当前位置: 仪器信息网 > 行业主题 > >

纤维强伸仪

仪器信息网纤维强伸仪专题为您提供2024年最新纤维强伸仪价格报价、厂家品牌的相关信息, 包括纤维强伸仪参数、型号等,不管是国产,还是进口品牌的纤维强伸仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维强伸仪相关的耗材配件、试剂标物,还有纤维强伸仪相关的最新资讯、资料,以及纤维强伸仪相关的解决方案。

纤维强伸仪相关的论坛

  • 影响纤维断裂强伸度的测试条件,规律。

    影响纤维断裂强伸度的测试条件,规律。 1,试样长度,纤维强度随试样长度的增加而减弱,纤维的断裂点总是在最弱除产生,试样的长度越长,出现最弱点的几率越大,故强度越低,特别对强度不匀的天然纤维影响越大。 2,试样根数,由束纤维实验所得的平均单纤维强度要比有单纤维实验时所得的平均单纤维低,束纤维根数越多,二者差异越大,这是由于束纤维伸直程度,受理情况不同,出现断裂的不同时性和少量纤维的滑脱所致。 3,拉伸速度及负荷方式,拉伸速度大,纤维强度偏高,加负荷的方式有高速拉伸,高速伸长,和高速负荷三种,采用形式不同也会影响实验结果。

  • 为什么同样是纤维素纤维,粘胶纤维的湿强远小于干强,而棉纤维的湿强却大于干强?

    为什么同样是纤维素纤维,粘胶纤维的湿强远小于干强,而棉纤维的湿强却大于干强?因为棉纤维断裂应力集中,其聚合度、取向度、结晶度较高,主价键断裂遇湿后,水分子进入,有增塑作用,使应力分布趋于均匀,从而增加了纤维的强度;而黏胶纤维聚合度、取向度、结晶度较低,分子链之间的作用力较弱,在外力拉伸时,分子链或其他结构单元之间的先对滑移可能是纤维断裂的主要原因。黏胶纤维润湿后,由于水分子的作用削弱了大分子间的作用了,有利于分子链或其他结构单元之间的相对滑移,它的湿强比干强低得多。

  • 【分享】GB 1447-2005纤维增强塑料拉伸性能试验方法

    GB 1447-2005纤维增强塑料拉伸性能试验方法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=58069]纤维增强塑料拉伸性能试验方法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=58070]纤维增强塑料拉伸性能试验方法[/url]

  • 木棉纤维拉伸性能的测试与评价

    摘要:设计了单纤维强伸性能的新测试方法,测试了4种木棉纤维的拉伸性能,结果发现,木棉纤维拉伸曲线与棉纤维相似,没有明显的屈服点.木棉纤维断裂强力和断裂伸长率在一定范围内均有分布,4种木棉纤维平均断裂强力1.44~1.71cN,平均断裂伸长率1.83%~4.23%,纤维长度、线密度与木棉纤维的断裂强力明显相关,4种木棉纤维相对断裂强度接近,而断裂伸长率差异较大,木棉纤维初始模量因其品种和产地不同存在一定差异.与棉纤维相比,木棉纤维断裂伸长率低,断裂强度和初始模量与棉纤维相近,但因木棉纤维细软而容易拉断.  木棉是树上生长的天然纤维素纤维,纤维具有薄壁大中空结构、首尾封闭等特点,如图1所示.http://www.e-dyer.com/ckeditor/uploader/upload/images/file1320216552296.jpg现有的有关木棉纤维及其应用的文献中,关于木棉纤维性能的研究方面,基本上集中于单纤维化学成分和性质、纤维结构和物理性能等方面;关于木棉纤维应用领域研究集中于其作为浮力材料、吸油材料、复合材料等方面近年来关于木棉絮料、纺纱及其织物性能研究逐渐受到关注.强伸性能是木棉纤维重要的力学性能之一,对纤维成纱品质及其制品使用价值有重要影响,但由于木棉纤维短、易碎等缺点,测试非常麻烦,目前还没有文献对木棉纤维强伸性能的测试做系统报道.本文采用单根纤维强力测试的方法,在大量实验基础上测试分析了木棉纤维的拉伸性能,比较分析了不同品种木棉纤维强伸性能差异,研究结果有利于更好地加工利用木棉纤维.

