当前位置: 仪器信息网 > 行业主题 > >

化工氨定仪

仪器信息网化工氨定仪专题为您提供2024年最新化工氨定仪价格报价、厂家品牌的相关信息, 包括化工氨定仪参数、型号等,不管是国产,还是进口品牌的化工氨定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化工氨定仪相关的耗材配件、试剂标物,还有化工氨定仪相关的最新资讯、资料,以及化工氨定仪相关的解决方案。

化工氨定仪相关的论坛

  • 【分享】聚氨酯化工英语

    acid number 酸值 acylurea 酰(基)脲 aqurous ployurethane 水溶性聚氨酯 alliphanate 脲基甲酸酯 amide 酰胺 amine equivalent 胺当量 amine value 胺值 bitolylene diisocyanate 3,3-二甲基-4,4-联苯二异氰酸酯 biuret 缩二脲 1,4-butylene glycol(1,4-BG)or1,4-Butylene diol(1,4-BDD) 1,4-丁二醇 caprolactone ployester 己内酯型聚酯 caster oil 蓖麻油 carbodiimide 碳化二亚胺 casting molding machine 浇注机 casting PU(CPU) 浇注型聚氨酯 casting table 浇注平台 centrifugal casting 离心浇注 chain extender 扩链剂 cohension energy 内聚能 compression moulding 加压模塑(成型) cream time 乳白时间 crosslinking agent 交联剂 cyclohexyl diisocyanate (CHDI) 环己烷二异氰酸酯 4,4-dicyclohecylmethane diisocyanate (H12MDI) 4,4-二环己基甲烷二异氰酸酯,即氢化MDI demould time 脱模时间 3,5-diamino-p-chloroisobutylbenzoate(Baytec-1604) 3,5-二氨基对氯苯甲酸异丁酯 1,4-diazobicyclo-2,2,2-octane(DABCO) 1,4-二氮杂-(2,2,2)-双环辛烷,即三亚乙基二胺 dibutyltin dilaurate(DBTDL) 二丁基锡二月桂酸酯 3,3-dichloro-4,4-dianilino methane(MOCA) 3,3-二氯-4,4-二氨基二苯甲烷 4,4-methylene bis(2-Chloroaniline) 4,4-亚甲基双(二-氯苯胺) die C tear strength 撕裂强度(直角形) dihydromethyl propionic acid(DMPA) 二羟甲基丙酸 1,4-dihydroxybutane 1,4-丁二醇 dimethyl methyl phosphonate(DMMP) 甲基膦酸二甲酯 3,5-dimetylthio toluene dianiline(DMTDA) 3,5-二甲硫基甲苯二胺 4,4-diphenylmethane diisocyanate(MDI) 4,4-二苯(基)甲烷二异氰酸酯 domain 微区 domain structure 微区结构 dynamic properties 动态力学性能 elongation at break(Eb)扯断伸长率 extrusion moulding 挤出成型 extruding moulding machine 挤出机 fine mesh sieve screen 条缝筛 flexible PU foam 软质聚氨酯泡沫,聚氨酯软泡 glycerin -monoallylether 甘油-单烯丙基醚 gel time 凝胶时间 hard segment domains 硬段微区 hardness(shore A) 硬度(邵尔A) 1,6-hexamethylene diisocyanate(HDI) 1,6-六亚甲基二异氰酸酯 high pressure impingement mixing(HPIM) 高压碰撞混合 horizontal centrifruge with one sprindle 单轴卧式离心机 hydrogen boad 氢键 hydroquinore dihydroxyethylether 氢醌二羟乙基醚 hydroxyl number 羟值 hydroxyl-terminated polybutadiene 端羟基聚丁二烯 imitation leather 人造革,假皮 ingredient 配合剂 injection moulding 注塑成型 injection moulding machine 注塑机 integral skin foam 自结皮泡沫,整皮泡沫 isocyanurate equivalent 异氰酸酯当量 isocyanate index 异氰酸酯指数 isophorone diisocyanate(IDDI)(3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate) 异佛尔酮二异氰酸酯 liquid injection moulding 液体注射成型 liquid PU 液体聚氨酯 low free TDI prepolymer 低游离TDI预聚体 low-monol polypropylene glycol 低一元醇聚丙二醇 microcellular PUE 微孔聚氨酯弹性体 micro phase separate 微相分离 millable PU(MPU) 混炼型聚氨酯 modulus 300%(M300) 300%模量(300%定伸应力) morphological structure 形态学结构 1,5-naphalene diisocyanate(NDI) 1,5-萘二异氰酸酯 number average molacular weight 数均分子量 papa-phenylene diisocyanate(PPDI) 对苯二异氰酸酯 paracrystalline 次晶 percent free NCO NCO,%或NCO(%) percent NCOin prepolymer 预聚物中NCO基百分含量 percentage free NCO 游离NCO基百分含量 perment set 永久变形 phenyl mercury acetate 醋酸苯汞 phenyl mercury propionate 丙酸苯汞 polybutadiene glycol 聚丁二烯二醇,即端羟基聚丁二烯 polybutylene adipate(glycol) 聚己二酸丁二醇 酯(二醇 ) polybutylene glycol(PBG) 聚丁二醇 ploycaprolactone(glycol) 聚己内酯(二醇 ) polyester(diol) 聚酯(二醇) ployether 聚醚 ployether PU 聚醚型聚氨酯 polyethylene propylene adipate (Glycol) 聚己二酸乙二(醇 )丙二(醇 )酯(二醇) polyisocyanurate 聚异氰 脲酸酯 polymeric glycol 聚合二醇、低聚(物)二醇、大分子二醇 ployol 多元醇 polytetramethylene glycol(PTMG) 聚四亚甲基二醇 polyoxytetramethylene glycol(POTMG) 聚氧四亚甲基二醇 polytetrahydrofuran(PTHF) 聚四氢呋喃 polytetramethylene ether Glycol(PTMEG) 聚四亚甲基醚二醇 polyphenylmethane polyisocyanate(PAPI) 多苯基多亚甲基多异氰 酸酯 polypropylene glycol 聚丙二醇 polypropylene oxide glycol 聚氧化丙烯二醇 polyurethane(PU) 聚氨基甲酸酯,简称聚氨酯 post vure 后硫化 pot life 釜中寿命 prepolymer 预聚物,预聚体 PU adhesive 聚氨酯粘合剂 PU coating 聚氨酯涂料 PU elastomer 聚氨酯弹性体 PU fiber 聚氨酯纤维 PU foam 聚氨酯泡沫 PU ionomers 离子型聚氨酯,聚氨酯离聚体 PU plastic 聚氨酯塑料 PU rubber 聚氨酯橡胶 o-xylylene Diisocyanate(XDI) 对苯二亚甲基二异氰酸酯 quasi-prepolymer 半预聚体,半预聚物 reaction injection moulding(RIM) 反应注射模塑或反应注射成型 rigid block 硬(嵌)段 rigid PU foam 硬质聚氨酯泡沫,聚氨酯硬泡 rigid Segment 硬链段 rise time 起发时间 rotary injection reaction 旋转注射反应 injection molding 注射成型 rotary table 旋转平台 rotational casting 回转浇注 segmented PU 嵌段聚氨酯 semi-flexible(or semirigid)foam 半硬泡 set time 固化时间 soft segment(or flexible segment) 软链段,软段 spray coating 喷涂 stannous octoate 辛酸亚锡 tack-free time 不粘手时间 tensile strength 拉伸强度 tensioning screen 张力筛 rensioning screen with square 方孔张力筛 thermoplastic PU(TPU) 热塑性聚氨酯 3,3-tolidine-4,4-diisocyanate(TODI)(3,3-dimethyldiphenyl-4,4-diisocyanate) 3,3-二甲基联苯-4,4-二异氰酸酯 toluene diisocyanate 甲苯二异氰酸酯 triethylene diamine 三亚乙基二胺 trimethylolpropane monoallylether 三羟甲基丙烷单烯丙基醚 tripropamol amine 三异丙醇胺 two-component low pressure dispensing machine 双组分低压浇注机 two-component spraying machine 双组分喷涂机 urea 脲 urethane 氨基甲酸酯,简称氨酯 urethane bond 氨基甲酸酯键 urethane link 氨基甲酸酯基,简称氨酯基 urethane group 氨基甲酸酯基 urethane-urea 氨酯-脲 uretidione ring 脲二酮环 uretonimine 脲酮亚胺 water-blown PU 水发泡聚氨酯 water dispersed PU 水系聚氨酯 weight average molacular weigth 重均分子量

