当前位置: 仪器信息网 > 行业主题 > >

打草机

仪器信息网打草机专题为您提供2024年最新打草机价格报价、厂家品牌的相关信息, 包括打草机参数、型号等,不管是国产,还是进口品牌的打草机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合打草机相关的耗材配件、试剂标物,还有打草机相关的最新资讯、资料,以及打草机相关的解决方案。

打草机相关的资讯

  • 大曹三耀参展CPhI 2019,YoYo献彩蛋剧透新品
    6月18日,CPhI China 2019在上海新国际博览中心盛大开幕,吸引了来自120个国家和地区的几万名医药行业观众。YoYo也不甘落后,积极加入三耀精细化工品(北京)销售有限公司参展团队,跟大家伙儿一起见证了此次盛会。你要问我参展现场如何?请看YoYo带回来的小照片!(文末有福利,一定要看到最后哦~)CPHI 2019 大曹三耀展台热况大曹三耀总经理高濑雅英带领的CPhI 2019参展团队此次展会,大曹三耀以DAISOGEL与CAPCELL PAK融合之美为主题,传达出大阪曹達通过上下游产品链的整合实现了从填料、分析柱、半制备柱到工业纯化全套产品链的完善,进而能够满足药企用户从实验室分析到药物分离制备的小试、中试,再到生产车间工业级制备纯化的各类型需求的信息。大曹三耀产品服务链DAISOGEL硅胶填料的生产过程贯彻GMP理念进行质量管理,不仅可提供3-50 μm粒径的各种裸硅胶和键合硅胶,而且可以根据客户需求定制产品。大阪曹達是世界上最大的液相色谱用硅胶生产商之一,DAISOGEL填料以优质的产品性能在世界制药行业取得了较高的市场占有率,此次展会上国外用户对DAISOGEL非常热情,由此便可见一斑。印度、巴基斯坦、伊朗等国家的医药和贸易公司被DAISOGEL吸引,纷纷竖起大拇指称赞 “very good”!当然了,除了填料,莅临展台的用户中也有不少接触、使用过CAPCELL PAK系列分析柱,用过的都说好,YoYo超开心呢~YoYo先介绍一下CAPCELL PAK ADME,它可是药物代谢研究、创新研发工作中的一件利器哟。CAPCELL PAK ADME专为药物代谢研究而生,其命名便是Absorption, Distribution, Metabolism, Excretion(吸收、分布、代谢、排泄)的缩写;键合立体笼状结构的金刚烷基团,在强极性和疏水性化合物同时分析、同分异构代谢物分析等方面表现非常出色。CAPCELL PAK ADME色谱柱采用独特的立体笼状金刚烷基官能团——ADME官能团,突破了以C18官能团为主的传统柱在反相保留机理中的可分析化合物的限制,使可分析化合物的极性范围得到了巨大的提升;并且,在极性提升的同时还兼顾一定的疏水性;从而,包含从强极性化合物到疏水性化合物的复杂组分样品在ADME上也能同时得到良好的保留。★ 立体笼状金刚烷基官能团——独特的独特的表面极性与疏水性平衡★ 高表面极性——对强极性化合物的良好保留★ 兼顾一定疏水性——从极性到疏水性化合物的共同分析★ 立体选择性——空间异构体拆分能力ADME键合结构示意图ADME(adamantane)金刚烷,我们首次将这种笼状结构的金刚烷基团以精确控制的键合密度导入填料表面,通过“新型官能团”和特有的包被型填料表面“控制技术”,我们将保持疏水性又提高表面极性变为可能;由于金刚烷特有的笼状结构所带来的立体选择性,还赋予了ADME分离结构类似化合物的能力。YoYo偷偷告诉你一个小秘密,CAPCELL PAK系列即将发布新品啦!它是DAISOGEL与CAPCELL PAK融合后的第一款产品,不仅保留了原有的独特性能,而且耐水能力得到了极大的提升。你!猜!它!是!谁!关注“大曹色谱”公众号,在评论区留言,前10个猜中的小伙伴YoYo会联系您,有精美礼品等着你哟~
  • 大曹三耀:从“幕后”走向“台前”——访三耀精细化工品销售(北京)有限公司总经理高濑雅英
    p style="text-indent: 2em text-align: justify "大阪曹達集团是实力雄厚的日本化学品公司,成立至今已有一百余年,主要从事包括次氯酸钠、氢氧化钠等基础化学品、医药中间体和机能性化学品等化学制品的开发、生产和销售,并且以特殊化学品为基础,将市场扩大到生物制品、环境等相关产业。尤其在硅胶色谱填料方面,大阪曹达集团还是世界上最大的制造商之一。/pp style="text-indent: 2em text-align: justify "2017年12月,大阪曹達集团收购资生堂集团旗下全部液相色谱相关业务,形成了包括色谱填料、色谱柱及色谱分析仪器的完整产品线,并在日本成立三洋精细医理化科技株式会社,在中国成立全资子公司——三耀精细化工品销售(北京)有限公司(以下简称“大曹三耀”),负责原有色谱柱、大阪曹達色谱填料及亲和色谱等产品在中国的销售和技术支持工作。/pp style="text-indent: 2em text-align: justify "一系列的变动已过去一年半的时间,收购为大阪曹達带来了哪些新变化,以及未来会有哪些策略规划?大曹三耀在中国市场的产品服务、技术支持及品牌推广等方面做了哪些战略布局?仪器信息网编辑近日采访到大曹三耀总经理高濑雅英先生,就这些问题进行了深入交流。/pp style="text-align: justify " /pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/1f933713-b4a0-47e7-8bb6-eba794571b07.jpg" title="总经理.jpg" alt="总经理.jpg"//pp style="text-align: center "span style="font-size: 14px "strongspan style="text-align: justify "大曹三耀总经理 高濑雅英先生/span/strong/span/pp style="text-indent: 2em text-align: justify "strong全球业绩卓越,整合产品线布局新策略/strong/pp style="text-indent: 2em text-align: justify "提到色谱填料,大阪曹達可谓当前全球市场上优势品牌之一,不仅在日本国内市场,在欧美市场也取得了非常好的业绩,目前在中国市场也有较高的市场份额。大阪曹達的色谱填料之所以广受欢迎,高濑雅英认为其原因主要有三点:第一,填料的种类及规格齐全,从分析用小粒径填料,到制备级大粒径填料,还有多种孔径可供搭配选择,同时,填料的键合修饰官能团也很丰富;第二,产品性价比高,目前大阪曹達的填料主要应用在药品相关领域的研发、制备及生产等方面,对于某些较难分离的医药品有着非常高的分离度,同时价格优惠,与市场上其他同等产品相比,其性价比更高;第三,对于填料规格可进行定制化研发,以满足用户的各种个性化需求。/pp style="text-indent: 2em text-align: justify "而谈到收购资生堂旗下液相色谱业务的举措,高濑雅英表示,大阪曹達集团一直有对产品链进行整合的战略规划。“大阪曹達的色谱填料在全球市场占有率非常高,为许多色谱柱生产企业提供填料,但我们只是在‘幕后’以供应商身份提供上游产品,并未体现自己的品牌。”/pp style="text-indent: 2em text-align: justify "原资生堂液相色谱事业部进入中国市场较晚,色谱产品虽偏小众,却拥有一批忠实的用户,其CAPCELL PAK系列色谱柱产品因其独特聚合物包被技术带来的优势,在使用过产品的用户中,更是拥有良好的口碑,并且有信心凭借优质的产品继续拓展市场。这正好满足了大阪曹達集团走向“台前”的发展要求,于是,经过一番运作,促成了本次收购案。高濑雅英提到:“原资生堂液相色谱事业部的员工都非常优秀,现在加入到大阪曹達的团队,大家一起贡献智慧和力量,进一步拓展我们的现有业务。”/pp style="text-indent: 2em text-align: justify "谈及收购后公司的发展,高濑雅英说,大阪曹達制定了2018年至2020年的中期经营计划,其中包括三个基本方针:创造一个新的增长引擎、扩大海外业务和完善事业架构。2018年以来,大阪曹達一直围绕着这三个基本方针开展业务,而对于原资生堂液相色谱事业的收购也正是贯彻这三个方针的一大举措。高濑雅英还提到,在产品方面,大阪曹達结合资生堂CAPCELL PAK原有的独特聚合物包被技术与集团在硅胶生产方面的领先技术,开发出新的色谱产品,并将于不久的将来在市场上推出。/pp style="text-indent: 2em text-align: justify "strong依托产品开发与服务,拉升品牌,传播价值/strong/pp style="text-indent: 2em text-align: justify "过去,中国色谱耗材领域多以欧美和日本的产品为主,这些产品质量高,价格也偏高。但是,近年来,中国本土色谱耗材企业发展迅速,产品品质大幅提升。本土企业的崛起,以及越来越多的进口耗材厂商进军中国市场,使得中国耗材市场的竞争更加激烈。/pp style="text-align: justify text-indent: 2em "高濑雅英表示,虽然竞争激烈,但中国经济现在处于高速发展时期,整体趋势越来越好,相应的分析仪器以及色谱耗材等有着非常广阔的市场前景。大曹三耀作为集团在华子公司,将主要以色谱填料、色谱柱和亲和色谱产品作为增长引擎,扩大事业规模。/pp style="text-indent: 2em text-align: justify "尽管CAPCELL PAK系列液相色谱柱具有的独特技术和良好质量,加之贴合用户需求的技术服务,使得大曹三耀在色谱柱销售上取得了逐年稳定增长的好成绩,但高濑雅英认为,目前阶段,无论是CAPCELL PAK系列色谱柱还是大阪曹達的填料品牌DAISOGEL,在中国的知名度还没有达到预期,产品的核心价值也未被完全挖掘和展现出来。因此,大曹三耀下一阶段的目标是继续提升品牌知名度。/pp style="text-indent: 2em text-align: justify "那么,如何提升知名度呢?高濑雅英表示,公司将围绕着以下四个方面开展工作:第一,在原有基础上,以更好的经营手段发展现有液相色谱相关业务;第二,持续进行新产品的研发,虽然研发部门在日本,但作为集团子公司,大曹三耀将收集中国用户需求,反馈给总部研发部门,进行新品研发,以便更好地服务中国用户,此外液相分析色谱柱的新产品也在持续开发中;第三,在中国打开新品的销售市场,目前大阪曹達一个新的亲和色谱填料产品已经完成开发,正着手进军中国市场;第四,丰富现有产品的种类,增加应对客户复杂需求的能力。大曹三耀还将继续对药品领域以外的食品、化妆品等分析进一步积累数据,拓展市场,并积极参与到标准方法的制定工作中。/pp style="text-indent: 2em text-align: justify "除了上面提到的四个方面,大曹三耀还调整了经营模式。高濑雅英介绍,大阪曹達集团在企业创立初期,就是通过对实际用户进行一对一沟通来推广产品的,多年来不断积累,才能逐渐壮大,发展为如今的大规模企业。时至今日,不论是对使用量较大的用户进行大宗交易,还是对使用量较少的用户提供少量填料,大阪曹達集团始终不忘初心,为满足用户需求而进行深入的技术沟通。今后,大曹三耀在中国市场也将继续钻研,对实际用户进行一对一的技术交流。“满足用户需求,提供个性化的服务和技术支持,形成了大曹三耀的服务理念。”高濑雅英总结到。/pp style="text-indent: 2em text-align: justify "为了更好地提供服务,大曹三耀保留了原资生堂液相事业部的技术中心及核心技术团队,强大的技术实力可以为中国用户提供全面的技术支持。此外,针对如今用户的使用习惯,大曹三耀还运营了一个官方微信公众号——“大曹色谱”,可持续为用户提供随时随地的线上技术支持。/pp style="text-align: justify "br//pp style="text-indent: 2em text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong后记/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "高濑雅英先生已在大阪曹達集团工作30年以上,并于2017年底出任大曹三耀总经理一职。在30多年的职业生涯中,高濑先生近一半时间是在产品研发部门度过的,他表示,研发是一件既困难又有趣的事情,无论是从研发新品还是开发新技术,都不是简单就能完成的。现在的大曹三耀在市场开发和应对客户需求方面,一直为日本总部反馈信息,进行持续的产品创新和研发工作;同时,中国的技术中心也在积极地为中国用户开发贴近其实际需求的解决方案。/span/ppbr//p
  • 大曹三耀:新“芯”新动力 助力复杂化合物的分析
    p style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "色谱是一种分离分析手段,分离是核心,因此担负着分离工作的色谱柱是色谱系统的心脏。目前市场上色谱柱种类和规格繁多,在制药、食品、环保、石化、农林、医疗卫生等领域有应用广泛,相关从业人数不断增长。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "以往大家比较关注色谱柱的应用情况,为使大家更全面的了解色谱柱类别、相关技术及最新应用进展等内容,仪器信息网特别策划了“/spana href="https://www.instrument.com.cn/zt/spzfl" target="_self"span style="font-family: 宋体, SimSun text-decoration: underline "istrong走近色谱的‘心脏’——色谱柱新技术新应用/strong/i/span/aspan style="font-family: 宋体, SimSun "”专题,并邀请色谱柱主流厂商来分享对色谱柱类别、技术发展及最新应用进展的看法。此次,我们特别邀请三耀精细化工品销售(北京)有限公司谈一谈色谱柱技术与应用。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong仪器信息网:请谈下目前色谱柱技术有哪些问题亟待解决?/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strong大曹三耀/strong:目前市场上色谱柱种类繁多,按照不同的色谱分离模式和机理,色谱柱可分为反相、正相、亲水、疏水、离子交换、手性、尺寸排阻等。反相模式是高效液相色谱法中使用最多的一种,约有80%的HPLC分析都是在该模式下完成的。反相色谱法通常流动相条件简单,重复性好且分辨率高,适合于大部分化合物的分离,但反相色谱最主要的缺点在于对极性较强的化合物无法获得良好保留。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "亲水相互作用色谱(Hydrophilic Interaction Chromatography , HILIC)的出现很大程度上弥补了反相色谱在极性化合物领域分析的不足。HILIC模式通过如氨基、氰基、二醇基、酰胺以及两性离子等强极性固定相的键合,同时结合高比例有机相组成的流动相,能够实现对极性物质的保留。但HILIC模式对于疏水性物质而言保留不佳,限制了其应用范围。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "为了解决反相模式对极性物质保留能力有限的问题,各大色谱柱公司纷纷通过不同手段改进现有填料,包括低碳含量高表面极性耐纯水流动相的C18 AQ色谱柱,极性基团嵌合型色谱柱等。针对于此,2014年10月CAPCELL PAK家族推出了全新立体结构键合高表面极性反相系液相色谱柱——CAPCELL PAK ADME(图1)。一方面,该色谱柱采用了原资生堂公司的聚合物包膜技术,在色谱填料表面均匀包覆有机硅聚合物薄层,有效屏蔽残存硅醇基及残存金属离子的二次吸附作用,优化峰型,并提高色谱柱耐酸耐碱性能;另一方面由于金刚烷基特殊的立体结构,为该色谱柱带来了独特的表面极性和疏水性,适用于在反相条件下对高极性化合物进行分析,并适用于高极性化合物到疏水性化合物的共同分析。与常规C18色谱柱相比较,ADME色谱柱有效扩大了极性化合物分析范围,并对结构接近的同分异构体(非对映异构体)具有一定分离能力。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/02637c5f-4614-4085-8b8b-639fed78cbb6.jpg" title="1_副本.png" alt="1_副本.png"//pp style="text-indent: 0em text-align: center "span style="font-family: 宋体, SimSun "strong style="font-size: 12px "图1 CAPCELL PAK ADME色谱柱键合示意图/strong/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong仪器信息网:请问贵公司重点关注的应用领域有哪些?