当前位置: 仪器信息网 > 行业主题 > >

花盆浇定仪

仪器信息网花盆浇定仪专题为您提供2024年最新花盆浇定仪价格报价、厂家品牌的相关信息, 包括花盆浇定仪参数、型号等,不管是国产,还是进口品牌的花盆浇定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合花盆浇定仪相关的耗材配件、试剂标物,还有花盆浇定仪相关的最新资讯、资料,以及花盆浇定仪相关的解决方案。

花盆浇定仪相关的仪器

  • 全自动精准灌溉控制、特别适合模拟干旱研究干旱作为全球性问题,极大地威胁到全球的粮食供应,是影响农业生产的最重要因素之一。为应对农业领域这一主要环境胁迫因子,全球科研人员一直在为筛选和培育抗旱品种而努力。而在干旱胁迫试验中,怎样自动精确控制灌溉量,并能实现可重复性,一直是困扰大家的难题之一。为此荷兰Phenospex公司研发出干旱模拟研究平台DroughtSpotter,特别适合应用于植物抗旱研究、筛选植物抗旱表型或用于其它需要精准灌溉(灌溉精度可高达1 g)的实验当中。干旱模拟研究平台DroughtSpotter可兼容不同大小和形状的花盆,适用于不用株型的植物。在试验过程中,将花盆直接放在内置了灌溉施肥系统的分析天平上,通过DroughtSpotter软件可设置多种灌溉方案,实现定制化服务。例如可通过精确控制灌溉水量保持每盆植物的预设重量,并通过称重得出的水分丧失来计算植物的蒸腾速率。结合移动式激光3D植物表型平台PlantEye使用,可计算生物量的增长。平台设计干旱模拟研究平台DroughtSpotter可提供12或24个独立灌溉称重单元,可同时将多个平台集成到温室或人工气候室中。应用范围耐旱表型筛选筛选可提高水分利用效率的保水剂筛选抗旱节水剂可控并可重复的干旱胁迫实验测量参数高时间分辨率下(以分为单位)计算每盆植物的蒸腾速率水汽压亏缺相对湿度水分利用率水分灌溉方案温度光合有效辐射产品特点高达1g的高精度重量控制;渐进式智能灌溉,防止过度补水可实现单个花盆的蒸腾动力学变化研究——适应不同规格的花盆针对每个花盆可单独设置灌溉方案同步集成环境探头,可监测光合有效辐射、温度和相对湿度可实现对花盆重量和灌溉方案实时监控可图表显示蒸腾作用动力学变化可下载原始数据——通过网络进行远程支持重量控制精度可达 0.02%友好的软件操作界面操作软件通过软件设置灌溉模式通过使用干旱模拟研究平台Drought Spotter,我们可以设置以下不同类型的灌溉模式 技术参数每套系统可提供12或24个独立灌溉称重单元标准重量范围:0-7 Kg,超过该重量范围,可定制标准花盆直径最大:20 cm,高度有10,20,30,40,50cm可选,其他规格可定制称量精度:0.02%(最大重量)渐进式智能灌溉:根据流速等实时计算加水量,控水量精度为≤1g4种灌溉自动模式可选:不灌溉,控制恒定值,预设添加等量水量,在一定值范围内控制花盆重量输出文件为CSV格式,数据包含:花盆重量、灌溉量、蒸腾速率;同时可显示环境气象参数可通过万维网远程控制开放的SSH协议可从外部网络访问数据可支持的操作系统:Windows、Mac OS等存储容量:最大支持10000天的测量数据存储温度:4-40℃相对湿度:40-80%防水等级IP65可兼容其他气象站的接口国际代表用户奥胡斯大学(University Aarhus),丹麦排名第二的大学,用于菊花、小麦和欧洲油菜(Brassica napus)的表型测量。先正达Syngenta,国际知名农业科技公司澳大利亚植物表型组设施,著名的“植物加速器”(Plant Accelerator)
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。植物表型成像系统WIWAM Line产品说明WIWAM Line是一款高通量可重复性表型机器人,用于对小型植物,如小玉米植物研究。该机器人可定期对多种植物参数进行自动化灌溉和并测量多种植物生长参数。WIWAM line代替了很多手工处理,省时省钱,精度较高。WIWAM Line由花盆定位桌面,不同个体线路,底层端口机器人以及1或多个成像或称重/浇水站组成。全套系统可以安装在现有生长室,内置高品质工业部件。植物在各自花盆内生长,预设时间间隔,机器臂提取植物,将其带到成像和称重浇水工作站。机器人将桌面上的线路移到旁边,生成机械臂到定位花盆所需空间,并将其提升脱离桌面。RFID读取装置以及花盆底部的RFID标签,可作为额外花盆识别法,识别和校正桌面上因手工花盆安置造成的错误。通常旁边取景照相机从不同角度获得图像。成像站可安装一系列照相机系统。组合称重/浇水站集成在机器臂上。花盆中植物在浇水时旋转以获得较佳水分布。灌溉精度较高可达+/- 0.1 mL。另外,灌溉可基于自动目标重量计算或固定量。在整个实验过程中,可有效控制土壤湿度水准。集成光温度和湿度传感器可监控温度,详细记录实验生长条件。植物表型成像系统WIWAM Line产品特点1、浇水时花盆旋转以获得水分布2、高精度灌溉(达0.1mL !).3、WIWAM Line 可配置环境传感器4、WIWAM Line 配有直观用户界面5、开放式数据库结构6、可提供全定制系统成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。植物表型成像系统WIWAM XY产品介绍WIWAM XY是一款高通量可重复性表型机器人,用于对小型植物,如小玉米植物研究。该机器人可定期对多种植物参数进行自动化灌溉和并测量多种植物生长参数。WIWAM XY代替了很多手工处理、省时省钱、精度较高。WIWAM XY由花盆定位桌面,不同个体线路,底层端口机器人以及1或多个成像或称重/浇水站组成。全套系统可以安装在现有生长室,内置高品质工业部件。植物在各自花盆内生长,预设时间间隔,机器臂提取植物,将其带到成像和称重浇水工作站。机器人将桌面上的线路移到旁边,生成机械臂到定位花盆所需空间,并将其提升脱离桌面。RFID读取装置以及花盆底部的RFID标签,可作为额外花盆识别法,识别和校正桌面上因手工花盆安置造成的错误。通常旁边取景照相机从不同角度获得图像。成像站可安装一系列照相机系统。