当前位置: 仪器信息网 > 行业主题 > >

显色剂分析

仪器信息网显色剂分析专题为您提供2024年最新显色剂分析价格报价、厂家品牌的相关信息, 包括显色剂分析参数、型号等,不管是国产,还是进口品牌的显色剂分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显色剂分析相关的耗材配件、试剂标物,还有显色剂分析相关的最新资讯、资料,以及显色剂分析相关的解决方案。

显色剂分析相关的资讯

  • 安捷伦推出用于癌症诊断的全新显色剂
    p style="text-align: center "strongDako Omnis创新显色剂提供卓越的染色性能/strong/pp  2018年3月21日,北京——安捷伦科技公司(NYSE: A)日前宣布推出用于免疫组化的全新专利显色剂,即用于Dako Omnis的HRP品红显色剂。这款全新显色剂拥有卓越的染色性能,尤其适用于皮肤及肺部组织的评估。/pp  安捷伦副总裁兼病理学事业部总经理Christian Sauber表示:“为了使创新HRP品红显色剂更好地为客户使用,我们提供鲜明、清晰明确的染色,这种方式有助于客户轻松识别并与棕色染色区分开来。”/pp  在诊断癌症时,病理学家通常会用名为DAB的棕色染色剂对肿瘤样本进行染色。而对于皮肤和肺部活检组织,他们通常会选择红色染色剂,以便与皮肤中的棕色黑色素以及肺部组织常见的污染形成明显对比。/pp  在向德国波恩大学医院引入HRP品红显色剂时,医学博士Glen Kristiansen教授谈道:“这样的对比明显而清晰,让人一目了然。”/pp  HRP品红显色剂虽呈透明状,但清晰可见,色彩鲜明强烈。这使得病理学家即便在过染的情况下,也能辨别组织结构和细胞细节。细胞核可轻松得到识别,所有细节也清晰可见。/pp  HRP品红显色剂用于安捷伦免疫组化和原位杂交研究的旗舰仪器Dako Omnis。这款显色剂设计的灵感来源于一款其他行业已应用多年的知名显色剂,安捷伦对其中的分子进行了修改,使其更适用于癌症诊断。/pp  Dako Omnis上可以将新品HRP品红显色剂与已有Dako EnVision FLEX(DAB)显色系统配合使用,仅需在仪器中多占据几个额外的样品瓶空间,即可允许实验室用棕色和品红色两种颜色进行染色。这一染色灵活性上的提高,能够缩短分析周期,精简工作流程,从而加快患者诊断。/pp  该产品首先在美国和欧洲上市,随后将在其他国家/地区发布。/pp  strong关于安捷伦科技公司/strong/pp  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。/p
  • ELISA试剂盒定性测定的显色可在室温进行
    此时酶催化无色的底物生成有色的产物。反应的温度和时间仍是影响显色的因素。在一定时间内,阴性孔可保持无色,而阳性孔则随时间的延长而呈色加强。适当提高温度有助于加速显色进行。在定量测定中,加入底物后的反应温度和时间应按规定力求准确。ELISA试剂盒时间一般不需要严格控制,有时可根据阳性对照孔和阴性对照孔的显色情况适当缩短或延长反应时间,及时判断。OPD底物显色一般在室外温或37 ℃反应20-30分钟后即不再加深,再延长反应时间,可使本底值增高。OPD底物液受光照会自行变色,显色反应应避光进行,显色反应结束时加入终止液终止反应。OPD产物用硫酸终止后,显色由橙黄色转向棕黄色。 TMB受光照的影响不大,ELISA试剂盒可在室温中置于操作台上,边反应观察结果。但为保证实验结果的稳定性,宜在规定的适当时间阅读结果。TMB经HRP作用后,约40分钟显色达顶峰,随即逐渐减弱,至2小时后即可完全消退至无色。TMB的终止液有多种,叠氮钠和十二烷基硫酸钠(SDS)等酶抑制剂均可使反应终止。这类终止剂尚能使蓝色维持较长时间(12-24小时)不褪,是目视判断的良好终止剂。此外,各类酸性终止液则会使蓝色转变成黄色,此时可用特定的波长(450 nm)测读吸光值。(2)比色 比色前应先用洁净的吸水纸拭干板底附着的液体,ELISA试剂盒然后将板正确放入酶标比色仪的比色架中。以软板为载体的试验,需先将板置于标准96孔的座架中,才可进行比色。最好在加底物液显色前,先将软板边缘剪净,这样,此板就可完全平妥坐入座架中。
  • ELISA试剂盒避免显色淡及灵敏度偏低的方法
    ELISA试剂盒不断推陈出新,发扬专注专业,追求卓越的精神,以保证实验结果的准确性、科学性为已任,该目前在国内ELISA试剂盒科研技术及市场表现非常活跃,贡献突出,可预存款方便您的选购,老客户拥有超低合同价,折扣更理想,我们与多个研究机构形成战略合作伙伴,为酶联免疫事业尽绵薄之力。ELISA试剂盒避免显色淡及灵敏度偏低的方法:A、尽量缩短运输时间,夏季应放冰块降温。B、试剂盒从2~8℃冰箱取出后打开盒盖,于室温平衡至少20分钟,确保所有试剂已平衡至室温。C、注意培养箱温度,放入反应板后尽量减少开启次数以免影响温度恒定,非隔水式培养箱尤其应注意。D、校正定时钟准确定时。E、按说明书要求保留洗涤时间,准确记住洗涤次数。F、校正移液器,吸嘴要配套,装吸嘴时要紧密,吸嘴内壁要清洁,最好一次性使用。G、使用新鲜合格的蒸馏水。ELISA试剂盒从细节开始,打造一个ELSIA试剂盒行业的高端品牌绝对不可能靠广告轰炸就能达成,而是靠品质、靠服务、靠经年累月的沉淀,我司通过对新的研发,对品质要求更高、更细致,从标示收集、保存、预实验、实验、数据分析等全实验过程都有专家提供完善的技术指导。
  • LED光源的显色性及评价方法
    1、显色指数CRI若把CRI应用于RGB组合型LED,可能引起误导,因RGB组合型LED缺少大量黄色光谱,它对黄色的显色性很差。RGB组合型光谱的波峰狭窄且波峰之间的间隔较大,光谱分布对波峰外饱和色的显色性很差。CRI计算采用的标准色样板为非饱和色,对于衡量连续且频带较宽的光源的显色性比较好;对于LED 等饱和色光源,显色性评价准确性会有一定的误差。如图2,选取12块标准色卡与标准光源对比,受试LED光源A(Ra =80)对右边四块饱和色的表现不如受试LED光源B(Ra =67)。2、色质指数CQS基于CRI在评估LED光源时,存在色空间不均匀、标准色样少、饱和度过低等问题。美国国家标准与技术研究所给出一种新方法——色质指数(Color Quality Scale ,简称CQS),来评价 LED 等新型白光光源的颜色品质。与CRI类似,CQS也采用验色法。通过被测光源与参考光源,照射同标准色样,计算出它们之间的色差。区别于CRI的非饱和色,CQS选取15种饱和色,它们平均分布于整个可见光谱中。如图3,色质指数CQS测试色板的颜色由红到紫构成近乎连续变化的偏饱和颜色。计算CQS值所需的数据都可以从光源的光谱和色样的颜色属性中推导出来,对15块色样的颜色位移量的初始计算与对CRI色样的计算相似,但是CQS值是取15个数据的均方根值,即:式中:Qa——Qi的15个数据的均方根值;Qi ——被测光源与参考光源照射同一套标准色样的色差,i取1~15。相比于CRI(Ra)的计算,CQS(Qa)的计算方法在色差的权重上得到了增强,这样即使在色样间有一些色差,也不会对最终结果产生重大影响。CQS兼顾了LED白光等饱和色和样板色的完整性,但在准确评价颜色的保真度、偏好度不同种族人群方面,需要进一步进行视觉实验和完善。3、电视光源一致性指数TLCI欧洲广播联盟(European BroadcastingUnion,简称 EBU)在2011年11月发布了另外一种针对演播室灯光的测试标准——电视光源一致性指数(Television Lighting ConsistencyIndex,缩写为TLCI),它充分考虑了电视摄像机对照明环境的要求。TLCI是用光谱辐射计对一个光源发出的光谱能量分布进行测量和计算的。TLCI标准的测试与CRI有些类似,是由一张色彩对比图标显示比对结果确定的。其测试色块有24块,如图5,左侧测试色块显示了由标准摄影机所还原并在标准显示屏上显示的参考光源和被测光源,右边的表格提供了12个色彩区块调整亮度、色度和色调所需的指示。右下的图示则画出了被测光源(深黑色曲线)和参考光源(浅色曲线)的光谱强度分布对比图。
  • 新型冠状病毒的“三代目”来了——恒温显色试剂盒出炉
    p style="text-align: justify text-indent: 2em "2月17日,编辑从辽宁日报获悉,由沈阳拜澳泰克(沈阳)生物医学集团有限公司研发的第三代新型“新冠病毒快速诊断试剂盒”,已通过辽宁省科技厅组织的省内专家评审,可用于科研及临床快速检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a341b411-39a9-4896-9c29-9dbe923829e9.jpg" title="泰克.jpeg" alt="泰克.jpeg"//pp style="text-indent: 2em "span style="text-align: justify text-indent: 2em "据了解,该试剂盒在恒温条件下仅需20分钟即可出检测结果,检测样本在反应前后发生颜色改变,操作者可以直接通过肉眼观察,判断检测结果是否为阳性,省时省力无需设备。在无特殊硬件或技术人员条件的单位及工厂、车间、学校均能进行现场检测,也可用于围绕疑似患者的快速诊断和密切接触人群的现场早期筛查。/span/pp style="text-align: justify text-indent: 2em "拜澳泰克是一家主要从事以干细胞、体细胞及基因工程技术为基础的细胞再生医学研发型企业。国家公布病毒基因序列后,拜澳泰克利用5天时间成功研发和生产出第一批新型冠状病毒核酸检测试剂盒,成为东北地区第一家成功研发试剂盒的企业。为进一步解决现场快速检测需求,拜澳泰克团队继续攻关,第三代产品——恒温显色新型冠状病毒检测试剂盒终于出炉。此试剂盒利用恒温快速反应,检测样本在反应前后发生颜色改变,操作者可以直接通过肉眼观察,来判断结果是否为阳性,省时省力无需设备,初筛后可立即对患者进行分类管理,合理处置。目前,该公司所有试剂盒均具有生产能力,日产量在5000至1万人份。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: justify text-indent: 2em "span style="margin: 0px padding: 0px text-indent: 2em "众志成城,抗击疫情。防控新型冠状病毒感染的肺炎疫情,全国在行动,仪器及检测人也在行动!仪器信息网作为科学仪器行业的专业门户网站,充分发挥科学仪器行业专业媒体资源优势,整合科学仪器及检验检测多方资源,第一时间推出/spana href="https://www.instrument.com.cn/zt/xxgzbd" target="_blank" style="margin: 0px padding: 0px color: rgb(84, 141, 212) text-decoration-line: none text-indent: 2em "span style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "“抗击新冠疫情,仪器人在行动”/strong/span/aspan style="margin: 0px padding: 0px text-indent: 2em "专题,全力支援疫情抗击工作。/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: justify text-indent: 2em "strong style="margin: 0px padding: 0px "/strong/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/zt/xxgzbd" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "img src="https://img1.17img.cn/17img/images/202002/uepic/a767565f-df49-479b-8f08-ac6296a275ee.jpg" title="ae723130-0e56-4376-8be7-ad82428ada84.jpg" alt="ae723130-0e56-4376-8be7-ad82428ada84.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% "//a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center text-indent: 0em "span style="margin: 0px padding: 0px color: rgb(84, 141, 212) "a href="https://www.instrument.com.cn/zt/xxgzbd" target="_blank" style="margin: 0px padding: 0px color: rgb(84, 141, 212) text-decoration-line: none "点击图片查看专题详情/a/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202002/uepic/63b2fa31-6e48-4b20-8924-9b0e251db168.jpg" title="企业微信截图_1581300750743.jpg" alt="企业微信截图_1581300750743.jpg" width="400" height="400" border="0" vspace="0" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 400px height: 400px "//p
  • 南京麒麟分析仪器—矿石的分析方法
    南京麒麟分析仪器&mdash 矿石的分析方法一;母液的制备 称取100mg试样过100母筛于50ml容量瓶中,加20ml盐酸,5&mdash 10ml氟化铵,视硅的含量而定,低温加热溶解,若不完全,滴加氯化亚锡至溶解,冷却,稀至刻度。二;分析1,铁的测定 吸取5ml于100ml量瓶中,加10mlEdta,加热煮沸,趁热加入氨水15ml,流水冷却,加2ml过氧化氢,定容。特定波长处比色。2,二氧化硅的测定 吸取2ml于量瓶中,加15ml钼酸铵,放20分钟,或水浴40秒,加草酸10ml,速加硫酸亚铁铵2ml。特定波长处比色。(做参比)3,锰的测定 吸取20ml于50ml量瓶中,加10ml硝酸,10ml过硫酸铵,煮沸30秒,冷却,定容。特定波长处比色。4,磷的测定 吸取10ml于60ml的分液漏斗中,加数滴硫酸亚铁铵6%,用塑料滴管滴加2-3滴氢氟酸,1ml硫代硫酸钠,摇匀,放1-2分钟,25度时放2&mdash 5分钟,加5ml钼酸铵4%,摇匀,立即加入20ml乙酸丁酯,振荡萃取1分钟,静止分层后,将水相分出于另一分液漏斗中(测砷用),在有机相中加入抗坏血酸5%,及5滴硝酸铋10%(1+9硝酸),振荡2分钟,25度3分钟,静止分层后弃去水相,加10ml乙醇摆动至水相下沉弃去,特定波长处比色。5,砷的测定 在萃取磷的水相中,滴加高锰酸钾(4%)时摇动使红色保持30秒,加入20ml正丁醇,振荡1&mdash 2分钟,静止分层后弃去水相,在有机相中加2ml抗坏血酸及5滴硝酸铋,摇摆2分钟,静止分层后弃去相在有机相中加入1ml乙醇,摆动至水相凝基下沉后,弃水相在特定波长处比色。6,三氧化二铝的测定 分取1.0ml于100ml瓶中,加约50ml水,4ml混合显色剂,摇匀后加10ml缓冲液,摇匀,特定波长处比色。 混合显色剂; 1),铬天青S溶液 2),Zn&mdash Edta溶液, 混合显色剂;将两者等体积混匀。 3),六次甲基四胺缓冲液,取100克用适量水溶解后,加入5ml 1+1的盐酸后,稀至500ml。此分析方法请在专业技术员指导下完成,可询问市场部025-57339283杨经理 南京麒麟分析仪器有限公司2011年6月10日
  • 试剂显色或成为地沟油检测新方法
    到饭店吃饭,很多人都担心是否吃的是地沟油。9月25日,记者从中国农业大学食品科学与营养工程学院获悉,被卫生部今年5月份认可的3种有效快检“地沟油”方法之一的“地沟油多参数综合快速筛查方法”——“检测试剂盒”小包装,即将生产和销售。这种试剂盒能在半小时内快速测出“地沟油”。对此研发方表示,“检测试剂盒”只是初次筛选检验,准确率为80%,如果需要进一步确认是否是地沟油,还需要精密仪器检测。  原理:让地沟油成分露出马脚  据了解,国家卫生部关于地沟油的检测方法相关研究在经过广泛征求意见和反复的专家论证之后,目前已初步确定了4个仪器法和3个可现场使用的快速法,可用于“地沟油”的初筛,但目前这7种方法还在进一步验证和完善中。  昨天,“检测试剂盒”的研发方,中国农业大学食品与营养工程学院食品安全快速检测中心、北京智云达科技有限公司的负责人告诉记者,这个检测原理是根据极性组分的指标,“地沟油”与食用油相比,其经过反复煎炸或高温加热等会产生一些物质,即便精炼也难以被取出,被称为“极性标志物”。通过检测“极性标志物”的多少,可以作为判定是否为“地沟油”的重要指标。极性标志物可与极性检测试剂反应显红色,极性标志物含量越高则红色越深。操作:有些复杂,半小时出结果。  虽然说是“快速筛查”,但记者了解到,实验方法还是有些复杂。据介绍,这种试剂盒包含4个指标检测试剂,共需4个实验,分别得出结果后综合判断是否为地沟油。第一个实验用吸管取油样6滴置于试管中,向试管中加入1毫升检测液,摇动30秒钟,再将试管放入沸水中加热5分钟,取出后与标准管对比,呈现的红颜色深于标准颜色的,则被判定为阳性,即80%的可能性为“地沟油”。整个实验过程需要半小时。  此外,还有3个实验分别对动物油脂、酸价腐败指标、水等只有“地沟油”可能含有的物质进行检测,通过4个实验的结果综合比对,确认是否为“地沟油”。  市民吴女士在得知地沟油快速筛查方法出台后,不由心动,打算也买一个,以后到饭店吃饭,一测就知道是否是地沟油了。可是仔细研究完这个方法后,她放弃了这个念头。“太复杂了,还要放在沸水中加热,并不太适合老百姓使用。”  效果:只能作为初筛,正确率80%  今年5月,卫生部公布了7种有效的“地沟油”检测方法,其中3种为快速检测法,当时卫生部新闻办的工作人员表示,检测“地沟油”的方法是否有效,要通过“盲样测试”实验来进行考核。即将食用油和不同浓度的“地沟油”样品标号,给提供方法的科研机构检测,通过甄别出其中含“地沟油”的样品正确率,来确认其方法是否有效。研发方负责人反复向记者强调,“检测试剂盒”的准确率并不是100%,只能作为初筛,如果需要进一步确认是否是地沟油,还需要精密仪器检测。在卫生部“盲检”的40个样品中,快检试剂的正确率80%,算是一种较有效的检测方法。  价格:“试剂盒”小包装约200元  据了解,这种被卫生部认可的“地沟油多参数综合快速筛查方法”已完成实验室准备阶段,将正式投入生产和销售。据研发方透露,小包装试剂盒将在淘宝等网上渠道销售,销售价格是200元。  反应:监管人员检测将更方便  南京市食品药品监督管理局餐饮安全监管处处长陈滨告诉记者,对于基层监管人员来说,确定了地沟油检测方法之后,在日常的执法过程中将更加方便和便捷。快速检测方法虽然不能作为执法依据,但能够对餐馆的所用油品进行一个初步筛选,确定油品有问题之后,进一步送到实验室进行分析。在目前,南京药监部门的工作人员只能从源头进行监管,追溯餐馆购买食用油的渠道是否正规。  链接:地沟油检测难度有多大  地沟油的检测是个老大难问题,卫生部征集检测方法至今才有了初步结果。与此同时,网上也曾经一度流传一些辨别地沟油不靠谱的技巧。  地沟油检测为什么这么难?据了解,当前我们所说的地沟油,实际上已不单单是字面意义上,从下水道打捞上来的油脂,而是作为废弃食用油的统称,包括地沟油、潲水/泔水油、煎炸老油、劣质动物油等。  江南大学的油脂专家介绍,虽然质监部门和科研机构一直致力于找出各类废弃食用油脂的共通点,但是,由于废弃食用油的来源各不相同,经过各种加工和勾兑,结果,不仅包含的物质五花八门,含量也不尽相同。这给检测也带来了一定的困难。  目前地沟油也分为“三六九等”,加工工艺好的地沟油拿到实验室里各项指标都很“漂亮”,大部分符合国家标准。  专家告诉记者,地沟油和食用油都是以甘油酸脂为主要基本成分,但其他的油脂机体复杂,干扰因素多,而且目前造假者已经到了相当高的水平。
