当前位置: 仪器信息网 > 行业主题 > >

外膨胀定仪

仪器信息网外膨胀定仪专题为您提供2024年最新外膨胀定仪价格报价、厂家品牌的相关信息, 包括外膨胀定仪参数、型号等,不管是国产,还是进口品牌的外膨胀定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合外膨胀定仪相关的耗材配件、试剂标物,还有外膨胀定仪相关的最新资讯、资料,以及外膨胀定仪相关的解决方案。

外膨胀定仪相关的资讯

  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • Cell:细胞如何避免过度膨胀?
    所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。数十年来,人们一直在寻找实现这一功能的蛋白,现在来自斯克里普斯研究所(Scripps Research Institute)的科学家们终于找到了它。这个称为 SWELL1 的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。论文资深作者、斯克里普斯研究所教授 Ardem Patapoutian 表示:&ldquo 认识这种蛋白及其编码基因,为人们开辟了新的研究方向。&rdquo 相关研究作为封面文章发表在近期的《细胞》(Cell)杂志上。 揭晓谜底水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。&ldquo 实际上水是跟着溶质走的,&rdquo 文章的第一作者 Zhaozhu Qiu 说。&ldquo 细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。&rdquo 几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为 VRAC (体积调控的阴离子通道)。当细胞膨胀时 VRAC 就会开启,允许氯离子和其他一些带负电的分子流出。这时水分子也会跟着流出,从而减轻细胞的膨胀。&ldquo 在过去三十年中,科学家们已经知道 VRAC 通道的存在,但对它并不了解,&rdquo Patapoutian 说。由于技术限制,人们一直未能找到组成 VRAC 的蛋白及其编码基因。现在,Qiu及其同事在这项新研究中进行了快速的高通量荧光筛选。他们改造人类细胞使其产生一种特殊的荧光蛋白,当细胞膨胀 VRAC 通道打开时,这种蛋白发出的光会淬灭。在诺华制药研究基金会基因组学研究所(Genomics Institute of the Novartis Research Foundation)的自动化筛选专家的帮助下,研究人员培养了大量供筛选的细胞,并通过RNA干扰分别在这些细胞中阻断不同基因的活性。他们主要寻找能持续发光的细胞,持续发光表明基因失活破坏了细胞的 VRAC 。研究团队经过几轮测试,最终找到了一个基因。2003年科学家曾发现过这个基因,并将其称为LRRC8,不过当时人们只知道它可能编码一个跨膜蛋白。现在,研究人员将它重新命名为 SWELL1 。涉及的疾病研究人员通过进一步实验发现, SWELL1 的确位于细胞膜上,而且该蛋白的特定突变能改变 VRAC 通道的性能。&ldquo 它至少是 VRAC 通道的一个主要部件,是细胞生物学家长期追寻的蛋白,&rdquo Patapoutian 说。下一步,研究团队将进一步研究 SWELL1 的功能。例如,在小鼠模型中观察不同细胞类型缺乏 SWELL1 所造成的影响。2003 年人们最初发现这个基因,是因为该基因突变会导致一种非常罕见的无丙种球蛋白血症(agammaglobulinemia)。这种疾病的患者缺乏生产抗体的B细胞,因此很容易受到感染。这也说明, SWELL1 是B细胞正常发育所需的蛋白。&ldquo 此前有研究指出,因为中风会导致脑组织肿胀,所以这种体积敏感性的离子通道与中风有关。另外,这种蛋白可能还涉及了胰腺细胞的胰岛素分泌。&rdquo Patapoutian 说。&ldquo 这样的线索有待我们一一解析。&rdquo
  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch P130打印系统
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 我司自动快速热膨胀相变仪中标
    我司中标中科院金属研究所“全自动快速热膨胀相变仪”招标采购项目  我司北京销售部,在北京销售部经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中科院金属研究所的青睐,成功中标其“全自动快速热膨胀相变仪”招标采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • TA 仪器推出三条全新热膨胀仪产品线
    美国特拉华州纽卡斯尔市。 2017 年 3 月 1 日 - TA 仪器隆重推出三条全新热膨胀仪产品线,性能卓越的 800 平台喜迎新成员:DIL 820、DIL 830 和 ODP 860。这三款系列仪器均采用 TA 的专属真实差分技术,与强劲的竞争对手的系统相比,测量精确度超出十倍,进一步巩固了 TA 作为全球热分析技术领导者的杰出地位。 这三条新热膨胀仪产品线均基于获得专利的光学传感器,能够以高达 1nm 的分辨率分析样品。每款系统均配备新型高速、无温度梯度加热炉,确保温度控制达到最佳状态,缩短不同测试之间的停机时间。 TA 热膨胀仪属于高精度系统,设计用于测量动态热力变化引发的样本尺寸变化。这些热膨胀仪广泛应用于材料科学、陶瓷制造以及金属加工等领域的众多应用。它们在研究环境和生产控制过程中表现出众。 谈及本次发布的这款新产品,TA 仪器的高温产品经理 Piero Scotto先生 表示:“这是行业领先的热膨胀仪产品。通过将崭新系统设计与差分技术(每款仪器的核心)完美相融,TA 已经成为这一产品领域的新晋市场领导者。TA 仪器提供品类齐全的热膨胀仪,其优异性能和优惠价格符合所有用户的不同需求。 这款新平台由以下部件组成:精确测量尺寸变化的 DIL 830 系列高分辨率卧式推杆热膨胀仪、适用于精密烧结研究的 DIL 820 系列创新型立式推杆热膨胀仪以及执行非接触式样品测试的 ODP 860 多模光学膨胀测量平台。TA 仪器是沃特世公司(纽约证交所:WAT)的子公司,是热分析、流变测量和微量热测量领域分析仪器的领先制造商。公司总部位于美国特拉华州纽卡斯尔市,于 24 个国家/地区设立了办事机构。联系人:-全球营销总监 Ed Moriarty电话:302-427-1033 emoriarty@tainstruments.com TA仪器中国市场主管 Vivian Wang 电话 021-34182128vwang@tainstruments.com
  • 我司中标快速热导率仪、热膨胀仪项目
    2009年12月15日,我司北京销售经理以真诚的销售服务成功中标中国地震局地质研究所“快速热导率仪项目”。欢迎广大客户咨询本公司产品。  我司中标沈阳工业大学材料学院“热膨胀仪项目”
  • 反常热膨胀光学晶体研究获进展 有望提升精密光学仪器稳定性
    近日,中国科学院理化技术研究所研究员林哲帅、副研究员姜兴兴等提出实现晶体热膨胀的超各向异性,为光学晶体反常热膨胀性质的调控提供了全新的方法,对于光学晶体中轴向反常热膨胀性质的功能化具有重要意义。   在外界温度变化时,常规光学晶体因“热胀冷缩”效应,无法保持光信号传输的稳定性(如光程稳定性等),限制了其在复杂/极端环境中精密光学仪器的应用。探索晶体的反常热膨胀性质如零热膨胀,“对冲”外界温场对晶体结构的影响是解决这一问题的有效途径。   然而,通过晶格在温度场作用下的精巧平衡来实现零热膨胀颇为困难,一方面,热膨胀率严格等于零的晶体在自然界中不存在;另一方面,目前化学组分调控晶体热膨胀性质的方法,例如多相复合、元素掺杂、客体分子引入和缺陷生成等,影响晶体的透光性能,不利于光学应用。如何在严格化学配比的晶体材料中,利用其本征的热膨胀性能来实现大温度涨落下的光学稳定性,具有重要的科技意义。   该研究团队提出实现晶体热膨胀的超各向异性,即沿晶体结构的三个主轴方向分别具有零、正、负热膨胀性,来调控光学晶体反常热膨胀性质的新方法。研究通过数学推导严格证明了当沿着三个主轴方向分别具有零、正、负热膨胀时,晶体具有最大的热膨胀可调性,可实现热膨胀效应和热光效应的精巧“对冲”,获得完全不随温度变化的光程超级稳定性。   研究在具有高光学透过的硼酸盐材料中探索,系统分析了晶格动力学特征。在此基础上,研究在AEB2O4 (AE=Ca或Sr)中发现了首个沿着三个主轴方向零、正、负热膨胀共存的特性。原位变温X射线衍射实验证明AEB2O4晶体具有宽的零、正、负热膨胀共存的温区(13 K ~ 280 K)。   在相同温度区间内,光程的变化量比常规光学晶体(石英、金刚石、蓝宝石、氟化钙)低三个数量级以上。第一性原理结合变温拉曼光学揭示了AEB2O4这种新奇的热膨胀性质源自离子(AEO8)基团拉伸振动和共价(BO3)基团扭转振动之间热激发的“共振”效应。相关研究成果发表在Materials Horizons上。   近年来,该团队致力于光电功能晶体反常热学和反常力学性能的研究,发现了系列具有负热膨胀、零热膨胀、负压缩以及零压缩性能的光电功能晶体,有望为复杂/极端环境下光学器件的稳定性和灵敏度问题提供解决方案。