  • 石油化工废水处理工艺汇总-2

    3.1 活性污泥法活性污泥法是以活性污泥为主体的废水生物处理的主要方法。这种技术将废水与活性污泥(微生物)混合搅拌并曝气,使废水中的有机污染物分解,生物固体随后从已处理废水中分离,并可根据需要将部分回流到曝气池中。活性污泥法是由曝气池、沉淀池、污泥回流和剩余污泥排除系统所组成。活性污泥中的细菌是一个混合群体,常以菌胶团的形式存在,游离状态的较少。活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段,吸附阶段和稳定阶段。3.2 SBR工艺序批式活性污泥法(SBR法)是一种不同于传统活性污泥法的废水处理工艺,是在一个反应器内,按照给定的程序进行充水、反应、沉淀、排水及闲置等。该工艺通过曝气、停气,使系统内的好氧和缺氧状态交替进行。在降解COD的同时,相继进行了氨氮的硝化和反硝化,达到同时脱碳、脱氮的目的。SBR工艺结构形式简单,运行方式灵活多变,有较强的抗冲击负荷能力,具有一系列连续流系统无法比拟的优点。抚顺石油化工研究院通过小试试验,对SBR法处理石油化工废水进行了研究。用压缩空气充氧,污泥浓度保持5000~7000mg/L,反应器温度在28~32℃。结果表明,在CODCr进水容积负荷为0.6kgCOD/(m3d),氨氮容积负荷为0.07kg/(m3d)的条件下,CODCr去除率为94%,氨氮去除率为90%以上,总氮去除率在60%左右,具有良好的去除效果。郭景海运用SBR法处理吉林石化厂废水,控制温度在20℃左右、pH在6~9条件下,氨氮有较好的去除效果,进水氨氮40~50mg/L时,出水氨氮能够达到2~3mg/L,去除率在90%上。3.3 厌氧生物处理厌氧生物处理是高浓度有机废水处理常用的方法,具有能耗低、负荷高,再生沼气能源等优点。但在处理高浓度、难降解石油化工废水时,由于废水中往往含有对产甲烷菌有毒害和抑制作用的高浓度氨氮和硫化物,系统的处理效率会大大下降。凌文华利用UASB反应器对高浓度石油化工废水进行预处理,反应器采用温度范围为30~38℃,在进水COD8000mg/L时,COD去除率能达到85%以上,且该系统设备负荷高,占地面积少,剩余活性污泥产量低,污泥脱水性良好,在厌氧UASB反应器的下部形成了沉淀性能良好的颗粒污泥,对废水中污染物质具有较高的去除效率。耿土锁对普通厌氧反应器进行了改进,采用轻质、多孔的陶粒作为厌氧生物过滤柱的载体,对经过隔油与两级混凝气浮处理的炼油废水进行深度处理试验。试验结果表明,随着陶粒填料上生物膜的逐渐增加,其处理水量与COD负荷也随之增加。当培养驯化两个月后,填料的负荷达到了4.2~6.3m3水/(m3填料d),COD负荷约为0.6~0.8kgCOD/(m3填料d),COD去除率达到70%~80%,油类和挥发酚的去除率均在80%以上。并且系统耐冲击负荷,运行稳定,厌氧出水清澈透明,无色无味,可生化性好,再经过好氧生物处理后,可达到回用水的要求。3.4 好氧生物处理好氧生物处理是目前普遍采用的生物处理方法,因其处理成本低,运行操作简单,在大多数的工业废水处理中被广泛采用。康雪琴等对传统活性污泥法进行改进,采用氧气曝气法处理高COD、含硫、含氨的石油化工废水,试验对氧曝和空曝进行了对比。经过三个月的运行表明,与空气曝气法相比,氧气曝气法净化效果高,出水水质好,COD和BOD5的平均去除率可达到88.6%和97.6%;且操作平稳安全,抗冲击性能强,污泥沉降性能好,相对提高了反应器的容积负荷。但是该方法由于使用纯氧,成本较高,因此很难推广。利用推流式混合曝气池处理高浓度石化废水是活性污泥法的另一个改进,然而该方法同样存在着COD、BOD5、油、酚、硫化物等的去除率高,而氨氮去除率低的问题。唐逸衡将混合推流式曝气池分成六段。前四段作为异氧菌繁殖场所,主要去除有机碳;后两段以进行硝化反应为主,通过改变运行条件来促进硝化细菌的生长。在第五段利用厂区生产装置产生的废碱液来调节pH值和碱度,实现在去除COD、酚、油等物质的同时,提高氨氮的去除效率。3.5 接触氧化法接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤地。在不透气的曝气地中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧;空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。夏四清等采用悬浮填料接触氧化生物反应器对高浓度石油化工废水进行处理。通过6h、8h、10h、12h四个不同水力停留时间的硝化过程,取得了不同运行条件下的氨氮去除效果。结果表明,悬浮填料生物反应器完全可以达到生物硝化的目的。当进水中BOD5和CODCr浓度变化范围在77.4~234mg/L和245.5~695.7mg/L时,其平均去除率分别为90%和80%以上,平均出水浓度分别小于15mg/L和90mg/L。试验期间进水氨氮浓度在8.3~53.2mg/L范围内时,四个工况条件下的平均去除率分别为55.5%、86.7%、91.1%和95.6%,平均出水浓度分别是9.43mg/L、3.10mg/L、1.71mg/L、0.79mg/L。3.6 A/O法李秀怀采用A/O工艺处理广州某重油制气厂废水。结果表明,A/O工艺对氨氮具有很强的去除能力,去除率达到95%以上,出水氨氮稳定达标排放;对COD也有较高的降解能力,正常情况下去除率达到80%以上。从理论上讲,A/O工艺对石油化工废水具有良好的处理效果,但在实际工程中往往会出现以下问题:(1)受到进水水质的影响较大,氨氮去除效果不理想;(2)O段的水力停留时间难以控制。很多采用A/O工艺的石化废水处理厂为了获得较高的有机物去除效率,将O段水力停留时间设置的很长,有时长达30~40h。过长的停留时间会使微生物处于衰减相运行,污泥中的灰分较多,污泥的活性降低,聚凝性能变差。3.7 IMBR-A/O法IMBR-A/O工艺是将MBR与A/O工艺相结合的一种方法。IMBR-A/O工艺流程为:原废水首先经过栅网去除粗大颗粒状悬浮物并静沉,再由泵抽到原水槽,然后经斜板沉淀池到前置反硝化A段(厌氧槽)。再溢流进入好氧反应器O段(好氧槽),在出水泵的抽吸作用下得到膜过滤出水,好氧槽连续曝气。3.8 生物膜法生物膜处理法是与活性污泥法并列的一种污水好氧生物处理技术。这种处理法的实质是使细菌和真菌类的微生物、原生动物和后生动物一类的微型动物附着在填料或某些载体上生长繁育,并在其上形成膜状生物污泥———生物膜。污水中的有机污染物作为营养物质,被生物膜上的微生物所摄取,污水得到净化,微生物自身也得到增殖。3.9 两段活性污泥法(AB法)AB工艺是吸附-生物降解工艺的简称,是在常规活性污泥法和两段活性污泥法基础上发展起来的一种新型的污水处理技术。王黎等采用两段活性污泥法(AB工艺)处理石油化工废水,在进水COD为1600mg/L,BOD5为800mg/L,总容积负荷为1.2kgCOD/(m3d)的条件下,COD去除率能达到96.5%,BOD5去除率达98%以上,氨氮去除率也达到了较高的水平。但是在利用两段活性污泥法处理高浓度石化废水时,普通活性污泥法的缺点也难以避免,如受废水中有毒物质的影响较大,COD去除效果不稳定,耐冲击能力差等,因此很难满足日益提高的出水水质要求。3.10 厌氧—生物膜法厌氧—生物膜法是厌氧降解和生物接触氧化法处理的组合工艺。张敏等利用厌氧降解和生物接触氧化法处理奥里油化工废水,探索了该工艺对奥里油化工废水的适应能力和处理效果。结果表明,该工艺处理奥里油石油化工废水处理效果较好,厌氧降解处理COD负荷8.7kg/(m3d),平均去除率达35%,好氧处理COD负荷1.87kg/(m3d),平均去除率达69%,生物处理COD总去除率达80%,终出水达到污水综合排放(GB8978-1996)二级标准。杨柳燕等采用水解—好氧生物膜工艺对难降解的石油化工废水处理进行研究。其中水解段HRT12h,一段和二段接触氧化池的HRT各为12h,水温为10℃。研究结果表明,当系统进水COD、氨氮、酚和硫化物的浓度分别为2066.4mg/L、120.74mg/L、283.44mg/L和20.76mg/L时,处理后出水浓度分别为236mg/L、74.33mg/L、0.86mg/L和1.22mg/L,达到国家三级排放标准。运行过程中,将沉淀池的污泥回流至水解酸化池并在其中得到消化,因而本工艺基本无剩余污泥排放。此外,系统还具有运行稳定、耐冲击负荷能力强的特点。3.11 三相生物流化床三相流化床又称气流动力流化床。污水与空气同步进入床体在气流的作用下, 气、液、固(生物膜载体)三相进行搅动接触,并产生升流在床体内循环的处理床。在这一过程中,产生有机污染物的降解反应,由于载体间产生强烈的摩擦,生物膜及时脱落,无需另设脱膜设备。当进水的BOD浓度较大时,可采用处理水回流措施。防止气泡在床内并合是此法的技术关键,为此,可采用减压释放或射流曝气充氧。Koch等利用三相生物流化床工艺处理含酚、杂环化合物和芳香胺的石化废水。以砂、陶粒、活性碳等颗粒状物质作为微生物生长载体,反应器内生物固体浓度可达普通活性污泥法的5~10倍。同时,生物载体被上升的废水和空气流化,生物载体与废水、空气充分接触,传质状况大大改善,COD去除率达到69%。3.12 水解酸化-好氧生物处理工艺水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。国内外学者在处理石化废水方面做了大量的研究工作,在处理工艺、运行条件上得出了一些有重要价值的结论,这对于处理高浓度、难降解废水具有重要的指导意义。通过以上分析也可以发现,采用常规的工艺处理高浓度、难降解的石油化工废水存在着以下问题:(1)污泥培养困难,活性不高甚至大量死亡,系统耐冲击负荷能力差;(2)高浓度进水时有机物的去除效率不高,不能满足出水水质的要求;(3)有些工艺虽然能够实现有机物高的去除率,但是硝化脱氮效果较差,出水氨氮的浓度较高;(4)对废水中有毒物质的适应能力低,有毒物质去除率效果不理想。同时废水中有毒物质的存在往往导致大量微生物死亡,影响有机物、氨氮的去除效率;(5)难以实现自动化控制,操作繁琐,运行成本高。通过有关学者地积极探索,新的、更有效的处理高浓度、难降解的工业废水的工艺是采用两段法的基本思想,即将有机物的降解和硝化脱氮分别置于两个不同的反应器中进行,这不仅避免了常规的一段法产生的葡萄糖效应,而且在第二段发生了硝化反应,提高了系统的脱氮效率。

  • 【资料】几个化工仪表的资料,喜欢的顶一下

    [url=ftp://download:download@ftp.instrument.com.cn/FilesCenter/200611158475233619.rar][b]化工仪表 课件.rar[/b][/url][url=ftp://download:download@ftp.instrument.com.cn/FilesCenter/200611158453333618.doc][b]化工仪表及自动化要点.doc[/b][/url][url=ftp://download:download@ftp.instrument.com.cn/FilesCenter/200611158422633617.doc][b]仪表作业答案.doc[/b][/url]几个化工仪表的资料,喜欢的顶一下!

