当前位置: 仪器信息网 > 行业主题 > >

增氧机

仪器信息网增氧机专题为您提供2024年最新增氧机价格报价、厂家品牌的相关信息, 包括增氧机参数、型号等,不管是国产,还是进口品牌的增氧机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合增氧机相关的耗材配件、试剂标物,还有增氧机相关的最新资讯、资料,以及增氧机相关的解决方案。

增氧机相关的论坛

  • 鱼塘里溶氧仪跟增氧机可以这样用?

    鱼塘里溶氧仪跟增氧机可以这样用?

    鱼塘里溶氧仪跟增氧机可以这样用?鱼塘增氧机什么时候开: 适时开动增氧机给鱼塘水体增加溶氧量,可以改善水质,减少“鱼浮头”现象,但开机要选择好时机。晴天中午开机这时鱼塘中的上下水层温度差别较大,下层水中的氧气得不到及时补充。适时开启增氧机,可使上下层水得以交换,温差与氧差大大减少,下层水中的氧气可得到及时补充。 阴天清晨开机此时日照的强度弱,鱼塘中浮游植物的光合作用造氧较少,整个水体溶氧状况差。所以,在溶氧点较低的清晨开动增氧机,可以解决天亮前后因水体缺氧而造成的“鱼浮头”危机。 连绵阴雨半夜开机在天气连续阴雨的情况下,由于长时间缺少日照,鱼塘中的浮游植物光合作用造氧极少,必须在半夜开机增氧,防止鱼泛塘死亡。傍晚不开机太阳落山的时候,鱼塘中浮游植物的光合作用将要停止,不能再向水中供氧。如果在此时开机,会使上层水的溶氧量降低且得不到补充,下层水的溶氧会很快被消耗掉,加速了耗氧的速度,第二天清晨更容易出现“鱼浮头”。 此外,开动增氧机的时间长短亦大有讲究:闷热天气开机时间要长,凉爽天气要短;半夜开机时间要长,中午要短;施肥后开机时间要长,不施肥时要短;风小时开机时间要长,风大时要短。 有一次跟几个同行一起出去吃饭,玩得起劲到了大半夜,迷迷糊糊想起来鱼塘没人打理,难得大家一起出来聚聚,一个人先走嘛又不太好,但是今天天气又是阴雨绵绵的,要回去启动增氧机给鱼塘才行呀。就在我急得不知道怎么办的时候,坐在旁边的朋友看出来我的异样,我把情况悄悄跟他说了,他听了就大笑起来,我们现在用一款溶氧仪DO-6800连接增氧机,通过继电器原理设置高低点报警来控制增氧机的启动,只要定期清洗电极膜头,做好维护工作,人在外面好几天都可以悠然自得。我听了非常惊讶,赶紧拉着他跟我说个明白。以下就是溶氧仪跟增氧机的连接简单图:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif http://ng1.17img.cn/bbsfiles/images/2016/03/201603161319_587134_3088185_3.png 我也买了几台上海诺博的DO-6800连接增氧机,出外面的时候再也不用担心鱼塘的问题了,省了不少物力人力,重点是再也不用半夜爬起来开增氧机了。在增氧机跟溶氧仪的安装上可以问上海诺博的技术员,技术上妥妥的,效果也非常好。有溶氧仪检测鱼塘中的氧气,就算天气变化温差再大,它都能第一时间检测到氧气含量,随时启动增氧机,可比人为地启动增氧机要迅速准确得多了。

  • 溶解氧偏高,是否合理?

    用DS5测试鱼塘或水库的水,溶解氧数值有时会去到十几,同时测其它水体,有时又会去到2或3。测试环境1、鱼塘正在开增氧机。溶解氧升高是正常的,但能高到哪个程度呢?测试环境2、水库水底有水草,正值6月高温烈日天气。是否水草光合作用释放导致溶解氧升高? 本人查过各网站也没找到相关文献,请各位大神帮忙解答。

  • 【求助】BOD稀释水曝气是怎么一回事

    稀释接种法测定BOD,要对稀释水进行曝气,确保溶解氧饱和。问题来了,曝气用设么设备?标准中并没有说,有人说用金鱼的增氧机,不要加净化装置么?大家做的时候都是怎么曝气的,用什么设备?有做过的兄弟姐妹么,谁告诉我啊!不胜感激

  • 增塑剂测试样品碎样

    软包装材料,测试增塑剂,除了用剪刀碎样,还有没有其它设备可以用来达到碎样的目的的?