贵公司产品目前在市场上应用情况如何?/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strong大曹三耀/strong:我们目前重点关注药品分析、化妆品和食品分析相关领域,并为用户提供各种应用方案。CAPCELL PAK ADME色谱柱从2014年投入市场至今,在化妆品、药品、食品检测方面已取得良好应用,部分应用方法已经发表成了学术论文,甚至纳入国家标准。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "比如,化妆品中极性跨度较大的10种α-羟基酸,使用CAPCELL PAK ADME色谱柱可以得到良好的分离,该方法作为修订检测方法于2019年3月被纳入《化妆品安全技术规范(2015年版)》,并将于2020年1月1日开始实施。2019年5月,中国食品药品检定研究院发布的《国家药品抽检探索性研究情况》中,联苯苄唑乳膏中极性跨度较大的防腐剂和抗氧化剂的检测,羌活饮片中焦糖色素的筛查,均使用了CAPCELL PAK ADME色谱柱。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "同时,CAPCELL PAK ADME色谱柱在药品分析中也得到很多的应用,对于中药苷类/核苷类物质、糖皮质激素类、多肽类均有良好的分离效果,在药物研发方面,由于ADME色谱柱分析对象广泛,可以兼顾极性杂质、中间产物及终产物,得到了众多医药企业客户的认可,已有药企将该款色谱柱纳入企业标准。尤其在药物代谢动力学研究方面,极性代谢物能够良好保留,代谢前体也可以在反相模式下同时分析,成为科研工作的有力帮手。另外,在食品分析中,由于CAPCELL PAK ADME色谱柱对有机酸、核苷酸、水溶性维生素等极性化合物分离效果极佳,因此也收到了许多客户的良好应用反馈。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong仪器信息网:您认为,未来几年色谱柱市场将会如何发展?/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strong大曹三耀:/strong在未来的3-5年,特别是下一版中国药典的周期内,快速分析将越来越被大家所重视。为适应市场需求,今年公司在全新立体结构金刚烷基键合色谱柱ADME基础上,进一步对其耐水性能进行提升,推出升级版高表面极性CAPCELL PAK ADME-HR色谱柱。此次新产品在原有优质性能的基础上进一步提高了耐水性能,它将为广大色谱工作者提供更大的应用空间和更可靠的解决方案。于此同时,粒径2微米可耐受100MPa压力的CAPCELL PAK ADME-HR S2系列色谱柱及采用PEEK内嵌工艺可耐受50MPa压力的惰性CAPCELL PAK INERT ADME系列色谱柱也为极性跨度大的复杂化合物快速分析提供了解决方案。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "同时,随着液相色谱的应用更加广泛,越来越多的特殊用途色谱柱将会被大家应用于各个检测领域,比如最近几年发展迅速的临床检测领域。大阪曹達集团的限进介质填料色谱柱CAPCELL PAK MF系列也正在被更多的用户所采用。/span/ppbr//p
  • 日本大曹收购资生堂色谱业务 含中国地区
    p  8月29日,株式会社大阪曹达公司发布公告,即日起,大阪曹达与株式会社资生堂(总社)就资生堂医理化技术有限公司股份所发行的股份,含资生堂中国有限公司在内的所有色谱业务签订收购协议。/pp  大阪曹达公司致力于发展健康医疗相关业务,此项业务是大阪曹达集团中期计划“NEXT FRONTIER-100”的第三大核心业务。大阪曹达集团积极投资管理资源,尤其是在制药工业分离介质(液相色谱硅胶)方面,包括扩大生产能力、调整海外布局、开发生物制药纯化材料,以使HPLC硅胶填料业务保持全球第一。/pp  资生堂医理化公司是专注于液相硅胶、液相色谱柱以及分析设备生产制造的合同制造公司,拥有成功可靠的技术。通过收购,大阪曹达公司的色谱业务将获得包括色谱柱、分析设备以及多种液相色谱硅胶的完整产品线。而且,大阪曹达公司致力于发展和制造满足多样化用户需求的产品、扩大业务领域、在药物活性成分及中间体领域产生协同效应。/pp  公告显示,资生堂医理化公司总部位于日本,主要从事分析仪器设备的制造和销售,资产约在1亿日元,发行股份为2100股,本次交易数量为全部股份。资生堂医理化公司部分财年收入如下:/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="33%" valign="top"财年/tdtd width="33%" valign="top"p style="text-align:left "2015年12月31日/p/tdtd width="33%" valign="top"p style="text-align:left "2016年12月31日/p/td/trtrtd width="33%" valign="top"p style="text-align:left "销售额/p/tdtd width="33%" valign="top"p style="text-align:left "4.11亿日元/p/tdtd width="33%" valign="top"p style="text-align:left "6.10亿日元/p/td/trtrtd width="33%" valign="top"p style="text-align:left "营业利润/p/tdtd width="33%" valign="top"p style="text-align:left "1100万日元/p/tdtd width="33%" valign="top"p style="text-align:left "1100万日元/p/td/tr/tbody/tablep  截至2016年12月31日止财政年度的会计期间为9个月,财年由4 - 3月份转为1 - 12月。/pp  通过收购资生堂中国有限公司色谱业务的资产和营销权,扩大了其在亚洲的销售额,收购色谱业务使该集团扩大了医疗和海外相关业务力度。此项协议将于2017年12月1日生效。/ppbr//p
  • 盛名之下的小而美,做分离材料领域的特种兵——访三耀精细化工品销售(北京)有限公司副总经理雷宇
    p style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "2017年12月,世界最大硅胶色谱填料制造商之一的大阪曹達集团发表声明,宣布收购资生堂液相色谱相关业务,具体为原资生堂旗下医理化科技株式会社,包括资生堂(中国)投资有限公司先端科学事业推进部的人员、技术、产品、厂房设备等相关资产,成立三洋精细医理化科技株式会社,并以原资生堂先端科学事业推进部成员为班底在中国成立了全资子公司——三耀精细化工品销售(北京)有限公司(以下简称“大曹三耀”),负责CAPCELL PAK系列色谱柱及DAISOGEL色谱填料以及大阪曹達集团最新推出的亲和色谱填料产品在中国的推广销售和技术服务等工作。那么,距离公司主体变更已有半年时间,崭新的大曹三耀对原有业务和新业务做了哪些梳理、整合呢?仪器信息网于前不久举行的CPhI 2018期间采访了大曹三耀副总经理雷宇。/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/61aa4de5-4f05-43a1-bcfd-a653606f271c.jpg" title="雷宇.jpg"//pp style="text-align: center "span style="text-indent: 2em "三耀精细化工品销售(北京)有限公司副总经理 雷宇/span/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong两个百年品牌的产品联姻/strong/span/pp  如果在业内提起资生堂CAPCELL PAK色谱柱和大曹DAISOGEL色谱填料,大家一定不会感到陌生。/pp  作为世界最大的硅胶色谱填料制造商之一,大阪曹達的DAISOGEL硅胶填料以过硬的品质、丰富的种类和高性价比,在世界范围内拥有很高的市场占有率。大阪曹達集团创立于1915年,是日本一家百年化工企业,在日本国内率先实现了电解烧碱工业化。大曹集团利用独创的制造技术,除了早期的基础化工产品业务外,还提供全球利基的功能型化工产品,以及医药原料药和中间体等各种化学制品。目前,该公司正努力向生物及环境等全新领域发展。/pp  同样,作为亚洲第一化妆品集团,资生堂的化妆品产品享誉全球。不同于资生堂百年以上的品牌影响力,其色谱事业反而是行业内“小而美”的独特存在。像民谣歌曲,偏小众,却始终拥有一批忠实的拥趸。而资生堂色谱产品的“拥趸”绝大多数是中高端用户,这与其一贯的“高品质、高服务”品牌形象十分契合,在液相色谱领域可谓“十年磨一剑”,从0到1打出了自己的口碑和品牌。如今, CAPCELL PAK系列色谱柱产品的市场表现越来越好,原资生堂的分析色谱柱、分析仪器及制备用填料等液相色谱相关商品的市场占有率也逐年上升。/pp  过去CAPCELL PAK色谱柱和DAISOGEL色谱填料这两种产品分别由不同的公司沿着各自的线路发展,彼此并没有太多交集。然而,随着业务并购的发生,两者走到了一起。/pp style="text-align: center "strongspan style="color: rgb(255, 0, 0) "产品线扩充,生成“融合之美”/span/strong/pp  收购资生堂液相色谱产品,将给大阪曹達带来哪些新变化呢?/pp  首先,是产品范围的扩大。“当然,这个业务兼并收购符合两个百年集团的战略需要和选择,也将更加有利于各自事业的发展。”大阪曹達通过此次收购使旗下色谱产品范围进一步扩大,从色谱填料、分析柱到制备柱,在液相色谱分离领域得到了更为完整的产品线。“我们今后的产品线不仅全面,而且专业、有针对性。”雷宇解释说,“小(分析柱)做的“精细”,突出高性能 大(填料)做的“经济”,这个经济不是便宜而是在追求高品质的同时突出性价比。我想这两种不同的侧重点也是分析和制备工作不同要求和思路的体现。”/pp  其次,营业模式的行业适应性更强。雷宇指出,“原资生堂的营业模式更适于化妆品行业,对仪器行业的适应性不理想。这一点在新公司成立后会获得改善,会更好地适应本行业和用户的特点和需要。”/pp  第三,技术融合。“这也是最为关键的变化,大阪曹逹和资生堂业务融合的同时,也是两家百年企业的技术融合。”雷宇在色谱分离材料领域扎根多年,对产品技术的观点十分精粹。“色谱产品技术不断得到提高和突破,这些技术有很多。但我认为其中最核心的不外乎两方面:一是填料基材的制造技术 二是填料表面处理技术。而这两项技术恰恰是大阪曹逹和资生堂所擅长的“看家本领”。因此,两者的融合将给未来的产品和业务带来巨大的想象空间。这就是我们所说的“融合之美”。当然,这不是停留在想象上,我们已经开始逐渐落实。”据悉,今年下半年,大阪曹逹将会有面向生物制药领域的新产品推出。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/490d8cbb-1ec1-48ef-b781-3359e571246a.jpg" title="融合之美.png"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong以专注炼就专业,为用户提供一流产品和服务/strong/span/pp  前面提到,大曹三耀的团队原来属于资生堂公司的先端科学事业部,就是原来资生堂色谱事业的团队。“人员、资产、厂房设备、技术等等全部转移到大阪曹逹公司,所以说,包括人员在内的整个业务延续下来是相当稳定的。”关于团队,雷宇的自豪感溢于言表,“我们这支团队的核心人员都是从事这项工作10年甚至更久的员工,他们都已成为这个行业最优秀的人才。”/pp  谈及公司未来发展,雷宇表示,“我们会继续专注于自己所擅长的事,并把它做到最好。如果整个行业是一根链条,我们不要去做最长的那段,而是力争去做最强的那一环。在这个过程中修炼自己,并享受经历奋斗后成长所带来的快乐和自豪。”/pp  “以专注炼就专业,为用户提供第一流的产品和更专业的服务”是大曹三耀的宗旨。目前,色谱分离材料,包括色谱柱和填料,往往被归类为色谱耗材。“但实际上不是这样的。色谱柱是色谱分离中最核心的工具,所以我们是把色谱柱当工具做。既要为客户提供好工具,更要为客户提供好的服务。”雷宇认为,服务的价值更为重要,而这也往往容易被人所忽略。尤其在当下互联网时代,带来的就是商品差异性缩小,信息不对称度减弱。在这种情况下,对用户体验影响更大的就是服务。只有专业的服务才能帮助客户解决已知的问题,避免未知的风险,将分析工作做的越来越好。/pp  谈及公司定位,雷宇清晰而笃定,“世界的竞争法则是“强者生存”而不是“大者生存”,仪器行业面很大,我们不求全,我们只专注分离材料领域,在这个环节做专业、做强。我们不是行业的集团军,而是特种兵!”/pp  span style="color: rgb(31, 73, 125) "strong后记:/strong/span早在2004年左右,资生堂的色谱产品进入中国,当时是通过代理商的形式发展。2008年发生的三氯氰胺事件使资生堂的色谱柱产品第一次在行业内出名,当时检测三氯氰胺的国标方法采用了资生堂色谱柱(CAPCELL PAK CR)。随着其产品声望和影响力的不断提高, 2010年,资生堂公司在中国组建先端科学事业推进部开始直接运营其液相色谱事业。如今,经大阪曹逹集团的收购整合,大曹三耀的产品线将更加完整,同时,专注于现有产品,面向液相色谱各个领域的中高端用户,提供更全面的产品和技术服务。可以看到,大曹三耀对业务定位清晰,和其他产品相比具有差异性,专注且不贪多。有理由相信,全新出发的大曹三耀,业务在未来几年将迎来快速发展。/p
  • 《自然》公布影响2022年科学进程十大人物,北大曹云龙入选
    2022年12月15日,《自然》杂志(Nature)公布了2022年度科学影响“十大人物”(Nature’s 10),北京大学生物医学前沿创新中心(BIOPIC)副研究员、北京昌平实验室领衔科学家曹云龙入选。这一榜单旨在选出十位在这一年重大科学进展中占有一席之地的人物。Nature这样介绍:“曹云龙:新冠预测者(COVID-predictor),帮助追踪新冠病毒的演化,并预测了导致新变异株产生的重要突变。”‍新冠疫情暴发以来,曹云龙与团队成员围绕着新冠病毒免疫逃逸及其演化变异的分子特征展开系统性研究,其中有关新冠中和抗体药物研制和奥密克戎株免疫逃逸机制的创新性研究结果为抗击疫情做出了重要贡献,以第一作者或共同通讯作者在Nature、Cell等杂志发表10余篇论文。值得注意的是,自过去的一年里,曹云龙以第一作者兼共同通讯作者在Nature杂志发表了3篇论文(最新一篇将于近期上线)。2022年,奥密克戎在全球流行,打破了病毒的单一进化规律,多种亚型株不断变异出现并显示出很强的免疫逃逸能力。曹云龙/谢晓亮团队深入地研究了奥密克戎变异株的免疫逃逸特征。在获得大量研究数据的基础上,该团队揭示了新冠病毒的趋同进化趋势,并表明新冠病毒突变可被预测。这将有助于人类在病毒变异前有望进行前瞻性研判,为后续抗体药物和广谱疫苗的研制提供了科学理论与技术支撑,对未来如何加强病毒感染免疫防治提出了新的思路。1、系统性揭示奥密克戎株免疫逃逸机制2021年末,新冠病毒变异株奥密克戎出现并快速蔓延,其对于人体体液免疫的逃逸能力和机制亟待解析。曹云龙与团队成员第一时间关注,通过开发的高通量深度突变扫描技术,描绘了新冠中和抗体的逃逸突变谱,发现超过85%的新冠原始株诱导的中和抗体被奥密克戎株BA.1逃逸,并具体解释了奥密克戎株免疫逃逸机制。该研究2021年12月相继发表于Nature 1和Cell 2,对全球疫情防控具有极高的时效性和重要性。图1. 基于酵母展示的高通量突变扫描技术描绘抗体逃逸图谱奥密克戎变异株BA.2、BA.2.12.1、BA.4、BA.5的接连出现及其免疫逃逸效应对疫苗接种的预防效果和抗体药物的治疗效果提出了严峻挑战,新变异株的受体结合能力和免疫逃逸能力亟待详尽研究。2022年4月,南非科学家首次在测序中发现奥密克戎BA.4/BA.5变异株,团队即根据经验敏锐地意识到其潜在的强大免疫逃逸能力和流行潜力,随之迅速投入研究。通过高通量单细胞测序、分离并测定上千个新冠单克隆中和抗体的表位与中和活性,曹云龙带领团队发现奥密克戎BA.2.12.1、BA.4、BA.5进化出的新突变能够特异性逃逸BA.1感染所诱导产生的中和抗体。