  • 石油化工废水处理工艺

    石化废水的特点石油化工废水种类繁多,组成复杂,毒性大,Y制生物降解和浓度高,主要特性如下:1水量大、水质复杂和变化大石油化工生产规模趋向于大型化,生产过程中需加入各种溶剂、助剂和添加剂,再经过各种反应。因此,污水水量大,成份相当复杂。2有机污染较严重石油化工污水所含的有机物主要是竖类及其衍生物。某些石化装置排出的高浓度的废液经过焚烧或其他适当方法处理后,COD仍然较高。3污水中含有重金属由于石化生产许多反应是在催化剂作用下完成的,一个大型石油化工厂使用的催化剂可达数十种,因此,污水中往往含有重金属。石化废水组成及来源由于石化废水中所含有的污染物种类非常繁多,导致其中的污染组分也是非常丰富的,根据不完全的检测,可知其中含有油、硫、酚、氰化物、COD、多环芳烙化物、芳香胺类化合物以及杂环化合物等。1含油废水主要来源:工艺过程与油品接触的冷凝水、介质水、生成水,油品洗涤水、油品运输船压舱水、循环冷却水、油品油气冷凝水、焦化除焦废水及受油品污染的地面水。2含酚废水主要来源:常减压延迟焦化、催化裂化及苯酚-丙酮、间甲酚、双酚A等生产装置。3含硫废水主要来源∶炼油厂二次加工装置、分离罐的排水、油品和油气的冷凝分离水、芳烙联合装置。4含氡废水主要来源:丙烯腈装置、腈纶厂聚合车间、纺丝车间及回收车间排水、丁腈橡胶装置。5含醛废水主要来源:乙醛装置、维纶抽丝装置、醋酸乙烯装置、甲醛装置等。6含苯废水主要来源:制苯车间、苯乙烯装置、聚苯乙烯装置、乙基苯装置、烷基苯装置以及乙烯装置的裂解急冷水洗废水。7含酸碱废水主要来源:炼油厂、石油化工厂的洗涤水,成品罐的切水、锅炉水处理排水及酸碱汞房的排放水。石化废水的危害石化废水中含有大量的有毒有害物质,尤其是其中的某些成分能够与土壤中的磷、氮元素进行紧密的结合,进而导致土壤中的磷、氮元素含量严重不足,从而对植物的正常生长造成严重的不利影响。石化废水中还含有大量的重金星元素,例如,砷、铬、镍、镀等,一旦随着水进入到人体内就会对大大提高癌症的发病率,对人们的身体健康造成非常严重的影响。未经处理的石化废水被排入到河中,还会导致水中的含氧量大大降低,会对水中动植物的正产生长发育造成不利影响,而且水中的微生物对石化废水中的有机物质进行降解时,会消耗水中溶解的大量氧气,进而破坏了水中溶解氧的平衡,不利于动植物的长远发展。石化废水处理工艺当前,石油化工、炼油废水处理工艺按照处理原理,可将所有处理方法归分为物理处理、化学处理与生化处理三类。含油废水一般的处理工艺如下:物理法物理处理法通过物理作用,以分离、回收废水中不溶解的呈悬浮状态污染物质(包括油膜和油珠),常用的有隔油、汽浮法、过滤法等。1.1隔油池隔油池是石化废水处理工艺中常见的一种处理装置。依据沸水中悬浮物与水的相对密度不同这一特点除去悬浮物。此法只能除去颗粒较大的水滴或油滴,作为初级处理,成本低但效率一般。国内应用较多的隔油池是平流隔油池和斜板隔油池。1.2气浮法气浮法:利用高度分散的微小气泡作为载体去粘附废水中的悬浮物,使其随气泡升到水面而去除.其处理对象是乳化油以及疏水性细微固体悬浮物。药剂浮选法:在废水中投加化学药剂,选择性将亲水性污染物变为疏水性,然后气浮去除.两者统称气浮法。常用气浮设备:加压溶气气浮、叶轮气浮、曝气气浮﹑射流气浮和电解气浮。气浮法优点:处理效率高,生产的污泥比较干燥,表面刮泥方便曝气增加溶解氧有利后续生化处理。气浮法缺点:耗电量大,设备维修管理工作是大,易堵塞,浮渣怕较大风雨袭击。2化学法化学法向污水中投加某种化学物质,利用化学反应来分离、回收污水中的污染物质,常用的有化学沉淀法、混凝法、中和法、电解法等。2.1化学混凝法化学混凝是用来去除水中无机物或有机胶体悬浮物的一种方法。它可除去固体悬浮物、胶体、可溶性重金属盐类、有机物、油类及颜色等。混凝处理受到废水的pH、碱度、污染物的数量、粒子大小、温度和搅拌等条件的影响。为了更好地提高气浮处理效果,在回流加压溶气气浮工艺中向废水中投入某种絮凝剂,使水中难沉淀的胶体状悬浮颗粒或乳化污染物失稳,在互相碰撞的作用下,聚集、聚合或搭接形成较大的颗粒或絮状物,从而使得污染物能够更容易下沉或上浮而被去除。2.2电解法其基本原理是在电流作用下,阳J表面产生具有强氧化性的羟基自由基,将难降解有机物氧化成CO2和H20。该方法具有氧化能力强、操作简便易于控制、无二次污染等有点,在现代工业废水处理中越来越受到广泛应用。利用这种反应使污染成分生成不溶于水的沉淀物,或生成气体从水中溢出,使废水得到净化。2.3中和法用化学方法消除废水中过量的酸或碱,使其pH值达到中性左右的过程称为中和。处理含酸废水以无机碱为中和剂,处理碱性废水以无机酸作中和剂。中和处理应考虑以"以废治废"原则,亦可采用药剂中和处理、中和处理可以连续进行,也可以间歇进行。中和的方法有酸碱废水中和、酸性废水的药剂中和法、酸性废水的过滤中和法等。2.4氧化法通过将废水中的污染物与氧气进行反应,进而实现处理石化废水的目的。其中,光催化氧化法,是当前Z新的处理技术,通过利用半导体材料作为催化剂,在光照的条件下将污染物与氧气发生氧化还原反应,进而对其进行有效的去除。生物法及组合工艺生物法通过微生物的代谢作用,使废水中呈溶液、胶体以及微细悬浮状态的有机性污染物质转化为稳定、无害的物质,可分为好氧生物处理法和厌氧生物处理法以及各种组合工艺。3.1活性污泥法活性污泥法是以活性污泥为主体的废水生物处理的主要方法。这种技术将废水与活性污泥(微生物)混合搅拌并曝气,使废水中的有机污染物分解,生物固体随后从已处理废水中分离,并可根据需要将部分回流到曝气池中。活性污泥法是由曝气池、沉淀池、污泥回流和剩余污泥排除系统所组成。活性污泥中的细菌是一个混合群体,常以菌胶团的形式存在,游离状态的较少。活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段,吸附阶段和稳定阶段。3.2SBR工艺序批式活性污泥法(SBR法)是一种不同于传统活性污泥法的废水处理工艺,是在一个反应器内,按照给定的程序进行充水、反应、沉淀、排水及闲置等。该工艺通过曝气、停气,使系统内的好氧和缺氧状态交替进行。在降解COD的同时,相继进行了氨氮的硝化和反硝化,达到同时脱碳、脱氮的目的。SBR工艺结构形式简单,运行方式灵活多变,有较强的抗冲击负荷能力,具有一系列连续流系统无法比拟的优点。抚顺石油化工研究院通过小试试验,对SBR法处理石油化工废水进行了研究。用压缩空气充氧,污泥浓度保持5000~7000mg/L,反应器温度在28~32℃。结果表明,在CODCr进水容积负荷为0.6kgCOD/(m3-d),氨氮容积负荷为0.07kg/(m3-d)的条件下,CODCr去除率为94,氨氮去除率为90以上,总氮去除率在60左右,具有良好的去除效果。郭景海运用SBR法处理吉林石化厂废水,控制温度在20C左右、pH在6~9条件下,氨氮有较好的去除效果,进水氨氮40~50mg/L时,出水氨氮能够达到2~3mg/L,去除率在90上。3.3厌氧生物处理厌氧生物处理是高浓度有机废水处理常用的方法,具有能耗低、负荷高,再生沼气能源等优点。但在处理高浓度、难降解石油化工废水时,由于废水中往往含有对产甲烷菌有毒害和Y制作用的高浓度氨氮和硫化物,系统的处理效率会大大下降。凌文华利用UASB反应器对高浓度石油化工废水进行预处理,反应器采用温度范围为30~38°℃,在进水COD8000mg/L时,COD去除率能达到85以上,且该系统设备负荷高,占地面积少,剩余活性污泥产量低,污泥脱水性良好,在厌氧UASB反应器的下部形成了沉淀性能良好的颗粒污泥,对废水中污染物质具有较高的去除效率。耿土锁对普通厌氧反应器进行了改进,采用轻质、多孔的陶粒作为厌氧生物过滤柱的载体,对经过隔油与两级混凝气浮处理的炼油废水进行深度处理试验。试验结果表明,随着陶粒填料上生物膜的逐渐增加,其处理水量与COD负荷也随之增加。当培养驯化两个月后,填料的负荷达到了4.2~6.3m3水/(m3填料d),COD负荷约为0.6~0.8kgCOD/(m3填料d),COD去除率达到70~80,油类和挥发酚的去除率均在80以上。并且系统耐冲击负荷,运行稳定,厌氧出水清澈透明,无色无味,可生化性好,再经过好氧生物处理后,可达到回用水的要求。3.4好氧生物处理好氧生物处理是目前普遍采用的生物处理方法,因其处理成本低,运行操作简单,在大多数的工业废水处理中被广泛采用。康雪琴等对传统活性污泥法进行改进,采用氧气曝气法处理高COD、含硫、含氨的石油化工废水,试验对氧曝和空曝进行了对比。经过三个月的运行表明,与空气曝气法相比,氧气曝气法净化效果高,出水水质好,COD和BOD5的平均去除率可达到88.6和97.6 且操作平稳A全,抗冲击性能强,污泥沉降性能好,相对提高了反应器的容积负荷。但是该方法由于使用纯氧,成本较高,因此很难推广。利用推流式混合曝气池处理高浓度石化废水是活性污泥法的另一个改进,然而该方法同样存在着COD,BOD5、油、酚、硫化物等的去除率高,而氨氮去除率低的问题。唐逸衡将混合推流式曝气池分成六段。前四段作为异氧菌繁殖场所,主要去除有机碳 后两段以进行硝化反应为主,通过改变运行条件来促进硝化细菌的生长。在第五段利用厂区生产装置产生的废碱液来调节pH值和碱度,实现在去除COD、酚、油等物质的同时,提高氨氮的去除效率。3.5接触氧化法接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤地。在不透气的曝气地中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧 空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。夏四清等采用悬浮填料接触氧化生物反应器对高浓度石油化工废水进行处理。通过6h、8h、10h、12h四个不同水力停留时间的硝化过程,取得了不同运行条件下的氨氮去除效果。结果表明,悬浮填料生物反应器完全可以达到生物硝化的目的。当进水中BOD5和CODCr浓度变化范围在77.4~234mg/L和245.5~695.7mg/L时,其平均去除率分别为90和80以上,平均出水浓度分别小于15mg/L和90mg/L。试验期间进水氨氮浓度在8.3~53.2mg/L范围内时,四个工况条件下的平均去除率分别为55.5、86.7、91.1和95.6,平均出水浓度分别是9.43mg/L、3.10mg/L、1.71mg/L、0.79mg/L。3.6A/O法采用A/O工艺处理广州某重油制气厂废水。结果表明,A/O工艺对氨氮具有很强的去除能力,去除率达到95以上,出水氨氮稳定达标排放 对COD也有较高的降解能力,正常情况下去除率达到80以上。从理论上讲,A/O工艺对石油化工废水具有良好的处理效果,但在实际工程中往往会出现以下问题:(1)受到进水水质的影响较大,氨氮去除效果不理想 (2)O段的水力停留时间难以控制。很多采用A/O工艺的石化废水处理厂为了获得较高的有机物去除效率,将O段水力停留时间设置的很长,有时长达30~40h。过长的停留时间会使微生物处于衰减相运行,污泥中的灰分较多,污泥的活性降低,聚凝性能变差。3.7 IMBR-A/O法IMBR-A/O工艺是将MBR与A/O工艺相结合的一种方法。IMBR-A/O工艺流程为:原废水首先经过栅网去除粗大颗粒状悬浮物并静沉,再由泵抽到原水槽,然后经斜板沉淀池到前置反硝化A段(厌氧槽)。再溢流进入好氧反应器O段(好氧槽),在出水泵的抽吸作用下得到膜过滤出水,好氧槽连续曝气。3.8生物膜法生物膜处理法是与活性污泥法并列的一种污水好氧生物处理技术。这种处理法的实质是使细菌和真菌类的微生物、原生动物和后生动物一类的微型动物附着在填料或某些载体上生长繁育,并在其上形成膜状生物污泥———生物膜。污水中的有机污染物作为营养物质,被生物膜上的微生物所摄取,污水得到净化,微生物自身也得到增殖。3.9两段活性污泥法(AB法)AB工艺是吸附-生物降解工艺的简称,是在常规活性污泥法和两段活性污泥法基础上发展起来的一种新型的污水处理技术。王黎等采用两段活性污泥法(AB工艺)处理石油化工废水,在进水COD为1600mg/L,BOD5为800mg/L,总容积负荷为1.2kgCOD/(m3d)的条件下,COD去除率能达到96.5,BOD5去除率达98以上,氨氮去除率也达到了较高的水平。但是在利用两段活性污泥法处理高浓度石化废水时,普通活性污泥法的缺点也难以避免,如受废水中有毒物质的影响较大,COD去除效果不稳定,耐冲击能力差等,因此很难满足日益提高的出水水质要求。3.10厌氧一生物膜法厌氧—生物膜法是厌氧降解和生物接触氧化法处理的组合工艺。

