当前位置: 仪器信息网 > 行业主题 > >

脱硫废水仪

仪器信息网脱硫废水仪专题为您提供2024年最新脱硫废水仪价格报价、厂家品牌的相关信息, 包括脱硫废水仪参数、型号等,不管是国产,还是进口品牌的脱硫废水仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脱硫废水仪相关的耗材配件、试剂标物,还有脱硫废水仪相关的最新资讯、资料,以及脱硫废水仪相关的解决方案。

脱硫废水仪相关的论坛

  • 电厂脱硫废水特点分析

    电厂脱硫废水由于其高浊度、高硬度,高含盐量、污染物种类多,且不同电厂水质波动大等特点,因此电厂脱硫废水处理成为燃煤电厂中成分最为复杂、处理难度最大的工业废水。成都废水处理公司总结电厂脱硫废水具体特点:1、含盐量高。脱硫废水中的含盐量很高,变化范围大,一般在30000~60000mg/L 。2、悬浮物含量高。脱硫废水中的悬浮物大多在10000mg/L以上,并且由于受煤种的变化和脱硫运行工况的影响,在某些极端情况下,悬浮物质量浓度甚至可高达60000mg/L 。3、硬度高导致易结垢。脱硫废水中的Ca2+、SO42-、Mg2+ 含量高,其中SO42-在4000mg/L以上,Ca2+在1500~5000mg/L,Mg2+在3000~6000mg/L,并且CaSO4处于过饱和状态,在加热浓缩过程中容易结垢。4、腐蚀性强。脱硫废水中的盐分高,尤其是Cl-含量高,且呈酸性(pH为4~6. 5),腐蚀性非常强,对设备、管道材质防腐蚀要求高。5、水质随时间和工况不同而变化。电厂脱硫废水中主要含有 Ca2+、Mg2+、Cl-、Na+、K+等各种重金属离子,并且组分变化大。