  • 北京大学引进德国巴赫BAEHR光学热膨胀仪
    德国巴赫(BAEHR)热分析公司DIL806光学热膨胀仪进入我国最高学府-北京大学DIL806光学膨胀仪是目前世界上唯一利用光学原理进行测量的热膨胀仪,技术上比传统热膨胀仪更胜一筹。具体表现在: 1、利用光学原理测量是绝对测量,无需对测量结果进行校正(传统热膨胀仪是相对测量,必须对测量结果进行校正); 2、测量系统无需与试样接触,没有附加的外力作用在试样上,测量更准确; 3、对试样的外形没有严格要求,外形不规则试样,薄试样,甚至发生固-液-固相转变过程的试样,均可进行完美地测试,极大地扩展了热膨胀仪的应用范围。 Disc furnace – 盘式加热炉 Sample – 被测试样 Sender – 激光发送器 Receiver – 激光接收器 北京仪尊科技有限公司是德国巴赫热分析公司在我国的唯一代理,如想更详细地了解该仪器,请登录我公司网站,或与我公司直接联系: 电话:010-84831960 84832051 邮箱:sales@esum.com.cn 网站:www.esum.com.cn
  • 美薪酬膨胀助力生物医学发展
    根据传统观点,美国生物医学研究成本的提高比所有消费品和服务费用的上涨速度都快。在过去30年间,国立卫生研究院(NIH)发布的相关指数证实了这种不一致性,也给了游说者更好的“武器”恳请立法者批准NIH年度预算增速高过该国的通货膨胀速率。  这份NIH指数涵盖了诸如试剂、实验动物和科学仪器的费用等,有时它能高过一个更大范围的指数约3个百分点。但在2012年,一件奇怪的事发生了,而且,这件事挑战了传统观点。生物医学研发价格指数(BRDPI)低于了美国国内生产总值价格指数(GDP PI)——消费者物价指数的一个变化版本。  当时,该生物医学指数增长率为1.3%,不仅低于当年的GDP PI的1.9%的增速,也创了BRDPI的历史最低纪录。但这则消息在当时并未引起重视。  要找出该年度如此异常的原因,人们需要知道BRDPI包含哪些内容。NIH在接受《科学》杂志采访时表示,该信息并不适合公开,但根据《联邦信息自由法案》(FOIA)它能被获得。据悉,该指数不仅涉及设备和用品的成本,还包括来自拨款的薪酬和福利。实际上,全部人力成本占到该指数年度变化的2/3。  《科学》杂志曾公开了美国密歇根大学安纳伯分校一位微生物学家近几年的科研经费支出情况。4年内,他共获得约115万美元的基金,其中约43.8%为个人工资和福利,材料费约占 19.6%,另外1/3上缴至学校管理部门,剩下的为其他科研支出。由此可见,人力成本占了经费支出的一大部分。  而在2011年12月美国国会通过支出法案后,薪酬和福利对生物医学研究发展的巨大影响日益清晰。该法案将标准NIH拨款中研究者薪酬上限从19.97万美元减少到17.97万美元。立法者希望这能将钱省下来资助更多项目。而科学家则抱怨NIH的300亿美元经费根本不足以帮助他们实现自己的好点子。  这部2011年法案是NIH经费周期慢性繁荣与萧条的最新案例。虽然,作为帮助美国经济从2008年世界经济危机中复苏的一系列刺激计划的一部分,一个为期两年的100亿美元的预算削减最终结束,但资金仍非常紧张。  例如,NIH的2015财年预算比2014年的299亿美元预算增加了1.5亿美元,仅提升了0.5%,使明年NIH的财政预算仍低于2012年暂押5%前的预算。增加额未达到参议院支出委员会批准的增加6.06亿美元的目标,而且也低于白宫要求增加的2.11亿美元。而且,附加报告还要求NIH在申请者年龄上给予更多关注,目前,首次接受NIH资助的科研人员平均年龄为42岁。  而这个限制薪酬支出的决定让BRDPI陷入混乱,也使得其低于已经很低的GDP PI。2008年,该生物医学指数达到历史顶峰4.7%,是GDP PI的2.1%的两倍还多。到2010年,这一数值略微下降,达到3%,但仍然超过了GDP PI。2012年,BRDPI急剧下降,相反GDP PI增长到1.9%。  外部观察者认为,这一下降趋势是个好消息。毕竟,如果生物医学研究膨胀放缓,那么NIH就能进一步利用其有限的经费。  但NIH领导层并不希望出现这种趋势。NIH前院外研究项目负责人Sally Rockey习惯每年就BRDPI的价值撰写博文。她将其称为“衡量NIH经费购买力的重要方式,并能为下一财年作出预测”。但在2014年3月28日发表的博文中,Rockey只是简单地提及2012年的下降“主要是资深研究人员薪酬上限降低所致”。  另外,也没有部门备忘录显示,2012年BRDPI历史最低纪录引发任何正式反应。但相同备忘录包括了对2013年BRDPI的初步预测,结果显示它将再次超过GDP PI。备忘录作者表示,2013年的生物医学指数虽“但仍处于历史低谷,并将至少再次超过了GDP PI”。
  • 我司中标沈阳工业大学材料学院“热膨胀仪项目”
    我司北京销售经理以真诚的销售服务成功中标沈阳工业大学材料学院“热膨胀仪项目”。欢迎广大客户咨询本公司产品。
  • 德国耐驰60周年回顾系列(一):最古老!陶瓷行业诞生的膨胀计
    本文作者:Aileen Sammler德国耐驰公司(NETZSCH-Gerätebau GmbH)将在2022年正式庆祝公司成立60周年的纪念日。为此,我们将关注耐驰仪器背后的故事——耐驰分析仪器及其在过去几十年中的发展。1月份,我们将从膨胀计开始,它是德国耐驰历史上最古老的仪器之一。1962年,德国耐驰公司(NETZSCH-Gerätebau GmbH,NGB)在塞尔布成立。在过去的60年里,德国耐驰已经成为世界领先的热分析制造商之一。我们为我们的员工感到自豪,他们以非凡的决心和毅力推动着耐驰前进。我们感谢与我们的客户和合作伙伴间彼此信任和富有成效的合作。我们共同倡导质量、专业、创新和可持续性,并将在未来几十年继续坚守。德国耐驰多年来一直由Thomas Denner博士和Jürgen Blumm博士成功地管理。Thomas Denner博士非常清晰地记得他在塞尔布的开始:“当我2004年开始在耐驰工作时,我对员工的积极特别印象深刻。从公司成立的第一天起,我还偶然结识了一些同事。一方面,我感觉到他们有着精明的头脑,另一方面非常愿意探索未知。他们对过去取得的成就的自豪感和可持续发展的追寻今天也能感受得到。这将使我们能够在未来几个月里向你们展示我们的许多不同的系统和设备,它们最初出现在热的材料表征,目前采用了当今最先进的技术延续至今。我们将从一个仪器开始,这个仪器在很多年前就已经是一篇博士论文的焦点,最近又在一篇论文的背景下得到了解决,并立即带来了专利技术。我自豪地期待着接下来的耐驰60年主题月。”耐驰历史回顾早在20世纪50年代,在Netzsch兄弟的管理下,就建立了完整的陶瓷产品生产线。在向精细陶瓷行业的客户提供完整的生产设备的过程中,这些客户还要求能够购买相关的测试或实验室设备。这就是决定开发和制造用于建立陶瓷实验室的专用仪器的原因。这种设备的开发最初是从小规模做起的:这些想法被纳入了前耐驰公司(Maschinenfabrik Gebrüder Netzsch)学徒车间的测试仪器中。为了加强“测试仪器”部门的开发、生产和销售活动,耐驰公司(NETZSCH-Gerätebau GmbH)于1962年6月27日成立,总部设在塞尔布。随后,最早陶瓷行业实验室仪器的研制成果之一是:通过热膨胀测量装置,促进陶瓷碎片和釉料膨胀系数的协调。为此,研制了膨胀计。膨胀计——过去和现在德国耐驰膨胀计(简称DIL)的发展可以追溯到瓷器行业,也可以追溯到耐驰的诞生地——德国上Upper Franconi的塞尔布。使用膨胀计的目的是能够准确了解瓷碟在烧制过程中可能发生的膨胀,以防止裂纹和断裂的形成,并确定最终产品的准确尺寸。如今,膨胀计是研究陶瓷、玻璃、金属、复合材料和聚合物以及其他建筑材料长度变化的首选方法。它用于获取有关热行为和工艺参数或烧结和交联动力学的信息。