当前位置: 仪器信息网 > 行业主题 > >

膜结构

仪器信息网膜结构专题为您提供2024年最新膜结构价格报价、厂家品牌的相关信息, 包括膜结构参数、型号等,不管是国产,还是进口品牌的膜结构您都可以在这里找到。 除此之外,仪器信息网还免费为您整合膜结构相关的耗材配件、试剂标物,还有膜结构相关的最新资讯、资料,以及膜结构相关的解决方案。

膜结构相关的论坛

  • 制氮气的中空纤维膜结构真的有螺旋和非螺旋之分吗

    制氮气的中空纤维膜结构真的有螺旋和非螺旋之分吗

    很多氮气发生器厂家都提到其制氮的核心部件中空纤维膜是螺旋卷式结构,以增加表面比提高氮气分离效率,这种说法存在恶意宣传众所周知中空纤维膜分离器两端是密封的(根据其原理推理,两端密封也很合理),中间的部位纤维膜是直接与空气接触,膜分离厂家一般是用类似束缚编织袋捆绑,避免气体吹扫产生移位和改变形状,加上膜分离束采用的是聚酰亚胺材质显然螺旋卷结构,显然无法做到螺旋结构。更多厂家是通过增加膜的长度和膜分离器的直径,提高分离速率或纯度。不知道大家对此有何看法http://ng1.17img.cn/bbsfiles/images/2016/08/201608191718_605562_2374399_3.jpg

  • 【原创大赛】手机涂膜的结构

    【原创大赛】手机涂膜的结构

    拍摄时间:2011.08.01样品名称:手机涂膜结构显微镜:日本三维显微镜(VHX-1000)照明方式:明场http://ng1.17img.cn/bbsfiles/images/2011/09/201109170918_317306_1882092_3.jpg

  • 求助!有关金属多层膜样品的制样

    我最近在铜基体上采用电化学方法制备了调制波长为100nm的NiFe/Cu多层膜,想利用SEM观察其多层膜结构,不知该如何制样,希望获得大家的帮助,先谢过大家了!

  • 急!请问有机膜片做SEM前的干燥问题

    我自己做制备的有机物平板膜片,明天要做SEM测试,今天需要干燥以前就是在普通炉子中干燥,但是SEM图片总有裂痕请问大家,这类样品在SEM前应该怎样干燥?既能不破坏膜结构,还能有效达到干燥效果?

  • 生命科普聊斋之生物膜

    生物膜(bioligical membrane):镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是与许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。细胞、细胞器和其环境接界的所有膜结构的总称。 生物膜的功能之一是物质选择性通透,在生命科学检测分离分析中可以加以利用!请了解这一块的版友发言!不吝分数!

  • 难怪在镀膜上可以看到金颗粒,原来如此

    难怪在镀膜上可以看到金颗粒,原来如此

    如果在镀膜时所用的设备是直流溅射仪或磁控溅射仪而非离子束溅射仪,在放大倍率为几万倍下观察,就会看到镀膜结构。绝大多数用户所使用的离子溅射仪都属于前两种。下面的照片是我对三个文献有关内容的综合。http://ng1.17img.cn/bbsfiles/images/2013/01/201301262045_422846_1609375_3.jpg

  • 求教:SEM 获得的图片信息中电子束 一般探测薄膜样品多深?

    SEM 是根据二次电子成像,我想知道通常获取的SEM照片, 电子束一般探测薄膜样品多深?仅仅是表面很薄的表面信息么?xrd 一般能探测多少?是1微米量级左右么?他们(SEM和XRD)两者获取的结构信息差别有多大?对于制备的样品来说,它们通常相互补充说明薄膜结构方面的信息,特此向大虾请教!多谢。。。

  • 【求助】生物样品,JEM-1400,1k倍模糊不清,请高手指点

    【求助】生物样品,JEM-1400,1k倍模糊不清,请高手指点

    [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912182019_190763_1932884_3.jpg[/img]这是果蝇轴突的横截面电镜图,左侧是文献中的,右侧是我的图片。总的来说,图片模糊,双层膜结构只能看到模糊的一条粗线,囊泡只能看到模糊的小点。不知道是我没有制好样,还是对焦不对还是机器没有调好?请高手指点,先谢谢了!