  • 脱硫废水亚硫酸根测定

    脱硫废水中,如果硫酸根离子含量很高的话,能不能用碘酸钾-碘化钾滴定的方法测定亚硫酸根离子?如果不能,求方法。

  • 焦化废水低成本“零排放”技术

    焦化废水的低投入、低成本、无害化处理利用,有助于焦化企业摆脱环保困境,而通过增加城市供热、供气、废水、垃圾处理等社会化功能,也有利于焦化企业转型,减少损失。在目前可选择处理的技术中,在焦炉烟道气净化过程中处理利用焦化废水被认为是比较可行的低成本、甚至是有效益的解决方案。该工艺有望同时一次性解决焦化脱硫废液处理、焦化废水深度处理回用和焦炉烟道气脱硫脱硝三大难题。  1 在焦炉烟道气净化过程中处理利用焦化废水  焦化废水主要包括脱硫废液、剩余氨水(主要部分)、其他焦化废水等。焦炉烟道气是炼焦过程中焦炉煤气或混合煤气燃烧过程中产生的烟气,有时会混入少量串入的焦炉煤气。过去,焦炉烟道气都是通过地下大烟道、烟囱直排的;现在,环保要求净化后排放。参考某厂焦炉烟道气的原始参数、环保控制标准(见表1),除环保严格要求的除尘、脱硫、脱硝外,还涉及余热回收利用、节水和湿法脱硫后的除湿“脱白”。1.jpg  焦炉烟道气净化处理利用焦化废水的工艺,如图1所示。在焦炉大烟道的适当位置开孔,通过旁通的方式将焦炉烟道气引出,首先可以选择用余热锅炉回收蒸汽,烟气温度降低到约160℃进入烟道气净化系统,通过循环喷淋焦化废水和清水净化,净烟气单独排放,原烟道和烟囱作为脱硫系统事故备用,以确保焦炉的安全运行。2.jpg  主要设备由脱硫废液喷雾干燥塔、高效氨法脱硫塔、湿式风机水洗除氨和湿烟气除湿“脱白”几部分组成。  喷雾干燥塔:采用双流空气雾化喷枪,将脱硫废液喷入喷雾干燥塔,首先利用烟道气的余热和含氧量,实现脱硫废液中酚、氰等有机有毒成分(COD、BOD)的热解和热氧化,转变成二氧化碳和水,低成本实现无害化。焦炉烟道气温度从240-300℃降低到90-120℃,理论计算可以处理10-12t/h焦化废水,首先确保全部处理脱硫废液,不足部分处理剩余氨水,剩余氨水中的氨与二氧化硫、氮氧化物发生化学反应,焦炉烟道脱硫脱硝的同时生成硫酸铵、硝酸铵颗粒,与脱硫废液中所含的盐一起,以干燥杂盐形式分离出来,从塔底定期排出,初步净化后的烟气进入高效喷淋洗涤。  高效喷淋洗涤脱硫:由于焦化脱硫废液和剩余氨水中的氨含量不高,离开喷雾干燥塔顶部的烟道气,首先进入二次蒸发管道,继续循环喷剩余氨水进行二次蒸发冷却到饱和温度,再用剩余氨水喷射式洗涤脱硫系统,喷入到一定液面的剩余氨水池中,进行湿式氨法脱硫,实现残余污染物的净化,进入循环氨水中。剩余氨水密闭循环富集到一定盐浓度后,送入前面的喷雾干燥塔处理干燥提盐,或净化后送回硫氨原料系统。烟道气温度从90-120℃降低到约50℃。  湿式风机水洗除氨和除湿“脱白”:为了防止烟气中残余的氨、有机有毒污染成分放散,脱硫后净烟气进入湿式风机洗涤净化,湿式风机在为系统提供排烟动力的同时,还有高效除尘、脱硫、除酸、防止氨逃逸等多种功能,而且由于烟气温度低、含蒸汽量减少等因素,其运行功率只有干式引风机功率的约50%,具有显著的节电效益。洗气机洗涤采用循环净水,烟气温度从约50℃降低到40℃以下,可以回收烟气中43%的饱和水蒸气和携带的余热,同步冷凝净化烟气中的细颗粒粉尘、二氧化硫、氮氧化物、氨等污染成分,确保焦化废水中的有机有毒有害成分不会转移到大气中,净化达标烟气通过除湿干燥塔顶的烟囱排放。  2 焦炉烟道气脱硫消纳利用焦化废水的原理  根据有关研究结果和经验,采用高温热解和热氧化焚烧后再急冷的方式处理焦化废水等有机有毒含盐废水能彻底实现废水的无害化,也属于焦化等有机有毒废水深度处理的方法之一,但长期以来,一直存在的难题是处理投资和运行费用过高。焦化废水焚烧除了焚烧炉外,还要配备余热回收利用、急冷、除尘、脱硝、脱硫等设备,设备投资高、运行成本均高。利用焦炉烟道气脱硫过程消纳和处理焦化废水则解决了运行成本和投资高的难题,主要相关反应见下:  1)酚: C6H6O+ 7O2 = 6CO2↑+ 3H2O +△Q  2)苯:C6H6+15/2 O2 = 6 CO2↑+3 H2O +△Q  3)氨:2NH3+7/2 O2 = 2NO2↑+3 H2O +△Q  4)硫化氢:2H2S + 3O2 = 2SO2↑+3 H2O +△Q  5)氰化氢:2HCN+ 9/2O2=2CO2↑ + 2NO2 + 3 H2O + △Q  硫酸铵、硫酸钠等盐类:喷雾干燥分离  前两个反应可以实现焦化废水主要有机污染成分的无害化;有关研究还表明,反应式3)和5)的主要反应产物中部分为氮气,也实现了两种主要有毒成分的无害化。