  • 磷酸根分析仪测试方法指导
    磷酸根分析仪测试方法  离子在固定相和流动相之间有不同的分配系数,当流动相将样品带到分离柱时,由于各种离子对离子交换树脂的相对亲合力不同,样品中的各离子被分离,继而进入抑制器。抑制器的作用主要是降低洗脱液的本底电导,增加被测离子的电导响应值和除去样品中的阳离子,再流经电导池,由电导检测器检测并绘出各离子的色谱图,以保留时间定性,峰高或峰面积定量,测出离子含量。  下面讲讲仪器的操作使用步骤:  一、仪器的校准:仪器校准分为空白校准和曲线校准。  二、水样的测定方法。  1、待测水样的显色:取水样50mL注入塑料杯中,加入5mL试剂,混匀后放置3分钟即可。  2、水样的测量:  (1)做一次空白校准。  (2)在仪器处于测量画面状态下,倒入显色后的待测水样,仪器显示当前测量水样的磷酸盐含量。  (3)待该数值稳定且确认为有效后,用“+”或“–”键选择欲存入的通道数,按“存储”键,该值将自动存储到相应的通道中。  (4)如果认为该数值无效,可按“排液”键,将液体排空,做一次空白校准。在仪器处于测量画面状态下,倒入显色后的待测水样,仪器显示当前测量水样的磷酸盐含量。
  • "便携食品安全干式分析仪及配套检测卡"通过鉴定
    7月30日,北京六角体科技发展有限公司自主研发的新型食品安全快速检测仪——“便携食品安全干式分析仪及配套检测卡”日前通过北京技术创新服务中心专家的新产品成果鉴定。  该项目将传统的化学显色、胶体金显色技术与先进的微电子技术相结合,可精确地将胶体金试纸卡及化学显色试纸卡的颜色深浅转变成灰度值,由此实现食品中大部分兽药残留、农药残留、非法添加物、生物毒素及致病菌等的现场快速定量检测,整体技术达到国内领先水平。其创新性主要表现在:建立了渗滤化学显色法定量检测食品中非法添加物、色素及农药残留等检测方法 开发了适用于金标试纸及化学显色试纸卡光谱分布所需的光源、滤波器以及局部特征提取算法,能精确地将胶体金试纸卡及化学显色试纸卡的颜色深浅转变成灰度值,提高了检测灵敏度和准确性 采用样品干式分析,避免了干扰及交叉污染。实现了食品中大部分兽药残留、农药残留、非法添加物、生物毒素及致病菌等的现场快速定量检测。  鉴定委员会专家认为,该项目将CMOS成像技术应用于食品安全领域,独创渗滤化学显色法,为食品安全检测方面现场快捷排查提供了一个新的解决方案。较现有的快检设备,具有灵敏度高、设备体积小、检测时间短等优点,非常适合检测车、市场、野外等环境下使用,可广泛应用于畜牧水产养殖、流通生产环节、餐饮服务领域的现场监督检查和产品质控,适合食品安全监管部门现场执法快速检测和食品企业自检。  据了解,目前便携食品安全干式分析仪及配套检测卡已在河南省出入境检验检疫局检验检疫技术中心、石家庄市水产品质量检测中心、山西省水利厅渔业局、河南华英农业发展股份有限公司等单位进行了应用,效果良好。
  • 水质分析常见问题解析七
    市面上出售的纯净水等可否用来配制我们的试剂?答:我们实验中用到的水能够适用于一般实验工作即可,但市面上出售的纯净水规格要求各不相同,不能够完全符合我们配制试剂的要求。经过实验娃哈哈和怡宝的纯净水可用于我们的实验,其它品牌还未发现。 顺便来普及一下影响纯水质量的三个主要因素,即空气、容器、管路:在实验室中制取纯水,不难达到纯度指标。一经放置,特别是接触空气,其电导率会迅速下降。例如,我们平常检测总磷和氨氮,无论用蒸馏水或离子交换水只要新制取的纯水都使用。一旦放置,空白值便显著增高,主要来自空气和容器的污染;玻璃容器盛装纯水可溶出某些金属及硅酸盐,有机物较少,聚乙烯容器所溶出的无机物较少,但有机物比玻璃容器略多;出水导出管,在瓶内部分可用玻璃管,瓶外导管可用聚乙烯管,在最下端接一段乳胶管,以便配用弹簧夹。 请问在做水质测定cod、氨氮、总磷和总氮实验时,如果水样是强酸性或强碱性 对实验会不会有影响?答:最好水样调到中性后再测量。比如cod强碱性加e试剂后容易出现喷溅;  氨氮显色条件是碱性,强酸性水样不显色;总磷消解要求中性过硫酸钾;总氮是碱性过硫酸钾;  还有一些需要再特定酸碱条件下显色,而水样过酸过碱会影响显色的,最稳妥是调到中性,再加连华试剂就会达到显色要求的酸碱条件(连华试剂会保证显色酸碱条件的)。连华e试剂配制时不好溶解,有没有好的办法?答:如果不急用提前配好后倒入储存瓶中隔夜放置,自然溶解。  如果现场配制100样急用,取1000毫升烧杯,将整瓶e试剂倒入后, 如果有结块用玻璃棒压碎,准确量500ml硫酸,倒入少量硫酸没过底部,立即用玻璃棒搅拌压碎结块,搅拌至糊状无大块后将剩下酸倒入不断搅拌大约20分钟后会溶解。搅拌过程可用超声加速溶解。(不建议使用电炉子等加热设备溶解,如果出现意外后果很严重),操作过程一定注意安全!bod培养箱的开机初始界面和温度显示界面来回切换,温度一直上升,不下降的情况是怎么回事?答:此情况多为供电不足导致,培养箱压缩机启动后,电压就降到一百多,导致培养箱重启,需要客户更改电压设置。使用连华仪器和试剂,检测氨氮时上部澄清底部产生大量橙红色沉淀,该如何解决?答:一般这种情况多为氨氮浓度过高导致,需将水样稀释千倍左右检测。下面是氨氮检测过程中我们遇到的几种情况,图中浓度是由几百到近千到几千的一个状态。
  • 分析水质中氮含量主要成分是在于几方面
    水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。地表水中氮、磷物质超标时,微生物大量繁殖,浮游生物生长旺盛,出现富营养化状态。  目前,国标针对水质中氮的分析主要分总氮、氨氮、硝态氮、凯氏氮4个方面。  1、总氮  总氮是指可溶性及悬浮颗粒中的含氮量(通常测定硝酸盐氮、亚硝酸盐氮、无机铵盐、溶解态氨几大部分有机含氮化合物中氮的总和)。可溶性总氮是指水中可溶性及含可过滤性固体(小于0.45μm颗粒物)的含氮量。总氮是衡量水质的重要指标之一。  总氮的测定方法,一是采用分别测定有机氮和无机氮化合物(氨氮、亚硝酸盐氮、硝酸盐氮)后加和的办法。二是以过硫酸钾氧化,使有机氮和无机氮转变为硝酸盐后,通过离子选择电极法对溶液中的硝酸根离子进行测量,也可以用紫外法或还原为亚硝酸盐后,用偶氮比色法,以及离子色谱法进行测定。  2、氨氮  氨氮是指游离氨(或称非离子氨,NH3)或离子氨(NH4+)形态存在的氨。pH较高,游离氨的比例较高;反之,铵盐的比例高。  氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。  氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强。  常用来测定氨的两个近似灵敏度的比色方法是经典的纳氏试剂法和苯酚-次氯酸盐法;滴定法和电极法也常用来测定氨;当氨氮含量高时,也可采用蒸馏-滴定法。(国标有纳氏试剂法、水杨酸分光光度法、蒸馏-滴定法)  3、凯氏氮  凯氏氮是以凯氏法测得的的含氮量。它包括氨氮和在此条件下能被转化为铵盐而测定的有机氮化合物。此类有机氮主要指蛋白质、胨、氨基酸、核酸、尿素以及大量合成的,氮为负三价的有机氮化合物。不包括叠氮化合物、联氮、偶氮、腙、硝酸盐、腈、硝基、亚硝基、肟和半卡巴腙类含氮化合物。由于水中一般存在的有机化合物多为前者,因此,在测定凯氏氮和氨氮后,其差值即称之为有机氮。  测定原理是加入硫酸加热消解,使有机物中的胺基以及游离氨和铵盐均转变为硫酸氢铵,消解后的液体,使呈碱性蒸馏出氨,吸收于硼酸溶液,然后以滴定法或光度法测定氨含量。测定凯氏氮或有机氮,主要是为了了解水体受污染状况,尤其在评价湖泊和水库的富营养化时,是个有意义的指标。  4、硝态氮  1).硝酸盐  水中硝酸盐是在有氧条件下,各种形态含氮化合物中稳定的氮化合物,通常用以表示含氮有机物无机化作用最终阶段的分解产物。当水样中仅含有硝酸盐而不存在其他有机或无机的氮化合物时,认为有机氮化合物分解完全。如果水中含有较多量的硝酸盐同时含有其他含氮化合物时,则表示有污染物已经进入水系,水的“自净”作用尚在进行。  硝酸盐氮的测定方法有离子选择电极法、酚二磺酸分光光度法、镉柱还原法、紫外分光光度法、戴氏合金换元法、离子色谱法、紫外法。  其中电极法测量方便,范围宽,而且价格便宜,对水样要求较低;酚二磺酸分光光度法测量范围宽,显色稳定;镉柱还原法适用于水中低含量硝酸盐测定;戴氏合金换元法适用于污染严重并带深色水样;离子色谱法需要专用仪器,但可于其他阴离子联合测定。  2).亚硝酸盐  亚硝酸盐是氮循环的中间产物。亚硝态氮不稳定,可以氧化成硝酸盐氮,也可以还原成氨氮。因此,在测定其含量的同时,并了解水中硝酸盐和氨的含量,则可以判断水系被含氮化合物污染的程度及自净情况。  水中亚硝酸盐的测定方法通常采用重氮-偶联反应,使生成红紫色染料。该方法灵敏度高、检出限低、选择性强。重氮试剂选用对氨基苯磺酰胺和对氨基苯磺酸,偶联试剂为N-(1-萘基)-乙二胺和α-萘胺(有毒),N-(1-萘基)-乙二胺用得较多。  亚硝酸盐氮的测定方法有N-(1-萘基)-乙二胺分光光度法、萃取分光光度法、离子色谱法、气相色谱法等。(国标采用N-(1-萘基)-乙二胺分光光度法、气相色谱法等)
  • 吉天仪器FIA 6000+ 全自动流动注射分析仪在河流污染中的应用
    水是生命之源,但是随着我国人口数量的几何增长、现代工业废水的乱排乱放、城市垃圾、农村农药喷洒等等,造成河流污染严重,本来已是极少的淡水资源加剧短缺,无法为人所用。  随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法。  本文介绍了一种快速、准确、安全的流动分析技术,使用聚光科技下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)fia6000+全自动流动注射分析仪对河水中的挥发酚、氰化物、阴离子表面活性剂和硫化物进行分析及加标回收率的测定。该仪器应用非稳态fia理论,使用在线加热、蒸馏、冷凝、萃取等系统,完全符合环保部最新发布的国家环境保护标准。吉天仪器fia6000+为环境行业的水质分析提供了高效准确的溶液化学分析解决方案。吉天仪器fia6000+可以做什么?fia 6000+ 全自动流动注射分析仪方案优势  完全符合环境新标准hj 825-2017、hj 824-2017、hj 823-2017、hj 826-2017。  配有试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。  检测过程高效,反应在密闭的管路中进行,避免接触有害试剂。  检测项目全面,广泛应用于水质分析、环境分析等多个领域。样品制备  挥发酚  采集河水样品,需现场检测有无游离氯等氧化剂存在,参照hj825-2017方法,“样品滴于淀粉-碘化钾试纸上出现蓝色,说明存在氧化剂”。氧化剂(如游离氯)能将一部分酚类化合物氧化使结果偏低,如有氧化剂存在(水样酸化后滴于碘化钾-淀粉试纸上出现蓝色),立即加入过量的硫酸亚铁铵消除干扰。(硫酸亚铁铵的配制方法:在500ml的容量瓶中,溶解0.55g硫酸亚铁铵[fe(nh4)2(so4)2?6h2o]于包含0.5ml浓硫酸的250ml去离子水,用去离子水定容,摇匀)。  现场未发现河水样品存在氧化剂。样品储存在硬质玻璃瓶中,采用氢氧化钠固定,冷藏(4℃),在采集后24h内进行测定。  氰化物  采集河水样品,首先检验是否有硫化物和活性氯等氧化剂的干扰,参照hj823-2017方法,“试样中存在活性氯等氧化性物质干扰测定,可在蒸馏前加亚硫酸钠(na2so3)溶液消除干扰”“试样中存在硫化物干扰测定,可在蒸馏前加碳酸镉(cdco3)或碳酸铅(pbco3)固体粉末消除干扰”。  采样现场滴一滴样品在乙酸铅试纸上,如果试纸变黑,则显示有硫化物存在于样品当中,加碳酸镉或碳酸铅固体粉末,生成黄色的硫化镉或黑色的硫化铅沉淀,再用乙酸铅试纸检测是否使试纸变黑,如果确定试纸不变黑,则过滤溶液除去硫化物。  采样现场滴一滴样品在淀粉-碘化钾试纸上,如果试纸显示蓝色,则样品需要预处理,加入一些抗坏血酸固体于水样中,过一段时间再用淀粉碘化钾试纸检测,如不显示蓝色证明干扰已被消除,然后在每升水样中加入0.6g抗坏血酸。亚砷酸钠和亚硫酸钠也用来消除此干扰。  现场未发现河水样品存在硫化物和活性氯等氧化剂。因此采取立即加氢氧化钠固定的方法,一般每升水加0.5g固体氢氧化钠,尽量使样品的ph12,并将样品存于聚乙烯塑料瓶或硬质玻璃瓶中,存放在暗处,避免紫外光的照射。  阴离子表面活性剂  采集河水样品,采样和保存样品应使用清洁的玻璃瓶,并事先经甲醇清洗过。  hj826-2017说明“主要干扰物为有机的磺酸盐、羧酸盐、酚类以及无机的硫酸盐、亚硫酸盐、硝酸盐、氰酸盐、硫氰酸盐等”,可以通过水溶液反洗,消除这些正干扰,未能除去的可用气提萃取法,参见gb7494。  在测量前,将水样经0.45μm的滤膜过滤,以除去悬浮物。吸附在悬浮物上的表面活性剂不计在内。  硫化物  采集河水样品。现场采集并固定的样品应保存在棕色瓶内。为了消除样品采集过程中的损失,首先对于每100ml样品,加入10 滴15m naoh(大约0.5ml)和400mg 抗坏血酸于容器中,然后加样品于容器中(样品的ph11)。冷却至4oc,马上进行分析。  为防止采集的河水样品中大颗粒堵塞管路,所有采集的样品都使用0.45μm的膜过滤后再进行分析。 仪器  吉天仪器fia6000+流动注射仪:包括自动进样器、挥发酚、氰化物、阴离子表面活性剂和硫化物4个化学反应模块(预处理通道、注入泵、反应通道及流通检测池)、数据处理系统。  分析天平:精度为0.1mg。  超声波仪:频率 40 khz。试剂配置  吉天仪器和安谱实验强强联合,为仪器配有专门的试剂包方案,是适用于全自动流动注射分析仪fia6000+的配套产品,方便、快速、可靠、绿色的试剂配置方式。试剂无需称量,开包溶解即用。  挥发酚  hj825-2017规定了测定水中挥发酚的流动注射-4-氨基安替比林分光光度法。表1 吉天挥发酚试剂包与hj825试剂配制比较试剂类型吉天仪器试剂包hj825要求比较蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾溶液ph=10.3铁氰化钾溶液ph=10.3配制过程完全相同显色剂4-氨基安替比林溶液ρ=0.64 g/l4-氨基安替比林溶液:ρ=0.64 g/l配制过程完全相同  氰化物  hj823-2017规定了测定水中氰化物的流动注射-分光光度法。其中包括异烟酸-巴比妥酸法和吡啶-巴比妥酸法。  由于吡啶剧毒,不建议采用,实际上异烟酸无吡啶的剧毒性,显色原理基本相同,因此采用异烟酸-巴比妥酸法进行检测。表2 吉天仪器氰化物试剂包与hj823试剂配制比较试剂类型吉天试剂包hj823要求比较载流、吸收液氢氧化钠c=0.025mol/l氢氧化钠c=0.025mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾缓冲液ph=10.3铁氰化钾缓冲液ph=10.3配制过程完全相同氯胺t氯胺t溶液ρ=4 g/l氯胺t溶液ρ=6 g/l或=2 g/l配制密度略有差异显色剂异烟酸-巴比妥酸试剂异烟酸-巴比妥酸试剂配制过程完全相同  阴离子表面活性剂  hj826-2017规定了测定水中阴离子表面活性剂的流动注射-亚甲基蓝分光光度法。  hj826-2017中的甲基蓝原液需净化萃取,将甲基蓝原液萃取6-7次,直至有机相澄清;吉天试剂包优化了试剂配制方法,甲基蓝原液无需净化萃取。 表3 吉天仪器阴离子试剂包与hj826试剂配制比较试剂类型吉天仪器试剂包hj826要求比较碱性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异酸性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异氯仿不含氯仿优级纯氯仿需要单独购买  硫化物  hj824-2017规定了测定水中硫化物的流动注射-亚甲基蓝分光光度法。表4 吉天仪器硫化物试剂包与hj824试剂配制比较试剂类型吉天仪器试剂包hj824要求比较载流及吸收液氢氧化钠c=0.025 mol/l氢氧化钠c=0.025 mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异显色剂对氨基二甲基苯胺溶液对氨基二甲基苯胺溶液配制过程完全相同氯化铁氯化铁溶液ρ=13.3g/l氯化铁溶液ρ=13.3g/l配制过程完全相同标准曲线  新环境标准中的“标准系列的准备”将工作曲线的最高浓度设置为测定范围的最高值,本解决方案对于标准样品的配置浓度进行了优化,如表5所示。标准曲线的绘制按照新环境标准的要求“以信号值(峰面积)为纵坐标,对应的浓度为横坐标”进行绘制,所得到的曲线如图1所示,相关系数都可以达到0.999以上,说明相关性很好。表5 标准样品浓度对比表(μg/l)挥发酚总氰阴离子硫化物实验数据hj825推荐实验数据hj823推荐实验数据hj824推荐实验数据hj824推荐0.000.000.000.000.000.000.000.002.0010.02.002.025.010020.01005.0025.05.005.050.020050.020010.050.010.010.010050010050020.010020.050.02001000200100030.020050.01255002000500200050.0-100250800-1000-100-2005001000---四种方法的工作曲线检出限和精密度  计算了仪器测定4种方法的检出限和精密度,与新环境标准进行比较,数据见表6。其中,仪器检出限采用epa方法dl=t(n-1,α=0.99)*(s),当测定次数n=7时,t=3.14,计算结果;仪器的精密度则通过连续进样7次得到的数据进行计算。表6 仪器检出限、精密度与新环境标准对比项目检出限(μg/l)精密度rsdfia6000+新hj标准fia6000+新hj标准挥发酚0.31220.0μg/l0.77%20.0μg/l0.7-2.9%氰化物0.26120μg/l0.92%20μg/l0.7%-2.1%阴离子8.9540500.0μg/l1.11%500.0μg/l 1.1%-4.9%硫化物1.884200.0μg/l0.85%200.0μg/l1.5%-2.3%质量控制  以挥发酚为例:采用国家环境保护总局标准样品研究所的挥发酚质控样(200331,标准值49.8μg/l,不确定度±4.5μg/l),对方法及仪器进行检验,测定结果见表7。质量控制的结果符合要求,说明仪器稳定可靠。表7 挥发酚质控样的测定序号样品属性已知浓度(μg/l)回算浓度(μg/l)吸光度峰面积1质控样品49.8±4.548.00.872982质控样品49.8±4.548.80.887663质控样品49.8±4.548.10.87486实验结果  参照环境标准的方法,我们对采集的河水水样进行了分析,并进行了加表实验。实际样品并未检出挥发酚和硫化物,检出的氰化物和阴离子表面活性剂的浓度分别为11.8μg/l和1.20μg/l。  参照环境标准的要求,挥发酚、氰化物、硫化物的加标回收率应在70%~120%之间,阴离子表面活性剂的加标回收率应在80%~120%之间。实际的加标回收结果均符合要求。表8 实际样品检测结果及加标回收实验结果检测项目空白浓度(μg/l)加标浓度(μg/l)加标后回算浓度(μg/l)回收率挥发酚010098.098.0%氰化物11.820.032.2102.5%阴离子表面活性剂1.2020020097.8%硫化物0500498.599.7%结论  本文基于环保部最新发布的四项国家环境保护标准(水质),为测定环境水(河水)中的挥发酚、氰化物、阴离子表面活性剂和硫化物提供了解决方案。用fia6000+全自动流动注射分析仪测定这几种物质,完全符合环境标准方法,快速简便、灵敏度和准确度高,是未来环境行业水质检测的重要发展趋势。
  • 揭秘公安司法行业毒品分析检测技术!几类质谱关键原理方法及技术要求!