  • 纤维增强金属层板破裂形貌观测方法

    [align=center] [/align] [font=黑体][back=yellow]引言[/back][/font] [font=宋体]纤维增强金属层板([/font][font='Times New Roman','serif']Fiber Metal Laminates[/font][font=宋体],简称[/font][font='Times New Roman','serif'] FMLs[/font][font=宋体])是一种三明治式的叠层复合材料,由金属层和连续纤维复合材料层交替叠加,并通过树脂粘结而成的新式复合材料。由于[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的结构特点,使其结合了金属和复合材料的优势,即相较于传统材料其具有卓越的比强度、比刚度、高疲劳阻力、耐腐蚀性以及良好的防火性能。这些特性使[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]在航空、航天和汽车等领域得到了广泛应用。特别是其在不同加载条件下的失效形式,更是当前研究热点。本文正是基于此,介绍了借助扫描电镜([/font][font='Times New Roman','serif']SEM[/font][font=宋体])对纤维增强金属层板各组分破裂形貌进行分析。[/font] [align=center][img=,412,237]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446145753_2390_6561489_3.jpg!w412x237.jpg[/img] [/align] [font=宋体]图[/font] 1[font=宋体]纤维增强金属层板结构示意图[/font] [align=center] [/align] [font=黑体][back=yellow]测试方法[/back][/font] [font=宋体]为更好的观测未固化[/font][font='Times New Roman','serif']GLARE[/font][font=宋体]层板各组分失效形式,本章借助捷欧路(北京)科贸有限公司所售的[/font][font='Times New Roman','serif']JSM-IT210[/font][font=宋体](钨灯丝)扫描电子显微镜对铝合金和预浸料断口进行观测。该设备最大放大倍数为[/font][font='Times New Roman','serif']300000X[/font][font=宋体],真空度为[/font][font='Times New Roman','serif']10-650Pa[/font][font=宋体]。此外,由于玻璃纤维的导电性极差,造成纤维断口表面多余电子或游离粒子的累积不能及时导走,继而造成反复出现充电、放电现象,造成图像扭曲或变形等现象。因此,本文借助[/font][font='Times New Roman','serif']JEC-3000FC[/font][font=宋体]设备对预浸料断口进行喷金处理,即在纤维断口表面溅射一个额外的导电薄层材料,从而提升纤维的导电性。[/font] [align=center][img=,354,252]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446253708_8792_6561489_3.jpg!w354x252.jpg[/img][/align] [font=宋体]图[/font] 2[font=宋体]微观观测设备[/font]: (a).JSM-IT210[font=宋体]扫描电镜[/font] (b).JEC-3000FC[font=宋体]离子溅射仪[/font] [font=黑体][back=yellow]测试结果[/back][/font] [font=宋体]下图给出了[/font][font='Times New Roman','serif']2024-T3[/font][font=宋体]铝合金、[/font][font='Times New Roman','serif']W-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-10000[/font][font=宋体]预浸料的微观断口形貌。对于铝合金来讲,断口处显示了一系列的圆形韧窝,这表明铝合金是由正应力导致的韧性失效。而对于玻璃纤维来讲,不论是[/font][font='Times New Roman','serif']WP-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-1000[/font][font=宋体]预浸料,其断口位置的纤维均呈现参差不齐的牙刷状形貌,即典型的拉伸导致的纤维脆性断裂失效形貌。综上所述,[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的各组分材料在试验中的破坏方式为正应力为主导的拉伸破坏行为[/font] [align=center][font='Times New Roman','serif'][img=,382,417]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446362290_802_6561489_3.jpg!w382x417.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif'] 3Nakajima[/font][font=宋体]试验后铝合金和预浸料断口微观照片[/font][/b][/align] [align=center] [/align]