  • 【资料】过氧化苯甲酰【面粉增白剂】

    [b]由一则新闻《江苏如皋一家食品添加剂公司在生产面粉增白剂时加入了石灰粉,含量达30%》引发的......[/b]中国目前通用的面粉增白剂学名叫作[color=#f10b00]过氧化苯甲酰[/color],它通过在氧化过程中释放氧原子而使面粉增白,同时还具有一定的杀菌防腐效果,便于面粉的保管和储存。中国食品添加剂委员会1996年规定:在面粉中添加这种物质每千克不得超过0.06克,也就是60PPM。在面粉增白剂禁与不禁的论证中,王瑞元是国内坚决要求禁止在面粉中添加过氧化苯甲酰的“元老级”人物。2010年4月6日,在接受《法治周末》记者电话采访时,王瑞元表示他还是坚持禁用的立场。20多年前,正是他最早引进并同意在面粉中添加有漂白功能的增白剂,其时他正任商业部粮油工业局局长。1986年,在王瑞元的推动下,商业部在新颁的小麦粉标准里,允许添加过氧化苯甲酰,沿用至今。卫生部同步将过氧化苯甲酰列入了《食品添加剂使用卫生标准》。允许每公斤添加60毫克过氧化苯甲酰。但后来王瑞元看到白得异样的面食,都不敢吃。王瑞元之所以对增白剂的态度产生180°的大转变,是因为他后来到国外考察时,发现挪威已禁用增白剂;1997年,欧盟正式禁用;澳洲和新西兰也随后禁用。似是认为自己亲手打开了潘多拉魔盒,王瑞元在接受媒体采访时曾表示:“如果当初我不同意加的话,今天就没有这个问题了。”从2000年开始,他在各种粮油工业会和粮食行业会上都呼吁企业禁用面粉增白剂。“定标准时,我有责任。现在有责任提出取消它,否则愧对老百姓。在有生之年,如果看不到禁用,死不瞑目!”王瑞元说。[b]详见[/b][url=http://news.sohu.com/20100407/n271346226.shtml][b]http://news.sohu.com/20100407/n271346226.shtml[/b][/url]

  • 增加进样量为什么峰面积减小呢

    本人在做方法学时,需要检测对甲苯磺酸甲酯、对甲苯磺酸乙酯、对甲苯磺酸异丙酯,色谱条件中,进样量是1ul,谱图中所要峰面积较小,想通过增加进样量,改2ul进样,结果对甲苯磺酸甲酯峰面积反而降低了,但乙酯、异丙酯峰面积是很正常的,在增大,求大神指导(分流比为5.0)当我把分流比从5.0调到3.0时,三个峰面积都在增大,但对甲苯磺酸甲酯峰面积增加的幅度相对于另外两个溶剂来说很小。这是为啥呢,谢谢大家了

  • 【原创】关于面粉增白剂(过氧化苯甲酰)安全性科学依据

    关于面粉增白剂(过氧化苯甲酰)安全性科学依据   一些呼吁禁用面粉增白剂打着为食品安全为公众利益考虑的口号,通过新闻媒体大肆宣传,实际是为了自身的商业利益。一些人为了证明面粉增白剂有害,把不是食品添加剂的“吊白块”(属于化学工业漂白剂)和面粉增白剂相提并论,混淆概念,愚弄公众!这种行为是不道德的,理应受到谴责!我国标准规定面粉增白剂在面粉中的使用量为60mg/kg(实属标准偏低,和实际需要不相符合),而我国一些面粉企业超标使用面粉增白剂大都在60-100mg/kg,在网上查查就可以印证。可以说一些面粉企业超标使用面粉增白剂的行为是不符合我国标准的规定,根本谈不上安全问题!美国FDA是世界各国公认食品添加剂权威部门,也是许多国家食品添加剂标准的主要采标对象,以下是部分关于面粉增白剂(过氧化苯甲酰)安全性科学依据!   1、美国对过氧化苯甲酰在面粉中使用不限量   (1)过氧化苯甲酰在小麦粉中可作为漂白剂。   (2)过氧化苯甲酰在小麦粉中添加量可以根据正常生产需要添加,无最大使用的量限制(GMP)。   资料来源:   http://www.grokfood.com/regulations/184.1157.htm   2、加拿大规定面粉增白剂的使用量是我国的2.5倍   (1)过氧化苯甲酰在小麦粉中可作为漂白、熟化和面团改良的食品添加剂。   (2)过氧化苯甲酰在小麦粉中的最大添加量为150mg/kg。   资料来源:   http://laws.justice.gc.ca/en/f-27/c.r.c.-c.870/124280.html   3、CAC最新提高面粉增白剂(过氧化苯甲酰)添加量   CAC在2007年最新颁布的《食品添加剂法典通用标准》第八版(CXS-192)已将过氧化苯甲酰正式列入面粉添加剂,并将在面粉中的最大使用量由66mg/kg提高到75mg/kg。   资料下载:   www.codexalimentarius.net/web/standard_list.do?lang=en   www.codexalimentarius.net/gsfaonline/foods/details.html?id=102   4、面粉增白剂安全评估报告   由韩国承担毒理学研究,国际经济合作与发展组织(OECD)组织公布了过氧化苯甲酰详细的毒理性试验评估报告(SIDnitial Assessment Report For SIAM 15-Boston, USA, 22-25 October 2002)。该报告详细的论述了过氧化苯甲酰对人体没有危害。   试验评估报告下载:   http://www.inchem.org/documents/sids/sids/benzoylper.pdf   还有许多证明面粉增白剂是安全的,我国目前关于面粉增白剂的有害报道,可以说都是查无实据。另外,科学检验证明面粉增白剂根本没有破坏面粉的营养,这是很好验证的普通检验,一般省级化验中心都可以验证。目前的依据证明面粉增白剂在众多食品添加剂中属于十分安全的食品添加剂,其安全性方面可以说是无懈可击,这一点是一些呼吁禁用面粉增白剂的人士却没有想到的。在看看一些关于禁用面粉增白剂的报道,内容除了一些耸人听闻词语和张冠李戴推论,没有一点实质性的科学依据,甚至连食品添加剂的基本评价程序和相关安全评价指标都不了解。关心我们的食品安全是无可非议的,但不要能为了政绩和新闻热点不负责任的胡编乱造,那不是关心我们的食品安全,而是在愚弄公众!