  • 【原创】八通膜片阀结构

    【原创】八通膜片阀结构

    今天看到四阀5柱的气路,虽没有程序表,有点不知足,倒想起与大家共享一下这类阀的结构,了解其结构,对气路走向的了解就会有很大的帮助。我自己也不是很懂,就算抛砖引玉吧。大家可以共同探讨一下。图1:从左至右为四个阀,阀1与阀2是一样的,阀3与阀4是一样的,1和2为四路驱动,3和4为2路驱动,驱动空气由继电器控制。这是老式的橡胶膜片阀,现在大部分都是金属膜片,但结构还是差不多的。[img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901201509_129901_1605035_3.jpg[/img]

  • 【求助】薄膜内部组织结构变化

    我们有一个塑料薄膜,材料是PPS的,厚度在2微米左右,表面镀了一层镍,我们一般是用一个金属盘采用不同的张紧力把它张紧,使它产生不同的频率,我们想了解一下在不同张紧力的作用下薄膜内部组织结构是否有变化,有什么差异,不知道用什么方式可以实现,上周我们去一个大学用扫描电镜看了一下,但是扫描电镜只能看到样品表面形貌的变化,看不到样品内部的组织结构。

  • 【原创大赛】PSF膜材料改性

    本文的目的在于通过对三种亲水改性聚砜添加剂的对比,发现最理想的亲水改性聚砜添加剂,制备出高水通量,综合性能优良的水处理用的聚砜中空纤维超滤/微滤膜。1.研究方案(1)以聚砜为原材料,亲水改性聚砜为添加剂,用浸入沉淀相转化法制备聚砜平板膜作为前期研究,通过测水接触角初步三种亲水改性聚砜的亲水改性效果。(2)研究凝固浴温度和空气浴条件对中空纤维膜结构和性能的影响,确定最佳制膜条件。2实验部分2.1 实验材料与仪器2.1.1实验材料 2.2 中空纤维膜的制备将不同浓度的A,B,C亲水改性聚砜配制的纺丝液和空白组纺丝液倒入溶解罐中,抽真空,静置约4小时脱泡。纺丝时,溶解罐中的纺丝液约在2个大气压的压力下通过计量泵挤入喷丝板的环隙。同时,内凝固浴通过流量泵进入喷丝板插管中。初生纤维经过一段空气间隙后,进入外凝固浴槽凝固最后,通过转筒收集中空纤维膜,制得的膜编号放入水槽中浸泡,测其强度,拉伸,水通量,SEM。纺丝机上可调控参数为氮气气压、溶解罐温度、芯液泵速率、计量泵速率、绕丝机速率、纺丝头内径、纺丝头外径、空气浴长度和三个外凝固浴的温度。三个水浴温度可以各自调控,水浴长度则一般固定不变。2.3 表征方法扫描电镜。为了观察膜的断面结构,为了将膜干燥首先采用溶剂置换的方法。将原先浸泡在水中的膜放到无水乙醇中浸泡24小时,然后在空气中自然晾干。将干燥后的膜取出规则的一段在液氮中冷冻脆断,断面经真空镀金后用 台式扫描电镜观察,对于膜的内外表面,经溶剂置换法干燥后,沿纤维长度方向用刀片斜切,这样的话内外表面就同时暴露了,真空镀金后用扫描电镜观察。力学性能。中空纤维膜的断裂伸长、断裂强度用电子拉力实验机测定。纤维经甘油浸泡24小时后,在湿态测试。试样标距100mm,夹具拉伸速度为20mm/min。每个样品至少测五次,取平均值。接触角。采用CTS-200水接触角测量仪,测定充分干燥的预处理和接枝反应后的聚砜膜接触角,同时测定相应的空白膜,以进行对比。每个样品至少测定5个点,取平均值。水通量。取度为30cm的10根中空纤维膜,将中空纤维膜的两端并一起,用胶带固定,端口用真空硅脂封住,放入模具中静置若干分钟。模具中倒入配好的PU灌封胶(A组分:B组分=1:1的比例配置),静置固定24 h,将多余的环氧胶切去,直到与管口平齐。