  • 纤维增强金属层板破裂形貌观测方法

    [align=center] [/align] [font=黑体][back=yellow]引言[/back][/font] [font=宋体]纤维增强金属层板([/font][font='Times New Roman','serif']Fiber Metal Laminates[/font][font=宋体],简称[/font][font='Times New Roman','serif'] FMLs[/font][font=宋体])是一种三明治式的叠层复合材料,由金属层和连续纤维复合材料层交替叠加,并通过树脂粘结而成的新式复合材料。由于[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的结构特点,使其结合了金属和复合材料的优势,即相较于传统材料其具有卓越的比强度、比刚度、高疲劳阻力、耐腐蚀性以及良好的防火性能。这些特性使[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]在航空、航天和汽车等领域得到了广泛应用。特别是其在不同加载条件下的失效形式,更是当前研究热点。本文正是基于此,介绍了借助扫描电镜([/font][font='Times New Roman','serif']SEM[/font][font=宋体])对纤维增强金属层板各组分破裂形貌进行分析。[/font] [align=center][img=,690,988]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161356384565_5977_6561489_3.jpg!w690x988.jpg[/img][/align] [font=宋体]图[/font] 1[font=宋体]纤维增强金属层板结构示意图[/font] [align=center] [/align] [font=黑体][back=yellow]测试方法[/back][/font] [font=宋体]为更好的观测未固化[/font][font='Times New Roman','serif']GLARE[/font][font=宋体]层板各组分失效形式,本章借助捷欧路(北京)科贸有限公司所售的[/font][font='Times New Roman','serif']JSM-IT210[/font][font=宋体](钨灯丝)扫描电子显微镜对铝合金和预浸料断口进行观测。该设备最大放大倍数为[/font][font='Times New Roman','serif']300000X[/font][font=宋体],真空度为[/font][font='Times New Roman','serif']10-650Pa[/font][font=宋体]。此外,由于玻璃纤维的导电性极差,造成纤维断口表面多余电子或游离粒子的累积不能及时导走,继而造成反复出现充电、放电现象,造成图像扭曲或变形等现象。因此,本文借助[/font][font='Times New Roman','serif']JEC-3000FC[/font][font=宋体]设备对预浸料断口进行喷金处理,即在纤维断口表面溅射一个额外的导电薄层材料,从而提升纤维的导电性。[/font] [img=,355,1086]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161357550424_2345_6561489_3.jpg!w355x1086.jpg[/img] [font=宋体]图[/font] 2[font=宋体]微观观测设备[/font]: (a).JSM-IT210[font=宋体]扫描电镜[/font] (b).JEC-3000FC[font=宋体]离子溅射仪[/font] [font=黑体][back=yellow]测试结果[/back][/font] [font=宋体]下图给出了[/font][font='Times New Roman','serif']2024-T3[/font][font=宋体]铝合金、[/font][font='Times New Roman','serif']W-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-10000[/font][font=宋体]预浸料的微观断口形貌。对于铝合金来讲,断口处显示了一系列的圆形韧窝,这表明铝合金是由正应力导致的韧性失效。而对于玻璃纤维来讲,不论是[/font][font='Times New Roman','serif']WP-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-1000[/font][font=宋体]预浸料,其断口位置的纤维均呈现参差不齐的牙刷状形貌,即典型的拉伸导致的纤维脆性断裂失效形貌。综上所述,[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的各组分材料在试验中的破坏方式为正应力为主导的拉伸破坏行为[/font] [align=center][font='Times New Roman','serif'][img=,383,1086]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161356523395_3601_6561489_3.jpg!w383x1086.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif'] 3Nakajima[/font][font=宋体]试验后铝合金和预浸料断口微观照片[/font][/b][/align] [align=center] [/align]

  • 羟丙纤维素和羟丙甲纤维素-中国药典2010版

    羟丙纤维素-中国药典2010版本品为低取代2-羟丙基醚纤维素。按干燥品计算,含羟丙氧基(-OCH2CHOHCH3)应为7.O%~l6.0%.羟丙甲纤维素-中国药典2010版本品为2-羟丙基醚甲基纤维素。按干燥品计算,含甲氧基(-OCH3)应为l9.0%~30.0%,含羟丙氧基(-OCH2CHOHCH3)应为4.0%~l2.0%。

  • 羟丙甲纤维素

    想请教一下羟丙甲纤维素中地碘甲烷和2-碘丙烷的对照称样量是怎么计算出来的

  • 影响纺织纤维拉伸断裂强度的因素!

