当前位置: 仪器信息网 > 行业主题 > >

细菌取菌器

仪器信息网细菌取菌器专题为您提供2024年最新细菌取菌器价格报价、厂家品牌的相关信息, 包括细菌取菌器参数、型号等,不管是国产,还是进口品牌的细菌取菌器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细菌取菌器相关的耗材配件、试剂标物,还有细菌取菌器相关的最新资讯、资料,以及细菌取菌器相关的解决方案。

细菌取菌器相关的资讯

  • 钟南山:中国或成为 “超级细菌”重灾区
    中国工程院院士钟南山指出,中国是世界上滥用抗生素最严重的国家之一,因此一些专家认为,一旦真正意义上的“超级细菌”爆发,中国将有可能成为“超级细菌”的重灾区。  钟南山日前接受《华西都市报》访问时指出,“超级细菌”是革兰氏阴性杆菌、肺炎克雷伯菌、大肠杆菌或不动杆菌里含有一些酶的基因。大多数抗生素对这种“超级细菌”没有效果。这种细菌的来源常常都是由于人们太多使用抗生素,特别是一般的感冒或流感。另一原因是用得(抗生素)不合适,这些细菌常是用比较高级的抗生素产生的。比如,第三代头孢霉素或碳青霉烯等药用得太多,就会产生。  他说,相当多的一般感冒、流感及病毒感染,医生常规开出抗生素的现象相当普遍。另外,农业、渔业大量使用抗生素也会造成超级耐药菌的发展。  有调查显示,中国是世界上滥用抗生素最严重的国家之一。由于滥用抗生素,在中国,细菌整体的耐药率要远远高于欧美国家 中国每年生产抗生素原料约21万吨,人均年消费量是美国人的10倍。然而,真正需要使用抗生素的病人人数不到20%,80%以上属于滥用抗生素。
  • 法国又发现一例超级细菌病例 呈跨国传播趋势
    法国国家医学与健康研究所19日说,法国一家医院日前在一名患者身上发现了具有超强抗药基因的细菌菌株,这是法国发现的第二例“超级细菌”病例。  医学与健康研究所的专家帕特里斯诺德曼当天对媒体说,患者为女性,曾在印度住院进行手术治疗。8月中旬返回法国后,她被检查出泌尿系统感染。医生还发现,她所感染的这种名为“柠檬酸杆菌”的消化道细菌含有超级抗药的NDM-1基因,而且这种细菌的菌株与之前发现的首例携带“超级细菌”的病例并不相同,不过患者目前情况稳定。  诺德曼认为,这例“超级细菌”病例的出现说明法国卫生总局最近采取的防范措施十分必要。该机构日前表示,将对所有曾在国外住院、随后转入法国医院的病人进行细菌抗药性检测,其中包括近期引发人们担忧的“超级细菌”。  此前,法国一家医院曾在一名受伤者皮肤样本中发现一些细菌菌株含有NDM-1基因,但这些菌株的抗药性不太强。 本月11日,英国加的夫大学发布公报说,NDM-1基因最早由该校教授蒂姆沃尔什于2009年发现,来源是一名曾到印度就医的瑞典人所携带的细菌。沃尔什及其同事后来又发现,英国、印度、巴基斯坦、孟加拉国的一些患者携带这类有超级抗药性的细菌,细菌呈现出随人员流动跨国传播的趋势。
  • 李金华研究员与潘永信院士团队等:环境趋磁细菌单细胞鉴定和综合研究技术路线图
    摘要:微生物是地球上最古老且延续至今的生命形式。它们种类繁多、功能多样、分布极广、数量庞大,扮演着生产者、消费者和分解者的角色,参与近40亿年的地球演化,并且还在持续影响地球的物质元素循环和气候环境变迁等。开展现代环境中微生物多样性和地质记录中微生物化石综合研究,是理解微生物参与地球和生命演化过程和机制的关键所在。尽管微生物的研究已有三百多年的历史,然而目前成功分离培养的微生物仅占0.1%-1.0%,自然界中仍有大量不可培养微生物资源有待挖掘和开发利用。近日,中国科学院地质与地球物理研究所李金华研究员与潘永信院士生物地磁学团队联合法国巴黎第六大学、澳大利亚国立大学等国内外多个单位科研人员,将微生物分子生态学与电子显微学技术相结合,在单细胞水平上,实现了环境样品中脱硫菌门趋磁细菌的特异性鉴定和生物矿化研究。针对环境中大量的未培养趋磁细菌,该项研究还提出了单细胞鉴定和综合研究技术路线图,为地质微生物的种类鉴定及生物地球化学关联研究提供了新思路。本研究提出的环境趋磁细菌单细胞鉴定和综合研究技术路线图:第①步:趋磁细菌分离或收集(A-E)。A.野外采集含趋磁细菌的沉积物或水体样品。B.实验室建立有氧-无氧过渡区(OATZ)微环境,富集培养环境趋磁细菌。C.通过过滤或其他非磁性方法从分层水柱或沉积物中浓缩细菌(包括趋磁细菌)。D.单细胞显微操作分选目标趋磁细菌细胞。E.利用各种磁分离装置收集活的趋磁细菌细胞。第②步:单细胞水平细菌种类和磁小体结构关联鉴定(F-I)。F.利用通用或类群特异性引物扩增趋磁细菌细胞的16S rRNA基因测序。G.基于目标16S rRNA基因序列设计类群/物种特异性寡核苷酸探针。H.利用荧光标记的类群/物种特异性探针对目标趋磁细菌细胞进行荧光原位杂交实验。I.在单细胞水平上对经荧光标记的细胞开展“荧光显微镜—扫描/透射电镜”或“荧光显微镜—聚焦离子束—扫描电镜”关联分析。第③-⑤步:趋磁细菌单细胞水平综合显微学关联研究(J-L)。J.同步辐射扫描透射X-射线显微镜对趋磁细菌细胞开展化学组成和磁学性质分析(纳米尺度)。K.综合透射电镜对趋磁细菌和磁小体进行结构、形貌、磁性和化学成分分析(原子尺度)。L.纳米二次离子质谱对趋磁细菌细胞进行化学元素和同位素分析(纳米尺度)。   一、硫酸盐还原趋磁细菌趋磁细菌是经典的地磁微生物和地质微生物功能群,它们广泛分布于各种水体环境中,在细胞内合成膜包被的纳米磁铁矿(Fe3O4)或(Fe3S4)晶体颗粒,也叫磁小体。趋磁细菌可以感知地磁场,并在地质记录中形成磁小体化石,因而是生物矿化、生物地磁学和古地磁学研究的理想模式系统。趋磁细菌种类和形貌极其多样,但对生长条件要求极其苛刻,因而实验室纯培养非常困难。建立不依赖纯培养的综合研究体系,在单细胞水平上实现趋磁细菌的生物学、矿物学和磁学综合研究,是全面且深入认识趋磁细菌多样性和磁小体生物矿化机制的关键所在。在众多类群中,隶属于脱硫菌门的硫酸盐还原趋磁细菌尤为独特。已知的变形菌门、硝化螺菌门和暂定杂食菌门趋磁细菌只能合成磁铁矿成分的磁小体,且都是单细胞原核生物。与它们不同,脱硫菌门趋磁细菌中,除了能合成磁铁矿型磁小体,也能合成胶黄铁矿型磁小体,除了有单细胞型,还有多细胞型。从生态学上讲,脱硫菌门微生物主要以硫酸盐为电子最终受体,进行厌氧呼吸,因此在自然界的硫-碳循环中起关键作用。二、西安未央湖硫酸盐还原趋磁细菌的发现和鉴定自上世纪八十年代以来,国内外多个研究团队陆续在海洋和盐碱湖等环境中发现并鉴定了多种硫酸盐还原趋磁细菌。然而,对淡水环境中的硫酸盐还原细菌鲜有报道和缺乏深入研究。2013年,中国科学院地质与地球物理研究所生物地磁学研究团队在西安未央湖和护城河中,通过16S rRNA基因序列检测和透射电镜观测,首次在淡水环境中发现了多种硫酸盐还原趋磁细菌(Wang et al., 2013 陈海涛等,2013)。随后,研究团队通过建立的“荧光显微镜-扫描电镜”联用技术(Li et al., 2017),从西安未央湖中鉴定了一株新的淡水硫酸盐还原趋磁杆菌WYHR-1,在细胞内合成“子弹头形”磁铁矿晶体颗粒,沿[001]方向拉长,具有典型的“多阶段晶体生长”模式,在细胞内组装成2-3条紧密排列的磁小体链束结构 (Li et al., 2019, 2020)。然而,由于丰度低,且与其它门类趋磁细菌混合存在,其它种类硫酸盐还原趋磁细菌的鉴定和生物矿化研究并未成功。在本研究中,研究团队设计了特异性上游引物390F,与下游引物1492R配合使用,特异性地检测环境样品中硫酸盐还原趋磁细菌。实验结果表明,利用细菌通用引物对27F/1492R对环境趋磁细菌样品的16S rRNA基因序列进行扩增,只能得到相对丰度高的α-变形菌纲趋磁螺旋菌WYHS-1的基因序列。然而,利用390F/1492R引物对,对同一个环境趋磁细菌样品的16S rRNA基因序列进行扩增,成功地获得了三条新的硫酸盐还原趋磁细菌16S rRNA基因序列,分别命名为菌株WYHR-2,WYHR-3和WYHR-4(图1)。生物信息学分析证实,尽管390F/1492R引物对,对脱硫菌门微生物的覆盖度低于27F/1492R引物对(前者20.6%,后者为32.2%),然而对其它细菌门类的覆盖度仅有0.5%,远远低于27F/1492R的26.0%,因此可以作为类群特异性引物对,从环境样品中特异性地检测脱硫菌门细菌。图1 未央湖淡水硫酸盐还原趋磁细菌WYHR-2、WYHR-3和WYHR-4的系统发育树他们进一步采用三种不同策略,在单细胞水平上分别对这三种新的趋磁细菌开展生物学种类与磁小体结构的关联鉴定和研究。(1)荧光—扫描电镜联用(FISH-SEM)鉴定WYHR-2(图2)。结果显示,菌株WYHR-2为平均长度为2.9±0.6μm,平均宽度为1.5±0.3μm (n=29)的杆状细胞,合成58±16个平均长度为77.9±22.3nm,平均宽度为31.4±5.8nm (n=681 共分析29个细胞)的排列成一条链束状结构的直子弹头形磁铁矿成分的磁小体。(2)荧光—透射电镜联用(FISH-TEM)鉴定WYHR-3(图3)。结果显示,WYHR-3除了合成 33±13个平均长度为71.0±18.7 nm,平均宽度为30.3±4.9nm (n=846 共分析31个细胞)的直子弹头形磁铁矿成分的磁小体外,还合成18±11个平均长度53.7±13.1nm,平均宽度44.0±9.7nm的立方体或棱柱形胶黄铁矿成分的磁小体。(3)荧光—聚焦离子束-扫描电镜(FISH-FIB-SEM)鉴定WYHR-4(图4)。结果显示,WYHR-4也能在细胞内同时合成磁铁矿型和胶黄铁矿型磁小体。图2 趋磁细菌WYHR-2的FISH-SEM关联分析图3 趋磁细菌WYHR-3的FISH-TEM关联分析。使用TEM是因为,WYHR-3细胞相对较大较厚, SEM不能获得相对清晰的磁小体图像图4 趋磁细菌WYHR-4的FISH-FIB-SEM关联分析。使用FIB-SEM是因为,WYHR-4细胞相对较大较厚,单纯的SEM并不能获得相对清晰的磁小体图像,同时由于WYHR-4丰度太低,并不适合FISH-TEM关联分析。因此,在本研究中采用FISH-SEM将目标细菌共定位后,采用聚焦离子束技术(FIB)将目标细菌逐层切开,然后使用SEM对细胞内的磁小体进行形貌和成分分析  三、硫酸盐还原趋磁细菌磁小体晶型和矿化机制完成了三株新的未培养硫酸盐还原趋磁细菌的种类鉴定后,他们进一步采用先进的透射电镜技术对其磁小体晶型和矿化机制开展研究(图5-图6),并与前人以及他们前期的研究结果进行对比。结果表明:(1)脱硫菌门趋磁细菌合成的磁铁矿型磁小体,通常不弯曲,颗粒多沿[001]拉长,底端可保留一个大且平整的{001}面(如WYHR-1和WYHR-2)。然而,硝化螺菌门趋磁细菌合成的磁铁矿型磁小体,通常为弯曲形状,颗粒底端多保留为一个大且平整的{111}面,最终沿[001]拉长。这表明,磁小体的形状与趋磁细菌门类相关,地质记录中直的和弯曲形子弹头形磁小体化石可以用来指示上述两类趋磁细菌及其古环境。(2)与磁铁矿磁小体的结晶度高且通常至少保留一个可明显识别的晶面相比,胶黄铁矿磁小体的结晶度相对较差,形状多变,颗粒外围晶面欠发育且难识别。与棱柱形磁铁矿磁小体(变形菌门趋磁细菌合成)多沿磁铁矿晶体的[111]晶面拉长不同,棱柱形胶黄铁矿磁小体沿胶黄铁矿的晶体[001]方向拉长,其生长机制和磁学性质值得进一步深入研究。图5 趋磁细菌WYHR-2及其磁小体的形貌、尺寸和链束结构特征图6 趋磁细菌WYHR-3的磁铁矿(A-C)和胶黄铁矿(D-F)磁小体的形貌和晶型研究成果发表于国际学术期刊Environmental Microbiology(李金华*, 刘沛余, Menguy Nicolas,Benzerara Karim,白金伶,赵翔,Leroy Eric,张朝群,张衡,刘嘉玮,张荣荣,朱珂磊,Roberts Andrew,潘永信. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: Strategy for culture-independent study[J]. Environmental Microbiology, 2022. DOI: 10.1111/1462-2920.16109)。研究受中国国家自然科学基金重点国际(地区)合作研究项(41920104009)、国家自然科学基金重大项目课题(41890843)和国家自然科学基金创新研究群体项目(41621004)资助。
  • 曝知名鸭脖细菌超标 数据爆表仪器无法显示
    继9月8日央视曝光北京的绝味、久久丫鸭脖大肠杆菌超标之后,华西都市报也爆料称,&ldquo 吃鸭脖等于吃细菌&rdquo ,绝味鸭脖大肠杆菌数量没有人知道,因为数据爆表,检测仪器无法显示,而久久丫鸭脖大肠杆菌数量超标160倍。  华西都市报报道原文:  吃鸭脖等于吃细菌  @华西都市报:  央视财经透露,很多人爱吃绝味鸭脖或者久久丫的产品,可是,它们卖的已经不是食物了,而是细菌。绝味鸭脖大肠杆菌数量没有人知道,因为数据爆表,检测仪器无法显示,而久久丫鸭脖大肠杆菌数量超标160倍!吃它们等于吃细菌!你还敢吃吗?  网友回应:  @兰-小影:我最爱的绝味啊!现在不敢再去吃了  @自由與公正:连锁店都这样了,那流动摊贩卖的卤味还能吃吗?  @梦魇如画:我们早已练就金刚不坏之身,这点细菌算个啥  @杨光给你正能量:亏我这么爱它们!不过,买的时候就想不到了,吃货的嘴挡不住!