用内压法测中空纤维膜的水通量。先在0.12 MPa下预压30 min,然后在0.10MPa下测5min的水通量。每批次的膜取三个点,水通量取平均值。3 实验结果与讨论3 .1不同种类添加剂同一浓度的聚砜膜亲水性 将刮成的A,B,C平板膜对其表面做扫描电镜,并测其水接触角。如下图。 图 3.1 A、B、C聚砜膜的表面扫描电镜 图 3.2 A、B、C的水接触角随时间变化由图中可以看出在相同添加剂浓度下,B和C水接触角随时间下降得相对快,说明水滴润湿平板膜速度相对快,B和C曲线几乎平行,说明2者的亲水性应该相差不大。3.2不同种类添加剂不同浓度的中空纤维膜丝性能为了得出哪种亲水改性剂在哪种浓度的下亲水改性效果最好,采用同一纺丝液温度,同一芯液组成和温度,同一空气浴长度,同一凝固浴组成和温度纺不同浓度的A,B,C,空白组纺丝液。并测其强度,拉伸,水通量,SEM。得到下图。膜丝太脆没有给出具体的数据是因为添加剂含量太高,平板膜制成晾干后像枯叶一样脆尔而且膜边卷曲严重,而中空纤维膜则很容易被自己的重力压折,几乎没有任何实际意义。从数据中可以看出,同一添加剂浓度下B的水通量比A高一点,机械性能也要好一点。因为选定B组3号样配方为最理想亲水改性配方。3.3凝固浴温度对聚砜中空纤维膜结构的影响通过对3号纺丝液固定其他条件只改变凝固浴温度,得到最优亲水改性效果。得到下表。图 3.3图 3.4从表中可以得出,随着凝固浴温度的增加,水通量增加。机械性能稍微下降,但影响不大。SEM图如下。图 3.5 凝固浴温度为20?30?50?55?的表面图和截面图图可以看出,在其他条件相同的情况下,随着凝固浴温度的增加,表面膜孔孔径增大,孔隙率上升,双连续孔增多。膜的表层由致密层变为疏松层。但是这种疏松的结构会导致膜的机械性能稍微降低。3.4空气浴长度对聚砜膜结构的影响及膜的孔径分析通过对3号纺丝液固定其他条件只改变空气浴长度,得到最优亲水改性效果。如下表。图3.6图3.7由图中可以看出,随着空气浴长度的减小,膜丝的水通量减少。但是强度增大,拉伸率基本不变,膜丝机械性能变好。SEM图如下。图3.8 空气浴长度为10cm 6cm 2cm的膜表面和截面电镜图从图中可以看出,在其他条件一样的情况下,随着空气浴长度的减小,膜的孔径变小,疏松的底层更加紧密。对3号样用10cm空气浴在凝固浴60?下纺丝,得到的膜丝用双液法进行孔径分析,得到下图。 图 3.9由图可知,最可几孔径是0.03μm以下,平均孔径是0.048μm。对其测1g/Lγ球蛋白截留率,就留率为96%。4 总结与展望聚砜膜材料由于原料价廉易得、制膜过程简单、机械强度和抗压密性良好,以及优良的化学稳定性,且有一定的抗生物降解能力,目前它被广泛地用于超滤膜的制备。然而由于聚砜的亲水性能较差,用它制备的超滤膜透水速度太慢,且抗污染性又比较差,因此在一定程度上限制了聚砜膜在超滤领域中的应用,所以对聚砜膜进行亲水改性是急切需要的。本文通过采用浸没沉淀相转化法,使用聚醚砜作为膜的主要原材料,三种不同种类的亲水改性聚砜作为添加剂,调控成膜工艺条件等因素,制备聚醚砜中空纤维膜,调控聚醚砜中空纤维膜的截面和表面结构研究成膜原料和成膜工艺对聚醚砜中空纤维膜性质的影响通过CA、SEM和Flux等方法研究膜亲水改性的效果。得出以下结论如下:1、通过制备同一比例添加剂下三种不同种类的聚砜平板膜并测其接触角,发现A样和B样的亲水性相对较好。并得到一个亲水改性效果最好的添加剂含量比例。2、通过控制空气浴长度和凝固浴温度等工艺因素,得到水通量最高和机械性能较好的工艺参数。