退一步讲,就算是生成SO2、NO2,也易溶于水中,被循环氨水洗涤吸收后会与废水中的氨发生反应,生成固体,或液态硫酸铵、硝酸铵,实现无害化。焦化废水被喷入焦炉烟道气后,有三个主要去向:放散烟气、干灰和污水污泥。干灰、污水和污泥都是在焦化企业内部循环不外排,唯一可能转移排入大气的途径只有放散烟气。采用本工艺通过后步多级清水洗涤净化,可确保焦化废水中的有机有毒成分不外排。  3 应用效果  山西一焦化公司现有1座4.3m焦炉,按照环保要求,焦化脱硫废液需要提盐处理、剩余氨水经过蒸氨、生化处理后,还得深度处理,焦炉烟道气则需要除尘、脱硫、脱硝净化,采用市场现有技术,企业需要投资数千万元、甚至上亿元,并且投入后还大幅增加运行成本,目前焦炭市场不景气、企业在微利甚至亏损的情况下难以承担,但不解决这些问题,又面临日益严格的环保压力。为此,借鉴转炉除尘系统中消纳处理利用焦化废水的成功经验,用户决定在焦化烟道气脱硫系统中,进行消纳和利用焦化废水的工业试验,可以处理全部焦化脱硫废液和部分剩余氨水,一次性解决焦化脱硫废液、焦化废水深度处理和焦炉烟道气脱硫三大难题。  工业试验于2016年5月5日开工、6月30日开始调试运行,至今已经成功运行120多天。系统安装了在线监测设施,并已接入当地环保部门实时监控系统。监测结果:焦炉烟道气脱硫后粉尘含量小于10mg/m3、二氧化硫小于5mg/m3、氮氧化物小于150mg/m3,系统进口烟道气和净化后排烟温度分别为260℃、50℃。现有焦化废水蒸氨和生化负荷大幅降低,仅用于处理化产系统生产废水。  4 问题与改进  焦炉烟道气脱硫消纳和处理利用焦化废水技术得到了初步验证,可以低投入、低成本解决焦化脱硫废液、焦化废水深度处理和焦炉烟道气净化三大难题。考虑到节省开发投资和控制风险,此项技术还存在以下问题,需改进提高。  4.1 烟道气脱硝  研究检测表明,焦炉烟道气中所含的NOx大部分是NO,现有工艺虽然达到了较高的脱硝率,但距离超低排放指标还有差距。计划研发低温湿式氧化吸收的工艺,选择适当的氧化剂(臭氧、双氧水、次氯酸、或硝酸)对烟气中NO进行有效氧化,然后就可以在后步的喷淋洗涤除湿过程中脱除,确保国家超低排放要求的小于50mg/m3指标。  4.2 提纯精盐  焦化脱硫废液处理近几年主要以提盐法为主,投资多、处理成本高,回收的杂盐成了新的固废。本工艺解决了投资和处理成本高的问题,下一步计划开发提纯盐分离技术,生产高纯度硫氰酸钠、硫氰酸铵、硫代硫酸钠、硫酸钠等精盐,在解决污染成分彻底无害化的同时,还可预期较好的经济效益。  4.3 原有废水处理设施和能力的利用  采用焦炉烟道气脱硫消纳处理焦化废水后,原有的焦化废水处理蒸氨可以停止运行,生化系统将出现能力富裕,可以利用其资源化回收和利用城市垃圾渗漏液、化工废水、城市生活污水,而减少企业对自然水源的取水量,并实现整个企业废水的零排,这对低成本保护我们赖以生存的自然水资源很重要,特别是处理城市污水直接利用,可以降低企业成本、获得当地政府的污水处理设施投资和财政补贴。  4.4 焦炉烟道气排烟除湿干燥  目前系统排放烟气温度为50℃,含湿量还比较高。下步计划采取直接喷淋冷凝换热和混风干燥的方式实现排烟除湿干燥,彻底实现“脱白”,同时回收放散烟气中的水分和余热,通过热泵技术提温后,用于焦炉入炉煤的加热或居民采暖和生活热水。  5 结论与建议  1)在焦炉烟道气脱硫系统消纳处理焦化脱硫废液和剩余氨水的工业性试验证明,采用本工艺有望同时一次性解决焦化脱硫废液、焦化废水深度处理回用和焦炉烟道气脱硫脱硝三大难题,为煤焦化企业环保达标、节能降低成本、增加效益和淘汰焦化企业转型发展提供了解决方案。  2)焦炉烟道气实现消纳利用焦化废水的功能后,能力富裕的焦化废水处理设施具备消纳利用城市生活污水等其他类似废水的条件,发挥利用这些潜力可以实现企业和有关污水排放企业废水的“零排放”和降低成本,特别是对改善和保护自然环境有利。  3)本工艺主要提高方向是低温氧化吸收脱硝、除湿“脱白”、回收低温冷凝水节水、回收低温余热用于供暖和生活热水、回收精盐和节电。