膨胀计用于质量保证、产品开发和基础研究。第一台膨胀计在塞尔布使用图:60年代最早使用的膨胀计之一,曾在Rosenthal使用,现在在塞尔布Porzellanikon德国陶瓷博物馆展出(Porzellanikon德国陶瓷博物馆,位于象征欧陆三百年瓷器发展的历史重镇—德国塞尔布市(Selb),由德国名瓷罗森塔(Rothantal)1866年创立的厂房改建,总占地11,000平方米。Porzellanikon不仅是德国首家陶瓷博物馆,更是全欧洲最大的陶瓷博物馆,其不同于一般博物馆,展示的不只是瓷器的过去,更是它的现在与未来,从艺术、历史、商业到尖端科技,勾勒出一个清晰完整的瓷器现代新风貌,更是承载着欧洲陶瓷历史与艺术的珍贵宝库。)塞尔布——世界瓷都。Rosenthal、Hutschenreuther或Villeroy&Boch等名字在国际上都很有名,与Upper Franconia的这座小城有着密切的联系。60多年前,这家瓷器厂的前所有者Philipp Rosenthal给Erich Netzsch打电话。“我们杯子的把手在烧制过程后会断裂。我们需要一些东西来确定瓷器的膨胀行为,以优化生产过程,”这次谈话可能就是一切的开始。这就是膨胀计的诞生!顺带一提,在Rosenthal工作了近30年后,第一台测量设备于1996年移交给了塞尔布Porzellanikon德国陶瓷博物馆,在那里仍然可以欣赏它。从X-Y绘图仪的打印输出到Digital Proteus评估图:Stefan Thumser(前排,左三)和服务部门的同事(1997年)Stefan Thumser于1984年开始他作为能源设备的机电和电子技术员的学徒生涯。作为德国耐驰客户服务部门的长期支柱,他负责耐驰设备的调试、故障排除和基础培训,目前拥有38年的经验和专业知识。几十年来,他积极参与了膨胀计的开发,今天,他随时报告膨胀计取得的进展。Stephan Thumser回忆道:“过去操作膨胀计是真正的手工工作。除了插入样本,许多设置都必须手动选择。这些有时就要花一个小时。如今,你不必再担心这个问题了。只需插入样本,然后通过软件控制开始测量。”图:1979年为陶瓷制造商 Rosenthal定制的膨胀计。这种膨胀计仍然可以在塞尔布的Rosenthal 直销中心看到。“在膨胀计的历史发展过程中,最显著的差异是在测量评估领域。这过去是通过记录仪器以模拟格式进行的,例如2通道记录仪、X-Y绘图仪或所谓的KBK-6彩色点阵打印机。获得的测量数据无法 1:1转换为测量结果,因为样品架和推杆的固有膨胀作为误差包含在记录中。而手动校正这些测量值很费力,通常需要数小时的详细工作。如今,只需点击鼠标和/或通过Proteus软件即可完成。在测量后的几秒钟内,自动校正后完整曲线出现在计算机上。一次测量的准备工作,包括设置测量范围和开始位置,以及通过质量流量控制器调节气体,现在只需按下一个按钮即可完成。”即使在早期,质量、创新和客户满意度也是耐驰的首要任务。因此,膨胀计多年来不断改进。Stefan Thumser接着说:“2015年,随着新的DIL 402 Expedis仪器系列的开发,在一台仪器上安装两个熔炉也成为可能,可以进行更快、更灵活的操作。”图:用于手动测量评估的旧KBK打印机(6色多通道打印机)点击下方链接直达:热膨胀仪专场德国耐驰展位
  • 我司成功中标中国矿业大学热膨胀仪采购项目
    2010年1月14日,我司北京销售部,在北京销售经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中国矿业大学的青睐,成功中标其“热膨胀仪”采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 德国耐驰60周年回顾系列(三):膨胀计到底能用来做什么?
    本文作者:Aileen Sammler 作为德国耐驰60周年纪念的宣传活动的一部分,本文将详细介绍膨胀计的不同应用领域。  耐驰获得专利的最新技术  德国耐驰拥有极佳的膨胀测量系统——测量单元的功能设置在许多国家获得专利,并具有许多优点,例如:  初始样品长度不限范围以及在更高分辨率下的长度变化  明确的低恒定接触力  力控制调节,推杆无冲击且可重复移动  初始样品长度的自动识别  图:DIL 402 Expedis Supreme代表了顶尖的膨胀计技术:自动测定样品长度、在非常广的测量范围内保持恒定的分辨率、测量系统极好的温度稳定性以及双吊炉扩展的温度范围。除此之外,测量系统还可以进行力调制,从而连接热机械分析(TMA)。图:DIL 402 HT Expedis–2800°C高温版本:无论在航空航天、发电、石油和天然气行业还是要求极严的研究项目中,最高温度可达2400°C或2800°C的石墨炉都能为金属、合金、陶瓷和复合材料的热膨胀测定提供了恰到好处的配置。图:手套箱版本的DIL 402 ExpedisSupreme,适用于对氧气或水分敏感的材料,以及用户必须避免接触样品的情况。膨胀计的外壳完全由不锈钢制成。因此,不存在与样品或环境相互作用的塑料零件。膨胀计可以测量各种材料如今,膨胀计可用于测量各种材料——从塑料、陶瓷、玻璃到建筑材料。玻璃成分的变化也可以通过测量热膨胀系数或测定玻璃化转变温度快速而容易地确定。此外,相变会影响建筑材料(如混凝土)的膨胀和收缩行为。这些对使用它们的系统的统计可靠性和使用寿命有重大影响。通过膨胀计,可以研究膨胀和收缩等尺寸变化,以及体积变化。几十年来,这些方法已成功地在工业和研究中心应用了数十年,如瑞士日内瓦附近的欧洲核子研究中心。耐驰期待着膨胀测量未来数十年依然可以“发光发热”。你知道吗?德国耐驰(NETZSCH-Gerätebau)不仅仅在高温领域表现极佳,在低温膨胀计领域也处于第一梯队,可以实现最低至-260°C的膨胀测量。例如,这些膨胀计用于磁悬浮列车的功能测试。图:DIL 402ED点击直达:热膨胀仪专场德国耐驰展位
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • ACS:膨胀显微法与STED结合新法,衍射极限分辨提高30倍
    p  strong仪器信息网讯 /strong在提高显微镜分辨率方面,两种方法结合往往比一种方法更好。近日,德国马克斯普朗克分子细胞生物学与遗传学研究所Helge Ewers博士及其同事发表论文(ACS Nano 2018, DOI:10.1021/acsnano.8b00776),文中介绍了一种新的提高显微镜分辨率的方法——ExSTED,即将受激发射损耗(STED)荧光显微术与膨胀显微镜法相结合的方法。STED显微术使用一个环形的激光束精确地控制在标记样本上的荧光团激活的位置。通常情况下,STED的分辨率可以将显微镜光学衍射极限提升10倍。膨胀显微镜法是将固定样品嵌入水凝胶中,将样品溶胀并拉伸至其原始尺寸的四倍,导致物理分辨率提高的方法。将这两种方法结合,Helge Ewers博士及其同事获得了比光学衍射极限提升30倍的效果。/pp style="text-align: center"img style="width: 450px height: 388px " src="http://img1.17img.cn/17img/images/201805/insimg/26d1f3ac-c39c-4d29-8d6b-f2cda2131146.jpg" title="01.jpg" height="388" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "ExSTED法观察细胞中微管的图像,色标表示三维空间中各种小管的深度(来自ACS Nano)/span/pp  文章中使用ExSTED方法对三维细胞的微管网络进行成像。 由于扩大样品扩散荧光标记,所有样品观察区域的信号都大大减少。 为了抵消信号减少,研究人员使用多种抗体来增加添加到微管中的荧光标记的数量。他们希望通过第二次扩展样本和寻找放大荧光信号的方法来进一步提高显微镜的分辨率。/p
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 德国耐驰热膨胀仪 DIL 402 Expedis:突破量程与分辨率的局限