    当下,在毒品问题全球化的大背景下,毒情形势日益严峻,芬太尼类、合成大麻素类、卡西酮类等新型毒品更新换代速度极快,毒品毒物的检测判定作为执法依据变得尤为关键,加之毒品成瘾机理领域还有很多亟待科学解答的内容,也对分析方法提出了更高要求。仅2021-2022年我国发布并实施的毒品检测国家标准、行业标准已超二十项,可见我国毒品检测国家标准、行业标准发布进入快车道,国家对禁毒工作的关注度不断提升。就行业标准而言有分为公安类检测标准和司法类检测标准。司法类检测标准对于毒品类型鉴定有更加清晰的分类,如:苯丙胺类、色胺类、合成大麻素类、芬太尼类等。公安类检测标准更加注重检测样品的类型:毛发中毒品检测、污水中毒品检测、血液、尿液等生物样品中毒品检测以及疑似物中毒品检测等。与发达国家相比,我国毒品检验技术研究起步较晚,但近年来发展迅速。20 世纪 80 年代前,我国毒品检验多采用薄层色谱检验(TCL)结晶法、 红外光谱 法(IR)、 紫外线(UV) 检验及化学显色法;80年代后,气相色谱(GC)法开始应用,90年代开始普及;1990-2009年气相色谱串联质谱(GCMS)技术成为毒品检测的主力军;2010-2022年液相色谱串联质谱(LCMS/MS)类分析技术开始布局公安司法行业毒品检测领域。此外,近年国内外禁毒形势愈发严峻,现场快速便携的稽查技术和检测设备亟待发展,幸运的是,不少仪器企业和科研团队也已推出了相应的便携式现场快速筛查质谱仪。公安及司法行业在实际应用场景中,如何选择适合的毒品分析技术手段?不同质谱技术的原理差异性如何?如果超出各类毒物数据库的检索范围,未知物的识别该选择何种技术手段?便携式质谱技术如何持续助力毒品快筛?毒情监测体系是否建立?……2022年12月13-16日,仪器信息网策划举办年度一次的“质谱网络会议(iCMS)”,每年的会议内容设置都会将当年度最新、最重磅的技术应用进展带给听众,十二年来,质谱网络会议受到广大用户的热烈好评。去年年底的直播间,我们共同约定在2022年末,再次为大家呈现关于质谱领域的最新技术成果和进展。带着这份承诺,3i讲堂将于12月14日举办“第十三届质谱网络会议”的“质谱在禁毒/司法领域毒品分析的新进展”专场,与4位重量嘉宾,在直播间共同寻找答案:(福利:点击此处,快速免费报名,优先审核)嘉宾一:王学虎 江苏省公安厅物证鉴定中心 正高级警务报告:未知药毒物的高分辨液质筛查与识别检验在法庭科学实验室对投(中)毒、缴获毒品,多采用GC-MS、LC-MS技术,配合各类毒药物数据库,如果超出这几个常见的数据库检索范围,就会变成难题——未知物,就需要更多手段进行甄别。本次报告且听王老师通过案例形式介绍使用高分辨液质联用进行未知毒药物的识别技巧。嘉宾二:刘冰洁 SCIEX FEF领域全国应用支持经理报告:QTRAP液质系统在公安司法领域的应用报告将介绍应用QTRAP质谱的EPI模式进行复杂基质样本中的假阳性判定,以及应用QTRAP质谱进行代谢产物的鉴定和新型结构衍生物的分析。嘉宾三:花磊 中国科学院大连化学物理研究所 研究员 报告:基于原位质谱的毒品快速检测技术及应用花磊研究员深耕开发在线质谱关键技术和质谱联用技术的研究多年,目前基于原位质谱的毒品快速检测技术和最新应用有哪些?且听花老师娓娓道来。嘉宾四:金洁 公安部第三研究所 副研究员报告:便携式质谱在现场毒品检测中的应用报告将介绍当前便携式质谱用于毒品检测存在的困难,以及当前EI电离源便携式质谱合成大麻素数据库标准化和操作规程。(点击图片,免费报名,优先审核)
  • 岛津成像质谱显微镜应用专题---酶组织化学分析
    镜质合璧 还原真实质谱成像应用于酶组织化学分析 摘要检测酶促反应通常通过底物和酶反应后的产物继续反应显色并测量吸光度来实现。现有的酶促反应检测方法既要求底物和酶之间的初级反应,又要求随后产生颜色的二级反应。一种新的酶促反应检测方法利用质谱技术无需进行二级反应即可直接检测初级反应产物。将这种方法用于组织表面分析,还可以对酶活性进行可视化分析。本文描述了使用高空间分辨率质谱成像系统iMScope进行酶组织化学分析的新应用。 引言酶在组织中的分布通常用免疫组织化学(IHC)方法来测定。虽然IHC能够可视化表征酶蛋白的位置,但无法区分活性酶和非活性酶。酶组织化学作为一种成熟的方法,能够可视化分析酶活性,这是无法通过IHC分析实现的1),2) 。酶组织化学依赖组织切片表面上发生的酶活性化学反应,以此识别酶活性及其强度。可视化分析通常将反应底物涂敷到组织切片,组织切片与内源酶发生反应,产物继续通过另一种反应显色。采用这种方法,每种显色反应对应一种化合物,因此,多化合物可视化分析需要进行多种显色反应。使用这种方法来可视化分析酶活性的分布通常并非是一种简单的将底物添加到组织切片的过程。作为替代常规酶组织化学显色反应步骤的一种方法,本研究考察了利用成像质谱(MSI)直接检测小鼠脑切片和整个果蝇切片中酶促反应产物的方法3) 。 实验本研究试图对野生型小鼠脑切片和整个野生型果蝇切片中乙酰胆碱酯酶(AChE)活性的分布进行可视化分析。AChE能够催化底物乙酰胆碱分解为胆碱和乙酸。因此,本研究将乙酰胆碱涂敷到组织样本的表面,并检测其降解产物胆碱并评价酶活性。为与内源性胆碱进行区分,将氘标记的乙酰胆碱-d9(ACh-d9)作为底物,并检测胆碱-d9(Choline-d9)(图1)。利用喷枪将底物手动涂敷至组织切片表面。图1 MSI法酶组织化学原理将标记后的底物涂敷于样本表面,利用质谱检测酶促反应产物,并进行可视化分析。 本研究同时考察了进行半定量分析的反应时间和方法。 将α-氰基-4-羟基肉桂酸(α-CHCA,Sigma-Aldrich)作为基质,通过两步法4) 进行基质涂敷,该方法结合了基于iMLayer基质升华仪(图2)的升华法和手动涂敷α-CHCA溶液的喷雾法。 使用iMScope成像质谱显微镜(图3)进行MSI检测,并使用IMAGEREVEA MS质谱成像分析软件进行数据分析(图4)。iMScope实验参数如表1所示。 图4 IMAGEREVEA MS质谱成像数据分析软件 表1 MSI分析参数结果与讨论图 5:转化率公式和酶活性公式 图6(A) 样本组织表面底物转化比例与酶反应时间关系以底物涂敷时间为0分钟,结果显示所有乙酰胆碱-d9(底物)在5分钟内转化为胆碱-d9。(B) 乙酰胆碱酯酶活性在小鼠脑组织中比较MSI结合HE染色分析结果显示,酶活性在纹状体(CPu)、海马体(HP)和下丘脑(TH)中较高,而在胼胝体(CC)和小脑皮质(CBX)中较低。(C, D) HE染色和高空间分辨率成像分析小鼠海马体酶活性显示CA3区中酶活性较高。标尺:1mm 根据图5(1)中的公式计算底物转化率并绘制转化率与反应时间的关系图表明,乙酰胆碱-d9在涂敷于样品表面后迅速开始分解为胆碱-d9,并且在5分钟内转化停止并耗尽乙酰胆碱-d9(图6A)。因此,5分钟是用以测量酶活性的足够的反应时间。由于组织定位相关的生物基质效应会给半定量分析带来影响,图5(2)中的公式被认为是一种标准化方法用以校正乙酰胆碱-d9和胆碱-d9的离子化效率。 使用IMAGEREVEAL MS质谱成像数据分析软件提取m/z 155.17乙酰胆碱-d9和m/z 113.16胆碱-d9的质谱图像。利用IMAGEREVEAL MS中提供的四则运算方法,根据公式(2)计算胆碱酯酶活性分布的图像(图6B和图6D)。这些图像显示纹状体(CPu)、海马(HP)和下丘脑(TH)的AChE活性较高,而胼胝体(CC)和小脑皮质(CBX)的AChE活性较低(图6B)。 这些结果与传统酶组织化学方法高度匹配,证明该技术的可靠性。iMScope的高空间分辨率质谱成像还用于可视化分析大脑海马区的酶活性(图6C、6D)。 由于哺乳动物除AChE外还产生丁酰胆碱酯酶(BuChE),因此尝试对不同胆碱酯酶的活性分布进行可视化研究。BuChE将乙酰胆碱和各种其他胆碱酯转化为胆碱。将底物乙酰胆碱与四异丙基焦磷酸酰胺(iso-OMPA,一种BuChE抑制剂)一起涂敷于样品表面,利用MSI观察AChE活性的特异性分布。针对BuChE活性的特异性分布,也通过在一系列组织切片涂敷底物乙酰胆碱和AChE活性抑制剂加兰他敏(galantamine)进行研究。这些实验表明,在不含任何抑制剂样本的胼胝体(CC)中酶活性,在很大程度上被iso-OMPA抑制,这表明胼胝体中的大部分胆碱酯酶活性是由BuChE引起的(图7A)。图7使用抑制剂后在小鼠脑切片中可视化观察酶活性,以及整个果蝇切片中胆碱酯酶活性分布的MSI(A) 使用抑制剂后可视化观察酶活性Iso-OMPA抑制丁酰胆碱酯酶活性实现特异性检测乙酰胆碱酯酶活性加兰他敏抑制乙酰胆碱酯酶活性实现特异性检测丁酰胆碱酯酶活性(B) 果蝇中胆碱酯酶活性的分布尽管果蝇属于不同的门类,但该方法同样适用,并揭示了大脑和胸腹区的酶活性。尤其是在胸腹区,检测到了可溶性酶活性,表明该方法可提供常规酶组织化学难以获得的结果。 因此,将标记稳定同位素的底物与抑制剂一同涂敷于组织样本表面是一种更精确的酶组织化学研究方法。 本方法甚至可以用于果蝇(一种不同门的动物)的研究。如图7B所示,ChE活性在整个果蝇中分布不均匀,在大脑中ChE活性极高,在胸腹区ChE活性也较高。果蝇头部具有极高酶活性的结果与先前报告一致5),表明活性来自中枢神经系统中头神经节的胆碱能神经中的AChE。相比之下,胸腹区的ChE活性很可能不是由中枢神经系统中的AChE引起的。报告显示除中枢神经系统外,血液淋巴中也存在AChE6),并且Zador等人观察到可溶性AchE的存在,其结构与神经系统中的膜结合AChE不同7)。胸腹区的AChE活性与以往报告一致,证明本方法可有效进行ChE活性定位的研究。 结论本文描述了一种基于MSI进行酶组织化学的新方法,结果显示MSI无需显色反应即可获得酶活性的半定量分布结果。该方法同时还被用于果蝇切片分析,可有效可视化分析膜结合AChE和可溶性AChE的活性。尤其是可溶性酶活性的分布难以通过传统方法获得,这显示了本方法的优越性。对于其他酶(不仅包括水解酶,还包括转移酶),我们还将开发更多的可视化分析方法。 致谢诚挚感谢京都工业大学应用生物科学系染色体工程实验室的Masamitsu Yamaguchi教授提供果蝇样本。 参考文献1.Takamatsu, H. Histochemische Untersuchungen der Phosphatase und deren Verteilung in verschiedenen Organen und Geweben. Trans. Soc. Path. Japan 29, 429 (1939)2.Gomori, G. Microtechnical demonstration of phosphatase in tissue sections. Proceedings of the Society for Experimental Biology and Medicine 42, 23 (1939)3.Takeo E, Fukusaki E, Shimma S. A mass spectrometric enzyme histochemistry method developed for visualizing in situ cholinesterase activity in Mus musculus and Drosophila melanogaster. Anal. Chem. 92, 12379 (2020)4.Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization efficiency. J Mass Spectrom. 48, 1285 (2013)5.Toutant, J. P., Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol. 32, 423 (1989)6.Chadwick, L. E., Actions on Insects and Other Invertebrates. In Cholinesterases and Anticholinesterase Agents, Koelle, G. B., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1963 pp 741-798.7.Zador, E., Tissue specific expression of the acetylcholinesterase gene in Drosophila melanogaster. Mol Gen Genet. 218, 487 (1989) 文献题目《质谱成像应用于酶组织化学分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma1,2,3;Emi Takeo1;Kaoru Nakagawa;Takushi Yamamoto;Eiichiro Fukusaki1,2,31 大阪大学工学研究生院生物技术系2 大阪大学Shimadzu Omics 创新研究实验室3 大阪大学开放与跨学科研究倡议研究所
  • 提在手上的水质分析实验室?
    提在手上的水质分析实验室?哈希公司2 days ago不少用户曾遇到过这样的问题想要做水质检测,但周边没有可以服务的环境实验室,为水质检测带来不便。的确,传统以实验室为核心的检测业务模式需要客户运送样品给实验室或实验人员去现场采样,然后携带样品回到实验室后用专门的设备完成检验。在过程中会出现以下问题人力成本高样品在运送过程中存在污染风险准确性和检验成本极大地依赖样品所在地与实验室的距离处理废液繁琐费事总而言之,如今普遍的以环境实验室为中心的检测业务有一定的服务半径,受限于距离。那有没有解决办法呢? 这里就要隆重介绍我们的主角: 哈希 SL1000 便携式多参数测试仪——一款多功能、超便携的水质分析仪SL1000全长约25厘米,厚度6厘米,主机重量仅为1.2kg,通过底部四个可替换芯片进行检测,无需其他样品容器、反应试剂与比色皿等实验器材。真正做到简洁、轻便、好携带,让实验人员轻装上阵。与传统环境实验室相比,SL1000具有以下优势:采样超快:只需要将仪器插入水中3秒即可完成采样SL1000每次分析只汲取微量样本溶液,通过内部特殊的管路设计,对水样进行一步步的显色反应。最后,通过一道特征波长的光束进行检测。 省略前处理:由于独特的检验方式,SL1000直接避免了收集样品送入实验室的环节,为客户免去了样品的运输成本,就地检查,提高准确性。 分析高效:SL1000拥有独特的“黑科技”芯片,可以测量的参数包括余氯、总氯、一氯胺、亚硝酸盐、铜离子、*游离氨以及总氨。机器底部有4个芯片插口,可以分别插入不同种类的芯片同时分析,节约时间。废液处理:由于芯片每次取用的水量极少,可以直接作为固废处理,简单快捷。 此外,SL1000顶部另有两个接口,接入电极探头后,亦可用于电化学测试,兼顾PH计/电导率仪/溶解氧测定仪的用途,集比色与电化学功能于一体,便携好用。 *注:测量游离氨,需同时配合一氯胺芯片使用点击【阅读原文】,了解详细信息。END
  • 得利特技术指导|硅酸根分析仪测试不准确原因解析
    得利特简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。垂询电话:010-80764046,80764056热点影响硅酸根测量准确性的因素有哪些?水中硅酸根的监测对工业领域环境中水质量的控制是非常重要的技术指标,特别是作为水力、火力发电厂对锅炉用水中的硅含量的监测作为化学监督的重要参数。在石化、制药、冶金和半导体工业水处理等方面也需要对水中硅酸根含量进行测量和监测。硅酸根分析仪是在硅酸根化学分析方法的基础上开发的一种检测仪器。我们的技术透漏硅酸根分析仪测量时需要注意以下因素,这将影响硅酸根测量准确性:1.酸度的影响因硅酸根和钥酸铵反应生成硅钥黄及将硅钼黄还原成硅钼蓝的反应均是在酸性条件下进行的。且这两个反应都是可逆的。如果酸的加人量不够,会使反应不完全 如果加人量过大,会造成干扰物质磷钼酸等不易与酒石酸或草酸形成配位体,干扰物去除的不干净,造成测量结果偏大,所以要控制酸的加入量,把pH值调到1.1 ~1.3较为理想。2.显色时间的影响化学反应速度有快有慢,所以要严格按国标中化学试剂的配制方法和配置时间,使反应进行完全。3.反应温度的影响反应温度即反应条件,化学反应都是在一定的反应条件下进行的,如反应温度过低会使反应不完全,造成测量值偏低,以上化学反应的反应温度控制在25 +5℃的条件下较好,且反应结果的重现性也较好。如温度过低,应采用水浴加热等方法,保证反应条件。4.配制溶液所用水质的影响严格来讲,配置标准溶液使用的水质应采用无硅水,一般仪器的使用单位都采用纯净水或去离子水当作无硅水使用,但由于水的制备方法及所用制水设备的不同,所用的水中的含硅量各不相同。所以在把仪器检测完成后要对配制溶液的水质进行含硅量的测量,把配制标准溶液用水中的硅的含量刨去,才能保证测量的准确。
  • 全球水污染严重!多参数水质分析仪如何成为“水污染预言家”?
    如果人类不改变目前的消费方式,到2025年全球将有50亿人的生活用水无法完全满足生活需求,其中25亿人将面临用水短缺。第四届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有数百万吨垃圾倒进河流、湖泊和小溪,每升废水会污染8L淡水;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲55条河流中仅有5条水质勉强能用。水污染是由有害化学物质造成水的使用价值降低或丧失,污染环境的水。“水污染预言家”—多参数水质分析仪如果水中检出亚硝酸盐氮,说明水污染正在进行。亚硝酸盐氮(NO2-N,Nitrite nitrogen)是含氮有机物受细菌作用分解的氮循环中间产物,在水中不稳定,在氧和微生物的作用下易被氧化成硝酸盐,在缺氧条件下也可被还原为氨。根据水中亚硝酸盐氮的存在水平,再结合水中氨氮和硝酸盐氮的含量,可以评价水体受污染的程度及自净状况。水中NO2-N的来源主要为生活污水中含氮有机物的分解和化肥、酸洗等工业废水,此外农田排水也可引入较高浓度的NO2-N。未受污染地面水中亚硝酸盐氮一般低于0.1mg/L,某些地下水可能会由于地层结构的还原作用出现较高浓度的亚硝酸盐氮。本次检测实操,选用的是奥谱天成ATE3000手持式多参数水质分析仪,在《GB/T 7493-1987 水质 亚硝酸盐氮的测定 分光光度法》的基础上,将重氮法分光光度法的改进,通过将磷酸改为盐酸,增加了检测试剂的稳定性和贮存时间,并将显色时间缩短,使得此方法更为快速便捷。水样采集可用玻璃瓶或聚乙烯塑料瓶,采样后应尽快测定,以避免细菌将亚硝酸盐还原成氨。若不能立即测定,可于每升水样中加入40mg氯化汞抑菌,并置4℃冰箱避光保存,可稳定1~2天。实验原理:在磷酸介质中,pH值为1.8±0.3时,亚硝酸盐与对氨基苯磺酰胺反应,生成重氮盐,再与N-(1-萘基)-乙二胺偶联生成粉红色染料。在540nm波长处有最 大吸收。测量原理图-根据朗伯比尔定定律注意点:水样采集可用玻璃瓶或聚乙烯塑料瓶,采样后应尽快测定,以避免细菌将亚硝酸盐还原成氨。若不能立即测定,可于每升水样中加入40mg氯化汞抑菌,并置4℃冰箱避光保存,可稳定1~2天。手持式多参数水质分析“傻瓜式”操作高测量精度:相关系数可以达到0.999X以上显色时间短,让您可以轻松,快速的完成检测任务稳定的灯源,让您可以准确可靠地进行检测。ATE3000是奥谱天成高性价比的亚硝氮水质分析仪,整机不到1kg,使用和携带都很方便,适合实验室和野外场景。
  • 生物药分析丨如果有这样一台“加速器”,您想快进到哪一步?