  • 安捷伦1260液相同一样品连续进样峰面积逐渐增大

    各位朋友好,现在我用液相分离一个多肽样品,但是我自己摸索的方法现在出现一个问题就是同一样品连续进样主峰的峰面积会慢慢增大,第一针峰面积16500,第二针就是16580,第三针16670,每次进样峰面积都增加50到100不等,无法做重复性实验了。我用的流动相是A:95%水+5%ACN+0.1%TFA;流动相B:90%ACN+10%水+0.1%TFA,柱子用的是C18的柱子,我是从0min开始到30min用梯度洗脱,后面用流动相B冲洗10min,然后回到初始条件平衡10min,然后 开始走下一针样品;出峰时间没有太大变化,只有0.02min的浮动;一开始以为是柱温的问题呢,后来试过了20,30,40,50度这几个发现都一样,还是不断增大;仪器没问题,因为前面用不同的方法走其他的样品的时候重复性是很好的;我在这个条件的基础上增大梯度的陡度或者开始进样的时候增加一个等度平衡体系发现都没有什么用,峰面积依然逐渐增大;我开始以为柱子的问题,然后换成C8的柱子,用这个方法走同样的样品依然是这样的情况;请教一下有经验的朋友这是不是我的洗脱条件的问题,是否需要更换流动相或者说更换梯度的比例,如果是的话应该从哪儿来入手找到问题的所在,谢谢!

  • 请问羊肉汤使用增白剂属于滥用食品添加剂吗?

    请问羊肉汤使用增白剂属于滥用食品添加剂吗?新闻链接:成都将开展为期1个月的专项监督检查,依法查处滥用食品添加剂行为   日前,成都市食品药品监督管理局接到举报,反映个别餐饮服务单位销售的羊肉汤添加“羊肉香精”、“增白剂”等添加剂,可能对人体健康造成危害。11月23日,成都市食品药品稽查总队联合青羊区食药监局对市区小关庙的8家羊肉汤锅店进行了突击监督检查,现场尚未发现“羊肉香精”和“增白剂”等。   据介绍,市民举报的增白剂含有的二氧化钛属于食品添加剂,只能在果酱、凉果、可可制品等食品中使用,如果加在羊肉及汤中属于滥用食品添加剂。餐饮服务单位可以按标准使用复配食品添加剂,由于在当天现场检查中未发现“羊肉香精”,食药监部门暂无法认定其是否为复配食品添加剂,成都市食药监局将在全市排查过程中根据实物具体认定。   冬季来临,成都进入羊肉消费旺季。成都市食品药品监督管理局23日下发通知,要求各区(市)县局对经营羊肉汤、羊肉火锅的餐饮服务单位开展为期1个月的专项监督检查,重点检查各餐饮服务单位在羊肉汤锅中使用食品添加剂的情况,以及是否存在非法添加非食用物质的行为。自制火锅底料、自制调味料的餐饮服务单位要向监管部门备案所使用的食品添加剂名称,并在店堂醒目位置或菜单上予以公示。对滥用食品添加剂行为,将坚决依法查处