  • 超级细菌的中国现实
    10月26日,中国疾病预防控制中心公布,在对既往收集保存的菌株进行监测中,发现了3株NDM-1基因阳性细菌(即超级细菌)。  自从8月国外报道有患者感染携带NDM-1基因细菌以来,中国有没有“超级细菌”(Superbug)的问题就是公众的关注焦点,直到此次公布之前一星期,中国的官方说法还是,中国没有发现“超级细菌”。  在国外广泛报道发现携带NDM-1耐药基因细菌之后,中国的卫生部组织了对既往收集保存的菌株进行NDM-1耐药基因检测,检出3株NDM-1基因阳性细菌。  中国疾病预防控制中心发现的2株携带NDM-1耐药基因细菌来自今年3月宁夏回族自治区2名新生儿的粪便标本,是有NDM-1耐药基因的屎肠球菌。对该2名幼儿再次进行的NDM-1耐药细菌的检测,结果均为阴性。  另一株携带NDM-1耐药基因的鲍曼不动杆菌,自福建省一名患肺癌的老年病例分离得出,该患者已死亡,其主要死亡原因为晚期肺癌。鲍曼不动杆菌是条件致病菌,可导致免疫功能低下的病人感染。其在该患者病程发展中的作用尚不明确。  监测网络滞后  此次发现的携带NDM-1基因细菌来自相距很远的宁夏和福建 且是完全不同的两类细菌 (一种是革兰氏阳性菌,一种是革兰氏阴性菌),差别很大,不可能来自同一感染源 住院时间分别是3月和5月。因此,几乎可以完全排除境外传入的可能,携带NDM-1基因的超级细菌早已存在于中国,只是未被监测到而已。这就暴露了中国监测体系的滞后。  8月份,国外出现了“超级细菌”的报道。中国开始加强印度等国外进入中国的旅客检疫。与此同时,卫生部与国家传染病重大专项平台,就开展了NDM-1耐药基因细菌的检测。  “两名新生儿是3月份患病,住院时间是10天左右。当时还没出现‘超级细菌’。按此推断,当时医院肯定不是按‘超级细菌’治疗的,应该是按腹泻、肠道感染治疗的。”中国疾病预防控制中心传染病预防控制所所长、传染病预防控制国家重点实验室主任徐建国说。后来有专家调查过一次,由于治疗档案没提取到,无法得知治疗方式。据了解,两名新生儿是在一个县级医院治疗。按卫生政策有关要求,进入医院的患者都要留存档案。但有关专家表示,“县级医院,可能管理松散”。  在军事医学科学院疾病预防控制所的实验室,从福建省一个医院报送的200多株菌株中检出1株NDM-1基因阳性鲍曼不动杆菌,经过表型鉴定、基因分析和测序,最后经过中国医学科学院实验室的平行检测,证实这株菌带有NDM-1基因。  根据浙江大学医学院第一医院、传染病诊治国家重点实验室教授肖永红介绍,从这三名患者分离得到菌株来自“卫生部细菌耐药监测网”中的医院。  在2005年,卫生部、国家中医药管理局和总后卫生部决定建立全国“抗菌药物临床应用监测网”和“细菌耐药监测网”。“卫生部细菌耐药监测网”由两大部分组成,第一部分为初级监测网,第二部分为中心监测网。  到2010年,监测网已覆盖全国170余家三级甲等医院。其中,中心网包括全国不同地区20家医院,已开展3届中心网监测工作。基础网主要为各省市的三级甲等医院,目前已覆盖全国一百多家医院,每年分四个季度将临床分离菌株药敏结果上报。  但从监测网建立之始就参与其中的肖永红介绍,现有的监测是被动监测,主要是获得细菌耐药性变化趋势和不同地区之间的比较等方面的信息,是对现在已经发生的耐药做一个常规的监测。这样的监测网络时间上会滞后,不适于监测新发的耐药现象,或者一些耐药率比较低的情况。  “其次,现在的监测网络只覆盖到了省会城市和三甲医院,其广度和深度都有限 而且是年度监测,一年一个报告,时效性差,”肖永红说,“监测的发展方向,在深度、广度和时效性方面都应该提高,获得技术,采取措施及时加以研究。”  药高一尺,菌高一丈  抗生素与细菌之间的战争始于1929年弗莱明 (Fleming)的伟大发现——青霉素。抗生素首战大胜。  1943年,发现了链霉素,并在1947年投入了市场。人类战胜了结核病。抗生素再下一城。  抗生素日益发展,建立了庞大的抗菌素制药工业。在1971年至1975年达至巅峰,5年间共有52种新抗生素问世。  但形势随之逆转,从1980年代开始,每年新上市的抗生素逐年递减。一方面的原因是开发新抗生素越来越难,另一方面则是细菌快速形成的耐药性。  细菌对抗生素形成耐药性,实际上只是一种“被选择”。在数量惊人庞大的细菌群体中,细菌个体并不完全相同,彼此之间总是存在一些差异。这些差异产生的原因在于突变。突变在漫长的生命演化过程中一直就存在,只是偶然,一些突变改变了细菌的基因,使之获得了耐药性。  在抗生素出现之前,这些产生耐药性的突变会在细菌群体中逐渐消失。但抗生素出现后,这些突变有了新的意义。抗生素对细菌进行了“选择”,没有耐药性的细菌被杀灭了,而有耐药性的基因生存了下来,菌群的结构发生了变化:非耐药菌越来越少,耐药菌越来越多。  耐药性对于抗生素如影相随,只要使用抗生素就会形成耐药性,使用抗生素越多,形成耐药性也就越快。  此次的“超级细菌”实际上就是对几乎全部已有抗生素都具有耐药性的“泛耐药菌(pan-resistantbacteria)”在9月28日,卫生部下发的《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》中,“超级细菌”的正式名称也是泛耐药菌。  卫生部抗菌药物临床应用监测中心顾问专家、复旦大学附属华山医院抗生素研究所的张永信教授告诉本报记者,感染了泛耐药菌并不是不可治愈,采用多粘菌素或多种抗生素联合用药的方式可以治疗泛耐药菌感染。  国外的资料显示,某些临床疾病已经治愈的出院患者仍可携带NDM-1耐药基因细菌,但由于这类耐药菌多为条件致病菌或人体正常菌群细菌,通常不会在社区环境内普通人群中传播。在中国检出的两类细菌都是条件致病菌。  在卫生部的《诊疗指南》中写道,“超级细菌”的“传播方式尚无研究报道,但根据患者感染情况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。”易感人群为:“疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等。”  张永信认为,一般公众不会轻易感染“超级细菌”,因为这些细菌是还局限在医院的特定环境中。“医生和护士天天与之打交道”,应该注意的是具有危险因素的人,如“开了大刀的人、老人、新生儿、进行化疗免疫功能下降的肿瘤病人等”。  但这次欧美国家发现的病例已经表明,“超级细菌”可以通过接受医疗服务的人体进行洲际传播。“健康人一般不会感染‘超级细菌’。即便在医院等地有接触到,回到社区一段时间后,就消失了。目前的感染还局限在特殊人群,但值得关注的是,一旦耐药性基因传到了致病性强的细菌中,情况就会变得严重。”肖永红说。  抗生素使用大国  弗莱明自微生物之间的 “抗生现象”中发现了青霉素之后,人类已经开发了超过130种抗生素,是人类医疗健康无与伦比的福音。但因为放肆随意地使用抗生素,耐药菌越来越多,耐药性的形成也越来越快。在对细菌的战斗中,人类正在失去最重要的,几乎是唯一的依靠。  在中国,抗生素不合理、不规范的使用一直普遍存在。  据2006-2007年度卫生部全国细菌耐药监测结果显示,全国医院抗菌药物年使用率高达74%。在美、英等发达国家,医院的抗生素使用率仅为22%~25%。而中国的住院患者中,抗生素的使用率则高达70%,其中外科患者几乎人人都用抗生素,比例高达97%。  抗生素在养殖业中也大量使用。这些药物一是用于预防动物生病 二是在饲料中添加抗生素,可以促进动物生长,这已是养殖业内通行的做法。这类做法的后果就是抗生素弥漫到整个环境中,可以通过各种途径,在人体内蓄积。  不惜用抗生素后果严重。中国耐药菌的分离率远高于抗生素使用受到严格控制的国家,耐药菌的形成速度也远远快于这些国家。以耐甲氧西林金黄色葡萄球菌 (MRSA)为例,“在印度和中国,MRSA在菌群中已经占到50%-70%,而在瑞典、丹麦、芬兰等北欧国家,还不到5%,”肖永红告诉记者,“而且2000年之后,增加的速度非常快。细菌产生突变速度相同,是抗生素泛滥的环境加快了耐药菌的形成。”  金黄色葡萄球菌是一种常见的病菌,可引起皮肤、肺部、血液、关节感染。最开始,青霉素对之有效,但很快失效。后来采用了甲氧西林(半合成青霉素),仅两年就出现了耐药菌,形成了难以杀灭的MRSA。  在2004年,卫生部等部门颁行了《抗菌药物临床应用指导原则》,对抗生素的使用作出了详尽的规定,随后又有2008年的48号文和2009年的38号文强化抗生素药物的使用规范。力度不可谓不大。  然而,情况虽有所改善,但执行仍旧不力。“不是每一所医院和每一位医生都能做到。”肖永红叹道。参与了《指导原则》制定的卫生部合理用药专家委员会副主任委员吴永佩也表示,不规范使用抗生素是耐药菌急剧形成的原因之一。对于在养殖业中使用抗生素,至今仍无明确的法规。  抗生素的不合理使用其实只是中国医疗体系中药物不合理使用的一个层面。影响药物合理使用的所有因素也都影响到了抗生素的使用。例如,因“医患关系”和“举证责任倒置”产生的“保护性医疗”反映在抗生素的使用上就是多用抗生素,用好抗生素。“以药养医”的困境投射到抗生素使用上,也大大增加了其用量。
  • 广西已具"超级细菌"检测能力
    中国疾病预防控制中心通报,我国发现3例超级细菌携带者。10月27日,记者从自治区疾控中心了解到,目前广西尚未发现此种细菌,同时,广西已具备检测超级细菌的能力,疾控部门将立即开展搜集病人样本、实验室检测等一系列工作。卫生部门也要求全区医疗机构切实遵守无菌操作规程,减少院内感染。  疾控部门:试剂、人员均已到位  自治区疾控中心副主任林玫介绍,超级细菌具有超强抗药性,源于它带有一个强悍的基因,检测耐药菌是否带有这种特殊的基因,就能识别出它的“超级”身份。  近日,自治区疾控中心已从国家疾控中心领回了检测所需的试剂,人员技术也已到位,将马上开展相关的监测工作。医疗机构将保留临床诊疗中发现的耐多药病人标本,交由疾控部门做进一步检测。疾控部门也将对既往收集保存的样本进行筛查。  据介绍,超级细菌对青霉素类、头孢菌素类和碳青霉烯类的抗菌药物已经广泛耐药。易感人群包括疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等患者。  医疗机构:严格落实无菌操作  记者从自治区卫生厅医政处了解到,卫生部印发的超级细菌诊疗指南——《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》,已经发放到全区的医疗机构,并要求各医疗机构做好可能出现的感染患者的诊疗工作。  根据卫生部的指导,广西的医疗机构将根据临床微生物检测结果合理选择抗菌药物,扩大抗菌药物敏感性测定范围,减少对患者的侵袭性操作,积极治疗原发疾病,根据临床特征进行中医辨证治疗。  由于超级细菌主要侵犯的是住院病人,因此,自治区卫生厅要求各级医疗机构加强医务人员手卫生、严格实施隔离措施、切实遵守无菌操作规程、加强医院环境卫生管理,减少院内感染发生几率。  药学专家:多数感冒无需抗生素  超级细菌是如何产生的?公众滥用抗生素的坏毛病难辞其咎。自治区人民医院药剂科主任药师危华玲说,其实在超级细菌出现以前,医院就碰到过不少泛耐药的病例。  泛耐药是指细菌对大多数抗生素都耐药,这给临床治疗带来了很大的困难。随着细菌的耐药性像滚雪球一样越滚越大,最终就出现了超级细菌。危华玲说,当老的抗生素不起作用时,要对付这些难缠的细菌,就越来越依靠新研制出来的抗生素。可是,新药研制的速度远远比不上细菌耐药的速度,新药也就变得越来越“短命”。  如何远离超级细菌的威胁?危华玲给公众提了四点建议:  1.使用抗生素必须诊断明确,只有细菌感染的情况才适宜使用   2.不要一感冒就用抗生素。感冒初期多数是病毒感染,只有合并细菌感染的时候,如咽喉发炎等,才应考虑用抗生素。服用抗生素来预防感冒更不可取,因为抗生素根本起不到预防作用   3.抗生素必须在医生的指导下服用,尤其是新生儿、老人、孕产妇等特殊人群,切忌不要自行服药。  4.如果必须吃抗生素,一定要遵医嘱按时按量服用,不要自己随便停药,这样很容易使身体产生耐药性。
  • 清华大学申请微流控细菌生物传感器及细菌快速检测方法专利,可实现一步法的细菌的低成本快速现场检测
    据国家知识产权局公告,清华大学申请一项名为“一种微流控细菌生物传感器及细菌快速检测方法“,公开号CN117169498A,申请日期为2022年5月。  专利摘要显示,本发明公开了一种微流控细菌生物传感器及细菌快速检测方法,该微流控细菌生物传感器包括细菌生物微流控芯片和细菌生物荧光传感器;所述细菌生物微流控芯片包括微流控芯片设计和制作;所述的细菌生物荧光传感器包括入射光单元、荧光检测单元和拍照单元。本发明还提供了微流控细菌生物传感器制作及使用微流控细菌生物传感器快速检测细菌的检测方法。本发明提供了一种微流控细菌生物传感器及细菌快速检测方法,解决了当前细菌检测技术存在的检测时间长、检测环境要高、检测成本高等问题,可实现一步法的细菌的低成本快速现场检测,可广泛应用于食品安全、环境监测、公共卫生等领域。
  • 细菌内毒素检测技术应用及光度法细菌内毒素定量检测实操培训班的通知
    各有关单位: 为了进一步帮助药品检验检测机构和相关制药生产企业提升细菌内毒素检测能力,海南省药师协会联合科德角国际生物医学科技(北京)有限公司定于2023年11月14日-15日在海口举办“细菌内毒素检测技术应用及光度法细菌内毒素定量检测实操培训班”。现将有关事项通知如下:一、培训组织主办单位:海南省药师协会协办单位:科德角国际生物医学科技(北京)有限公司二、培训对象药品生产企业、医疗器械生产企业、药检所以及医疗机构从事细菌内毒素检查工作的质检人员。三、培训时间、地点及费用(一)培训时间:11月14日-15日,培训为期1.5天;(二)培训地点:海南省海口市龙华区金盘南侧建设一横路1号吉兴雅苑1栋一楼109会议室。(三)培训费500元/人(含资料费、中餐费、证书费等)。四、培训讲师尹雪雁 科德角国际资深技术主管秦焕甲 科德角国际高级应用工程师五、培训内容(一)细菌内毒素基础知识及2025版中国药典细菌内毒素检查法趋势介绍1、内毒素、鲎试剂和内毒素检测概述2、鲎反应干扰因素及方法选择3、细菌内毒素检查法法规介绍(二)细菌内毒素光度法检测开发实例分享1、细菌内毒素光度检测开发实例2、基因重组鲎试剂方法介绍(三)细菌内毒素定量检测系统的应用指导1、计算机要求2、数据库3、Pyros eXpress 软件安装和注册4、通用设置的介绍5、库的介绍6、检测模板介绍7、软件扩展(四)细菌内毒素定量检测系统的现场实操培训六、报名(一)参训人员用微信扫以下二维码报名,报名截止时间为:2023年11月10日18:00,有特殊情况请与李老师联系联系方式:400-860-5168转5075 七、其他事项联系电话:400-860-5168转5075办公地址:海口市龙华区金盘建设一横路1号吉兴雅苑西门1栋一楼102室。