  • 有了解粉末法解结构的吗

    RT,就只知道梁敬魁老师写过一本粉末法解结构的书,现实中应用粉末法解结构的多吗?或者粉末法适合哪些样品,对样品特点有哪些要求?

  • 【转帖】氨的分子结构及性质

    一、氨的分子结构   氮原子有5个价电子,其中有3个未成对,当它与氢原子化合时,每个氮原子可以和3个氢原子通过极性共价键结合成氨分子,氨分子里的氮原子还有一个孤对电子。    氨分子的空间结构是三角锥形,三个氢原子处于锥底,氮原子处在锥顶。每两个N—H键之间夹角为107°18’,因此,氨分子属于极性分子。    H H   .. |    电子式: H:N:H 结构式: H-N-H   .. 二、氨的性质   化学式 NH3   1、物理性质   相对分子质量 17.031   氨气在标准状况下的密度为0.7081g/L    氨气极易溶于水,溶解度1:700   2、化学性质   (1)跟水反应    氨溶于水时,氨分子跟水分子通过*氢键结合成一水合氨(NH3• H2O),一水合氨能小部分电离成铵离子和氢氧根离子,所以氨水显弱碱性,能使酚酞溶液变红色。氨在水中的反应可表示为:    一水合氨不稳定受热分解生成氨和水    氨水中存在三分子、三离子、三平衡    分子:NH3、NH3• H2O、H2O;    离子:NH4+、OH-、H+;    三平衡:NH3+H2O NH3• H2O NH4++OH-    H2O H++OH-    氨水在中学化学实验中三应用    ①用蘸有浓氨水的玻璃棒检验HCl等气体的存在;②实验室用它与铝盐溶液反应制氢氧化铝;③配制银氨溶液检验有机物分子中醛基的存在。    (2)跟酸反应    2NH3+H2SO4===(NH4)2SO4    3NH3+H3PO4===(NH4)3PO4    NH3+CO2+H2O===NH4HCO3    (反应实质是氨分子中氮原子的孤对电子跟溶液里具有空轨道的氢离子通过配位键而结合成离子晶体。若在水溶液中反应,离子方程式为:    8NH3+3Cl2===N2+6NH4Cl    (黄绿色褪去,产生白烟)    反应实质:2NH3+3Cl2===N2+6HCl    NH3+HCl===NH4Cl    总反应式:8NH3+3Cl2===N2+6NH4Cl 三、氨的制法   1.工业制法:工业上氨是以哈伯法通过N2和H2在高温高压和催化剂存在下直接化合而制成:   工业上制氨气   高温高压   N2(g)+3H2(g)========2NH3(g)(可逆反应)   催化剂   △rHθ =-92.4kJ/mol   2. 实验室制备:   实验室,氨常用铵盐与碱作用或利用氮化物易水解的特性制备:   △   2NH4Cl + Ca(OH)2===2NH3↑+ CaCl2 + 2H2O↑   Li3N + 3H2O === LiOH + NH3↑ 四、铵盐   铵盐是氨与酸作用得到铵盐,铵盐是由铵离子(NH4+)和酸根离子组成的化合物。一般为无色晶体,易溶于水,是强电解质。从结构来看,NH4+离子和Na+离子是等电子体。NH4+离子的半径比Na+离子的大,而且接近于K+离子,一般铵盐的性质也类似于钾盐,如溶解度,一般易溶,易成矾。铵盐和钾盐是同晶型等,在化合物分类中常把铵盐和碱金属盐归为一类。铵盐的化学性质:①有一定程度的水解。因为氨是弱碱,铵盐是弱碱强酸盐或弱碱弱酸盐,前者水解后溶液显酸性:    NH4++H2O== NH3• H2O+H+    ②受热分解,所有的铵盐加热后都能分解,其分解产物与对应的酸以及加热的温度有关。分解产物一般为氨和相应的酸。如果酸具有氧化性,则在加热条件下,氧化性酸和产物氨将进一步反应,使NH3氧化为N2或其氧化物:    人 碳酸氢铵最易分解,分解温度为30℃:    氯化铵受热分解成氨气和氯化氢。这两种气体在冷处相遇又可化合成氯化铵。这不是氯化铵的升华,而是它在不同条件下的两种化学反应:    ③跟碱反应放出氨气      1、人工固氮    工业上通常用H2和N2 在催化剂、高温、高压下合成氨    最近,两位希腊化学家,位于Thessaloniki的阿里斯多德大学的George Marnellos和MichaelStoukides发明了一种合成氨的新方法(Science,2Oct.1998,P98)。   2、天然固氮    闪电能使空气里的氮气转化为一氧化氮,一次闪电能生成80~1500kg的一氧化氮。这也是一种自然固氮。自然固氮远远满足不了农业生产的需求。 六、注意事项   氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症。可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力。氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外。    七.NH3系列常用方程式   NH4+ + H2O NH3.H2O + H+   2NH4+ + SiO32- + H2O == H4SiO4↓ + 2NH3↑   NH4+ + AlO2- + H2O == Al(OH)3↓ + NH3↑   NH4+ + HCO3- + 2OH- == CO32- + H2O + NH3.H2O(向NH4HCO3溶液中加入足量NaOH溶液)   次文章转载自www.3017.cn 东方嘉仪仪器网