  • 【资料】洋葡萄酒销量激增质量堪忧

    据海关方面的数据统计,国内在2008年共进口6389439箱(9升一箱)包装在两升以下的葡萄酒,比起2007年增长了36%。而2009年上半年,洋葡萄酒增幅仍不小于30%。一些沿海城市今年上半年进口的葡萄酒更有望同比增长100%。专家预测,洋葡萄酒2009年国内的市场份额将进一步提升至18〜 20%左右。  在洋葡萄酒大量涌入时,随之也带来了不少问题,这也为今后可能将面临的“诚信危机”埋下了隐患。  近期,广东省经贸委及有关部门针对市场上销售的各类葡萄酒的抽检结果显示,洋葡萄酒合格率较低,问题不少,整体质量不容乐观:有近1/3洋葡萄酒产品质量不合格,抽检不合格的产品包括原产智利、澳大利亚、美国等国的干红葡萄酒等。  问题之一,超量使用防腐剂(山梨酸或山梨酸钾)和超范围使用甜味剂。有些酒商低价买进欧美地区卖剩的低劣葡萄酒原汁,由于质量低下,又要经过远洋长途跋涉,不良酒商会在原汁当中加入过量防腐剂以防远洋长途颠簸过度氧化,造成质量不合格。  问题之二,洋葡萄酒行业已经形成胡乱加价的潜规则。部分针对三四线市场的葡萄酒运营商以及一些希望采用短平快运作手法迅速获利的非酒类品牌运营商,往往会在定价、折扣、品质方面作大量文章,由此使整个洋葡萄酒市场呈现出了价格高度混乱状态。由于进口关税大幅降低,去年广东口岸进口2升以上大容器葡萄酒进口均价为0.85美元/升,再加上洋葡萄酒进入国内要收的10%的消费税,14%〜 20%的关税及17%的增值税,总成本仅为10元人民币左右,这些洋葡萄酒到了中国市场,标价都在百元以上。  问题之三,杂牌众多纷乱,品牌沽名钓誉、名不符实,售后质量得不到有效保障。现在国内很大比例的洋葡萄酒供应商是从最初的贸易公司转变而来,他们大多是做葡萄酒散装进口,将原汁运到国内进行灌装贴牌销售。散装洋葡萄酒在分装过程中,有些不良酒商会乘机以廉价的食品原料进行勾兑。某些所谓的国际品牌,就是这些酒商在国内注册的,国外根本没有该品牌。他们却在商标上堂而皇之地标注“原产的法国波尔多”等,傍上洋名牌,混淆视听。  问题之四,消费者对葡萄酒的认识还处于初级阶段,尤其是对辨别洋葡萄酒的质量缺少办法,无法从外观上进行辨别。同时,一些消费者过分迷信洋葡萄酒,不够理性。于是,很大一部分劣质洋酒混迹其中,借机忽悠消费者。目前,一些地方城市成为劣质洋葡萄酒的重灾区,而目前对于洋葡萄酒出现的一些问题,却没有得到很好的监管。  有资深业内人士向媒体透露,近期一些城市所爆出的这些质量问题只是“冰山一角”,随着洋葡萄酒的大量涌入,未来各种质量问题或将更加凸显。

  • 【转帖】“吨鱼塘”村的三大养殖诀窍 2008年05月22日

    2008年05月22日   出处:农村新报   湖北省石首市团山寺镇小新口村有一片1000多亩的鱼池,每年亩产成鱼1000多公斤,亩平纯收入达0.8万元,是典型的“吨渔塘”村。   如此高产高效,靠的是什么?这里的养殖户道出了他们其中的养殖诀窍。   一是品种名优化。  小新口村普遍采用80:20养殖模式,以放养500克以上的大规格草鱼种为主,亩放养量达到1000尾左右,再搭配极少量的鳊鲤鲫鲢鳙,同时每亩套放黄鮕鱼苗1600尾,鳜鱼苗300尾,基本不投商品肥。在7、8月份卖一季热水鱼,将2500克以上的草鱼出售,余下的继续养殖到10月份全部售完。   二是养殖规模化。  由于小新口村渔池养殖条件好,面积集中,饲料使用量大,附近的饲料厂都在该村驻有业务员,并与养殖户签订了养殖、供销合同,养殖户只需先交部分订货款,由饲料厂供应全年饲料并负责养殖技术和成鱼销售。这种规模化的养殖模式,不仅保证了饲料的供应和安全问题,还解决了养殖技术和成鱼销售等诸多问题,更重要的是降低了养殖户的养殖风险,保障了养殖效益。   三是技术成熟化。  小新口村的鱼池池埂修整得整齐漂亮,水泥护坡干净平滑,池水深度都在2米以上,池塘都安排了规范的进排水管和即增氧机、抽水机、投饵机。每年的10月份就干塘,干塘后就修整升级渔池,到来年的3月份才放水养鱼。   湖北省石首市水产局王林 刘维森整理

  • 【分享】什么是填充剂?什么是增塑剂?什么样是稳定剂?什么是着色剂?

