数也都超过了百人,而这七个省份也均是传统的院士出产大户。/pp  另外即使只看2015年新当选的院士,则江苏籍的新院士也高达22人,浙江籍的也有11人,湖南籍的有13人,山东籍的有10人,也远远超出其他省份。江浙的院士比较多,除了目前江浙一带经济发展程度较高以外,和江浙地区历来文化传统有关,据统计从唐朝以来,共计产生了416位状元,而其中江浙地区就占了114位。/pp  不过本次的统计是按照籍贯进行分析的,如果按照出生地来看的话,则江浙地区的院士人数会有所减少,不过也依然超出其他省份不少。如果仅按照出生地来分析,则出生地为上海和北京的院士则大幅上升,出生地为上海的院士数量超过250人甚至不下于浙江,北京也有一百多人,不过其他省份的分布情况变化不大,来看看60年来两院院士的籍贯分布吧:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/67f688a9-4175-41bf-9dbd-1dd6172acba3.jpg" title="图.jpg"//p
  • 酸性矿山废水中微生物分布影响因素
    随着全球工业化的迅速发展, 矿产资源的开发进一步加剧, 由此而产生的酸性矿山废水( AMD) 已经成为许多国家水体污染的主要来源之一。酸性矿山废水若不经处理任意排放就会造成大面积的酸污染和重金属污染, 它能够腐蚀管道、水泵、钢轨等矿井设备和混凝土结构, 还危害人体健康。另外, 酸性水会污染水源, 危害鱼类和其他水生生物 用酸性水灌溉农田, 会使土壤板结, 农作物发黄, 并且随着酸度提高, 废水中某些重金属离子由不溶性化合物转变为可溶性离子状态, 毒性增大。 对于酸性矿山废水的处理主要有这几种方法: 中和法、人工湿地法、硫化物沉淀法和微生物法。其中微生物法就是利用硫酸盐还原菌( SRB) 在厌氧条件下将AMD 中的硫酸盐还原为硫化物, 生成的硫化物再与废水中的重金属发生反应生成难溶解的金属硫化物。由于微生物技术的处理效果较好, 成本也较低, 且无二次污染, 因而受到广泛关注。 国内科学家对中国东南部14个地区的59个AMD样本进行了微生物群落分布的研究。通过对AMD样本中的微生物16SrRNA基因进行454测序,对测序结果进行了物种分布和聚类的分析,最终发现,影响微生物群落的主要因素并不是地域,而是环境的变化,如铁离子、硫酸根离子、有机物含量等等,相关学术论文发表在《自然》子刊ISME(International Society for Microbial Ecology)上。 通过对不同环境的微生物群落分布的研究,加深了人们对极端环境下微生物多样性的了解,为将来利用微生物技术对AMD进行处理和控制具有一定的理论和现实意义。 参考文献:ISME J. 2012 Nov 22. doi: 10.1038/ismej.2012.139. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage.Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS.