  • 【求助】(已应助)求查几篇文献

    题目:聚含氟丙烯酸酯-聚氨酯三嵌段共聚物水基分散体的合成及膜结构作者:陈建兵, 王武生, 王宇,曾俊, 王爱东杂志:《应用化学》,2006年 23卷 2期题目:含氟水性聚氨酯分散体的合成作者:陈建兵, 王宇,王武生, 王宇,曾俊杂志:《中国皮革 》2005年03期

  • 【讨论】急求测试信息;)

    各位牛牛 大家好我的样品是蓝宝石衬底GaN多层膜结构,想看层与层之间的信息,就是做cross-section表征。这类样品如何制样,如果做TEM?不知道那里可以提供这类样品的测试(制样+测试),一个样价钱大概多少希望各位能提供这方面的信息,QQ149183217 [em0711] 谢谢哈!

  • 测定固体膜片结构选择什么红外好?

    我们公司打算买一台红外,主要是测定膜等固体的结构用的,可以好测定吗?那用什么样的红外好一点,我在学校就只用过尼高力的5700,当时我们也只是做的粉末。请大家帮忙,提个建议。 [color=red]谢谢[/color],

  • 【转帖】晶体结构立体模型建构软件 Diamond

    在使用Diamond软件构造晶体模型时,需要知道晶体的结构数据,即晶体的空间群、晶胞参数和原子坐标。晶体结构数据可以手动输入,也可以直接从晶体信息文件中获得。我们将通过几个例子来说明软件的使用方法。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=130595]晶体结构立体模型建构软件-Diamond的使用指南.pdf[/url]