并且,接种疫苗的奥密克戎BA.1突破感染存在“免疫印迹”现象,即BA.1感染主要唤起之前原始株疫苗所诱导的记忆B细胞,而很难产生特异性针对BA.1的中和抗体。由于存在“免疫印迹”现象且新冠病毒可以快速进化出免疫逃逸突变位点,通过奥密克戎感染实现群体免疫来防止感染是极难实现的。该成果于2022年6月发表于Nature 3,在国际上首次报道了BA.2.12.1和BA.4/5刺突蛋白结构和体液免疫逃逸特性、奥密克戎突变株“免疫印迹”分子机制的系统性研究结果,为新冠疫苗研发方向的调整提供了重要数据参考,受到了Science、Nature、New York Times、ABC News等多家国际知名媒体的竞相报道。图2. 基于高通量突变扫描技术的RBD中和抗体表位分类与逃逸位点识别继BA.5之后,新突变株持续出现,其中BA.4.6、BF.7和BA.2.75备受关注。曹云龙与团队成员率先发现BA.4.6、BF.7等在RBD区域携带R346突变的奥密克戎新突变株能够逃逸BA.5感染诱导的体液免疫,与BA.5相比有更高的增长优势,且能导致中和抗体药物Evusheld的失效,该成果发表于国际一流传染病学期刊The Lancet Infectious Diseases 4,在国际学界引起广泛关注。随后,曹云龙及其团队注意到了BA.2.75在印度的增长优势,发现其对于刺突蛋白N末端结构域(NTD)靶向的中和抗体以及BA.5突破感染康复者血浆具有极强的逃逸能力,此外,BA.2.75的ACE2亲和力极高,这将赋能其获得更多的免疫逃逸突变,这在新冠病毒的后续进化中得到验证,相关成果发表于国际一流微生物学期刊Cell Host & Microbe 5。该系列创新性发现被Nature、Science等多家媒体快速跟进报道。今年8月以来,上百种突变株在全球范围内同时出现,且诸多突变株比BA.5更有增长优势,其中BQ.1和XBB两个家族流行度最高。曹云龙及其团队发现,近期流行的CH.1.1、BQ.1.1、BQ.1.1.10(BQ.1.18)和XBB显示出更强的抗体逃逸能力。例如,接种疫苗后突破感染BA.5的患者,其康复一个月后的血浆虽然对于BA.5和BF.7的中和滴度较高(即防感染效果较好),但对于BQ.1.1.10(BQ.1.18)、XBB、CH.1.1等亚型的中和滴度很低,防感染作用较低。相关研究将近期在Nature 6发表。图3. 三针灭活疫苗BA.5突破感染者对不同新冠变异株的血清中和滴度曹云龙与团队成员对于病毒变异株的持续跟踪系统研究快、广、深,将深化科学界不断揭示不同的病毒突变将会如何影响人们的抗体免疫应答反应,更加精准地了解病毒突变与人体免疫系统之间发生反应的规律,从而为未来从根本上防治病毒感染奠定关键的科学基础。2、预测新冠病毒变异趋势奥密克戎的变异株仍在快速涌现,不同支系纷繁复杂。但曹云龙与团队成员持续追踪观察发现,病毒的突变正在呈趋同趋势。“病毒进化是随机的,但也遵循一定的规律。”在长期系统研究的基础上,曹云龙及其团队注意到,新的奥密克戎突变株的受体结合域(RBD)所携带的突变表现出趋同效应,即独立演化的毒株演变出了相同的RBD突变。进一步研究发现,突变株感染所诱导的弱中和和非中和抗体比例增加,有效中和抗体占比越来越少且表位多样性越来越低,从而导致病毒面对的免疫压力越来越集中。由于病毒演化的驱动力主要来自机体免疫压力,集中的免疫压力促进了病毒趋同进化。图4. 新冠病毒RBD趋同进化突变热点现有证据表明,新冠病毒奥密克戎支系目前的演化是由中和抗体导致的免疫逃逸压力主导的。曹云龙表示,“利用大量不同变异株感染者抗体逃逸图谱,我们可以分析出在不同的免疫背景下,分别是哪些RBD突变有利于病毒逃逸最多的强效中和抗体,并较准确地预测出不同毒株的突变趋势”。曹云龙与团队成员构建了基于中和抗体免疫压力的新冠病毒RBD进化趋势预测模型,基于今年上半年世界人群的免疫背景,预测了BA.2.75和BA.5未来的进化趋势。该模型预测的突变热点与现实世界中病毒的进化高度一致。团队于7月基于模型构建出的假病毒,与随后10月、11月大量出现的新变异株相似度极高,相关预测很快在病毒实际发生的进化中得到验证。这一结果表明,新冠在群体免疫压力下所产生的突变是可以被预测的。通过预测可能出现的变异株并构建出相应的假病毒,可以提前设计开发疫苗和抗体药物以应对未来可能出现的疫情,是病毒学领域的重要突破。该研究成果于2022年9月在预印本平台发布,这是全球首篇系统性研究新冠病毒趋同进化现象的论文,在国际上引起强烈反响。曹云龙受邀在世卫组织专题会议上作主题报告,该论文将近期在Nature 6发表。图5.基于中和抗体免疫压力的新冠病毒RBD进化趋势预测模型3、与病毒竞速的科学长跑:中和抗体药物研发2019年末,曹云龙在导师谢晓亮院士的指导下于哈佛大学化学系完成学业,获得博士学位,随后回国就职于谢晓亮院士创建并时任主任的北大BIOPIC。新冠疫情暴发后,谢晓亮院士迅速召集合作团队,协调各方资源,开启了迎战新冠病毒的科研战场。在谢晓亮院士的指导下,曹云龙也将科研重点迅速转变到新冠病毒免疫应答特征及其相关抗体药物和疫苗研究中。利用其在高通量单细胞测序技术领域的特长,曹云龙与团队成员率先证明了利用高通量单细胞V(D)J测序,可以快速地从新冠康复者记忆B细胞中筛选出大量新冠病毒高效中和抗体,开启了抗体药物高通量筛选的新方向。随后该团队在大量候选抗体中筛选出了编号为DXP-593、DXP-604的两个中和活性突出的抗体,并证明两者组合成抗体鸡尾酒疗法更加显效,研究成果相继在Cell杂志发表两篇论文7-8。其中,DXP-604在2021年德尔塔株流行时期在北京地坛医院作为同情用药紧急使用,治疗效果显著,患者核酸转阴时间大幅缩短,无一人转为重症。在后续的临床开发过程中,发现DXP-604被奥密克戎新变异株所逃逸。“这促使我们反思,对于新冠这类快速突变的病毒,抗体的广谱性与中和活性同样重要、甚至更加重要”,曹云龙解释道,“抗体的广谱性不仅取决于抗体本身的生化特性,同时也取决于病毒的突变规律和进化方向”。基于对新冠变异株的序列分析发现,曹云龙等发现新冠病毒变异遵循两点规律:1)突变主要发生在康复者和疫苗接种者体内产生的中和抗体所针对的“热点”表位,从而实现最大程度免疫逃逸;2)不太可能出现破坏病毒关键功能的突变。据此,团队提出了一种理性的新冠病毒广谱中和抗体筛选策略9,认为候选的中和抗体药物不仅要有强中和能力、可组成表位不冲突的抗体对,同时,广谱中和抗体药物还应靶向非优势免疫表位,从而可以不受群体免疫逃逸突变的影响;此外,理想的中和抗体药物应靶向乙型冠状病毒B支系RBD上的保守位点,且这些位点最好涉及关键的病毒功能,从而使得抗体逃逸突变不易出现。图6. 从非典康复者记忆B细胞中高通量筛选新冠广谱新冠中和抗体SA58/SA55根据这一思路,团队从接种了新冠疫苗的非典康复者中筛选出了一对广谱中和抗体,SA55和SA58。其中,SA55是目前国际上已知唯一处于临床阶段的,对包括BQ.1.1和XBB等株在内的所有当前流行株都有效的抗体。SA55是一个非常“稀缺”的抗体,在目前的人群免疫背景中几乎不存在类似的抗体,这意味着其对应逃逸位点目前几乎不存在免疫压力,因此很难进化出可以逃逸SA55的突变株。图7. 临床用新冠中和抗体对不同新冠变异株的中和活性除了用于治疗,该抗体组合还可以用于预防感染。从预防角度来看,抗体比小分子药物更具优势。小分子药物半衰期比较短,而抗体在血液中的半衰期可长达80天,这意味着抗体注射后的保护效力最长可达半年,可能比疫苗诱导的抗体浓度更高、中和活性更强,可实现长效预防作用,尤其适用于老年人或免疫缺陷人群等不适合疫苗接种或免疫反应差的人群。SA58和SA55还可以制成喷雾吸入式预防药物,一次提供的即时保护可维持6-12小时,初步的单盲随机对照试验显示,预防感染效率可达到80%以上,且成本较低,方便使用。目前正在进行更严谨的临床试验,预计将来可以大规模使用。4、未来展望新冠病毒具有较高的突变速率,变异株可以逃逸由疫苗接种或感染诱导的抗体保护作用,导致人群出现突破感染和二次感染。而且,在人体产生的免疫压力下病毒进化不断加速,已出现诸多逃逸人群免疫的变异株且还在不断被新变异株取代。显然,全球范围内疫苗研发的速度已落后于病毒进化速度,所存在的“免疫印迹”效应可能会导致新研发的变异株疫苗也很难抵御未来变异株的感染。因此,曹云龙表示,“之后,除了正在研发的广谱中和抗体药物,我们还将致力于研制可以克服既往‘免疫印迹’干扰影响的广谱疫苗,从而互补地提供对新冠疫情的全方位防护。”面对不断变异的新冠病毒,曹云龙及其团队的科研攻关将不断深入。研究成果的取得有赖于团队高效强大的科研协作精神与创新能力。曹云龙说,“北京昌平实验室和北大BIOPIC的合作为该系列研究提供了团队、平台和实验的支撑。BIOPIC的很多博士生都深度参与。要特别感谢谢晓亮院士的指导和支持”, “和其他合作者的配合也非常融洽、高效,因为大家都有着共同的目标,就是调动一切可以调动的科技资源,去迎战新冠病毒。”人 物 简 介 曹云龙,北京大学生物医学前沿创新中心(BIOPIC)副研究员,北京昌平实验室领衔科学家。2014年毕业于浙江大学竺可桢学院物理学专业,2019年获得哈佛大学化学博士学位。在新冠疫情期间,围绕新冠病毒B细胞免疫应答、特异性抗体的结构与功能等开展了系统性研究,其中新冠中和抗体药物研制、新冠体液免疫应答特征和新冠突变免疫逃逸机制的创新性研究结果为抗击疫情做出了重要贡献。以第一作者、共同通讯作者在Nature、Cell、Lancet Infectious Diseases、Cell Host & Microbe、Cell Research等期刊上发表多篇相关研究文章。曾获评《麻省理工科技评论》中国区“35岁以下科技创新35人”、国家优秀青年科学基金、2022年度Nature十大人物。来源 北京大学编辑 王海萍流程编辑 刘伟利
  • 上海交大曹骎团队成功解析额颞叶变性病人脑组织冷冻电镜结构
    近日,《Nature》以“Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43”为题在线发表了上海交通大学Bio-X研究院长聘教轨副教授曹骎与美国加州大学洛杉矶分校David Eisenberg课题组等的合作研究成果,解析了额颞叶变性病人脑组织中提取的淀粉样纤维的高分辨率结构,为该疾病的病理机制研究提供了重要信息。图1 Nature文章封面淀粉样纤维(amyloid fibrils)是由蛋白质发生液-固相变生成的聚集产物,与人类疾病,尤其是神经退行性疾病有着紧密的联系,如Aβ和tau纤维之于阿尔兹海默症,α-synuclein纤维之于帕金森氏症等。额颞叶变性(frontotemporal lobar degeneration, FTLD)是仅次于阿尔兹海默症及帕金森氏症的第三大神经退行性疾病,早先的研究指出FTLD病人脑组织中也存在淀粉样纤维,然而这一结论并未得到分子层面的证实,同时形成这些纤维的蛋白也未得到鉴定。图2 TMEM106B纤维结构解析(a)本研究中FTLD病人的脑切片免疫用诊断(上)及提取的淀粉样纤维的负染电镜照片(下)。(b)纤维冷冻电镜数据处理,包括二维分类(左)和三维重构(右)。(c)解析的纤维结构。为揭示FTLD与淀粉样纤维的关联,此项工作尝试从40个患有FTLD-TDP(一种FTLD的主要亚型)的捐献者脑组织中提取淀粉样纤维,最终在其中38个患者中发现了纤维,成功从其中4个患者中提取了纤维,并使用冷冻电镜三维螺旋重构的技术解析了这些纤维的近原子分辨率的结构(最高分辨率为0.29纳米)。出人意料的是,纤维的结构显示,这些纤维来自于一种从未被报道可以发生淀粉样聚集的蛋白—TMEM106B。此工作证实了FTLD是一种淀粉样纤维相关疾病,为淀粉样纤维蛋白家族拓展了一个全新的成员,同时为FTLD的病理机制提出了一个全新的假说,即TMEM106B的纤维化参与了FTLD的发病过程,并可能通过抑制TMEM106B的纤维化治疗这一疾病。曹骎博士为论文的共同第一作者,另一位第一作者是Eisenberg课题组博士研究生江逸潇。论文的合作单位有美国加州大学洛杉矶分校、霍华德-休斯研究所、上海交通大学以及美国Mayo Clinic研究所。曹骎博士2008年毕业于上海交通大学生物工程专业,获工学学士学位;2013年毕业于北京大学生物化学与分子生物学专业,获理学博士学位;2013年至2021年在加州大学洛杉矶分校从事科学研究,任博士后及助理研究员;2021年5月全职回国工作,加入上海交通大学Bio-X研究院,任长聘教轨副教授、课题组长、博士生导师。主要研究方向为蛋白相分离相变的分子机理研究及抑制剂设计,代表性论著包括Nature Chemistry (2018), Nature Structural & Molecular Biology (2018, 2019, 2020, 2021)等。论文链接:https://www.nature.com/articles/s41586-022-04670-9
  • “国家级食品安全奖”骗70企业
    京华时报讯 昨天,海淀警方通报,成功打掉了一个诈骗团伙,抓获21名犯罪嫌疑人。这个犯罪团伙冒充国家机关工作人员,以颁发国家级奖项为噱头,欺骗70多家企业参加活动,诈骗钱财40余万元。  2013年4月底,海淀分局经侦大队接到国家食品安全委员会通报,称在甘家口某大厦内一家公司正在以中国食品安全监督管理中心的名义,以邀请食品企业到京参加会议并颁发国家级奖项实施诈骗,而该委员会下并没有中国食品安全监督管理中心这个单位。  接到报案后,海淀经侦大队立即联合属地甘家口派出所组成专案组开展侦破工作。为了不打草惊蛇,专案组围绕该公司做了大量的摸排工作,掌握了公司的人员结构及分工。  5月7日12时许,专案组果断出击,一举将该公司内21名涉案人员控制。当场起获用于“合同”和邀请函近万份。随即侦查员将他们带回派出所进行审查。  经审查,嫌疑人王某等人对谎称获得官方授权,以颁发国家级奖项的名义实施诈骗的犯罪事实供认不讳。  作为该公司法人代表的王某,之前从一个老乡处得知冒充国家机关的名义,以组织展览会、颁发奖项能够挣不少钱,于是就于今年2月份成立了一家公司,对外自称是中国食品安全监督管理中心的下属公司。  王某让业务员们每天在网络上搜寻各食品企业负责人的联系方式,然后冒充中国食品安全监督管理中心的工作人员,谎称将在5月份举办“食品安全展览会”,邀请全国各地的食品企业来北京参会、参展,并向部分企业承诺,如果交的费用多,还将在会上向企业颁发国家级奖项。如果企业同意参展参会,该公司就会与企业签署合同。  按照企业想获得奖项的不同,分别向企业收取3800元到158000元不等的费用。而业务员每联系完一笔业务,就能获得几百到上千元的提成。短短两个多月的时间,该公司就成功诈骗70多家企业,骗得赃款40余万元。  目前,犯罪嫌疑人王某、尚某等5人因涉嫌合同诈骗罪已被海淀警方刑事拘留,该公司的16名员工因招摇撞骗已被行政拘留,此案正在进一步审理当中。
  • 解读液相色谱柱的“身份证”和“户口本”
    大曹三耀的CAPCELL PAK 色谱柱,来自于“山川异域,风月同天”的日本,传承了日本优良的工匠精神!我们每一支色谱柱在出厂前均经过严格地检验,柱盒中都藏着它们的“身份证和户口本”——柱效报告和填料批次证明书。现在我们以最常见的C18色谱柱为例,一分钟带您读懂柱效报告和填料批次证明书。 色谱柱的柱效报告 色谱柱柱效报告,汇集了产品的基本参数、出厂测试条件及结果。1) 色谱柱的类型: CAPCELL PAK C18 MGII,聚合物包被型C18色谱柱。2) 色谱柱规格:柱长250mm,内径4.6mm,填料粒径S5,即5um.3) 色谱柱柱号:好比是色谱柱的身份证号码,每支柱子的号码都是唯一的、独一无二的。4) 填料批次号:此号码可用于填料批次查询,填料好比色谱柱的心脏,同一批次填料可以装填多支柱子;如果您需要批次间考察,大曹三耀可以提供3个不同批次的填料。5-9) 该款色谱柱的测试条件:在色谱柱验收,或者使用一段时间怀疑色谱柱柱效下降时,可按照该方法重新测定柱效,确认色谱柱自身性能。10) 测试样品:尿嘧啶、苯甲酸甲酯、甲苯、萘, 样品溶剂为乙腈:水(60:40);色谱峰1234分别为这四种样品的出峰情况,可作为对照使用。11) 理论塔板数(以第四个峰计算):该款柱子以萘的理论塔板数计算;不同的色谱柱可能使用不同的样品峰计算,请注意查看报告,并结合实际分析项目进行比对,确定色谱柱是否可用。12) 色谱柱压力:该压力不包含LC的系统压力。 13) 色谱柱最终保存溶剂:即柱子出厂时的保存溶剂,如果柱子长期不需要使用,可以按照该条件保存。 填料批次证明书 大曹三耀使用多种验证方法,以确保填料的稳定性。如果您购买的是MG、UG系列的C18色谱柱,除柱效报告单外,在色谱柱柱盒中您还将收到一份填料批次证明书。这份证明书汇集了该批次填料在性能验证中的各种结果,主要包括填料粒径检查、比表面积、孔径、残留金属离子、分离保留性能等等一系列测试结果,充分保证该批次填料性能。 1)粒径(mean particle diameter):在其他条件相同的情况下,粒径越小,分离越快,柱效越高,但柱压相对会高一些。2)孔径(median pore diameter):孔径小,则含孔率高,比表面积大,载碳量高;色谱柱填料孔径大小需和分子大小相匹配,保证分子自由进出填料孔并与孔内表面的键合相进行分离分配,通常要求孔径直径是分子直径的3倍以上。3) 比表面积(surface area):指的是每克填料的表面积,与粒度和含孔率有关;比表面积大,会增加样品与键合相之间的反应,增加保留和分离度;比表面积小则可以缩短分析时间和平衡时间,并不是比表面积大或者小就更好,需要选择合适的比表面积。4) 含碳量(carbon content):基质表面键合相的比例,载碳量高,适合分析非极性化合物。5) 残留金属离子(metal contents):一般金属离子的含量越少越好,因为硅胶表面的金属离子和硅醇基会导致化合物保留变大,这种二次保留效应会导致色谱峰拖尾;CAPCELL PAK 采用高纯度硅胶和聚合物包被技术,极大程度消除了金属离子残留的影响。6) 耐酸/碱性能(acid/alkall resistance):一般填料的耐酸碱性能越高越好,能够适应更宽范围的pH,便于方法开发中pH调试,满足苛刻的检测条件,使用寿命更长。