    HPLC肽图分析是蛋白质一级结构研究中极为重要的手段之一,不但可以比较重组与天然蛋白质结果之间的同一性,确认基因工程上游和下游处理过程中是否发生差错、重组产物中是否存在翻译后修饰及未预期氨基酸的变异等,而且不同批次产品的肽谱比较可验证工艺过程的稳定性。因此,肽图分析在生物技术药物质控中尤为重要。 目前肽图分析常用方法主要是胰蛋白酶切RP-HPLC方法。蛋白样品经酶解后进入HPLC,进行色谱分离,保留时间不同的肽段依次进入紫外检测器进行检测。 岛津的相关液相产品,例如Nexera-i系列、LC-40以及生物惰性兼容液相Nexera Bio均可实现蛋白类药物的HPLC肽图分析。 蛋白类药物肽图分析电荷异构体的存在将会影响到蛋白质药物的活性、结合能力、药代动力学、免疫原性及结构稳定性,从而影响药物有效性、安全性及保质期。同时,电荷异质性的控制程度也反映了重组蛋白类药物生产工艺的一致性。因此,在生物类似药的研发及与原研药的一致性评价研究中,电荷异质性是工艺质量控制的重要因素。 为了最大限度地降低蛋白质与固定相填料的离子相互作用及二者之间可能存在的吸附作用,电荷异质性分析通常使用高离子强度的流动相,并且采用碱性或酸性分析条件。但是,高离子强度流动相和碱性/酸性分析条件给液相色谱仪的耐腐蚀性和系统稳定性带来严峻的挑战。 ATP分析 糖基化是蛋白质的一种重要翻译后修饰,糖基分析主要包含唾液酸含量测定、单糖组成分析、糖基化位点测定、糖链结构测定等。 唾液酸含量的测定是先将唾液酸从糖链上解离成游离状态,再进行化学反应实现衍生化,通过测定衍生化产物从而测定唾液酸含量,常用的方法有间苯二酚显色法和HPLC法。间苯二酚显色法是利用间苯二酚将游离的唾液酸进行衍生生成有色化合物,再用紫外分光光度法测定其含量;HPLC法是利用邻苯二胺(OPD)对唾液酸进行衍生,然后用带紫外检测器的HPLC或者LC-MS/MS进行定量。 蛋白类生物药糖型分析 蛋白质药物在其生产、贮藏、运输、销售以及用药过程中由于外力因素的作用可能会产生聚集。蛋白质聚集现象会导致蛋白药活性和其在药品中的浓度降低,并可能产生有害的毒理学作用和免疫应答,甚至发生危及生命的药物反应。FDA关于聚集体的指导原则中就指出蛋白聚集体在人体内极易产生免疫原性。 对于常见的蛋白质低聚体(二聚~四聚体),非还原型聚丙烯酰胺凝胶电泳( SDS-PAGE )需要在变性条件下进行,一般会影响多聚体的检测。而体积排阻色谱法(SEC)条件温和,不会对蛋白的形态产生较大的影响。因此,SEC法能较准确地检测蛋白质中的低聚体,是蛋白质药物开发、质量控制和稳定性研究中常用的聚集体分析方法。 大小变异体,聚体分析 应用案例:单抗药物聚集体分析,推荐生物惰性液相 作为细胞生长的环境和营养来源,培养基的性能很大程度上决定了细胞密度和表达产物的产量和质量,因此培养基是工艺开发最重要的环节之一。其中,在生产工艺优化和确认过程中,以及QC过程中,细胞上清液中氨基酸含量的监测对细胞培养有着重大的意义。但是,离线衍生后使用HPLC分析,以及HPLC柱后衍生法检测氨基酸等方法,不仅耗时耗力,并且对结果准确度影响较大。因此,开发操作简单、高效稳定的分析方法,对氨基酸组成分析非常有意义。 24种氨基酸标准溶液色谱图(双波长同时检测)
  • 赫默瑞发布法国HEMERA总磷分析仪新品
    Hemera L800D总磷在线分析仪技术参数指标 ● 检测参数:总磷TP● 测量原理:钒钼黄比色法● 量程 :TP:0-2mg/L至0-100mg/L● 测量精度: ±2% F.S.或±0.02mg/L P(测量范围0-2mg/L)● 测量响应时间:TP:2-10分钟● 操作环境:温度:5-50°C (41°F-122°F);湿度: 90%RH?● 水样:流速:0-2 L/分钟;压力:0-2 bar;温度:0-100°C (32°F-212°F) 。● 显示: 8.5”彩色触摸屏16/9 (LED背景光), 双层玻璃, 800x480像素,具有自动屏保功能。存储:8GB SD卡(1年数据)● 电源:100-240VAC或 24VDC/50-60Hz● 功率: 20W(典型)/60W(最大)● 通讯: 模拟输出:4路4-20mA隔离输出(4路以上备选),最大负载电阻500Ω 数字输出:RS485 Modbus (Slave 或 Master)报警:默认继电器 / 5A (NO) 3A (NC) @ 30 VDC / 5A (NO) 3A (NC) @ 277 VAC USB:历史数据下载,仪器出厂设置数据信息下载● 测量时间间隔设定:2-720分钟任意可设。● 具备自动清洗和自动调零功能:自动清洗和自动调零功能可以根据需要在菜单选项中设定为“是”或“否”;自动清洗时间间隔和自动调零时间间隔可根据测量时间任意设定,或根据测量次数任意设定。● 取样及预处理:仪器带有取样泵,具有自动取样功能,具有预处理过滤功能(备选)。● 机箱:壁挂式, 防护等级IP65,不锈钢1.4435 (SS316L),H430mmxW340mm xD200mm● 耗材:过硫酸钾溶液(potassium persulfate):氧化剂,2ml/次。 钼钒酸溶液(vanadate molybatate):显色剂,2ml/次。创新点:总磷可以合并到COD和氨氮中去,三合一同时测量法国HEMERA总磷分析仪
  • DeChem-Tech携手朗诚参加慕尼黑上海分析生化展
    两年一次的慕尼黑上海分析生化展(analytica China)将于2012年10月16-18在上海新国际博览中心举行,德国DeChem-Tech.GmbH公司携手朗诚实业有限公司共同参展。我们的展位号是N1-1240,届时欢迎大家光临DeChem-Tech展台。 本次展会德国DeChem-Tech.GmbH公司将发布全新型号全自动间断化学分析仪,演绎世界上最先进的全自动间断化学分析仪的风采;CleverChem系列全自动间断化学分析仪(Auto Discrete Analyzers)是目前离子领域分析技术的新突破,采用第二代直读分析技术,完全模拟人工比色法,将样品、试剂和显色剂加入比色皿中产生颜色反应,待测物浓度与反应液最终颜色深浅成正比关系,经比色计检测透光强度,得到相应的峰值吸光度,再通过标准曲线自动计算得到相应的浓度。所有步骤通过进样臂和电脑控制,充分实现机械化和智能化。CleverChem系列仪器充分实现自动化、原位化、实时化。
  • 日立LA8080蛋白水解法&生理体液法分析氨基酸
    氨基酸是组成生物体中蛋白质的基本单元,主要以下列两种形式存在:一种是以结合态存在于肽和蛋白质中,被称为标准氨基酸,这类氨基酸约有20种,分析这类氨基酸的方法被称为“蛋白水解法(标准分析法)”;另一种是以游离态存在于生理体液(如血浆,尿液等)、食品(如肉制品,饮料等)中,这些氨基酸包含氨基酸代谢物和前体,被称为游离氨基酸,因其直接影响食品的口感与风味,近年来备受关注。游离氨基酸比标准氨基酸的种类丰富,至今已知主要有约40种,分析这类氨基酸的方法被称为“生理体液法”。高效液相色谱柱后衍生法是氨基酸分析最常用的方法,一般通过色谱柱分离后,进行柱后衍生再测定。茚三酮柱后衍生法是通过离子交换色谱柱分离氨基酸后,与茚三酮试剂混合发生化学反应(显色),可在可见光区进行检测,此方法可靠性与稳定性高,被广泛应用。下面使用日立全自动氨基酸分析仪LA8080,分别采用蛋白水解法&生理体液法测定样品中的标准氨基酸和多种游离氨基酸。缓冲液和衍生试剂可使用市售配件,适用于品质管理等常规分析。蛋白水解(PH)法日立全自动氨基酸分析仪LA8080采用长寿命高理论塔板数3 μm分离柱,可在30 min内实现标准氨基酸分离度全部大于1.2分离。并且通过调整洗脱程序,还可把分析时间从30 min更进一步缩短到24 min,实现氨基酸的超高速分析。生理体液(PF)法日立全自动氨基酸分析仪LA8080采用第三代衍生技术—TDE3,填充高效热传导材料,提高传热效率,检出限进一步提高到2.5 pmol,使用寿命是第二代的2.5倍。从上述结果中可见,对于复杂的生理体液,LA8080仍然能够实现高灵敏度和分离度的检测。日立全自动氨基酸分析仪LA8080采用日立独家的长寿命高灵敏度的第三代TDE3尖端衍生技术,以及长寿命高理论塔板数3 μm分离柱使氨基酸的分析进入超高速全自动分析的时代。
  • 默克密理博大力进军水质分析行业
    默克密理博实验室基础业务于2011年 11月7 - 9日参加2011中国(上海)国际环境监测仪器展览会。在此次展览会上,我们集中展示了水质与食品分析产品, 如Pharo系列多功能水质分析系统, NOVA系列多参数水质分析仪, Aquamerck Microquant Aquaquant 半定量快速测试盒/测试箱, Merckoquant 定性/半定量测试试纸, Reflectroquant RQ反射仪系统等。 此次出展主要针对自来水厂,污水厂,各省市环境监测站,科研高校政府部门,工业企业排污单位给客户带来了一个水质检测的全面解决方案。此次展出的Microquant 系列测试盒依据透射光比对方法,依据样品显色后的的颜色判断测试结果。可以让用户有效测试混浊和略带颜色的水样,无需任何的样品处理工作。也让客户正真体验到以人为本的实验检测。关于默克密理博   默克密理博是德国默克集团旗下的生命科学部门。为生命科学领域提供广泛的创新的高性能产品、服务以及专业的合作,确保我们的客户在生物科技与专业治疗领域的药品生产中的研究、开发和生产过程中取得成功。在新科学和工程领域专业的视角与合作,位列全球三大生命科学研发合作伙伴之一,默克密理博将成为生命科学领域的客户们战略伙伴,帮助他们提升其在生命科学的能力。  默克密理博总部位于美国马萨诸塞州的比尔里卡,全球拥有员工10,000名,在68个国家有分支机构。其2010年总收入达17亿欧元。默克密理博在美国和加拿大以EMD密理博的名义经营。关于默克  默克集团是一家全球化的医药和化学企业,2010年总销售额达93亿欧元。它的历史可以追溯到1668年。目前在全球68个国家拥有近40,000名员工,共同打造默克集团的未来。企业的成功来自于具有默克员工不断地创新。公司的业务都在德国默克集团 (Merck KGaA) 名下开展。目前默克家族持有德国默克集团约70%股份,自由股东持有约30%的股份。1917年,默克设在美国子公司Merck & Co. 从集团公司剥离,并从此成为独立的企业。
  • 总氮分析原理和用途
    水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。大量生活污水、农田排水或含氮工业废水排入水体,使水中有机氮和各种无机氮化物含量增加,生物和微生物类大量繁殖,消耗水中溶解氧,使水体质量恶化。胡泊、水库中含有超标的的氮、磷类物质时,造成浮游植物繁殖旺盛,出现富营养化状态。原理:采用高温高压、碱性条件下氧化剂将水样中氨氮、亚硝酸盐氮及有机氮氧化成硝酸盐,在浓硫酸介质中,硝酸盐与显色剂反应生成浅黄色的硝基化合物。该化合物的吸光度与水样中总氮含量成正比,通过测量该化合物的吸光度,从而得到水样中总氮的含量。主要应用场景有企业雨水、污水的监测,市政管网、提升泵站、地下水、河水、湖泊水、海水等水质中总磷含量的监测。
  • 食安科技参与起草的国家标准《干式化学分析仪性能评价通则》获批发布
    广东达元绿洲食品安全科技股份有限公司参与起草的推荐性国家标准——《干式化学分析仪性能评价通则》(标准号:GB/T 42754-2023),已由国家市场监督管理总局、 国家标准化管理委员会在《关于批准发布液压传动连接 试验方法 第3部分:软管总成等535项推荐性国家标准和2项国家标准修改单的公告》(2023年第2号)中予以批准发布,将于2023年12月1日起正式实施。 该国家标准适用于食品检测干式化学分析仪的性能评价,其中包括胶体金免疫层析干式化学分析仪、显色法干式化学分析仪两大类,解决了国内食品检测干式化学分析仪的评价没有国家标准的痛点,对于规范业内干式化学分析仪产品及评价有积极深远的意义。
  • 陆恒生物发布陆恒生物多参数水质分析仪LH-T725新品
    名称:多参数水质检测仪简介:多参数水质检测仪,是杭州陆恒生物科技有限公司研发的一款测定水中COD氨氮总磷总氮浓度的检测仪。原理:采用快送消解分光光度法,纳式试剂光度法与钼酸铵分光光度法,碱性过硫酸钾消解紫外分光光度法分别测定水样中的COD、氨氮、总氮、总磷浓度,消解管消解,消解比色一体,操作简单,方便,测量结果准确有效。一、概述多参数水质分析仪CNPN-4SⅢ(COD、氨氮、总磷、总氮、总铁、铜、六价铬、总铬、镍、锌、锰、溶解氧、PH、余氯、总氯、磷酸盐、亚硝酸盐、硫化物、二氧化氯、臭氧、尿素)是杭州盈傲仪器有限公司隆重推出的第三代水质快速分析仪器,仪器采用进口高亮度LED冷光源和德国先进的光学结构,光学性能和检测效果极佳;人性化的操作界面、简单的测量方法和大屏幕液晶屏显示,使得专业和非专业人事使用起来都得心应手,是科学研究、数据分析、水质检测的得力助手,广泛应用于科研院所、污水处理、环境监测、石化、造纸、制药、印染、纺织、皮革、酿酒、电子、市政、高校等行业并受到广大用户的一致好评。多参数水质分析仪是依据物质分子对可见光产生的特征吸收光谱及光吸收定律(朗伯-比尔定律)的原理,用未知浓度样品与已知浓度标准物质比较的方法进行定量分析的仪器。仪器由LED光源、比色池、光电传感器、微处理器和微型打印机构成,可直接在液晶屏幕上显示出被测样品中某些项目或某污染物的含量,并打印出分析结果。 二、仪器特点 1. 采用德国新型光路结构,具有卓越的光学性能,极高的测量精确度、稳定性,是国内目前较先进、较实用的分析仪器;2. 采用准平行冷光源,具有透射面积广、节能、环保、寿命长、响应速度快等优点;3. 采用全触摸7寸彩屏,屏幕清晰,界面人性化,中文显示,操作指导,读数直观;并有辅助按键操作,两种操作模式更智能、更实用。4. 多参数水质分析仪可检测项COD、氨氮、总磷、总氮、余氯、总氯、二氧化氯、臭氧、磷酸盐、亚硝酸盐、铬、硫化物、溶解氧、PH、尿素等参数,实用性极高;5. 采用消解比色一体管,COD消解与检测用同一根管子,无需移液,减少检测危险性;6. COD试剂配方升级,低可到5mg/l,高可到16000mg/l;消解时间从传统法两小时缩短到20分钟;7. 检测数据可实时存储,随时打印,随时调取,且可存入电脑永久保存,读取无需驱动软件;8. 仪器全塑机壳,流线型设计,外观优美,表面经过特殊处理,抗氧化、耐酸碱,核心部件密封防水;9. 大容量内存,可测量多个检测项目和储存多组检测数据,存储数量为10000条;三、测量原理COD测定原理(铬法):在强酸性溶液中和过量的重铬酸钾存在下,以硫酸银做催化剂,通过加热催化氧化水中的还原物质,通过六价铬或三价铬的吸光度值与水样COD 值建立的关系,来测定水样COD 值。氨氮测定原理(纳氏试剂法):以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,根据络合物的吸光度与氨氮含量成正比,来测定水样中的氨氮含量。总磷测定原理(钼酸铵法):样品经过消解后,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸,立即被抗坏血酸还原,生成蓝色的络合物。据络合物的吸光度来测定水样中的总磷含量。总氮测定原理(麝香草酚法):水样中加入碱性过硫酸钾溶液,在高温高压条件下,可使水样中含氮化合物的氮元素转化为硝酸盐,可使水样中含氮化合物的氮元素转化为硝酸盐,与麝香草酚在浓硫酸的溶液中形成硝基酚化合物,在碱性溶液中发生分子重排,生成黄色化合物。 四、技术参数4.1分光光度计技术参数 1. 吸光度检测范围:0-3.5Abs2. 光路稳定性:≤±0.002Abs/30min3. 吸光度分辨率:0.001Abs4. 操作重复性:≤±0.005Abs5. 光源寿命:10万小时6. 滤光片寿命:5年7. 电源:DC12V/5A8. 使用环境:温度0-50℃,相对湿度0-90%(无冷凝)9. 尺寸:412x253x164mm10. 重量:3.25kg 4.2测定仪技术参数1. 测量范围:COD:0-15000mg/L 氨氮:0-50mg/L 总磷:0-20mg/L 总氮:0-500mg/L 以下参数需定制: 总铁:0-10mg/l 余氯:0-3mg/l 铜:0-50mg/l 余氯:0-12mg/l 六价铬:0-10mg/l 总氯:0-12mg/l 总铬:0-10mg/l 磷酸盐:0-2mg/l 镍:0-5mg/l 硫化物:0-1mg/l锌:0-30mg/l 亚硝酸盐:0-0.3mg/l溶解氧:0-20mg/l PH:6.5-9 2. 测量精度:≤±5% 重复性:≤±3%3. 抗氯干扰:C(Cl-)<1500mg/L无影响4. 存储数据:10000条六、实验分析(一)项目选择及测量范围编 号项 目量程(mg/l)下限(mg/l)1COD LR-预0-15052COD MR-预100-15001003COD HR-预1000-1500010004氨氮LR0-50.055氨氮 HR5-500.56总磷 LR0-20.027总磷 HR2-200.28总氮LR0-500.59总氮HR50-500510COD LR-粉0-160511COD MR-粉100-160010012COD HR-粉1000-160001000以下参数需要定制13铁0-10.00mg/L0.01mg/L14铜0-50.00mg/L0.01mg/L15六价铬0-10.00mg/L0.01mg/L16总铬0-10.00mg/L0.01mg/L17镍0-5.00mg/L0.01mg/L18锌0-10.00mg/L0.01mg/L19锰0-10.00mg/L0.01mg/L20溶解氧0-20121PH6.5-9.0PH6.5PH22余氯LR0-30.0123余氯HR0-120.0524总氯0-30.0125磷酸盐(以磷计)0-20.0226亚硝酸盐0-0.30.00527硫化物0-10.004(二)实验试剂的配制% 部分试剂中含有汞盐和硫酸,操作时应按规定佩戴防护用具,避免接触皮肤和衣服。% 请使用蒸馏水和分析纯浓硫酸配制试剂,禁止使用工业级硫酸和长时间闲置的硫酸。% 为确保实验数据的准确性,请准确配制试剂,配制时应将粉包尽可能倾倒干净,必要时用溶液冲洗试剂瓶内部。% 废弃的试剂和检测后的残渣液,请勿随意丢弃,应做妥善的安全处理。1、COD LR-粉 100样:将整瓶粉剂置于250ml烧杯,加入90ml蒸馏水,用玻璃棒稍搅拌溶解,再边搅拌边沿烧杯壁缓慢的加入10ml浓硫酸(半年内生产98%分析纯),粉末搅拌溶解完,冷却后,装入试剂瓶中常温避光保存备用。2、COD HR-粉 100样:将整瓶粉剂置于250ml烧杯,加入90ml蒸馏水,用玻璃棒稍搅拌溶解,再边搅拌边沿烧杯壁缓慢的加入10ml浓硫酸(半年内生产98%分析纯),粉末搅拌溶解完,冷却后,装入试剂瓶中常温避光保存备用。3、COD 催化剂-粉 100样:将整瓶粉剂置于500ml烧杯,用玻璃杯将小块装粉末稍捣碎,加入300ml浓硫酸(半年内生产98%分析纯),放置于暗处溶解(溶解较慢),粉末完全溶解后,搅拌均匀,装入试剂瓶中常温避光保存备用。4、COD 预制管试剂LR(10-150mg/L):管装试剂(一次性),直接使用。5、COD 预制管试剂HR(100-2000mg/L):管装试剂(一次性),直接使用 ,MR、HR曲线通用。6、氨氮试剂A:滴瓶装试剂,直接使用。7、氨氮试剂B:滴瓶装试剂,直接使用。8、总磷试剂A:将整瓶粉剂置于250ml烧杯,加入100ml蒸馏水搅拌溶解,并装入试剂瓶中,2-8℃避光保存备用。9、总磷试剂B:将整瓶粉剂置于100ml烧杯,加入20ml蒸馏水搅拌溶解,并装入滴瓶中,2-8℃避光保存备用。10、总磷试剂C:滴瓶装试剂,直接使用,2-8℃避光保存备用。11、总氮试剂1:将1包试剂1(1)加入5ml试剂1(2)中完全溶解,即为试剂1,备用,可用10次(此试剂冬天可于25-40℃水浴加热溶解,2-8℃避光保存两周内可用)。12、总氮试剂2:直接使用,2-8℃避光保存备用。13、总氮试剂3:直接使用,2-8℃避光保存备用。14、总氮试剂4:直接使用,2-8℃避光保存备用。 (三)水样的采集、保存、吸取1、水样的采集 采集水样前,应先用水样洗涤采样塑料瓶或玻璃瓶及瓶盖2~3次。在采集水样时要注意将水灌满,并将瓶盖拧紧。若采集多个水样,要注意做好标记,以防混淆。 (1)地表和地下水样的采集 采集井水 让泵运转足够时间排净管道积水后,再汲取新鲜水样。 采集泉水 可在涌水口处直接采样。 采集自来水 应先放水数分钟,使积留在水管中的陈旧水排出,然后再采样。 采集地表水 尽量在水域中央采集样品,并采集水面下3~5cm的水样。如果使用有盖的容器,先将容器浸入液面下再取掉瓶盖。 (2)污水采集 中轻度污染废水 如行业处理后废水某些排放口处采样,同时要注意记录样品采集的过程包括时间、位置等,便于日后分析研究。 采集水域污水 当水深>1m时在表层1/4深度采样,水深≤1m时在水深1/2处采样。采样位置在采样断面中心,样品容器必须用水样冲洗三次后再行采样。采样时应注意除去水面的杂物、垃圾等漂浮物。2、水样的保存样品采集后,应尽可能快进行分析,以减少实验误差并减少工作量,本仪器项目宜立即进行分析测定。 3、水样的吸取传统方法一般是使用移液管,但有些化学具有腐蚀性,不太安全,且新手很难取准水样,因此本公司在销售仪器时会配送更安全、便精确、更方便的移液枪,使用方法可咨询销售人员。使用前先调好要吸取的量,吸时在移液枪卡点时停止,放液时按到底。不同的水样一定要更换吸头。4、水样的稀释一般水样干扰物多、检测浓度超量程情况下会采用水样稀释法。 例:稀释10倍:可取1ml原水,再加入9ml纯净水或蒸馏水混合均匀,即为稀释了10倍,测出来的结果值要乘以10才为正确值。(四)水样检测1、COD的检测(COD 预制管试剂)操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(165℃.20min)模式打开主机电源,预热根据需要准备若干COD 预制管试剂置试剂管架?