  • 氨氮检测分析心得

    氮是蛋白质、核酸、酶、维生素等有机物中的重要组分。纯净天然水体中的含氮物质是很少的,水体中含氮物质的主要来源是生活污水和某些工业废水。当含氮有机物进入水体后,由于微生物和氧的作用,可以逐步分解或氧化为无机氨(NH)、铵(NH[sub]4[/sub])、亚硝酸盐(NO[sub]2[/sub])和最终产物(NO[sub]3[/sub])。 氨和铵中的氮称为氨氮(Ammonianitrogen简称NHxN)。水中氨氮的含量在一定程度上反映了含氮有机物的污染情况。在污水综合排放标准(GB8978-1996)和地表水环境质量标准(GB3838-2002)中,氨氮都是重要的监测指标。 氨氮的测定方法,通常有纳氏试剂比色法、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子吸收法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。目前我们所使用氨氮的分析方法主要是纳氏试剂比色法,纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等均干扰测定都需作相应的预处理。 在纳氏试剂配制时需要用到碘化钾和碘化汞,碘化汞不易溶于水,但易溶于碘化钾,所以在配制过程中需要先将易溶于水的碘化钾溶于水中,再往碘化钾溶液中缓慢加入碘化汞,这样才能使碘化汞彻底溶于水中,且不会产生红色沉淀。 纳氏试剂比色法中所使用的酒石酸钾钠配制方法较为简单,但对于有些试剂,由于铵盐含量较大,只靠加热煮沸并不能完全除去,一般以下2种方法:(1)向定容后的酒石酸钾钠溶液中加入5mL纳氏试剂沉淀后取上层清液使用。(2)向酒石酸钾钠溶液中加少量碱,煮沸蒸发至50mL左右后,冷却并定容至100mL。我们认为,第二种方法优于第一种方法,即使铵盐含量很高的酒石酸钾钠,经处理后空白值也能满足实验要求。 氨氮属于水质日常分析频率较多的因子,以上为我们在日常分析中所总结的经验,仅供大家参考,有错误之处,敬请指出。

  • 头孢拉定胶囊中检查头孢氨苄的问题

    头孢拉定胶囊中检查头孢氨苄的问题

    近日接触到一个药品——头孢拉定胶囊。其中检查项目有项是检查头孢氨苄的含量。见下图。http://ng1.17img.cn/bbsfiles/images/2014/09/201409051634_512996_0_3.jpg下图是头孢拉定项下的做法http://ng1.17img.cn/bbsfiles/images/2014/09/201409051637_512998_0_3.jpg 对此的疑问如下: 1、头孢拉定胶囊中为何要检查头孢氨苄,是否说明在生产头孢拉定中不可避免的会有头孢氨苄呢? 2、在检查中测定出头孢氨苄含量,还得测定出头孢拉定含量,这样才能计算出结果是吗? 3、标准规定的好奇怪,直接在胶囊剂的检查项下规定“含头孢氨苄不得过5.0%(举例说个数字啊,也可以是6.0%)”这样不就可以了吗,为何要规定成“含头孢氨苄不得过头孢拉定和头孢氨苄总量的6.0%”

  • 【我们不一YOUNG】连续流动-水杨酸法测定水中氨氮的干扰因素研究

    [font=&][color=#666666]氨氮测定过程中主要干扰因素有一些5个方面:  1、钙镁等金属离子水中钙镁离子的含量,即我们通常所说的水的硬度。当废水中钙、镁离子含量过高时,会在氨氮测定时产生浑浊,从而导致测量结果偏大。  2、余氯余氯是指水经过加氯消毒,接触一定时间后,水中所余留的有效氯。余氯对氨氮测量产生正影响,余氯含量越高,所测出的氨氮含量会越高。  3、色度纯水为无色透明的,但是大多数的污水都带深浅不一的颜色,水的颜色即色度,色度较大会影响显色,干扰比色测定。  4、浊度浊度是由于水中含有泥沙、粘土、有机物、无机物、浮游生物和微生物等悬浮物质所造成的,很多的地表水和污染源的水均含有浊度干扰。浊度会使光散射或者吸收光,使氨氮比色测定时不稳定,造成测量误差。  5、温度温度对氨氮显色反应有很大影响,会影响显色反应的速度和显色后物质的稳定性。温度较低时,溶液显色慢,显色不完全;温度较高时,溶液显色快,但显色后物质容易不稳定,这些都会影响测量结果。 文章对使用连续流动分析仪分析氨氮在石油化工行业中存在的典型干扰因素进行了研究。通过对典型还原性盐、有机胺类、醛醇类有机物、钙金属离子及余氯等因素进行干扰实验,确认在较高浓度的还原性物质、钙金属离子及余氯等存在条件下,氨氮测定存在明显干扰,需要进行相应前处理后方可测定。 希望对各位版友有所帮助。[/color][/font]