  • 色谱大会上吸睛无数的ADME & DAISOGEL & NQAD,您也来了解一下吧
    4月21日-23日在上海光大会展中心盛大召开的“中国化学会第22届全国色谱学术报告会及仪器展览会”。本次会议就色谱相关的样品制备、高效分离、分析检测、组学应用等话题展开学术交流,吸引了来自全国各地的色谱专家、学者、企业代表1000余人。大阪曹達集团旗下全资子公司——三耀精细化工品销售(北京)有限公司也参与了此次盛会,为众多色谱行业专家提供专业技术支持和经验交流。 大会盛况 我们的展位(大柱子亮眼吧)在本次展会上,我们CAPCELL PAK ADME可谓大放异彩,吸足了观众的眼球!尤其是针对一些常规反相色谱柱没办法解决的项目,引发了专家学者的极大关注。例如:强极性代谢物保留困难、复杂组分中强极性化合物与疏水性化合物同时分析、结构类似物的分离、复杂聚合物的分析等问题均可以借助CAPCELL PAK ADME得到解决。更为惊喜的是CAPCELL PAK ADME色谱柱也撩起了分析仪器同行的好奇心,好几位友商的技术控也来展位进行了交流(这里就不一一贴照片了哈)。在此次展会上,DAISOGEL色谱填料不仅以其自身品质受到新老用户的认可与好评,还有许多用户表示,以DAISOGEL裸硅胶为基材,键合不同的固定相,为他们的课题提供了解决思路与方案。另外,《中国药典》2020版编制大纲指出:“进一步丰富色谱检测器的类型,加强没有紫外吸收品种液相色谱检测器的应用指导。”而大曹三耀的NQAD纳克级激光计数检测器就是这样一款可实现对无紫外吸收样品进行高灵敏度检测的液相色谱检测器,其灵敏度可达ng级,较ELSD高1-2个数量级。同时,NQAD检测器可以对几乎所有物质进行检测,例如:1) 没有紫外吸收的物质2) 离子化比较难的物质3) 没有电化学活性的物质4) 性质不明的物质等它是兼顾适用性和选择性的一款通用型检测器,开辟了液相色谱分析的新领域。 NQAD纳克级激光计数检测器若您也想进一步了解这款普适型的NQAD检测器,可以在“大曹色谱”公众号对话框中输入您所在的直辖市或省份名称,根据系统自动回复给您的营业负责人联系方式,直接向他们索要详细的NQAD介绍资料和应用数据。
  • 慈溪查处尾气虚假检测 有人临时安装污染控制装置
    p  核心提示:一些不法分子通过临时安装机动车污染控制装置的办法蒙混过关通过检测,一组进入市凯博机动车检测有限公司排气检测站蹲点暗访,环保执法人员对其询问时。/pp style="text-align: center"img style="width: 450px height: 324px " src="http://img1.17img.cn/17img/images/201611/insimg/a19bae9f-a891-4417-988e-aefc88f55f24.jpg" title="1.jpg" width="450" vspace="0" border="0" hspace="0" height="324"//pp  因为排气检测不合格,一些不法分子通过临时安装机动车污染控制装置的办法蒙混过关通过检测,然后再把装置拆卸。/pp  昨天,慈溪环保、运管、公安三部门联合展开突击行动,打击机动车排气检测中以虚假手段蒙混过关的违法行为。/pp  strong兵分两路,明查暗访/strong/pp  当天上午,执法组分两组分别展开行动,一组进入市凯博机动车检测有限公司排气检测站蹲点暗访,另一组来到汽车修理店展开明查。为了不打草惊蛇,两组执法人员均便装出行。/pp  根据此前摸底了解,一些尾气检测不合格的车主通过“黄牛”引路把车开到附近汽修店,安装污染控制装置。/pp  上午9时,在“小聂汽修”店内,一辆黑色轿车悬在半空,维修工正钻在车底安装排气管,旁边放着刚换下来的排气管。环保执法人员对其询问时,对方称只是在安装测试。然而,当运管部门要店主聂某出示经营许可证时,对方却无法出示。/pp  原来,半年前这家店因超范围经营已被扣证,前事未了,聂某又在无证经营了。执法人员把聂某和维修工带上运管执法车,对其进一步询问笔录。/pp strong 行动拉网,双线收获/strong/pp  “有人在半路上拆卸机动车污染控制装置被我们抓到了。”9时50分,从暗访组传来消息,记者立即跟随检查组前往现场。在离检测站不远的展腾路上,一辆厢式柴油小货车正停在一家企业门口。/pp  据现场环保执法人员介绍,9时20分左右,暗访组在检测线蹲点时,发现这辆货车“颗粒物烟度”两次检测数据均为零,虽然按规定通过了检测,但这个“异常数据”引起了执法人员的警惕。暗访组立即派车辆跟踪。/pp  果然,车子开出没多久就停在了半路,很快来了名男子,动作麻利地拆起了净化装置,被随后紧随的环保执法人员抓个正着。/pp  “这辆车子昨天没通过尾气检测,车主让人临时安装了柴油颗粒物捕捉器,通过检测后今天又让他拆下来。”环保工作人员说,不法分子通过临时装卸净化装置牟利。/pp  慈溪市环保局相关负责人表示,此次联合执法行动旨在严厉打击用弄虚作假方式通过机动车排放检测的违法行为,有效遏制机动车维修单位的违法经营行为,把不法分子的气焰打压下去。/pp  接下来,环保部门还将联合相关部门加大执法力度,同时要求慈溪市凯博机动车检测有限公司加强管理,严防排气检测中的弄虚作假行为,确保慈溪市大气环境质量日益得到改善。/p
  • 走进BCEIA 见证科学仪器消耗品行业丰硕成果
    仪器信息网讯 2021年9月27-29日,第十九届北京分析测试学术报告会暨展览会(BCEIA 2021)在北京中国国际展览中心(天竺新馆)盛大召开。今年的展会主要围绕着“生命 生活 生态——面向绿色未来”的主体开展学术报告会、论坛和仪器展览会。本次BCEIA面向世界科技前沿及热点领域前瞻性研究成果召开多个学术论坛,同时也是科学仪器及消耗品厂商展现实力的舞台。展会吸引了众多科学仪器消耗品行业厂商盛装出席,包括岛津实验、大曹三耀、阿拉丁、逗点生物、Restek、迪马、Nanologica、阿尔塔等。那么,就让我们走进BCEIA,一起来了解下他们的丰硕成果吧!本次展会,SGLC不但展出了其系列明星产品,还带来了今年推出的新产品——全新的液相色谱柱ShimNex系列。该系列色谱柱完全由岛津研发和生产。SGLC的工作人员介绍,这款色谱柱包括6大系列41种固定相,其应用项目囊括了中药、化药、生物药、食品、化妆品等,可满足教育科研、医药、食品环境、公安司法等多领域要求,除了传统应用外,还可为一些特殊难题提供专用的解决方案。SGLC展位及部分展品本次,三耀精细化工品销售(北京)有限公司重点展出了其CAPCELL PAK系列液相色谱柱产品。该系列色谱柱最早于1987年推出,随后在此基础上通过技术革新开发了使用高纯度二氧化硅的SG系列、ADME、PFP、IF系列等新类型色谱柱,并受到世界范围内HPLC专业分析人员的喜爱和欢迎。大曹三耀展位及部分展品作为国内知名的科研试剂和实验耗材供应商,阿拉丁已经是BCEIA上的常客。本次展会,阿拉丁带来了诸多耗材产品。其间,更是展出了其明星产品——生化检测试剂诸如核酸染色、核酸合成试剂等。据了解,该系列产品一经上市即大卖。阿拉丁展位及部分展品深圳逗点生物技术有限公司成立于2006年,是一家集研发、生产国内外销售等于一体的高新技术企业集团。现已发展为分子诊断与色谱质谱样本前处理工具、实验室耗材的领先制造商。逗点生物展位及部分展品本次展会逗点生物的展台上,不但能看到其经典产品如筛板、吸头滤芯等产品,还能看到其今年的诸多新品,如静音超声清洗机、刀式研磨仪、全自动氮吹仪等。作为全球五大色谱技术公司之一,几乎每年瑞思泰康都会推出新品。继去年推出Raptor Polar X色谱柱后,今年BCEIA展会,瑞思泰康又带来了新品——Topaz衬管。RESTEK展位该衬管选用蓝色设计,其衬管原材料来自RESTEK旗下专业研制玻璃原材料的Glasstron公司,且采用了独有的衬管表面去活技术,使衬管及衬管内的石英棉完全钝化,从而增强的峰的对称性和响应,以实现更好的定量、准确度和精密性。本次迪马科技盛装出席BCEIA展会,除了为客户带了几大系列产品外,还展示了其新品——Spursil(思博尔)系列极性改性色谱柱。迪马科技展位及部分展品Spursil C18-Amide和Spursil AQ是思博尔系列最新推出的两款极性改性色谱柱。其固定相以高纯硅胶为基质,采用独特的键合和封端技术设计,使其具有疏水性和偶极-偶极等多种作用,在分析亲水性、极性和强碱性忽而何物时可获得更好的分型和分离度。Nanologica是瑞典一家纳米科技公司,主要致力于中国的色谱柱和填料市场。虽然进入中国市场只有短短两年多,但其液相色谱柱及色谱填料却取得了非常好的市场反馈。本次展会,Nanologica不仅带来了其代表性的色谱柱产品,还推出了其跨界新品——QuasIRTM系列便携式傅立叶变换近红外光谱仪。Nanologica展位该系列傅立叶变换近红外光谱仪不但便携小巧,更是采用了IP66防护等级,使用户更易维护,且采用了可连接主电源、车载电源或外接标准电池,方便应用于现场、野外等流动检测现场。天津阿尔塔科技有限公司自2011年成立以来,一直致力于发展国内具有自主知识产权的高品质有机标准物质。今年正值公司成立十周年之际,阿尔塔不但展出了旗下众多产品,还联合中国认证认可协会检测分会共同举办了《能力验证——国家标准及相关技术》论坛,期间中国认证认可协会副秘书长周琦、农业农村部环境保护科研监测所刘潇威等诸多知名专家到场并做专题报告。阿尔塔展位
  • 喜迎冬虫夏草丰收季:叶拓中药材虫草冻干机来助力
    冬虫夏草,又称虫草,是一种珍贵的中药材,被认为具有多种药用价值。在传统中医药中,虫草被认为具有滋阴补肾、益气养血、止咳化痰等功效,被广泛应用于治疗各种疾病,如虚弱乏力、肺病咳嗽、肾虚腰痛等。也被视为一种滋补养生的佳品。每年的4-6月正式采摘虫草的最佳季节(不同地区采摘时间有所不同)然而新鲜的虫草采摘回来以后,应该怎么操作才能更好的保存呢?晒干和冻干都是常见的保存方法,它们的优缺点也比较明显。冬虫夏草晒干的缺点:1、丧失活性成分:晒干过程中,冬虫夏草中的一些活性成分可能会因为高温和长时间的暴晒而丧失或减少,导致药效降低。2、容易受污染:在晒干的过程中,冬虫夏草易受到灰尘、空气中的微生物和虫害的污染,影响其质量和纯度。3、难以保存:晒干后的冬虫夏草易受潮、虫蛀和霉变等问题困扰,需要采取额外的措施进行保存,例如密封包装或者添加防腐剂等。4、能耗较高:晒干需要阳光充足的环境,且需要较长时间,因此在一些地区或季节不适合晒干,同时也增加了能源消耗。冬虫夏草晒干的优点:1、直接晾晒成本低冬虫夏草冻干的优点:1、保持活性成分:冻干过程中,冬虫夏草中的活性成分得以较好地保持,减少了温度和时间对其药效的影响, 有利于保持其药效和品质。2、增加稳定性:冻干后的冬虫夏草更加稳定,不易受到空气、湿度和微生物的影响,有利于延长其保存期限。3、方便保存和使用:冻干后的冬虫夏草体积轻、容易保存和运输,不易受到挤压或损坏, 同时也方便直接使用于药品的制备或中药材的煎煮中。4、减少资源浪费:冻干技术可以最大限度地保留冬虫夏草中的营养成分和药效,减少了资源的浪费,有利于提高其利用率。冬虫夏草冻干的缺点:1、采购冻干设备成本校高综上所述,冬虫夏草冻干相比晒干具有保持活性成分、增加稳定性、方便保存和使用等优点,因此在现代制药和中药材行业中更受欢迎和推荐。
  • 中国热带农科院采购2324台/套仪器设备
    中国热带农业科学院热带作物品种资源研究所2012年仪器设备采购招标公告  招标编号:GZCQC1202HG05009  广州程启招标代理有限公司(简称“采购代理机构”下同)受中国热带农业科学院热带作物品种资源研究所的委托,就以下(招标编号:GZCQC1202HG05009,仪器设备)所需的货物及相关服务,组织公开招标,欢迎合格的国内投标人提交密封投标。有关事项如下:  一、招标项目的名称、用途、数量、简要技术要求或者招标项目的性质  1、项目名称:中国热带农业科学院热带作物品种资源研究所2012年仪器设备采购  2、内容:  子包01:序号名称数量备注预算金额1全自动动物血液分析仪1进口设备64.7万元2全自动定氮仪1进口设备3超声波细胞破碎仪1进口设备4紫外分光光度计1进口设备  子包02:序号名称数量备注预算金额1全自动蛋白分析软件1进口设备119.00万元2高压蒸汽灭菌器2进口设备3梯度PCR仪2进口设备4PCR仪3进口设备5细胞培养箱1进口设备6高压电泳系统1进口设备  子包03:序号名称数量备注预算金额1通用突变检测系统1进口设备54.50万元2超纯水系统1国产设备3PCR仪2进口设备4高速冷冻离心机1进口设备5人工气候箱1进口设备  子包04:序号名称数量备注预算金额1PCR仪1进口设备54.50万元2梯度PCR仪1进口设备3数码体式显微镜1进口设备4紫外分光光度计1进口设备5低温循环水槽1进口设备6脉冲场电泳系统1国产设备  子包05:序号名称数量备注预算金额1气相色谱仪1进口设备145.99万元2超低温冰箱1国产设备3半自动胶囊填充机1国产设备4超微粉碎机1国产设备5GPS1国产设备6高枝油锯1国产设备7打草机4国产设备8油锯2国产设备9水管打牙机1国产设备10氧气焊机1国产设备11普通PCR仪1国产设备12土壤养分水分速测仪1国产设备13英国皇家园艺学会比色卡1国产设备14自动温湿度记录仪10国产设备15LED组织培养专用灯200国产设备16组培用光谱灯2000国产设备17立式摇床1国产设备18手持GPS1国产设备19烘箱1国产设备20真空泵1国产设备21人工气候箱2国产设备22立式高压灭菌锅1国产设备23高压蒸汽灭菌锅2国产设备24纯水器1国产设备25电子天平 1国产设备26超净工作台8国产设备27pH 计1国产设备28发电机1国产设备29培养基自动分装器1国产设备30叶绿素仪1国产设备31土壤水份-盐份-温度计1国产设备32PH计1国产设备33电导率仪1国产设备34纯水机1国产设备35移液器12国产设备36超声波清洗仪1国产设备37千分之一天平2国产设备38pH计2国产设备39高压电泳仪1国产设备40水浴锅2国产设备41超净工作台1国产设备42灭菌锅1国产设备43液氮灌1国产设备44电泳槽5国产设备45电泳仪3国产设备46移液器5国产设备47自动温湿度记录仪2国产设备48低温药品保存箱1国产设备49高压灭菌锅1国产设备50电子天平1国产设备51GPS定位仪(可以用于地理定位的)1国产设备52紫外线强度计1国产设备53数字微压测试仪1国产设备  3、用途:科研  4、数量及分包:一批,共分5个子包  5、简要技术要求或招标项目的性质:见《用户需求书》  6、本次招标采用明标方式投标,按包内项目小计公开最高限价,超过最高限价则做废标处理。  投标人可选择部分或所有子包进行投标,但应对所选子包应进行整体投标,不允许仅对包内其中部分内容进行投标。  二、供应商资格要求  1、必须在本公司报名并购买招标文件参加本项目的,并提交投标保证金的   2、必须符合《中华人民共和国政府采购法》和相关法规规定的资格条件   3、投标人近两年以来完成2个以上类似项目的经验(需提供合同复印件)   4、注册资本金在人民币200万元以上(含200万元)   5、上年度经营状况良好。  三、采购文件公示与下载  根据《广东省实施〈中华人民共和国政府采购法〉办法》第三十五条的规定,现将该项目采购文件进行公示(请点击下载),公示期为2012年5月11日至2012年5月17日五个工作日。  四、获取招标文件的时间、地点、方式及招标文件售价  1、获取招标文件时间:2012年5月11日起至2012年5月31日  2、获取招标文件地点:广州程启招标标代理有限公司  3、获取招标文件方式:报名购买或邮购,出示投标人介绍信原件、营业执照复印件(加盖公章),如需邮寄每份加收人民币50元的邮寄快件费  4、招标文件售价:人民币200元/套(售后不退)  五、投标截止时间、开标时间及地点  1、递交投标文件时间:2012年6月1日上午09:00-09:30时(北京时间)  2、投标截止时间、开标时间:2012年6月1日上午09:30时(北京时间)  3、开标地点:广州程启招标代理有限公司(广州市恒福路238号218室)  六、采购人、采购代理机构的名称、地址和联系方式  1、采购人名称:中国热带农业科学院热带作物品种资源研究所  采购人机构所在地点:海南省儋州市宝岛新村  联系人:刘小姐  电话:0898-23300501  2、政府采购代理机构名称:广州程启招标代理有限公司  政府采购代理机构地点:广州市恒福路238号218室  采购项目联系人:马小姐  联系电话:020-83576900  传真:020-83499619  邮编:510095  广州程启招标代理有限公司  二〇一二年五月十一日