  • 无人机监测揭秘PM2.5时空分布
    到底是一楼灰霾重还是30楼重?很多专家认为楼层越高,空气会越清洁,但是在相同水平层面分布是比较均匀的。不过,上海交通大学彭仲仁教授的团队利用无人机监测后发现,在逆温条件下PM2.5楼层分布规律和之前专家的预测并不完全一致。他们将飞机从地面一直往上飞,发现从300多米往上一直到500米,PM2.5的浓度反而越来越高,再继续往上污染浓度又急剧下降。  学生自制PM2.5监测大杀器  目前人们研究PM2.5以及空气中其他污染物在垂直空间的分布情况,主要是依赖在高层建筑物上建设监测站点,条件非常受限,所得到的数据非常少。上海交通大学智能交通与无人机应用研究中心主任彭仲仁教授发明了一个“大杀器”。他直接在不同高度测数据,PM2.5在不同地方、不同高度的分布情况一目了然。  彭仲仁的学生根据需要,组装了一部无人机。考虑到飞机要比较长时间在空中飞行监测,他们选择了可以在空中飞好几个小时、烧汽油的固定翼飞机。因为烧汽油会产生废气,他们将排气管放在飞机尾部,飞机头的位置要搭载监测仪器的平台,这样废气和仪器的距离就比较远了。彭仲仁说,只要不是顺风飞,尾气就不会影响到监测结果,如果是在逆风方向飞行,数据就更可靠了。  此外,监测仪器那么大,无人机怎么能拖得动?仪器在飞机上怎么控制?这个问题比较棘手。不过美国的空气监测设备厂家解决了这个问题,专门为他们的飞机量身定做了一批监测仪器。彭仲仁说,经过比对,这些小型设备和大型设备监测出来的数据基本差不多,于是监测PM 2.5的“大杀器”就完成了。  实测数据显示锻炼还是早上好  到了开始使用大杀器的时候。他们首先确定飞行的区域为一个四公里乘以四公里的正方形范围内,飞行时间分别分布在上午和下午的四个不同时段。飞机起飞之后,让飞机每上升100米就围绕这个正方形盘旋一周然后继续爬升,通过控制装载在飞机上的仪器记录下不同时间,不同位置的PM 2.5浓度。  监测数据显示,PM 2.5的浓度在清晨6:00-7:30左右最低。随着太阳的逐渐升起,辐射量增加、空气温度升高,人们开始外出活动,污染物排放开始积累,PM 2.5的浓度也随之升高。所以,锻炼什么时候好?从空气污染的角度来看早晨更合适。在水平方向,此前有专家认为,非常细小的PM 2.5在空中的分布是比较均匀的。但彭仲仁团队监测到的实测数据显示,相比PM 10的空间分布确实要均匀很多,但PM 2.5同一水平位置的分布没有此前推测的那么均匀。彭仲仁说,这表明即使在小范围内,PM 2.5浓度仍因风向、地面排放、外部传输等原因呈现不均匀分布。  而且有一次实测数据发现,PM 2.5也并不完全遵循高度越高PM 2.5浓度越低的规律。有一次他们将飞机从地面一直往上飞,发现从300多米往上一直到500米,PM 2.5的浓度反而越来越高,再继续往上污染浓度又急剧下降。查看温度才发现,气温也是随着地面升高而升高的,而不是每上升100米下降0 .6℃,因此判断300米到500米的这一高度区间恰好有一个逆温层,导致污染物难以扩散。  链接  广州借助“小蛮腰”研究PM2.5垂直分布规律  此前一篇网络帖子中,自称“退役”售楼部小姐称,千万别买9楼到11楼的房子。因为这三层楼的高度是PM 2.5的最爱,是空气最脏的位置。这篇文章的论断很快就被专家和监测人员用理论和数据证明不靠谱。  在PM2.5的垂直分布规律上,研究的城市并不多。广州借助“小蛮腰”,较早研究了广州PM2.5的垂直分布规律。根据广州市环境监测站的研究,在几十米以下的高度,PM2.5的浓度其实差别不大,越往高处PM2.5浓度越低,空气也就越清洁。但这只是小蛮腰所在位置的监测数据,其它地方是这样吗?中山大学的范绍佳教授曾表示,具体到某栋楼某个楼层,差别是非常大的。因为局部地区的扩散条件、小气候都不一样,一栋楼前面有一口池塘和没有一口池塘情况可能都不一样,根本没办法比较。