  • 【转帖】国家标准委敲定明年标准化工作重点

    12月19日在京召开的全国采用国际标准工作会议确定了2008年我国标准化工作的八项重点。  我国2008年标准化重点包括:一是按时完成1万项标准的制定任务,健全国家标准体系,解决标准缺失问题。二是加快完成1.1万项标龄超期的国家标准的修订任务,建立和完善标准的定期复审制度,解决标准老化问题。三是抓好国家科技支撑重点专项“关键技术标准推进工程”和列入国家计划的176项标准科研专项的研究工作,确保这些研究成果如期转化为国家标准,实现标准制定与科研同步,解决标准滞后问题。四是深化改革,强化以企业为主体的标准化工作机制,鼓励企业将自主创新技术与标准相结合,提高标准中自主知识产权的含量。五是围绕国家经济发展重点工作,加快农业、资源节约和环境保护、传统产业、公共安全、高新技术、服务业等重点领域标准体系建设。六是加快《标准化法》的修订,确立以企业为主体的标准化工作法律地位。七是加快国家技术标准资源服务平台建设,整合国内外标准信息资源,形成全方位的互联互通的大平台,为社会各界提供及时、准确的标准信息服务。八是加强地方标准化工作,促进地方经济快速发展,要加大经费投入和标准化示范区建设,要在经费支持、科技评选、人才培养、国际标准化规则指导等方面,为企业提供全方面多层次的支持与服务。

  • 氨空白吸光度不稳定

    大家好!我们实验室检测氨的时候,有很多次氨的空白吸光度值不稳定,从0.03到0.09波动。大家给些建议吧。还有我们用的蒸馏水不是无氨水,检测氨所用的玻璃器皿必须要干燥么?

  • 【原创大赛】气相色谱法测定酮咯酸氨丁三醇中的乙醇和1,2-二氯乙烷

    【原创大赛】气相色谱法测定酮咯酸氨丁三醇中的乙醇和1,2-二氯乙烷

    因工作需要,需要对酮咯酸氨丁三醇中的残留有机溶剂乙醇和1,2-二氯乙烷进行方法学研究,乙醇为三类溶剂,药典规定限度为0.5%,1,2-二氯乙烷为一类溶剂,药典规定限度为0.0005%,因为1,2-二氯乙烷的限度较低,在FID检测器下很难检测,故需要用到ECD检测器检测1,2-二氯乙烷。 方法学研究为,方法一,乙醇的检测;方法二,1,2-二氯乙烷的检测。1.1方法概述应用GC外标法对酮咯酸氨丁三醇中的残留有机溶剂乙醇进行定量分析。载气:氮气;检测器:FID。1.2对照品及样品名 称来源批号酮咯酸氨丁三醇样品某医药企业120201乙醇西陇化工股份有限公司11070111.3仪器和仪器参数气相色谱仪型号:岛津公司GC-2010天平型号:梅特勒公司XS105顶空进样器型号:DANI公司 HSS86.50色谱柱类型:DB-624 规格30m×0.53mm×3.0µm 载气:氮气 柱温:50 ℃检测器:FID检测器温度: 250℃;进样口温度: 200℃;流速: 3.0 ml/min;进样量: 1.0ml;分流比: 10:1样品盘平衡温度: 80℃;定量环温度: 90℃;传输线温度: 100℃;样品盘平衡时间: 30min1.4溶液配制对照溶液:准确称取乙醇50mg于100ml容量瓶中,用水稀释定容至刻度,摇匀,精密移取3ml置于20ml顶空瓶中,密封即得对照溶液。准确称取样品0.3g,置于20ml顶空瓶中,加水3.0ml,密封即得供试品溶液。1.5验证内容及结果1.5.1系统适用性试验方法:取酮咯酸氨丁三醇溶残对照溶液,依法连续进样5次,记录乙醇峰面积的相对标准偏差(RSD%)。乙醇峰面积的相对标准偏差RSD应不大于10%,乙醇的理论塔板应不小于10000,乙醇的拖尾因子应不大于1.5。结果:序号12345RSD%A乙醇[/si

  • 【分享】化工行业最全面、最科学的分类!!

    :无机化工原料: 单质 : 工业气体 无机碱 无机酸无机盐 氧化物 非金属矿产 其他未分类无机化工原料化学矿: 硫矿钾矿磷矿 硼矿 其他化学矿 化学矿有机化工原料: 烷烃及衍生物 烯烃及衍生物 炔烃及衍生物 醇类 酸类 醛类 酮类 脂类 醚类 砜类 胺类 碳水化合物类 羧酸及衍生物 醌类 芳香烃及衍生物 酸酐 有机中间体 杂环类硝基物卤化物其他未分类有机化工原料塑料原料: 通用塑料 :聚乙烯 聚丙烯 聚氯乙烯 聚苯乙烯工程塑料 :聚苯醚 聚苯硫醚 聚甲醛 聚醚酰亚胺 聚碳酸酯 聚碳酸酯聚合物 聚酰胺 聚酯树脂 热塑性弹性体 色母 再生料 塑料原料其他未分类橡胶原料: 天然橡胶合成橡胶: 丁苯橡胶 顺丁橡胶 丁青橡胶 乙丙橡胶 再生胶 橡胶辅料 丁基橡胶 氯丁橡胶 异戊二烯橡胶 SBS其他未分类 橡胶原料树脂: 天然树脂环氧树脂酚醛树脂丙烯酸树脂不饱和聚酯树脂离子交换树脂氨基树脂有机硅树脂其他未分类树脂医药原料、中间体: 石油及制品: 原油 燃料油 润滑油脂 溶剂油石油焦石蜡沥青成品油石油制品油品添加剂气体类石油产品其他未分类石油及制品化工助剂: 涂料助剂 水处理化学品 信息用化学品 电子工业用助剂 造纸助剂 橡胶助剂:防老剂 硫化剂 促进剂 防焦剂 分散剂 其他橡胶助剂 塑料助剂:阻燃剂 热稳定剂 光稳定剂 抗氧剂 着色剂 荧光增白剂 发泡剂 交联剂 偶联剂 抗静电剂 润滑剂 脱模剂 流滴剂 防霉剂 固化剂及固化促进剂 增塑剂 皮革助剂 纺织、印染助剂 吸附剂 表面活性剂 乳化剂 发泡剂金属加工助剂其他未分类化工助剂食品添加剂: 酸度调节剂 抗氧化剂 漂白剂 着色剂 抗结剂 消泡剂 护色剂 酶制剂 乳化剂 膨松剂 增味剂 防腐剂甜味剂增稠剂水分保持剂营养强化剂其他未分类食品添加剂 饲料添加剂: 营养性添加剂 非营养性添加剂 氨基酸类 矿物质类 维生素类 抗生素类 抗菌素类酶制剂 抗氧化剂 防霉剂其他未分类饲料添加剂 化学试剂:乙醇 丙酮 高锰酸钾 催化剂: 专用催化剂 催化剂用载体 其他未分类 催化剂 玻璃: 深加工玻璃 普通玻璃 建筑玻璃 特种玻璃 玻璃其他未分类油墨: 肥料: 氨肥钾肥磷肥复合肥料生物肥料微量元素肥料细菌肥料 农药肥料植物生长调节剂其他未分类肥料农药: 除草剂 杀菌剂 杀虫、杀螨、杀鼠剂 混合剂型 生物农药其他未分类农药生物化工:陶瓷实验室用品火工产品其他聚合物塑料制品: 塑料薄膜 塑料片、节、棒 塑料管 异型材 塑料容器 汽车用塑料 电子塑料 工农业用塑料制品 塑料建材 塑料工艺品 家用塑料制品 塑料包装用品其他未分类 塑料制品橡胶制品: 轮胎:轿车胎 载重胎 人力车车胎 摩托车车胎 橡胶带 橡胶管 农业用橡(乳)胶制品工业用橡(乳)胶制品文教用橡(乳)胶制品医用橡(乳)胶制品家用橡(乳)胶制品密封圈橡胶制品其他未分类日用化学品: 香水化妆品原料彩妆用品护肤用品口腔用品毛发用品洗沐用品肥皂、洗涤、清洗剂香味剂、除臭剂驱虫灭害剂其他未分类日用化学品 聚氨脂: 聚氨酯原料 PU产品 其他未分类 聚氨酯胶粘剂: 无机胶粘剂 天然胶粘剂 合成胶粘剂 聚乙烯醇及聚醋酸乙烯脂胶粘剂聚氨酯胶粘剂热熔胶树脂胶粘剂及丙烯酸酯胶粘剂 无机胶粘剂橡胶型粘剂 酚醛、脲醛、三聚氰胺胶粘剂 其他未分类 胶粘剂化学纤维: 切片 涤纶锦纶晴纶氨纶丙纶维纶醋酸纤维粘胶纤维聚酯纤维功能纤维人造纤维其他未分类化学纤维染料:直接染料分散染料反应性染料酸性染料阳离子染料纤维染料皮革染料涂料印花浆电影胶片用染料 其他未分类染料涂料: 建筑用涂料 汽车用涂料 船舶用涂料 家具用涂料 防腐蚀涂料 木器涂料 水性、粉末涂料 一般通用涂料 油墨油漆 特种涂料 其他未分类涂料颜料: 无机颜料 有机颜料其他未分类颜料香料、香精: 天然香料 合成香料 食用香料 日用香料其他未分类香料香精化工设备:玻璃工业专用设备 橡胶工业专用设备 储运设备 反应器 干燥设备 混合设备 分离设备 粉碎设备 传热设备 压力容器 输送设备 实验设备 制冷设备 环保设备 成型设备 化工仪表 化工成套设备 化工设备配件 化工管道及配件 石油加工设备 其他未分类 化工设备塑料生产化工设备: 注塑机 吹模机 压延机 中空注塑机 喷涂设备 造粒机 分切机 注塑辅助设备 其他未分类塑料化工设备化工废料合成药品: 抗感染类 解热镇痛药 维生素类药物 抗寄生虫病药物 激素类药及内分泌系统药物 抗肿瘤药物 心血管系统用药 呼吸系统用药 中枢神精系统用药 消化系统用药 泌尿系统用药 液系统用药 调节水电解质及酸碱平衡药 手术麻醉用药抗组织胺类药和解毒药 生化药 消毒防腐及创伤外科用药 五官科用药 皮肤科用药诊断用药 滋补营养药 放射线回位素原料药 制剂用药及附加剂 其他化学原料药 合成药品库存化工品化工产品加工化工产品代理化工项目合作二手化工产品设备