    影响纺织纤维拉伸断裂强度的因素主要有以下几方面:(一)纤维的内部结构大分子聚合度:纤维的强度随聚合度的增加而增加,当聚合度小时,随聚合度的增加纤维强度显著增加,到达一定聚合度后,聚合度对纤维强度的影响不明显或不再增加。结晶度:纤维的初始模量、密度和屈服点应力都随结晶度的增加而增加。大分子取向度:纤维的断裂强度、初始模量和屈服应力都随取向度的增加而增加。(二)、温湿度:一般纤维随温度升高强度降低。天然纤维与合成纤维相比,合成纤维受温度影响更为敏感。一般纤维随相对湿度增加强度降低,然而天然纤维素纤维的强度反而增加。这是由于聚合度、结晶度均高,纤维吸湿后拆开非结晶区链段的结合点,增加同时受力的分子数,使纤维强度增加。(三)、试验条件试样长度:纤维强度随试样长度的增加而降低,因为纤维的断裂点总是在最弱处产生。试样长度越长,出现最弱点的机率越多,所以强度愈低,特别对强度不匀大的天然纤维影响更大。试样根数:由束纤维试验所得的平均单纤维强度要比以单纤维试验时所得的平均单纤维强度为低,束纤维根数越多,两者差异越大,这是由于束纤维中的各根纤维伸直程度、受力情况不同,出现断裂的不同时性和少量纤维滑移所致。拉伸速度及负荷方式:拉伸速度大,纤维强度偏高。加负荷的方式有等速拉伸、等速伸长和等加负荷三种,采用形式不同也会影响试验结果。

  • SiC纤维拉伸实验

    为什么SiC纤维拉伸实验,断口会出现褶皱的波浪起伏,不是典型的脆性断裂断口形貌?这是因为拉伸时试样未对中吗?

  • 纤维之四----有机纤维之二 聚四氟乙烯纤维(PTFE)

    1、聚四氟乙烯纤维是迄今为止最耐腐蚀的纤维,它的摩擦系数低,并具有不粘性、不吸水性。2、聚四氟乙烯纤维的密度为2.2g/cm3,回潮率只有0.01%,其机械强度不高,约为1.3cN/tex,断裂伸长率为13%-15%。3、聚四氟乙烯纤维具有非常优异的化学稳定性,其稳定性超过所有其他天然纤维和化学纤维,如将这种纤维置于浓硫酸中,在290℃下处理1d,继而在100℃的浓硝酸中处理1d,再在100℃、50%烧碱中处理1d,其强度未见变化;对所有常用的强氧化剂也是稳定的。4、聚四氟乙烯纤维还具有良好的耐气候性,是现有各种化学纤维中耐气侯性最好的一种,在室外暴露15年,其机械性能仍未发生明显的变化;它既能在较高的温度下使用,也能在很低的温度下使用,其使用的温度范围是-180℃-260℃。 其极限氧指数值为95%,即在氧浓度为95%以上的气体中才能燃烧,因此它是目前化学纤维中最难燃的纤维。5、聚四氟乙烯纤维还具有良好的电性能和抗辐射性能。其摩擦系数为0.01-0.05,是现有合成纤维中最小的,而且可在很高的温度和很宽的荷重范围内保持不变。6、聚四氟乙烯纤维本身没有任何毒性,但是在200℃以上使用时,有少量有毒气体氟化氢释出,因此在高温下使用时应注意采取相应措施。

  • 纤维的疲劳是指纤维在较小拉伸力长时间作用下也会断裂的现象

    纤维的疲劳:是指纤维在较小拉伸力长时间作用下也会断裂的现象。纤维的疲劳有两情况:静止疲劳和多次拉伸疲劳。静止疲劳是指在小于断裂强力的恒定拉伸负荷的长时间作用下的断裂现象。多次拉伸疲劳是指纤维或纱线经受多次加负荷、去负荷的反复循环作用,因为塑性变形的逐渐积累,造成内部局部损伤,形成裂痕,最后被破坏的现象