    对于传统的热膨胀仪,测试量程与分辨率这两个参数很难两全。如果分辨率上升,测量范围通常下降,反之亦然。德国耐驰公司热膨胀仪DIL 402 Expedis通过新型自反馈光电位移测量系统 NanoEye 克服了这一技术上的矛盾。Nanoeye是一种新型的自反馈光电位移测量系统,在过去尚不可能实现的测量范围内具有良好的线性度和最大的分辨率。这是市场上第一个支持调制力(振荡型载荷)的水平膨胀仪系列,藉此打破了膨胀测量和热机械分析(TMA)之间的鸿沟。  热膨胀仪DIL 402 Expedis分为:Classic,Select ,Supreme三个版本。后两个版本是专门为研发和复杂的工业应用而设计的:即全面的、配置齐全的Supreme版本和可升级的Select版本。       功能原理  在测试中,如果样品膨胀,图形中的所有绿色部分都会在线性导轨(蓝色)的引导下向后移动。光电解码器直接在适当的刻度上确定相应的长度变化。     识别功能与数据库  用于识别和解释DIL测量的包括几个耐驰的数据库,其中有来自陶瓷、无机、金属、合金和聚合物或有机领域的上百条数据。此外,还可以创建特定于用户的库。它们可以与计算机网络中的其他用户共享。  识别允许从测量曲线的绝对值、斜率或形状中识别未知样本。这也为比较已知的样品与未知样品、评价材料质量提供了可能性。所有测量值都可以存储在庞大的数据库中,并且始终可用于识别或质量评价。
  • 德国耐驰60周年回顾系列(二):“纳米眼”带来膨胀计分辨率变革
    本文作者:Aileen Sammler 作为德国耐驰60年发展回顾的一部分,本文将介绍德国耐驰总经理Jürgen Blumm博士在其论文中对膨胀计的研究,以及已获专利的纳米眼测量系统是如何彻底改变膨胀计的。1995年,Jürgen Blumm在耐驰应用实验室开始了他的职业生涯。通过与维尔茨堡大学合作的烧结优化研究项目,他将他的论文专注于“烧结过程前后高性能陶瓷的热特性”这一主题。测量方法扩展并结合了他的博士论文,为烧结过程的分析提供了一种全新的方法。动力学模拟计算为陶瓷材料烧结过程的优化做出了开创性的贡献。Jürgen Blumm是最早利用膨胀计(DIL)研究多步烧结动力学的人之一。图:在2002年NGB成立40周年之际展示膨胀计——左起:Jürgen Blumm博士、Dagmar Schipanski教授、Hans Peter Friedrich博士和Wolf Dieter Emmerich博士(1974年至2005年任耐驰总经理)Jürgen Blumm博士论文节选:“在高性能陶瓷的生产中,在大多数情况下,粉末状的原材料会被添加剂(粘合剂、烧结添加剂)抵消。然后,粉末通过模压工艺(如压制)转化为坯体。”然后,通过烧结过程使材料凝固,凝固过程中粉末颗粒粘合在一起,孔隙率降低。烧结通常是热处理的一部分,在此过程中的温度控制对陶瓷的结构性能具有决定性影响。在当今许多工业领域,材料和部件都采用了计算机辅助建模和制造工艺优化的方法。例如,多年来,铸造技术中优化凝固过程的模拟程序得到了广泛应用。然而,在陶瓷元件的生产中,这些方法尚未建立。通过膨胀计测量长度变化,并随后对测量数据进行热动力学评估,可以深入了解烧结过程中的复杂过程和反应过程,而仅仅通过膨胀测量是无法实现的。此外,热动力学分析的使用还提供了通过计算机辅助模拟优化陶瓷材料致密化的可能。”获得专利的纳米眼测量系统:膨胀计的一场革命谁还记得?过去,长度变化是通过感应式位移传感器检测的。这种模拟测量原理表现出不便的非线性,必须反复手动校准。现在,德国耐驰的专利纳米眼测量系统具有100%的线性。由于校准是在测量系统的制造过程中进行的,因此不再需要校准。2015年,德国耐驰通过DIL Expedis系列引入了膨胀计测量系统的革命性新概念。当时新集成的纳米眼测量系统基于光电测量传感器和力的施加的相互作用,其在致动器的帮助下被精确控制。从那时起,无论样品的膨胀或收缩如何,都可以施加10mN到3N之间的恒定力。在此之前,不可能在保持相同分辨率的同时增加测量范围。纳米眼测量系统提供了以前无法实现的分辨率,在高达50 mm的整个测量范围内,分辨率高达0.1 nm,且具有完美的线性。耐驰(NETZSCH Gerätebau)机械开发负责人Fabian Wohlfahrt博士解释说:“已获专利的测量系统的其他重要技术特性包括无摩擦膨胀、力控制回路,以及通过自动样本长度测量提高测量范围,同时提高分辨率和减少操作员影响。”自2012年以来,Fabian Wohlfahrt博士一直在耐驰工作,他撰写了关于纳米眼膨胀计测量系统开发的博士论文。但耐驰不仅使膨胀行为的测定更加准确,还简化了在开始测量之前正确插入样品的过程。多点触控软件功能可帮助用户在插入样本后正确安装样本。此外,不再需要手动确定样本长度。如今,纳米眼膨胀计测量系统自动处理所有这些任务。照片:纳米眼测量单元示意图点击直达:热膨胀仪专场德国耐驰展位
  • 民政部:已有棉帐篷47482顶帐篷运抵玉树
    人民网北京4月22日 记者今日从民政部获悉,截至4月22日16时,已有棉帐篷47482顶帐篷运抵玉树。  民政部、发展改革委、教育部、住房城乡建设部、农业部、商务部、青海省各级安排,以及非灾区省份、中国红十字会总会和部队支援共向玉树地震灾区调运棉帐篷53728顶、棉大衣164700件、棉被198970床、野战食品100000份、取暖煤炉7000台、方便食品和矿泉水1813.5吨、大米920吨、青稞5000吨、面粉3680吨、食用油16吨、机械设备629台、消毒剂10吨、喷雾器217台、防护服4200件、消毒液机50台、课桌椅1000套、黑板讲台75个、书包文具1000套、吸污车3台、垃圾运输车2台、垃圾箱100个、活动板房400套、折叠床20000张、简易厕所650套、应急灯200盏、行军床50张、毛毯50条。  目前包括各种捐赠物资在内已有棉帐篷47482顶(含500顶36㎡大帐篷)、棉大衣117027件、棉被207959床、野战食品100000份、取暖煤炉10000台、方便食品和矿泉水共1670吨、大米358吨、青稞5000吨、面粉1443吨、食用油216吨、活动板房97套、简易厕所932套、应急灯200盏、行军床50张、毛毯50条、担架500副、燃料320吨运抵玉树。
  • 后疫情时代,如何保证新冠疗效药阿兹夫定片的质量检查?
    1月8日,我国首个自主研发的口服小分子新冠病毒肺炎治疗药物,也是首个被国家药监局批准上市的国产新冠疗效药,阿兹夫丁片,已被国家医疗保障局正式纳入医保。 根据2020年版《中国药典》要求,批准上市后的药品投入生产后,每一批次都需要做QC质检,以保证药品的质量。那么,作为片剂的阿兹夫定,硬度值的测定当然也必不可少! 什么是片剂硬度?片剂硬度,又称药片断裂力,用于检测片剂在储存、运输和使用前的断裂点和结构完整性。是保证药片质量的检测项目之一。 为什么要检测片剂硬度? 药品作为一种特殊的商品,其质量直接危及病人的生命和健康,因此药品的质量检测是药品质量的可靠保证。而片剂是药品中常用的剂型之一,在2020年版中国药典中,片剂已占全部制剂的40%以上,而且药典中充分阐明了片剂在生产与贮藏期间应符合的规定,确立了片剂的重量差异、崩解时限、溶出度或释放度、含量均匀度等检查方法。对保证片剂的质量至关重要。片剂除应保证以上指标外,还应有适宜的硬度,以便完整成型,符合片剂外观的要求且不易脆碎。片剂的硬度涉及片剂的外观质量和内在质量,硬度过大,会在一定程度上影响片剂的崩解度和释放度,因此,在片剂的生产过程中要加以控制。随着我国片剂的研究和生产的现代化。片剂硬度的检测已列为压片工序非常重要的检测项目之一。片剂硬度检测的发展趋势片剂检测已经列为重要检测项目,因此药企在生产过程中也越来越重视这方面的检测,且随着片剂生产规模的越来越大,药企对片剂硬度检测仪也提出了更高的要求,其不仅要求硬度检测仪精度高,质量好,而且对生产效率要求更高。面对新的市场需求,智能片剂硬度仪日渐走向药企,其以测量精度高,速度快,使用方便等优势受到制药厂、医药教研、药检部门等单位的欢迎。Pharma Test全自动片剂测试仪满足现代药企要求 针对现阶段药企更高准确度、更高生产效率、更高质量的检测要求,Pharma Test 全自动片剂测试仪WHT 4可以满足以下几点:1、同时测试硬度,质量,厚度和直径,高效且*质量:统一的质量、有效成分含量的均匀性;厚度:物性上的一致性、检查药片膨胀情况、厚度可能影响到包装;直径:物性上的一致性、片剂长短均可能影响包装;硬度:较软的片剂在运输过程中可能会解体、较硬的片剂可能会破碎、影响吞咽后片剂的崩解时间。 2、适合所有形状的药片检测独特的Flap机械结构,适合所有形状的药片检测(圆形、椭圆形,三角形,菱形等),可准确对齐各种类型片剂,且不需要额外的工具。 3、满足在线和离线检测WHT 4-SM 多批次自动进样器可用于10种样品的离线检测,而WHT 4-SM1单批次自动进样器则可以搭配压片机进行在线检测,同时具备自检功能。 搭配WHT 4-SM多批次自动进样器 搭配WHT 4-SM1单批次自动进样器4、集成PC和WHT32软件,方便数据处理集成PC和软件,无需担心软件适配与后期升级,而且WHT32软件可以实时显示测试数值以及统计结果,并可通过图表的形式来展现。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 自动乌氏粘度计-外推法测定聚醚醚酮(PEEK)的特性粘度