  • 【转帖】德国人敢在三峡头顶建巨型化工厂谁给的胆儿?

    2月4日,大年刚过,辛勤的重庆市环保局某人知会某报记者,1月12日,环境保护部部长主持召开常务会议,原则通过了巴斯夫重庆MDI化工项目的环境影响评价意见。该人士说:“但这还不是最后的结果。”只要环保部的正式批文没下,最终项目是否落户重庆还难说。环保部周部长将亲临重庆考察,就项目具体细节和重庆市政府进行磋商。继巴斯夫在南京投资的最大单体项目——扬子石化-巴斯夫一体化项目之后,巴斯夫这家号称世界化工巨头的德国企业将在三峡库区投资一座巨型的MDI项目,设计25万吨天然气制乙炔单台装置规模和40万吨MDI单台规模,它的“巨”――将成为全球最大的MDI生产基地。据说,这是迄今为止重庆市引进的规模最大的外资工业投资项目。巴斯夫全球执行副总裁薄睦乐表示,如果获批顺利,MDI项目预计2012年投产。作为聚氨酯的主要原料,MDI广泛应用于生产PU浆料、PU鞋底原液等,巴斯夫预计未来10年,聚氨酯市场以每年6%左右的速度增长。该项目投产后,将形成年销售产值500亿元人民币的天然气化工集群,利税超过100亿元,可直接或间接带动库区25万人就业。这么有效益前景是、又能带动这么多人就业的好项目,巴斯夫集团为什么不把这个项目放在德国本土呢?他们为什么不把奔驰汽车和宝马汽车总部也搬到中国来?当然是因为污染和环保。当然也是因为发达国家向发展中国家转移高污染化工生产企业多少年前就早已经“蔚然成风”。德国巴斯夫集团总部设在路德维希港,在39个国家设有350多个分厂和公司,位于路德维希港的巴斯夫集团总部和巴斯夫股份公司像一座“小城市”,占地面积达7平方公里,在路德维希港工作的职工共有5.5万人。巴斯夫的不少产品是从原油和天然气中提炼出来的。巴斯夫拥有自己的煤、石油和天然气资源。近几年巴斯夫侧重在石化一体化方面发展,以乙烯裂解为龙头,带出一系列产品,第一个项目的产品就是第二项的原料,以此一体化发展。我想,这重庆MDI项目应该是所谓“一体化”发展的一个不小的部分吧。如果巴斯夫的重庆MDI项目建成,我把它比成悬在三峡大坝天灵盖上的一个巨型化工厂。距此25年前的1984年12月3日凌晨,印度中央邦的博帕尔市(Bhopal)美国联合碳化物(Union Carbide)属下的联合碳化物(印度)有限公司(UCIL)设于博帕尔贫民区附近一所农药厂发生氰化物泄漏事件,2000多名博帕尔贫民区居民即时丧命,之后更有2万人死于这次灾难,20多万博帕尔居民因之永久残废,现在当时居民的患癌率及儿童夭折率,仍然因这些灾难远比其它印度城市为高。而美国联合碳化物集团,经过在美国和印度多番诉讼,因这次惨剧只向印度政府赔偿4亿7千万美元,以及出售了该集团持有的联合碳化物(印度)有限公司50%股权,以兴建治疗受影响居民的医院和研究中心。该事件被认为史上最严重的十大工业灾难之一(博帕尔事件http://baike.baidu.com/view/603558.htm)。

  • 【分享】关于下达2010年化工国家标准制修订计划通知

    各有关单位:  根据国家标准委《关于下达2010年国家标准制修订计划的通知》(国标委综合87号),现将2010年化工国家标准制修订计划下达给你们,并就有关事项通知如下:  此次下达的化工国家标准制修订计划项目共计181项,其中:制定58项,修订123项(见附件)。请各有关单位接到通知后,认真组织落实,按照标准制修订工作程序,合理安排工作进度。  在标准制修订过程中,要加强与有关方面的协调,广泛听取意见,按照GB/T 1.1-2009和GB/T 20001.4-2001等有关要求进行编写,保证标准质量和水平,按时完成制修订任务。  附件:  1、2010年化工国家标准制定计划项目汇总表  2、2010年化工国家标准修订计划项目汇总表  二○一○年十二月三十一日

  • 【原创大赛】氨氮水质在线监测仪的标定

    【原创大赛】氨氮水质在线监测仪的标定

    单位现购这一台氨氮水质在线监测仪,应用范围:化工、钢铁、冶金、市政污水处理等行业废水排放及河流、湖泊地表水和地下水水质氨氮在线监测,我单位主要用于地表水在线监测。 该氨氮在线监测仪采用水杨酸分光光度法,在硝普钠存在下,水样中的氨氮与水杨酸盐和次氯酸离子反应生成蓝色化合物,加入酒石酸甲钠掩蔽阳离子特别是钙、镁离子干扰,使用高精度分光光度计在697nm处测定,根据朗伯-比尔定律,吸光度与吸光物质浓度呈线形关系,准确检测出水中氨氮浓度。相比于纳氏剂分光光度法,该方法无需使用剧毒碘化汞,不会危害操作人员健康,对环境没有二次污染。 该仪器的测量范围0~50mg/L,工作环境温度在-5~40℃,无震动、无电磁干扰条件下工作,监测时间≤15分钟,电源电压:AC220V±22V 频率:50Hz±1Hz。手机拍照,有点不清晰。。。http://ng1.17img.cn/bbsfiles/images/2011/12/201112232312_340805_2000796_3.jpg氨氮水质在线监测仪——全图http://ng1.17img.cn/bbsfiles/images/2011/12/201112232313_340806_2000796_3.jpg氨氮水质在线监测仪——电源http://ng1.17img.cn/bbsfiles/images/2011/12/201112232314_340807_2000796_3.jpg氨氮水质在线监测仪——开机

  • 【求助】氨氮的测定

    近两日在做氨氮标曲的时候,发现加入纳氏试剂后,溶液中有红色沉定析出。是何原因?是不是室温有影响?纳氏试剂中碘化汞是新买来的

  • 【原创大赛】一张图看懂硅烷封端聚氨酯(SPU)

    【原创大赛】一张图看懂硅烷封端聚氨酯(SPU)