组合称重/浇水站集成在机器臂上。花盆中植物在浇水时旋转以获得较佳水分布。灌溉精度较高可达+/- 0.1mL。另外,灌溉可基于自动目标重量计算或固定量。在整个实验过程中,可有效控制土壤湿度水准。集成光、温度和湿度传感器可监控温度,详细记录实验生长条件。植物表型成像系统WIWAM XY产品特点1、浇水时花盆旋转以获得较佳水分布2、高精度灌溉(达0.1mL!).3、植物表型成像系统WIWAM XY 可配置环境传感器4、植物表型成像系统WIWAM XY 配有直观用户界面5、开放式数据库结构6、可提供全定制系统成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。高通量植物表型成像系统WIWAM conveyor产品介绍WIWAM conveyor是一款集成机器人解决方案,用于高通量可重复表型平台,用于大型植物如玉米。该机器人可进行自动灌溉,允许定期对多种植物生长参数测量。WIWAM Conveyor代替了很多手工操作,省时省钱,精度高。该WIWAM机器人传送带网络组成,可将植物传送到1或多台称重浇水站以及成像柜,成像柜中安装有一系列的非损害性照相系统。全套系统可以安装在现有温室,由高品质工业部件构成。典型应用是植物种植在不同各自花盆内。这些花盆在传送带系统上以小车运输。花盆和小车均有少有识别码(分别QR和RFID码),从其固定生长区域传送到称重和灌溉站以及成像柜,都可对每植株进行个性处理。成像平台是封闭区域,配有适合照像的光照条件,配有旋转平台提升装置,可从观察角度稳定获得图像,聚焦远处感兴趣部分。成像柜可以容纳一系列照相系统,用于非损害性图像获取。称重和灌溉站位置,植物在浇水时旋转,以在花盆获得较佳水分布。灌溉精度较高可达+/-1mL。浇水后,可应用指定容器中准备好的不同溶液。另外,灌溉可以基于对目标重量计算或固定量。这方法可以保证在整个实验中的有效土壤湿度水平。通过集成光、温度和湿度传感器监控环境,详细记录实验生长条件。 该系统的精明之处在于包括1个处理区,系统可以提取和检索所需号码的属于特定基因组或处理的植株。系统用户可进入操作区,可视觉观察植物或手工操作植物,如测量特定植物性扎状,或提取部分植物做分子或化学分析。系统另外一精明特征是可将外部植物装载到系统中,例如生长在另外一间温室或生长箱中的植物,可将其在称重和灌溉站成像和/或处理。高通量植物表型成像系统WIWAM conveyor特点称重和灌溉站位置,植物在浇水时旋转,以在花盆获得较佳水分布。灌溉精度较高可达+/-1mL。浇水后,可应用指定容器中准备好的不同溶液。另外,灌溉可以基于对目标重量计算或固定量。这方法可以保证在整个实验中的有效土壤湿度水平。通过集成光、温度和湿度传感器监控环境,详细记录实验生长条件。该系统的精明之处在于包括1个处理区,系统可以提取和检索所需号码的属于特定基因组或处理的植株。系统用户可进入操作区,可视觉观察植物或手工操作植物,如测量特定植物性扎状,或提取部分植物做分子或化学分析。系统另外一精明特征是可将外部植物装载到系统中,例如生长在另外一间温室或生长箱中的植物,可将其在称重和灌溉站成像和或处理。成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • &ldquo 温室自动化 + 高通量成像&rdquo 技术机器人技术、图像分析和大规模计算能力的完美结合全自动、高通量对大量植株进行3D成像,从幼苗到成株皆可特别适合植物功能基因组学和植物表型组学植物表型和生理研究的强大助手遗传育种、突变株筛选、表型筛选的强大工具全自动高通量植物3D成像系统&mdash &mdash Scanalyzer 3D是一套可以全自动、高通量对大量植株(从幼苗到成熟植株即可)进行成像的系统,可以选择配置可见光(VIS)成像、近红外(NIR)成像、红外(IR)成像、荧光成像或根系近红外成像中的一种或多种,每个成像模块包括顶部和侧面两个摄像头,结合样品旋转装置,就可以对植株进行3D形态学分析。如果做小植株(15 cm以下),也可选配激光扫描3D成像。每一种成像模块都有单独的成像区域(&ldquo 暗房&rdquo ),依次进行成像分析。(下载演示视频) 小型版只能自动传送10盆植物,需手动更换花盆大型定制版(温室版)可自动传送1200盆植物的系统该系统通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等参数;通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等;通过根系近红外成像分析植物根系和土柱中的水分分布情况;通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等;通过荧光成像可以分析植物的生理状态。由于所有植物都通过条形码或射频标记,其整个生活史的的不同阶段所有的表型数据都可定期进行测量。整套系统包括传送带、成像模块、&ldquo 暗房&rdquo 、运输车、浇水和称重装置、控制系统等。其中传送带、运输车和植物在温室中运转,所有的植物可以由软件控制在传送带上进行动态分布,以避免由于温室中的光、温、湿分布不均匀造成的影响;成像模块、&ldquo 暗房&rdquo 、浇水和称重装置安装在独立的空调房中,并通过传送带与温室相连。分析模式有两种:一种是软件控制温室中的植物定期传送到&ldquo 暗房&rdquo 进行成像分析;另一种是人工携带生长在其他温室中的植物放到&ldquo 暗房&rdquo 前的传送带上,进行成像分析。软件通过成像分析的结果,根据表型数据可以对植株进行高通量筛选。通过对成像结果的分析,可以进行表型组学研究。目前我国对于作物的研究主要是利用传统的遗传育种方法以及基因组学的方法进行研究, 然而仅停留在基因组学研究水平上显然是不够的,并不能全面、彻底地阐明作物的生理功能,特别是作物表型与其产量、生理状态之间的相互关系,以及不同的环境条件对作物生长状况、产量、种质质量等的影响。这就需要对作物进行表型组学的研究,通过研究不同的表型性状来确定作物的遗传性状,并且寻找不同环境因子对作物各种指标影响的阈值,从而能够更加科学地阐明作物生长机理,指导作物生产。 ◆ 3D成像可选VIS、NIR、IR、根系NIR成像、荧光成像中的一种或多种,每种成像有独立的摄像区域(&ldquo 暗房&rdquo ),每个&ldquo 暗房&rdquo 的顶部和侧面各安装一个摄像头(拍摄顶部和侧面成像)。花盆底座有旋转装置,可以360度旋转,这样可以获得植株4个侧面的成像信息。结合顶部成像,可以获得完整的植株3D成像信息。针对15 cm以下的小植株,可以选择配置激光扫描3D成像,获得详细的三维形态学信息。◆ 自动传送系统带自动传送装置,所有花盆上都有电子标签,所有拍摄数据根据电子标签归档。可选传送50、100、150、250、375、500、800、1400盆或更多盆的传送装置,花盆和植株的重量可以为1、4、10或25 kg,更重需要定制。◆ 自动浇水和称重装置在温室系统中,可增加自动浇水和称重装置,软件控制对不同编号的花盆采用不同的浇水量,并每日对花盆进行称重。◆ 自动加营养盐装置在温室系统中,与自动浇水装置结合,可以在浇水的同时补充营养盐。◆ 自动喷淋装置在温室系统中,根据电子标签由软件控制是否喷洒农药,可用于检测农作物对农药的抗性或敏感性。◆ 自动分选在温室系统中,只要在传送装置上增加多级T-Junction(丁字路口),就可根据成像结果对大批量的植株进行分选,分选用的阈值参数可以由用户设定,分选级数取决于T-Junction的数目。◆ 服务器存储由于数据量非常大,本系统必须用服务器存储数据。◆ 软件分析软件分析功能非常强大,可以通过植株的编号(电子标签)调出整个生活史的数据,进行时间动力学分析,对拍摄的照片进行动画演示,对同一植株的时间动力学数据进行图表统计分析,对不同植株的数据进行复杂的统计学分析和图表分析。◆ 远程管理通过专用远程服务器管理软件,可以在异地对本系统的运转状况进行监测、改变测量程序或分析测量数据。◆ 系统大小最简单的只能传送10盆植物的系统可以安装在室内,高度(Y轴)是4 m,宽度(Z轴)是2 m。如果只配置一个成像模块,则系统长度(X轴)是4.5 m,每增加一个成像模块,系统长度(X轴)增加1.5 m。传送上百甚至上千盆植物的系统,多安装在温室内。实际大小可根据现场情况进行定制。主要功能◆ 全自动、高通量对植物等小型样品进行可见光成像、近红外成像、红外成像、荧光成像(包括整株GFP成像)和/或激光扫描3D成像(每套系统可选择一种或多种)◆ 通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等等50多个参数◆ 通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等◆ 通过根系近红外成像分析植物根系和土柱中的水分分布情况◆ 通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等◆ 通过荧光成像可以分析植物的生理状态测量参数* 植株高度、宽度和密度* 植株结构分析、骨架分析、紧密性分析、对称性分析* 叶片长度、宽度、叶角度、叶面积* 植株紧凑性(叶角度和紧密性)* 植株体积* 植株和叶片的颜色分析,包含发育状态、病理学等信息* 植株鲜重* 植株和叶片含水量、玉米水分利用效率* 植株生长速率* 种子颜色、种子数目* 开花时间、花穗颜色、大小、性状等应用领域植物功能基因组学、植物表型组学、遗传育种、突变株筛选、植物生理学、农业科学、植物病理学、植物形态建模、植物生物信息学、种子生理学、种子病理学、植物胁迫生理学、植物水力学等研究领域。技术优势和先进性请联系我们获取电子版资料。 可以自动传送10盆植物的小型系统T-Junction分选自动灌溉装置侧面、侧面旋转90度和顶部成像应用实例◆ 植物颜色分类植物的颜色是反映植物健康状态的关键指标之一,而人肉眼对颜色的敏感度较低,存在较大的视觉误差。利用Scanalyzer系统可以在拍摄植物可见光照片的基础上,通过软件对获得的颜色信息进行锐化处理,从而使原本肉眼不易区分的颜色差别,显著的区分开来。 可见光成像 软件锐化处理后的图像◆ 植物骨架/结构分析植物骨架和架构信息,是非常典型的植物表观信息,是农业信息学的重要研究内容。对于杂交育种而言,Scanalyzer系统有助于快速进行表型筛选,也可用于了解整个生活史以及受到胁迫后的骨架/结构变化。 植物骨架分析植物结构分析◆ 植物形态学分析成像后,通过Lemna Tec公司专业的软件工程师团队开发的软件,可以对植物进行详细的三维形态学分析。对于所拍摄的每一张图片,都可获得50多个形态学参数。 对于本图而言,可以获得单个叶的长度、单个叶的面积、平均叶宽、茎长、茎宽、茎体积、弯曲度(Bent index)、叶卷曲指数(Leaf curling index)、叶朝向(Leaf orientation)、单个叶的颜色分类等等指标。本图用于详细的植物朝向、角度分析。 通过顶部成像和多个侧面成像,可以获得植物X、Y、Z三个轴的信息,根据各个方向的叶面积、茎长、茎宽、叶长、颜色等来估算植物的生物量。实验证明这种估算的生物量与实际生物量有非常好的线性关系。 X轴为实际鲜重,Y轴为通过成像参数估算的鲜重二者有非常好的线性关系由于转基因植物有很高的形态变异性,因此对叶片和茎杆进行定量非常重要◆ 利用近红外(NIR)成像分析植株和土壤的水分利用情况近红外成像可以直观的反映植物不同部位的含水量,通过软件处理加上代表不同含水量的颜色后,可以非常直观的看出不同处理下植株不同部位的含水量变化。如果植物是生长在专用土柱中,还可以对植物根系和土壤的含水量变化进行定量分析。 玉米停止浇水8 h后(轻度干旱处理),植株含水量的变化可以通过近红外成像明显从看出来,特别是老叶片失水严重。不同叶片的失水情况还可以通过软件获得数据,并可做图表分析。 土柱和玉米整株的近红外成像(原始图像)干旱过程中土柱的含水量变化干旱0 h和8 h时土柱中不同层的含水量分布注:LemnaTec公司设计的土柱筒,是透明聚丙烯塑料材质,内装自然土壤,高50 cm,直径5、8或10 cm,装土1.5 3.0 5.0 kg,底部有排水孔。培养时土柱外部套上不透明PVC管遮荫,放置苔藓和土壤藻类滋生,测量时将遮光管取下即可。