  • 烟草库防潮除湿要做好,烟草库除湿机不能少
    烟草库防潮除湿要做好,烟草库除湿机不能少【新闻导读 】在烟草行业的生产工艺中,烟叶质量的优劣直接影响烟草制成品的内在质量,而决定烟叶质量的优劣的关键则是烟叶在仓库存放过程中自然醇化的效果。而烟叶仓储醇化中烟叶的品质、烟丝加工的质量和产量、成品烟储存中香烟的品味保质等各个方面,受环境温湿度的影响是非常大的。因此,在烟叶及烟草制成品的生产,储存以及流通等各个环节中都需要对其所在环境进行严格的湿度控制! 根据GB/T23220-2008《烟叶储存保管方法》规定,一般烟叶仓库的温度控制在32℃以下,相对湿度控制在60%~70%RH即可。不过,为了提高烟叶自然醇化的品质,需要一个相对稳定的温湿度环境,一般要求温度不超过25℃,湿度控制在50%~65%RH是最为适宜的。如果控制不当湿度超标了,不仅影响烟叶自然醇化的品质,还容易受潮发霉变质,这是烟叶仓库在梅雨季节里普遍存在的一个问题! 针对成品烟丝、膨胀烟丝仓库、切丝车间易潮湿、霉变、腐烂等问题以及复烤片烟醇化工艺要求,需要采取相应的措施来对烟叶仓库,烟丝仓库,切丝车间以及烟草醇化库等进行严格的湿度;那么,如何将烟草的生产储存环境的湿度严格控制在最适宜的范围之内呢? 正岛电器告诉你,对于这个问题可以通过配置相应的正岛ZD-8480C及ZD系列烟草库除湿机来得到有效的解决。某烟草公司内的一个烟叶仓库面积在2000平方米左右,层高在5米,相对湿度要求控制在60%~70%RH之间; 但到了梅雨天或炎热潮湿的天气里,库内的湿度往往都高超出这个标准,甚至有时还会高达80%RH以上;为此,该烟草公司在这个烟叶仓库购置安装了4台正岛ZD-8480C烟草库除湿机,在运行一段时间之后,库内的湿度得到了有效的控制,不管库外天气有多潮湿,库内的湿度始终都能够控制在最适宜的范围之内!欢迎您来电咨询烟草库防潮除湿要做好,烟草库除湿机不能少的详细信息!烟草库除湿机的种类有很多,不同品牌的烟草库除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。 正岛ZD-8480C烟草库除湿机技术参数: 型 号ZD-8480C控制方式湿度智能设定除 湿 量480升/天排水方式塑胶软管 连续排水适用面积360~480智能保护三分钟延时 压缩机启动电 源380V~50Hz活性碳滤网标 配运转噪音55dB自动检测有无故障 一目了然输入功率9900w适用温度5~38℃体积(宽深高)1240X460X1750mm设备重量300 kg 正岛ZD-8480C及ZD系列烟草库除湿机产品六大核心配置优势: 优势一:【整机内结构精巧】 优势二:【高效节能压缩机】 优势三:【配套内螺纹铜管】 优势四:【大风量高效风机】 优势五:【微电脑自动控制】 优势六:【配多重安全保护】 核心提示:在以往,烟草公司在烟叶仓库中常用的除湿方法有通风排湿,石灰或防潮剂吸湿,以及空调除湿等,但这些方法都各有其弊端,不仅浪费大量人力,物力以及电力,而且效果还不是很好!比如说石灰或防潮剂吸湿的方法,是比较传统落后的方法,起到的效果也是最差的,现已逐渐被淘汰! 再来看看通风排湿的方法,一般是采用排风机来强制通风排湿,在梅雨季节库外相对湿度经常在80%~90%RH之间的状况下,使用这种方法反而是越排越湿。而使用空调除湿,空调虽然具有一定的除湿能力,但在梅雨季节烟叶仓库的湿度根据降不下来,而且我们都知道空调的耗电量是非常大的;因此,这些方法都不适宜用在烟叶仓库中进行除湿! 在5~6月即梅雨季节,很多烟草仓库的相对湿度往往会达到80%RH以上,而且库内温度也在15℃~30℃之间,这时在库内使用相应的的正岛ZD-8480C及ZD系列烟草库除湿机来进行除湿,效果是非常明显的;可以为烟叶的生产储存提供一个最适宜的湿度环境,从而避免烟叶受潮发霉变质,提高烟叶在仓库存放过程中的自然醇化品质!以上关于烟草库防潮除湿要做好,烟草库除湿机不能少的最新相关新闻资讯是正岛电器为大家提供的!
  • 中草药化妆品越“禁”越热 佰草集1.7亿再投入
    随着人们追求天然与健康的潮流日益兴起,近年来,宣称添加了中草药成份的化妆品也越来越受到爱美人士的青睐。其中,上海家化的佰草集无疑是其中的佼佼者。然而近期,《化妆品名称标签标识禁用语》征求意见稿的修改,引发了业内热议,一时间,“中草药化妆品”的前景似乎也增添了一些变数。  《化妆品名称标签标识禁用语》征求意见稿先是禁止在标签上使用“中草药”用语,随后又改为禁用“药”字。  与此相对应的是中草药化妆品市场的火爆。12月17日,上市不久的霸王集团高调进入这一市场。“老大哥”上海家化(600315,SH)也在近期通过了1.7亿元的增资方案,该部分资金将全部投入旗下子公司佰草集。  种种迹象表明,上海家化正在集中公司资源,全力扩展“佰草集”的市场份额。  日化企业“扎堆”中草药  中国市场上的“中草药化妆品”正在不断升温。  继片仔癀、同仁堂、马应龙之后,12月17日,向来低调的霸王集团(以下简称霸王)总裁万玉华宣布,霸王也将推出中草药化妆品。  今年7月,霸王在香港联交所上市,万玉华及丈夫身家飙升。拥有充沛资金的霸王很快将“触角”拓宽到洗发水之外,公司向外透露,除了年底出的化妆品,明年还要继续扩充产品线,涉及个人护理方面更广的领域,将要构筑庞大的“中药日化产品链”。  另一个诱因是霸王的“中草药”渊源。霸王旗下的霸王、追风等洗发水品牌,很大程度上是凭借着中草药的概念,在外资一统天下的洗发水市场生存了下来的。万玉华对外表示,霸王为了做化妆品“本草堂”,进行了长达7年的市场调查和研发。  然而在已有十年以上历史的中草药化妆品市场上,霸王有些姗姗来迟。  记者从霸王了解到,本草堂的销售渠道将是各大型卖场以及百货商店。分别背靠两大本土日化集团,定位又非常接近,本草堂尚未上市,就已引发与佰草集之间“两草”之争的话题。  比霸王行动更早的还有一大批中药企业。同仁堂化妆品已经推出数年,但2008年销售额仅约2000万元,未能跻身主流。此外,以生产痔疮膏为主业的中药老字号马应龙,也在近期推出了眼霜等护肤品。  看中这一市场的还有外资企业。2009年9月,联合利华斥资5000万欧元在上海建成其全球第六个研发中心。联合利华大中华区副总裁曾锡文当时向记者透露,这一研发中心将开辟整整一层楼,专门进行中草药产品的研发。联合利华也早就开始以“汉方”的概念,将中草药用于洗发水中。  霸王向记者提供了一些统计数据。据称,一家名为Euromonitor的调查公司分析显示,中国护肤品市场规模每年以18.3%的速度增长,并预期至2012年市场规模将达到709亿元。据行业内估计,纯中药护肤品的年增长率已超过61%。  面对《每日经济新闻》记者的采访,霸王媒体负责人避谈“佰草集”。而上海佰草集化妆品有限公司总经理黄震则表示,已经感受到了国内市场的竞争压力。  佰草集国内7年方盈利  中草药化妆品市场虽然火爆,却是一个需要漫长投入期的行业。在中草药概念突然升温之前,上海家化十余年的跋涉并不轻松。  上海家化董事长葛文耀此前在接受《每日经济新闻》记者采访时透露,上海家化在1998创立佰草集的同时,还推出了一个名为Distance的香水品牌,中文名为“迪诗”。  葛文耀透露,当时的设想就是佰草集走中草药概念,打中国文化牌,而Distance则是全盘效仿西方成熟化妆品品牌的模式。然而实践证明“洋不过老外”,Distance逐渐销声匿迹,而佰草集凭借差异化的思路,生存了下来。在上海家化多次试水之后,佰草集才逐渐演变为高端护肤品方面的“独苗”,成为上海家化力推的支撑性品牌。  黄震告诉记者,佰草集1998年进入市场,2001年上海家化单独为佰草集成立了子公司,直到2005年,佰草集才实现盈利。到了2009年,佰草集在国内市场的销售额预期为10亿元。黄震表示,佰草集几乎是在一片空白的细分领域起步,因而一直采取极为谨慎的方式,摸索着前进,姿态也一直是低调的。  但竞争的加剧迫使佰草集不得不做出改变。黄震表示,佰草集注意到在中草药化妆品这一细分市场上的格局变化,越来越多的本土企业开始试水,国际品牌亦开始了对这一领域的关注。  “2010年压力很大。”黄震认为,更多企业的加入有助于把市场蛋糕做大。“以前只有佰草集一家发出声音,规模、影响都有限。”但黄震同时也承认,佰草集现在每年必须有一到两个突破性的动作,才能维护住自己目前的地位。  1.7亿元孤注一掷?  在霸王加入中草药化妆品市场竞争行列的前一周,上海家化股东大会同意了一项对佰草集1.7亿元的增资方案。  黄震所面临的压力,可能还包括上海家化董事长葛文耀对佰草集的高期望值。虽然上海家化对外宣称“六神”和“佰草集”两大品牌是重中之重,但两者情形并不相同:拥有牢固群众基础的“六神”早已进入收获期,佰草集却仍在不断投入不菲的资金和人力。  葛文耀曾向记者透露,在淮海路的佰草集旗舰店,仅店面租金,就高达每年600万元。葛文耀希望佰草集能够和国际大品牌一起出现在淮海路、南京西路上。  一方面为了抵御国内日益加剧的竞争,另一方面向技术、毛利更高的方向转移,上海家化选择将公司内部资源向佰草集集中。  2001年上海家化上市之时,募集资金共超过7亿元。此次上海家化决定放弃原本计划投入的高效洗液项目,将剩余的1.7亿元首发剩余募资,一分不剩地全部投给佰草集,从中或能看出上海家化对“佰草集”的重视。  在公告中,上海家化简要地把资金用途介绍为品牌建设、渠道建设以及海外市场拓展和固定资产购置等。黄震向记者表示,1.7亿元资金的流向有着清晰的规划,但他并未透露具体分配方案。  公告披露,上海家化将为佰草集建立中草药基地,还将买下商铺和办公用房,避免佰草集在“关键性商圈营业场所”“受制于人”。此外,销售渠道将覆盖全国170个主要地级以上城市,零售终端从700家扩大到1200家。  “佰草集”预计2014年销售收入13.5亿元,5年内销售收入和毛利复合年均增长率达到21.98%。黄震向记者表示,销售收入可能会超过这一目标。  海外拓荒对手更强  黄震透露,佰草集起步阶段,高端百货商场并不买账,随后才逐步改变。随着国内市场竞争的加剧,各品牌未来可能出现争相圈地的现象,对渠道的争夺将耗费不菲的资金。  上海家化的此次增资,将有一部分流向海外。但黄震表示,在征得董事会同意之前,不能披露具体数字。  葛文耀曾向记者透露,上海家化已为“佰草集”等两个高端品牌在国外主要市场注册了商标,坚持送“佰草集”出海。  葛文耀希望将“六神”输出到东南亚国家,而“佰草集”则承担了进入欧美等发达国家市场的任务。  2008年10月,上海家化将“佰草集”通过丝芙兰专卖店卖到法国,月销售额约100万元。此后“佰草集”一直试图在欧洲继续扩张,已经进入荷兰,计划陆续进入意大利、西班牙以及东欧等国家市场,并开始了进入北美、日本等市场的计划。  由于西方市场成熟度高,“佰草集”的推广费用居高不下,且在未来需持续投入。黄震透露,佰草集2009年在法国的销售收入为1000万元,目标是在2010年翻番,但现在还没有在海外实现盈利的时间表。葛文耀也曾坦言,“佰草集”出海刚踏出了第一步,将是一个长远而艰巨的任务。  与国内近年来才纷纷崛起的竞争对手不同,“佰草集”在国际市场上面对的是有数十年甚至上百年历史的众多国际品牌。其中也有不少主打有机或天然概念的知名品牌。  “除了十多年以前在中国起步时遇到的相同困难,国外成熟市场上的压力更大。”黄震向记者表示,在营销手段上,比起本土作战的国际大牌,“佰草集”还是小学生。  语言差异也是一个难题。“佰草集”引以为荣的中国文化如何让外国消费者理解,有着诸多困难。“以太极泥为例,对中国人不需要解释‘太极’的概念,而西方人不能理解,还容易产生歧义。沟通是个挑战。”黄震说。  “佰草集”开始在法国巴黎设立办事机构,缺乏国际运作经验,加上海外人力、宣传的高费用,需要相当大的资金投入。  对于“佰草集”的执意出海,黄震解释道,“佰草集”在法国的售价比在国内高出70%,海外市场溢价空间大、市场容量也远比国内大,上海家化对“佰草集”有耐心。
  • 本草奇遇记——干燥制剂之旅
    4本草奇遇记干燥制剂之旅”在上一期的本草奇遇记中,我们详细介绍了步琦在中药分离纯化方面的解决方案,希望能通过高效且操作简单的分离纯化系统助力“十四五”中医药的发展。这期我们将带领大家开启活性物质分离提纯后的旅程,领略步琦在中医药研究发展领域中最为全面的产品解决方案。干燥 & 制剂中草药原料经过萃取、分离、提纯后的活性成分,一般需要干燥长期保存或与其他组分混合再利用。根据活性成分特性和所用试剂类型,选择合适的干燥方式及制剂再制备方式非常重要。步琦拥有多种干燥及制剂应用的产品仪器——冷冻干燥机、微米级和纳米级喷雾干燥仪以及微胶囊造粒仪,不管是干燥还是包埋再造粒,均可满足不同应用需求,为您耗费精力提取出的活性组分保驾护航。冷冻干燥机 L-300第一款双冷阱实验室冷冻干燥机冷冻干燥机 L-300 最瞩目的功能是通过交替冷凝器加载,实现了无限捕冰能力。通过 Smart-Switch 确保稳定、可重现的参数(包括冷却温度、搁板温度变化 ±1°C 以及真空压力),首次实现冻干过程的连续升华。市场首台具有双冷凝器交替工作的冷冻干燥机,搭载 Infinite-Technology TM 技术,捕冰能力无极限自动蒸汽除霜,无需耗费人力工作,删除实验停工时间冷凝器温度 -105 ℃,凝冰能力 ≥12 kg/24 h多种干燥配件可供选择,满足不同应用需求推荐配件:Pt 1000 样品温度探头实时监测冻干过程中样品温度变化可以判定冷冻干燥终点(左右滑动查看)推荐配件:干燥配件不同层数、可加热和不可加热的样品搁板多种歧管配件,满足不同应用需求应用实例中药浸提膏冷冻干燥样品:白果皮甘草浸提膏(水煎)冷冻干燥参数:(点击放大查看)干燥后样品:小型喷雾干燥仪 B-290世界领先的喷雾干燥研发解决方案拥有超过 400 项专利的小型喷雾干燥仪 B-290 获得业界众多研究人员的信任。基于我们超过 40 年的喷雾干燥经验,我们的喷雾干燥解决方案备受业界推崇:样品消耗量少(低至 5 g)、高产出量(高达 70 %)及操作直观等,轻松实现经济高效、便于升级至工业生产规模等目的。仪器配置灵活,多种玻璃组件和喷嘴尺寸可供选择喷雾干燥过程清晰可见,颗粒大小可调 1 – 60 μm标配红宝石喷嘴,喷雾效果稳定蒸发量:1 L/h H2O,有机溶剂蒸发量更高推荐配件:高效旋风分离器内镀纳米涂层,有效防止静电粘连适用于处理少量样品,回收率更高应用实例使用小型喷雾干燥仪 B-290 制备丹参微囊粉末样品:丹参提取物+明胶+羧甲基纤维素钠乳化液喷雾干燥参数:加热温度 80 ℃,蠕动泵速 6 %,雾化气流 357 L/h,核壳比(质量比)1/4 或 1/6纳米喷雾干燥仪 B-90 HP小颗粒,小样品,高产出纳米喷雾干燥仪高性能款 B-90 HP 能够将最少量的样品温和处理成亚微米级颗粒,且几乎不产生损失。该用户友好型系统可提高生产效率,适用于小颗粒关系影响重大的行业。压电驱动喷头,优化生产效率和操作性,颗粒大小 200 nm – 5 μm专利气流系统实现温和溶剂蒸发,静电粒子收集器实现更高回收率(高达 90 %)样品量需求小(2 mL),大中小型雾化器可实现小颗粒和高产量之间的最佳平衡(高达 200 mL/h)推荐配件:惰性气体循环系统 B-295 SE惰性气体分为,安全处理有机溶剂,可避免喷雾干燥过程发生爆炸配备氧气和压力传感器,双重保险防止出现爆炸条件有机试剂回收再利用,加大降低环境污染并控制实验成本微胶囊造粒仪 B-390 / B-395 Pro用于创新的微型液珠和微胶囊微胶囊造粒仪 B-390 / B-395 Pro 是一个多功能系统,适用于包埋活性成分和材料。从制药、化工到食品样品,步琦微胶囊造粒仪的适应性可让您获得创新的微型液珠和微胶囊。同时,我们提供广泛的技术支持,让您可以轻松地使设备适应您的特定样品和应用需求。可制得 150 – 2000 μm 的微型液珠或微胶囊液滴形成全过程可视,有助于快速优化,设备操作直观并易于维护多种尺寸喷嘴可选,满足不同造粒尺寸需求可无菌包埋细胞、微生物和活性物质,符合 GMP标准推荐配件:同心喷嘴系统生产芯材 & 壁材结构的微胶囊包埋、缓释和控释的首选配件死体积极小,有效控制样品量应用实例制备白藜芦醇海藻酸盐微粒样品:白藜芦醇+海藻酸钠,氯化钙(接收液)喷嘴类型:单喷嘴系统制备参数:频率 1200Hz,电压 1000V,喷嘴尺寸 300μm,接收液搅拌转速 100rpm制备的湿粒和冷冻干燥后的样品 SEM 图(点击放大查看)此次中草药干燥制剂的旅程就在此告一段落,步琦还有很多精彩纷呈的旅行线路等待着大家,下期会为您带来步琦旁线与在线近红外产品对中药质量把控的解决方案,尽情期待我们后续的分享吧!