    日常用的塑料袋多为聚乙烯或聚氯乙烯材质。塑料制品还需以下添加剂:1、填料 填料又叫填充剂,它可以提高塑料的强度和耐热性能,并降低成本。例如酚醛树脂中加入木粉后可大大降低成本,使酚醛塑料成为最廉价的塑料之一,同时还能显著提高机械强度。填料可分为有机填料和无机填料两类,前者如木粉、碎布、纸张和各种织物纤维等,后者如玻璃纤维、硅藻土、石棉、炭黑等。 2、增塑剂 增塑剂可增加塑料的可塑性和柔软性,降低脆性,使塑料易于加工成型。增塑剂一般是能与树脂混溶,无毒、无臭,对光、热稳定的高沸点有机化合物,最常用的是邻苯二甲酸酯类。例如生产聚氯乙烯塑料时,若加入较多的增塑剂便可得到软质聚氯乙烯塑料,若不加或少加增塑剂(用量10%),则得硬质聚氯乙烯塑料。 3、稳定剂 为了防止合成树脂在加工和使用过程中受光和热的作用分解和破坏,延长使用寿命,要在塑料中加入稳定剂。常用的有硬脂酸盐、环氧树脂等。 4、着色剂 着色剂可使塑料具有各种鲜艳、美观的颜色。常用有机染料和无机颜料作为着色剂。 5、润滑剂 润滑剂的作用是防止塑料在成型时不粘在金属模具上,同时可使塑料的表面光滑美观。常用的润滑剂有硬脂酸及其钙镁盐等。 除了上述助剂外,塑料中还可加入阻燃剂、发泡剂、抗静电剂等,以满足不同的使用要求。

  • 【资料】化妆品用增稠剂

    摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、配方成本、是否透明、流变形态、外观颜色、电解质稳定性和法规等方面的要求综合进行考虑,才能有效地选用恰当的增稠剂。只有不断在实际中总结经验,才能真正懂得如何有效地选用增稠剂。   关键词:化妆品;增稠剂;水溶性高分子;表面活性剂   配方师在进行配方设计时通常要考虑配方最终产品的流变形态,适当的流变形态能给产品带来美感,便于使用和生产,对配方的稳定性也有一定的影响。有些产品的流变形态甚至对产品的使用起很大作用,比如牙膏,要求产品的触变性好,因为在挤出时要求保持较好的形态,在刷牙时要求牙膏在外力作用下能够迅速变稀分散开来。流体的流变形态分为牛顿流体和非牛顿流体,牛顿流体为剪切应力与剪切速率成正比的流体;非牛顿流体又有假塑性流体、塑性流体和胀流体。假塑性流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈服值。胀流体属于剪切变稠的流体。要调节产品的流变形态,配方师是在配方中加入增稠剂达到目的。增稠剂简单地说就是提高配方产品黏度或稠度的一类物质,增稠剂加入量不大,但是能够大幅提高产品的黏度或稠度。配方师在选择增稠剂时需要考虑的因素较多:配方主体是选择增稠剂的首要考虑因素,什么样的体系决定采用什么样的增稠剂;其次是产品形态,产品形态要求不同类型的增稠剂,有些要求牛顿流体,有些要求塑性流体,根据不同的需要采用不同的增稠剂;在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素,如果配方的成本让生产商和消费者都难于承受,那么这配方是没有应用价值的,平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的,比如配方的稳定性、泡沫等,这些都是配方所关注的一些重要指标,有些增稠剂虽然增稠效果理想,但稳定性差或是消泡太厉害也是没有价值的。一般情况下几种增稠剂的协调增稠比用单一增稠剂对产品的最终流变形态有更好的效果。   1 增稠剂分述   能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。   1.1 低分子增稠剂   1.1.1 无机盐类   用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。   1.1.2 脂肪醇、脂肪酸类   脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显著影响,其作用大小 是随碳链加长而增大,一般来说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。   表1 增稠剂的分类   一、非离子SAA   1、无机盐    氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等   2、脂肪醇和脂肪酸   月桂醇、肉豆蔻醇、C12-15醇、C12-16醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、C18-36酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸、山嵛酸等   3、烷醇酰胺类   椰油二乙醇酰胺、椰油单乙醇酰胺、椰油单异丙醇酰胺、椰油酰胺、月桂酰-亚油酰二乙醇酰胺、月桂酰-豆蔻酰二乙醇酰胺、异硬脂二乙醇酰胺、亚油二乙醇酰胺、豆蔻二乙醇酰胺、豆蔻单乙醇酰胺、油二乙醇酰胺、棕榈单乙醇酰胺、蓖麻油单乙醇酰胺、芝麻二乙醇酰胺、大豆二乙醇酰胺、硬脂二乙醇酰胺、硬脂单乙醇酰胺、硬脂单乙醇酰胺硬脂酸酯、硬脂酰胺、牛脂单乙醇酰胺、小麦胚芽二乙醇酰胺、PEG(聚乙二醇)-3月桂酰胺、PEG-4油酰胺、PEG-50牛脂酰胺等   4、醚类   鲸蜡醇聚氧乙烯(3)醚、异鲸蜡醇聚氧乙烯(10)醚、月桂醇聚氧乙烯(3)醚、月桂醇聚氧乙烯(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等   5、酯类    PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。异硬脂酸酯、PEG-8PPG-3二月桂酸酯、鲸蜡豆蔻酯、鲸蜡棕榈酯、C18—36酸乙二醇酯、季戊四硬脂酸酯、季戊四山嵛酸酯、丙二醇硬脂酸酯、山嵛酯、鲸蜡酯、三山嵛酸甘油酯、三羟基硬脂酸甘油酯等   6、氧化胺   肉豆蔻氧化胺、异硬脂氨基丙基氧化胺、椰油氨基丙基氧化胺、小麦胚芽氨基丙基氧化胺、大豆氨基丙基氧化胺、PEG—3月桂氧化胺等   二、两性SAA   鲸蜡甜菜碱、椰油氨基羟磺基甜菜碱等   三、阴离子SAA   油酸钾、硬脂酸钾等   四、水溶性高分子   1、纤维素类   纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等   2、聚氧乙烯类   PEG-n(n=5M、9M、23M、45M、90M、160M)等