  • 荧光分布成像系统(EEM View)观察荧光体树脂片
    目前,照明灯和液晶显示屏的背光源均采用白色LED灯。因此,为了进一步提升产品性能,Mini LED背光源和Micro LED显示屏的研发正在紧锣密鼓的进行中。荧光分布成像系统(EEM View)是能够同时获取样品图像和光谱信息的新附件。入射光通过照射积分球内壁,获得均匀光源,进而观察样品。利用F-7100标配的荧光检测器可以获得荧光光谱,结合积分球下方的CMOS相机装置拍摄图像,并利用AI光谱处理算法,可以同时得到反射和荧光图像。相信未来EEM View会在LED零配件内的荧光体光学特性评价中得到广泛的应用。1. 荧光体树脂片(50 mm×50 mm)的荧光特性此次实验测定了在面发光LED中使用的荧光体树脂片。对样品照射360~640nm的单色光,得到了样品特有的荧光特性。EEM View模式下,可同时获得不同光源条件的样品图像。通常,白色LED灯发光原理是采用蓝光LED发光二极管在455nm附近激发荧光体,产生580~650nm的黄色荧光,从而与LED发出的蓝光混合形成白光(图1)。由图2、图3可以看出,此次测定的样品荧光体树脂片,在455nm附近被蓝光LED灯激发,发出相当于625nm的黄色荧光。图1 白色LED发光原理 图2 三维荧光光谱图3 激发光谱和发射光谱2. 荧光体树脂片的分布均匀性确认 荧光成分图像 荧光成分图像 (分布不均匀区域) (分布均匀区域) 图4 树脂片的图像和光谱图4为树脂片的荧光成分图像,左边是荧光体分布不均匀区域的荧光图像和光谱,右边是荧光体分布均匀的荧光图像和光谱,从荧光图像中可以看出荧光体的分布情况。此外,通过不同位置计算出的荧光光谱,可以发现树脂片不同位置的荧光强度存在差异。对于荧光体分布不均匀的树脂片(左图),它的中心位置亮度偏高。而且从荧光光谱中可以看到,3个位置的荧光光谱峰值荧光强度最 大偏差15%。荧光分布成像系统是全球首创的新技术,它将有助于获得研发和应用领域的多方面信息表征,密切关注日立高新技术公司官网,更多应用持续更新中。
  • 粒度与粒度分布如何影响粉末涂料的生产和应用
    近年来,粉末涂料以其固含量高、无挥发性有机物、生产过程能耗低、涂饰质量好等优点深受市场青睐。本文聚焦粉末涂料的生产和应用过程,探究粒度及粒度分布对产品性能的影响。粉末涂料生产过程的第一步是填料和树脂的熔融与混合,要求填料和树脂混和均匀又不发生局部固化反应。要实现这个要求,填料的粒径和粒度分布很重要。图1是两种不同粒度的二氧化钛填料。图1 二氧化钛A(x 50K)图1 二氧化钛B(x 200K)从图1看,填料A 的粒径明显大于B的粒径。理论上粒径小的填料B更容易混合均匀。然而,事实恰恰相反,是粒径大的填料A更容易混合均匀。为了探究出现这种反常现象的原因,本文利用丹东百特仪器公司的Bettersize2600 激光粒度分析仪来测试填料A和B的粒度分布。图2 Bettersize2600激光粒度分析仪图3 二氧化钛A和二氧化钛B的粒度分布如图3所示,填料B 的粒度分布很宽,既有少量微米甚至10微米级颗粒,又有大量亚微米甚至纳米级颗粒。这些亚微米和纳米颗粒导致填料B的比表面积很大,颗粒间相互作用力很强,导致内部团聚现象加剧。从图4的SEM图像可以看出,填料B的这些大颗粒是由小颗粒团聚而形成,树脂很难进到团聚的大颗粒中,这就是填料B反而更难混合均匀的原因。而填料A的粒径大部分在0.4-1微米之间,分布很窄且不团聚,树脂很容易分散在颗粒之间,所以更容易混合均匀。图4 二氧化钛A(x 5K)、二氧化钛B(x 50K)的SEM图像填料和树脂熔融混合之后,下一道工序是粉碎和分级。粉末涂料的粒径受到磨机、进料速度、气流条件和分级等影响。