  • 中国烟草总公司烟草添加剂安全性测试中心在昆明成立
    12月17日,中国烟草总公司烟草添加剂安全测试中心(以下简称测试中心)在云南烟草科学研究院揭牌成立,这标志着我国烟草行业对烟草添加剂的安全性管理进入了一个新的阶段。云南省副省长曹建方、国家烟草专卖局科技司司长金忠理共同为检测中心揭牌并讲话。  曹建方在讲话中指出,国家烟草专卖局在云南烟草科学研究院组建中国烟草总公司烟草添加剂安全性测试中心,为云南烟草科研服务全国搭建了重要平台。他希望云南烟草科学研究机构准确把握烟草行业的发展形势,紧紧围绕国家局“推动技术创新上水平,促进卷烟发展上水平”的要求,扎实提升烟草自主创新能力和整体竞争实力,为“两烟”生产上水平提供强有力的科技保障。  金忠理在讲话中表示,烟草添加剂的安全性测试是卷烟产品质量安全的重要工作内容之一。测试中心的成立,符合“两个至上”行业共同价值观的精神内涵,符合国家和行业对产品质量安全的要求,是推进“卷烟上水平”、转变行业发展方式的有力举措。他强调,云南烟草科学研究院要把提高自主创新能力置于科技工作的首位,掌握关键技术和共性技术,在重要领域掌握核心技术,积极为行业“卷烟上水平”服务。测试中心要努力成为烟草添加剂安全性检测、评价与共性技术研究基地 要取得实验室认可,与国际接轨,进一步开展质量安全研究和技术服务,加强风险评估和成分研究工作 要在培养人才上见成效,在组织管理上有创新,在技术研究上有突破,培养出行业领军人物和学科带头人。  一直以来,国家局高度重视卷烟质量安全,始终将卷烟质量安全工作摆在讲政治、讲责任、讲大局的高度来对待。金忠理表示,测试中心的成立,对进一步规范行业添加剂的使用,完善行业质量安全管理体系,提升行业整体竞争力具有重要意义。  测试中心成立后,将围绕烟草添加剂安全性评价程序和技术研究与应用、数据库建设、实验室质量管理体系建设等方面展开工作。  揭牌仪式结束后,中国科学院院士孙汉董,中国工程院院士、北京工商大学副校长孙宝国,郑州烟草研究院副院长谢剑平,云南烟草科学研究院副院长缪明明分别围绕科技创新引领云烟产业发展、食品添加剂与食品安全、风险评估与烟气危害性评价、国外烟草添加剂安全性评价研究进展等课题作了专题学术报告。
  • 除草剂的“半壁江山”草甘膦已被排除致癌风险,特此通告!
    近日,世界卫生组织农药残留核心评估组、联合国粮农组织农药残留专家组召开联合会议并发布简报[1]称,经重新评估草甘膦不大可能致癌。    报告指出  草甘膦是一种广谱除草剂,已在大量生物体上进行了多种遗传毒性测试。  证据表明采用与人类膳食暴露最相关的口服途径摄取的草甘膦及其产品剂量最高可达2000毫克/千克体重,这与绝大多数哺乳动物的遗传毒性效应研究没有关联性。  在对一些小鼠和大鼠致癌性研究进行总结的基础上,会议认为草甘膦对大鼠没有致癌作用,但不排除高剂量对小鼠致癌的可能性。  在缺乏啮齿动物与人类相关剂量致癌潜力分析以及哺乳动物口服测试数据的情况下,综合流行病学证据,会议认为从环境暴露到饮食摄入草甘膦都不太可能对人类产生致癌风险。  草甘膦是1971年由孟山都公司开发的广谱除草剂,随着转基因抗除草剂农作物市场份额的不断增加,草甘膦变得更加流行,目前占据除草剂产品的半壁江山。  草甘膦是否致癌的争论一直存在,2015年3月,世界卫生组织发布的称孟山都抗农达除草剂中所含草甘膦成分“可能致癌”的决议引起热议。    同年11月,欧洲食品安全局及成员国完成了对草甘膦的重新评估称,草甘膦不大可能对人类有致癌风险。[1] JOINT FAO/WHO MEETING ON PESTICIDE RESIDUES.http://www.who.int/foodsafety/jmprsummary2016.pdf?ua=1
  • 内有福利!农药界三酮类除草剂领军产品-硝磺草酮实现连续化合成
    6月16日晚7点,由中国农药工业协会和康宁反应器技术有限公司联合举办的“绿色创新合成、分离技术在农药产业转型升级中的应用”技术交流会,将在中国农药工业协会官方微信公众号直播大厅举行。欢迎您关注“康宁反应器技术“公众号点击阅读原文了解详情并报名参会!背景硝磺草酮(通用名:mesotrione;商品名:Callisto)是先正达成功开发的HPPD抑制剂类除草剂中的领军产品。硝磺草酮结构式硝磺草酮的常规合成方法是1,3-环己二酮和2-硝基-4-甲磺酰苯甲酰氯酯化后再重排反应制得。前人对该合成工艺做了很多优化工作,但大都是基于釜式基础上的改进。浙江工业大学的研究人员基于前人的研究基础上成功地开发了全连续酯化-重排合成硝磺草酮的工艺,并实现了丙酮氰醇的无害化处理,总收率为90.5% ,纯度 99% 。该工艺实现了多步安全连续化反应,提高了酯化反应速度(20s vs.釜式3h)和总收率(较釜式提高3.9%)。本文将为您简单介绍相关内容。研究过程一. 从反应机理出发,分解研究内容从下图的反应机理可以推测:初始物料1,3-环己二酮经历酯化、重排后得到最终产物。图1. 反应机理作者重现了釜式工艺,也验证并认可上述反应机理。基于此,研究人员分步研究了酯化反应和重排反应连续化的可行性。二. 溶剂研究前人研究的釜式工艺中,大多溶剂不能完全溶解反应物或中间体。为了避免由于体系存在固体堵塞反应通道,作者首先对溶剂做了优化,重点研究了烯醇酯在各种溶剂中的溶解度以及不同溶剂对重排反应的效果和影响。经研究发现烯醇酯在乙腈中的溶解较高,且乙腈条件下酯化和重排的分离产率较高,因此选择乙腈作为连续流反应溶剂。三. 酯化反应连续化研究1. 酯化反应阶段釜式工艺问题:不安全,反应放热剧烈,有安全风险;时间长,反应物未完全溶解在溶剂中,且需要缓慢加入三乙胺,反应时间长(3 h);副反应,反应过程中产生不稳定中间体,易发生副反应;收率低,反应物转化率、收率较低。2. 连续流工艺,非常适合中间体不稳定的反应,具有以下优势:反应安全,传热效率提高,可以迅速移走反应过程中的热量,提高反应安全性;时间变短,精准控制物料,物料混合效率高,反应时间可大大缩短;减少副反应,可以精确控制反应温度,减少或消除副反应;收率提高,通过优化反应条件,使反应完全高效,提高收率。3. 连续酯化工艺流程图2.酯化连续流工艺如上图作者将2-硝基-4-甲磺酰苯甲酰氯溶解在乙腈中配成一股物料,在乙腈中加入1,3- 环己二酮和三乙胺配成另外一股物料,进行预冷/预热后,通过一个三通混合,注入管式反应器。在水浴中进行延迟循环后,将反应液收集在 -20 °C 的预冷容器中,用过量的乙腈搅拌淬灭反应。作者优化了反应条件,发现在酯化反应中停留时间是影响收率的关键因素,时间过长产物发生副反应的可能性增大,三乙胺需要过量。最终确定了反应温度为20℃,反应时间20 s。分离收率99%,纯度98.6%。四. 重排反应连续流工艺的研究1. 重排反应阶段釜式工艺的主要问题是酯化反应产物烯醇酯易发生副反应,由于釜式工艺温度很难精准控制导致副反应的发生。2. 连续流工艺可以精确控制反应条件,最大程度上减少副反应的发生。并且其相对密封的反应体系也有助于解决当前工业生产中的毒性试剂接触性安全问题。3. 连续重排反应工艺流程图3.重排连续流工艺如上图作者将烯醇酯、乙腈溶液和乙腈、三乙胺、丙酮氰醇溶液,经过管道进行预冷/预热后,通过T形接头注入管式反应器。在水浴中经过延迟反应,将反应液收集到-20 °C 的预冷容器中,用过量的乙腈搅拌淬灭反应。作者同样做了条件的优化,该重排过程中反应温度对收率的影响较大,最终选择反应温度为25 °C,停留时间为252min,收率为91.3% ,纯度为99.3% 五. 全连续工艺图4.全连续流程如图4所示,为了充分发挥连续流动反应的技术优势,研究人员设计了全连续流动酯化重排制备硝磺草酮的工艺。由于丙酮氰醇有毒性,需要进行处理以降低对环境的影响。研究者参考文献选用次氯酸钠和丙酮氰醇反应。次氯酸钠溶液,经预冷/预热管道泵入带有反应混合物的管式反应器,40 °C下反应30min。酯化-重排和丙酮氰醇淬灭3步反应温度分别为20 °C、25 °C 和40 °C,停留时间分别为20s,252min,30min。表1.釜式工艺和连续流工艺对比综上采用连续流工艺发现:酯化反应时间和总反应时间显著减少。纯度和分离收率都有所提高。此外,还增加了丙酮氰醇的无害化处理。研究结果研究人员开发了一种连续合成硝磺草酮的新工艺;该方法提高了反应效率,减少了酯化后处理操作,降低了成本,减少了连续流工艺中重排副产物;此外,采用连续流工艺可以强化传热,避免操作人员过多接触丙酮氰醇,提高了工艺安全性;该工艺酯化收率为99% ,重排反应收率为91.3% ,纯度分别为98.6% 和99.3% 。酯化连续重排合成硝磺草酮的分离收率为90.5% ,纯度 99%。参考文献:Journal of Flow Chemistry 12, 197–205 (2022)编者语全连续合成一直是近几年农药先进工艺研究非常热门的话题,但是实现全连续的工业化生产的例子却凤毛麟角。康宁反应器无缝放大的特性有利于连续化生产的快速实现。同时连续化生产技术是一项综合的科学技术,离不开连续化合成、分离、提纯等生产工艺技术、PAT分析技术、专业技术培训等各个方面的进步与发展。更离不开企业在相关技术的投入与支持。为了让更多的农药企业了解连续合成工艺和分离技术的应用与进展,6月16日晚7点我们特邀浙江工业大学化学工程设计研究所所长姚克俭教授与康宁AFR项目经理周太炎先生,在线畅谈农药绿色工艺研究和自动化分离技术等话题!欢迎您点击阅读原文或拨打400-812-1766联系康宁反应器技术了解详情。
  • 头发有助于除草剂监测
    瑞安德沃特-约翰逊(Ryan De Vooght-Johnson)一种新的LC-MS/MS方法用于检测头发中的草甘膦及其代谢物AMPA(氨甲基膦酸),有助于监测这种除草剂的暴露情况,并与健康问题建立联系。草甘膦暴露是潜在的健康风险草甘膦是孟山都公司于1974年推出的一种广谱除草剂,是世界上使用最广泛的除草剂之一。美国有750多种产品含有这种除草剂。其专利于2000年到期,草甘膦现在由一系列制造商销售。喷洒在作物上后,除草剂会进入河流和水体,细菌将其转化为氨甲基膦酸(AMPA)。接触草甘膦被认为与某些癌症有关,包括非霍奇金淋巴瘤。据报道,草甘膦具有细胞毒性和遗传毒性作用,并引起炎症,以及影响淋巴细胞功能和微生物与免疫系统之间的相互作用。世界卫生组织国际癌症研究机构(International Agency for Research on Cancer)报告称,草甘膦“可能对人类致癌”,尽管美国环境保护署(US Environmental Protection Agency)认为草甘膦小心使用是安全的。欧洲食品安全局(EFSA)表示,它不太可能导致人类癌症,但在2015年,EFSA规定急性参考剂量的限值为每千克体重0.5毫克,并承认这是一种有毒化学品。头发中草甘膦的快速分析研究人类草甘膦暴露对于建立与健康问题的联系很重要,但草甘膦在暴露后3天内就从体内消除,因此在尿样中检测的窗口很短。头发分析可以提供接触一系列化学物质的时间信息,这些化学物质通常用于药物检测。为了监测草甘膦暴露情况,巴黎萨克雷大学MasSpecLab的科学家开发了一种用于测定头发中的草甘膦和AMPA的LC-MS/MS方法。对短于3厘米的头发进行批量分析,但在长度足够长的情况下,则将头发分为2厘米的段进行分析。头发在DCM(二氯甲烷)中清洗,然后磨成粉。在研磨后的样品中,根据需要加入校准标准溶液或QC溶液,然后在5µL 10 mg/L内标溶液中进行超声处理。将溶液在真空下蒸发至干,将残渣重新溶解在水中,然后进行LC-MS/MS分析。使用带有Luna HILIC色谱柱和TSQ Altis三重四极杆MS的Dionex Ultimate 3000进行分析。梯度模式以0.5 mL/min的流速进行,5mM甲酸盐缓冲液作为流动相A,乙腈作为流动相B。梯度从90% B开始,持续2 min,在0.5 min内下降至20%,然后保持1.5 min。在负模式下使用ESI进行检测,离子喷射电位为-3.5 kV,毛细管温度为350°C,氮气作为屏蔽气体,氩作为碰撞诱导离解气体。MRM(Multiple Reaction Monitoring,质谱多反应监测)用于监测下列转换:168.2→63.2和168.2→79.2适用于草甘膦,110.0→79.2和110.0→63.2适用于AMPA。按照2011年EMA(European Medicines Agency,欧洲药品管理局)指南进行验证。选择性、交叉污染、线性、LOD/LOQ、准确度、精密度、基质效应和稳定性都被认为是可以接受的。对于现实生活中的分析,从使用草甘膦多年的农民身上采集了头发样本,确保他们的头发足够长,足以覆盖最近使用的除草剂。为了进行比较,还从生活在城市中没有接触草甘膦的人和其中一位农民的妻子身上采集了样本,他们没有在农场工作,但住在同一个地方,吃同一种食物。其中一位农民还提供了一份尿液样本进行比较,并使用改进版的HPLC方法进行分析。四个农民中有三个头发中含有草甘膦。农民甲每年喷洒作物三到四次,头部、阴毛和尿液中的草甘膦含量都很高。农民丁与农民甲合作,接触情况相似,但草甘膦检测结果未呈阳性。作者解释说,这是因为她经常漂白头发,然后把头发染成红色,这肯定消除了任何残留物。农民甲的妻子没有在农场工作,头发中的草甘膦含量很低,与城市居民中的草甘膦含量相似。现在可以进行长期暴露监测通过可以使用本文报道的新LC-MS/MS方法测量头发中的除草剂及其代谢物AMPA来评估长期暴露于草甘膦的可能性。只有四位农民参与了这项研究,因此作者计划研究更多的主题,并进一步优化方法。这种方法对于监测这种除草剂的暴露情况和评估其毒性很有用。相关链接Alvarez JC,Etting I,Larabi IA。通过 LC/MS-MS 方法定量人发中的草甘膦和氨基甲基膦酸。生物医学铬。2022. https://doi.org/10.1002/bmc.5391除草剂草甘膦是一种“重要的”癌症因素。英国广播公司新闻。2019 年 3 月 20 日(https://www.bbc.co.uk/news/business-47633086;2020年 5 月 12 日访问)。草甘膦会损害昆虫的免疫系统。威利分析科学。2021 年 5 月 28 日(https://analyticalscience.wiley.com/do/10.1002/was.00080263;2020年 5 月12 日访问)。关于作者瑞安德沃特-约翰逊Ryan 是一名自由科学作家和编辑。在获得仪器和分析方法硕士学位后,他在制药行业担任过各种分析开发职务,之后担任编辑职务。作为委托编辑,他创办了两本与分析化学和药物相关的期刊,Bioanalysis 和 Therapeutic Delivery,并管理了许多其他期刊。他现在是一名自由科学作家和编辑,让他有更多的时间陪伴家人、骑自行车和分配土地。符 斌,北京中实国金国际实验室能力验证研究有限公司 供稿
  • 日用量超3000片才中毒,“极草”回应“砷超标”提示
    p  新春佳节往往是虫草的消费旺季,但就在今年春节前夕,国家食药监总局发布的一则消费提示却指出,长期食用虫草会导致砷的过量摄入,并可能带来风险。这让虫草企业和消费者都捏了把汗,也引起了监管部门的关注。对于以虫草粉片为主要产品的青海春天,上交所随即发出问询函,要求公司就此进行核实和披露。2月6日,公司回复称其虫草粉片的安全性已经研究证实。不过,记者也注意到,鉴于目前公司控股子公司青海春天药用资源科技利用有限公司(简称“春天药用”)未按时获得药监部门换发的新《药品生产许可证》,证监会正要求青海春天停牌核实相关情况。/pp  2月4日,国家食药监总局在官网发布《关于冬虫夏草类产品的消费提示》指出:近期组织开展了对冬虫夏草、冬虫夏草粉及纯粉片产品的监测检验,发现相关产品的砷含量为4.4至9.9毫克每公斤。冬虫夏草属中药材,不属于药食两用物质。有关专家分析研判,保健食品的国家安全标准中的砷限量值为1.0毫克每公斤,长期食用冬虫夏草、冬虫夏草粉及纯粉片等产品会造成砷过量摄入,并可能在人体内蓄积,存在较高风险。/pp  次日,上交所即对青海春天下发监管问询函,称鉴于青海春天主营虫草类产品,请公司核实其产品是否存在国家食药监总局《消费提示》中所述的风险,以及是否符合国家相关药品食品法律法规规定的质量要求。/pp  青海春天于2月6日发布公告回复表示,控股子公司春天药用生产销售的虫草纯粉片为“唯一具备合法生产、销售身份”的此类产品。公司各项试验结果均显示,以净制冬虫夏草为原料的冬虫夏草纯粉片安全无毒。/pp  青海春天表示:冬虫夏草属中药材(与国家食药监总局“冬虫夏草不属于药食两用物质”的判定一致),每日服用量很小。作为参考标准,国际食品法典委员会(由联合国粮农组织FAO和世界卫生组织WHO共同建立)制订的标准是以每日砷的最高允许摄入量来衡量,其数值为不超过每千克体重0.05毫克(此处所用单位与国家食药监总局的消费提示不同)。以此对照,《中华人民共和国药典》规定的冬虫夏草原草最高服用量9克,其砷摄入量也只为国际标准的2.97%,而由净制冬虫夏草制成的冬虫夏草纯粉片最高用量只有3.5克,所带来的砷摄入量仅为国际标准的1.16%,而若以0.1克每片规格的冬虫夏草纯粉片为例,每天服用量超过3000片,才超过砷的日摄入量的安全标准。/pp  值得关注的是,尽管青海春天对公司冬虫夏草产品的消费风险进行了上述澄清,但其股票尚处于停牌状态。据公司2月2日发布的重大事项待核查的停牌公告,春天药用的《药品生产许可证》已于2015年12月31日到期,在该《药品生产许可证》到期前,公司已于2015年11月2日向青海省海东市食药监局上报了换发新证所需要的材料,并接受当地药监部门进行检查,但截至目前,青海省食药监局尚未向春天药用换发新的《药品生产许可证》,对此,证监会已向公司发出《核查通知书》。/pp  青海春天在2月6日的公告表示,公司正开展对控股子公司(即春天药用)暂未获换发新的《药品生产许可证》相关事项的核实工作。/pp  据了解,春天药用是青海春天的核心经营性资产,成立于2003年4月3日,注册资本2.13亿元,主营中藏药原材料收购、加工、销售等,主要产品为以“极草· 5X”为品牌的系列纯冬虫夏草产品。/ppbr//p
  • 用来制杀虫剂的砷 烟草中也曾检测到
    在上期科普中,我们对烟草中的重金属及其吸烟对人体的影响做了开篇,指出通过吸烟且以高温燃烧为主导过程的重金属进入人体会打破体内的金属离子的平衡,从而影响人体代谢过程,产生疾病。本期开始对烟草中各种重金属逐一介绍。  铝  香烟中的铝含量为699-1200毫微克/克。一般人体的铝在血浆浓度平均为4.2毫克/升,这个水平不受年龄或吸烟习惯的影响。铝被指与阿尔茨海默氏病(AD )有关,但还缺乏一定的证据。但有数据表明,抽烟带入的铝对人体内微量金属动态平衡可能存在干扰而加剧与AD的发生。此外,铝与小红细胞性贫血和骨软化症具有一定的因果联系,还有增强炎症和氧化作用。  锑  媒体曾报道锑及其化合物通过直接接触或吸入引起皮炎、角膜炎、结膜炎和鼻中隔溃疡。研究发现吸烟者体内有较高的锑。职业病和动物研究均表明,吸入的锑化合物对呼吸道和心血管效应有影响,最近一项研究报道,与几乎检测不出锑的非吸烟者相比,即使尿含锑低于0.1微克/升的吸烟者,外周动脉疾病发生的风险也直线上升。在我们的研究中,锑含量上升或导致某些金属(包括镉,铅和锑)的毒性发作。美国有检测显示,锑在正规烟草品牌中浓度为0.045%,在假烟中高达0.117%。  砷  烟草可能含有砷,而砷常常被用来制作杀虫剂。长时间暴露在含有砷的烟尘中会刺激眼睛、鼻子、喉咙和皮肤。在加工后的烟叶中,已被检测到的砷浓度可达400毫微克/克,卷烟的主流烟气中也可检测到砷。有研究者认为砷和甲酚是心血管疾病风险的主要来源。  钡  很少人知道烟草含钡,事实上含量还不少。早在100年前就有人测得烟草根部平均含钡0 .12%,茎部含0.04%,叶片含0.04%,后来测定的烟叶含钡大多在0.01%-0.06%之间。已经证明,吸烟者比不吸烟者体内钡含量要高。钡的可溶形式毒性很大,急性暴露时会造成低钾血症。
  • 《质谱学报》"质谱技术在中草药研究中的应用"专辑
    p style="TEXT-ALIGN: center"span style="FONT-SIZE: 20px FONT-FAMILY: 黑体, SimHei COLOR: #0070c0"2017年《质谱学报》第1期“质谱技术在中草药研究中的应用”专辑/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"以下内容原创作者为《质谱学报》主编刘淑莹老师,如需全文(附英文摘要和参考文献)请联系《质谱学报》编辑部或仪器信息网编辑部/span/span/ppspan style="FONT-FAMILY: times new roman"  strong序 /strong传统中医药学是中华民族的宝贵财富和智慧的结晶,是民族赖以生存繁衍的重要保障。随着现代科学的迅猛发展,对于传统中药的物质基础和作用机理研究不断深入。从这个意义上讲,中医药学这个特有的传统医药体系,是我国最有希望的主导原始创新取得突破的,对世界科技和医学发展产生重大影响的学科。2015年屠呦呦教授获得诺贝尔生理医学奖的事实证明了这一点。/span/ppspan style="FONT-FAMILY: times new roman"  20世纪70年代,中国科学家组织团队对于世界上危害最大的疾病之一——疟疾进行攻关研究,屠呦呦最初由中医药书籍“肘后备急方”中记载的“青蒿一握,以水二升渍,绞取汁,尽服之”得到灵感。中国科学家从黄花青蒿中得到提取物青蒿素,经过艰苦的,广泛的临床试验,证明是疗效确切的。已故的梁晓天院士等根据质谱和核磁共振谱数据,正确地推断了青蒿素的过氧桥结构,从化学结构上预示了分子的构效关系。中医药的现代化的确需要传统中医药理论经验与现代科学技术相结合,青蒿素就是一个成功的案例。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanimg title="qinghaosu_副本.jpg" src="http://img1.17img.cn/17img/images/201701/insimg/ed94ff5b-c03c-47ee-8a45-9458b7a1207c.jpg"//ppspan style="FONT-FAMILY: times new roman"   自从软电离质谱技术诞生以来,质谱技术的应用范围得以大大地扩展。很多质谱学家的兴奋点也由传统的物理、化学等学科移动到生命科学相关的领域。在现代分析技术中,质谱以其快速、高灵敏度、特异性和多信息以及能够有效地与色谱分离手段联用等特点备受科学家们重视。当今质谱技术日新月异的发展,喜看各个中医药大学都添置了质谱仪器,中医药界学者逐渐接受和掌握质谱技术并灵活应用到这些组分极其复杂的药材、炮制品、代谢产物的化学成分分析以及中医药科学研究中。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: #0070c0"strong敞开式离子化质谱技术在中草药研究中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"作者:黄 鑫,刘文龙,张 勇,刘淑莹/span/span/ppspan style="FONT-FAMILY: times new roman COLOR: #002060"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"摘要:敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。/span/span/ppspan style="FONT-FAMILY: times new roman"  敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong 1 敞开式离子化质谱技术的基本原理、特点和分类/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型气相离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。/span/ppspan style="FONT-FAMILY: times new roman"  AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括气相色谱-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong2 敞开式离子化质谱技术在中草药研究中的应用/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。