◆ 利用近红外(NIR)成像分析NIR成像分析小麦干燥过程中含水量的变化本例是小麦在高温处理下,植株含水量的时间动力学变化可以通过NIR成像直观的反映处来,并进行定量分析。 高温处理16 h,小麦的NIR成像变化小麦植株含水量变化的定量分析,可以看出,随着高温处理时间的延长,小麦含水量逐渐降低◆ 利用红外(IR)成像检测植物温度差异红外成像,也叫热成像,用于检测植株的温度变化。由于植株温度与植物的蒸腾作用和含水量密切相关,因此红外成像常用于干旱胁迫研究、群体蒸腾等领域。 通过肉眼很难区分哪株玉米受到干旱胁迫 通过红外成像,明显看出右边的玉米温度更高,说明含水量低,受到干旱胁迫◆ 利用红外成像反映小麦气孔的关闭照光时气孔开放,叶片进行蒸腾作用。关光4 min后就检测到叶片温度的显著上升,说明气孔开始关闭。Scanalyzer 3D系统可以非常灵敏的检测气孔状态。 随着时间的延长,气温与叶片温度的差异越来越小,说明气孔逐渐关闭◆ 静态根密度分析析Scanalyzer 3D系统可以拍摄生长在土柱中的植物根系可见光照片,软件自动分析土柱表层的根系。由于土柱的运输车下自带程序控制的旋转台,就可以通过软件控制自动顺序旋转90度角来完成4个不同侧面的成像,获得更完善的根系信息。 不同植物根系的静态分析同一株植物4个侧面的根系成像◆ 根系动态生长分析析Scanalyzer 3D系统可以全自动、高通量的拍摄植物根系照片,结合电子标签,就可以对特定编号的植物根系数据进行时间动力学分析。从下图中的结果可以看出,从第35-100天,根生长最快,从表层有大量的根往下生长,从第35-60天,浇水过量,导致底部很多根死亡。 左图示出了一株植物根系随时间的生长发育过程,右图示出的是不同时间点的根系覆盖面积随深度分层的变化◆ 鉴定非转基因植物喷洒农药后,没有转入抗农药基因的植物,可以通过颜色鉴定出来。 ◆ 植物个体和群体的形态学应用举例Scanalyzer 3D成像系统可以获得大量的形态学参数,并且针对不同的材料,可以获得有针对性的参数。下面是几个例子: 水稻植株成像的部分参数:* 叶片长度(即使交叉也可测量)* 叶片面积* 叶片颜色* 植物高度* 植物宽度* 叶片密度* 叶片朝向 稻穗成像的部分参数:* 稻穗面积* 稻穗颜色* 稻穗长度* 稻穗最大长度* 稻穗结构* 稻穗骨架(skeleton) 群体表型成像的部分参数:* Criteria of plant growth* 高度* 紧密性(Compactness)* 叶朝向&ndash 弯曲指数* 密度* 对称性* 单位高度的平均植物宽度基于复杂的形态学指标的表型分析:* 结构朝向* momentum of inertia* 高度* 宽度* 圆度(roundness)* 紧密性◆ 植物开花过程的动态监测由于绝大多数植物的花的颜色与茎叶不同,利用Scanalyzer 3D成像系统的高通量、全自动、带电子标签的特性,就可以自动监测植物是否开花、开花时间、花朵数目、花朵发育阶段、花败时间等信息。 开花过程监测的部分参数:* 叶面积* 白化(Chlorosis)* 黑斑(Necrosis)* 衰老(Senecence)* 角果数目* 角果长度* Start flowering* End flowering* Stay green* Morphology* 生长速率Scanalyzer 3D系统与PL和HTS系统的比较 Scanalyzer PLScanalyzer HTSScanalyzer 3D高通量否是是小植株成像是是是96孔板成像是是否大植株成像否否是根系研究否否是可见光成像可以可以可以,3D荧光成像可以可以可以,3D红外成像可以可以可以,3D近红外成像可以可以可以,3D根系近红外成像否否可以,3D激光扫描3D成像否可以可以,只限高度15 cm以下的小植株部分用户* 澳大利亚植物功能基因组中心(Australian Centre for Plant Functional Genomics)位于阿德雷德(Adelaide)大学,建有澳大利亚植物表型组设施(Australia Plant Phenomics Facility)&mdash &mdash 植物加速器(Plant Accelarator)和高精度植物表型组中心(The High Resolution Plant Phenomics Centre)。2010年1月28日,造价超过3000万美金的&ldquo 植物加速器&rdquo (The Plant Accelerator)正式运行,并对全球科学家开放。&ldquo 植物加速器&rdquo 是一套国际上到目前为止进行植物表型组研究的最复杂、造价最昂贵的设备。它的核心由4个140平米的温室以及两套&ldquo 全自动高通量植物3D成像系统Scanalyzer 3D&rdquo 组成,所有进行植物表型研究的成像设备,包括传送带、成像模块、&ldquo 暗房&rdquo 、运输车、控制系统等都由德国LemnaTec公司提供。每套Scanalyzer 3D系统占有两个140平米的温室,带可见光成像、近红外成像、根系近红外成像、红外(热)成像和荧光成像模块,以及自动浇水和称重的设备,并配有可自动传送2400盆植物的传送带和运输车。两套Scanalyzer 3D系统的传送带长度加起来达1.2公里。如果两套系统24 h连续运转,每天可以获得4000-6000盆植物的表型成像数据,一年可以获得30-60T的数据量。根据实际实验情况,预计&ldquo 植物加速器&rdquo 一年可以进行16万盆植物的实验。高精度植物表型组中心有一套不带温室传送的基础型Scanalyzer 3D系统,已运转多年。* 法国农业科学研究院(I&rsquo institut National de la Recherche Agronomique,INRA,French National Institute for Agricultural Research)是世界上最有科研实力和竞争力的农业研究机构之一。INRA Montpelier(蒙彼利埃)正在建设一套传送1400盆植物的系统,2010年中完工;INRA Dijon(第戎)正在建设一套传送1482盆植物的系统,2010年底完工。