  • 色谱峰面积增大至原来的三倍 顶空进样

    各位大侠,去年遇到的问题,今年又出现了:我用ctc 瓦里安450 ECD做水中卤代烃,标准的峰面积不断增大,现在做出的峰面积已经是半年前的三倍了,分流比是40:1,线性也也非常差,倒是同一时间做的重现性还差强人意1,)已经彻底清洗进样口,改善效果不明显2) 改变分流比,结果峰面积不成比例变化,而且保留时间也变化,比如:将分流比改为80:1,浓度下降30%,保留时间由10min变化为8.5min3)更换进样口,峰面积变小,线性仍不理想。请各位大侠帮忙呀,急,两台仪器都出这个毛病,找不出原因的!!!!!!

  • 【讨论】GC6890,FID,气体进样阀进样,CO2峰面积在样品中递增,却在标样中递减。

    GC6890,FID,气体进样阀进样,发现图谱上CO2峰面积在我们所测的样品气谱图中递增,却在标样中分析谱图中递减。条件没有变过。样品气和标样气体类型相似,采用的外标定量计算。准备用CO2的峰形定切阀时间的,但是因为二氧化碳峰不是固定的递增或递减,以前的切阀时间结合当时的条件可以满足分析需要。现如今基线信号从100在半月内逐渐降到35.做的检测分析也越来越不准确,所以想用标样重新做校正表时,却出现了和样品气分析状态相反的现象,各个组分峰面积唯独CO2不重现,其余的组分峰型都非常重现。

  • [求助] 进样后柱流失增加??

    我的前几个样品都很正常,但是今天的样品进仪器(GC/MS)之后,每次出来的几个相对较高的峰都是硅氧烷,而不进样或进别的样品就没有这个现象,我怀疑是这几个样品里有水分(肉眼看不到),致使水分进柱后使得柱流失增加,大侠们指点啊!![em61]