  • 科德角国际 | 细菌内毒素检测技术应用及PKF型细菌内毒素定量检测系统实操培训
    多年来,科德角国际生物医学科技(北京)有限公司始终专注于细菌内毒素检测服务,积累了丰富的细菌内毒素检测经验,为了进一步帮助药品检验检测机构和相关制药生产企业提升细菌内毒素检测能力,我司于2023年5月30日-2023年5月31日举办“科德角国际细菌内毒素检测技术应用及PKF型细菌内毒素定量检测系统实操培训”。一、培训组织主办单位:科德角国际生物医学科技(北京)有限公司协办单位:北京阿克庇斯医药有限公司二、培训对象(一)各省 (区、市)药品审评中心、核查中心、药检(院)所相关人员;(二)制药企业、研发公司、CRO 公司、高等院校、科研院所等相关专业人员。三、培训时间报名时间:2023年5月4日-2023年5月29日报到时间:2023年5月29日培训时间:2023年5月30日-2023年5月31日四、培训地点科德角国际生物医学科技(北京)有限公司北京市大兴区中关村科技园区大兴生物医药产业基地华佗路50号院18幢五、培训内容※本次培训结业学员,将由科德角国际生物医学科技(北京)有限公司颁发培训合格证书。六、培训讲师范玉明科德角国际资深技术总监【专业及专长】药理学、毒理学及药事管理擅长细菌内毒素检测领域的研究医学硕士研究生,执业药师,编辑,GLP 、GMP 、GCP 培训证书七、公司荣誉细菌内毒素检测实验室ILPQ国际能力认证 中国食品药品检定研究院能力验证结果报告通知单 2022年度细菌内毒素LGC能力验证八、实验环境九、报名方式扫描下方二维码进行报名▲扫描二维码进入报名页面十、培训费用2000元/人(包括资料费、培训费、证书费、午餐费,其他费用自理)。地址:北京市大兴区中关村科技园区大兴生物医药产业基地华佗路50号院18幢科德角国际生物医学科技(北京)有限公司北京市大兴区中关村科技园区大兴生物医药产业基地华佗路50号院18号楼2层
  • 开水的保质期,只有16个小时?,或有细菌滋生
    在我们的日常生活中,水实在是一种太常见的物质了。但或许正因如此,大多数人并不了解每天应该怎样喝水,喝什么水,什么时候喝水,而这直接影响到我们的健康。比如很多家庭都会受一些养生节目的影响,在头天晚上烧一些白开水,放置一夜,留到第二天的早晨喝一杯来补水排毒,而这是否是一种健康的生活习惯呢?白开水里到底有什么? 从成分来说,日常经常饮用的水分为煮沸过后的白开水,瓶装或者桶装的矿泉水或纯净水。其中白开水和矿泉水中都含有矿物质,而纯净水就是不含各种矿物质和微生物的水。比如很多时候烧开水的壶内壁上会结厚厚的白色水垢,这就是矿物质存在的表现,所以从这个意义上讲白开水也是一种矿泉水。那么这类矿物质和微量元素在水中的存在究竟好不好呢?其实水中矿物质含量非常少,对人体所需矿物质的补充不会带来大的影响。一般人体所需要的矿物质是从其他饮食中获取的。所以,所以网上流传的各种说法,比如长期喝矿泉水会导致矿物质摄入过量甚至中毒是错误的,再或者长期喝纯净水导致营养缺乏也是错误的。 在大家受各种广告的影响而关心水里是否有营养物质的同事,却忽略了一个最重要的事实,那就是水本身就是一个营养物质。平时我们经常说,碳水化合物、脂肪、蛋白质、维生素、矿物质和水。所以,不论你爱喝水、喝茶还是喝汤,都必须每日摄入足够的“水营养”,才能保持人体这台复杂机器的正常运转。从这个角度上说,白开水是一种必不可少又物美价廉的“营养物质”。开水的保质期只有16个小时 每个人都知道食物有保质期,那么水呢?有一个非常流行的说法就是“开水的保质期只有16个小时”。因为水中不含蛋白质或者糖类,在室温下并不会像其他食物一样受到微生物的破坏和分解。但是,很多人水杯里是不是经常剩点水,下次倒掉后随便冲一下杯子接着用?如果从隔夜残留的水杯中取样做电镜,可以看到水杯残余的水体里有很多大肠杆菌。如果环境适宜的话,1个大肠杆菌一晚上就能繁殖200万个!所以说隔夜水中的确会有一些微生物繁殖,对比刚烧开而放凉的白开水,隔夜水或者十几个小时之后的白开水的水质的确不如从前。但说它对人体有多大的害处也并没有网上流传的那么严重和夸张。只要没有被污染,仅仅是搁置了一个晚上或者十几个小时,水的性质就不会发生改变。但是,水放置时间长或放置环境原因,免不了会有细菌滋生情况发生,因而民间才有“不能喝”或者开水有保质期的说法。而肠胃脆弱的人或者小孩子还是避免饮用隔夜水或者放置了十几个小时的白开水。另外,相比隔夜的白开水,隔夜的茶水则不宜饮用。由于茶叶浸泡后的水会产生氨基酸等物质,时间一长容易导致微生物繁衍,这对健康不利。 但是家庭用的饮水机,一桶水往往都要放置一个星期左右,按道理说早已经超出了水的“保质期”。但正规桶装水采取了相应除菌和封闭措施,只要保证饮水机的清洁,都是可以放心饮用的。另外,每次最好晚上喝完水后清洗水杯,夜间晾干;或者早晨用另外一个之前洗好干燥的杯子,用开水烫一下也是很有效的。另外女性爱用的口红极易吸收空气中的有害物质和病原体,因此杯口处的唇印要特别注意清洗。隔夜白开水中也不会有致癌物 另外前一阵朋友圈中有消息称,隔夜白开水或者反复煮沸的水不能喝。隔夜白开水和反复翻煮的水以及保温瓶中非当天的开水中,均含有一种亚硝胺的物质,此物是强致癌物。这是真的吗? 首先大家要知道,致癌物质不会凭空产生。由于现在很多人对“化学元素恐惧症”的存在,让包括水在内的很多东西都蒙受了不白之冤。比如网络上,最令人担忧的一种传言是“白开水存放三天后会产生致癌物质”。要知道,人们最担心的致癌物烟硝酸盐是不可能存在于只有矿物质和微量元素的水中,即使水放了再长的时间也不会。至于反复煮沸的白开水是否有致癌物,其实只要能保证水质的来源或者煮水的工具是符合安全质量标准的,理论上及时煮沸多次也不会产生致癌物质。隔夜白开水中的异味是什么 同时很多敏感的人也注意到,早晨喝放在床边上隔夜的白开水的时候,和平时正常的味道不太一样,那是不是隔夜水变质了呢?其实主要原因是茶杯中暴露在空气里的白开水时间一长,在静置的过程中会有空气中少量的二氧化碳融入其中。因此生成的微量碳酸会稍微降低水的pH值,从而产生味道的改变,会略有酸涩的味道。当然一杯水轻微酸度的变化并不会影响到人的健康,即使你经常喝这类的水。但是如果白开水已经晾了好几天,周围环境中的微生物和各种藻类也会进入水中,这时味道会更大。虽然没有致命危害,但是隔了几天的白开水容易被细菌污染,还是不喝为宜。 众所周知,水在烧开的过程中会杀死很多致命微生物。但是在开水的温度降到室温以后,各种微生物会继续进入白开水中,在水中繁殖。在空气中暴露的时间越长,微生物的数量就会越多。但是要知道,开水的保质期也会受到诸多因素的影响,比如盛放容器的材质或是否干净,空气的湿度或者室温等。但是总的来说,在空气中暴露的时间越长,微生物细菌就会越多,水质就会越差,对身体的危害就会越大。因此保持良好的饮水习惯,比如最好喝新鲜的白开水还是很有必要的。
  • 探访山西“超级细菌”检测实验室
    工作人员正在检查实验结果  10月26日上午,中国疾病预防控制中心通报,国内已发现3例超级细菌(NDM-1耐药基因细菌)病例。29日,记者从山西省疾病预防控制中心了解到,我省还未发现超级细菌病例,但省疾控中心的实验室以及我省一些条件较好的市疾控中心实验室,都具备了监测“超级细菌”的条件。11月1日,本报记者走进山西省疾病预防控制中心实验室,独家探访“超级细菌”检测实地。  出了省疾控中心主楼6层的电梯向左一拐,便可以通过透明玻璃看到一个长廊,玻璃上写着“生物安全实验室,授权后方可进入”几个字,检测“超级细菌”的实验室就在里面。判定超级细菌并非难事  “嘟!”随着疾病检验科科长张凡非将门禁卡一刷,中心实验室的门应声而开。穿上隔离衣,戴上鞋套,记者跟随张凡非进入。走廊两侧有各种实验室,还有工作人员专用的更衣室、准备室、洗涤室等。几个实验室门口还贴着“生物危害”的标志。“我是全单位唯一持实验室门禁卡及密码的人,因为实验室安全性要求极高。我是第一责任人。”张凡非说。  穿过长廊,来到最里面的一间实验室。“这里就可以检测超级细菌了。”张凡非说。实验室里,两名工作人员正在一台“生物安全柜”前工作,戴着口罩、手套,全副武装。他们正在做肠道病菌试验。如果是做超级细菌的实验,专业上称“药敏试验”,第一步,也需要在生物安全柜里将病菌分纯。  “大家可以放心的是,判定超级细菌并非难事。”张凡非介绍。耐药性强的细菌并不是首次发现,而是一直存在,并且数量很多,比如耐青霉素的肺炎链球菌,过去对青霉素、红霉素、磺胺等药品都很敏感。而这次超级细菌引起的问题,主要是发现肠杆菌对抗生素不敏感了,产生了很强的泛耐药性,而之前这种细菌并没发现耐药性。所以说,省疾控中心实验室及我省一些条件较好的市疾控中心实验室,一直就具备检测及监测这种超级细菌的条件。2—3天就可确认试验结果  药敏试验通俗的解释,就是做某一种细菌对指定的药物敏感试验。如果不敏感了,也就说明耐药了。张凡非介绍。  检测是否是超级细菌需要经过4道程序。首先要从临床上取患者感染部位的标本,比如取呼吸道感染患者的痰标本,然后放在培养基上进行细菌培养,培养时间一般需要48小时。  培养出细菌后,就要进行耐药反应。耐药反应所选抗生素,是严格按照国家的监测要求进行的。目前,省疾控中心实验室所用抗生素有十几种,都是临床常用抗生素,针对不同的病菌,将不同的抗生素涂抹在药敏试纸上。之后,观察其结果。  结果有3种:敏感、中度敏感及耐药。涂抹过抗生素的药敏试纸上,都会出现直径、大小不同的药敏环儿。如果药敏环儿周围,细菌被抑制不滋生了,说明细菌对抗生素是敏感的 如果药敏环儿周围的细菌抑制情况不太明显,说明结果属于中度敏感 若药敏环儿周围的细菌依旧滋生,没有一点抑制效果,说明细菌产生了耐药性。  发现疑似耐药性反应,实验室就会将其送到中国CDC“临床基因扩增检验实验室”做基因分析,如果确认其含有耐药基因,那就可以确认这个细菌是超级细菌了。最快两三天就可以确认是否是超级细菌。一旦发现疑似耐药性反应,那么细菌的“主人”,就应第一时间被“隔离”。  整个监测过程并不复杂,但条件要求很严格。“比如菌株的存放就要求放置于-80℃的超低温环境内,”张凡非指着房间内的一个大冰柜,“那就是存放菌株的地方。”超级细菌不是传染病  “超级细菌是感染病,而非传染病。这是两种截然不同的概念。感染病是一种条件致病,并不是接触性传染病。”张凡非说。“感染性疾病需要具备一定的条件。打个比方,有人吃了西瓜会拉肚子,但有人就不会。细菌感染也一样,同样的细菌,由于不同的个体免疫力不同会有不同的反应,由于细菌感染而致病的还是少数。因此,大众没必要恐慌。”  张凡非还表示,真正的问题根源是超级细菌背后反映的抗生素滥用问题。“这个问题解决不了,超级细菌才会真正无敌。”
  • 超级细菌如何检测? 需过“四道关”
    记者探访超级细菌监测室  超级细菌,最快两三天可确认  超级细菌进入大众视野,引起部分人的恐慌。我们能否建立—道抵御细菌侵袭的监测网络?超级细菌能否被及时监测?监测过程又是什么样的?今年9月底,卫生部在国内设立了19个超级细菌监测哨点医院,山东省济南市中心医院、齐鲁医院位列其中。10月28日,记者走进济南市中心医院门诊楼5楼的中心实验室,带您—探这个监测超级细菌的神秘场所。  工作人员正在打开生物安全柜。   耐药性强的细菌—直存在,且数量很多  “嘟”,随着工作人员门禁卡的晃动,济南市中心医院中心实验室的门应声而开。穿上隔离衣,戴上鞋套,记者跟随工作人员走进实验室,眼前是一个长长的走廊。走廊两侧有各种实验室,实验室门口都挂着“生物危害”的标志。  “其实并不是所有的微生物都是有害的。”病原微生物实验室工作人员裴凤艳说,人体内有大量微生物存在,大多数对人体有益,比如肠道内的一些细菌,会维持肠道良好的消化环境。  穿过长廊,来到最里面的一间实验室———“病原微生物学实验室”,这就是卫生部9月份确立的山东省两个超级细菌监测哨所之一。  该实验室工作人员纪明宇介绍,所谓的超级细菌,其实就是泛耐药细菌,这种耐药性强的细菌一直存在,并且数量很多,比如耐青霉素的肺炎链球菌,过去对青霉素、红霉素、磺胺等药品都很敏感,现在几乎刀枪不入。“这次超级细菌引起恐慌,主要是发现肠杆菌对抗生素不敏感了,产生了很强的泛耐药性,而之前这种细菌并没发现耐药性。”  发现疑似超级细菌,“主人”立即隔离  实验室里,一位工作人员正在一台“生物安全柜”前工作,她戴着口罩、手套,全副武装。  纪明宇介绍,该工作人员正在进行菌株培养,“我们平时都会对临床送来的各种病人标本进行监测,监测各种细菌的耐药性,并且每三个月或六个月公布一次各种细菌的耐药率。”  “大家可以放心的是,以我国目前的监测技术,判定超级细菌并非难事。”纪明宇说,针对上报的疑似菌株,可以先进行实验,确定有可疑性后,再接着做基因测试,“最快两三天就可以确认是否是超级细菌,但至今为止还没发现感染病例。”  纪明宇拿出一份卫生部9月29日下发的监测方案,监测方案要求,全国任何一家医疗机构如果发现疑似超级细菌的耐药情况,如不具备实验室监测条件,须立即将菌株送至最近的19家哨点医院。同时,须在12小时内上报至国家细菌耐药监测网。  一旦发现疑似超级细菌,那么将在进行确认检验的同时,立即对其“主人”采取隔离措施,避免细菌进一步扩散。“这样的监测网络一定程度上会抗拒潜在的疫情威胁。”该实验室主任汪运山说。  检测需经四道关,菌株存放双人双锁  在实验室中央的一张桌子上放着许多红色的圆盒,这是培养细菌的容器。  “检测是否是超级细菌需要经过四道程序。”裴凤艳说,首先要从临床上取患者感染部位的标本,比如取呼吸道感染患者的痰标本,然后放在培养基上进行细菌培养,“就像种花需要土壤一样,这种培养基也是提供细菌繁殖的土壤。”  她说,培养出细菌后,就要进行耐药反应,如果发现疑似耐药性反应,就会将其送到“临床基因扩增检验实验室”做基因分析,如果确认其含有耐药基因,那就可以确认这个细菌是超级细菌了。  整个监测过程并不复杂,但条件要求很严格。“比如单纯菌株的存放就要求放置于-80℃的超低温环境内,”纪明宇指着一间房间内的两个大冰柜,“那就是存放菌株的地方,双人双锁,必须两个人同时签字才能打开柜子取菌株。”  细菌耐药性与致病性并不成正比  按照监测方案要求,哨点医院对免疫力低下、危重症、急诊患者、南亚次大陆来我国就医的人员开展监测工作。  纪明宇说,超级细菌是感染病,而非传染病,“这是两种截然不同的概念,之前我们国家对传染病宣传得比较多,尤其是SARS和甲流之后,而对于感染病老百姓却知之不多,其实感染病是一种条件致病,并不是接触性传染病。”  “耐药性与致病性并不成正比,并且感染性疾病需要具备一定的条件。”汪运山打了个比喻,有人吃了西瓜会拉肚子,但有人就不会。  “细菌感染也一样,同样的细菌,由于不同的个体免疫力不同会有不同的反应,由于细菌感染而致病的还是少数。”汪运山说,“比如医院内进行侵入性手术,或者体质较差、免疫力低下的病人,被感染的可能性较大。一般来说,通过接触或者空气传播从而感染疾病的可能很小。因此,大众没必要恐慌。”  他同时表示,超级细菌更让人可怕的是它背后反映的抗生素滥用的问题。“这个问题解决不了,超级细菌才会真正无敌。”  当记者走出实验室时,“控制医院内感染,从正确洗手开始”的大标语映入眼帘。裴凤艳说,“手卫生是很重要的防护措施,加强锻炼,提高免疫力,是抵御任何细菌感染的良药。”  耐药监测网还需再完善  据《光明日报》报道,“耐药基因就像细菌的一件衣服,所以不是细菌耐药,而是基因耐药。”军事医学科学院疾病预防控制所的所长黄留玉解释说,超级细菌规范称呼应该是NDM-1耐药基因细菌。  “微生物要生存,会和人类永远处在博弈中,耐药是其中的一种表现。新耐药细菌监测对控制耐药方面,包括对抗菌药合理使用方面都是非常有价值的工作。”卫生部合理用药专家委员会委员肖永红认为,现在我国的监测网,达到了对已经发现的耐药细菌做一个常规监测的水平。  据肖永红介绍,现有的监测还需进一步发展和完善。目前监测已覆盖到170余家三级甲等医院,而我国仅三级医院就有七八百家。  “实际上,我国上万家二级医院至今还没有被纳入到国家的监测网里。”肖永红介绍,把二级医院纳入进来是非常必要的。  滥用抗菌药严重可致命  据新华社北京10月28日电(记者 李亚红)北京市卫生局负责人28日称,抗菌药物是治疗感染性疾病的有效药,一旦被滥用,不仅不利于健康,还会给人体带来严重伤害。因此,希望广大医务人员合理使用抗菌药物,患者应在医生指导下使用抗菌药物,避免抗菌药物滥用引发不良反应和细菌耐药性增强。  北京市卫生局新闻发言人毛羽说,凡超时、超量、不对症使用或未严格规范使用抗菌药物,都属于抗菌药物滥用。滥用抗菌药物首先会引起细菌的耐药性。据国家权威医疗部门统计,我国每年都有部分患者因抗菌药物使用不当,引起不良反应致病住院,也有部分患者因滥用抗菌药物导致死亡。
  • 快速测试细菌对抗生素的反应盒问世
    据物理学家组织网7月1日(北京时间)报道,瑞士洛桑联邦理工学院(EPFL)研究人员将纳米力学传感器与激光技术结合,最近造出了一种火柴盒大小的设备,能在几分钟内测出细菌对抗生素的反应,从而找出有效的疗法,而不必再花几个星期。相关论文发表在最近出版的《自然· 纳米技术上》。  药物滥用增加了耐多种抗生素细菌的数量,如果有一种工具能快速探测并识别出细菌对抗生素的反应,是非常有用的。而现有方法要几周甚至一个月,医生需要培养细菌然后观察它们的生长,比如肺结核甚至要花一个月,才能确定某种抗生素对它是否有效。而研究小组结合了激光与纳米技术,将这一过程的时间减少到几分钟。  细菌的活动会在纳米尺度造成振动,但这些生命特征的信号很难觉察,而新检测设备能将细菌新陈代谢的显微运动转化为容易看见的电信号。该设备有一个极小的振动杠杆,只比头发丝略粗,探测到细菌的代谢活动时,杠杆就会以细菌代谢活动的频率振动,以此能确定有没有某种细菌。这种振动是纳米级的,为了检测这种振动,研究人员发射一束激光到杠杆上,激光会反射回来,信号被转换为电流信号。医生和研究人员就能像读&ldquo 心电图&rdquo 一样,根据读取的电流信号做出分析解释。如果电流信号是平直的,就说明细菌已经全死了。  有了这种方法,医生能轻松快速地确定某种细菌是否已被抗生素有效地&ldquo 制伏&rdquo ,这对那些耐药性的菌种尤其关键,在医疗阶段和化疗测试中都很有用。EPFL研究人员乔瓦尼· 迪特尔说:&ldquo 这种方法快速而准确。不仅能帮医生确定所用抗生素的适当剂量,还能帮研究人员找到最有效的方法。&rdquo   目前该测试工具已经缩小到仅火柴盒大小。&ldquo 如果把它与压电设备结合而不是激光,还能进一步缩小到微芯片大小。&rdquo 迪特尔说,这样结合起来能在几分钟内测试出一系列抗生素治疗某种细菌的效果。  研究人员还评估了新工具在肿瘤学领域的应用,有望用于检查肿瘤细胞在抗癌药物作用下的新陈代谢,评价某种抗癌疗法的效果。
  • 美国发明航天器细菌快速检测新技术
    美国航天局科研人员最近开发出一种能快速检测航天器细菌的新技术。这项技术也能同时运用于军事、医疗、制药等领域,如检测可引发炭疽病的炭疽杆菌。  美航天局下属喷气推进实验室的科研人员在10月刊的《应用与环境微生物学》(Applied and Environmental Microbiology)杂志上报告说,这项新技术能找到构成细菌芽孢的主要物质吡啶二羧酸,从而发现细菌芽孢的位置。而芽孢是细菌生长到一定阶段在细菌体内形成的一种微生物体,其数量及其生长状况等是鉴定细菌的依据之一。  该项技术的工作原理是,先在被检测物表面约一角钱硬币大小的地方涂上铽 ,然后将其置于紫外线灯下照射,几分钟内,人们通过显微镜和特殊相机便能看到是否有细菌芽孢,因为铽能把细菌芽孢的主要物质吡啶二羧酸变成明亮的绿色。铽是一种化学金属元素,它的化学符号是TB,被用于生成电视机屏幕上的绿色。  参与开发这一新技术的艾德里安庞塞说,细菌芽孢可以在极其恶劣的环境下生存,可抵御高温、低温、强辐射和化学物质,并最多可以在太空存活6年之久。庞塞说,发现了细菌芽孢,就可以发现细菌本身。  目前这项被称为“航天器洁净方法”的技术已引起了美国国土安全部的兴趣。美国国土安全部化学生物研究项目负责人詹姆士安东尼认为,该技术将有助于加快生物污染事件发生后的现场检测工作,并节省时间和成本。
  • 吉林省4家医院监测超级细菌
    医生正在分离病菌标本许医生表示,超级细菌并不可怕,滥用抗生素才是最可怕的  “超级细菌并不可怕,滥用抗生素才是最可怕的。”吉林大学白求恩第一医院检验科主治医师许建成说,2005年卫生部成立了全国细菌耐药监测网,目前吉林省吉林大学白求恩第一医院、吉林大学白求恩第二医院、吉林大学中日联谊医院、吉林省人民医院4家医院是这个监测网的成员单位,今年9月末开始启动监测超级细菌。  9月末吉林省已启动监测  吉林大学白求恩第一医院检验科主治医师许建成说,2005年,卫生部成立了全国细菌耐药监测网,目的就在于掌握我国抗菌药物应用于细菌耐药状况,制定相应管理措施,为临床抗菌药物选择提供技术支持。  “吉林省4家医院属于成员单位,9月29日我代表院里到北京参加‘全国多重耐药菌感染控制研讨会’,主要研讨的就是超级细菌问题。”许建成说,卫生部对超级细菌非常重视,已经对监测网内各成员单位下达了书面的监测和诊治指南,“9月末开始,吉林省4家医院开始启动监测超级细菌。”  传播通过手、物品接触  在北京开会期间,卫生部对参会人员进行了超级细菌的监测培训,许建成回到长春后,对本院工作人员进行培训。  “对于超级细菌的检测,吉林省也高度重视,9月30日,吉林省卫生厅召开了电视电话会议,专门部署了这项工作。”许建成说,超级细菌从今年6月开始引起国内外广泛关注,这种细菌的传播方式尚无研究报道,但根据患者感染状况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。  超级细菌的临床特点,与其他多重药菌感染相似,许建成说,有一些患者属于易感人群:疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等。主要感染类型包括泌尿系统感染、伤口感染、医院获得性肺炎、血液感染、导管相关感染等。  监测篇  微生物室7人进行日常监测  对于超级细菌的出现,很多市民都充满了畏惧和好奇,医院对这种细菌如何监测呢?  27日,许建成将记者带到了该院的监测室。“对超级细菌的监测,只是细菌耐药监测中的细菌种类之一,我们日常监测的细菌种类非常多。”许建成说,医院每日都会采集住院患者分离出来的细菌,然后对各类细菌进行监测。对于超级细菌的监测,他表示目前由该院微生物室7名医务人员完成。  三步完成监测诊断工作  许建成说,超级细菌实验室诊断包括筛查、表型确认和基因确认三个步骤。  第一步:在细菌药物敏感性测定中,以美洛培南或亚胺培南纸片法(K-B法)或最低抑菌浓度(MIC)测定法对肠杆菌科细菌产酶情况进行初步筛查,如果抑菌圈直径达不到标准,即进入表型确认。  第二步:双纸片协同实验,当判定产金属酶时,即进入基因确证。  第三步:最终被锁定的细菌将送到中心实验室进一步确认,据了解,这种实验室是由国家统一设定的,不在我省。  在实验室记者看到,超级细菌的监测工作,跟所有的耐药细菌监测同属一个流程,没有特殊的仪器和设备。  治疗篇  两种药物对其有一定作用  从9月末监测开始,直到27日吉林省没有监测到超级细菌,对于这种细菌,很多市民都称它为“无药可救的病毒”,许建成说,“其实超级细菌并不可怕,最可怕的是滥用抗生素。”这种病毒之所以让人望而却步,是因为它具有极高的耐药性,目前,有两种抗菌药物对其有一定作用,一个是替加环素,另一个是多粘菌素。但是,随着这种细菌的自身发展,这两种药物未来也可能对其失效。  “细菌和抗生素就好比矛和盾,在不断的‘斗争’中,各自发展着。细菌这种东西遇强则强,随着抗生素的大量滥用,细菌自身正在不断壮大,最后可能导致无药可医。”  诊所打抗生素 药店买消炎药  在长春都很容易  长春市内抗生素的使用情况如何呢?27日,记者随机走访了多家诊所和药店,只要患者有需要,诊所就会给注射抗生素,药店抗生素消炎类药也可以随意购买。  27日上午10时许,长春市二道区某诊所,“我嗓子疼,流鼻涕,还有点发烧。”记者对诊所大夫说。“这次感冒挺严重,你打个针吧,打点消炎药两三天就能好。”大夫说道。“吃点药不行吗?我挺害怕打针的。”记者试探地说。“打针来的快,你能少遭罪,否则感冒不爱好。发烧严重了,还可能烧出肺炎呢!”看到大夫这么说,记者也不好再说什么。便以回家取医保卡为由,先行离开。  记者又来到一家诊所,医生问哪不舒服,记者又把感冒症状说了一次,此家诊所大夫也建议记者打点滴。“我们这的点滴比大医院的口服药都便宜,打点针好的快,光吃药如果不见好,再打针还得遭两次罪。”随后记者又走访了2家诊所,得到的结果都是劝记者打抗生素。  打针容易,那么买抗生素药品呢?抗生素药品也就是百姓俗称的消炎药。  27日中午,记者走访了重庆路附近的部分药店,发现抗生素消炎类药可以随意购买。  对比篇  90%的患者感冒后会选择消炎药  许建成说,国家通过监测发现,目前中国抗生素滥用情况十分严重。“抗生素其实就是老百姓说的‘消炎药’,就拿感冒来讲,90%的患者在有感冒症状后,都会选择使用‘消炎药’。”  在美国孩子高烧40℃也没打上消炎针  对于抗生素药品的使用,美国则要求得十分严格,许建成说他和家人曾在美国生活过一年,他感冒时想要买点消炎药非常困难。  有一次他几个月大的儿子高烧近40℃不退,他和妻子带孩子来到医院,希望能打一些消炎药,但是医院表示孩子并不是细菌性感染所以不能给注射,最终孩子也没有打上消炎药,两天后孩子自己就退烧了。  许建成说,一般来讲,感冒分病毒性和细菌性两种,美国规定如果是细菌性感染可以用抗生素,如果是病毒性的则不能使用抗生素。为此,在美国看病都必须先做化验。  外延篇  医院用抗生素正趋于规范  对于抗生素的使用,许建成说,医院和医生也存在着很大的责任。“以前医院存在以药养医的问题,为了经济利益,一些医院和医生拼命给患者开好药、开贵药,最终导致抗生素大量滥用。”国家在监测到这种情况后,近年来已经采取各种措施进行制止。许建成提到,以他们医院为例,目前医院对医生开药进行了限制,实行分级制。“医生开药前必须严格遵循化验单,根据感染情况开抗生素,普通医生只能开一般性质的抗生素,如果要开更好、更贵的药,必须向上一级申请。”因此,抗生素在医院内的使用正在被进一步规范。  牛肉和牛奶中也可能含抗生素  抗生素的滥用最终导致的结果,可能就是“无药可用”,许建成认为,中国一定要进一步加强对抗生素类药品的监管力度,监管部门也应该承担起应有的责任。  但是目前一些百姓也提出一些质疑,“我从来都不吃药,为什么到医院检查耐药性很高呢?”许建成说,这种耐药性可能是从食品上来的,为了得到更大的经济效益,一些饲养企业在牲畜、家禽生长阶段喂食了大量抗生素,当这些牲畜和家禽被百姓食用后,百姓身体内就会获得这些抗生素,随即产生很高的抗药性。“以牛为例,饲养者都会在其饲料中加一些复方新诺明,这样牛就不易生病,但是牛肉和牛奶中会含有抗生素。”还有就是鱼类,饲养者在其还是鱼苗时,就播撒大量抗生素,防止其减产死亡,可想而知当我们将这些鱼端上餐桌时,有多少抗生素被吃到肚子里。
  • 日本“超级细菌”事态升级 53人感染4人死亡
    据日本共同社网站报道,有关日本帝京大学医院(东京都板桥区)部分入院患者在院感染多重耐药不动杆菌(“超级细菌”)一事,院方8日公布了新的统计结果,感染者从最初的46人增至53人,其中4人已经死亡。院方承认“死亡可能系感染细菌所致”。  另据东京都政府透露,已证实从该院转至东京都板桥区健康长寿医疗中心后死亡的一名男子也感染了超级细菌。此外,东京都世田谷区的有邻医院自今年2月以来共有8名患者感染该细菌,已造成4人死亡。由于其中2人无法排除因感染造成死亡的可能,东京都政府7日以涉嫌院内感染为由根据《医疗法》对医院进行了现场调查。  报道指出,帝京大学医院目前已停止接收急救患者或新患者住院。该医院是东京的主要医院之一,患者感染“超级细菌”一事给医院的医疗功能造成了巨大影响。报道称,传染还扩大至其它医院,事态愈发加重。  中国卫生部门严防携带HDM-1基因的超级细菌  中国卫生部8日说,中国卫生部门正在严密防控最近在一些国家致多人感染的携带NDM—1基因的“超级细菌”,全力避免中国成为重灾区。  超级细菌蔓延全球 在多国传播  这种细菌抗药性极强,几乎能抵御所有抗生素,已经感染英国、美国、瑞典、荷兰、澳大利亚个别居民。欧洲专家预计,至少10年内没有抗生素可以有效对付这种细菌,因此呼吁全球密切监控阻止超级细菌传播。
  • 纳米快报:纳米净水器可杀死水中98%细菌