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样COD值,并按照对应量程选择适配LR或HR试剂?COD LR-预 需要单独做空白,COD MR-预和COD HR-预 可以共用空白;?较清洁水样可直接测量,水样应做相应处理;?COD测量的主要干扰因素为氯离子,本试剂自带抗氯干扰1500mg/L;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-150mg/L时用(COD LR-预曲线)为100-1500mg/L时用(COD MR-预曲线)为1000-15000mg/L时用(COD HR-预曲线)3量取2ml蒸馏水加到1支COD 预制管试剂LR中(空白样)量取2ml蒸馏水加到1支COD 预制管试剂HR中(空白样)量取2ml蒸馏水加到1支COD 预制管试剂HR中(空白样)量取2ml水样置于另1支COD 预制管试剂LR中量取2ml水样置于另1支COD 预制管试剂HR中量取0.2ml水样和1.8ml蒸馏水于另1支COD 预制管试剂HR中4加盖拧紧颠倒摇匀(注:此时试管较烫,小心烫伤)?有沉淀属正常现象;将COD 预制管插入消解孔中消解,并盖上防护罩。?消解前请确保消解管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;5消解完成后,将COD 预制管置于试剂管架冷却2min,颠倒摇匀COD 预制管,待冷却至25℃室温。(自然冷却或水冷均可,温度过高会影响结果准确性和损坏仪器)。?消解完请空冷2min后再水冷,以免COD预制管急剧热胀冷缩发生危险;?冷却后请勿剧烈摇动试剂管,以免悬浮物影响COD测量;6选择COD LR-预曲线测量选择COD MR-预曲线测量选择COD HR-预曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样COD值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,酌情进行稀释或重测。2、COD的检测(COD粉剂试剂)操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(165℃.20min)模式,打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干使用;2预估水样COD值,并按照对应量程选择LR或HR量程试剂?COD LR-粉 需要单独做空白,COD MR-粉和COD HR-粉可以共用空白;?较清洁水样可直接测量,水样应做相应处理;?COD测量的主要干扰因素为氯离子,本试剂自带抗氯干扰1000mg/L;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-160mg/L时用(COD LR-粉曲线)为100-1600mg/L时用(COD MR-粉曲线)为1000-16000mg/L时用(COD HR-粉曲线)3量取2ml蒸馏水加到1支 试剂管空管 中(空白样)量取2ml蒸馏水加到1支试剂管空管中(空白样)量取2ml蒸馏水加到1支试剂管空管中(空白样)量取2ml水样置于另1支试剂管空管量取2ml水样置于另1支试剂管空管量取0.2ml水样和1.8ml蒸馏水于另1支试剂管空管4向各个试剂管中加入1ml COD LR试剂向各个试剂管中加入1ml COD HR试剂?空白样也需要加入试剂;?有沉淀属正常现象;?消解前请确保消解管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;依次缓慢加入COD催化剂3ml,加盖拧紧颠倒摇匀(注:此时试管较烫,小心烫伤)。将试剂管插入消解孔中消解,并盖上防护罩。5消解完成后,将试剂管置于试剂管架冷却2min,颠倒摇匀消解管,将试剂管冷却至25℃室温(自然冷却或水冷均可,温度过高会影响结果准确性和损坏仪器)。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;?冷却后请勿剧烈摇动试剂管,以免悬浮物影响COD测量;6选择COD LR-粉曲线测量选择COD MR-粉曲线测量选择COD HR-粉曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样COD值。7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,酌情进行稀释或重测。3、氨氮的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样氨氮值,并按照对应量程进行取水样及加入试剂?氨氮LR和氨氮HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-5mg/L时用(氨氮LR曲线)为5-50mg/L时用(氨氮HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管(空白样)取水样5ml于另1支试剂管空管取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中4依次向各个试剂管中加入加入3滴氨氮试剂(A)摇匀?空白样也需要加入试剂,并且与水样加入的试剂相同;?滴加试剂时应尽量保证每滴试剂的均匀性;依次加入3滴氨氮试剂(B)。附:(水样中若含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时,对比色测定有干扰,需预处理或稀释后测定;(预处理请参照HJ535-2009))5加盖摇匀后静置显色10min?如含有氨氮,溶液应呈现为黄棕色,且浓度越大,颜色越深;6选择氨氮LR曲线测量选择氨氮HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样氨氮值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。4、总磷的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(120℃.30min),打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总磷值,并按照对应量程进行取水样及加入试剂?总磷LR和总磷HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理,参照GB11893-89;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-2mg/L时用(总磷LR曲线)为2-20mg/L时(总磷HR曲线)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)取水样5ml于另1支试剂管空管中准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中。3依次向各个试剂管中加入1ml总磷试剂(A),将试剂管盖拧紧并摇匀。?空白样也需要加入试剂;将试剂管插入消解孔中消解,并盖上防护罩。?消解前请确保试剂管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;4消解完成后,将试剂管置于试剂管架冷却至25℃室温。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;5依次加入4滴总磷试剂(B),加盖摇匀后静置30S,依次加入6滴总磷试剂(C),加盖摇匀后,静置显色15min。?试样中如含有磷,显色应为蓝色,且浓度越大,蓝色越深;6选择总磷LR曲线测量选择总磷HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;7选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总磷值8浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。5、总氮的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(125℃.30min)并开始加热,准备3个洁净干燥的“试剂管空管”于试管架,分别标明A、B、C。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总氮值,并按照对应量程进行取水样及加入试剂?取一包试剂1(1)粉包,溶于5ml试剂1(2)中,完全溶解后即为试剂1(10次用量)。若未完全溶解,可25-40℃水浴加热溶解,2-8℃冷藏保存一周使用。?移取样品或试剂的移液管不可交叉使用;为0-50mg/L时(总氮LR曲线)为50-500mg/L时(总氮HR曲线)向试剂管空管A中加入1ml待测水样,再加入0.5ml总氮试剂1,盖上盖子,上下颠倒摇匀5次。向试剂管空管A中加入0.1ml待测水样,再加0.9ml蒸馏水,再加入0.5ml总氮试剂1,盖上盖子,上下颠倒摇匀5次。3将试剂管A插入消解孔中消解,并盖上防护罩消解30min。?消解前请确保试剂管盖拧紧,以免消解液溢出;4消解时间结束后带上手套,趁热将试剂管A快速摇晃10秒,后置于试管架冷却至25℃室温或放入15-20℃自来水中水冷5min。?水面需高于试剂管A内液面;5从冷却后的试剂管A中取0.25ml消解液加入到试剂管C中,向试剂管C中加入2滴试剂2(这步从试管中央加入、过程中避免沾附管壁),然后沿壁加入0.6ml试剂3,盖上盖子左右摇匀10下,计时5min。?这里一定要用0.1-1ml的移液枪配长吸头取液;6然后再向试剂管C中缓慢加入(防止溅出)5ml试剂4,加盖上下颠倒摇匀5下后置15-30℃自来水中水浴冷却5min。?尽量不要出现试管中液体蒸发,从而影响结果值;7空白样管的制作:向消解管B中加入5ml蒸馏水即成。?无蒸馏水用纯净水;8选择总氮LR曲线测量选择总氮HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;9选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总氮值。10浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。11注意事项:每一种试剂取完液后请立即盖上盖子密封。12干扰:氯离子含量在2000ppm以内均不产生干扰,但氯离子含量达到600ppm以上时,终产物颜色会变成绿色,不影响测定结果。6、总铁的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管.?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总铁值,并按照对应量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-1mg/L时用(总铁LR曲线)为1-10mg时用(总铁HR曲线)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL水样置于另1支粗型比色管中准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中3分别向两粗型比色管加入1mL总铁试剂(Ⅰ),左右摆动摇匀。?空白样也需要加入试剂;?还原剂:氰化物、亚硝酸盐等,可通过加酸煮沸除去。?汞、镉、银等。可与邻菲罗林生成沉淀,浓度低时,可加过量邻菲罗林来消除,浓度高时,应将沉淀过滤去除。再分别向两管中加入1包总铁试剂(Ⅱ),左右摆动摇匀溶解完全。4静置反应5分钟5选择总铁LR曲线测量选择总铁HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量6竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样总铁值7浓度显示及其数据选择“保存”或“打印”?样品测量结果应在曲线范围内,如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;7、铜的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管.?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样含铜值,并按照量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;?液体本身带有的颜色会有干扰,可用活性炭脱色。为0-5mg/L时用(铜LR曲线)为5-50mg时用(铜HR曲线)3准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL水样置于另1支粗型比色管中准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中4分别向两粗型比色管加入1mL铜试剂,盖上盖子左右摆动摇匀。?空白样也需要加入试剂;静置反应2分钟?水中共存的AL3+、Fe3+、Ag+、CN-等离子会干扰测定?水样PH值应调至4-75选择铜LR曲线测量选择铜HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量6竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样总铁值7浓度显示及其数据选择“保存”或“打印”?样品测量结果应在曲线范围内,如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;8、六价铬的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的粗型比色管。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样六价铬值,并按照对应量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-1.0mg/L时用(六价铬LR曲线)为1-10mg/L时用(六价铬HR曲线)3准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL蒸馏水加到1支粗型比色管中(空白样)准确量取15mL水样置于另1支粗型比色管中准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中4分别向两粗型透明比色管加入1包铬(VI)试剂,盖上盖子摇匀溶解.?次氯酸根、亚铁离子、亚硫酸根、硫代硫酸根离子存在会干扰测定 ?空白样也需要加入试剂;静置反应10分钟5选择六价铬LR曲线测量选择六价铬HR曲线测量测定温度为10℃-30℃选好曲线后,竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样六价铬值.从“样品检测”界面里的“项目”列表中选择对应曲线进行测量6浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。9、总铬的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(125℃.30min),打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总铬值,并按照对应量程进行取水样及加入试剂?总铬LR和总铬HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;0-1mg/L时(总铬LR曲线)1-10mg/L时(总铬HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)取水样5ml于另1支试剂管空管中准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中4依次向各个试剂管中加入2ml总铬试剂(一),并将试剂管盖拧紧并摇匀。?空白样也需要加入试剂;将试剂管插入消解孔中消解,并盖上防护罩。?消解前请确保试剂管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;消解完成后,将试剂管置于试剂管架冷却至25℃室温。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;5将各个试剂管中依次加入5滴总铬试剂(二),加盖摇匀,静置显色15min。?试样中如含有铬,显色应为紫红色,且浓度越大,颜色越深;6选择总铬LR曲线测量选择总铬HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总铬值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。10、镍的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样含镍值,并按照对应量程进行水样处理再检测。?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-0.5mg/L时用(镍LR曲线)为0.5-5mg时用(镍HR曲线)3准确量取15mL蒸馏水加到1支粗型比色管中。(空白样)准确量取15mL蒸馏水加到1支粗型比色管中。(空白样)准确量取15mL水样置于另1支粗型比色管中。准确量取1.5mL水样+13.5ml纯净水置于另1支粗型比色管中。4分别向两粗型比色管加入1mL镍试剂(Ⅰ),缓慢摆动摇匀。?空白样也需要加入试剂;?待测水样pH值应为4-7,温度为20℃-30℃。?水中共存5倍以上的Cu2+ 、Co2+,20倍以上的Zn2+、Pb2+ 、Al2+、Fe3+、Mn2+会干扰测定。?加入镍(Ⅱ)试剂和镍(Ⅲ)试剂后不能上下振摇,以免产生泡沫影响比色。再分别向两管中加入1ml镍试剂(Ⅱ),缓慢左右摇匀溶解完全。5静置反应15分钟后分别加入一包镍试剂(Ⅲ),缓慢左右摇匀溶解。6选择镍LR曲线测量选择镍HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量7竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样含镍值。8浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;11、锌的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。较清洁水样可直接采样测定,测总锌及含悬浮物和有机物较多的水样,需对水样做以下处理:移取50ml水样于150ml烧杯中,加入5ml浓硝酸,加热蒸发至10ml左右,稍冷再加入5ml浓硝酸和1ml高氯酸,继续加热蒸发至近干,加水40ml,加热煮沸3min,冷却,用(1+1)氨水将试液调节pH至中性,转移至50ml容量瓶用水稀释至标线。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样含锌值,并按照对应量程进行取水样及加入试剂?锌LR和锌HR可共用空白;?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-3mg/L时(锌LR曲线)水样锌值为3-30mg/L时锌HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管(空白样)取水样5ml于另1支试剂管空管准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中。41、依次向各个试剂管中加入加入4滴锌试剂(一)、4滴锌试剂(二),加盖摇匀。2、依次加入2ml锌试剂(三)、1ml锌试剂(四),加盖摇匀。?空白样也需要加入试剂,并且与水样加入的试剂相同;?滴加试剂时应尽量保证每滴试剂的均匀性;5加盖摇匀后静置显色5min?如含有锌,溶液应呈现为深橙红色,且浓度越大,颜色越深;6选择锌LR曲线测量选择锌HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样锌值。7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。12、锰的检测步骤操作说明1打开主机电源,预热;准备若干洁净干燥的粗型比色管。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2准确量取15mL蒸馏水加到1支粗型比色管中(空白样)?较清洁水样可直接测量,混浊有颜色水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;准确量取15mL水样置于另1支粗型比色管中。3分别向两粗型比色管加入1包锰试剂(Ⅰ),摇匀溶解。?空白样也需要加入试剂;?待测水样pH值应为5-10;?氧化剂或还原剂干扰测定,可预先加硝酸或硫酸加热消解后再进行测定。再分别向两管中加入1包锰试剂(Ⅱ),摇匀溶解。4选择(锰)曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;竖直放入空白样管,盖上遮光罩,“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”读取水样含锰值。5浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测;13、溶解氧的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(溶解氧)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加满待测水样(水样凹液面距离瓶口约1mm),放入“样品比色槽”,按“标零”键调零、取出调零比色管。水样取样时需注意采样瓶中不能有气泡残存。3加入4滴试剂1和4滴试剂2,迅速盖上盖子,上下颠倒3次(玻璃瓶中不可有气泡)。由于实际操作过程中比色瓶内溶液较难达到无气泡,因此需要保证当比色瓶倒置时气泡直径小于1cm,才能使测定结果无较大误差。4静置3分钟后,再加入4滴试剂3,迅速盖上盖子,上下颠倒数次,直至沉淀完全溶解(玻璃瓶中不可有气泡)。加入试剂3摇晃,静置后若浑浊物不溶解,再多加入1滴试剂3。5竖直放入样品管,盖上遮光罩,按“读数”读取水样溶解氧值。?浓度显示及其数据选择“保存”或“打印”6测完后用纯净水清洗比色瓶,否则反应后的产物易吸附瓶子,且难以去除。7干扰因素:1. 极端PH的样品,会产生干扰,应调节PH在2-10之间。2.亚硝酸盐在1.6mg/l以下,余氯在3mg/l以下不会干扰测定。14.PH的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(PH)曲线从“样品检测”界面里的“项目”列表中选择取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。PH最佳检测温度在30℃以下水样浑浊时需过滤处理2精确移取0.5ml PH试剂加入比色瓶中,摇晃均匀。pH试剂对人体有刺激作用,如不慎接触,用水冲洗,必要时请就医。3竖直放入样品管,盖上遮光罩,按“读数”读取水样PH值。?浓度显示及其数据选择“保存”或“打印”4测完后用纯净水清洗比色瓶。15.余氯的检测步骤操作说明1余氯值范围为0-3mg/l时选择 (余氯LR )曲线余氯值范围为0-12mg/l时选择 (余氯HR) 曲线?从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。?实验中使用的器具应是洁净干燥的;测完后用纯净水清洗。3加入1包余氯试剂0-3mg/l 加入1包余氯试剂0-12mg/l 试剂包装袋属于易撕袋,任何面皆可撕开。4摇晃均匀,反应1分钟内,放入仪器按“读数”键读取水样余氯值。少量试剂不溶解不影响检测5浓度显示及其数据选择“保存”或“打印”当样品余氯浓度超高时,所显深红色会很快褪尽,是因为余氯的漂白结果。6干扰因素:1.氧化剂:溴、碘、溴胺、碘胺、过氧化氢、铬酸盐、氧化锰、臭氧等。2.还原剂:亚硝酸盐等。3.若水的碱度超过250mg/l或酸度超过150mg/l,测定值会不稳定,可加入稀盐酸或氢氧化纳溶液进行调节。16.总氯的检测步骤操作说明1选择(总氯)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。实验中使用的器具应是洁净干燥的;测完后用纯净水清洗。采样后应立即测试氯值,氯易挥发。3加入1包总氯试剂0-3mg/l试剂包装袋属于易撕袋,任何面皆可撕开。4上下摇匀,反应3分钟后,放入仪器按“读数”键读取水样总氯值。少量试剂不溶解不影响检测5浓度显示及其数据选择“保存”或“打印”当样品总氯浓度超高时,所显深红色会很快褪尽,是因为总氯的漂白结果。6干扰因素:1.氧化剂:溴、碘、溴胺、碘胺、过氧化氢、铬酸盐、氧化锰、臭氧等。2.还原剂:亚硝酸盐等。3.若水的碱度超过250mg/l或酸度超过150mg/l,测定值会不稳定,可加入稀盐酸或氢氧化纳溶液进行调节。17.磷酸盐的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(磷酸盐)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。3加入1包磷酸盐试剂,摇晃均匀,使试剂完全溶解。试剂一定要完全溶解4再移取0.7ml磷酸盐激活剂P加入比色管中,摇晃摇匀。必须在10分钟内完成检测5反应1分钟后,放入仪器按“读数”键读取水样磷酸盐值。浓度显示及其数据选择“保存”或“打印”6每次测完后需用纯净水清洗比色瓶,若内壁脏污,可用稀硝酸浸泡片刻,以除去吸附的钼蓝有色物。7干扰因素:1.砷及砷酸盐、重金属对其有干扰作用。 2.具有高度缓冲能力或极端PH值样品有干扰。18.硫化物的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(硫化物)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。样品采集时使用清洁的棕色玻璃瓶或塑料瓶并装满盖紧,避免过多摇晃,采样后最好立即测试。3精确移取0.5ml硫化物试剂1加入比色管中,再加入4滴硫化物试剂2,摇晃均匀。水样若含余氯,需将掩蔽剂(已赠送)用10ml纯净水溶解后,加入黑色滴瓶中(已赠送)。在10ml水样中加入4滴掩蔽剂,静置2分钟后,再进行加入试剂1和试剂2 等检测步骤。4反应5分钟后,放入仪器按“读数”键读取水样硫化物值。浓度显示及其数据选择“保存”或“打印”5每次测完后需用纯净水清洗比色瓶。6干扰因素:1.水样中的硫代硫酸盐,亚硫酸盐等与碘能反应的还原性物质会产生正干扰。 2.悬浮物,色度也会干扰测定。19.亚硝酸盐的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1选择(亚硝酸盐)曲线从“样品检测”界面里的“项目”列表中选择2取一支洁净粗型比色管,加入10ml待测水样,放入“样品比色槽”,按“标零”键调零、取出调零比色管。样品采集时使用清洁的棕色玻璃瓶或塑料瓶并装满盖紧,避免过多摇晃,采样后最好立即测试。3加入1包亚硝酸盐试剂,摇晃约30秒,使试剂尽量完全溶解。检测时最佳温度为15℃-25℃4反应15分钟后,放入仪器按“读数”键读取水样亚硝酸盐值。浓度显示及其数据选择“保存”或“打印”5每次测完后需用纯净水清洗比色瓶。6干扰因素:氯胺、氯、硫代硫酸盐、聚磷酸钠和高铁离子有明显干扰作用。(五)实验器具的洗涤、保养(1)器具洗涤新的采样容器、比色管等器具,在使用前,需经10%硝酸浸泡洗净备用。每次实验结束后,请尽快将实验中涉及的采样容器、比色管等器具进行清洗。倒空溶液,用自来水清洗几次,然后用(1+9)HNO3溶液(HNO3与水的体积比是1:9)浸泡过夜,用自来水洗涤2-3次,再用蒸馏水清洗1-2次,最后用去离子水冲洗1次,空气中晾干,有条件的话可用烘箱低温吹干。比色管等的洁净程度对于实验结果尤为重要,请务必按此步骤操作,以免污物残留带来严重的结果误差。(2)保养实验器具不用时请收到配件箱或柜子、抽屉存放好。比色管使用时要小心,尽量避免表面有划痕,从而影响实验光路照射测定,实验后请尽快清洗,避免有色溶液长时间停留在比色管中。不使用时,请存放于盒子里以防止刮擦和破损。比色管长期使用表面划痕较多,此时应尽快更换新的替代。(六)可能遇到的问题及排除现象序号原因排除措施测量结果为未检出1样品浓度低于项目曲线的检测限(空白样和待测样显色后颜色差异小)选用低量程测量2样品浓度过高或样品含有大量的悬浮物(空白样和待测样显色后颜色差异大)稀释后测量或做预处理3未准确调零(空白样管壁未擦拭干净或比色池内有异物)擦拭干净比色管、检查比色池,若仍未解决,请重新做空白样4调零后测量空白样正常现象5空白样和待测样品放反了使用正确的空白样调零COD测量数据不稳定1消解比色管内有悬浮物或外壁有水渍、异物待悬浮物沉淀后测量或擦拭干净比色管(有划痕请更换比色管)COD测量数据不准1COD粉末试剂法所使用的试剂未准确配制(粉末未完全溶解或倾倒干净,使用的硫酸不合格)准确的配制试剂2水样中含有大量的氯离子稀释后测量或取样前加入硫酸汞/硝酸银掩蔽3测量时样品未冷却至室温(25℃)冷却至室温(25℃)后测量氨氮总磷总氮测量数据不稳定1水样中很有大量的干扰物质或悬浮物(显色后溶液应为澄清透明样,且显色基调应和对应项目一致-氨氮总氮显色为黄色、总磷显色为蓝色)稀释测量或做预处理(氨氮预处理参照HJ535-2009、总磷预处理参照GB11893-89)六、装箱清单序号 名 称 数 量 序号 名 称 数 量 1 主机 1台 2 电源线 1根 3 数据线 1根 4 试剂 多套 5 试管架 2个 6 防爆检测试剂管25支 7 操作流程示意图多张 8 试剂瓶 1个 9 擦拭布 2块 10 防腐手套 2双 11 使用说明书 1份 12 合格证/保修卡(说明书内)1份创新点:1.上代仪器为按键式的,新产品升级为触摸屏2.上代产品检测参数是固定的,新产品检测参数可以定制,客户也可自建曲线3.上代产品的检测误差是± 5%,新产品检测误差是± 3%4.上代产品检测试剂为粉剂,新产品检测试剂是水剂,检测方便5.上代产品是外购芯,新产品是自产芯陆恒生物多参数水质分析仪LH-T725
  • 化繁为简:液质助力法医生物检材中803种毒物分析
    毒品分析,属于法医和和刑侦领域毒物分析中的一类,意在通过分析化学尤其是现代仪器分析技术,对毒品进行定性和定量分析,从而协助判断当事人在事件中的法律责任,为案件提供侦破线索和证据。  在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈生物检材中的毒(药)物分析相关的一系列产品技术及解决方案。当前,法医生物检材毒物分析有两个难点:(1)如何把要分析检验的毒物或药物从生物样品中提取出来,即在检验之前,被分析的生物检材要经过分离、提取和净化的过程。在这个过程中, 最大的技术难点就是如何去除脂肪和蛋白质;(2)被分析的药物或毒物从生物检材中提取后,或有的经过体内代谢变成了代谢物, 母体药物残留很少。它从以前的化学显色反应、结晶法发展到薄层色谱, 又随着化学仪器分析技术的发展, 采用气相色谱、紫外和红外光谱法、原子吸收法、气相色谱—质谱联用法、高效液相色谱以及高效液色谱—质谱联用法。  所以在法医毒(药)物分析工作中,由于样品的复杂性、毒(药)物种类的广泛性、分析目标物的不确定性、检验方法的局限性,使得毒(药)物筛查技术一直备受分析工作者的重视。常见的毒品、农药、鼠药、治疗药物、催眠镇静类药物等,化合物种类多,标准品收集难度较大,检测流程繁琐。  进而,在SCIEX ZenoTOF 7600系统上,我们开发了非常方便快捷的针对803中毒(药)物的定性定量分析方法。方法开发过程中,利用Zeno肼(Zeno TM trap)技术可以显著提高化合物二级的响应强度,使用电子活化解离(EAD)技术又得到不同的化合物二级谱图信息,更有助于化合物的确证和定量。  ZenoTOFTM 7600系统技术特点  1. ZenoTOFTM 7600系统(简称7600系统,如图1)在高速脉冲技术检测器下,最快可以实现133Hz的扫描速度,可以实现更多MS/MS图谱采集数目  2. 7600系统全新的ZenoTM Trap(Zeno 阱)要通过提高离子占空比,实现对离子的富集作用,保证90%以上的离子能够进入飞行时间管中检测,从而提高了MS/MS的灵敏度。  3. 7600系统新加入的电子激活解离(Electron activated dissociation,EAD)碎裂技术,可以获得更多的MS/MS信息,与碰撞活化解离(Collision-activated dissociation,CAD)碎裂技术有良好的互补性,加强化合物结构解析。  4. 7600系统的信息依赖性采集模式(Information Dependent Acquisition,IDA)配合动态背景扣除(Dynamic background subtraction,DBS)和多重质量亏损过滤采集方式(Multiple Mass Defect Filter,MMDF),可以有效去除背景离子干扰,提高MS/MS采集效率和质量。  图1 ZenoTOFTM 7600系统  该方案特点:  1、化合物种类多,覆盖范围广,包含镇静催眠类、精神活性类、鼠药、治疗药物、农药等常见(毒)药物,共803种化合物   图2 正模式下化合物的提取离子流图  图3 负模式下化合物的提取离子流图  2、ZenoTM trap具有更高的灵敏度,在传统的飞行时间质谱中,由于速度不同,来自碰撞池的碎片通常会在TOF脉冲中间的传输中丢失。因此,对于常规的飞行时间MS/MS,占空比范围大约在5-25%之间。由于离子传输损失,灵敏度会降低。ZenoTM trap通过控制从碰撞池到TOF加速器的离子束来确保更高的离子传输。离子基于势能离开ZenoTM trap。ZenoTM trap可以显著提高二级离子的灵敏度,使用二级离子定量的时候,定量限提高可达数倍到数十倍,如图4所示,同等浓度的茶碱样品,在使用Zeno OFF时,响应强度为256.8cps,而使用ZenoTM trap ON后,灵敏度提高超过13倍。采用ZenoTM trap ON采集模式,保证在定量限附近依然可以得到高质量的二级信息,如图5所示,浓度为定量下限的茶碱样品在ZenoTM trap OFF时,二级碎片较少,且质量较差,而使用ZenoTM trap ON后,得到高质量的二级信息,更有利于做二级图谱的数据库匹配,提高化合物定性准确度。  图4 Zeno OFF(左)和Zeno ON(右)的二级离子定量数据对比  图5 Zeno OFF(左)和Zeno ON(右)的二级图谱对比  3、采用电子活化解离(EAD)技术,得到与传统碰撞诱导解离(CID)技术不同的二级谱图信息,更有助于化合物的结构解析和确证   图6 CID模式(a)和EAD模式(b)下4-氟丁酰芬太尼的二级质谱图  4、简单快速的前处理过程,更便于实际操作和应用,快速实现化合物的定性和定量。  样品前处理  • 血液:取100ul血液样本,加入200ul蛋白沉淀剂(甲醇:乙腈=1:1),涡旋1min,冷冻离心10min,取上清液上机待测。  • 尿液:取100ul尿液样本,加入200ul蛋白沉淀剂(甲醇:乙腈=1:1),涡旋1min,冷冻离心10min,取上清液上机待测。  总结:  本文使用Zeno TOF TM 7600系统,采用ZenoTM trap采集模式,建立了测定血液和尿液中超过800种毒(药)的定性定量方法 化合物涵盖了常见毒品、治疗药物、生物碱类化合物、常见农药、安眠镇静类和常见鼠药等,化合物种类多,覆盖全,使毒物检测快速定性定量变为可能,本方法也是拿来即用,同时匹配了相应的高质量的二级数据库,在实验室没有标准品的同时,也可以快速的进行定性工作,为从事相关工作的老师提供更加稳定和快速的定性筛查结果,大大提高了实验室的工作效率。当前,法医生物检材毒物分析有两个难点:(1)如何把要分析检验的毒物或药物从生物样品中提取出来,即在检验之前,被分析的生物检材要经过分离、提取和净化的过程。在这个过程中, 最大的技术难点就是如何去除脂肪和蛋白质;(2)被分析的药物或毒物从生物检材中提取后,或有的经过体内代谢变成了代谢物, 母体药物残留很少。它从以前的化学显色反应、结晶法发展到薄层色谱, 又随着化学仪器分析技术的发展, 采用气相色谱、紫外和红外光谱法、原子吸收法、气相色谱—质谱联用法、高效液相色谱以及高效液色谱—质谱联用法。
  • “微型光纤光谱仪在LED光谱测量中的应用以及常见问题分析”研讨会完美谢幕
    2011年11月29日 10:00-11:00,海洋光学在光电新闻网上成功举办了&ldquo 微型光纤光谱仪在LED光谱测量中的应用以及常见问题分析&rdquo 在线语音研讨会,近200名观众报名和关注,对此次参加的观众,海洋光学致以最诚挚的感谢。10日前我们将公布参加此次研讨会观众的中奖名单,敬请关注。本次研讨会主要是介绍微型光纤光谱仪在LED照明领域中的应用及测量方法,可以用于LED等光源及其灯具的在线快速光谱测量测试及其品质控制,可以进行光度测量诸如:光通量、照度、光强、亮度;及颜色特征测量诸如:主波长、色度坐标、色纯度、显色指数、色差、色温。希望可以为工业生产及其标准计量规范提供参考与借鉴。视频回放请点击:http://webinar.ofweek.com/activityDetail.action?activity.id=4391010&user.id=212月海洋光学还将以开展分别以太阳能模拟器、拉曼光谱仪、膜厚测量、球\平面光学器件测试系统为主题的在线研讨会,了解最新信息请关注:http://bbs.instrument.com.cn/shtml/20111202/3683816/如果您想进一步了解光纤光谱仪及其应用,如果你有更好的建议和意见希望和我们分享,请关注我们的论坛:http://bbs.instrument.com.cn/forum_653.htm
  • 陆恒生物发布陆恒多参数水质分析仪CNPN-4SIII新品
    一、概述多参数水质分析仪CNPN-4SⅢ(COD、氨氮、总磷、总氮、总铁、铜、六价铬、总铬、镍、锌、锰、溶解氧、PH、余氯、总氯、磷酸盐、亚硝酸盐、硫化物、二氧化氯、臭氧、尿素)是杭州盈傲仪器有限公司隆重推出的第三代水质快速分析仪器,仪器采用进口高亮度LED冷光源和德国先进的光学结构,光学性能和检测效果极佳;人性化的操作界面、简单的测量方法和大屏幕液晶屏显示,使得专业和非专业人事使用起来都得心应手,是科学研究、数据分析、水质检测的得力助手,广泛应用于科研院所、污水处理、环境监测、石化、造纸、制药、印染、纺织、皮革、酿酒、电子、市政、高校等行业并受到广大用户的一致好评。多参数水质分析仪是依据物质分子对可见光产生的特征吸收光谱及光吸收定律(朗伯-比尔定律)的原理,用未知浓度样品与已知浓度标准物质比较的方法进行定量分析的仪器。仪器由LED光源、比色池、光电传感器、微处理器和微型打印机构成,可直接在液晶屏幕上显示出被测样品中某些项目或某污染物的含量,并打印出分析结果。 二、仪器特点 1. 采用德国新型光路结构,具有卓越的光学性能,极高的测量精确度、稳定性,是国内目前较先进、较实用的分析仪器;2. 采用准平行冷光源,具有透射面积广、节能、环保、寿命长、响应速度快等优点;3. 采用全触摸7寸彩屏,屏幕清晰,界面人性化,中文显示,操作指导,读数直观;并有辅助按键操作,两种操作模式更智能、更实用。4. 多参数水质分析仪可检测项COD、氨氮、总磷、总氮、余氯、总氯、二氧化氯、臭氧、磷酸盐、亚硝酸盐、铬、硫化物、溶解氧、PH、尿素等参数,实用性极高;5. 采用消解比色一体管,COD消解与检测用同一根管子,无需移液,减少检测危险性;6. COD试剂配方升级,低可到5mg/l,高可到16000mg/l;消解时间从传统法两小时缩短到20分钟;7. 检测数据可实时存储,随时打印,随时调取,且可存入电脑永久保存,读取无需驱动软件;8. 仪器全塑机壳,流线型设计,外观优美,表面经过特殊处理,抗氧化、耐酸碱,核心部件密封防水;9. 大容量内存,可测量多个检测项目和储存多组检测数据,存储数量为10000条;三、测量原理COD测定原理(铬法):在强酸性溶液中和过量的重铬酸钾存在下,以硫酸银做催化剂,通过加热催化氧化水中的还原物质,通过六价铬或三价铬的吸光度值与水样COD 值建立的关系,来测定水样COD 值。氨氮测定原理(纳氏试剂法):以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,根据络合物的吸光度与氨氮含量成正比,来测定水样中的氨氮含量。总磷测定原理(钼酸铵法):样品经过消解后,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸,立即被抗坏血酸还原,生成蓝色的络合物。据络合物的吸光度来测定水样中的总磷含量。总氮测定原理(麝香草酚法):水样中加入碱性过硫酸钾溶液,在高温高压条件下,可使水样中含氮化合物的氮元素转化为硝酸盐,可使水样中含氮化合物的氮元素转化为硝酸盐,与麝香草酚在浓硫酸的溶液中形成硝基酚化合物,在碱性溶液中发生分子重排,生成黄色化合物。 四、技术参数4.1分光光度计技术参数 1. 吸光度检测范围:0-3.5Abs2. 光路稳定性:≤±0.002Abs/30min3. 吸光度分辨率:0.001Abs4. 操作重复性:≤±0.005Abs5. 光源寿命:10万小时6. 滤光片寿命:5年7. 电源:DC12V/5A8. 使用环境:温度0-50℃,相对湿度0-90%(无冷凝)9. 尺寸:412x253x164mm10. 重量:3.25kg 4.2测定仪技术参数1. 测量范围:COD:0-15000mg/L 氨氮:0-50mg/L 总磷:0-20mg/L 总氮:0-500mg/L 以下参数需定制: 总铁:0-10mg/l 余氯:0-3mg/l 铜:0-50mg/l 余氯:0-12mg/l 六价铬:0-10mg/l 总氯:0-12mg/l 总铬:0-10mg/l 磷酸盐:0-2mg/l 镍:0-5mg/l 硫化物:0-1mg/l锌:0-30mg/l 亚硝酸盐:0-0.3mg/l溶解氧:0-20mg/l PH:6.5-9 2. 测量精度:≤±5% 重复性:≤±3%3. 抗氯干扰:C(Cl-)<1500mg/L无影响4. 存储数据:10000条六、实验分析(一)项目选择及测量范围编 号项 目量程(mg/l)下限(mg/l)1COD LR-预0-1505 2COD MR-预100-15001003COD HR-预1000-150001000 4氨氮LR0-50.055氨氮 HR5-500.5 6总磷 LR0-20.027总磷 HR2-200.2 8总氮LR0-500.59总氮HR50-5005 10COD LR-粉0-160511COD MR-粉100-1600100 12COD HR-粉1000-160001000以下参数需要定制13铁0-10.00mg/L0.01mg/L 14铜0-50.00mg/L0.01mg/L15六价铬0-10.00mg/L0.01mg/L 16总铬0-10.00mg/L0.01mg/L17镍0-5.00mg/L0.01mg/L 18锌0-10.00mg/L0.01mg/L19锰0-10.00mg/L0.01mg/L 20溶解氧0-20121PH6.5-9.0PH6.5PH 22余氯LR0-30.0123余氯HR0-120.05 24总氯0-30.0125磷酸盐(以磷计)0-20.02 26亚硝酸盐0-0.30.00527硫化物0-10.004(二)实验试剂的配制 部分试剂中含有汞盐和硫酸,操作时应按规定佩戴防护用具,避免接触皮肤和衣服。 