  • 膜蛋白的类型及功能详解

    [b][font=宋体]什么是膜蛋白?[/font][/b][font=宋体]膜蛋白是一类广泛存在于生物体细胞膜上的蛋白质分子。它们在维持细胞结构完整性、调控物质运输和信号传导等方面起着重要作用。根据蛋白分离的难易及在膜中分布的位置,膜蛋白基本可分为三大类:外在膜蛋白或称外周膜蛋白、内在膜蛋白或称整合膜蛋白和脂锚定蛋白。膜蛋白包括糖蛋白,载体蛋白和酶等。[/font][font=宋体] [/font][font=宋体][font=宋体]通常在膜蛋白外会连接着一些糖类,这些糖相当于会通过糖本身分子结构变化将信号传到细胞内。研究膜蛋白结构的技术包括[/font][font=Calibri]X[/font][font=宋体]射线衍射等,常用于重组膜蛋白的表达系统有真核表达系统。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的类型:[/font][/b][font=宋体]目前存在不同类型的膜蛋白,例如:[/font][font=宋体]①整合膜蛋白[/font][font=宋体]②外周膜蛋白[/font][font=宋体]③脂质结合蛋白[/font][font=宋体]④两性蛋白[/font][font=宋体] [/font][b][font=宋体]膜蛋白的特点:[/font][/b][font=宋体][font=宋体]膜蛋白有多种形状和大小,执行多种任务,但它们总是依赖于一些关键特征。[/font] [font=宋体]膜蛋白的一些区别特征如下。[/font][/font][font=宋体]①跨膜域: 跨膜结构域是延伸到脂质双层全长的蛋白质片段。 疏水性氨基酸残基是这些结构域的共同特征,它们介导与膜磷脂疏水性尾部的相互作用。[/font][font=宋体]②疏水和亲水区域: 膜蛋白包含疏水和亲水结构域,使它们能够与脂质双层和两侧的水环境进行交流。[/font][font=宋体]③选择性:膜蛋白的一个共同特征是它们能够调节某些分子或离子的通过。 通常是蛋白质的独特结构和电荷决定了它的选择性。[/font][font=宋体]④受体位点: 当膜蛋白上的受体区域与各自的目标分子或离子结合时,这些区域就会被激活。 大多数时候, 分子 或由受体检测到的离子在受体上具有与该位点结构或化学相容的结合位点。[/font][font=宋体]⑤构象变化: 当膜蛋白结合特定分子或离子时,它通常会发生构象变化,从而引发生物反应或允许蛋白质将结合的分子转运穿过膜。[/font][font=宋体]⑥锚固:多种机制,包括与其他蛋白质的相互作用和与膜中脂质分子的结合,可用于将膜蛋白锚定到细胞膜。[/font][font=宋体]⑦糖基化:碳水化合物链通过称为糖基化的过程与几种膜蛋白结合。 这种改变可以作为防止蛋白水解的保护措施,并作为细胞中下游蛋白质的信号。[/font][font=宋体][font=宋体]跨膜结构域、疏水和亲水区域、选择性、受体位点、构象变化、锚定和糖基化都是膜蛋白的特性,对它们在细胞膜中的功能至关重要。[/font] [font=宋体]由于这些特性,膜中的蛋白质能够运输分子、发送信号、提供结构支持和催化反应。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的功能:[/font][/b][font=宋体]①运输功能[/font][font=宋体]膜转运蛋白分为载体蛋白和通道蛋白两种。主动运输和协助扩散都需要载体蛋白。水分子进去细胞时需要水通道蛋白,还有一种离子通道蛋白,需要注意的是通过通道蛋白进出细胞因为不需要能量所以属于协助扩散。[/font][font=宋体] [/font][font=宋体]②识别功能[/font][font=宋体] [/font][font=宋体]两个不相邻细胞间信息交流是通过信号分子(如激素、神经递质、淋巴因子等)来完成的,而细胞膜上能与信息分子结合的便是细胞膜上的特异性受体。[/font][font=宋体] [/font][font=宋体][font=宋体]细胞与细胞之间可以通过相互接触而相互识别,例如精子与卵细胞的相互识别,效应[/font][font=Calibri]T[/font][font=宋体]细胞与靶细胞之间的相互识别就是依靠糖蛋白来完成的[/font][/font][font=宋体] [/font][font=宋体]③催化功能[/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白可能是某些反应所需要的酶。例如[/font][font=Calibri]Na+-K+[/font][font=宋体]泵中存在[/font][font=Calibri]ATP[/font][font=宋体]水解酶;光反应、有氧呼吸之所以在膜上发生的原因之一就是膜上存在反应所需的相关酶。[/font][/font][font=宋体] [/font][font=宋体]④抗原功能[/font][font=宋体] [/font][font=宋体][font=宋体]表面抗原能和特异的抗体结合,如人细胞表面有一种蛋白质抗原[/font][font=Calibri]HLA[/font][font=宋体],是一种变化极多的二聚体。不同的人有不同的[/font][font=Calibri]HLA[/font][font=宋体]分子,器官移植时,被植入的器官常常被排斥,这就是因为植入细胞的[/font][font=Calibri]HLA[/font][font=宋体]分子不为受体所接受之故。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白制备[/b][/url]平台及跨膜蛋白详解:详情可查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【我们不一YOUNG】如何有效清除和防控生物膜