    据美国物理学家组织网近日报道,斯坦福大学的研究人员将一种普通棉纱浸入银纳米线和碳纳米管的混合液中,制成了一种高效、廉价的新型净水过滤器,其能杀灭水中98%的细菌,杀菌速度是传统微孔网筛过滤器的8万倍。研究成果发表在近期出版的《纳米快报》杂志上。  碳纳米管具有良好的导电性,98%以上的埃希氏大肠杆菌只要在20伏的电流中呆上几秒就会被杀死。银也能杀菌,巴氏灭菌法和冰箱出现以前,人们常常在牛奶瓶底放一枚银币来消毒。  斯坦福大学材料研究生物工程专家小组的莎拉海尔肖恩称,碳纳米管和银这两种材料“携手”制成的过滤器可最大限度地发挥杀菌效能。其中的银纳米线能够杀死任何滞留在孔隙中的细菌,因此避免了传统过滤器普遍存在的一大缺陷,即细菌会在过滤器上形成生物膜从而污损设备。  传统的过滤器都采用物理方法来吸附细菌,而新型过滤器内含有的棉花纤维包了一层“纳米外套”,其形成的电场可以杀死流经的细菌,而且棉花纤维有多层,厚达6.4厘米,足以杀死水中的大部分细菌。  斯坦福大学材料科学与工程副教授崔毅(音译)介绍说,该新式过滤器的成本也很低。一方面,银纳米线所用的银很少,成本几乎可以忽略不计。另一方面,所需的电流很少。纳米材料的吸附性很高,银纳米线较长的一端和纳米管连接,另一端伸入棉花纤维中间的空隙,在棉纤维上会生成一层光滑无间隙的覆层,导电效果很好,因此,电流强度只需几毫安,一块小型太阳能电池或一对12伏的汽车电池就能满足。而传统的过滤器要用电泵把水抽进微孔,耗电量大,在实验室里过滤等量的水,新型过滤器的耗电量仅为传统过滤器的1/5。  崔毅也表示,新型过滤器的净化速度非常快。传统过滤器的过滤微孔很小,将细菌从水中吸附分离时很容易阻塞微孔 而新型过滤器孔隙比较大,只杀灭细菌却不吸附细菌,因此,不会减缓水流的速度,净水速度是传统过滤器的8万倍。这种过滤器在无法用氯气来给水消毒的偏远地区很实用,可以大大减少以水为介质进行传播的霍乱、伤寒和肝炎等疾病的大面积扩散。  研究人员计划下一步研发针对不同类型的细菌进行过滤的过滤器,并测试多重组合过滤器。
  • 仅细菌大小 迄今世界最小电光调制器问世
    p  据最新一期《纳米快报》报道,美国研究人员设计并制造出了目前世界上最小的电光调制器,这或许意味着未来数据中心和超级计算机所使用的能源将得到大幅削减。/pp  电光调制器在光纤网络中起着关键作用。就像晶体管作为电信号的开关一样,电光调制器可用作光信号的开关。光通信使用光,所以调制器用于打开和关闭在光纤中发送二进制信号流的光。/pp  俄勒冈州立大学电子与计算机学院副教授王小龙在接受科技日报记者采访时称,此项技术的创新点是在光子晶体的微腔里集成了透明氧化物—硅基MOS(金属氧化物半导体)结构。微腔调制器可以把光场压缩到很小的范围,通过载流子富集形成很强的电光调制效应,从而在很小的区间内实现很大的电光调制。/pp  王小龙表示,新研制的电光调制器可极大降低光互联器件的功耗。目前全球数据中心和超级计算机所使用的能源占据了全球电力使用量的4%—5%,数据中心的大部分功耗主要由互联产生,通过光取代电来降低系统功耗是今后的研究方向。但光互联研究的一个瓶颈在于电光转换,电光转换同样需要消耗大量能源。/pp  此项设计结合了材料和器件的创新,增强电子和光子之间的相互作用,从而使研究人员能够创建出一个更小的电光调制器。新调制器相比主流硅基微环电光调制器在尺寸上缩小了10倍,仅为一个细菌大小(8微米× 0.6微米),有源区更是缩小到了0.06立方微米(仅仅是波长立方尺寸的2%),在理论上可将电光转换的能耗降低2—3个数量级。/pp/p
  • 北京市将建监测网严防“超级细菌”
    日前,一种“超级细菌”现身印度等国,引起广泛关注,耐药患者之所以频现,与抗生素滥用有关。昨天,北京市医疗机构药事管理专家委员会成立,本市将在年内建立细菌耐药监测网,及时发现耐药致病菌。初期包括所有三级医院和部分二级医院,未来将覆盖包括社区医院在内的所有医疗机构。  据悉,药事专家委员会的抗菌药物与细菌耐药监测组将承担抗菌药物的临床应用监测,收集数据并进行汇总、分析、上报和提出改进意见。  “超级细菌”对几乎所有抗菌药物均耐药,加强抗菌药物合理应用是降低细菌耐药的有效措施之一。北京大学临床药理研究所常务副所长吕媛表示,目前,我国超级耐药细菌监控网络还未监测到俗称“超级细菌”的多重耐药菌,但随着国际交往的日益紧密,极有可能在我国“现身”。  吕媛称,耐药性的出现主要是因为抗生素的不合理使用所致,本市即将建立的耐药监测网是要对各医疗机构的细菌耐药情况进行监测。届时,将从临床病人处分离致病菌,研究其对哪些抗菌类药物耐药,并根据全市汇总情况对医院用药进行指导。例如,目前发现肺炎链球菌对红霉素的耐药率比较高,就不建议医院使用。同时,也将对临床医生开展抗生素使用的培训。目前计划监测网内的医疗机构每3个月报一次监测结果,将来希望实现实时上报。  专家表示,被媒体广泛关注的多重耐药菌(即“超级细菌”)并非首个耐药菌,只是其耐药特点与其他耐药菌不同而已,如铜绿假单胞菌、鲍曼不动杆菌等都是目前临床较为关注的耐药菌。  应对措施:二三级医院处方每月点评  昨天,药事专家委员会表示,将在每个月从二、三级医院抽取100张处方,对抗生素是否过量等进行评估,提高药品使用的合理性和安全性。  药事专家委员会共分为药事管理组、抗菌药物与细菌耐药监测组、合理用药与药品不良反应监测组、处方点评组、学科建设与药学研究组、临床药学组、药品质量管理组和中药组等8个小组。其中,处方点评组将对本市医疗机构的用药情况和趋势进行监测,这也是本市首次建立合理用药的预警监测机制。  北京大学人民医院药剂科主任李玉珍表示,处方点评组将在每个月随机收集全市二、三级医院的100张处方,对门诊处方中的注射剂、抗菌素、每张处方金额及开药例数等多项内容进行评估。  李玉珍表示,届时,将对目前本市医疗机构用药的前十种进行排名,那些“安全无效”的辅助性药品、中药、注射剂等都不能在前十名之内。  马上就访:合理用药将缓解医疗费增长过快  北京市卫生局副局长郭晋和表示,目前用药不合理的现象仍然存在。他透露,如果在今后的处方点评中,不合格处方达到一定数量,将根据卫生部相关处方点评管理办法对医院进行处罚。  郭晋和表示,处方点评措施就是用合理用药来遏制医疗费的增长过快,规范医院用药,不要为了经济效益过度用药
  • 88%的空调散热片细菌总数超标
    新京报讯 炎热的夏天,最舒服的事情,莫过于躲在家中,开启空调纳凉。然而,有多少人在享受空调时,想到要定期对它进行清洗消毒?否则,空调将吹出看不见的细菌、真菌,甚至可以在72小时内,吹霉一碗白米饭。  日前,中国疾控中心、上海市疾控中心、复旦大学公共卫生学院等机构对上海、北京、深圳进行实地家用空调入户调研发现:88%的空调散热片细菌总数超标,84%的空调散热片霉菌总数超标 空调散热片中检出细菌超标最高可达1000倍以上。  中华预防医学会消毒分会主任委员张流波介绍,空调除了吸附大量的灰尘外,还有螨虫、细菌、真菌等致病菌。运转时,空调内部,特别是散热片的细菌、真菌随出风口喷出,随呼吸道进入人体,容易导致人体出现头晕乏力,甚至患上感冒、鼻炎、哮喘等呼吸道疾病。因此,很多空调病不只是冷热交替造成的,空调里的污染也是祸源。  家用空调里究竟暗藏多少污染源?日前,记者随中华预防医学会消毒分会专家和家安实验室工作人员,一起走进普通住户家,现场观测、取样,并送入实验室培养,实验结果令人瞠目。  【实验1】  空调72小时吹霉一碗米饭  实验目的:测试空调是否会产生污染。  实验过程:取两碗等量的白米饭,置于壁挂式空调下的桌子上,其中一碗盖好。关闭门窗,打开空调。72小时后,盖好的米饭只是略有变色,但敞露于空调下的那碗米饭,已经长毛,出现大片霉斑。  市民疑问:6月份开空调前,刚把过滤网用洗洁精和水刷干净了,为什么还会这样?  专家释疑:中华预防医学会消毒分会主任委员张流波介绍,空调使用一段时间后,外罩、过滤网表面就有沉积的灰尘和污垢,很容易清洗。但空调细菌最多聚集的部位——散热片却常常被忽视。  作为空调冷热交换的核心部件,散热片除积聚污垢灰尘外,还会在冷凝水作用下滋生大量病菌。加上开空调时,通常会紧闭门窗,空气不流通,特别是夏天闷热潮湿,病菌更易滋生。  【实验2】  空调散热片藏匿大量细菌  实验目的:通过肉眼,观察空调散热片上藏着多少污垢。  实验过程:选一台使用了3年多,今年尚未清洗过的家用壁挂式空调。打开空调盖,露出的过滤网上,可看到一层厚厚的灰尘,用棉签和纸巾取样。卸下过滤网,可看到青黑色的空调散热片,乍看起来灰尘不多,但用棉签在散热片上清刮,可刮出黑灰色的絮泥状物。用白色纸巾取样,可看到散热片上附着大量污垢。  市民疑问:黑色絮泥状的污垢有没有致病菌?  专家释疑:张流波介绍,专业卫生机构检测发现,家用空调散热片上藏匿着大量细菌和真菌,平均的菌落总数每平方厘米高达4765个。其中致病菌主要包括霉菌、军团菌、金黄色葡萄球菌等大量病菌。空调运转时,散热片上的致病菌随出风口喷出,进入人体,易致头晕乏力,甚至患上感冒、肺炎等呼吸道疾病。  【实验3】  散热片污染远高于过滤网  实验目的:比较空调散热片和过滤网的污染程度。  实验过程:将实验2中收集好的样本放入培养皿,带入实验室,对样本进行细菌培养并计数。72小时后,实验结果出来了。空调过滤网上的霉菌总数为每平方厘米650个,细菌总数为每平方厘米270个 散热片上的霉菌总数每平方厘米为1110个,细菌总数为3100个。  市民疑问:清洗空调,不能只洗过滤网吗?  专家释疑:家安家居环境研究中心高级工程师张世新介绍,空调污染尤其是空调散热片污染——作为夏季室内最重要的污染源的认知仍存在很大的缺口,正成为影响家人健康的隐形杀手。调查显示,绝大多数人误以为只要把空调的过滤网罩清洗一下,就算空调清洁了。实际上,空调散热片上藏匿的污染远高于过滤网。  【实验4】  清洗剂喷洒可有效杀菌  实验目的:对比空调清洗前后的污染程度。  实验过程:关闭电源,卸下过滤网,用清水洗净 对散热片表面污垢取样。从超市购买专用的空调清洗剂,均匀喷洒在散热片上。静置10至15分钟,安装好空调,打开电源。此时,可以看到排污管排出黑色污水。40分钟后,关闭空调,重新对散热片取样。  72小时后,可看到散热片清洗前的样本,霉菌培养皿中已经长出大片霉斑,霉菌含量每平方厘米2163.04个 细菌培养皿中,可看到底部呈浆糊状,其中布满淡黄色细小颗粒,细菌含量每平方厘米2599个。清洗后的霉菌和细菌培养皿基本是透明的,霉菌含量每平方厘米为9个,细菌含量每平方厘米40个。  专家释疑:张流波介绍,因为散热片无法拆下来清洗,而且由于散热片结构的特殊性,简单擦拭也无法真正清洁。建议使用空调消毒清洗剂进行清洁消毒。  ■ 建议  夏季空调应一月一清洗  张流波表示,在关闭电源、通风的环境下,对准散热片均匀喷洒,就可以解决散热片污染问题。清洗后需要静置一段时间,是为了让消毒剂充分发挥作用。  为确保消毒产品的安全性和有效性,建议空调清洗消毒剂使用具备卫生许可批件的“卫消字×××××号”产品。清洗剂的味道经过通风,很快可以散去,正规消毒产品的味道对人体无害。  至于空调散热片清洗的频度,张流波说,春夏换季时,需要开启空调前,应该彻底清洗消毒一次 夏季,空调使用频繁,建议有条件的家庭,每月清洗一次空调,可避免空调污染。  此外,张流波介绍,室外有的污染都会进入室内。家中尘埃,散热片上面都会有污染物,一般的空调不会去除PM2.5,除了定期清洁空调,关键还要靠居室良好的通风。
  • 打好遏制动物源细菌耐药“行动战” 微生物检测仪器机会多
    p  6月22日,农业部正式印发《全国遏制动物源细菌耐药行动计划》,明确2017至2020年间将建立完善国家、省、市、县四级兽药残留监测体系,完成31种兽药272项限量指标以及63项兽药残留检测方法标准制定。同时鼓励研发耐药菌高通量检测仪器设备、适合基层兽医实验室的微生物快速检测仪器设备。随着遏制动物源细菌耐药“行动战”的打响,微生物检测仪器设备将迎来一大波发展机遇。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong全国遏制动物源细菌耐药行动计划/strong/span/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong(2017—2020年)/strong/span/pp  为加强兽用抗菌药物管理,遏制动物源细菌耐药,保障养殖业生产安全、食品安全、公共卫生安全和生态安全,根据《遏制细菌耐药国家行动计划(2016-2020年)》《“十三五”国家食品安全规划》和《“十三五”国家农产品质量安全提升规划》,制定本行动计划。/pp strong 一、前言/strong/pp  我国是畜禽、水产养殖大国,也是兽用抗菌药物生产和使用大国。兽用抗菌药物在防治动物疾病、提高养殖效益、保障畜禽水产品有效供给中,发挥了重要作用。但是,兽用抗菌药物市场秩序不够规范、养殖环节使用不尽合理、从业人员科学用药意识不强、公众对细菌耐药性认知度不高等问题依然存在,加之国家动物源细菌耐药性风险评估和防控体系薄弱,细菌耐药形势日趋严峻。动物源细菌耐药率上升,导致兽用抗菌药物治疗效果降低,迫使养殖环节用药量增加,从而加剧兽用抗菌药物毒副作用和残留超标风险,严重威胁畜禽水产品质量安全和公共卫生安全,给人类和动物健康带来隐患。当前亟需构建动物源细菌耐药性控制和残留超标治理体系,提高风险管控能力。/pp  strong二、行动目标/strong/pp  动物源细菌耐药和抗菌药物残留治理能力、养殖环节规范用药水平、畜禽水产品质量安全水平和人民群众满意度明显提高。到2020年,实现以下目标:/pp  (一)推进兽用抗菌药物规范化使用。省(区、市)凭兽医处方销售兽用抗菌药物的比例达到50%。/pp  (二)推进兽用抗菌药物减量化使用。人兽共用抗菌药物或易产生交叉耐药性的抗菌药物作为动物促生长剂逐步退出。动物源主要细菌耐药率增长趋势得到有效控制。/pp  (三)优化兽用抗菌药物品种结构。研发和推广安全高效低残留新兽药产品100个以上,淘汰高风险兽药产品100个以上。畜禽水产品兽用抗菌药物残留监测合格率保持在97%以上。/pp  (四)span style="color: rgb(255, 0, 0) "完善兽用抗菌药物监测体系。/span建立健全兽用抗菌药物应用和细菌耐药性监测技术标准和考核体系,形成覆盖全国、布局合理、运行顺畅的监测网络。/pp  (五)提升养殖环节科学用药水平。结合大中专院校专业教育、新型职业农民培训和现代农业产业体系建设,对养殖一线兽医和养殖从业人员开展相关法律、技能宣传培训。/pp  strong三、重点任务/strong/pp  strong(一)实施“退出行动”,推动促生长用抗菌药物逐步退出/strong/pp  加强重要兽用抗菌药物风险评估和预警提示,加大安全风险评估力度,明确评估时间表和技术路线图,加快淘汰风险隐患品种,推动促生长用抗菌药物逐步退出。/pp  1.