请使用蒸馏水和分析纯浓硫酸配制试剂,禁止使用工业级硫酸和长时间闲置的硫酸。 为确保实验数据的准确性,请准确配制试剂,配制时应将粉包尽可能倾倒干净,必要时用溶液冲洗试剂瓶内部。 废弃的试剂和检测后的残渣液,请勿随意丢弃,应做妥善的安全处理。1、COD LR-粉 100样:将整瓶粉剂置于250ml烧杯,加入90ml蒸馏水,用玻璃棒稍搅拌溶解,再边搅拌边沿烧杯壁缓慢的加入10ml浓硫酸(半年内生产98%分析纯),粉末搅拌溶解完,冷却后,装入试剂瓶中常温避光保存备用。2、COD HR-粉 100样:将整瓶粉剂置于250ml烧杯,加入90ml蒸馏水,用玻璃棒稍搅拌溶解,再边搅拌边沿烧杯壁缓慢的加入10ml浓硫酸(半年内生产98%分析纯),粉末搅拌溶解完,冷却后,装入试剂瓶中常温避光保存备用。3、COD 催化剂-粉 100样:将整瓶粉剂置于500ml烧杯,用玻璃杯将小块装粉末稍捣碎,加入300ml浓硫酸(半年内生产98%分析纯),放置于暗处溶解(溶解较慢),粉末完全溶解后,搅拌均匀,装入试剂瓶中常温避光保存备用。4、COD 预制管试剂LR(10-150mg/L):管装试剂(一次性),直接使用。5、COD 预制管试剂HR(100-2000mg/L):管装试剂(一次性),直接使用 ,MR、HR曲线通用。6、氨氮试剂A:滴瓶装试剂,直接使用。7、氨氮试剂B:滴瓶装试剂,直接使用。8、总磷试剂A:将整瓶粉剂置于250ml烧杯,加入100ml蒸馏水搅拌溶解,并装入试剂瓶中,2-8℃避光保存备用。9、总磷试剂B:将整瓶粉剂置于100ml烧杯,加入20ml蒸馏水搅拌溶解,并装入滴瓶中,2-8℃避光保存备用。10、总磷试剂C:滴瓶装试剂,直接使用,2-8℃避光保存备用。11、总氮试剂1:将1包试剂1(1)加入5ml试剂1(2)中完全溶解,即为试剂1,备用,可用10次(此试剂冬天可于25-40℃水浴加热溶解,2-8℃避光保存两周内可用)。12、总氮试剂2:直接使用,2-8℃避光保存备用。13、总氮试剂3:直接使用,2-8℃避光保存备用。14、总氮试剂4:直接使用,2-8℃避光保存备用。(三)水样的采集、保存、吸取1、水样的采集 采集水样前,应先用水样洗涤采样塑料瓶或玻璃瓶及瓶盖2~3次。在采集水样时要注意将水灌满,并将瓶盖拧紧。若采集多个水样,要注意做好标记,以防混淆。 (1)地表和地下水样的采集 采集井水 让泵运转足够时间排净管道积水后,再汲取新鲜水样。 采集泉水 可在涌水口处直接采样。 采集自来水 应先放水数分钟,使积留在水管中的陈旧水排出,然后再采样。 采集地表水 尽量在水域中央采集样品,并采集水面下3~5cm的水样。如果使用有盖的容器,先将容器浸入液面下再取掉瓶盖。 (2)污水采集 中轻度污染废水 如行业处理后废水某些排放口处采样,同时要注意记录样品采集的过程包括时间、位置等,便于日后分析研究。 采集水域污水 当水深>1m时在表层1/4深度采样,水深≤1m时在水深1/2处采样。采样位置在采样断面中心,样品容器必须用水样冲洗三次后再行采样。采样时应注意除去水面的杂物、垃圾等漂浮物。2、水样的保存样品采集后,应尽可能快进行分析,以减少实验误差并减少工作量,本仪器项目宜立即进行分析测定。 3、水样的吸取传统方法一般是使用移液管,但有些化学具有腐蚀性,不太安全,且新手很难取准水样,因此本公司在销售仪器时会配送更安全、便精确、更方便的移液枪,使用方法可咨询销售人员。使用前先调好要吸取的量,吸时在移液枪卡点时停止,放液时按到底。不同的水样一定要更换吸头。4、水样的稀释一般水样干扰物多、检测浓度超量程情况下会采用水样稀释法。 例:稀释10倍:可取1ml原水,再加入9ml纯净水或蒸馏水混合均匀,即为稀释了10倍,测出来的结果值要乘以10才为正确值。(四)水样检测1、COD的检测(COD 预制管试剂)操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(165℃.20min)模式打开主机电源,预热根据需要准备若干COD 预制管试剂置试剂管架?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样COD值,并按照对应量程选择适配LR或HR试剂?COD LR-预 需要单独做空白,COD MR-预和COD HR-预 可以共用空白;较清洁水样可直接测量,水样应做相应处理;COD测量的主要干扰因素为氯离子,本试剂自带抗氯干扰1500mg/L;量取/加入样品、试剂时必须准确;移取样品或试剂的移液管不可交叉使用;为0-150mg/L时用(COD LR-预曲线)为100-1500mg/L时用(COD MR-预曲线)为1000-15000mg/L时用(COD HR-预曲线)3量取2ml蒸馏水加到1支COD 预制管试剂LR中(空白样)量取2ml蒸馏水加到1支COD 预制管试剂HR中(空白样)量取2ml蒸馏水加到1支COD 预制管试剂HR中(空白样)量取2ml水样置于另1支COD 预制管试剂LR中量取2ml水样置于另1支COD 预制管试剂HR中量取0.2ml水样和1.8ml蒸馏水于另1支COD 预制管试剂HR中4加盖拧紧颠倒摇匀(注:此时试管较烫,小心烫伤)?有沉淀属正常现象;将COD 预制管插入消解孔中消解,并盖上防护罩。?消解前请确保消解管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;5消解完成后,将COD 预制管置于试剂管架冷却2min,颠倒摇匀COD 预制管,待冷却至25℃室温。(自然冷却或水冷均可,温度过高会影响结果准确性和损坏仪器)。 消解完请空冷2min后再水冷,以免COD预制管急剧热胀冷缩发生危险;冷却后请勿剧烈摇动试剂管,以免悬浮物影响COD测量;6选择COD LR-预曲线测量选择COD MR-预曲线测量选择COD HR-预曲线测量 从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样COD值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,酌情进行稀释或重测。2、COD的检测(COD粉剂试剂)操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(165℃.20min)模式,打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干使用;2预估水样COD值,并按照对应量程选择LR或HR量程试剂?COD LR-粉 需要单独做空白,COD MR-粉和COD HR-粉可以共用空白;?较清洁水样可直接测量,水样应做相应处理;?COD测量的主要干扰因素为氯离子,本试剂自带抗氯干扰1000mg/L;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-160mg/L时用(COD LR-粉曲线)为100-1600mg/L时用(COD MR-粉曲线)为1000-16000mg/L时用(COD HR-粉曲线)3量取2ml蒸馏水加到1支 试剂管空管 中(空白样)量取2ml蒸馏水加到1支试剂管空管中(空白样)量取2ml蒸馏水加到1支试剂管空管中(空白样)量取2ml水样置于另1支试剂管空管量取2ml水样置于另1支试剂管空管量取0.2ml水样和1.8ml蒸馏水于另1支试剂管空管4向各个试剂管中加入1ml COD LR试剂向各个试剂管中加入1ml COD HR试剂?空白样也需要加入试剂;?有沉淀属正常现象;?消解前请确保消解管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;依次缓慢加入COD催化剂3ml,加盖拧紧颠倒摇匀(注:此时试管较烫,小心烫伤)。将试剂管插入消解孔中消解,并盖上防护罩。5消解完成后,将试剂管置于试剂管架冷却2min,颠倒摇匀消解管,将试剂管冷却至25℃室温(自然冷却或水冷均可,温度过高会影响结果准确性和损坏仪器)。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;?冷却后请勿剧烈摇动试剂管,以免悬浮物影响COD测量;6选择COD LR-粉曲线测量选择COD MR-粉曲线测量选择COD HR-粉曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样COD值。7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,酌情进行稀释或重测。3、氨氮的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样氨氮值,并按照对应量程进行取水样及加入试剂?氨氮LR和氨氮HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-5mg/L时用(氨氮LR曲线)为5-50mg/L时用(氨氮HR曲线)3准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管(空白样)取水样5ml于另1支试剂管空管取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中4依次向各个试剂管中加入加入3滴氨氮试剂(A)摇匀?空白样也需要加入试剂,并且与水样加入的试剂相同;?滴加试剂时应尽量保证每滴试剂的均匀性;依次加入3滴氨氮试剂(B)。附:(水样中若含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时,对比色测定有干扰,需预处理或稀释后测定;(预处理请参照HJ535-2009))5加盖摇匀后静置显色10min?如含有氨氮,溶液应呈现为黄棕色,且浓度越大,颜色越深;6选择氨氮LR曲线测量选择氨氮HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样氨氮值7浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。4、总磷的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(120℃.30min),打开主机电源,预热,准备若干洁净干燥的“试剂管空管”置于比色管架。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总磷值,并按照对应量程进行取水样及加入试剂?总磷LR和总磷HR可共用空白?较清洁水样可直接测量,较复杂水样应做相应处理,参照GB11893-89;?量取/加入样品、试剂时必须准确;?移取样品或试剂的移液管不可交叉使用;为0-2mg/L时用(总磷LR曲线)为2-20mg/L时(总磷HR曲线)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)准确量取5ml蒸馏水加到1支试剂管空管中(空白样)取水样5ml于另1支试剂管空管中准确量取0.5ml水样和4.5ml蒸馏水于另1支试剂管空管中。3依次向各个试剂管中加入1ml总磷试剂(A),将试剂管盖拧紧并摇匀。?空白样也需要加入试剂;将试剂管插入消解孔中消解,并盖上防护罩。?消解前请确保试剂管盖拧紧,并盖上防护罩,以免消解液溢出,造成损伤;4消解完成后,将试剂管置于试剂管架冷却至25℃室温。?消解完请空冷2min后再水冷,以免试剂管急剧热胀冷缩发生危险;5依次加入4滴总磷试剂(B),加盖摇匀后静置30S,依次加入6滴总磷试剂(C),加盖摇匀后,静置显色15min。?试样中如含有磷,显色应为蓝色,且浓度越大,蓝色越深;6选择总磷LR曲线测量选择总磷HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;7选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总磷值8浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。5、总氮的检测操作中的取液请全部用移液枪吸取,并联系销售获取操作教学视频,减小人为不必要的操作误差。步骤操作说明1打开消解仪电源,设置为(125℃.30min)并开始加热,准备3个洁净干燥的“试剂管空管”于试管架,分别标明A、B、C。?实验中使用的器具应是洁净干燥的;?可提前配制洗液将器具浸泡,再用蒸馏水洗净烘干后使用;2预估水样总氮值,并按照对应量程进行取水样及加入试剂?取一包试剂1(1)粉包,溶于5ml试剂1(2)中,完全溶解后即为试剂1(10次用量)。若未完全溶解,可25-40℃水浴加热溶解,2-8℃冷藏保存一周使用。?移取样品或试剂的移液管不可交叉使用;为0-50mg/L时(总氮LR曲线)为50-500mg/L时(总氮HR曲线)向试剂管空管A中加入1ml待测水样,再加入0.5ml总氮试剂1,盖上盖子,上下颠倒摇匀5次。向试剂管空管A中加入0.1ml待测水样,再加0.9ml蒸馏水,再加入0.5ml总氮试剂1,盖上盖子,上下颠倒摇匀5次。3将试剂管A插入消解孔中消解,并盖上防护罩消解30min。?消解前请确保试剂管盖拧紧,以免消解液溢出;4消解时间结束后带上手套,趁热将试剂管A快速摇晃10秒,后置于试管架冷却至25℃室温或放入15-20℃自来水中水冷5min。?水面需高于试剂管A内液面;5从冷却后的试剂管A中取0.25ml消解液加入到试剂管C中,向试剂管C中加入2滴试剂2(这步从试管中央加入、过程中避免沾附管壁),然后沿壁加入0.6ml试剂3,盖上盖子左右摇匀10下,计时5min。?这里一定要用0.1-1ml的移液枪配长吸头取液;6然后再向试剂管C中缓慢加入(防止溅出)5ml试剂4,加盖上下颠倒摇匀5下后置15-30℃自来水中水浴冷却5min。?尽量不要出现试管中液体蒸发,从而影响结果值;7空白样管的制作:向消解管B中加入5ml蒸馏水即成。?无蒸馏水用纯净水;8选择总氮LR曲线测量选择总氮HR曲线测量?从“样品检测”界面里的“项目”列表中选择对应曲线进行测量;9选择曲线后,放入空白样管,盖上遮光罩,按“标零”键完成空白校准,再竖直放入样品管,盖上遮光罩,按“读数”键读取水样总氮值。10浓度显示及其数据选择“保存”或“打印”?样品测量结果如不在曲线范围内,只能作为估测用,视情况进行稀释或重测。11注意事项:每一种试剂取完液后请立即盖上盖子密封。12干扰:氯离子含量在2000ppm以内均不产生干扰,但氯离子含量达到600ppm以上时,终产物颜色会变成绿色,不影响测定结果。(五)实验器具的洗涤、保养(1)器具洗涤新的采样容器、比色管等器具,在使用前,需经10%硝酸浸泡洗净备用。每次实验结束后,请尽快将实验中涉及的采样容器、比色管等器具进行清洗。倒空溶液,用自来水清洗几次,然后用(1+9)HNO3溶液(HNO3与水的体积比是1:9)浸泡过夜,用自来水洗涤2-3次,再用蒸馏水清洗1-2次,最后用去离子水冲洗1次,空气中晾干,有条件的话可用烘箱低温吹干。比色管等的洁净程度对于实验结果尤为重要,请务必按此步骤操作,以免污物残留带来严重的结果误差。(2)保养实验器具不用时请收到配件箱或柜子、抽屉存放好。比色管使用时要小心,尽量避免表面有划痕,从而影响实验光路照射测定,实验后请尽快清洗,避免有色溶液长时间停留在比色管中。不使用时,请存放于盒子里以防止刮擦和破损。比色管长期使用表面划痕较多,此时应尽快更换新的替代。(一)可能遇到的问题及排除现象序号原因排除措施测量结果为未检出1样品浓度低于项目曲线的检测限(空白样和待测样显色后颜色差异小)选用低量程测量2样品浓度过高或样品含有大量的悬浮物(空白样和待测样显色后颜色差异大)稀释后测量或做预处理3未准确调零(空白样管壁未擦拭干净或比色池内有异物)擦拭干净比色管、检查比色池,若仍未解决,请重新做空白样4调零后测量空白样正常现象5空白样和待测样品放反了使用正确的空白样调零COD测量数据不稳定1消解比色管内有悬浮物或外壁有水渍、异物待悬浮物沉淀后测量或擦拭干净比色管(有划痕请更换比色管)COD测量数据不准1COD粉末试剂法所使用的试剂未准确配制(粉末未完全溶解或倾倒干净,使用的硫酸不合格)准确的配制试剂2水样中含有大量的氯离子稀释后测量或取样前加入硫酸汞/硝酸银掩蔽3测量时样品未冷却至室温(25℃)冷却至室温(25℃)后测量氨氮总磷总氮测量数据不稳定1水样中很有大量的干扰物质或悬浮物(显色后溶液应为澄清透明样,且显色基调应和对应项目一致-氨氮总氮显色为黄色、总磷显色为蓝色)稀释测量或做预处理(氨氮预处理参照HJ535-2009、总磷预处理参照GB11893-89) 六、装箱清单序号名 称数 量序号名 称数 量1主机1台7操作流程示意图多张2电源线1根8试剂瓶1个3数据线1根9擦拭布2块4试剂多套10防腐手套2双5试管架2个11使用说明书1份6防爆检测试剂管25支12合格证/保修卡(说明书内)1份 创新点:1.多参数一体机,例如:COD氨氮总磷总氮四大常规项参数,其次可以检测重金属、余氯、PH等2.可以打印并且可以贮存大量数据,试剂也是配套的,无需配制,可加水样直接检测,缩短操作时间,由繁入简3.质保一年,终身维修。陆恒多参数水质分析仪CNPN-4SIII
  • “2009年全国食品、药品分析检测技术与仪器学术交流会”召开
    近年来,频频传出药品质量不合格致病事件,越来越多的食品中被检测出含有超标物质,食品、药品安全问题受到了空前的重视。欧盟、美国、日韩、加拿大等发达国家和地区则相继对进口食品安全指标提出了愈来愈严格的要求,2009年6月,我国政府也颁布了新的《食品安全法》,食品、药品安全已然成为了民众日常生活中至关重要的环节。食品、药品检测新技术、新设备、新标准不断涌现。  2009年10月21日下午,中国仪器仪表学会于上海光大国际酒店光韵三号厅举办了“2009年全国食品、药品分析检测技术与仪器学术交流会”。来自科研院所、检测部门、企事业单位、仪器厂商等业内人员共80多人参加了本次交流会。交流会现场  此次大会邀请了业内专家介绍我国食品、药品质量检测技术现状及对仪器的需求,业内知名的仪器厂商也介绍了最新产品和技术。中国仪器仪表学会科学仪器学术工作委员会 燕泽程研究员  中国仪器仪表学会科学仪器学术工作委员会副主任燕泽程研究员宣布大会开幕、并致开幕词,“本次交流会给大家提供了一个进行学术交流的平台,与会的专家学者、工作人员等将共同探讨食品、药品分析检测技术和仪器的发展以及在应用中遇到的实际问题与解决方案。”中科院生物工程中心 李昌厚教授报告题目:食品、药品污染物检测技术及有关问题  李昌厚研究员在介绍了食品、药品污染检测方法、检测仪器以及检测中面临挑战之后,着重介绍了自己总结的评价分析仪器的六个标准:适用性、可靠性、经济性、智能性、美学性、工艺性。并对分析工作者建议购买仪器时应注意:仪器性能——直接关系到分析数据的准确性 售后服务 仪器价格——同价比质、同质比价。岛津公司 靳松博士报告题目:岛津食品安全应对方案GPC-GCMS在线净化气质联用仪华东师范大学 潘教麦教授报告题目:重金属有害元素及有益元素的分析新进展  潘教麦教授从重金属有害性及检测技术重要性讲起,最后介绍了自己在有机试剂尤其是有机显色剂的研究成果。江苏淮阴工学院 张恒教授  张恒教授主要介绍了维生素C片红外光谱分析中采用MatLab小波变换技术,能够有效去除噪声的影响,增强信号峰,提高了谱图的特征性。  本次交流会有力促进了食品、药品分析检测技术最新研究成果等的交流。
  • 水质检测-水体中有机物质分析方法