* 德国莱布尼茨植物遗传和作物研究所(Leibniz-Institut fü r Pflanzengenetik und Kulturpflanzenforschung,IPK,Leibniz Institute of Plant Genetics and Crop Plant Research)IPK是德国的著名公立研究所,在大麦杂交育种方面很有名。到2010年底有三套Scanalyzer系统运转:1) 目前正在运转一套能600盆植物的系统,专门做大麦研究2) 一套做拟南芥的S惨案了原则让 3D系统,能传送600盆拟南芥,2010年春天投入运转3) 目前正在建设一套大的能传送600盆玉米的系统,预计2010年底投入运转* 意大利麦塔庞特市植物生物技术研究所(Metapontum Agrobios Research Centre for Plant Biotechnology)归政府所有,但以企业化运作,特点在于小麦、西红柿等的基因改良。有一套能传送500盆植物的系统,2009年开始运转* 先锋(Pioneer)/杜邦(Dupont)先锋良种国际有限公司是杜邦集团的子公司,是国际玉米育种巨头!先锋从2005年开始运转一套能传送1500盆植物的系统。* 荷兰Keygene公司在瓦赫宁根,是几家农业公司合资建的一个做研究的公司,有一套小的系统在运转,正在建设一套能传送1100盆植物的系统。LemnaTec公司与Keygene公司合作,承担了一个EuroStar的PhenoCrop项目:Innovation in vegetable plant breeding by large scale deep phenotyping。项目目的:&ldquo The overall objective is to develop new deep phenotyping applications for the LemnaTec Scanalyzer for vegetable crops. Correlation of genotypic data and phenotyping results will lead to new molecular markers or gene clones that positively contribute to complex commercial traits in vegetable plants&rdquo 。项目总经费达142万欧元,预计2011年结题。* 巴斯夫(BASF)国际化工巨头,从1998年开始介入植物科学研究,兼并了比利时CropDesign公司,并与孟山都有密切合作,在玉米、土豆、甜菜、苜蓿等的遗传育种方面取得了丰硕成果。2006年,BASF USA和BASF Germany分别建立了一套能传送800盆和300盆植物的Scanalyzer 3D系统。* 英国草地与环境研究所(Institute of Grassland and Environmental Research,IGER)正在建设一套可以传送800盆植物的系统,预计2010年底或2011年初运转* 拜耳作物科学公司(Bayer CropScience)是拜耳集团三大业务子集团之一、全球领先的创新型作物科学公司。拜耳作物科学公司的销售额(2009年)为65.10亿欧元,约占拜耳集团销售额的20.8%。拜耳作物科学公司在水稻、油菜以及蔬菜育种方面占有很大市场份额。到2010年中,Bayer CropScience Belgium将建成一套可传输600盆植物的系统;到2010年底,Bayer CropScience Germany将建成可传输1200盆植物的系统。更多详细介绍,请点击链接:
    留言咨询
  • SEC2705超细型张力计 400-860-5168转1218
    2705超细型张力计不仅可以测量土壤水势,也可以提取土壤溶液。 可垂直安装,也可水平安装。直径仅有9.52mm,可以用于实验室内的土柱体研究,或者不仅可以用来测量花盆内的土壤基质势也可以提取土壤溶液。 直径9.52mm,长度有375px、750px、1125px、1500px、2250px 等五类,可根据不同应用选择不同长度。产地:美国SEC
    留言咨询
  • SKYE微型张力计 400-860-5168转4470
    SKYE微型张力计名称:微型张力计 型号: 产地:英国产品特点:微型设计,在插入土壤时不破坏周围的作物根系,适用于花盆和生长袋;非常适合于温室农作物的灌溉管理;适用于土壤,泥炭和其他介质;用于不同的介质时无需校准; 产品介绍:MINI张力计是一款小型的现场张力仪,可以测量水对作物根系的有效性,由此可用于灌溉调控和作物管理中。张力计是由一个塑料负压管(长度可变取决于深度测量要求)和一个多孔陶瓷头构成。 技术参数:陶瓷头长度25mm,直径13.5mm负压管长10-50cm操作温度:0至70°C电缆长度:标准长度3米 产地:英国点将科技-心系点滴,致力将来! : (上海) (北京) (昆明) (合肥) Email: (上海) (北京) (昆明) (合肥) 扫描点将科技官方微信,获取更多服务:
    留言咨询
  • EC5土壤湿度传感器 400-860-5168转4377
    美国Decagon公司生产的EC5探头是一个电容探头,可通过直接测量周围电介质的电容率从而得到土壤含水量,因为土壤中电介质的电容率与土壤的水分含量直接相关,EC5 探头输出的电压信号与电介质的的电容量成正比。EC5探头具有高分辨率,可用于监测水分的日变化或小时变化。精度:矿质土:±3%(EC<8dS/m),±1~2%(单独校准后,EC<8dS/m);岩石土:±3%(0.5<EC<8dS/m);花盆土:±3%(3<EC<14dS/m)分辨率:0.1% VWC (矿质土),0.25% VWC (岩石土)测量范围:0-VWC测量响应时间:10ms尺寸:8.9cm x 3.2 cm x 0.7cm电缆长度:5米(可定制其他长度)接口类型:3.5mm耳机接头;3线接头
    留言咨询