开展促生长用人兽共用抗菌药物风险评估,参照世界卫生组织(WHO)、联合国粮农组织(FAO)、国际食品法典委员会(CAC)、世界动物卫生组织(OIE)等国际组织有关标准,结合我国实际,2020年前完成相关品种清理退出工作。/pp  2.开展促生长用动物专用抗菌药物风险评估,收集、分析和评价相关技术资料,有针对性地开展残留和耐药性监测,2020年前形成保留或退出的意见。/pp  3.对可能存在安全隐患的其他兽用抗菌药物开展风险评估,收集监测数据,分析技术资料,2020年前形成风险管控意见。/pp  strong(二)实施“监管行动”,强化兽用抗菌药物监督管理/strong/pp  1.严格市场准入。加快兽用抗菌药物审评审批制度改革,推进兽用抗菌药物分类管理,鼓励研制新型动物专用抗菌药物。人用重要抗菌药物转兽用、长期添加用于促生长作用、易蓄积残留超标、易产生交叉耐药的抗菌药物不予批准。依据抗菌药物的重要性、交叉耐药和临床应用品种等情况确定应用级别,研究制定兽用抗菌药物分级管理办法和分级目录。/pp  2.规范养殖用药。制定发布《兽用抗菌药物临床使用指南》,进一步规范兽医临床用药行为。推进养殖环节社会化兽医服务体系建设,推动实施兽用处方药管理、休药期规定等兽药安全使用制度。加强兽药使用记录监管,对出栏动物应当查验用药记录。开展兽药使用质量管理规范研究工作,明确养殖主体兽药采购、储存、使用等各环节管理要求。修订药物饲料添加剂安全使用规范、禁用兽药清单、休药期规定、兽药最高残留限量等技术标准。/pp  3.加强饲料生产环节用药监管。组织实施药物饲料添加剂监测计划,以超量、超范围为重点,严厉打击饲料生产企业违法违规添加行为 加大预警监测力度,持续完善相关检测标准和判定标准。/pp  4.建立应用监测体系。设立全国兽用抗菌药物应用监测中心和区域分中心,依托兽用抗菌药物生产经营企业、重点养殖企业等形成监测网络。通过国家兽药“二维码”追溯信息系统,监测兽用抗菌药物临床应用种类、数量、流向等情况,分析变化趋势。/pp  strong(三)实施“监测行动”,健全动物源细菌耐药性监测体系/strong/pp  1.完善动物源细菌耐药性监测网。span style="color: rgb(255, 0, 0) "构建以国家实验室、区域实验室、省级实验室为主体,以大专院校、科研院所等实验室为补充,分工明确、布局合理的动物源细菌耐药监测网。依托现有基础,完善国家动物源细菌耐药性监测中心。分区域建立8家专业化实验室,各省(自治区、直辖市)设立省级监测实验室,并在养殖或屠宰企业建立3-5个监测站(点)。监测站(点)负责细菌初步分离,专业化区域实验室负责细菌鉴定和耐药性监测,通过国家监测网报送结果。/span/pp  2.细化动物源细菌耐药性监测工作。科学合理制定养殖领域细菌耐药监测方案,积极开展普遍监测、主动监测和目标监测。监测面覆盖不同领域、不同养殖方式、不同品种的养殖场(户)和有代表性的畜禽水产品流通市场,获得动物源细菌流行病学数据。/pp  3.加强兽医与卫生领域合作。建立兽医与卫生领域抗菌药物合理应用和细菌耐药性监测网络的联通机制,实现两个领域的监测信息资源共享。/pp  strong(四)实施“监控行动”,强化兽用抗菌药物残留监控/strong/pp  span style="color: rgb(255, 0, 0) "1.建立完善国家、省、市、县四级兽药残留监测体系,鼓励第三方检测力量参与,持续实施抗菌药物残留监控计划,依法严肃查处问题产品。完成31种兽药272项限量指标以及63项兽药残留检测方法标准制定。/span/pp  2.建立养殖场废弃兽药回收和无害化处理制度,逐步实施兽用抗菌药物环境危害性评估工作。开展养殖粪污中抗菌药物残留检测,建立评估方法和标准,推广先进的环境控制技术、粪污处理技术,促进生态养殖发展。/pp  strong(五)实施“示范行动”,开展兽用抗菌药物使用减量化示范创建/strong/pp  在奶牛养殖大县、生猪养殖大县、水产养殖大县、全国绿色养殖示范县、水产健康养殖示范县和具有规模养殖的国家农产品质量安全县(市)选择生猪、家禽和奶牛等优势品种,开展兽用抗菌药物使用减量化示范创建活动,推广使用安全、高效、低残留的中兽药等兽用抗菌药物替代产品,从源头减少兽用抗菌药物使用量。及时总结经验、逐步推广,并研究相关补贴制度。/pp  strong(六)实施“宣教行动”,加强从业人员培训和公众宣传教育/strong/pp  强化兽医等从业人员教育,将兽用抗菌药物使用规范纳入新型职业农民培育项目课程体系。鼓励有条件的大中专院校开设抗菌药物合理使用相关课程。加强从业人员科学合理用药培训。充分利用广播、电视等传统媒体和互联网、微博、微信等新媒体,广泛宣传安全用药知识,提高公众对细菌耐药性的认知度。/pp  strong四、能力建设/strong/pp  (一)提升信息化能力。综合运用互联网、大数据、云平台等现代信息技术,完善国家兽药基础数据平台,深入推进国家兽药“二维码”追溯实施工作,推动省市县三级配备必要的软硬件设施设备,与国家兽药基础信息平台对接,保证兽用抗菌药物产量、销量、用量全程可追溯,实现兽用抗菌药物生产、经营和使用全程监管。/pp  (二)提升标准化能力。span style="color: rgb(255, 0, 0) "建立动物源细菌耐药性监测标准体系,针对细菌分离和鉴定方法、最小抑菌浓度测定方法、药物耐药性判定等制定统一的检测标准,开展实验室能力比对。收集、鉴定、保藏各种表型及基因型耐药性菌种,建立菌种库和标本库,实现各级实验室标准化管理。/span/pp  (三)提升科技支撑能力。发挥科研院所、龙头企业技术优势,创立全国兽用抗菌药物科技创新联盟,围绕动物专用抗菌药物、动物源细菌耐药性检测、中兽药等抗菌药物替代品种和养殖领域新型耐药性控制技术等领域,开展产品研发和关键技术创新。span style="color: rgb(255, 0, 0) "鼓励研发耐药菌高通量检测仪器设备、适合基层兽医实验室的微生物快速检测仪器设备。/span鼓励开展细菌耐药分子流行病学和致病性研究。/pp  (四)提升国际合作能力。主动参与WHO、FAO、CAC、OIE等国际组织开展的耐药性防控策略、抗菌药物敏感性检测标准制修订等工作,与其他国家和地区开展动物源细菌耐药性监测协作,控制耐药菌跨地区跨国界传播。加强与发达国家抗菌药物残留控制机构及重要国际组织合作,参与国际规则和标准制定,主动应对国际畜禽水产品抗菌药物残留问题突发事件。/pp strong 五、保障措施/strong/pp  (一)加强组织领导。各地兽医行政管理部门要深刻认识做好遏制动物源细菌耐药工作的极端重要性,强化组织领导。要根据本计划确定的行动目标和重点任务,制定辖区工作方案,认真开展日常监管、监督抽检等具体工作。要强化责任,落实地方人民政府的属地管理责任,明确养殖者的主体责任,各级监管部门的监管责任,层层传导压力,切实将各项工作任务落到实处。/pp  (二)加大政策支持。按照《全国动植物保护能力提升工程建设规划(2017-2025年)》(发改农经〔2017〕913号),统筹考虑相关项目建设。积极争取发改、财政、科技等部门支持,加大动物源细菌耐药性防控体系建设、监测评估、监督抽查和抗菌药物使用减量化示范创建等工作的支持力度 逐步建立多元化投入机制,鼓励、引导企业和社会资金投入。/pp  (三)发挥专家作用。成立全国兽药残留与耐药性控制专家委员会,为动物源细菌耐药性监测、监管体系建设与完善提供专业指导 承担兽用抗菌药物耐药性风险评估任务,提供风险管理和政策建议。在相关国家现代农业产业技术体系中增设疫病防控、质量安全等岗位,鼓励各地建立兽用抗菌药物研究团队,加强抗菌药物替代研发、细菌耐药机制研究、耐药检测方法与标准研究等工作。/pp  (四)落实目标考核。将兽用抗菌药物使用监管及动物源细菌耐药控制纳入国家食品安全和农产品质量安全考核范围,对动物源细菌耐药性监管体系、违法行为查处率、条件保障和经费预算等指标进行量化考核。农业部制定考核评价标准,按年度、区域、进度进行量化、细化,各地要根据工作要求,进一步细化分解工作目标和任务措施,确保行动计划有效落实。/p
  • 国内首个抗超级细菌药物研发项目正式启动
    继两个月前广药集团宣布启动抗超级细菌药物研发课题之后,11月8日首个科研项目正式落地:由钟南山院士领衔的广药集团名优品质抗超级细菌研究启动。  对此,广药集团总经理李楚源称,该研究将通过科技将白云山板蓝根打造为中药抗病毒的“超级明星”。
  • 西藏自治区食品药品检验研究院成功配置并验收美国ACC细菌内毒素定量检测系统
    ▲西藏自治区食品药品检验研究院 ▲PKF96型细菌内毒素定量检测系统今日,科德角国际生物医学科技(北京)有限公司的美国ACC—PKF96型细菌内毒素定量检测系统在西藏自治区食品药品检验研究院配置成功,并顺利投入运行。▲数据收集中...通过OD-onset time实时Plots图直观地查看每个独立孔位反应情况。▲数据收集结束弹窗Pyros Kinetix Flex细菌内毒素定量检测系统可实现自动化检测。数据收集完成,实验自动终止,即时生成电子检验报告,方便实验人员在线查看、分析实验数据,更加方便快捷。▲测试结果 拟合标准曲线详情(相关系数R、斜率、截距)。▲样品测试结果详情稀释倍数、反应时间onset time、CV、初始浓度、实测值、PPCs加标回收率、限值符合与否判定。此次西藏自治区食品药品检验研究院配置的PKF96型细菌内毒素定量检测系统支持动态浊度法细菌内毒素定量检测,检测标准曲线:1-0.1-0.01-0.001EU/ml。Pyros Kinetix Flex细菌内毒素定量检测系统Pyros Kinetix Flex细菌内毒素定量检测系统,适用于基因重组法/动态显色法/动态浊度法细菌内毒素检测实验,设备包括32, 64, 96孔三种型号。其配套的Pyros eXpress软件符合USP、ChP、EP、JP细菌内毒素检测标准。具有微软SQL数据库,具备数据完整性,自动生成审计追踪报告,符合联邦法规21 CFR Part 11。Pyros Kinetix Flex细菌内毒素检测设备和Pyros eXpress软件共同提供了一套快速、高效、精准、灵敏的细菌内毒素定量检测系统。细菌内毒素检测系统特点双重检测波长:405nm和660nm,适用于重组鲎试剂法/动态显色法/动态浊度法细菌内毒素检测审计追踪:严格遵循联邦法规21CFR Part 11标准,微软SQL数据库,具备数据完整性,自动生成审计追踪报告FDA认证:生成检测报告可直接用于美国FDA认证申报节约试剂:鲎试剂使用量仅需50µ L高灵敏度:灵敏度可达0.001EU/mL,实际可达0.0005EU/mL温控精准:37℃±0.1℃独立孔位:每个孔都是独立计时的,允许操作员在运行过程中添加更多样品科德角国际欢迎各大企业、研究院、政府机构前来实地考察、洽谈合作,科德角国际将助力合作伙伴在细菌内毒素检测领域取得重要成果!合作伙伴:西藏自治区食品药品检验研究院西藏自治区食品药品检验研究院是西藏自治区药品监督管理局直属事业单位,是行政执法的主要技术支撑机构,区内权威药品、化妆品、医疗器械和食品检验检测机构。西藏自治区食品药品检验研究院前身为西藏自治区药品检验所,始建于1975年5月,2006年更名为西藏自治区食品药品检验所,2017年更名为西藏自治区食品药品检验研究院。2001年增加医疗器械检验检测职能,2006年增加食品、保健食品检验检测职能;2011年增加化妆品卫生检验检测职能。西藏自治区食品药品检验研究院在西藏自治区药品监督管理局领导下,依法对药品、食品、医疗器械、化妆品、药品包装材料(容器)、边境口岸进口中(藏)药材及洁净环境开展检验检测。承担西藏自治区辖区内药品、医疗器械、药品包装材料容器生产、经营、使用单位的质量监督抽查检验、复验、注册检验工作;承担食品、化妆品质量监督抽查检验、委托检验工作;开展药品、食品、医疗器械检测方法及质量标准的研究工作。策划丨科德角国际市场部编辑丨CarrieTse校对丨ZoeYin,Feng
  • 河北省正在大力筛查超级细菌
    中国疾病预防控制中心昨日通报发现三例超级细菌病例。10也27日,记者从河北省卫生厅了解到,河北省目前按照国家要求已经加强了对NDM-1耐药基因细菌的监测,并要求医疗机构加强抗菌药物合理使用管理,加强医院感染预防控制工作。  河北医大二院正在筛查超级细菌  “我们现在正在对原来留存下来的病人样本进行NDM-1耐药基因细菌筛查。”河北医科大学第二医院检验科副主任赵建宏说,目前在筛查过的样本中还未发现有NDM-1细菌。  “前一段时间,卫生部要求在细菌耐药监测网内的医院,如果保留有原来从患者身上分离出的细菌样本,可以进行初步筛查。”河北医科大学第三医院感染控制科主任冯忠军说,内地检出的三例NDM-1细菌,应该就是对既往收集保存的菌株进行检测时检测出的。  河北省卫生厅要求重视医院感染的防控  据了解,按照卫生部下发的“超级细菌”诊疗指南,省卫生厅要求各医院要加强抗菌药物合理使用管理,重视医院感染预防与控制。要加强医务人员用手卫生、严格实施隔离措施、切实遵守无菌操作规程、加强医院环境卫生管理,减少院内感染发生概率。并加强NDM-1细菌的监测,发现后及时加以确认,并反馈相关科室,指导治疗与感染控制,同时按规定报告。  “NDM-1细菌的监测并没有很高的技术要求,一般二级以上医院实验室都能检测出来。”冯忠军说,医生怀疑病人可能感染了NDM-1,可通过取病人的痰液、尿液等进行细菌培养,并进行鉴定和药敏实验后,就可以初步将“超级细菌”筛查出来,最终的确定需要由中国疾控中心进行。
  • 2017年动物源细菌耐药性监测计划公布 含仪器配置要求