    [size=15px][b][font=微软雅黑][color=#1f1f1f]如何有效清除和防控生物膜?[/color][/font][/b][/size][b][font=微软雅黑][color=#1f1f1f][/color][/font][/b][font=微软雅黑][color=#1f1f1f]1、EPS由多种长链多糖组成,如褐藻酸盐和纤维素,可以形成非常稳定的基质。食品工业利用这些特性生产增稠剂等产品。对于微生物来说,生活在生物膜中有许多益处。它们有更稳定的食物供应,有一定程度的干燥保护,并享有相当大的防护,免受杀菌剂和其他不利的环境影响。尤其是对氯、臭氧和紫外线辐射的抗性随着生物膜厚度的增加而显著增加。[/color][/font][font=微软雅黑][color=#1f1f1f][/color][/font][font=微软雅黑][color=#1f1f1f]2、单独的过氧化氢产品在与生物膜接触时容易迅速分解,无法穿透生物膜,这会严重限制它们的功效。为了达到最大的效果,过氧化氢需要高度稳定。过氧化氢银离子复合型型溶剂在与生物膜表面初次接触后的一段时间内抑制过氧化氢的分解,并使过氧化氢能够穿透生物膜结构。生物膜产生的过氧化氢酶的作用导致过氧化氢释放氧气,[/color][/font][b][color=#1f1f1f]所以过氧化氢银离子除了它的氧化作用外,所产生的细气泡还产生物理、机械作用。生物膜基质中气泡的膨胀实际上将基质吹裂。由此产生的生物膜碎片与结构分离,留下孔洞,进而允许进一步的过氧化氢渗透到结构中。在最佳条件下,整个生物膜被迅速地从基质上分离并破碎。[font=微软雅黑](转载自[/font][font=system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][color=rgba(0, 0, 0, 0.298039)]食品微生物工程师[/color][/font][font=微软雅黑])[/font][/color][/b]