    聚醚醚酮(PEEK)是在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。具有耐高温、耐化学药品腐蚀等物理化学性能,是一类半结晶高分子材料,可用作耐高温结构材料和电绝缘材料,可与玻璃纤维或碳纤维复合制备增强材料。一般采用与芳香族二元酚缩合而得的一类聚芳醚类高聚物。这种材料在航空航天领域、医疗器械领域(作为人工骨修复骨缺损)和工业领域有大量的应用。聚醚醚酮(PEEK)塑胶原料是芳香族结晶型热塑性高分子材料,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。耐高温性:具有较高的玻璃化转变温度(Tg=143℃)和熔点(Tm=343℃),其负载热变形温度高达316℃,瞬时使用温度可达300℃。机械特性:具有刚性和柔性,特别是对交变应力下的抗疲劳性非常突出,可与合金材料相媲美。自润滑性:具有优良的滑动特性,适合于严格要求低摩擦系数和耐磨耗用途的场合,特别是用碳纤维、石墨各占一定比例混合改性的PEEK自润滑性能更佳。耐腐蚀性:除浓硫酸外,PEEK不溶于任何溶剂和强酸、强碱,而且耐水解,具有很高的化学稳定性。阻燃性:具有自熄性,即使不加任何阻燃剂,可达到UL标准的94V-0级。易加工性:具有高温流动性好,而热分解温度又很高的特点,可采用多种加工方式:注射成型、挤出成型、模压成型及熔融纺丝等。耐剥离性:耐剥离性很好,因此可制成包覆很薄的电线或电磁线,并可在苛刻条件下使用。耐疲劳性:在所有树脂中具有最好的耐疲劳性。耐辐照性:耐高辐照的能力很强,超过了通用树脂中耐辐照性最好的聚苯乙烯。可以作成γ辐照剂量达1100Mrad时仍能保持良好的绝缘能力的高性能 。耐水解性:PEEK及其复合材料不受水和高压水蒸气的化学影响,用这种材料作成的制品在高温高压水中连续使用仍可保持优异特性。发烟性:在塑料中PEEK具有最低发烟性。毒气逸散性:PEEK与很多有机材料相同,在高温分解时,PEEK主要产生二氧化碳和一氧化碳,使用英国航行器测试标准BSS 7239可以检测到极低浓度的毒气逸散,这种检测过程需要在1立方米的空间内完全燃烧100克样品,然后分析其中所产生的毒气,毒性指数定义为在正常情况下产生的毒气浓度综合与30分钟可以使人致命的剂量之比,PEEK450G的指数为0.22,且没有检测到酸性气体。绝缘稳定性:具有良好的电绝缘性能,并保持到很高的温度范围。其介电损耗在高频情况下也很小。:稳定性:具有优越的尺寸稳定特性,这对某些应用来说有的很重要。温度、湿度等环境条件的变化对PEEK零件的尺寸影响不大,可以满足对尺寸精度要求比较高工况下的使用要求。PEEK塑胶原料注塑成型收缩率小,这对控制PEEK注塑零件的尺寸公差范围非常有好处,使PEEK零件的尺寸精度比通用塑料高很多。热膨胀系数小,随着温度的变化(可由环境温度的变化或运转过程中摩擦生热引起),PEEK零件的尺寸变化很小。尺寸稳定性好,塑料的尺寸稳定性是指工程塑料制品在使用或存放过程中尺寸稳定的性能,这种尺寸的变化主要是因为聚合物分子的活化能提高后,使链段有某种程度的卷曲导致的。PEEK耐热水解特性突出,在高温高湿环境下吸水性很低,不会出现类似尼龙等通用塑料因吸水而使尺寸发生明显变化的情况。众所周知,在复合材料成型工艺中,大家都会尽可能的寻求合适的基体粘度,使其对增强材料有良好的浸润性。那么特性粘度也是表征材料内部结构,分子的链结构、分子量及其分布等。 实验所需仪器:卓祥全自动粘度仪(溶剂测试、PEEK样品测试、粘度管清洗及干燥、样品各浓度在线稀释及混匀) 万分之一电子天平(PEEK样品的称重) 自动配液器(96%硫酸的精确移取,以及外推各浓度点稀释) 多位溶样器(PEEK样品溶解)实验所需试剂:96%浓硫酸粘度管规格:稀释型粘度管实验流程:1. 打开卓祥自动粘度仪①开启仪器控温部分、测量部分、清洗部分及在线稀释部分的电源,再打开PC电源后,双击点开卓祥粘度专用软件。②设置测试实验所需温度,待温度稳定后用标准温度计对温度进行校准后待用。2. 样品前处理①开启万分之一天平,用标准砝码对其校准或内校。②取干净的样品瓶,准确秤取PEEK样品质量0.**g左右,精确至0.0001g。③通过卓祥自动配液器ZPQ-50自动将样品配置至所需浓度值。④将配置好的样品瓶直接放置到卓祥MSB-15溶样器上溶解完全后待测。3. 样品测试①溶剂测试:加入**ml左右96%硫酸于稀释型粘度管中,启动卓祥粘度软件中的“溶剂粘度”至结束。②清洗粘度管:启动卓祥粘度软件中的“清洗”“干燥”等程序自动对粘度管进行清洗干燥后待测。③PEEK样品测试:精准移取**ml溶解好待用的PEEK样品溶液后,设置后续各浓度点参数、启动卓祥粘度软件至结束。④清洗粘度管:启动卓祥粘度软件中的“清洗”“干燥”程序自动对粘度管进行清洗干燥等任务。4. 测试结果:打开软件中的外推分析,选取各浓度点,自动推导出详细结果报表及谱图,得出的结果可在计算机上直接显示,并有数据储存。也可对其进行多样化粘度分析及打印等多种功能。
  • 歪~你要的衬管使用技巧到了,点开查收一下!
    不管是高效液相色谱法,还是气相色谱法,每个试验项目的启动都需要做系统适用性试验。色谱系统的适用性试验通常包括理论板数、分离度、灵敏度、拖尾因子和重复性五个参数,在色谱分析中重复性是衡量系统稳定性的重要参数,直接影响到待测化合物的定性与定量分析。那么,今天小编就和大家一起探讨在气相色谱分析中,进样口衬管对重复性的影响,以及在分析过程中,我们该如何对衬管进行选择。小伙伴们也都知道,在气相色谱分析中,进样口是发生色谱问题频率最高的一个部位。其中衬管是进样口至关重要的组成部分,它在分析中所扮演的一个重要角色就是促进样品组分的汽化挥发;同时捕集沸点较高,不易挥发的样品杂质;保护气相色谱柱以及提供分流隔离通道。当采用不分流进样时,为了避免色谱峰谱带展宽,样品组分越快进入色谱柱越好,即在衬管内的滞留时间越短越好;影响因素主要有衬管的形状、载气在衬管内的流速和样品的汽化时间,所以通常不分流衬管被设计成直管,此外衬管还有底部锥形设计(促进样品在色谱柱柱头聚集、减少样品与进样口金属的接触),顶部锥形设计(避免由于气体膨胀体积过大导致反灌)。当采用分流进样时,为了增大样品组分的汽化效率,减小分流歧视,衬管设计成具有混合腔和弯曲的流路。根据上述分析,为了保证试验过程的良好重复性,在衬管的选择中,我们需要注意以下因素:(1)不分流进样时,一般选择较大的衬管外径:可以限制样品组分与进样口金属直接接触。(2)分流进样时,选择外径较小的衬管:外径小的衬管对进样口的载气和分流气流的阻力较小。衬管的内径与容积密切相关,进样量较大或者进样针在衬管内位置不合适时,样品汽化后的膨胀体积同时又超过了衬管的容积,就会导致样品反冲,进入到隔垫吹扫气流中而产生损失。(1)底部锥形设计:使样品组分在色谱柱柱头聚集;避免样品组分进入进样口底部;(2)底部和顶部双锥形设计:限制样品组分与进样口金属表面接触;避免由于反灌现象导致样品进入隔垫吹扫气流中;(3)直通衬管:直管,用于自动进样器分流进样(可加玻璃毛)。衬管的材质是石英玻璃,未经硅烷化(脱活)处理的衬管内壁表面有很多硅醇基,会对样品组分产生次级吸附作用,导致色谱峰拖尾,重复性变差。其主要有以下几种作用:(1)传热:玻璃棉具有比较蓬松的结构,可以增大传导热量面积。为了更好的传导热量,玻璃棉的位置最好处于衬管中温度最高处。下图给出了在不同柱温下衬管中的温度分布大致情况(中间温度最高,两端温度较低)。进样时,需要注意的是,保持进样针针尖的位置在玻璃棉上方1-2mm处。(2)混合:促进低沸点与高沸点样品快速汽化的同时,使样品在载气的作用下混合均匀,减少分流歧视。(3)吸附杂质和污染物:玻璃棉可以捕集样品组分中的高沸点污染物、进样垫碎屑等。(4)聚焦型的衬管中加入玻璃棉:可以保证玻璃棉在衬管中的合适位置;使高沸点杂质的污染最小化;擦拭进样针针头上的样品,减少进样针歧视,提高分析重复性。另外需要大家注意的是:根据进样针的类型来选择玻璃棉的装填位置;对于一些活性化合物,如酚类、有机酸、其他极性强的化合物,为避免对样品组分产生吸附或催化样品发生分解,不建议使用玻璃棉。因为即使钝化处理的玻璃棉,随着进样次数的增加和使用时间的延长,钝化的硅烷基会断裂,玻璃棉表面会恢复裸露的硅醇基。好了,以上是衬管使用小诀窍,希望能够给小伙伴们的日常实验提供一些帮助。还有还有~月旭科技的夏季超级大促正在火热进行中,超低折扣还有超级丰厚的礼品,快来赶紧参与吧
  • 进入冬季,为保证污水处理稳定达标,需要做哪些调整?