    为贯彻落实《遏制细菌耐药性国家行动计划(2016-2020年)》,进一步加强动物源细菌耐药性监测工作,保证动物源性食品安全和公共卫生安全,我部制定了《2017年动物源细菌耐药性监测计划》(附件1,以下简称《监测计划》),现印发给你们,请遵照执行。有关事项通知如下。  一、任务分工  农业部负责组织全国动物源细菌耐药性监测工作。  各省(自治区、直辖市)兽医行政管理部门负责选定连续定点监测养殖场(猪场、肉鸡场、蛋鸡场或奶牛场各1个,共3个),保证监测工作的连续性,并协助监测任务承担单位做好屠宰场和养殖场采样工作。在完成国家监测计划的同时,有条件的省份,应制定并组织实施辖区动物源细菌耐药性监测计划。  中国兽医药品监察所、中国动物疫病预防控制中心、中国动物卫生与流行病学中心和辽宁省兽药饲料畜产品质量安全检测中心、上海市兽药饲料检测所、河南省兽药饲料监察所、四川省兽药监察所、广东省兽药饲料质量检验所、湖南省兽药饲料监察所、陕西省兽药监测所等10家监测机构承担《监测计划》的检测任务。  中国兽医药品监察所负责全国动物源细菌耐药性监测的技术指导和数据库建设与维护工作 负责罕见表型菌株的确认、收集和保存 负责各地耐药性监测实验室分离的人畜共患菌(沙门氏菌和弯曲杆菌)的菌种保存,并指导任务承担单位进行沙门氏菌血清分型。  二、技术要求  (一)各监测任务承担单位应按照《2017年动物源细菌耐药性监测采样和检测技术要点》(附件2)开展采样、细菌分离和鉴定、耐药性监测和结果上报等工作。  (二)样品应从养殖场(包括鸡场、猪场、奶牛场)或屠宰场抽取。其中,规模养殖场和小型养殖场应各占50%。  (三)采样的同时,应做好养殖场用药情况和饲料来源调查,认真填写《采样记录表》(附件3)。对同一养殖场用药情况不同的动物群,应分开填写采样表。  (四)大肠杆菌、肠球菌、沙门氏菌、金黄色葡萄球菌和弯曲杆菌的分离和鉴定按照《动物源细菌分离和鉴定方法》(附件4)或参照相关国际标准执行。  (五)中国兽医药品监察所负责药敏试验板的质量控制,各监测任务承担单位进行药敏试验时应按照药敏板使用说明书进行检测。药敏试验检测试剂盒(MIC测定)使用方法见附件5。  三、结果报送  (一)监测结果电子版和纸质材料并行上报。其中,电子版直接登录中国兽药信息网(www.ivdc.org.cn),在中国兽药数据库下选择“耐药性监测”数据库,输入本单位用户名和密码,打开后直接输入监测结果。纸质采样记录和药物敏感性试验统计表(附件6)应按统一格式填报。  (二)各监测任务承担单位的电子版总结于2017年11月25日前上报中国兽医药品监察所。2017年12月31日前,由中国兽医药品监察所完成汇总报我部兽医局。  联 系 人:农业部兽医局冯华兵  中国兽医药品监察所徐士新  联系电话:010-59192829,59191652(传真)  010-62103658,62103698(传真)  附件:1.2017年动物源细菌耐药性监测计划  2.2017年动物源细菌耐药性监测采样和检测技术要点  3.采样记录表  4.动物源细菌分离和鉴定方法  5.药敏试验检测试剂盒(MIC测定)使用方法  6.耐药性监测结果统计表  农业部  2017年2月9日  附件1-6:2017年动物源细菌耐药性监测计划.doc
  • 质谱仪“电子鼻”可快速嗅出超级细菌
    科技日报讯 抗生素的广泛应用,是现代医学进步的重要标志之一。但抗生素的滥用也催生了一系列&ldquo 超级细菌&rdquo ,它们因异常强大的耐药性而著称,常常令医务工作者们束手无策。然而最近传来了好消息,一种通过电子鼻嗅辨难于检测的超级细菌&mdash &mdash 艰难梭菌的技术已经出现。  据物理学家组织网近日报道,英国莱斯特大学的研究小组研制出一款能够通过嗅探方式快速检测艰难梭菌的&ldquo 电子鼻&rdquo :通过质谱仪来识别艰难梭菌独特的&ldquo 气味&rdquo ,从而快速诊断出患者是否感染艰难梭菌。更重要的是,该团队声称,未来医务工作者们可以通过气味轻易地辨别不同种类的菌株。该项研究成果发表在《代谢组学》杂志网站上。  艰难梭菌又称难辨棱状芽孢杆菌,因难于分离观测而得名,通常寄生在人的肠道内,具有强传染性和抗药性,发病后通常会导致腹泻、发热以及胃痉挛。在不当服用某些抗生素后容易大量繁殖,难以治疗,因此也有超级细菌之称。  莱斯特大学化学部的保尔· 芒克斯教授表示,快速检测并鉴别艰难梭菌是医疗工作者们最迫切需要的技术之一,这项技术将有助于尽快发现感染者,使医护者们能够尽快采取针对性措施,抑制病情的进一步发展。  鉴于艰难梭菌的特殊性,错过最佳治疗时机后,不当治疗和盲目使用抗生素,将会导致患者的高病发率和死亡率,同时造成医疗资源的大量浪费。  麻烦的是,不同菌株的艰难梭菌会在感染者身上产生不同的症状,并且可能需要针对性的不同疗法。而这项鉴别方法不仅能够检测出艰难梭菌的感染者,还能协助医务工作者采取针对性的有效治疗。  不同菌株的艰难梭菌都有着独一无二的&ldquo 气味&rdquo 。研究者称,基于大量的细菌样本的研究发现,不同品系的细菌在质谱仪下会显现出各不相同的&ldquo 化学指纹&rdquo 。现在,他们已经能够通过&ldquo 电子鼻&rdquo 鉴别挥发性有机物(VOCs),从而快速&ldquo 闻&rdquo 出艰难梭菌,这项成果将会大大增强检测的速度和精确度,并可以协助进行不同菌株生长过程的研究。  芒克斯教授说,粪便样本检测是识别该类感染者的重要途径,在临床诊断中借助这项技术,可以利用粪便样本快速筛选出艰难梭菌的感染者。  来自莱斯特大学化学部的安迪· 艾利斯教授说:&ldquo 这项成果为我们带来了新希望。在掌握鉴别不同菌株艰难梭菌鉴别方法的基础上,未来可能会发展出基于少量样本进行快速甚至是瞬间检测的方法,从而推动艰难梭菌感染治疗技术的发展。&rdquo
  • 福斯发布电子书——降低原奶中的细菌数量
    几十年来,流式细胞分析技术在提高原料奶的卫生质量方面发挥了至关重要的作用。今天,其重要性与日俱增。 特别是随着技术的最新发展,使得在乳品厂乃至牧场收购原料奶时即刻进行现场卫生检验成为可能。 随着整个供应链采用更快速的检测方法,过去那种卫生质量低劣的样品和每毫升成千上万个细菌的日子很快就会结束。 牛奶实验室中流式细胞技术日益增多的使用,自然而然地引发了如何与乳制品生产商分享检测实效与便利性的问题,以便可以效法其他分析技术(如近红外和中红外)。 这些技术为乳品厂提供了涵盖大部分质量控制领域(卫生方面除外)的快速简单的无化学品检测。福斯正在取得研究进展,有望在原料奶细菌对抗战中开启全新篇章。 该电子书通过文章、便于理解的技术背景介绍和视频访谈,提供流式细胞技术的发展情况,让您时刻了解最新技术。 我们希望本书对您有所启发,借助于在多行业的持续努力下,降低原料奶中的细菌水平。 本电子书包括以下内容:流式细胞技术的优势流式细胞仪器介绍实验室中的高通量细菌计数检测乳品厂进行细菌细胞计数一按即可在流式细胞技术方案中寻求什么福斯的流式细胞技术 如您对电子书感兴趣,可联系福斯公司获取,或在仪器信息网福斯公司的解决方案栏目内下载。
  • 台摄影师遭枪击后染“超级细菌” 带菌者已出院
    台湾卫生部门负责人杨志良  目前,在国际间引起高度重视、被视为“超级细菌”的 NDM-1 抗药性细菌,近日在台湾地区也被发现。  台当局卫生署日前证实,感染者是曾在印度意外遭受枪伤的TVBS《食尚玩家》节目外景小组的柯姓摄影师。据悉,他在当地就医时确定感染了带有抗药性基因的超级细菌(NDM-1),所幸他并未发病,属于肠道无症状带菌者,因此被认定不属于法定传染病病例,目前已出院回家。  带菌者已经出院回家  台湾出现首例确诊的“超级细菌”带原者,使得全台顿时笼罩在疫病风暴中,台湾“卫生署” 署长杨志良成为新闻焦点人物。由于柯姓摄影师伤口复原情形与健康状况良好,医生并不建议对无症状的带菌者进行积极治疗或隔离措施,台“疾管局”已同意他先行出院,只需定期追踪即可。不过,部分医界及专家认为此举不妥,担心“超级细菌”的疫情会因此扩大。对此,杨志良用乌纱帽担保,请民众不要担心。  杨志良5日上午在台湾“立法院”外接受媒体询问时说:“由于是第4 级传染病,所以依法不能隔离,只能让带原者返家 而且当事人是一个健康的带原者,经过与专家讨论认为,若带病原者留在医院内,反而容易造成院内感染。”杨志良表示,这个健康的带原者,回到社区反而是比较安全的。  不过,面对立委质问“超级细菌”在台湾的防范措施,杨志良也指出,“我们一定是挡不住的”,因为“超级细菌”有健康的带原者,又有潜伏期,就像登革热一样。不可能因此停止一切经济活动,不让人进出,“这是做不到的”。  杨志良认为,目前最重要是提升医院感控能力,“我要先讲明白,它是挡不住的”,但也不是随便接触或吐痰、咳嗽就能感染,它绝对不会像甲型H1N1 流感一样迅速蔓延。因为传染途径不同,“超级细菌”要经由伤口传播,就像乙型肝炎一样,并不是那么容易传染。  过度担心没必要  面对各方质疑,杨志良不惜再度赌上乌纱帽来回应。杨志良说,“它(超级细菌)是一个问题,但绝对不是马上会变成一个全台湾性公共卫生的大危机”,卫生单位也会持续追踪。他认为台湾的防疫与世界任一地区相比都不会差,如果未来“超级细菌”的疫情真的在台湾扩散,欢迎立委把他炒鱿鱼换掉,他 “乐于下台”。  NDM-1 抗药性细菌又被称为“超级细菌”,是一种抗药性基因。病患主要以腹膜炎等腹腔内感染为主,被认为源自于印度、巴基斯坦,目前已在10 多个国家和地区发现,此次在台湾是首度检出。  台湾有关部门也提醒台湾民众,前往印度经商或旅游时,如需接受当地医疗服务,应当特别注意防疫。台湾感染科医师还呼吁民众一定要养成随时洗手的习惯,疑似感染者上完洗手间,也应盖上马桶盖并彻底冲干净,避免超级细菌在社区蔓延,再通过饮食进入体内造成感染。
  • 14部门打响细菌耐药“抗击战” 仪器研发也不能少
    近日,国家卫生计生委、发展改革委等14个部门联合印发了《遏制细菌耐药国家行动计划(2016-2020年)》(以下简称《行动计划》),旨在为加强抗菌药物管理,遏制细菌耐药,维护人民群众健康,促进经济社会协调发展。  《行动计划》明确,争取研发上市全新抗菌药物1-2个,新型诊断仪器设备和试剂5-10项。具体而言,加强细菌耐药防控科技部署,支持新型抗感染药物研发,特别是具有不同作用机制与分子结构的创新药物研发;支持耐药菌感染快速诊断技术的研发,特别是快速鉴别细菌感染与非细菌感染的技术设备、耐药菌快速检测仪器设备以及基层医疗机构应用微生物检测仪器设备的研发;支持相关疫苗研发等。  全文如下:关于印发遏制细菌耐药国家行动计划(2016-2020年)的通知国卫医发〔2016〕43号  各省、自治区、直辖市及新疆生产建设兵团卫生计生委(卫生局)、发展改革委、教育厅(教委、教育局)、科技厅(委、局)、工业和信息化主管部门、财政厅(局)、国土资源厅(局)、环境保护厅(局)、农业(农牧、农村经济、畜牧兽医)厅(委、局)、文化厅(局)、新闻出版广电局、食品药品监督管理局、中医药管理局,解放军各大单位卫生部门:  为积极应对细菌耐药带来的挑战,提高抗菌药物科学管理水平,遏制细菌耐药发展与蔓延,维护人民群众身体健康,促进经济社会协调发展,国家卫生计生委等14部门联合制定了《遏制细菌耐药国家行动计划(2016-2020年)》(以下简称《行动计划》,可从国家卫生计生委医政医管栏目下载)。现印发你们,请结合各地、各部门的工作实际认真组织实施,切实落实各项政策和保障措施,保证《行动计划》目标如期实现。国家卫生计生委 国家发展改革委教育部 科技部工业和信息化部 财政部国土资源部 环境保护部农业部 文化部新闻出版广电总局 食品药品监管总局国家中医药管理局 中央军委后勤保障部卫生局2016年8月5日遏制细菌耐药国家行动计划(2016-2020年)  为加强抗菌药物管理,遏制细菌耐药,维护人民群众健康,促进经济社会协调发展,制定本行动计划。  一、前言  我国是抗菌药物的生产和使用大国。抗菌药物广泛应用于医疗卫生、农业养殖领域,在治疗感染性疾病挽救患者生命、防治动物疫病提高养殖效益以及保障公共卫生安全中,发挥了重要作用。但是,由于新型抗菌药物研发能力不足、药店无处方销售抗菌药物、医疗和养殖领域不合理应用抗菌药物、制药企业废弃物排放不达标、群众合理用药意识不高等多种因素,细菌耐药问题日益突出。细菌耐药最终影响人类健康,但造成细菌耐药的因素及其后果却超越了卫生领域,给人类社会带来了生物安全威胁加大、环境污染加剧、经济发展制约等不利影响,迫切需要加强多部门多领域协同谋划、共同应对。  二、工作目标  从国家层面实施综合治理策略和措施,对抗菌药物的研发、生产、流通、应用、环境保护等各个环节加强监管,加强宣传教育和国际交流合作,应对细菌耐药带来的风险挑战。到2020年:  (一)争取研发上市全新抗菌药物1-2个,新型诊断仪器设备和试剂5-10项。  (二)零售药店凭处方销售抗菌药物的比例基本达到全覆盖。省(区、市)凭兽医处方销售抗菌药物的比例达到50%。  (三)健全医疗机构、动物源抗菌药物应用和细菌耐药监测网络 建设细菌耐药参比实验室和菌种中心 建立医疗、养殖领域的抗菌药物应用和细菌耐药控制评价体系。  (四)全国二级以上医院基本建立抗菌药物临床应用管理机制 医疗机构主要耐药菌增长率得到有效控制。  (五)人兽共用抗菌药物或易产生交叉耐药性的抗菌药物作为动物促生长应用逐步退出 动物源主要耐药菌增长率得到有效控制。  (六)对全国医务人员、养殖一线兽医和养殖业从业人员完成抗菌药物合理应用培训 全面实施中小学抗菌药物合理应用科普教育 开展抗菌药物合理应用宣传周。  三、主要措施  (一)发挥联防联控优势,履行部门职责。  发展改革部门促进抗菌药物研发和产业化 科技部门通过相关科技计划(专项、基金等)统筹支持抗菌药物和细菌耐药研究 财政部门安排细菌耐药控制相关经费,加强资金管理和监督 食品药品监管部门加强抗菌药物的审批、生产、流通管理,重点加强零售药店凭处方销售抗菌药物管理 工业和信息化部门完善医药产业政策,促进抗菌药物绿色生产和相关成果的产业化 卫生计生部门负责加强抗菌药物临床应用管理,做好遏制细菌耐药工作的组织协调和督促落实,中医药管理部门、军队卫生部门分别做好中医医疗机构、军队医疗机构的抗菌药物临床应用管理 农业部门加强兽用抗菌药物生产、经营、使用环节监管,减少动物源细菌耐药 国土资源部门加强土壤环境抗菌药物监测能力建设 环境保护部门加强抗菌药物环境污染防治工作,加强抗菌药物环境执法和环境监测能力建设,加快抗菌药物污染物指标评价体系建设 教育部门将抗菌药物合理应用相关知识纳入中小学健康教育内容并落实 文化部门、新闻出版广电部门通过广播、电视等主要媒体向公众广泛宣传抗菌药物合理应用知识。  (二)加大抗菌药物相关研发力度。  1.鼓励开展细菌耐药分子流行病学和耐药机制研究。及时掌握我国不同地区、人群、医疗机构、动物等细菌耐药发展趋势、传播与差别,加大基础研究力度,阐释细菌致病和耐药机制,为制订耐药控制策略与研究开发新药物新技术提供科学数据。  2.支持新型抗感染药物、仪器设备和疫苗的研发。加强细菌耐药防控科技部署,支持新型抗感染药物研发,特别是具有不同作用机制与分子结构的创新药物研发 支持耐药菌感染快速诊断技术的研发,特别是快速鉴别细菌感染与非细菌感染的技术设备、耐药菌快速检测仪器设备以及基层医疗机构应用微生物检测仪器设备的研发 支持相关疫苗研发。推动动物专用抗菌药物和可替代抗菌药物的动物疾病预防与促生长产品研究与开发。  3.支持耐药菌感染诊断、治疗与控制研究。包括新的治疗方案、优化剂量、耐药菌感染治疗策略以及临床少用抗菌药物的再评价等,提高临床治疗感染性疾病的能力水平。  