    水体中的污染物质除无机化合物外,还含有大量的有机物质,它们是以毒性和使水体溶解氧减少的形式对生态系统产生影响。已经查明,绝大多数致癌物质是有毒的有机物质,所以有机物污染指标是水质十分重要的指标。水中所含有机物种类繁多,难以一一分别测定各种组分的定量数值,目前多测定与水中有机物相当的需氧量来间接表征有机物的含量(如CoD、BOD等),或者某一类有机污染物(如酚类、油类、苯系物、有机磷农药等)。但是,上述指标并不能确切反映许多痕量危害性大的有机物污染状况和危害,因此,随着环境科学研究和分析测试技术的发展,必将大大加强对有毒有机物污染的监测和防治。一、化学需氧量(COD)化学需氧量是指水样在一定条件下,氧化1升水样中还原性物质所消耗的氧化剂的量,以氧的m8从表示。水中还原性物质包括有机物和亚硝酸盐、硫化物、亚铁盐等无机物。化学需氧量反映了水中受还原性物质污染的程度。基于水体被有机物污染是很普遍的现象,该指标也作为有机物相对含量的综合指标之一。对废水化学需氧量的测定,我国规定用重铬酸钾法,也可以用与其测定结果一致的库仑滴定法。(一)重铬酸钾法(CODcI)在强酸性溶液中,用重铬酸钾氧化水样中的还原性物质,过量的重铬酸钾以试铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据其用量计算水样中还原性物质消耗氧的量。反应式如下:测定过程见图2&mdash 35。水样20mL(原样或经稀释)于锥形瓶中&darr &larr H8S0&lsquo 0.48(消除口&mdash 干扰)混匀&larr 0.25m01/L(1/6K2Cr20?)100mL&darr &larr 沸石数粒混匀,接上回流装置&darr &larr 自冷凝管上口加入A82S04&mdash H2S0&lsquo 溶液30mL(催化剂)混匀&darr 回流加热2h&darr 冷却&darr &larr 自冷凝管上口加入80mL水于反应液中取下锥形瓶&darr &larr 加试铁灵指示剂3摘用0.1m01从(N氏久Fe(S04)2标液滴定,终点由蓝绿色变成红棕色。图2&mdash 35 CoDcr测定过程重铬酸钾氧化性很强,可将大部分有机物氧化,但吡啶不被氧化,芳香族有机物不易被氧化;挥发性直链脂肪组化合物、苯等存在于蒸气相;不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸钾氧化,并与硫酸银作用生成沉淀;可加入适量硫酸汞缀合之。测定结果按下式计算:式中:V。&mdash &mdash 滴定空白时消耗硫酸亚扶铵标准溶液体积(mL)5&mdash Vl&mdash &mdash 滴定水样消耗硫酸亚铁铵标准溶液体积(mL);V&mdash &mdash 水样体积(mL); &lsquo c&mdash &mdash 硫酸亚铁铵标准溶液浓度(m01儿)t38&mdash &mdash 氧(1/20)的摩尔质量(8/m01)。用o.25m01几的重铬酸钾溶液可测定大于50m8从的COD值;用0.025m01儿重铬酸钾溶液可测定5&mdash 50m8/L的COD值,但准确度较差。(二)恒电流库仑滴定法恒电流库仑滴定法是一种建立在电解基础上的分析方法。其原理为在试液中加入适当物质,以一定强度的恒定电流进行电解,使之在工作电极(阳极或阴极)上电解产生一种试剂(称滴定剂),该试剂与被测物质进行定量反应,反应终点可通过电化学等方法指示。依据电解消耗的电量和法拉第电解定律可计算被测物质的含量。法拉第电解定律的数学表达式为:式中:W&mdash &mdash 电极反应物的质量(8);I&mdash &mdash 电解电流(A);t&mdash &mdash 电解时间(s);96500&mdash &mdash 法拉第常数(C);M&mdash &mdash 电极反应物的摩尔质量(8);n&mdash &mdash 每克分子反应物的电子转移数。库仑式COD测定仪的工作原理示于图2&mdash 36。由库仑滴定池、电路系统和电磁搅拌器等组成。库仑池由工作电极对、指示电极对及电解液组成,其中,工作电极对为双铂片工作阴极和铂丝辅助阳极(置于充3m01几H2SOd,底部具有液络部的玻璃管内),用于电解产生滴定剂;指示电极底部具有液络部的玻璃管中),以其电位的变化指示库仑滴定终点。电解液为10.2m01/L硫酸、重铬酸钾和硫酸铁混合液。电路系统由终点微分电路、电解电流变换电路、频率变换积分电路、数字显示逻辑运算电路等组成,用于控制库仑滴定终点,变换和显示电解电流,将电解电流进行频率转换、积分,并根据电解定律进行逻辑运算,直接显示水样的COD值。使用库仑式COD测定仪测定水样COD值的要点是:在空白溶液(蒸馏水加硫酸)和样品溶液(水样加硫酸)中加入同量的重铬酸钾溶液,分别进行回流消解15分钟,冷却后各加入等量的、硫酸铁溶液,于搅拌状态下进行库仑电解滴定,即Fe&rdquo 在工作阴极上还原为Fe&rdquo (滴定剂)去滴定(还原)CrzOv2&mdash 。库仑滴定空白溶液中CrzOv&rdquo 得到的结果为加入重铬酸钾的总氧化量(以O 2计);库仑滴定样品溶液中CrzO v&rdquo 得到的结果为剩余重铬酸钾的氧化量(以02计)。设前者需电解时间为&lsquo o,后者需&lsquo ,则据法拉第电解定律可得:式中:1r&mdash &mdash 被测物质的重量,即水样消耗的重铬酸钾相当于氧的克数;I=&mdash 电解电流;M&mdash &mdash 氧的分子量(32);n&mdash &mdash 氧的得失电子数(4);96500&mdash &mdash 法拉第常数。设水样coD值为c5(mg儿);水样体积为v(mL),则1y· c2,代入上式,经整理后得:本方法简便、快速、试剂用量少,不需标定滴定溶液,尤其适合于工业废水的控制分析。当用3mI&lsquo o.05mol儿重铬酸钾溶液进行标定值测定时,最低检出浓度为3m8入;测定上限为100m8/L。但是,只有严格控制消解条件一致和注意经常清洗电极,防止沾污,才能获得较好的重现性。二、高锰酸盐指数,以高锰酸钾溶液为氧化剂测得的化学耗氧量,以前称为锰法化学耗氧量。我国新的环境水质标准中,已把该值改称高锰酸盐指数,而仅将酸性重铬酸钾法测得的值称为化学需氧晕。国际标准化组织(1SO)建议高锰酸钾法仅限于测定地表水、饮用水和生活污水。按测定溶液的介质不同,分为酸性高锰酸钾法和碱性高锰酸钾法。因为在碱性条件下高锰酸钾的氧化能力比酸性条件下稍弱,此时不能氧化水中的氯离子,故常用于测定含氯离子浓度较高的水样。酸性高锰酸钾法适用于氯离子含量不超过300m8儿的水样。当高锰酸盐指数超过5mg从时,应少取水样并经稀释后再测定。其测定过程如图2&mdash 37所示。取水样100mL(原样或经稀释)于锥形瓶中&darr &larr (1十3)H:SO&lsquo 5mL &lsquo 混匀&darr &larr o.olmoI儿高锰玻钾标液(十KMn04)10.omL沸水浴30min&darr &larr o.olo omot儿草酸钠标液(专Nasc20&lsquo )lo.oomL退色 &lsquo &darr &larr o.01m01儿高锗酸钾标液回滴终点微红色 :图2&mdash 37 高锗酸盐指数测定过程测定结果按下式计算:1.水样不经稀释高锰酸盐指数式中:Vl&mdash &mdash 滴定水样消耗高锰酸钾标液量(mL);K&mdash &mdash 校正系数(每毫升高锰酸钾标液相当于草酸钠标液的毫升数);M&mdash &mdash 草酸钠标液(1/.2Na2C20d)浓度(nt01从);8&mdash &mdash 氧(1/20)的摩尔质量(8/m01);100&mdash &mdash 取水样体积(mL)。2.水样经稀释高锰酸盐指数式中2V。&mdash &mdash 空白试验中高锰酸钾标液消耗量(mL)Vz&mdash &mdash 分取水样体积(mL);f&mdash &mdash 稀释水样中含稀释水的比值(如10.omL水样稀释至100mL.,Ng/=0.90)l其他项同水样不经稀释计算式。化学需氧量(CODcr)和高锰酸盐指数是采用不同的氧化剂在各自的氧化条件下测定的,难以找出明显的相关关系。一般来说,重铬酸钾法的氧化率可达90%,而高锰酸钾法的氧化率为50%左右,1两者均未达完全氧化,因而都只是一个相对参考数据。三、生化需氧量(BOD)生化需氧量是指在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。同时亦包括如硫化物、亚铁等还原性无机物质氧化所消耗的氧量,但这部分通常占很小比例。有机物在微生物作用下好氧分解大体上分两个阶段。第一阶段称为含破物质氧化阶段,主要是含碳有机物氧化为二氧化碳和水;第二阶段称为硝化阶段,主要是含氮有机化合物在硝化菌的作用下分解为亚硝酸盐和硝酸盐。然而这两个阶段并非截然分开,而是各有主次。对生活污水及性质与其接近的工业废水,硝化阶段大约在5&mdash 7日,甚至10日以后才显著进行,故目前国内外广泛采用的20℃五天培养法(BODs法)测定BOD值一般不包括硝化阶段。BOD是反映水体被有机物污染程度的综合指标,也是研究废水的可生化降解性和生化处理效果,以及生化处理废水工艺设计和动力学研究中的重要参数。(一)五天培养法(20℃)也苏标准稀释法。其测定原理是水样经稀释后,在29土1℃条件下培养5天,求出培养前后水样中溶解氧含量,二者的差值为BOD5。如果水样五日生化需氧量未超过7m8/L,则不必进行稀释,可直接测定。很多较清洁的河水就属于这一类水。对于不合或少含微生物的工业废水,如酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BODs时应进行接种,以引入能降解废水中有机物的微生物。当废水中存在着难被一般生活污水中的微生物以正常速度降解的有机物或有剧毒物质时,应将驯化后的微生物引入水样中进行接种。1.稀释水对于污染的地面水和大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以保证在培养过程中有充足的溶解氧。其稀释程度应使培养中所消耗的溶解氧大于2血8凡,而剩余溶解氧在1m8儿以上。稀释水一般用蒸馏水配制,.先通入经活性炭吸附及水洗处理的空气,曝气2&mdash 8h,使水中溶解氧接近饱和,然后再在20℃下放置数小时。临用前加入少量氯化钙、氯化铁、硫酸镁等营养盐溶液及磷酸盐缓冲溶液,混匀备用。稀释水的pH值应为7.2,BOD5应小于0.2血8儿。高锰酸盐指数 (mg/L)系 数< 55 &mdash 1010 &mdash 20> 200 . 2 、 0 . 30 . 4 、 0 . 60 . 5 、 0 . 7 、1 . 0如水样中无微生物,则应于稀释水中接种微生物,即在每升稀释水中加入生活污水上层清液1&mdash 10mL,或表层土壤浸出液20&mdash 30mL,或河水、湖水10&mdash 100mL。这种水称为接种稀释水。为检查稀释水相接种液的质量,以及化验人员的操作水平,将每升含葡萄糖和谷氨酸各150m8的标准溶液以1:50稀释比稀释后,与水样同步测定BODs,测得值应在180&mdash 230m8儿之间,否则,应检查原因,予以纠正。2.水样稀释倍数水样稀释倍数应根据实践经验进行估算。表2&mdash 13列出地面水稀释倍数估算方法。工业废水的稀释倍数由CODcr值分别乘以系数0.075、o.15、0.25获得。通常同时作三个稀释比的水样。表2&mdash 13 由高锰酸盐指数估算稀释倍数乘以的系数3.测定结果计算对不经稀释直接培养的水样:式中Icl&mdash &mdash 水样在培养前溶解氧的浓度(m8儿);&lsquo :&mdash &mdash 水样经5天培养后,剩余溶解氧浓度(m8儿)。对稀释后培养的水样:式中:Bl&mdash &mdash 稀释水(或接种稀释水)在培养前的溶解氧的浓度(m8儿);Bz&mdash &mdash 稀释水(或接种稀释水)在培养后的溶解氧的浓度(m8儿);f1&mdash &mdash 稀释水(或接种稀释水)在培养液中所占比例;f2&mdash &mdash 水样在培养液中所占比例。水样含有铜、铅、锌、镉、铬、砷、氰等有毒物质时,对微生物活性有抑制,可使用经驯化微生物接种的稀释水,或提高稀释倍数,以减小毒物的影响。如含少量氯,一般放置1&mdash 2h可自行消失;对游离氯短时间不能消散的水样,可加入亚硫酸钠除去之,加入量由实验确定。本方法适用于测定BOD5大于或等于2m8儿,最大不超过6000m8儿的水样;大于6000m8儿,会围稀释带来更大误差。(二)其他方法1.检压库仑式BOD测定仪检压库仑式肋D测定仪的原理示于图2&mdash 38。装在培养瓶中的水样用电磁搅拌器进行搅拌。当水样中的溶解氧因微生物降解有机物被消耗时,则培养瓶内空间中的氧溶解进入水样,生成的二氧化碳从水中选出被置于瓶内的吸附剂吸收,使瓶内的氧分压和总气压下降、用电极式压力计检出下降量,并转换成电信号,经放大送入继电器电路接通恒流电源及同步电机,电解瓶内(装有中性硫酸铜溶液和电解电极)便自动电解产生氧气供给培养瓶,待瓶内气压回升至原压力时,继电器断开,电解电极和同步电机停止工作。此过程反复进行使培养瓶内空间始终保持恒压状态。根据法拉第定律;由恒电流电解所消耗的电量便可计算耗氧量。仪器能自动显示测定结果,记录生化需氧量曲线。2.测压法在密闭培养瓶中,水样中溶解氧由于微生物降解有机物而被消耗,产生与耗氧量相当的COz被吸收后,使密闭系统的压力降低,用压力计测出此压降,即可求出水样的BOD值。在实际测定中,先以标准葡萄糖&mdash 谷氨酸溶液的BOD值和相应的压差作关系曲线,然后以此曲线校准仪器刻度,便可直接读出水样的BOD值。3.微生物电极法微生物电极是一种将微生物技术与电化学检测技术相结合的传感器,其结构如图2&mdash 39所示。主要由溶解氧电极和紧贴其透气膜表面的固定化微生物膜组成。响应BOD物质的原理是当将其插入恒温、溶解氧浓度一定的不含BOD物质的底液时,由于微生物的呼吸活性一定,底液中的溶解氧分子通过微生物膜扩散进入氧电极的速率一定,微生物电极输出一稳态电流;如果将BOD物质加入底液中,则该物质的分子与氧分子一起扩散进入微生物膜,因为膜中的微生物对BOD物质发生同化作用而耗氧,导致进入氧电极的氧分子减少,即扩散进入的速率降低,使电极输出电流减少,并在几分钟内降至新的稳态值。在适宜的BOD物质浓度范围内,电极输出电流降低值与BOD物质浓度之间呈线性关系,而BOD物质浓度又和BOn值之间有定量关系。微生物膜电极BOD测定仪的工作原理示于图2&mdash 40。该测定仪由测量池(装有微生物膜电极、鼓气管及被测水样)、恒温水浴、恒电压源、控温器、鼓气泵及信号转换和测量系统组成。恒电压源输出o.72V电压,加于Ag&mdash A8C1电极(正极)和黄金电极(负极)上。黄金电极因被测溶液BOD物质浓度不周产生的极化电流变化送至阻抗转换和微电流放大电路,经放大的微电流再送至A&mdash D转换电路,改A&mdash V转换电路,转换后的信号进行数字显示或记录仪记录。仪器经用标准BOD物质溶液校准后,可直接显示被测溶液的BOD值,并在20min内完成一个水样的测定①。该仪器适用于多种易降解废水的&rsquo BOD监测。除上述测定方法外,还有活性污泥法、相关估算法等。四、总有机碳(TOC)总有机碳是以碳的含量表示水体中有机物质总量的综合指标。由于TOC的测定采用燃烧法,因此能将有机物全部氧化,它比如Ds或COD更能反映有机物的总量。目前广泛应用的测定TOC的方法是燃烧氧化J4F色散红外吸收法。其测定原理是:将一定量水样注入高温炉内的石英管,在900一950℃温度下,以铂和三氧化钻或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定C02含量,从而确定水样中碳的含量。因为在高温下,水样中的碳酸盐也分解产生二氧化碳,故上面测得的为水样中的总碳(TC)。。为获得有机碳含量,可采用两种方法:一是将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。另一种方法是使用高温炉和低温炉皆有的TOC测定仪。将同一等量水样分别注入高温炉(900℃)和低温炉(150℃),则水样中的有机碳和无机碳均转化为COz,而低温炉的石英管中装有磷酸浸渍的玻璃棉,能使无机碳酸盐在150℃分解为C02,有机物却不能被分解氧化。将高、低温炉中生成的CO:&lsquo 依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为总有机碳(TOC)。测定流程见图2&mdash 41。该方法最低检出浓度为o.5mg/I。五、总需氧量(TOD)总需氧量是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的m8儿表示。用TOD测定仪测定ToD的原理是将一定量水样注入装有铂催化剂的石英燃烧管,通入含已知氧浓度的载气(氮气)作为原料气,则水样中的还原性物质在900℃下被瞬间燃烧氧化。测定燃烧前后原料气中氧浓度的减少量,便可求得水样的总需氧量值。TOD值能反映几乎全部有机物质经燃烧后变成C02、H20、N0、S02&hellip 所需要的氧量。它比BoD、CoD和高锰酸盐指数更接近于理论需氧量值。但它们之间也没有固定的相关关系。有的研究者指出,BODs/TOD=0.1&mdash 0,6;CoD/TOD=0.5&mdash 0.9,具体比值取决于废水的性质。TOD和TOC的比例关系可粗略判断有机物的种类。对于含碳化合物,因为一个碳原子消耗注⑦ 参阅孙裕生等,《分析仪器》,(1),1992年两个氧原子,即Oz/C=2.67,因此从理论上说,TOD=2.67TOC。若某水样的TOD/TOC为2.67左右,可认为主要是含碳有机物j若TOD/TOC>4.o,则应考虑水中有较大量含S、P的有机物存在;若TOD/TOC<2.6,就应考虑水样中硝酸盐和亚硝酸盐可能含量较大,它们在高温和催化条件下分解放出氧,使TOD测定呈现负误差。六、挥发酚类根据酚类能否与水蒸气一起蒸出,分为挥发酚与不挥发酚。通常认为沸点在230℃以下的为挥发酚(屑一元酚);而沸点在2助℃以上的为不挥发酚。酚屑高毒物质,人体摄入一定量会出现急性中毒症状;长期饮用被酚污染的水,可引起头昏、骚痒、贫血及神经系统障碍。当水中含酚大于5m8/L时,就会使鱼中毒死亡。酚的主要污染源是炼油、焦化、煤气发生站,木材防腐及某些化工(如酚醛树脂>等工业废水。酚的主要分析方法有容量法、分光光度法、色谱法等。目前各国普遍采用的是4&mdash 氨基安替吡林分光光度法;高浓度含酚废水可采用溴化容量法。无论溴化容量法还是分光光度法,当水样中存在氧化剂、还原剂、油类及某些金属离子时,均应设法消除并进行预蒸馏。如对游离氯加入硫酸亚铁还原;对硫化物加入硫酸铜使之沉淀,或者在酸性条件下使其以硫化氢形式逸出;对油类用有机溶剂萃取除去等。蒸馏的作用有二,一是分离出挥发酚,二是消除颜色、浑浊和金属离子等的干扰。(一)4&mdash 氨基安替比林分光光度法酚类化合物于pHl0.0土o.2的介质中,在铁氰化钾的存在下,与4&mdash 氨基安替比林(4&mdash AAP)反应,生成橙红色的p5l噪酚安替比林染料,在510nm波长处有最大吸收,用比色法定量。反应式如下:显色反应受酚环上取代基的种类、位置、数目等影响,如对位被烷基、芳香基、酯、硝基、苯酰、亚硝基或醛基取代,而邻位未被取代的酚类,与4&mdash 氨基安替比林不产生显色反应。这是因为上述基团阻止酚类氧化成醌型结构所致,但对位被卤素、磺酸、羟基或甲氧基所取代的酚类与4&mdash 氨基安替比林发生显色反应。邻位硝基酚和间位硝基酚与4&mdash 氨基安替比林发生的反应又不相同,前者反应无色,后者反应有点颜色。所以本法测定的酚类不是总酚,而仅仅是与4&mdash 氨基安替比林显色的酚,并以苯酚为标准,结果以苯酚计算含量。用20m2d比色皿测定,方法最低检出浓度为o.12n8/L。如果显色后用三氯甲烷萃取,于460n2n波长处测定,其最低检出浓度可达o.o02m8/L;测定上限为0.12m8从。此外,在直接光度法中,有色络合物不够稳定,应立即测定;氯仿萃取法有色络合物可稳定3小时。(二)溴化滴定法在含过量溴(由溴酸钾和溴化钾产生)的溶液中,酚与镇反应生成三溴酚,并进一步生成溴代三溴酚。剩余的溴与碘化钾作用释放出游离碘,与此同时溴代三溴酚也与碘化钾反应置换出游离碘。用硫代硫酸钠标准溶液涵定释出的游离碘,并根据其消耗计算出以苯酚计曲捅发酚含量。反应式如下:结果按下式计算:挥发酚式中:认&mdash &mdash 空白(以蒸馏水代替水样加D同体积溴酸钾&mdash 溴化钾溶液)试验滴定时硫代硫酸钠标、&mdash 液用量(mL)6y2&mdash &mdash 水样滴定时硫代硫酸钠标液用量(mL);&mdash c&mdash &mdash 硫代硫酸钠标液的浓度(tpol儿)一V&mdash &mdash 水样体积(mL);15.68&mdash &mdash 苯酚(1/6C eHsOH)摩尔质量(8/m01)。七、矿物油.水中的矿物油来自工业废水和生活污水;工业废水中石油类(各种烃类的混合物)污染物主要来自原油开采、加工及各种炼制油的使用部门。矿物油漂浮在水体表面,影响空气与水体界面间的氧交换;分散于水中的油可被微生物氧化分解,消耗水中的溶解氧,使水质恶化。矿物油中还含有毒性大的芳烃类。测定矿物油的方法有重量法、非色散红外法、紫外分光光度法、荧光法、比浊法等。(一)重量法重量法是常用的方法,它不受油品种的限制,但操作繁琐,灵敏度低,只适用于测定10m8儿以上的含油水样。方法测定原理是以硫酸酸化水样,用石油醚萃取矿物油,然后蒸发除去石油醚,称量残渣重,计算矿物油含量。该法是指水中可被石油醚萃取的物质总量,可能含有较重的石油成分不能被萃取。蒸发除去溶剂时,也会造成轻质油的损失。(二)非色散红外法本法系利用石油类物质的甲基(&mdash CH:)、亚甲基(&mdash 吧Hz一)在近红外区(3.4f4m)有特征吸收,作为测定水样中油含量的基础。标准油可采用受污染地点水中石油醚萃取物。根据我国原油组分特点,也可采用混合石油烃作为标准油;其组成为:十六烷:异辛烷:苯z 65:25:10(y/y)。测定时,先用硫酸将水样酸化,加氯化钠破乳化,再用三氯三氟乙烷萃取,萃取液经无水硫酸钠层过滤、定容,注入红外分析仪测其含量。所有含甲基、亚甲基的有机物质都将产生干扰。如水样中有动、植物性油脂以及脂肪酸物质应预先将其分离。此外,石油中有些较重的组分不镕于三氯三氟乙烷,致使测定结果偏低(三)紫外分光光度法石油及其产品在紫外光区有特征吸收。带有苯环的芳香族化合物的主要吸收波长为250一260nm;带有共扼双键的化合物主要吸收波长为215&mdash 230ngl。一般原油的两个吸收峰波长为225nm和254nm;轻质油及炼油厂的油品可选225nm。水样用硫酸酸化,加氯化纳破乳化,然后用石油醚萃取,脱水,定容后测定。标准油用受污染地点水样石油醚萃取物。 不同油品特征吸收峰不同,如难以确定测定波长时,可用标准油样在波长215&mdash 300nm之间的吸收光谱,采用其最大吸收峰的位置。一般在220一225nm之间。八、其他有机污染物质根据水体污染的不同情况,常常还需要测定阴离子洗涤剂、有机磷农药、有机氯农药、苯系物、氯苯类化合物、苯并(a)花、多环芳烃、甲醛、三氯乙醛、苯胺类、硝基苯类等。· 这些物质除阴离子洗涤剂外。其他均为主要环境优先污染物,其监测方法多用气相色谱法和分光光度法。对于大分子量的多环芳烃、苯并(a)芘等要用液相色谱法或荧光分光光度法。其详细内容参阅本教材后附的有关水质分析方面的文献。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制