    中国大部分污水处理厂都处于温带地区,都会经历温度比较低的冬季,尤其是北方地区的污水处理,冬季运行具有低温时间长 、水温低 、进水污染物浓度高、污泥活性较弱等特点,增加了污水处理的难度,不利于污水处理的进行。因而进入冬季运行时应强化自身运行管理,应对冬季运行的不利因素,确保污水厂冬季高效运行,从而稳定达标、足额减排。在此结合以往进水情况和冬季运行的经验,总结以下运行办法,以强化和优化污水处理厂运行管理 ,确保足量处理污水、出水水质稳定达标。1、加强污水处理厂运行的全过程管理从细处入手确保各个污水处理单元充分发挥应有的功能。对出现的故障和问题,应及时发现、及时分析和解决。避免小问题和小故障得不到解决,拖成大问题,影响整个系统的稳定运行。须特别注意因为格栅 、沉砂池 、水解酸化池 、污泥脱水机等运行不正常,从而加重了生化处理系统的负担,引起生化系统运行不正常,造成出水不稳定的问题,这些状况需要引起足够重视并加以改进。污水处理厂应结合自身工艺运行的运行规律、污泥的性状、污染物的降解变化规律等生化系统的具体情况;结合进水水质 、水量的日变化、月度变化等情况。通过适当的工艺优化调整,确保足量处理污水、出水水质稳定达标,同时节能降耗优化运行成本。2、调整运行参数冬季污水处理厂进水浓度普遍偏高、水温较低、活性污泥活性较弱,反应速度较慢,污水处理厂需结合自身工艺和进水特征进行生产运行参数调整 。具体参考如下: a、以生活污水为主的厂可控制略低的F/M 、以工业废水为主的厂宜控制较低的 F/M ,宜控制在 0.03--0.08kgBOD5/kgMLSSd。b、根据自身工艺特点,进行适当的曝气控制。在保证所有单元格曝气充足前提下将DO值控制在 2.0~3.5mg/L ,不宜过高。如曝气过量,可能引起污泥系统活性不强、性状不佳、沉降性能较差等问题,还增加了运行成本。c.保证预处理单元的正常工作,保证 生化池各单元格中污泥MLVSS/MLSS 、SV30 、SVI在正常范围。d.根据具体工艺运行情况,对内外回流量、回流比等参数进行调整。e.适当提高污泥浓度MLSS,在细菌代谢能力下降的前提下,使总量的污泥代谢能力能保持稳定。3、保证脱氮效果在生物脱氮过程中,含氮化合物在微生物作用下相继发生下列反应:氨化反应一硝化反应一反硝化反应,最终以N2形式从污水中脱离。硝化反应的适宜温度是 20~30℃,15℃以下时,硝化速度下降,5℃时完全停止。反硝化反应的适宜温度是 20~ 40℃,低于15℃时,反硝化菌的增殖速率降低,代谢速率也降低。东北地区冬季的污水温度在10℃左右甚至更低 ,远远达不到硝化菌及反硝化菌的最适温度 ,对氮的去除效率有很大程度的影响。硝化细菌比反硝化细菌更易受到低温的影响,导致硝化反应不足,低温运行过程中如果控制不当极易出现NH3-N不稳定的情况。可通过适当提高MLSS,增加污泥龄(宜控制在15~25天)。适当增加曝气可以起到一定程度的保持水温的效果,并且可以提高DO ,是一种常用的控制NH3-N处理效果的方法。NH3-N处理的关键是硝化细菌,应保持处理系统 的稳定运行 ,不能受到严重冲击 ,否则冬季硝化细菌很难恢复。4、控制污泥膨胀冬季低温运行时因污泥活性降低 、工艺运行不正常极易出现污泥膨胀的问题。此时的污泥膨胀具有三个显著的特点:一是发生率极高,有60%的城市污水处理厂每年都发生污泥膨胀;二是普遍性,在各种类型的活性污泥工艺中都存在,甚至最不易发生污泥膨胀的间歇式曝气池也发生了这一问题;三是危害严重,它不仅使污泥流失 、出水悬浮物(SS )超标 ,而且还大大降低了处理能力。一旦发生污泥膨胀则很难控制或需要相当长的时间才能恢复。应对污泥膨胀应控制好适当的污泥负荷,不宜过低。有厌氧区选择区的工可以利用生物选择功能抑制丝状细菌的生产 ,避免污泥膨胀。工艺运行人员应对污泥性状进行及时了解,当SVI超过150时,应引起足够重视。必要时可投加化学药剂进行控制。人工合成的高分子阳离子多聚物对控制污泥膨胀的效果较好 ,而且对产泥量的影响很小,但是费用很高。在一些情况下,投加无机絮凝剂(如石灰或三氯化铁)效果也不错,但会使产泥量大大增加,给后续的污泥处理带来一定的困难。另外,投加泥土和纤维质也适用于一些工业废水的处理(如造纸废水),但这也只是一种短期行为。氯和过氧化氢已经在抑制丝状菌生长方面有了成功的应用。由于氯相对便宜且易于现场操作,因此应用得较为广泛,有超过50%的污水处理厂利用氯来控制丝状菌引起的污泥膨胀。加氯的目的是为了杀死附着在絮体微生物表面的丝状菌,但这两类细菌对氯的敏感性没有明显的差别,因此氯的投加量要控制到刚好能杀死丝状菌而不能伤害到絮体微生物,如果过量同样不利于改善污泥性能。5、合理调整药剂投加处理过程中有高效沉淀池或化学处理单元的污水厂,运行过程中应首先考虑应强化生化系统的处理污染物,再采取化学处理来把关。避免过分依靠化学处理来维持水的稳定,通过化学处理将产生大量的化学污泥 ,如处理不及会导致系统的恶性循环。投加药剂必须规范加药流程和制度,由专人负责加药管理;每天不同时段的加药量,必须结合二沉池水状况、烧杯实验数据以及出水在线数据等的情况;合理调节,避免药剂浪费。6、严控进水指标冬季进水量相对较少,工业污水比例有所提高,应加强进水源头的控制。一旦发现进水在线数据异常时,运行人员应立即现场查证,一旦确定进水污染物偏高的异常情况,应采用应急措施处理,并留下证据,及时与主管部门沟通 ,必要时以书面形式进行报告。7、加强生产数据的收集 、整理 、统计和分析工作 应特别注意强化数据的统计分析 ,并将数据分析的结论指导生产运行的调整和调节。各分公司、污水处理厂应加强化验分析工作,确保化验数据及时、准确 、可靠;同时确保生产有关数据的有效可靠。数据的可靠性是开展数据分析的前提,如果前提有误,那必然导致结果的错误。8、加强污泥脱水系统管理冬季污泥活性差,给污泥脱水系统的运行管理带来难度,脱水污泥的含水率不易控制。应加强污泥浓缩、脱水系统的运行管理,并根据生产需要合理安排脱水机的运行;保证生化系统维持适当MLSS。切忌避免由于脱水机运行不正常,引起剩余污泥(或化学污泥)在处理系统中恶性循环,导致进入生化系统的浓度升高,同时给活性污泥带来不良影响。同时对絮凝剂的用量进行积极探索,可开展小试摸索规律 ,尽量使用自来水进行配药,降低PAM用量。因冬季配药水温低,严重影响聚丙烯酰胺的溶解,可以考虑在配药罐、配水管、水箱处加装加热装置,以提高水温。9、注意巡检安全冬季低温时室外设施容易出现冻胀、结冰等情况,应加强厂内各处理单元的巡检工作,包括工艺巡检和设备巡检,及时发现运行过程的异常情况,及时处理。需特别注意进水、出水、生化池等地的巡检;及时发现异常情况,及时处理。10、加强设备及仪器保养冬季下雪、上冻后,对设备设施的维护保养工作将从室外工作转入室内工作,应提前做好关键设备的维护保养和维修工作,特别是对曝气和排泥系统进行系统的检修,保障关键设备冬季不大故障,如这些设备在冬季出现故障,带来的损失和检修难度将成倍增长。在运行中还应确保在线仪表设施(进水COD 、NH3-N以及过程控制中的DO 、PH等)的正常运行,保证数据获取和上传做到准确有效,以便充分发挥在线仪表的监控作用,及时发现和调整出现的异常情况。
  • 科学仪器和试剂耗材频频涨价 对科研人员和实验室采购影响几何?