  • 【转帖】化妆品用增稠剂

    化妆品用增稠剂刘 义,广州市浪奇实业股份有限公司,广东 广州510660高 俊,汽巴精化(中国)有阳公司广州公司,广东 广州510095 摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、配方成本、是否透明、流变形态、外观颜色、电解质稳定性和法规等方面的要求综合进行考虑,才能有效地选用恰当的增稠剂。只有不断在实际中总结经验,才能真正懂得如何有效地选用增稠剂。 关键词:化妆品;增稠剂;水溶性高分子;表面活性剂 中图分类号:TQ658 文献标识码:A 文章编号:1001-1803(2003)01-0044-05 配方师在进行配方设计时通常要考虑配方最终产品的流变形态,适当的流变形态能给产品带来美感,便于使用和生产,对配方的稳定性也有一定的影响。有些产品的流变形态甚至对产品的使用起很大作用,比如牙膏,要求产品的触变性好,因为在挤出时要求保持较好的形态,在刷牙时要求牙膏在外力作用下能够迅速变稀分散开来。流体的流变形态分为牛顿流体和非牛顿流体,牛顿流体为剪切应力与剪切速率成正比的流体;非牛顿流体又有假塑性流体、塑性流体和胀流体。假塑性流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈服值。胀流体属于剪切变稠的流体。要调节产品的流变形态,配方师是在配方中加入增稠剂达到目的。增稠剂简单地说就是提高配方产品黏度或稠度的一类物质,增稠剂加入量不大,但是能够大幅提高产品的黏度或稠度。配方师在选择增稠剂时需要考虑的因素较多:配方主体是选择增稠剂的首要考虑因素,什么样的体系决定采用什么样的增稠剂;其次是产品形态,产品形态要求不同类型的增稠剂,有些要求牛顿流体,有些要求塑性流体,根据不同的需要采用不同的增稠剂;在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素,如果配方的成本让生产商和消费者都难于承受,那么这配方是没有应用价值的,平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的,比如配方的稳定性、泡沫等,这些都是配方所关注的一些重要指标,有些增稠剂虽然增稠效果理想,但稳定性差或是消泡太厉害也是没有价值的。一般情况下几种增稠剂的协调增稠比用单一增稠剂对产品的最终流变形态有更好的效果。1 增稠剂分述 能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。1.1 低分子增稠剂1.1.1 无机盐类 用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。1.1.2 脂肪醇、脂肪酸类 脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显著影响,其作用大小是随碳链加长而增大,一般来说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。表1 增稠剂的分类一、非离子SAA 1、无机盐 氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等2、脂肪醇和脂肪酸 月桂醇、肉豆蔻醇、C12-15醇、C12-16醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、C18-36酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸、山嵛酸等3、烷醇酰胺类 椰油二乙醇酰胺、椰油单乙醇酰胺、椰油单异丙醇酰胺、椰油酰胺、月桂酰-亚油酰二乙醇酰胺、月桂酰-豆蔻酰二乙醇酰胺、异硬脂二乙醇酰胺、亚油二乙醇酰胺、豆蔻二乙醇酰胺、豆蔻单乙醇酰胺、油二乙醇酰胺、棕榈单乙醇酰胺、蓖麻油单乙醇酰胺、芝麻二乙醇酰胺、大豆二乙醇酰胺、硬脂二乙醇酰胺、硬脂单乙醇酰胺、硬脂单乙醇酰胺硬脂酸酯、硬脂酰胺、牛脂单乙醇酰胺、小麦胚芽二乙醇酰胺、PEG(聚乙二醇)-3月桂酰胺、PEG-4油酰胺、PEG-50牛脂酰胺等4、醚类 鲸蜡醇聚氧乙烯(3)醚、异鲸蜡醇聚氧乙烯(10)醚、月桂醇聚氧乙烯(3)醚、月桂醇聚氧乙烯(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等5、酯类 PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。异硬脂酸酯、PEG-8PPG-3二月桂酸酯、鲸蜡豆蔻酯、鲸蜡棕榈酯、C18—36酸乙二醇酯、季戊四硬脂酸酯、季戊四山嵛酸酯、丙二醇硬脂酸酯、山嵛酯、鲸蜡酯、三山嵛酸甘油酯、三羟基硬脂酸甘油酯等6、氧化胺 肉豆蔻氧化胺、异硬脂氨基丙基氧化胺、椰油氨基丙基氧化胺、小麦胚芽氨基丙基氧化胺、大豆氨基丙基氧化胺、PEG—3月桂氧化胺等二、两性SAA 鲸蜡甜菜碱、椰油氨基羟磺基甜菜碱等三、阴离子SAA 油酸钾、硬脂酸钾等四、水溶性高分子 1、纤维素类 纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等2、聚氧乙烯类 PEG-n(n=5M、9M、23M、45M、90M、160M)等3、聚丙烯酸类 丙烯酸酯/C10-30烷基丙烯酸酯交联聚合物、丙烯酸酯/十六烷基乙氧基(20)衣康酸酯共聚物、丙烯酸酯/十六烷基乙氧基(20)甲基丙烯酸酯共聚物、丙烯酸酯/十四烷基乙氧基(25)丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基(20)衣康酸酯共聚物、丙烯酯酯/十八烷基乙氧基(20)甲基丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基(50)丙烯酸酯共聚物、丙烯酸酯/VA交联聚合物、PAA(聚丙烯酸)、丙烯酸钠/乙烯异癸酸酯交联聚合物、Carbomer(聚丙烯酸)及其钠盐等 4、天然胶及其改性物 海藻酸及其(铵、钙、钾)盐、果胶、透明质酸钠、瓜尔胶、阳离子瓜尔胶、羟丙基瓜尔胶、黄蓍胶、鹿角菜胶及其(钙、钠)盐、汉生胶、菌核胶等5、无机高分子及其改性物 硅酸铝镁、二氧化硅、硅酸镁钠、水合二氧化硅、蒙脱土、硅酸锂镁钠、水辉石、硬脂铵蒙脱土、硬脂铵水辉石、季铵盐-90蒙脱土、季铵盐-18蒙脱土、季铵盐-18水辉石等6、其他 PVM/MA癸二烯交联聚合物(聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)、PVP(聚乙烯吡咯烷酮)等1.1.4 表面活性剂类1.1.4.1 烷醇酰胺类 最常用的是椰油二乙醇酰胺。烷醇酰胺能与电解质相容共同进行增稠并且能达到最佳效果。烷醇酰胺增稠的机理是与阴离子表面活性剂胶束相互作用,形成非牛顿流体。各种不同的烷醇酰胺在性能上有很大差异,而且单独使用与复配使用其效果也不同,有文章报道了不同烷醇酰胺的增稠及泡沫性能。近来报道烷醇酰胺制成化妆品时有产生致癌物质亚硝胺的潜在危害。烷醇酰胺的杂质中有游离胺,它是亚硝胺的潜在来源。目前个人护理品工业对是否在化妆品中禁用烷醇酰胺还没有官方意见。1.1.4.2 醚类 在以脂肪醇聚氧乙烯醚硫酸盐(AES)为主活性物的配方中,一般仅用无机盐即能调成合适的黏度。研究表明这是由于