  • 俄罗斯超高分子量聚乙烯纤维问世

    超高分子量聚乙烯纤维,是位于碳纤维、硼纤维、芳纶纤维之后的第四种高强纤维。具有高强、高模、耐化学性、耐光性,同时还耐湿、耐冲击、抗切割,它的生物相容性好,并且在所有高强高模纤维中密度最小,因此质轻而坚韧。  俄罗斯“合成纤维科学研究院及实验工厂”,(即原全苏合成纤维科学研究院,建于1956年),与俄其他企业合作,首次完成了俄产超高分子量聚乙烯纤维的全部生产工艺,从纤维合成、催化剂,到制取高强高模丝、及其复合材料,这是俄第一个超高分子聚乙烯科研项目,采用凝胶纺丝––超拉伸法,年产量25吨。  俄产超高分子量聚乙烯纤维,有种型号,它们的技术指标:ЛЭ–1型丝拉伸强力270-280cN/tex,弹性模数9000-9500 cN/tex。ЛЭ–2型丝拉伸强力350-370 cN/tex,弹性模数13000-13500 cN/tex。主要用于制造防弹软甲、防弹头盔、防弹装甲、超强缆强、航天降落伞绳索、以及复合材料的增强等。ЛЭ–1型丝织成织物用于增强复合材料,其主要性能指标,超过俄产芳纶PycaP织物增强的复合材料,其中弯曲时断裂应力,提高35%,ЛЭ–2型则有望提高更多。  俄产超高分子量聚乙烯纤维在2011年工业化生产初具规模,计划2015年完成商业化运作,并形成年产120吨规模。两种型号的丝,价格均低于俄产芳纶PycaP,比俄产聚丙烯腈基碳纤维的价格低三分之一至四分之一。

  • 纤维拉伸试验夹具夹持面的选择

    我在做叶片纤维(整片叶子的原麻)的拉伸实验室,夹具夹持面粘贴的软质胶皮会被拉坏,而且出现打滑现象,想请教大家:在夹具的夹持面粘贴什么材质的材料才能做到不打滑

  • 【原创】轮胎帘线强伸性能检测注意事项

    纤维帘线作为轮胎胎体的骨架材料在检测强伸性能时,如果在检测中不注意,会出现测试失误,因此需要注意以下事项(这里指在试验机合格基础上,另外,如果错误或者不全请各位网友指正或添加):1.夹持距离错误:试验机在多次上下移动时,可能出现零点偏差,必要时需要进行纠正;2.夹持距离设定错误:有的实验室把夹持器之间的距离作为夹持距离(我在一个工厂实验室发现的),实际应该把夹持钳口处开始算起,包括弯曲的部位;3.参数设置错误:这里主要指定负荷伸长率的定负荷设置,一般按照帘线的标称线密度及股数来设置,即总线密度,如:1670dtex/2=3340dtex,不应该与1670dtex/1的相同;4.预加张力设置错误:一般按照帘线的标称线密度设置(即总线密度),一般为0.05cn/dtex,如:1670dtex/2=3340dtex,不应该只看1670dtex或者干脆随便设置;5.夹钳不适合:国内试验机夹钳一般适合于低强力的帘线,现在的帘线多数是高强型的,出现小马拉大车现象,会出现钳口处滑动,造成测试不准;6.钳口处压力不平均:夹钳的钳口如果调整不平行,会出现压力不均,造成局部压力过大,对夹持的纤维造成破坏,致使断裂在钳口处附近,力值偏低;7.夹钳使用的压缩空气压力不合适:压力小会夹持不住,造成滑动,压力过大会损失帘线,所以应根据检测的帘线规格进行适当调整8.......(请各位继续添加)

  • 羟丙甲纤维素的含量测定

    各位大佬,我想问下,羟丙甲纤维素的含量测定里的这个供试品所含的甲氧基和羟丙氧基的量是怎么计算的?是根据标准规定的限度去折算的吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制