  • 【实战宝典】哈希关于船舶脱硫洗涤废水水质监测解决方案

    [font=宋体][color=black]国际海事组织([/color][/font][color=black]IMO[/color][font=宋体][color=black]),根据全球海域船舶限硫规定[/color][/font][color=black]MEPC.259[/color][font=宋体][color=black]([/color][/font][color=black]68[/color][font=宋体][color=black])决议,要求各成员国船级社注册的船舶积极履行该决议,于[/color][/font][color=black]2020[/color][font=宋体][color=black]年[/color][/font][color=black]1[/color][font=宋体][color=black]月[/color][/font][color=black]1[/color][font=宋体][color=black]日起,船舶烟气硫氧化物排放必须[/color][/font][color=black]0.5%[/color][font=宋体][color=black]。中国交通部也出台中国海域相关[/color][/font][color=black]"[/color][font=宋体][color=black]限硫[/color][/font][color=black]"[/color][font=宋体][color=black]规定,加快了船舶脱硫市场的发展。[/color][/font][color=black] [/color][font=宋体][color=black]目前,减少船舶硫氧化物排放的有效方法之一是安装废气清洗系统([/color][/font][color=black]EGCS[/color][font=宋体][color=black])进行处理,无论脱硫过程中采用何种脱硫剂,势必产生脱硫洗涤废水。国际海事组织[/color][/font][color=black](IMO)[/color][font=宋体][color=black]对该洗涤废水排放提出了严格要求,规定了[/color][/font][color=black]pH[/color][font=宋体][color=black]、浊度、多环芳烃[/color][/font][color=black]PAH[/color][font=宋体][color=black]等排放限值。[/color][/font][color=black] [/color][color=black] [/color][font=宋体][color=black]哈希公司作为全球水质分析行业可信赖者,旗下传感器监测方案已获得[/color][/font][color=black]DNV GL[/color][font=宋体][color=black]船级社认证,符合[/color][/font][color=black]MEPC.259(68)[/color][font=宋体][color=black]和[/color][/font][color=black]DNV GL-CG-0339[/color][font=宋体][color=black]关于水质监测的各项要求,方案运行更准确、稳定、可靠。同时,哈希具备丰富的水质分析行业经验和的解决方案,可为船舶行业客户提供定制化的产品解决方案相关的技术咨询服务和产品支持服务。不仅于此,哈希公司更可依托全球销售与服务网络,不论您的船舶航行到哪片海域,哪个主要港口,我们都可以组织和协调当地的区域技术服务人员,时间为您排忧解难,以保障您的航行顺利,合规无忧。[/color][/font][font=宋体][color=black]哈希船舶洗涤废水监测解决方案:[/color][/font][color=black] [/color][font=宋体][color=black]独立传感器监测方案:具有[/color][/font][color=black]DNV GL[/color][font=宋体][color=black]船级社认证,灵活安装,实时监测;[/color][/font][font=宋体][color=black]一体化集成产品监测方案:整体安装,整体测量,整体认证;[/color][/font][color=black]DLW-7200[/color][font=宋体][color=black]型水质在线监测系统:[/color][/font][color=black]DLW-7200 [/color][font=宋体][color=black]型水质在线监测系统是一种带有自动调压装置及原位校准装置的集成系统,应用于需要对水样中[/color][/font][color=black]pH[/color][font=宋体][color=black]、[/color][/font][color=black]SS[/color][font=宋体][color=black]以及[/color][/font][color=black]PAH[/color][font=宋体][color=black]进行实时在线监测的场合。系统严格依照国家和行业的要求设计,以整体解决方案为目标,专为哈希([/color][/font][color=black]HACH[/color][font=宋体][color=black])仪器量身定制。系统数字化功能强大,远程实时传送测量值、工作状态及诊断信息。丰富的数字化信息可就即将出现的仪器问题向您发出警告,以此让您能够预先采取维护措施,让您满怀自信地辨别测量结果的变化原因,提早预判突发状况。[/color][/font][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][align=center][font=宋体][color=black]表[/color][/font][color=black]6.1 [/color][b][font=宋体][color=black]现有认证产品方案[/color][/font][/b][/align] [table=664][tr][td] [align=center][font=宋体][color=black]检测参数[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]品名[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]货号[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]产品描述[/color][/font][/align] [/td][/tr][tr][td] [font=宋体][color=black]浊度[/color][/font] [/td][td] [color=black]ultraturb[/color][color=black]seawater sc[/color][font=宋体][color=black](海水)[/color][/font] [/td][td] [color=black]LPV415.99.22002[/color] [/td][td] [color=black]ULTRATURB [/color][font=宋体][color=black]海水[/color][/font][color=black] sc[/color][font=宋体][color=black],带[/color][/font][color=black]5[/color][font=宋体][color=black]米电缆[/color][/font] [/td][/tr][tr][td] [color=black]pH[/color] [/td][td] [font=宋体][color=black]差分[/color][/font][color=black]pHD[/color][font=宋体][color=black]传感器[/color][/font] [/td][td] [color=black]DPD1P1[/color] [/td][td] [font=宋体][color=black]差分[/color][/font][color=black]pHD[/color][font=宋体][color=black]数字传感器,材质[/color][/font][color=black]:PEEK[/color][font=宋体][color=black],灵活式,玻璃,带[/color][/font][color=black]4.5[/color][font=宋体][color=black]米电缆[/color][/font] [/td][/tr][tr][td=1,2] [font=宋体][color=black]控制器[/color][/font] [/td][td] [color=black]SC1000[/color][font=宋体][color=black]显示模块[/color][/font] [/td][td] [color=black]LXV402.99.00002[/color] [/td][td] [color=black]sc1000 [/color][font=宋体][color=black]显示模块,不带[/color][/font][color=black]GSM[/color] [/td][/tr][tr][td] [color=black]SC1000[/color][font=宋体][color=black]探头模块[/color][/font] [/td][td] [color=black]LXV400.00.5B552[/color] [/td][td] [color=black]sc1000 [/color][font=宋体][color=black]探头模块,[/color][/font][color=black]4 [/color][font=宋体][color=black]探头,[/color][/font][color=black]4mA [/color][font=宋体][color=black]输出,[/color][/font][color=black]100-240VAC[/color] [/td][/tr][/table][align=center][font=宋体][color=black]表[/color][/font][color=black]6.2 [/color][b][font=宋体][color=black]其它产品方案[/color][/font][/b][/align] [table=665][tr][td] [align=center][font=宋体][color=black]检测参数[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]品名[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]货号[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]产品描述[/color][/font][/align] [/td][/tr][tr][td] [align=center][font=宋体][color=black]浊度[/color][/font][/align] [/td][td] [align=center][color=black]solitax sc[/color][/align] [/td][td] [align=center][color=black]LXV423.99.12100[/color][/align] [/td][td] [align=center][color=black]TS-Line sc [/color][font=宋体][color=black]浊度[/color][/font][color=black]/ [/color][font=宋体][color=black]悬浮物探头[/color][/font][color=black], PVC[/color][font=宋体][color=black]材质,不带自清洗刮刀([/color][/font][color=black]0.001-4000NTU[/color][font=宋体][color=black],[/color][/font][color=black]0.001mg/L-50g/L[/color][font=宋体][color=black])[/color][/font][/align] [/td][/tr][tr][td=1,2] [align=center][color=black]pH[/color][/align] [/td][td] [align=center][color=black]9500[/color][font=宋体][color=black]控制器[/color][/font][/align] [/td][td] [align=center][color=black]9500.99.00704[/color][/align] [/td][td] [align=center][color=black]9500[/color][font=宋体][color=black]控制器,单通道,[/color][/font][color=black]pH/ORP[/color][font=宋体][color=black],[/color][/font][color=black]220V[/color][/align] [/td][/tr][tr][td] [align=center][color=black]8350[/color][font=宋体][color=black]传感器[/color][/font][/align] [/td][td] [align=center][color=black]Z08350=C=0004[/color][/align] [/td][td] [align=center][color=black]8350.4 PH[/color][font=宋体][color=black]电极,带[/color][/font][color=black]10[/color][font=宋体][color=black]米电缆,[/color][/font][color=black]110℃[/color][font=宋体][color=black],[/color][/font][color=black]PPS[/color][font=宋体][color=black](聚苯硫醚)[/color][/font][/align] [/td][/tr][tr][td] [align=center][font=宋体][color=black]控制器[/color][/font][/align] [/td][td] [align=center][color=black]sc200[/color][font=宋体][color=black]通用型控制器[/color][/font][/align] [/td][td] [align=center][color=black]LXV404.99.00552[/color][/align] [/td][td] [align=center][color=black]sc200[/color][font=宋体][color=black]控制器,双通道,数字,[/color][/font][color=black]220V[/color][/align] [/td][/tr][tr][td] [align=center][color=black] [/color][/align] [/td][td] [align=center][color=black]PAH500[/color][font=宋体][color=black]水中油传感器[/color][/font][/align] [/td][td] [align=center][color=black]LXV541.99.1001H[/color][/align] [/td][td] [align=center][color=black]PAH500[/color][font=宋体][color=black]水中油传感器[/color][/font][/align] [/td][/tr][/table]