  • 一型跨膜蛋白和二型跨膜蛋白图解:结构与功能的剖析

    [font=宋体][font=宋体]跨膜蛋白按功能可以分为多种类型,其中包括[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体([/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体])、离子通道、转运蛋白以及其他类型受体等。这些蛋白在细胞内发挥着不同的作用,例如在信号传递、物质转运和细胞通讯等方面。[/font][font=Calibri]G[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]是一类广泛存在于生物体中的跨膜蛋白,它们可以识别并与外界分子相互作用,从而引发各种细胞内信号,因此它们被用作药物筛选的靶标。离子通道则可以调节细胞内外的离子浓度,如钠离子、钾离子、钙离子等,这对于细胞的正常运作至关重要。转运蛋白则可以协助物质的跨膜运输,对生物体代谢进行调控。这些跨膜蛋白虽然功能不同,但是在生物体中发挥着各自独特和不可或缺的作用。[/font][/font][font=宋体] [/font][font=宋体]一型跨膜蛋白和二型跨膜蛋白是两种常见的膜蛋白类型,它们在结构和功能上存在差异。下面是它们的简要对比图解:[/font][font=宋体]一型跨膜蛋白:[/font][font=宋体] [/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜外 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]跨膜 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]螺旋 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜内 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体][font=宋体]一型跨膜蛋白具有一个跨越细胞膜的[/font] [font=宋体]α 螺旋结构。它包括一个在细胞外区域的 [/font][font=Calibri]N [/font][font=宋体]端、一个跨膜螺旋结构和一个在细胞内区域的 [/font][font=Calibri]C [/font][font=宋体]端。这种结构使得一型跨膜蛋白在跨越细胞膜时保持稳定,并具有信号传递和细胞识别等重要功能。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]二型跨膜蛋白:[/font][font=宋体] [/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜外 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]跨膜 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]膜内 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]区域 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]胞质 [/font][font=Calibri]|[/font][/font][font=宋体] [font=Calibri]| [/font][font=宋体]尾部 [/font][font=Calibri]|[/font][/font][font=宋体] [font=宋体]———————[/font][/font][font=宋体] [/font][font=宋体][font=宋体]二型跨膜蛋白同样具有跨越细胞膜的结构,但它包括一个在细胞内区域的[/font] [font=Calibri]C [/font][font=宋体]端和一个在胞质尾部的结构。二型跨膜蛋白通常通过细胞内区域与一些信号转导途径进行相互作用,并发挥重要的调节和调控功能。[/font][/font][font=宋体] [/font][font=宋体]一型跨膜蛋白通过单一的跨膜螺旋结构连接细胞内外区域,而二型跨膜蛋白则包含额外的胞质尾部。这些结构差异导致两种跨膜蛋白在细胞中的功能和相互作用方式上存在差异。[/font][font=宋体] [/font][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达和制备平台[/b][/url],包含[/font][font=宋体][font=宋体]①[/font][font=Calibri]VLP[/font][font=宋体]技术平台:它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象;[/font][/font][font=宋体][font=宋体]②去垢剂技术平台:由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体][font=宋体]③[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台:义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 聚丙烯SEM分析求助

    聚丙烯SEM分析求助

    请问一下这个通过SEM拍摄得到的聚丙烯表明形貌怎么解释啊,已知该聚丙烯是薄膜结构,厚度5um,经历过熔融、冷却后就成图中的样子了[img=pp sem,613,380]https://ng1.17img.cn/bbsfiles/images/2023/12/202312061531326339_3802_6174691_3.png!w613x380.jpg[/img]

  • 【讨论】粉末和结晶有什么区别?结构推断?

    我们柱层析上的洗脱液有的会有结晶,有的会有粉末析出,那么粉末和结晶有什么区别吗?主要分别都是哪些结构特征化合物的会是粉末吸出,结晶吸出,对于结构的推断有没有指导作用?请指点

  • 【求助】XRD掠入射衍射分析薄膜表面的结构

    XRD掠入射衍射是分析薄膜表面结构的极为有效的放发,可以对薄膜进行深度分层分析,其参与散射的晶面接近垂直于薄膜表面。采用位敏探测器,可以在固定的入射角度同时记录散射强度随出射角的变化,等同于晶体截断杆扫描,扫描时晶体绕平行于表面法向的轴转动,因而可以记录在不同Qz处QxQy面内的散射强度分布。那么可不可以采用掠入射衍射方法表征垂直于薄膜便面的结构呢?比如说一个1-3型的薄膜样品,一相以柱状结构embedded in另外一相的matrix中。可不可以这样:扫描不同Qz层的强度分布,如果每层的分布强度一样或者接近,则可认为存在这样1-3型的柱状结构?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制