  • n产品简介VARIXX 804型全自动匀胶喷胶机采用新的喷涂概念,将两种不同的喷涂方法集成到一个系统中,可用于2D喷胶,也可以对凹凸面进行3D喷涂,全自动装卸,全自动喷涂旋涂,同时可配置匀胶,显影,清洗,烘焙模块。 n产品特色÷ 适用于所有形貌和形状的喷涂。÷ 工作台具有加热功能÷ 手动装卸÷ 集成两个具有自动快速更换功能的超声波喷嘴。÷ 集成安全传感器÷ 6轴机械手系统÷ 注射器分散系统÷ 采用粉末涂层不锈钢制成的系统框架和工艺容器÷ 用于加工区域的可锁定透明门÷ 系统正面的紧急停止按钮÷ 带有三个光区的信号灯,用于显示系统状态÷ 可调节调平脚和运输轮÷ 满足洁净室 10 级的通用设计 (ISO 4)÷ 带有 22" 触摸屏显示器的用户友好型操作界面 GUI÷ 可编程工艺参数(喷嘴位置、光刻胶剂量、速度和 N2 流量)÷ 配方和流程的库函数÷ 衬底尺寸: 圆片从 ? 200mm (8 inch) 到 ? 300mm (12 inch) , 方片从 9 x 9 inch 到 21 x 21 inch
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求Plantarray系统技术参数测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。根系生理表型测量根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。图1.干旱点测量模型:在土壤高水量条件下,水并非限制因子,因此植物1(P1) 和植物2 (P2)并未限制其冠层对水的需求。在水缺乏情况下,植物根很难获得水,因此P1植物比P2更快受到水限制。Gosa et al., Plant Science (2018)今天,多数根胁迫相关特征是形态学上的。但是,可在胁迫下鉴别并比较植物根系的生理特征系统更有价值。 为何如此重要?界定干旱的一个农艺指标是土壤水含量变成植物蒸腾的限制节点。干旱起始点与根利用任何可获取水的能力高度相关。因此,具有更好根系性能的植物可能是由于根结构、解剖形态结构、生物化学或物理机制所致,干旱点值会较低(见图2),韧性更佳(再次浇水后蒸腾恢复速率)。另外的根性能功能表型鉴定基于根日常流动速率,据报道,具有高导水率的根在良好灌溉和盐条件下具有更高的蒸腾速率,从而增强光合作用以及增加产量。 近年来,科研主要研究精力都投入到植物胁迫反应上面。但是,尽管基因工具有了可观的改进,在研究投资和实际耐胁迫作物市场投放之间还有巨大的鸿沟。主流观点接受根在植物胁迫反应中扮演了重要角色。除了经典的根表型研究方法(主要基于根形态学),鉴别根生理标记在有效过程中很重要,也便利了胁迫理想型植物的培育。图2.全部期间2种西红柿栽培种的全植物蒸腾-土壤水含量的函数: (a) 夏天和(b) 冬天干旱实验。在两个栽培种之间和不同环境条件中发现了显著差异干旱关键点(?crit) 。Halperin et al., The Plant J. 20162016年出版的一篇文章(Halperin et al., The Plant J. 2016) 介绍了Plantarray功能生理表型方法如何在鉴别关键点 (?crit),土壤水含量在胁迫下,成为植物蒸腾的限制因子。研究使用了土壤湿度探针持续、精确测量究竟何种水流入单株植物的根部(Jr) 。同时进行流速、其它环境信号以及生理参数测量,允许对不同功能性状包括?crit进行比较。该方法为用户提供了选择性能佳的根系的能力,特别是干旱条件下,按照生理性状进行比较。
    留言咨询
  • 产品概述DroughtSpotter能够精准记录每个花盆的重量减少情况,计算出每株植物的动态蒸腾率和水分利用率。灌溉作业实现自动化,精度高,可靠性强——即便在周末!完全自动、高通量评估植物蒸腾速率完全自动评估水分利用率设计和实现所有灌溉作业的高精度/可靠的自动化因此,无需人工称重来评估植物的蒸腾速率。即便在周末,DroughtSpotter也能精准、可靠地控制您的实验。灌溉模式和用水模式:用我们的灌溉模式设计每个培养盆的灌溉时间表,使实验的灌溉自动化。灌溉模式将有助于您的脱水或恢复实验,具有高重现性和可靠性。灌溉模式如下:应用:DroughtSpotter被植物科学家和育种家广泛应用,如:实验控制表型分析化学和突变体筛选逆境测试生物分析生物毒性分析干旱观察,节水性状表型基于DroughtSpotter的高频率测量能力,您可以测量蒸腾作用的绝对差异及其在一天中的动态变化。在Vadez等人(2015)的研究中,他们评估了两种不同基因型的珍珠粟蒸腾速率(图中标示了正午的VPD)。一种基因型(PRLT)在高VPD时蒸腾作用明显减弱。这种“节水性状”在干旱情况下非常有利,会增加产量。请注意,这项实验的叶面积采用PlantEye进行估计。软件设计、控制和跟踪您在世界任何地方的实验。所有数据都存储在本地系统,在附带有重量分析系统的服务器上进行处理。
    留言咨询
  • n产品简介UNIXX SP760型半自动喷胶机采用新的喷涂概念,将两种不同的喷涂方法集成到一个系统中,可用于2D喷胶,也可以对凹凸面进行3D喷涂。 n产品特色÷ 适用于所有形貌和形状的喷涂。÷ 工作台具有加热功能÷ 手动装卸÷ 集成两个具有自动快速更换功能的超声波喷嘴。÷ 集成安全传感器÷ 6轴机械手系统÷ 注射器分散系统÷ 采用粉末涂层不锈钢制成的系统框架和工艺容器÷ 用于加工区域的可锁定透明门÷ 系统正面的紧急停止按钮÷ 带有三个光区的信号灯,用于显示系统状态÷ 可调节调平脚和运输轮÷ 满足洁净室 10 级的通用设计 (ISO 4)÷ 带有 22" 触摸屏显示器的用户友好型操作界面 GUI÷ 可编程工艺参数(喷嘴位置、光刻胶剂量、速度和 N2 流量)÷ 配方和流程的库函数÷ 衬底尺寸: 圆片从 ? 200mm (8 inch) 到 ? 300mm (12 inch) , 方片从 9 x 9 inch 到 21 x 21 inch
    留言咨询