  • 冶金废水治理发展的趋向是

    (1)发展和采用不用水或少用水及无污染或少污染的新工艺、新技术,如用干法熄焦,炼焦煤预热,直接从焦炉煤气脱硫脱氰等;(2)发展综合利用技术,如从废水废气中回收有用物质和热能,减少物料燃料流失;(3)根据不同水质要求,综合平衡,串流使用,同时改进水质稳定措施,不断提高水的循环利用率;(4)发展适合冶金废水特点的新的处理工艺和技术,如用磁法处理钢铁废水,具有效率高,占地少,操作管理方便等优点。

  • 各位老师,关于脱硫海水监测时样品类别和分析方法选择问题,请不吝赐教

    [size=18px]各位老师:[/size][size=18px] 日常监测工作中遇到以下问题,举一个例子说明,请不吝赐教![/size][size=18px] 做某电厂例行监测,其中部分点位使用海水作为脱硫用水和循环冷却水,根据环评批复及排污许可里的内容,本部分水应该按照废水来管理,采样按照HJ 91.1-2019来进行,这样的话样品类别写为废水,但是因为本部分废水主要成分为海水,分析方法需按照GB 17378和GB 12763里的方法来选择,这样就出现矛盾了,具体表现为我们单位通过资质认定表里面按照生态环境监测领域的13大类来分的,其中废水和海水是分开的,如果样品类别是废水但用海水的方法算是超资质;如果样品类别写海水采样规范又不合适。请问您实验室是怎么处理的?[/size]