    面对通货膨胀,研究小组负责人必须重新考虑开支随着世界各地燃料、食品杂货和住房成本的飙升,科学家们正在与通货膨胀作斗争。试剂、手套、移液管头、显微镜以及几乎所有其他进行科学研究所需的物品都比一年前贵。这意味着几乎每个研究人员都感受到了压力。宾夕法尼亚州拉德诺的国际科学管理公司Avantor的实验室和临床服务创新负责人Tola Olorunnisola表示:“没有人能幸免于这种经济。”2022年底,Olorunnisola拜访了荷兰、瑞士和爱尔兰的实验室,帮助面临资金短缺的研究人员找到延长预算的方法。“科学家们越来越意识到成本。”她说。通货膨胀在一定程度上是由供应链断裂导致的,供应链断裂限制了流行商品的供应,这已成为加州斯坦福大学癌症研究员和遗传学家Julien Sage的一个主要问题。去年10月,他和斯坦福大学研究管理员Alyssa Ray对Sage实验室中一些最常用物品的价格进行了检查。自2021年1月以来,吸管头的价格上涨了约10%,自2018年以来上涨了25%以上。同样自2018年以来,注射器过滤器的价格上涨了28%,用于从细胞中纯化RNA的试剂盒上涨了46%,中号丁腈手套(在新冠肺炎疫情高峰期需求量很大)上涨了91%。自2018年以来,Sage实验室的实验室用品价格总共上涨了27%,而问题只是正在加速。萨奇说:“在过去的10个月里,我们开始遭受更多的痛苦。”高端设备的成本也大幅增加。2019年,伊利诺伊州弗农希尔斯的科学仪器公司科尔帕默(Cole Parmer)以5520美元的价格出售了一台Qsonica Q700触摸屏超声波仪,这是一种利用超声波振动破坏细胞的设备。到1月份,同一产品的售价超过7130美元。Sage指出,DNA测序试剂盒是少数降价的产品之一。2022年初,每个试剂盒的成本比2018年低约3%。但这不足以抵消其他项目的增长。艰难的抉择加拿大多伦多Lunenfeld-Tanenbaum研究所癌症研究员Jim Woodgett表示,实验室成本的增加迫使科学家做出了一些艰难的抉择。“科学预算相当固定。”他说。“如果我们为某件东西支付双倍的费用,这意味着我们没法购买其他东西。”他表示,科学家可以继续推进他们的研究项目,但为了避免预算超支,他们可能需要调整购买习惯,调整实验设计,并采取措施提高实验室效率。Woodgett估计,他的预算中有20%用于实验室用品,另外60%用于工资,20%用于老鼠。同样,Sage估计,实验室用品历史首次出现占其总预算的20%左右的情况,但他表示,平衡正在发生变化。在过去的一年里,Sage表示他失去了一个博士后和一个技术人员职位,但不断上涨的供应成本挤占了支出。“支出在增长,但我们的预算不会增长。”他说。总部位于里斯本的咨询公司LatM Life Science的发言人Lívia Guadaim表示,“市场动态”对科学家构成了重大挑战。LatM是位于马萨诸塞州伯灵顿的全球实验室供应公司MilliporeSigma的姊妹公司。Guadaim拒绝提供价格上涨的任何具体例子,也拒绝估计MilliporeSigma产品的总体通胀率。她表示:“我们不披露有关定价政策的细节,因为我们认为这些政策是专有的,具有竞争敏感性。”她确实表示,MilliporeSigma销售的所有产品的价格都会受到“不同程度的影响,如效用和原材料成本的增加、通货膨胀和物流”。预算紧张通货膨胀几乎打击了科学事业的每一个部分,但资金通常没有跟上步伐。Sage指出,美国国立卫生研究院(NIH)下属的美国国立癌症研究院(NCI)颁发的杰出研究员奖的金额(以美元计)自2015年首次颁发以来没有变化。那时候是60万美元,7年后的现在也是如此。“NCI和NIH并没有太关注通货膨胀。”他说:“这显然会影响生产力。”但即使实验室用品的价格在上涨,研究人员仍被期望进行最初为他们赢得拨款的计划实验,即使这些实验与预算不再相符。Woodgett指出,资助机构的预算通常由联邦政府控制和限制。在世界各地的研究生要求加薪以跟上生活成本的时候,越来越多的资金流向了博士后和博士生。Woodgett认为,资助机构并没有优先考虑提高补助金金额来应对通货膨胀。2022年6月,负责校外研究的副主任Michael Lauer在NIH网站上发布了一篇帖子,他指出,从2015财年到2021财年,研究项目拨款的平均通货膨胀调整后价值相对稳定在57万美元左右。如果没有大幅增加资金以跟上通货膨胀的步伐,科学家们就必须找到创造性的方法来削减成本。Woodgett说,一个选择是重新思考实验设计。“你可以评估特定试剂或试剂量的真实需求或必要性。”他说:“通常情况下,我们是非常浪费的。如果你将试验缩小一半,你可以将样本数量增加一倍。”一些研究人员可能会选择放弃看似多余的实验,但Woodgett表示,论文的审稿人倾向于要求做这些实验。意外变量Woodgett说,研究人员总是可以重新评估他们用于实验的试剂和试剂盒,并货比三家购买更便宜的选择。但即使涉及到啮齿类动物,逢低买入也有风险。“基础条件会影响动物的行为。”他说:“如果你改变了少量饲料,并且正在进行代谢研究,那么很难确保连续性。”Sage表示,通过精挑细选,通常可以从实验室供应预算中削减10%。“想想你的杂货。”他说。“节省10%可能是有机蓝莓和普通蓝莓的区别。这不应该那么难。”然而,像Woodgett一样,他知道自己必须谨慎对待任何转换。“如果整个实验室都在使用相同的试剂盒,我是否会改用便宜10%的试剂盒?这可能会引入一个我不完全理解的变量。”Woodgett说,精打细算的研究人员可以通过确保他们总是有足够的物资来完成他们开始的任何实验来避免浪费。由于持续的供应链问题和许多常见的延期交货情况,需要计划和深谋远虑才能将试验进行到底。经历了几年勉强订上实验室用品的日子,Woodgett不得不将部分实验室改为仓库,尤其是移液管头和其他在最坏情况下可能用完的物品。Woodgett说,一些分销商可能会为批量订单提供折扣,这意味着科学家可以通过联合起来节省资金。他说:“你可以和你所在城市的其他科学家一起做类似的工作,而不仅仅是你所在的机构,并安排一份合同。”例如,美国实验室用品公司Fisher Scientific以21.75美元的价格出售一包20支无菌注射器,但一箱12包的价格为194美元,折扣超过25%。他补充道,实验室供应公司也更有可能优先处理大供应量订单,这增加了按时交货的机会。他说,附带的意外好处是,共享大量试剂将提高实验室之间的一致性,并使比较和再现结果更容易。能源是实验室成本的重要来源,尤其是在欧洲,在英国更甚。2021年10月至2022年10月期间,英国的消费电价平均飙升近90%。当Olorunnisola与需要自己支付电费的实验室合作时,她特别关注任何需要电力的东西,包括冰箱、通风橱和质谱仪。她说,重要的是确保每一台仪器都得到正确维护、校准和有效使用。例如,为了确保科学家充分利用冰箱,Olorunnisola经常安装传感器来跟踪门的打开频率。她说:“你可以发现冰箱是否已经六个月没有打开了。”在这种情况下,通常可以将样品合并到其他冷冻库中或转移到场外设施。降低成本Olorunnisola说,科学家们对实验方案保持着谨慎的关注,但对浪费和效率低下的问题可能不太警惕。她说:“与我交谈的许多科学家都说,他们不知道冗余在哪里。”Chemical and Engineering News代表Millipore Sigma对近1000名研究人员进行了2020年的一项调查,发现了改进的空间。22%的受访者表示,他们仍然使用手写记录来记录化学品库存。超过三分之一(35%)的实验室工作人员每月至少有10%的时间用于寻找样本或试剂。近五分之一的人表示,由于变质和过期,他们每月至少损失10%的库存。但在艰难时期,标准可能会改变。“很多设备和试剂的有效期都很荒谬。”Woodgett说:“你可以充分利用这些。”2022年一项对标称有效期为购买后一年或两年的抗体浓缩物进行的分析发现,在假设有效期后的平均六年内,抗体仍然可用。该报告得出的结论是“选择丢弃的抗体应基于性能,而不仅仅是有效期”。Sage表示,要真正保护科学家免受价格上涨的影响,可能需要的不仅仅是实验室供应公司的折扣。除非采取大规模措施来稳定成本或增加资金,否则科学很可能会受到影响。“主要问题是螺旋式下降。”他说:“如果你的钱少了,你的人就会少了,或者工作效率也会降低,从而进一步导致拨款和人员减少。这可能会发生在现在的很多实验室,问题是:这种情况什么时候会停止?”译文原文发布于《Nature》
  • 默克密理博宣布2013年产品价格上涨
    2012年10月18日,默克密理博(Merck Millipore)宣布,计划从2013年1月1日起,提高化工及生物制药工艺解决方案(processing solutions)的报价,价格涨幅为4%~6%,理由是受近期及预期成本的增加、宏观经济走势、通货膨胀及其他因素影响。  工艺解决方案负责人Andre Bulpin表示,“2013年工艺解决方案产品价格上涨反映成本增加的影响,如原材料、能源、劳动力等,以及制药和生物制药行业监管要求的提高。”  Bupin称,“产品价格象征性地提高将帮助我们继续为客户提供高品质的产品、原料药及客户所期望的服务,从而确保患者的安全并提高进入市场的速度。”  默克密理博表示,不同产品价格上涨幅度将依据成本驱动因素及市场动态的影响有所不同。  此次宣布价格上涨之前,默克密理博在工业解决方案业务方面大力扩张。今年3月,默克密理博与加拿大再生医学商业化中心(CCRM)合作了一项生物反应器优化项目。这之后,公司又扩大了其产品线,与2家英国公司就疫苗开发合作,并推出了1款新的CHO细胞培养基。  最近,默克密理博在法国Martillac建立了一家工厂,提供工艺开发服务及合同生产。  这些项目上的额外投资是否是默克密理博提高其产品价格的一个驱动因素,目前还不清楚。不过,这些扩张的成功与产品价格的上涨,可能会使该公司业绩在2013年有一个相当大的提升。
  • 如何保障空分过程的安全,知道这些很重要!