  • MST3000+产品介绍新研发的MST 3000+手持水分速测仪适于土壤温湿度传感器SMT 100传感器快速精确读数。操作异常简单: 按一按键,测量值立即显示在LCD显示屏上。自动关机功能避免无意识的电池耗电。MST3000+可以用于所有土壤和基质的直接独立测量。但使用该测量方法时,很重要一点要考虑到传感器相同的测量值只能在相同的环境条件下测得(土壤密度,插入深度)。因此强烈推荐多次测量并对结果取均值。MST3000+仅仅用作安装的传感器的显示设备,无需经常读数和归档(例如:灌溉初步测量)。探头采用FDR(频域反射计)原理,与TDR测量(时域反射计)类似,是体积测定土壤或基质中的水含量。测量原理是基于发射电磁波传输时间改变,电磁波再次被传感器接受。因传感器反应迅速以及通用适合所有类型土壤和基质,FDR传感器对自动灌溉控制非常有用。水含量数据(Vol %表示)可立刻显示灌溉水需求状况。与常用的时控技术相比,因传感器反应迅速,甚至可关闭湿度依赖的灌溉。另一个优点是土壤化学性质(pH,盐度)基本对测量结果没有影响或影响甚微。传感器采用防霜设计、无需维护‘使用寿命长。需要指出的是评估期间测量值应该与土壤或基质组份相适。另外,电容测量法要求精心安装传感器,要与土壤接触良好,传感器上空气隙和空隙会影响测量精度。 应用领域1、生长介质,如位于箱体,花盆和生长袋中的泥炭基质,椰纤维,树皮基质等,矿物基质(如岩棉)。2、适合室内绿化用。3、室外矿物土。例如:农业区域灌溉控制、葡萄种植和啤酒花栽培。 4、开阔地蔬菜、芦笋、草莓和樱桃等水果。5、干旱胁迫实验等。技术参数 技术数据:湿度/温度传感器SMT100一体化多层线路板,内置保护测量电极湿度温度量程:0-100% -20-80°C精度:±2% ±0,8°C校准精度规格:±1% ±0.8°C分辨率:0.10% 0.1 °C输出数字RS485,配T-Bus总线协议或模拟0-10V电压数字:4-24VDC和模拟:12-24VDC尺寸182 x 30 x 12 mm应用土壤或基质的水分和温度直接测量
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。 主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求 特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。 SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。 用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray植物表型平台 400-860-5168转4713
    Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • 全自动、高通量对大量植株进行成像特别适合植物功能基因组学和植物表型组学遗传育种、突变株筛选、表型筛选的强大工具机器人技术、图像分析和大规模计算能力的完美结合 实验室高通量植物成像系统&mdash &mdash Scanalyzer HTS是一套可以全自动、高通量对大量小植株进行成像的系统,可以选择配置可见光(VIS)成像、近红外(NIR)成像、红外(IR)成像、荧光成像或激光扫描3D成像(只适合高度15 cm以下的小植株)中的一种或多种。成像系统带程控移动装置,可以在X轴和Y轴上进行移动,并配有射频或条形码读取器。Scanalyzer HTS系统通过软件控制摄像头移动到样品上方(多孔板或小盆)进行拍照,照片数据与该样品的电子标记(射频或条形码)一起存储。软件也可控制摄像头对多孔板上的每个孔进行单独成像,每个孔的数据分布存储(告诉软件多孔板类型,然后自动编码,如A01、A02&hellip &hellip )。(下载演示视频)软件可以控制系统每天自动对样品进行成像,获得样品成像的时间动力学变化。只要点击样品的编码,就可以获得样品的图像及分析数据的时间动力学变化,并可进行复杂的统计学分析和图表分析。系统提供顶部光源和底部光源,并可通过软件控制光强变化。根据测量样品数目的多少,可以选择配置4、24、48或72个多孔板的版本,不同版本的外观尺寸差别很大。如有特殊需要,可以定制更大版本。由于全自动、高通量测量获得的数据非常庞大,本系统必须配置服务器来存储数据。选购PHP远程数据库软件,还可以对系统进行远程原理、控制和分析。主要功能◆ 全自动、高通量对植物等小型样品进行可见光成像、近红外成像、红外成像、荧光成像(包括整株GFP成像)和/或激光扫描3D成像(每套系统可选择一种或多种)◆ 通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等等50多个参数◆ 通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等◆ 通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等◆ 通过荧光成像可以分析植物的生理状态◆ 样品可以是培养在多孔板中(如12、24、48、96、384孔板),也可以是长在小花盆中。◆ 高通量测量大量样品,标准配置可选择装4、24、48或72个多孔板的版本◆ 花盆大小范围,直径3.64 ~ 20.51 cm,高2.79 ~ 15.44 cm◆ 可选择成像分辨率,特别适用于96孔板高精度测量◆ 进行动物/昆虫的游动/运动测试时,可自动获取图像应用领域植物功能基因组学、植物表型组学、遗传育种、突变株筛选、植物生理学、农业科学、植物病理学、植物形态建模、植物生物信息学、种子生理学、种子病理学、植物胁迫生理学、植物水力学等研究领域。HTS系统的成像扫描模式多孔板扫描模式整个多孔板像素每个孔的像素每个板扫描1次1 228 80012 800每个板扫描4次4 915 20051 200每个板扫描9次11 059 200115 200每个板扫描16次19 660 800204 800每个板扫描96次117 964 8001 228 800应用实例◆ 整盆拟南芥的GFP成像实验室型高通量植物成像系统Scanalyzer HTS特别适合于拟南芥植株的整株甚至是整盆的GFP成像。软件可以自动过滤掉盆和土壤引起的噪音,把有用的图像抽提出来进行进一步分析。