  • 焦炉煤气脱硫脱氰技术及优化建议

    简要回顾了煤气脱硫脱氰工艺的发展历程,介绍了湿式吸收法和湿式氧化脱硫法的原理及进展。总结了硫磺回收、WSA接触法制硫酸、克劳斯炉生产硫磺、硫氰酸盐和硫代硫酸盐的提取、昆帕库斯法制浓硫酸、希罗哈克斯法制硫酸铵等副产品回收工艺过程。并从工艺优选、设备及技术开发、废液资源化处理方面提出煤气脱硫脱氰技术的优化建议。  焦化产业是煤化工的支柱产业之一。炼焦原料煤主要由碳、氢、氮、硫和氧5 种元素组成,其中硫元素以有机硫和无机硫形式存在。一般干煤含全硫质量分数0.5%~1.2%,在成焦过程中,约有30%的硫进入煤气中,其中95%的硫以H2S 形式存在。煤气中一般含H2S(质量浓度4 g/m3~10 g/m3)和HCN(质量浓度1 g/m3~2.5 g/m3),在煤气净化过程中对工艺设备有腐蚀危害,燃烧后对环境有污染,因此需要对煤气进行脱硫脱氰净化处理。  笔者在煤气脱硫脱氰工艺原理分析的基础上,总结了副产品回收技术,并对煤气脱硫脱氰技术的优化提出建议,旨在促进新技术的开发。  1 焦炉煤气脱硫脱氰工艺发展简述  目前,国内的煤气脱硫脱氰技术是在煤气净化工艺基础上建立的。20 世纪70 年代以前,我国绝大部分焦化企业的焦炉煤气净化工艺沿用与原苏联20 世纪40 年代焦炉炉型相配套的初冷 -洗氨 -终冷 -洗苯的煤气净化工艺流程,一般不设置脱硫装置,仅对氨进行回收。  20 世纪80 年代末开始,随着煤气净化技术的引进,宝钢等一些大型钢铁企业,陆续引进了MEA 法、TH 法等脱硫工艺。但国内大部分焦化企业仍停留在采用氢氧化铁干法或ADA 法脱硫的阶段,甚至有些焦化企业没有脱硫装置。此时,我国的ZL 脱硫脱氰工艺正处于研究探索阶段。20 世纪90 年代初,国内焦化生产企业先后引进了FRC 法、氨 -硫化氢循环洗涤法(AS 法)、真空碳酸盐法等脱硫技术。  之后在湿式氧化脱硫技术基础上,开发出了诸多适合我国国情的煤气脱硫脱氰新技术,如栲胶法、HPF法、PDS 法、888 法、APS 法、OMC 法、OPT 法、YST 法和RTS 法等,极大地推动了我国焦化行业湿式脱硫脱氰技术的发展[3]。目前,湿式氧化法脱硫脱氰工艺分为3 个部分:硫化氢及氰化氢等酸性气体的脱除、脱硫富液的再生及副产品回收。湿式吸收法脱硫工艺也分为3 个部分:硫化氢的脱除、脱硫富液的再生及酸性气体再处理生产副产品。  2 煤气脱硫脱氰工艺原理及副产品回收技术  根据工艺原理不同,煤气脱硫脱氰技术主要分为干法脱硫技术和湿法脱硫脱氰技术。干法脱硫工艺设备体积庞大,脱硫剂容易结块、需定期更换,可作为湿法脱硫的补充精脱硫技术。国内目前主要采用湿法脱硫脱氰技术,根据工艺原理不同,可分为湿式吸收法和湿式催化氧化法。根据脱硫脱氰工艺在煤气净化工艺中的位置不同,又可分为前脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺前)和后脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺后)。根据脱硫脱氰所用吸收剂的不同,可分为以碳酸盐为碱源和煤气中制取的氨水为氨源2 种吸收剂。  2.1 煤气脱硫脱氰工艺原理  目前,我国焦炉煤气湿式催化氧化法脱硫工艺中使用的催化剂大致可分为2类:一类是酚 -醌转化(活性基团转化)类催化剂,如ADA、对苯二酚、栲胶、苦味酸和1,4 -萘醌-2 -磺酸钠等,通过变价离子催化。这类催化剂存在不能脱除有机硫、总脱硫效率低、硫泡沫不易分离、设备易堵塞、H2S 适应范围小和脱硫成本较高等缺点。