图5显示了不同的粉碎分级工艺(A和B)对产品粒度分布的影响。图5 工艺A(上)和工艺B(下)制得的样品的质量分数在图5中,工艺A为一次分级效果,粉末涂料主要由0 - 20 μm和20 - 80 μm的颗粒组成;工艺B为二次分级效果,粉末涂料几乎全部由20 – 80 μm的颗粒组成。说明二次分级能够有效降低粗端颗粒( 80 μm)和细端颗粒( 20 μm)的占比,得到粒度分布更窄的粉末涂料产品。为什么粉末涂料要求窄的粒度分布?因为在喷涂过程中,较大的颗粒速度快,率先落到工件表面,较小的颗粒运动速度慢,后落在涂层缝隙,两者恰到好处会形成优势互补,两者差距太大将影响喷涂质量,并且,粒径过细还容易吸湿成团,堵住喷枪,也容易漂浮在涂膜上产生气泡和针孔,影响成膜效果。结论高质量的粉末涂料与填料粒度分布密切相关,通过激光粒度分析仪能有效监测和控制填料的粒度分布,从而保证粉末涂料的性能和质量。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 解决方案 | GPC在测量壳聚糖分子量及分布上的应用
    壳聚糖及其测定壳聚糖是目前研究最多的多糖类天然高分子材料,对于生物体来说,壳聚糖具有优良的生物相容性和降解性。将其植入人体后,可被人体组织中的酶缓慢吸收,是用来制作缝线和创伤覆盖材料的高分子材料。由于其优越的性能,使得壳聚糖在化工、 轻工、 医药、 食品及环境保护等领域中的开发应用研究十分活跃。 壳聚糖的学名为β-(1,4)聚-2-氨基-D-葡萄糖,是甲壳素最重要的衍生物,是除蛋白质以外含氮量MAX的有机氮源,也是自然界中仅有的碱性多糖,其相对分子量通常在10万-30万,但几乎不溶于水,其中分子量是影响壳聚糖溶解性的主要因素之一,分子量越低其溶解性就越好。 凝胶色谱法(GPC)是测定壳聚糖相对分子质量及其分布的常用方法,这将有助于推动壳聚糖作为生物医用材料的选择和设计。 应用案例——GPC测定壳聚糖本案例基于Waters1515凝胶色谱仪,搭配Ultrahydrogel色谱柱,对市售壳聚糖的相对分子量及分布进行计算。1、仪器 ▲Waters1515凝胶色谱仪,配示差检测器 2、标准品聚乙二醇标准品套组 3、实验条件01RI流通池温度40 °C02流动相50 mM 的醋酸+100 mM 硝酸钠缓冲液03流速0.45 mL/min04色谱柱Waters Ultrahydrogel 2000柱,7.8 ×300 mm05柱温40 °C 06样品稀释剂50 mM 的醋酸+100 mM 硝酸钠缓冲液07进样量50 μL08数据处理软件Empower QS +GPC计算模块色谱数据软件09样品处理1 mg/mL的壳聚糖4、结果与讨论壳聚糖样品的色谱图如下: 图1. 壳聚糖样品色谱图 利用Empower QS中GPC选项的功能,采用标样的保留时间绘制标准曲线,来计算壳聚糖样品的分子量分布,软件会自动计算出对应的重均分子量(Mw)、数均分子量(Mn)、多分散性等相关参数。 连续6针进样的重复性色谱图如下,通过计算Mw的RSD小于0.2%,表明此方法重复性良好。 Waters GPC优势行业先驱 Waters 从 1963 年起就致力于 GPC 技术的研究和开发,经过 50 多年的发展,使Waters 成长为 GPC 技术的引航者。专业 多项*技术加持,保证检测结果的准确性及重现性。易上手 简单、易操作,性能稳定,专为高聚物领域量身打造。参考文献[1] 凝胶渗透色谱法研究壳聚糖生物材料酶降解过程的均匀性[2] 用GPC研究壳聚糖氧化降解过程中的分子量及其分布_刘羿君[3] 壳聚糖作为医用高分子综述-王霞
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制