    [b]一、概念[/b] 硅烷封端聚氨酯(SPU)是以聚氨酯为主链,再通过小分子硅烷偶联剂对聚氨酯预聚体进行封端改性制得的聚合物。[b]二、历史[/b] 硅烷封端聚氨酯(SPU)最早由联碳公司在1971年开发,之后GE、Bayer、Degussa、Wacker、Witco、Crompton等公司也相继开发了类似产品,日本钟渊化学工业公司于1979年成功开发硅烷封端聚醚。[b]三、性能[/b] 1. 优良的粘结性、耐老化性; 2. 良好的弹性和表面可涂饰性; 3. 固化时一般不会出现固化气泡的现象,且固化速度人工调节范围广; 4. 硅烷链段的引入使其具有良好的耐水、耐热性。[b]四、制备方法[/b] 硅烷封端聚氨酯(SPU)一般有两种合成路线: 1、首先合成端羟基聚氨酯预聚体,然后合成SPU[align=center][img=,690,386]http://ng1.17img.cn/bbsfiles/images/2018/07/201807161034319588_7400_2879355_3.jpg!w690x386.jpg[/img][/align] 2、首先合成端异氰酸酯基聚氨酯预聚体,然后合成SPU[align=center][img=,690,387]http://ng1.17img.cn/bbsfiles/images/2018/07/201807161034540475_8781_2879355_3.jpg!w690x387.jpg[/img][/align][b]五、原料选择[/b] 1、多元醇:聚醚多元醇,聚酯多元醇,植物油多元醇。 聚醚多元醇制备的聚氨酯一般具有良好的弹性和延伸率,醚键的旋转比较容易,使其具有良好的耐低温性、疏水性和耐水解性。 聚酯多元醇中含有强极性的酯键,内聚强度大,产品强度和硬度较大。 植物油多元醇如蓖麻油价格低廉、天然可再生且来源丰富。 2、异氰酸酯:MDI、TDI、IPDI、HDI。 MDI、TDI等芳香族异氰酸酯强度硬度大,价格便宜,易黄变。IPDI、HDI等脂肪族异氰酸酯柔性好,强度硬度较小,价格高,耐候性好。[sup][/sup][sup][/sup][align=center][img=,690,220]http://ng1.17img.cn/bbsfiles/images/2018/07/201807161035527448_7499_2879355_3.jpg!w690x220.jpg[/img][/align] 3、硅烷[b]六、应用[/b] 1、密封胶 目前,硅烷封端聚氨酯用于密封胶基础聚合物的研究已比较成熟,日本钟渊化学公司、美国联碳公司、德国德固赛等公司均有相应的硅烷改性聚氨酯密封剂产品,国内对SPU密封胶配方的研究也比较全面。由于SPU密封胶的力学性能比较广泛,所以其既能应用于低模量、低粘度的建筑密封胶,也能用于高模量的汽车密封胶,并可与汽车的挡风玻璃、后窗玻璃等形成稳固的粘接。 2、粘合剂 硅烷封端聚氨酯端基为硅烷氧基,在一定湿气下硅烷氧基水解成硅羟基,硅羟基进而可以和各种基材表面的羟基发生缩合反应生成Si-O-Si键。Si-O-Si键非常稳定,在硅烷封端聚合物与基材的表面架构起一座键桥,使得SPU与各种基材(如玻璃、金属、石材、混凝土等)的粘接性非常好,粘接强度很高。近年来,SPU粘合剂或SPU胶粘剂甚至扩大到对尼龙、丙烯酸树脂、玻璃纤维、PVC等各种塑料材料的粘接。 3、反应型热熔胶 硅烷封端聚氨酯预聚物在常温或高温下都具有一定流动性,能够润湿被粘基材的表面,同时硅烷氧基又能与湿气反应形成交联粘接结构,所以可以作为反应型热熔胶使用。在SPU热熔胶中,由于硅氧链段趋于向表面富集,表面能比传统聚氨酯热熔胶低,因而SPU热熔胶可以对一些低表面能的基材进行浸润和粘接,延伸了传统聚氨酯热熔胶的应用范围。SPU反应型热熔胶中的一般具有使用简便、粘接强度高、耐热性能好等特性。 4、涂料 瓦克化学公司指出硅烷封端聚醚因把硅烷直接连接在基础聚醚聚合物上,分子内只有氨基甲酸酯基团,不含脲键,分子间氢键作用较弱,制备的硅烷封端聚醚粘度较小,可以用来配制高性能无溶剂涂料。 参考文献; 马文石.硅烷封端聚氨酯的制备及其在涂料上的应用研究.广州:华南理工大学,2014. 姚晓宁,张军营,齐士成.硅烷改性聚氨酯的合成及力学性能的研究.石油化工,2006,36(4),383-387.[list][*]声明:本文资料为“上海微谱化工技术服务有限公司”编辑,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 【我们不一YOUNG】污水氨氮检测注意事项详解

    1、[b]实验室保持无氨环境[/b]氨具有易挥发的特性,并且在实验室比较常见,所以氨氮检测工作环境要保证是无氨环境。也就是说该实验室避免交叉污染,不能进行有关于氨以及氮化合物的实验,防止空气中的氨对氨氮检测结果产生影响,[color=#1170f3]试验用水必须符合HJ 535-2009规范要求的无氨水。[/color]2、[b]保证实验器材洁净度[/b]实验器材的洁净度会对氨氮检测的结果造成直接的影响,器材必须清理干净。[color=#1170f3]所有要使用到的器材需要使用一定浓度的盐酸进行浸泡,浸泡时间为10 h~12 h,之后分别使用自来水和无氨水冲洗数次,干燥后备用。[/color]用于氨氮检测的实验器材尽量单独放置,避免因为与另外检测项目器材混合使用,对检测结果造成影响。因为氨氮和纳氏试剂反应后生成的是淡红棕色络合物,会有少量的化合物附着在实验器材上,所以使用完毕后要用盐酸冲洗。3、[b]配制纳氏试剂[/b]目前纳氏试剂主要有两种配置方式,一种是使用二氯化汞-碘化钾-氢氧化钾(HgCl2-KI-KOH)溶液进行调配,另一种方法是使用碘化汞-碘化钾-氢氧化钠(HgI2-KI-NaOH)溶液进行调配。[color=#1170f3]可以发现,两种配置方法中使用到了汞,所以在调配和使用的过程中要注意防护措施,避免汞中毒。也可使用商品化的预制试剂。[/color]4、[b]水样酸碱度影响检测结果[/b][color=#1170f3]水样的酸碱度会严重影响显色情况。[/color]纳氏试剂需要在碱性环境中进行反应,通常的污水酸碱度在6~9之间[color=#3e3e3e],由于纳氏试剂是碱性的,所以不用对酸碱度调节就可以进行检测。[/color]如果水样不能马上进行检测,需要在水样中加入硫酸进行固定,到需要检测的时候就要对水平的酸碱度进行调节,调整到6~9内,再进行检测工作,[color=#1170f3]如果不调节酸碱值就直接进行检测,纳氏试剂在酸性环境中会直接产生红色的沉淀物,直接导致检测实验失败。[/color]5、[b]余氯影响检测结果[/b][color=#1170f3]一般污水排出前会有消毒环节,污水消毒后会含有一定的余氯,余氯会与氨反应生成二氯胺或氯胺,对氨氮检测结果会造成影响。[/color]若样品中存在余氯,可加入适量的硫代硫酸钠溶液去除。每加0.5 mL可去除0.25 mg余氯。用淀粉-碘化钾试纸检验余氯是否除尽,尽量保证测定结果的准确性。6、[b]水样颜色影响比色结果[/b][color=#1170f3]检测前对水样进行处理,主要是去除水样中的颜色。[/color]表面颜色可以通过絮凝沉淀法进行去除,去色的话,首先要使用蒸馏法处理,因为蒸馏法处理的吸收液使用到了2%的硼酸溶液,在检测进行前一定要对馏出液的酸碱度进行检测,如果酸碱度<7,可以使用一定浓度的氢氧化钠进行调节,直至馏出液的酸碱值在7~9之间,在开始检测工作,检测过程中如果生成了红色沉淀物,就说明水样的酸性太高,需要再次进行调节。同时要注意馏出液的酸碱度也不能过高,过高的话,水样所含的氨氮有可能以氨气的形式挥发,致使检测结果不准确。

  • 【分享】氨氮的测定

    氨氮的测定氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。一、纳氏试剂比色法的原理碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在410-425nm范围内测其吸光度,计算其含量。本法最低检出浓度为0.025mg/L(光度法),测定上限为2 mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。二、仪器1、带氮球的定氮蒸馏装置:500 mL凯氏烧瓶、氮球、直形冷凝管。2、分光光度计3、PH计三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备:(1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。(2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。2、1mol/L的盐酸溶液3、1mol/L的氢氧化钠溶液4、轻质氧化镁:将氧化镁在500℃下加热,以除去碳酸盐。5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。6、防沫剂:如石蜡碎片7、吸收剂:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L硫酸溶液。8、纳氏试剂。可选用下列方法之一制备:(1)称取20g碘化钾溶于约25mL水中,边搅拌边分次加入少量的二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。(2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。另称取7g碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。9、酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6• 4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。10、铵标准贮备溶液:称取3.819g经100℃干燥过的氯化氨(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线。从溶液每毫升含1.00mg氨氮。11、铵标准使用溶液:移取5.00 mL铵标准贮备溶液于500mL容量瓶中,用水稀释至标线。此溶液每毫升含0.01mg氨氮。四、测定步骤 1、水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调节至PH为7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏。定容至250mL。 采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收剂;采用水扬酸—次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收剂。 2、标准曲线的绘制:吸取0、0.50、1.00、3.00、5.00、7.00和10.00mL铵标准使用溶液于50mL比色管中,加水至标线,加1.00mL酒石酸钾钠溶液,混匀。加1.50mL纳氏试剂,混匀。放置10min 后,在波长420nm处,用光程20mm比色皿,已水作参比测定吸光度。 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。3、水样的测定(1)分取适量经絮凝预处理后的水样(使氨氮含量不超过0.1 mg),加入50mL比色管中,稀释至标线,加0.1mL酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量的1mol/L氢氧化钠溶液以中和硼酸,稀释至标线,加1.5mL纳氏试剂,混匀。放置10min 后,同标准曲线步骤测量吸光度。4、空白实验:以无氨水代替水样,做全程序空白测定。五、计算由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得的氨氮含量(mg)。氨氮(N,mg/L)=1000m/V式中:m——由校准曲线查得的氨氮量(mg); V——水样体积(mL)六、注意事项1、纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。2、滤纸中常含痕量铵盐,使用时应注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中的氮的污染。

  • 氯化汞纳氏试剂

    国标法测氨氮,纳氏试剂可以选择用氯化汞和碘化汞,但是量不同,氯化汞加量是碘化汞的1.5倍,仪表检测可以用碘化汞替换氯化汞吗?(把碘化汞法浓度提高1.5倍)