  • 志贺氏菌检验新国标厌氧增菌装备适用性分析

    志贺氏菌检验新国标厌氧增菌装备适用性分析

    常见的厌氧培养方法1. 厌氧袋培养法:塑料袋透明而不透气,内装气体发生管(有硼氢化钠的碳酸氢钠固体以及5%柠檬酸安瓿)、美兰指示剂管、钯催化剂管、干燥剂。放入已接种好的平板后,尽量挤出袋内空气,然后密封袋口。先折断气体发生管,后折断美兰指示剂管,使袋内在半小时内造成无氧环境。如不突变表示袋内已达厌氧状态,于生化培养箱中培养。厌氧袋对于志贺氏菌厌氧增菌的缺陷:1、很难实现GB4789.5-2012中所需的大量250ml或500ml三角烧瓶的厌氧培养2、无法实现操作过程的厌氧环境,明显降低厌氧菌的检出率3、操作繁琐,易引起实验失败4、培养灵活性较差5、一次性耗材成本高2.厌氧罐培养法:塑料或不锈钢密封罐,内置钯颗粒催化剂,将培养皿、厌氧指示袋(条)以及开封后的厌氧产气袋一同置于罐内,罐盖封闭后抽真空,30分钟后达到厌氧状态,观察厌氧指示袋(条)如无颜色产生,则将厌氧罐于生化培养箱中培养。厌氧罐对于志贺氏菌厌氧增菌的缺陷:1、很难实现GB4789.5-2012中所需的大量250ml或500ml三角烧瓶的厌氧培养2、无法实现操作过程的厌氧环境,明显降低厌氧菌的检出率3、操作繁琐,易引起实验失败4、培养灵活性较差5、一次性耗材成本高3. 传统厌氧培养箱培养法:样品置于传输舱内,抽真空/充氮气3次循环(约26分钟),打开内门进入厌氧操作室。厌氧环境下进行接种等操作后,再转移至培养室内培养。箱内厌氧是在钯催化剂的作用下箱内剩余的O2与混合气中的H2生成水,再通过干燥剂去除多余水分,形成厌氧培养环境。传统厌氧培养箱对于志贺氏菌厌氧增菌的缺陷:1、样品转移所需的抽真空/充氮操作复杂,耗时过多2、无强制对流循环系统,箱内环境很难达到均一稳定,厌氧恢复速度很慢3、无厌氧状态指示,无泄漏报警4、不支持UV紫外消毒,密封材料易老化而产生泄漏5、无生物脱毒能力4. 厌氧增菌培养设备选择建议1、兼具培养与操作功能的厌氧工作站能为增菌所需的三角烧瓶提供宽敞的培养空间;2、内腔强制对流系统,确保箱内环境均一稳定,厌氧氛围快速恢复;3、无抽真空/充氮繁琐操作,有效提高操作效率并节省气体消耗;4、支持UV紫外消毒,抗密封材料而避免泄漏;5、具有生物脱毒能力,保证内腔气体洁净;6、标配厌氧状态指示系统,能随时让用户了解内腔厌氧状态。http://ng1.17img.cn/bbsfiles/images/2012/07/201207162327_378019_1821047_3.jpg

  • 关于面粉增白剂.

    面粉增白剂的有效成分过氧化苯甲酰(BPO),学名叫稀释过氧化苯甲酰,它是我国八十年代末从国外引进并开始在面粉中普遍使用的食品添加剂,面粉增白剂主要是用来漂白面粉,同时加快面粉的后熟。 2011年3月1日,卫生部等多部门发公告,自2011年5月1日起,禁止生产、在面粉中添加食品添加剂过氧化苯甲酰、过氧化钙,

  • 提供原位氧化增重测试服务-氧化动力学曲线

    提供水蒸气氧化性能测试试验,原位非等温/等温增重测试(即在氧化过程中实时测量增重),也可以实现多种升温、降温、等温氧化过程的氧化性能测试,最高温度1200℃左右,实验结果为动力学曲线和氧化后试样,可以出具报告。也可以实现空气环境下氧化测试(短时最高温度1200℃)。试验设备是目前最为先进的法国进口设备(见附件)。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制