    近年来,随着空分设备大型化,空分设备的爆炸能量也越来越大。影响空分装置安全运行的危险杂质主要是总烃、乙炔、二氧化碳、氧化亚氮,而影响总烃、乙炔、二氧化碳、氧化亚氮含量的因素是环境空气的变化与吸附器的再生。(来源于网络,版权归原作者所有)爆炸原因在上述危险杂质中,乙炔 (C2H2)是不饱和碳氢化合物,具有很高的化学活性,性质极不稳定,是空分冷箱爆炸的主要原因。由于乙炔在空气中分压很低,即使冷却到-170℃也不会象水分及二氧化碳以固态析出,而是随空气进入分馏塔中。乙炔在液空中溶解度 为 20ppm,一般不会在液空中析出,而随液空进入上塔。液氧气化时带走的乙炔约为液氧中乙炔含量的1/24。所以随着空分冷箱运行周期的延长, 液氧中乙炔浓度不断增高。当液氧含量超过溶解度时,就以固态析出。固态乙炔和液氧接触后爆炸的敏感性高,是空分精馏塔爆炸的危险物质。 其它碳氢化合物 (CH4、C2H4、C2H6)在液氧中溶解度比乙炔高,但乙烯、丙稀等碳氢化合物与乙炔一样,也会发生爆炸反应。 氧化亚氮(N2O)是一种无色无味气体,氧化亚氮(N2O)在主冷凝器液氧中积聚,容易固化,阻塞换热通道,造成碳氢化合物在局部区域的富集,引起空分主冷的爆炸;而N2O在精馏塔中积累起来会使产品受到污染 。二氧化碳(CO2)在冷箱中析出晶体除吸附乙 炔及其它碳氢化合物外, 还会使液氧产生静电。如果二氧化碳长期积聚,还会阻塞精馏塔板。同时二氧化碳晶体下还会出现可燃物超临界积聚的情况, 在与液氧共存的条件下, 将引起空分冷箱爆炸 。因此,为保证空分装置安全稳定运行 ,必须加 强对空分设备中总烃、乙炔、二氧化碳、氧化亚氮的检测分析,及时将结果提供给生产工艺部门,采取措施控制指标。磐诺方案对液氧中的乙炔含量的测定,经典的化学比色法为手工操作,步骤繁琐,分析时间长,误差大,仅适合小型空分装置。而采用氢火焰型气相色谱仪只能对液氧中碳氢化合物进行分析,不能同时完成对空分有害的无机化合物如二氧化碳、氧化亚氮的测定, 且氢焰型气相色谱仪的下限检测浓度约为0.15×10-? C2H2, 不能达到大中型空分装置监测液氧中乙炔含量正常值≤10 ×10-? C2H2的要求。磐诺采用脉冲氦离子化检测器(PDHID)气相色谱仪,性能稳定,优势更显著。——检测灵敏度高,专为超低微量≤10x10-?设计制造,与氢焰型色谱仪相比对C2H2、CO2、N2O的检测下限可达5×10-?。 ——检测气体成分种类多,适用面广, 对有机及无机化合物均 有高灵敏度响应 , 在空分安全监测中可以做到一机多能。 阀图空分装置危险组分液氧分析典型谱图预防措施除了对气体成分进行科学检测,做好充分的防空措施也是避免空分装置爆炸的有效途径。1、减少可爆物进入空分塔空分装置应选择在环境清洁地区,并布置在有害气体及固体尘埃散发源的全年小频率风向的下风侧。空分装置与周围设施的防火间距应符合相关规定。采用无油润滑的压缩机和膨胀机或汽轮压缩机和膨胀机,可以基本上杜绝润滑油及其轻馏分的来源。2、清除可爆物a)对小型中压制氧,采用常温分子筛纯化器,吸附乙炔。b)在下塔底部导入上塔的液空管路上设置液空吸附器,清除溶解在液空中的乙炔和其它碳氢化合物。c)不断抽取含乙炔浓度较高的液氧到塔外蒸发,或当液空、液氧中的乙炔和其它碳氢化合物的浓度接近允许极限时,排放掉部分或全部液体。d)使液氧循环通过液氧吸附器,清除残留于液氧中的乙炔和其它碳氢化合物。e)及时对设备进行局部或全部加热清洗。按设备制造商提出的要求,空分设备每运行满1个周期后,应停车进行全面加温1次,彻底清除设备内的碳氢化合物和油脂。f)氧气管道(管件)内壁应平滑,无锐边、毛刺及焊瘤,管道内部无油脂、杂质。开工前,氧气设备、管线必须清扫、吹洗、脱脂合格。3、防止可爆物局部浓缩有的精馏塔爆炸是在液氧中乙炔含量不高的情况下发生,可能是由于乙炔、碳氢化合物在设备某些死角局部浓缩而析出造成的,因此要采取措施防止可爆物局部浓缩。a)停车时间较长时,应将设备内的液氧、液空排放掉,以免在自然蒸发时造成乙炔、碳氢化合物浓缩析出。b)保持液氧液面的稳定,且不要低于规定的高度。c)在结构方面避免死角,或由于通道局部堵塞而造成流动不畅。4、其它防控措施a)为了防止静电产生,空分塔必须在安全距离的两个部位接地,冷凝蒸发器、乙炔吸附器及液空、液氧的分析取样的排放管路等,若在法兰连接处没有跨接线时,应单独接地,接地电阻不应大于10Ω。室外空分装置防雷接地和冷箱内主要设备防静电接地应分别设置。b)强化液体的过滤措施,以防固体二氧化碳、硅胶、珠光砂粉末带入液氧中。c)防止超压爆炸。d)低温液体(液氧、液氮、液氩)储槽应设有液位计、温度计、压力表及高液位报警设施,还应设有超压及真空泄放设施。低温液体储存容积不得超过容积的90%.液氧、液氮储存系统设置的中、高压液氧(液氮)泵与气化器间应设安全保护联锁装置。e)气瓶(氧气、氮气、氩气)应定期检验,充装气瓶应防止超压、超温、混装,气瓶的充装、储存、运输都应符合《气瓶安全监察规程》等规范的要求。安全生产事关国家和人民利益,事关社会安定和谐,是社会主义市场经济持续、稳定、快速、健康发展的根本保证,是发展大局的重要前提。对于空分装置,只有减少、清除原料空气中存在的可爆物等杂质;避免可爆物在设备、管道、工艺物料(特别是液氧)中的积聚;严格空分装置的设计、制造、施工及生产安全管理,才能确保空分装置实现安全、长周期运行。
  • 从源头抓儿童帐篷质量
    儿童帐篷关乎孩子的舒适与健康,生产企业要充分重视产品质量。检验检疫部门在对儿童帐篷产品日常检验监管过程中,总结以下几点内容,建议生产企业予以关注。   一是非织造布面料的各种印花油墨的铅、镉、汞、铬、硒、锑、砷、钡等8大重金属元素的限量要求。此要求须通过国家认监委认可的权威第三方检测机构的实验室检测合格后方可投入生产。众所周知,超标的不合格印花油墨将给儿童构成健康危害。如铅是神经毒害物,是脑细胞杀手,过量的铅易造成儿童智力低下,对婴儿、儿童的健康构成极大的威胁。因此,需要面料提供方提供第三方检测机构检测合格报告及产品符合性声明,进而从源头上控制产品的质量安全。  二是帐篷必须具备关闭件的通风要求。一般来说,大多数儿童帐篷都是敞开式的,儿童在玩耍过程中不必担心通风不好而引起呼吸困难,但如果加了关闭件或者在设计时就是全封闭式的,那么就要在帐篷主体或关闭件中配置足够的通风口,以确保儿童正常的呼吸安全。  三是非织造布面料要有阻燃性能,安全标识、制造商标记要齐全。儿童帐篷中非织造布面料的易燃性能要求与普通毛绒玩具面料要求一样,在靠近火焰时不应发生表面闪烁反应。儿童帐篷的安全标识要求不容忽视,企业应根据所生产的各款儿童帐篷产品的特点,在产品或使用说明书中,告诉消费者在安装、使用过程中的注意事项。制造商标记是标明生产制造厂商的名称、地址、联系方式等,以利于产品追溯。  四是确保构成儿童帐篷架构的各连接部位平滑,无伤害。对于儿童帐篷架构的钢丝连接口,如果使用时松脱,将会形成尖端、毛刺,而从帐篷面料突出,对儿童造成伤害。为此,产品接口从最初只用一个铆钉铆接,到目前要求用三个铆钉铆接,同时在接头处包上塑料套,确保接头处牢固铆接并避免产生毛边,确保该工序安全有效。  五是儿童帐篷成品中的非织造布材料不允许出现残针。在构成儿童帐篷的非织造布的缝纫工序,缝纫用针及剪刀是该工序的基础工具,工具虽简单,但它在整个儿童帐篷生产中起到举足轻重的作用,如管理不好,最终生产出来的儿童帐篷极易给儿童造成伤害。为了消除这一事故隐患,企业必须从源头上控制用针和锐器,根据企业实际情况制定适宜的用针及锐器管理程序,建立用针及锐器领、发、换记录,专人保管发放,生产场所根据需要采取定额换针,确保整个生产过程用针及锐器处于受控状态。  目前,儿童帐篷产品大都是在室内使用,帐篷中所用的非织造布面料不具备室外使用要求,如果需要室外使用,则需要到符合相关要求的供应商采购特殊面料,该面料必须具备防水和防辐射双重功能,以满足室外环境的需要。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制