  • 【资料】常用化工产品俗名与学名对照表

    俗名 化工产品学名 S   萨罗 水杨酸苯酯 三聚磷酸钠 三磷酸钠□ 三仙丹 氧化汞 森乃物 硫氰基乙酸异莰酯 杀草安 α-氯代乙酰替-N-异丙基邻X苯胺 杀草快 1,1''-乙撑-2,2''-联吡啶二溴盐 杀螨醇 1,1-两个(对氯苯基)乙醇 杀螨砜 对氯苯基苯基砜 杀螨醚 两个-(对氯苯氧基)-甲烷 杀螨特 亚硫酸O-氯X-O-(1-甲基-2-对特丁基苯氧基)X脂 杀螨酯 4,4''-二氯代二苯乙醇酸乙酯 杀螟丹(巴丹) 1,3-双(氨基甲酰硫基)-2-(N-N-二甲基氨基)丙烷盐酸盐 杀螟腈 硫逐磷酸O,O-二甲基-O-(对氰基苯基)酯 杀螟松 硫逐磷酸O,O-二甲基-O-(3-甲基-4-X苯基)酯 杀螟威 磷酸O,O-二X-O-[1-(2,5-二氯苯基)-2-氯]乙烯基酯 杀鼠灵 3-α-(丙酮基苄基)-4-羟基香豆素 刹虫脒、克死螨、杀螨脒 N-(2-甲基-4-氯苯基)-N,N''-二甲基甲脒盐酸盐 砂皮 砂纸 山奈 氰化钠 烧碱、火碱、苛性钠 氢氧化钠 麝香酮 3-甲基环十五烷酮 升汞 氯化汞 生松香,生香 松脂 失水苹果酸 顺丁烯二酸 石灰氨 氰氨化钙 石炭酸 苯酚 食母生 干酵母 熟石灰(消石灰) 氢氧化钙 "熟松香,熟香" 松香 黍胶质 玉米朊 水胶浆 人造胶乳 水杨硫磷(蔬果磷) 2-甲氧基-4(H)-1,3,2-苯并二氧杂磷-2-硫化物 水杨醛 邻羟基苯(甲)醛 水银 汞 苏氨酸 α-氨基-β-羟基丁酸 苏打 无水碳酸钠 速可眠 司可巴比妥 速灭威 甲胺基甲酸-3-甲苯酯 塑料王 聚四氟乙烯 T   俗名 化工产品学名 钛白/钛viper 二氧化钛 碳酸气 二氧化碳 糖精 邻磺酰苯酰亚胺 绦纶(特丽纶) 聚对苯二甲酸乙二酯 桃醛 γ-n-十一烷内酯,γ-n-庚基丁内酯 特普 焦磷酸四乙酯 特屈儿 2,4,6-三X苯甲X胺 特塔森 4-脒基-1-亚硝氨基脒基四氮烷 梯普尔 仲烷基硫酸钠 锑白 三氧化二锑 锑恩梯 三X甲苯 锑华(锑的) 三氧化二锑Sb↓2O↓3 铁矾 铁钾矾,硫酸铁钾 铁黑 氧化铁黑 铁红 氧化铁红 铁黄 氧化铁黄 铁棕 氧化铁棕 桐(油)酸 十八碳三烯-9,11,13-酸 铜版纸 印刷涂料纸 铜绿 碱式碳酸铜 铜洗 铜氨液洗涤法 突文-80 聚乙烯脱水山梨醇油酸酯 吐酒石 酒石酸氧锑钾 兔耳草酸 对异丙基-2-甲基苯-丙醛 退热冰 乙酰替草胺 托拜厄斯酸 2-萘胺-1-磺酸 W   俗名 化工产品学名 万能胶 用作胶粘剂的环氧树脂 维纶(维尼纶) 聚乙烯醇(缩甲醛)纤维 萎锈灵 2,3-二氢-5-甲酰替苯胺-6-甲基-1,4-氧硫杂芑 乌利当粘合剂 聚氨基甲酸酯粘合剂 乌洛托品 六亚甲基四胺 无侧链青霉素 6-氨基青霉烷酸 X   俗名 化工产品学名 西梅脱 二硫代磷酸O,O-二X-S-乙硫基甲基酯 西维因 胺甲萘 希拉登(八甲磷) 八甲基焦磷酰胺 息拉米 酞磺胺醋酰 洗涤碱 碳酸钠十水物 香草醛(香茅醛,香兰素) 3-甲氧基-4-羟基苯甲醛 香豆酮 氧茚 香芹酚 2-羟基对异丙基甲苯,2-甲基-5-异丙基苯酚 橡浆 天然胶乳 消炎痛 氯苯甲酰吲哚乙酸 X甘油 甘油三X酯 小苏打、重碱 碳酸氢钠 笑气 一氧化二氮 缬氨酸 α-氨基异戊酸 泻盐 硫酸镁 泻盐 硫酸镁七水物 锌氧粉、锌白 氧化锌 新闻纸 白报纸 新亚胺 可溶性聚酰亚胺 溴胺酸 1-氨基-4-溴蒽醌-2-磺酸 溴苯酚 1-溴-2-萘酚 旋风de-tona-tor(黑索今) 环三次甲基三X Y   俗名 化工产品学名 亚胺硫磷 二硫代磷酸O,O-二甲基-S-邻苯二(甲)酰亚胺基甲基酯 亚麻酸 十八碳三烯-9,12,15-酸 亚油酸 顺式十八碳二烯-9,12-酸 盐基青莲 碱性柴5BN 燕麦灵 间氯苯胺基甲酸-4-氯-2-丁炔基酯 羊毛纸 纸粕辊纸 羊油 羊脂 杨梅醛 β-苯基环氧丁酸乙酯 洋干漆 虫胶片 氧氯化磷 三氯氧化磷 椰子醛 γ-壬内酯、γ-戊基丁内酯 液体石蜡沥青 渣油 衣康酸 甲叉丁二酸,亚甲基丁二酸 依兰依兰油 衣兰油 乙底酸 乙二胺四乙酸 蚁酸 甲酸HCOOH 异丙磷 二硫代磷酸O,O-二异丙基-S-乙硫基甲基酯 异佛尔酮 3,5,5-三甲基环己烯-[2]-酮-[1] 异戊二烯 2-甲基丁二烯-[1,3] 银粉 铝粉 银朱 硫化汞 硬玻璃 钾玻璃、钾钙玻璃 硬炭、钢炭 白炭 硬脂醇 十八醇 硬脂精 甘油三硬脂酸酯 硬脂酸铵 十八酸铵 硬脂酸钡 十八酸钡 硬脂酸钙 十八酸钙 硬脂酸镉 十八酸镉 硬脂酸锂 十八酸锂 硬脂酸铝 十八酸铝 硬脂酸镁 十八酸镁 硬脂酸铅 十八酸铅 硬脂酸锶 十八酸锶 硬脂酸锌 十八酸锌 尤纶 聚尿素纤维 油精 甘油三油酸酯 油毛毡 油毡纸 油酸 顺式十八烯-9-酸 莠去津 2-氯-4-乙胺基-6-异丙胺基-均三氮苯 愈疮木酚 邻甲氧基苯酚 月桂醇 十二醇 月桂醛 十二醛 月桂酸 十二(烷)酸 Z   俗名 化工产品学名 枣红色基B 联苯胺 枣红色基GBC(紫酱色基G,Gc) 邻氨基偶氮甲苯 皂黄 酸性金黄G 皂素 皂草甙 樟脑 莰酮-[2] 蒸缸 蒸锅 芝加哥酸 1-氨基-8-萘酚-2,4-二磺酸 直接元 直接黑 止血环酸 反式氨甲基环己烷酸 制剂339 水杨酰苯胺 中级醇 中碳数脂肪醇 重水 氧化氘 重土 氧化钡 周效磺胺 4-磺胺-5,6-二甲氧基嘧啶 珠灰 不纯的碳酸钾 猪油 猪脂 助拔剂O 氯化二甲基苯基苄基代铵 紫酱色基B 1-萘胺 组(织)胺 2-咪唑基乙胺 其它   俗名 化工产品学名 2,4,5-涕(2,4,5-T) 2,4,5-三氧苯氧基乙酸 2,4-D丁酯 2,4-二氯苯氧乙酸丁酯 2,4-滴(2,4-D) 2,4-二氯苯氧基乙酸 2R酸 7-氨基-1-萘酚-3,6-二磺酸 2甲4氯 2-甲基-4-氯苯氧基乙酸 G酸 2-萘酚-6,8-二磺酸 H酸 1-氨基-8-萘酚-3,6-二磺酸 J酸 2-氨基-5-萘酚-7-磺酸 NW酸 1-萘酚-4-磺酸 PPC 氨非咖片 PPO 聚苯撑氧化物 R酸 2-萘酚-3,6-二磺酸 S酸 1-氨基-8-萘酚-4-磺酸 β-丙氨酸 3-氨基丙酸 γ酸 2-氨基-8-萘酚-6-磺酸

  • 判断氨氮标准曲线做的好坏的方法有哪些

    氨氮曲线,碘化钾-二氯化汞-氢氧化钾体系,配成了500ml。每次加入的二氯化汞为11-11.5g,配制了2瓶,用10mg/L的氨氮标准溶液取0、1、3、5、7、10ml标曲线①加入二氯化汞为11.5g:0.021,0.091,0.238,0.391,0.536,0.758 , y=7.3930x-0.0020 , R=0.9999②加入二氯化汞为11.2g:0.022,0.093,0.233,0.375,0.517,0.736, y=7.1262x-0.0015,R=0.9999怎么去判定纳氏试剂配制的好坏呢,一个曲线除了R值大于0.999以外,a、b值有范围区间吗,有时R值符合要求,a值6.6多,有时7.5多,那哪个更合适一点呢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制