4.开展抗菌药物环境污染控制研究,进行抗菌药物污染治理技术、抗菌药物在水环境和土壤中的去除以及修复技术等研究。  (三)加强抗菌药物供应保障管理。  1.完善抗菌药物注册管理制度。按照药品审评审批制度改革要求,严格抗菌药物的上市审批。依据政策对用于耐药菌感染相关创新药物、仪器设备以及疫苗加快审评审批。研究建立抗菌药物环境危害性评估制度,在医药、兽药、肥料注册登记环节,开展药物的环境危害性评估。  2.加强抗菌药物生产流通管理。加大对生产流通领域抗菌药物的监管力度,严格落实零售药店凭处方销售抗菌药物,禁止抗菌药物网络销售,打击假冒伪劣抗菌药物销售。零售药店须做好处方存留备查工作,对以各种形式规避凭处方销售抗菌药物的行为,加大处罚力度。  3.推进抗菌药物产业升级。完善医药产业政策,引导企业发展新型抗菌药物,支持抗菌药物新品种产业化。推动抗菌药物生产企业兼并重组,鼓励其采用新技术、新设备进行技术改造,促进抗菌药物绿色生产。  (四)加强抗菌药物应用和耐药控制体系建设。  1.规范抗菌药物临床应用管理。严格落实《药品管理法》、《医疗机构管理条例》、《处方管理办法》、《医疗机构药事管理规定》、《抗菌药物临床应用管理办法》、《医院处方点评管理规范(试行)》、《抗菌药物临床应用指导原则》等有关规定。鼓励建立多学科合作机制,由临床科室、感染性疾病、临床微生物、药学、医院感染管理等多学科组成工作团队,提升专业化管理水平。继续开展抗菌药物临床应用、细菌耐药监测工作,适时发布监测报告,提高监测结果利用水平。加强医务人员抗菌药物合理应用能力建设,重点加强基层医务人员知识培训。改善医疗机构基础环境,加强医院感染管理。大力加强医疗机构信息化建设,将抗菌药物管理要求通过信息化手段予以体现,逐步实现科学、高效管理,形成可持续发展的耐药控制机制。  2.加强兽用抗菌药物监督管理。制订兽用抗菌药物安全使用指导原则和管理办法,及时修订药物饲料添加剂使用规范、禁用药清单。实施兽药分类管理制度,推行凭兽医处方销售使用兽用抗菌药物管理。严格管理抗菌药物原料药的各种销售渠道。实施动物健康养殖方式,加强养殖场所卫生管理,改善养殖环境、加强饲养管理,维持动物健康状态。加强药物饲料添加剂管理,减少亚治疗浓度的预防性用药,禁止人用重要抗菌药物在养殖业中应用。加大兽用抗菌药物安全风险评估力度,加快淘汰高风险品种。制订人用、兽用抗菌药物分类表,区分人用与兽用抗菌药物种类,并依据药物的重要性、交叉耐药和临床应用品种等情况确定应用级别。  (五)完善抗菌药物应用和细菌耐药监测体系。  1.完善抗菌药物临床应用和细菌耐药监测网络。在依托现有机构基础上,设立全国抗菌药物临床应用和细菌耐药监测中心,负责医疗机构抗菌药物与耐药监测,制订监测标准和监测方案,组织实施监测工作。进一步完善抗菌药物临床应用监测网和细菌耐药监测网,开展普遍监测、主动监测和目标监测工作。监测面覆盖三级、二级医院和基层医疗机构,监测对象涵盖住院和门诊患者,获得全面细菌耐药流行病学数据。  2.建立健全养殖领域抗菌药物应用和细菌耐药监测网络。在依托现有机构基础上,设立全国兽用抗菌药物应用和动物源细菌耐药监测中心,负责养殖领域抗菌药物与耐药监测,制订监测标准和监测方案,组织实施监测工作。建立完善兽用抗菌药物应用监测网和动物源细菌耐药监测网,开展普遍监测、主动监测和目标监测工作。监测面覆盖不同领域、不同养殖方式、不同品种的养殖场(户)和有代表性的动物源性食品流通市场,获得动物源细菌耐药流行病学数据。  3.建立医疗与养殖领域抗菌药物合理应用和细菌耐药监测网络的联通机制,实现两个领域的监测结果相互借鉴参考。建立科学、合理的评价指标体系,为医疗与养殖领域加强抗菌药物应用管理提供依据。  4.建立细菌耐药参比实验室和生物标本库。实验室负责耐药菌的鉴别工作,建立标准耐药研究与监测技术体系,收集保存分离到的各种耐药细菌,提供临床与研究所需标准菌株。  (六)提高专业人员细菌耐药防控能力。  1.加强医药专业学生培养。鼓励有条件的高等医学院校在临床医学专业、药学专业开设合理用药课程。鼓励有条件的高等农林院校在动物医学专业开设动物感染性疾病治疗相关课程。  2.加强相关专业医务人员培养。大力培养抗菌药物合理应用与耐药控制人才,重点培养感染性疾病、临床药学、临床微生物等专业人才,并保证培养的数量满足医疗机构需求。加强医务人员抗菌药物合理应用与耐药控制继续教育,医务人员每年要完成一定课时的继续教育培训并考核通过。  3.加强养殖业与兽医从业人员教育。培养壮大兽医队伍,加强兽医和养殖业从业人员抗菌药物合理应用教育培训。通过开展定期或不定期培训,促进相关制度规范的落实,提高兽用抗菌药物合理应用水平。  (七)加强抗菌药物环境污染防治。  从规划及规划环评角度严格抗菌制药企业选址,同时新、改、扩建抗菌制药项目必须严格执行环境影响评价制度。加快抗菌药物污染物指标评价体系建设,就抗菌药物环境污染问题有针对性地加强环境执法以及水、土壤、固体废物等抗菌药物监测技术方法和规范等能力建设。开展抗菌药物可能的生态环境影响相关科研工作,研究抗菌药物环境污染的防治措施,推动抗菌药物废弃物减量化。  (八)加大公众宣传教育力度。  充分利用广播、电视等传统媒体和互联网、微博、微信等新媒体,广泛宣传抗菌药物合理应用知识,提高公众对细菌耐药危机的认识。将合理应用抗菌药物与社会主义新农村建设和文化、科技、卫生“三下乡”等支农惠农活动相结合,在基层文化活动中增加抗菌药物内容,减少不必要抗菌药物应用。开展中小学抗菌药物合理应用与细菌耐药科普教育与宣传活动,从小树立抗菌药物合理应用观念。医疗机构加强对患者合理应用抗菌药物的教育指导,纠正自我抗菌药物治疗行为。定期开展抗菌药物合理应用宣传周,每年与世界卫生组织同步开展宣传活动。  (九)广泛开展国际交流与合作。  积极参与世界卫生组织、世界动物卫生组织、联合国粮食及农业组织等国际组织开展的相关工作,包括防控策略与技术标准制订、抗菌药物应用和细菌耐药监测、人员培训、专题研讨等。与其他国家和地区开展耐药监测协作,控制耐药菌跨地区跨国界传播。与国际社会分享相关耐药监测结果与研究成果,共同制订具有国际危害耐药菌的控制策略。与国际社会开展新型耐药控制技术与产品的研究与开发。积极支持需要帮助的国家和地区开展耐药控制活动。  四、保障措施  (一)加大保障力度。根据政府卫生投入政策、经济社会发展水平和细菌耐药趋势,加大对遏制细菌耐药工作的投入,用于建设耐药控制相关设施、设备及人员培训等,并将遏制细菌耐药任务完成情况和绩效考核结果与财政补助挂钩。  (二)发挥专家力量。国家成立遏制细菌耐药咨询专家委员会。咨询专家委员会由医学(基础与临床医学、中医学)、兽医学(兽药)、微生物学、药学、生物制药、卫生管理、环境保护、流通管理、流行病学、生物统计、经济学、教育、传媒、信息化建设等专家组成,对抗菌药物管理与耐药控制工作提供咨询意见和政策建议。各地可以参照成立本地区的遏制细菌耐药咨询专家委员会。  (三)加强督导检查。各地要根据本行动计划要求,将工作目标和任务措施分解到具体部门,落实工作责任。各地有关部门要对地区年度工作情况进行检查,重点是医疗卫生和农业养殖应用抗菌药物、零售药店凭处方销售等情况进行检查,发现问题依法处罚,确保行动计划有效落实。
  • 新技术确定了细菌进化中的里程碑
    p style="text-indent: 2em text-align: justify "细菌已经进化出生活在地球上的适应性。但与可以保存为化石的植物和动物不同,细菌几乎没有遗传进化的物理证据,这使得科学家很难准确确定不同细菌群体的进化时间。/pp style="text-indent: 2em text-align: justify "麻省理工学院的科学家们已经设计出一种可靠的方法来确定某些细菌群何时出现在进化历史中。该技术可用于识别细菌进化过程中何时发生重大变化,并揭示导致这些变化的原始环境的细节。/pp style="text-indent: 2em text-align: justify "1月28日在BMC进化生物学杂志上的一篇论文提到,研究人员报告使用该技术确定了,在古生代时期,大约3.5亿至4.5亿年前,几种主要的土壤细菌群从真菌中获得了一种特定的基因。这使得它们能够分解几丁质,并利用其产品生长。几丁质是一种在真菌的细胞壁和节肢动物的外骨骼中发现的纤维物质。/pp style="text-indent: 2em text-align: justify "这种细菌的进化适应可能是由环境的重大转变所驱动的。大约在同一时间,早期蜘蛛,昆虫和蜈蚣等节肢动物正从海洋移动到陆地上。随着这些陆生节肢动物的传播和多样化,它们留下几丁质,创造了更加丰富的土壤环境,并为细菌提供了新的机会,特别是那些获得几丁质酶基因的细菌。/pp style="text-indent: 2em text-align: justify "麻省理工学院地球,大气和行星科学系的Cecil和IdaGreen地球生物学助理教授GregoryFournier说:“在此之前,地球上应该有土壤,但它可能看起来像南极洲的干燥山谷。动物生活在土壤中之后,为微生物提供了利用优势和多样化的新机会。”/pp style="text-indent: 2em text-align: justify "Fournier说,通过追踪细菌中的几丁质酶等某些基因,科学家们可以对动物的早期历史及其生活环境有所了解。/pp style="text-indent: 2em text-align: justify "“微生物在他们的基因组中包含动物生命的未知历史,我们可以用它来填补我们不仅对微生物,乃至对动物早期历史认知的空白,”Fournier说。/pp style="text-indent: 2em text-align: justify "该论文的作者包括主要作者DanielleGruen博士,现在是美国国立卫生研究院的博士后,以及前博士后JoannaWolfe,现在是哈佛大学的研究科学家。/pp style="text-indent: 2em text-align: justify "缺少化石/pp style="text-indent: 2em text-align: justify "在没有化石记录的情况下,科学家们利用其他技术来研究细菌的“生命之树”,遗传关系图,显示出许多分支和分裂,因为细菌随着时间的推移已经演变成数十万种。科学家通过分析和比较现有细菌的基因序列建立了这个遗传关系图。/pp style="text-indent: 2em text-align: justify "使用“分子钟”方法,他们可以估计某些基因突变可能发生的速率,并计算两个物种可能发生分化的时间。/pp style="text-indent: 2em text-align: justify "“但这只能告诉你相对时间,因为这些估计值存在很大的不确定性,”Fournier说。“我们必须以某种方式将这棵树锚定在地质记录上,是绝对时间。”/pp style="text-indent: 2em text-align: justify "该团队发现他们可以使用来自完全不同的生物体的化石来锚定某些细菌群进化的时间。虽然在绝大多数情况下,基因通过世代传承,从父母到后代。但每隔一段时间,一个基因就可以通过病毒或通过环境从一个生物体跳到另一个生物体,这个过程称为水平基因转移。因此,相同的基因序列可以出现在两种生物中,否则它们将具有完全不同的遗传历史。/pp style="text-indent: 2em text-align: justify "Fournier和他的同事推断,如果他们能够识别细菌和完全不同的生物之间的共同基因,比如一个具有明确化石记录的生物,他们可能能够将细菌的进化固定到这个基因从化石的有机体转移到细菌的时间。/pp style="text-indent: 2em text-align: justify "分裂的树木/pp style="text-indent: 2em text-align: justify "他们查看了数千种生物的基因组序列,并鉴定了一种基因,几丁质酶,它出现在几个主要细菌群体以及大多数真菌种类中,这些真菌具有完善的化石记录。/pp style="text-indent: 2em text-align: justify "紧接着,他们利用几丁质酶基因产生所有不同物种的遗传关系图,推算出显示基于该基因组突变的物种之间的关系。接下来,他们采用分子钟方法确定每种含有几丁质酶的细菌从其各自祖先分支的相对时间。他们对真菌重复了同样的过程。/pp style="text-indent: 2em text-align: justify "研究人员将真菌中的几丁质酶追踪到它最初出现在细菌中时与该基因最相似的点,并推断当真菌将基因转移到细菌时就会如此。然后,他们使用真菌的化石记录来确定转移可能发生的时间。/pp style="text-indent: 2em text-align: justify "他们发现,真菌将该基因转移到几组细菌中,含有几丁质酶基因的三大类土壤细菌在34.5亿至4.5亿年前就已经多样化了。微生物多样性的快速爆发可能是对陆地动物的类似多样化的反应,特别是产生几丁质的节肢动物。这种情况发生的时期,也正如化石记录显示的那样。/pp style="text-indent: 2em text-align: justify "“这个结果支持上面提出的想法,一旦进入新的环境微生物群体就会尽快获得能在该环境下的基因,”Fournier指出。“原则上,这种方法可以用于更多的微生物群体,转移其他物种使用其他资源的基因。”/pp style="text-indent: 2em text-align: justify "Fournier现在正在开发一种自动化管道,用于从大量基因数据中检测细菌和其他生物之间有用的基因转移。例如,他正在研究负责分解胶原蛋白的微生物基因,胶原蛋白是一种仅在动物身上产生的化合物,存在于柔软的身体组织中。/pp style="text-indent: 2em text-align: justify "“如果我们找到微生物中摄取软体组织的群体,那么我们就可以重建软体组织早期的未知历史,这在化石记录中所缺失的一部分,”Fournier说。/pp style="text-indent: 2em text-align: justify "这项研究部分得到了美国国家科学基金会和西蒙斯基金会的支持。/ppbr style="text-indent: 2em text-align: left "//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制