/span/pp style="TEXT-ALIGN: center"strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"表1 敞开式离子化质谱在中草药研究中的应用/span/strong/pp style="TEXT-ALIGN: center"table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="255" colspan="2"p style="TEXT-ALIGN: center"strong敞开式离子化质谱技术/strongstrong /strong/p/tdtd width="83"p style="TEXT-ALIGN: center"strong中草药/strongstrong /strong/p/tdtd width="272"p style="TEXT-ALIGN: center"strong分析物/strongstrong /strong/p/tdtd width="58"p style="TEXT-ALIGN: center"strong文献/strongstrong /strong/p/td/trtrtd rowspan="25" width="99"p style="TEXT-ALIGN: center"直接电离/p/tdtd rowspan="3" width="156"p style="TEXT-ALIGN: center"DI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"何首乌/p/tdtd width="272"p style="TEXT-ALIGN: center"2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子醇甲、五味子醇乙/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Tissue spray/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷、氨基酸、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"11/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Leaf spray/p/tdtd width="83"p style="TEXT-ALIGN: center"生姜/p/tdtd width="272"p style="TEXT-ALIGN: center"姜辣素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"银杏籽/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"圣罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"乌索酸、齐墩果酸及其氧化产物/p/tdtd width="58"p style="TEXT-ALIGN: center"13/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊叶/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"14/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Direct plant spray/p/tdtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"15/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Field-induced DI/p/tdtd width="83"p style="TEXT-ALIGN: center"长春花/p/tdtd width="272"p style="TEXT-ALIGN: center"长春碱、脱水长春碱/p/tdtd width="58"p style="TEXT-ALIGN: center"16/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"iEESI/p/tdtd width="83"p style="TEXT-ALIGN: center"银杏叶/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素、精氨酸、脯氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"17/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、精氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"18/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Field-induced wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甘草/p/tdtd width="272"p style="TEXT-ALIGN: center"甘草酸、甘草素/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"苦参/p/tdtd width="272"p style="TEXT-ALIGN: center"苦参素、苦参碱、苦参酮/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"Al-foil ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"附子/p/tdtd width="272"p style="TEXT-ALIGN: center"苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd rowspan="7" width="156"p style="TEXT-ALIGN: center"Pipette-tip ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"牛蒡子/p/tdtd width="272"p style="TEXT-ALIGN: center"牛蒡苷及其苷元、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"莲子心/p/tdtd width="272"p style="TEXT-ALIGN: center"莲心碱、甲基莲心碱/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"三七/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子甲素、乙素、五味子酯甲、酯乙/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd rowspan="21" width="99"p style="TEXT-ALIGN: center"直接解吸电离/p/tdtd rowspan="13" width="156"p style="TEXT-ALIGN: center"DESI/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄/p/tdtd width="272"p style="TEXT-ALIGN: center"莨菪碱、东莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"毒参/p/tdtd width="272"p style="TEXT-ALIGN: center"毒芹碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗/p/tdtd width="272"p style="TEXT-ALIGN: center"16种托品烷类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"阿托品/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"24/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"克罗烷型二萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"25/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"青脆枝/p/tdtd width="272"p style="TEXT-ALIGN: center"喜树碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"26/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"27/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贯叶连翘/p/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、糖类/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、长链脂肪酸类/p/tdtd width="58"p style="TEXT-ALIGN: center"28/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"大麦/p/tdtd width="272"p style="TEXT-ALIGN: center"羟氰苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"29/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白毛茛/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"30/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"橙皮甙、柚皮甙、苦橙甙等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"31/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"DAPCI/p/tdtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"萜品烯类/p/tdtd width="58"p style="TEXT-ALIGN: center"32/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参、红参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"33/p/td/trtrtd rowspan="6" width="156"p style="TEXT-ALIGN: center"DCBI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"黄连素、黄连碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄藤/p/tdtd width="272"p style="TEXT-ALIGN: center"黄藤素/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鱼腥草/p/tdtd width="272"p style="TEXT-ALIGN: center"别隐品碱、白屈菜红碱、原阿片碱、血根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄柏/p/tdtd width="272"p style="TEXT-ALIGN: center"药根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"粉防己/p/tdtd width="272"p style="TEXT-ALIGN: center"轮环藤酚碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"两面针/p/tdtd width="272"p style="TEXT-ALIGN: center"两面针碱、白屈菜赤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd rowspan="34" width="99"p style="TEXT-ALIGN: center"解吸后电离/p/tdtd rowspan="27" width="156"p style="TEXT-ALIGN: center"DART/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"阿托品、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"35/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"蒌叶/p/tdtd width="272"p style="TEXT-ALIGN: center"蒌叶酚/p/tdtd width="58"p style="TEXT-ALIGN: center"36/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"芫荽/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"绿薄荷/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"乌头属药材/p/tdtd width="272"p style="TEXT-ALIGN: center"乌头碱类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"38/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗籽/p/tdtd width="272"p style="TEXT-ALIGN: center"托品碱、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"39/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"萝芙木/p/tdtd width="272"p style="TEXT-ALIGN: center"单萜吲哚类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"40/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"姜黄/p/tdtd width="272"p style="TEXT-ALIGN: center"姜黄素类/p/tdtd width="58"p style="TEXT-ALIGN: center"41/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"荜澄茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"荜澄茄油烯/p/tdtd width="58"p style="TEXT-ALIGN: center"42/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"极细当归/p/tdtd width="272"p style="TEXT-ALIGN: center"藁苯内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"朝鲜当归/p/tdtd width="272"p style="TEXT-ALIGN: center"日本前胡素、日本前胡醇/p/tdtd width="58"p style="TEXT-ALIGN: center"43,44,51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白芷/p/tdtd width="272"p style="TEXT-ALIGN: center"白当归脑/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"川芎/p/tdtd width="272"p style="TEXT-ALIGN: center"川芎内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"槟榔子/p/tdtd width="272"p style="TEXT-ALIGN: center"槟榔碱、槟榔次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"延胡索/p/tdtd width="272"p style="TEXT-ALIGN: center"延胡索碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、去氢贝母碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"钩藤/p/tdtd width="272"p style="TEXT-ALIGN: center"钩藤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"丁公藤/p/tdtd width="272"p style="TEXT-ALIGN: center"东莨菪内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"46/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"制川乌/p/tdtd width="272"p style="TEXT-ALIGN: center"单酯和双酯型二萜类乌头碱/p/tdtd width="58"p style="TEXT-ALIGN: center"47/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"48/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"桑叶/p/tdtd width="272"p style="TEXT-ALIGN: center"脱氧野尻霉素/p/tdtd width="58"p style="TEXT-ALIGN: center"49/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"厚叶岩白菜/p/tdtd width="272"p style="TEXT-ALIGN: center"熊果素、岩白菜素、鞣花酸、没食子酸/p/tdtd width="58"p style="TEXT-ALIGN: center"50/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子素、戈米辛/p/tdtd width="58"p style="TEXT-ALIGN: center"51,52/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Nano-EESI/p/tdtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"53/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAESI/p/tdtd width="83"p style="TEXT-ALIGN: center"孔雀草/p/tdtd width="272"p style="TEXT-ALIGN: center"花青素、山奈酚等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"54/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"DAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草叶/p/tdtd width="272"p style="TEXT-ALIGN: center"鼠尾草酸及其衍生物/p/tdtd width="58"p style="TEXT-ALIGN: center"56/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"川皮苷、黄酮醇类、沉香醇/p/tdtd width="58"p style="TEXT-ALIGN: center"57/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"PALDI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、汉黄芩素/p/tdtd width="58"p style="TEXT-ALIGN: center"58/p/td/tr/tbody/tablespan style="FONT-FAMILY: times new roman" /span/ppspan style="FONT-FAMILY: times new roman"  strong2.1 直接电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,液相分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。/span/ppspan style="FONT-FAMILY: times new roman"  姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、移液器头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。移液器头模式的分析是将移液器头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种移液器头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.2 直接解吸电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。/span/ppspan style="FONT-FAMILY: times new roman"  DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。/span/ppspan style="FONT-FAMILY: times new roman"  DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.3 解吸后电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。/span/ppspan style="FONT-FAMILY: times new roman"  EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶液相或气相样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.4 在中草药质量评价和质量控制中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。/span/ppspan style="FONT-FAMILY: times new roman"  目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.5 本实验室的研究工作/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。/span/ppspan style="FONT-FAMILY: times new roman"  1)中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 /span/ppspan style="FONT-FAMILY: times new roman"  2)中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 /span/ppspan style="FONT-FAMILY: times new roman"  3)对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 /span/ppspan style="FONT-FAMILY: times new roman"  4)DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 /span/ppspan style="FONT-FAMILY: times new roman"  5)开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman" strong3 总结与展望/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的气相离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。/span/pp strong /strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"strong《质谱学报》致谢/strong: 此次《质谱学报》组织“质谱技术在中医药研究中的应用”专辑是逢时的,受到中医药界广大质谱工作者的热烈响应。不仅吸引了大陆的同仁,而且两岸三地的质谱工作者,如台湾的李茂荣教授、香港的蔡宗苇教授和澳门的赵静教授等都积极投稿。此专辑包括中药和其他民族药,如藏药、维药等的相关研究,从研究内容上讲,有植物药也有动物药,包括了药材、炮制品和复方药的成分分析和代谢研究。由于本刊篇幅有限,在大量来稿中只能选用19篇,对于其他审稿已通过的文章,将在以后几期中陆续刊登。另外,感谢中国科学院上海有机化学研究所的郭寅龙研究员为本专辑的出版提供指导和帮助 感谢北京大学的白玉老师、北京中医药大学的刘永刚老师、长春中医药大学的杨洪梅老师和南京中医药大学的刘训红老师在组稿过程中的贡献 感谢长春中医药大学药学院为本专辑提供部分药材图片。对于本刊编辑中存在的错误和其他问题,欢迎读者提出宝贵的意见。/span/ppspan style="COLOR: #002060" /span/p
  • 【直播预告】本草奇遇记——天然药物分离小能手
    【直播预告】本草奇遇记——天然药物分离小能手你是否还在困惑天然药物分离为何过程如此漫长?你是否又不禁思考如何才能提高得到先导化合物的“中奖率”?“小步”同学与你相约《本草奇遇记》栏目。你所想知道的答案,都在这里~4月28日 10:00步琦视频号直播间等你!