对于不同的GFP,可以定制激发波长。下图是整盆拟南芥的eGFP成像。◆ 通过荧光成像进一步分析植物的生理状态植物的可见光成像更多的是反映植物的表观信息,对生理状态的反映有限。而荧光成像可以较深入的反映到植物的生理状态,如下图中,热水处理部分叶片后,可见光成像看不出有什么区别,而荧光成像则可以反映出受损伤的部位。热水处理部分叶片(红框区域)后的可见光成像原始照片和软件成像热水处理部分叶片(红框区域)后的荧光成像原始照片和软件成像◆ 植物的生长动力学变化高通量Scanalyzer HTS系统特别适合于研究植物的形态学指标和在生长过程中这些指标随时间的动力学变化,如下图就是利用Scanalyzer HTS系统研究的拟南芥植株面积随时间的动力学变化。利用Scanalyzer 3D系统可以研究玉米等大植株整个生活史的动力学曲线,各种形态学指标都可以测量。t = 0 dt = 4 dt = 7 dt = 11 d基于面积的植株生长动力学曲线◆ 利用表型参数的雷达图进行植株分类通过Scanalyzer HTS系统可以获得大量的植物表型参数,利用这些表型参数绘制的雷达图,可作为反映植株形态的&ldquo 指纹图谱&rdquo 。根据这种&ldquo 指纹图谱&rdquo 可以对植株根据表型进行分类,特别适合于数量性状基因座(QTL)研究。下面两个图根据拟南芥的表型雷达图进行的植物分类,对于其它大型的农作物用Scanalyzer 3D系统测量后,也可以获得类似的结果。利用表型参数的雷达图进行植株分类南芥表型参数的静态雷达图(&ldquo 指纹图谱&rdquo )利用5种参数做的雷达图,分类结果用颜色显示。数据为拟南芥生长到第13天时的结果。更多详细介绍,请点击链接:
    留言咨询
  • VTC-200-SE 8寸柜式喷胶机是一种满足半导体TSV、MEMS、WLP等工艺制程中异形表面的喷胶作业设备。是一种采用高精度微量液体平流传输和超声波雾化震荡技术均匀喷涂在一定温度的物件表面,多次沉积成均匀涂层膜的纳米喷胶设备。VTC-200-SE 8寸柜式喷胶机采用铝型材机柜,耐腐蚀透明PC板和喷塑机柜钣金组成,美观大方。七寸全彩触屏界面,高精密电缸和伺服系统控制,整体设计布局合理,简单易用。 产品名称VTC-200-SE 8寸柜式喷胶机主要特点1、全柜式集成结构,工业级设计2、最大适合8寸晶圆,向下兼容,基片工装方便更换3、XYZ三轴电缸设计,喷头高度程序可设置4、转盘加热旋转系统,工作区高热均匀性5、微量平流系统,流速平稳,流量精确可调6、采用超声喷雾系统,雾化颗粒均匀,功率可调7、带基片吸附和电动顶针功能,方便上下片和计时功能8、带胶液监测功能,顶部抽风,保证工业生产需要9、七寸全彩触屏操作,手动调试和自动运行两种操作模式技术参数1、电源:AC220V,50HZ,1.5KW2、工作环境:湿度:20-90%,温度20-30℃3、处理Wafer尺寸:200mm以下,向下兼容4、热盘温度控制:室温至200℃,控温精度±0.5℃,工作区温度均匀性 小于±1%5、基片顶升系统:顶升高度0-15mm,高度分辨率0.1mm 胶液流速范围 1-20ml/min可调6、热盘电机额定转速:1000rpm7、XY电缸移动最大速度:X轴200mm/s,Y轴200mm/s8、XY电缸有效行程:300mm×300mm9、超声波雾化粒径:30-50μm10、操作系统:人机互动界面,PLC控制11、喷嘴移动方式:电动机械组合XYZ三轴电缸产品规格1、机器尺寸:1000mm×880mm×1800mm (长×宽×高)2、重量:55Kg
    留言咨询
  • 那艾实验型喷雾干燥机NAI-GZJ-Y(引风+布袋除尘)主要适用于高校、研究所和食品医药化工企业实验室生产微量颗粒粉末,对所有溶液如乳浊液、悬浮液具有广谱适用性, 适用于对热敏感性物的干燥如生物制品、生物农药、酶制剂等,因所喷出的物料只是在喷成雾状大小颗粒时才受到高温,故只是瞬间受热,能保持这些活性材料在干燥后仍维持其活性成份不受破坏。选型帮助1、适合小批量实验室使用,最大处理量1500ml/H。2、物料属于水溶剂,无有机溶剂,物料适合高温干燥。3、采用引风方式,风力更加均匀稳定,特殊物料不易粘壁。4、标配尾气布袋除尘,粉尘捕集率高,更加环保。主要特征1、实验型喷雾干燥机整机采用优质不锈钢材料sus304制造,设计紧凑,尺寸非常小巧,机器按键、温度计、空气管路等全部采用人体工程设计,快捷插拔,人性化操作。2、主机采用PLC控制,7寸大触摸屏操作,全自动流程控制,可实现进风温度、出风温度、变频量、通针频率等显示和控制;数据记录和导出、曲线分析功能、报警和过载保护。3、设备采用3.5Kw超大功率定制sus2520材质加热管,在干燥温度控制的设计上采用实时调控PID恒温控制技术,使全温区控温准确,加热控温精度在±0.5℃。4、内置风机设计,采用变频器+中压风机:经过反复验证,风机转速大小以及风压会影响不同产品的物料喷雾效果,并对应不同的产品产率,通过变频设计,将风机控制开放给用户,让用户寻找属于自己合适的风量。5、内置全无油空压机设计,喷粉的颗径呈正态分布,流动性非常好,而且噪音非常低,小于60db,符合国家实验室噪音标准; 干燥后的成品干粉,其颗粒度较均匀,95%以上的干粉在同一颗粒度范围。6、二流体喷雾的雾化结构,设计紧凑,无需附属设备,方便使用,历久如新;设有喷咀清洁器(通针),在喷咀被堵塞时,会自动清除,通针的频率可自动调整。7、进料量可通过进料蠕动泵调节,样品少量可达80ml, 最高2L/H,用户可根据物料情况选择最佳进料方式。8、标配尾气布袋过滤装置,尾气过滤效率高,可捕集粒径大于 10 微米的细小粉尘,净化空气效率可达99以上,操作稳定,维护方便,改善环境,回收物料,绿色环保。9、关机保护功能:关机时只需按停止键,机器除风机外立即停止运行,保证设备不会因为误操作(强行关风机)而导致加热部分烧坏;10、电气标准制作,从空开到触点,从继电保护器到按钮开关,无论大小电气部件,我们全套采用正泰原装电气标准制作,有限度的保证设备的安全性、稳定性和使用寿命。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制