  • 新品上市 | 甘草制剂中吗啡的前处理SPE
    吗啡(Morphine),属于阿片类生物碱,为阿片受体激动剂。鸦片的主要成分之一,含6%-15%,1806年由斯图奈尔首次从鸦片中分离得到。无色柱状结晶,溶于热水、乙醇、乙醚、氯仿;难溶于氨、苯;易溶于碱水或酸水。通过模拟内源性抗痛物质脑啡肽的作用,激动中枢神经阿片受体而产生强大的镇痛作用,是人类最早使用的一种镇痛剂,也具有强麻醉、止咳、镇吐、缩瞳等作用。但它也可抑制呼吸中枢,降低呼吸中枢对二氧化碳的敏感性,对呼吸中枢抑制程度为剂量依赖性,过大剂量可导致呼吸衰竭。月旭科技根据中国药典2020版开发出了WelchromMOPD C18 小柱,适用于复方甘草口服溶液、复方甘草片中吗啡含量测定的前处理方法,同时利用液相色谱法做了全面的验证,在标准条件下,均能满足检测要求。 # 概述 # 月旭科技开发出的WelchromMOPD C18小柱,采用固相萃取技术,选出最jia萃取条件,极大的简化了样品前处理步骤,获得了良好的测定结果。 # 贮存条件及保质期 # 常温保存,在此条件下有效期为3年。 # 提取步骤 # 取复方甘草口服液0.5mL于10mL小烧杯中,加适量氨水溶液至pH约为9,待净化。 # 前处理过柱步骤 # SPE小柱:Welchrom MOPDC18,200mg/3mL;活化:依次用甲醇-水(3:1)15mL和5mL水活化固相萃取柱,再加入3mL pH=9的氨水溶液冲洗至流出液pH为9;上样:全部上样,用少量pH=9的氨水溶液洗涤小烧杯,流出液弃去;淋洗:用20mL纯水冲洗固相萃取小柱,流出液弃去;洗脱:5%醋酸溶液洗脱小柱,并用5mL容量瓶收集洗脱液并定容至刻度。注:样品溶液过柱时,重力流下或稍微抽真空条件下使其流速约为1滴/秒。 # 色谱条件 # 色谱柱:月旭UltimateXB-C8, 4.6×150 mm,5µm。流动相:0.05mol/L磷酸二氢钾: 0.0025mol/L庚烷磺酸钠:乙腈=18:18:5;流速:1.0mL/min;进样量:20μL;柱温:30ºC;检测波长:220nm。 # 色谱图及实际样品测试结果 #
  • 本草奇遇记——快速质量控制之旅
    5本草奇遇记快速质量控制之旅”在上一期的本草奇遇记中,我们简单地展示了步琦针对中药干燥与制剂环节的解决方案,希望通过丰富的产品线和经验主力“十四五”中医药的发展。这次我们将带大家详细了解奇遇记中出现的检测判别,领略步琦在旁线与在线近红外这两个产品线对中药质量控制环节快速分析的解决方案。实验室近红外近红外光谱分析技术是分析领域中最具发展潜力的分析方法,具有快速无损、实时分析与过程控制等特点,步琦的近红外能够快速测定天然产物,实现对全流程各个关键节点产品指标的分析监控,兼具成本的节约与生产效率的高效。模块化全能型近红外光谱仪近红外 NIRFlex N-500 是模块化傅立叶变换近红外光谱仪,为应用科学和各个行业的质量控制、研发部门提供可靠的结果。近红外 NIRFlex N-500 提供丰富的测量单元和附件,实现灵活的性能傅立叶偏振干涉,提高优秀的抗干扰能力激光校准光路,双灯设计增强使用效率全波段扫描,模块化测量池与测量附件审计追踪及用户管理,满足 GMP 规范适合应用:原料定性鉴别、成分产品定量分析推荐配件:适合不同样品形态的测量附件固体粉末、袋装、片剂、胶囊、液体、光纤探头等多种测量附件,满足不同工艺环节质量控制需求模块化设计,与光谱仪相独立,仅需更换测量装置即可实现应用实例陈皮中橙皮苷、川陈皮素、橘皮素成分的测定,模型验证回收率分别达到 101.08%、103.46% 和 100.02%,与传统分析方法相比具备快速无损经济等优势丹参提取物中丹酚酸 B 含量的快速测定,模型验证相对误差为 2.67%,满足质控要求,能够实现对提取物的质量控制,从而优化生产,节约检测成本。旁线近红外旁线近红外的意义在于节省送样分析所花费的时间,更加方便快速地测量生产线上的样品,对工艺状态有更加清晰、准确的认识,从而优化生产提升效率。此外联网功能也使得质量管理部门异地实时了解产品指标状况,满足对关键参数的质量控制。ProxiMate™ 现场快速检测的得力帮手ProxiMate™ 是专为生产线旁快速检测设计的近红外光谱仪,触控式的交互界面方便用户操作,紧凑的机型适合各种现场环境,确保检测结果,提升生产效率。IP69 防护等级双角度照射方式可见光与近红外光相结合,满足颜色分析需求支持多设备云端管理适合应用:产线关键数据定量快检在线近红外过程分析技术在药物生产环节中,能够帮助生产人员实时监控生产流程,在减少过度消耗与增强生产连贯性的基础上,更为高效地完成质量控制工作,节约成本。步琦的在线近红外恰好能够帮助用户实现对生产过程的监管与控制。NIR-Online过程控制的监控利器在生产过程中,密切监控基本参数对纠正生产偏差至关重要。NIR-Online X-One 作为一款多功能在线近红外,满足固体,液体等多种产品实时监控,分析仪能够持续提供准确的分析,每次测量仅需数秒,确保最高的生产效率。简单易用,几乎无需操作员干预高投资回报比,平均投资回收期不到一年专业的过程控制技术适用于粉尘,防爆,高温等恶劣环境适用于固体,液体等多种状态样品的实时监控本草奇遇记通过固液萃取,蒸发浓缩,纯化分离,干燥制剂和检测判别五期内容,就到此结束了,然而我们的中药的发展还有很长的路要走。瑞士步琦愿意用我们在天然产物领域积累的数十年的技术和经验,和大家一起助力中药发展,加强技术集成和创新,提升中药生产制造水平,加速中药生产工艺、流程的标准化和现代化,推动中药产业高质量发展。
  • 欧盟通报家用滚筒干衣机ErP生态设计与能源标识条例草案
    2011年7月20日,欧盟向WTO秘书处发布了第G/TBT/N/EEC/385和G/TBT/N/EEC/386号WTO/TBT通报,通报滚筒干衣机ErP生态设计以及能源标识实施条例草案。  1.G/TBT/N/EEC/385  通报的条例草案规定了ErP指令(2009/125/EC)下家用滚筒干衣机的生态设计要求,包括最低能源性能、凝结效率和信息要求。  生态设计要求分为通用生态设计要求和特殊生态设计要求。通用生态设计要求规定了“标准棉织物程序”以及产品说明书的要求。特殊生态设计要求规定:  l 从条例生效后1年开始:EEI85,凝结效率?60%   l 从条例生效后5年开始:EEI76,凝结效率?70%。  l 能源效率指数(EEI)和凝结效率的计算方法在条例草案的附录II中规定。  详细草案请见:http://members.wto.org/crnattachments/2011/tbt/EEC/11_2331_00_e.pdf。  2.G/TBT/N/EEC/386  通报的条例草案规定了新能源标识框架指令(2010/30/EU)下家用电和燃气滚筒干衣机能源标识和产品信息要求。滚筒式干衣机的能源标识如下图所示,分为排气型(Air-Vented)、冷凝式、燃气式三种。能源标识给出了供应商名称或商标、产品型号、能效等级、凝结效率等级、年耗电量、干衣机的类型、标准周期的时间、额定容量、噪声值等信息。  条例草案附录VI给出了能效等级以及凝结效率等级:滚筒干衣机的能效等级能效等级能效指数(EEI)A+++EEI<35A++35≤EEI<43A+43≤EEI<53A53≤EEI<65B65≤EEI<76C76≤EEI<85DEEI≤85滚筒干衣机的凝结效率等级凝结效率等级权重凝结效率ACt>90B80<Ct≤90C70<Ct≤80D60<Ct≤70E50<Ct≤60F40<Ct≤50GCt≤40详细草案请见:http://members.wto.org/crnattachments/2011/tbt/EEC/11_2332_00_e.pdf。
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 二极管阵列检测器——从现象到本质看木犀草素
    二极管阵列检测器——从现象到本质看木犀草素沈国滨 施磊 金燕 01紫外检测器的进阶版本——二极管阵列检测器(Diode Array Detector, DAD)紫外检测器(Ultraviolet Detector, UV)是目前HPLC应用最广泛的检测器,其工作原理是朗伯-比尔定律。紫外检测要求被检测样品组分具有紫外吸收,通常选择在被分析物有最大吸收的波长处进行检测,以获得最大灵敏度和抗干扰能力。可惜这会导致其它组分在该通道下的吸收变弱甚至无紫外吸收。因此,单通道紫外检测器在对目标化合物,特别是未知化合物进行纯度及定量分析时,结果可能会产生严重的偏差。图1 朗伯-比尔定律(A=lg(1/T)=Klc) 二极管阵列检测器(Diode Array Detector, DAD)是一种新型的光吸收检测器,它采用光电二极管阵列作为检测元件,形成多通道并行工作,可对光栅分离的所有波长的光信号进行检测,从而迅速决定具有最佳选择性和灵敏度的波长。可得任意波长的色谱图及任意时间的光谱图,具有色谱峰纯度鉴定、光谱图检索等功能,为定性、定量分析提供更丰富的信息。图2 二极管阵列检测器 02 DAD在天然产物构型变化监测时的妙用独一味(学名:Lamiophlomis rotata)是唇形科独一味属植物,有活血祛瘀,消肿止痛的功效,是青藏高原特有的一种重要药用植物。木犀草素是独一味叶中的主要成分 (Luteolin, CAS No. 491-70-3 ),是一种天然弱酸性的黄酮类化合物。木犀草素具有抗炎、抗过敏等作用,可用于治疗COPD、支气管哮喘以及慢性咽炎、变应性鼻炎等引起的慢性咳嗽。图3 木犀草素结构式本文基于赛默飞液相色谱系统和二极管阵列检测器,开发了一种可用于检测中药独一味胶囊提取液中木犀草素含量的方法。通过DAD检测器不仅可以实现定量分析,也可以用于色谱峰的定性分析。同时利用DAD全波长扫描的结果以证实木犀草素在流动相pH变化时会发生最大吸收波长红移,从而影响其在C18色谱中的保留等现象进行解释。 03 实验部分色谱条件流动相pH值对色谱行为的影响图4 流动相不同pH对于保留时间和吸收波长的影响 实验结合文献表明木犀草素对于流动相的pH敏感,依据计算模拟表明木犀草素的pKa 为 6.5±0.4。即在中性时,部分木犀草素可能以极性较强的离子形式存在,保留较弱;当调节pH为酸性时,抑制了电离,使得该分子以分子形式存在。借助二极管阵列检测器(DAD),可以实现全波长扫描,可以获得更全面的紫外光谱信息。木犀草素的紫外吸收波谱也对流动相的pH敏感,不仅保留时间产生了较大的差异,且随着碱性增强,最大吸收波长产生红移。表明该物质会在不同pH条件下产生不同的构象,且构象的变化会引起共轭结构的变化。 样品分析结果图5 标准品与样品对照色谱图(蓝色:标准品,黑色:样品) 图6 样品DAD三维色谱图(插图:8.640分钟的紫外吸收光谱图) 木犀草素保留良好,色谱峰形对称,无杂质干扰,可用于定性和定量分析。在0.3~100 μM 的范围内线性良好,相关系数R2达0.9999。进样精密度良好,标准品和样品的保留时间RSD均小于为0.2 %,峰面积RSD均小于为0.9 %。根据分析标准品保留时间的紫外吸收光谱,可见样品中对应色谱峰的最大吸收波长与木犀草素一致,推断该物质为木犀草素。根据校正曲线计算可得独一味胶囊提取液中木犀草素的摩尔浓度为27.4 μM。通过在样品中加入已知浓度的标准品来判断方法的准确性,该方法的回收率在95.9~103.0%之间。 04 结论本文基于赛默飞液相系统和二极管阵列检测器,开发了一种可用于检测中药独一味胶囊提取液中木犀草素含量的方法。通过DAD检测器不仅可以实现定量分析,也可以用于色谱峰的定性分析。利用DAD全波长扫描结合其它有关计算,验证了木犀草素在不同pH条件下最大吸收波长产生了红移,从而影响其在C18色谱中的保留。本文报道的方法能为极性小分子检测方法的开发提供定性和定量分析实验基础,为阐明色谱柱中的保留机理提供了理论依据,凸出了全波长扫描DAD检测器在分析物质变化过程和监测反应过程时的优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制