另一类是磺化酞菁钴和金属离子类(铁基工艺、钒基工艺)脱硫催化剂,如PDS 和复合催化剂对苯二酚-PDS -硫酸亚铁等,这类催化剂通过本身携带的原子氧完成氧化和再生反应。  湿式吸收工艺主要建立在吸收 -解吸理论基础上。利用煤气混合物中各组分(溶质)在碱性脱硫脱氰吸收液中的溶解度不同,实现分离(硫化氢在碱性溶液中的溶解度远大于氨),利用酸性气体溶质在碱性溶液中的溶解度随温度升高而降低的规律,通过加热脱硫富液,脱除HCN 等酸性气体。  例如,以碳酸钾为碱源的湿式吸收脱硫脱氰工艺中,吸收方程式见式(1)~(3),解吸方程式见式(4)~(6):  K2CO3+H2S→KHCO3+KHS (1)  K2CO3+HCN→KCN+KHCO3 (2)  K2CO3+CO2+H2O→2KHCO3 (3)  KHS+KHCO3→K2CO3+H2S (4)  KCN+KHCO3→K2CO3+HCN (5)  2KHCO3→K2CO3+CO2+H2O (6)  湿式氧化脱硫工艺与湿式吸收工艺脱硫单元操作相同,再生工艺不同。脱硫富液再生时,在空气中氧气、催化剂作用下,S2 -氧化为单质硫,从而使煤气中酸性气体得以去除。  例如,以碳酸钠为碱源的湿法氧化脱硫工艺中,脱硫阶段的方程式见式(7)~(9),副反应见式(10)~(13):  Na2CO3+H2S→NaHS+NaHCO3 (7)  HS-+2V5+→2V4++S+H+ (8)  2V4++ 催化剂(氧化态)→2V5++ 催化剂(还原态)(9)  Na2CO3+2HCN→2NaCN+H2O+CO2 (10)  NaCN+S→NaCNS (11)  2NaHS+2O2→Na2S2O3+H2O (12)  2Na2S2O3+O2→2Na2SO4+2S (13)  氧化还原反应首先在脱硫吸收塔内发生,根据E°V5+/V4+=1.000 V,E°S/S2-= -0.508 V[5],标准电极电位高的V5+ 将S2 -氧化为单质硫。同时,V5+ 被还原为V4+。在碱性条件下,E°O2/H2O=1.23 V[5],则E°O2/H2OE°V5+/V4+E°S/S2-,催化剂携带的氧气可将V4+ 氧化为V5+,使脱硫富液再生。同时,氧气可将在脱硫塔未被氧化的负二价硫继续氧化为单质硫。  2.2 脱硫脱氰富液副产品的回收工艺  在湿式吸收脱硫脱氰工艺中,富液再生过程通过蒸汽加热实现。因此,反应速度慢,生成的废液极少。在湿式氧化脱硫脱氰工艺中,由于再生过程中氧气的带入而发生副反应,生成硫代硫酸铵、硫氰酸铵等副盐,总量为450 g/L~550 g/L。目前,每生产1 t 焦炭产生脱硫废液10 kg 左右,焦化厂虽配套废水处理设施,但其污染物浓度超高,难以有效处理。  目前湿式氧化工艺副产品回收技术主要为富液空气催化氧化产单质硫;剩余富液处理主要为希罗哈克斯法高温高压制硫铵、昆帕库斯法焚烧后制硫酸及还原热分解产单质硫。湿式吸收工艺技术主要为WSA接触法制酸和克劳斯炉(SCL)生产硫磺。  2.2.1 富液空气催化氧化产单质硫  再生塔脱硫富液中S2 -在空气中氧及催化剂作用下,生成悬浮单质硫,从再生塔顶分离出来的质量分数为5%~10%硫泡沫进入硫泡沫槽中,经初步分离,再经固液分离设备脱水,得到含水质量分数40%~ 50%的硫膏,最后经熔硫釜熔融并分离出杂质后,冷却制成硫块。  2.2.2 WSA 接触法制硫酸  脱硫脱氰富液经热解吸处理后,产生酸性气体,送入WSA 制酸系统。WSA 制酸工艺的基本原理为酸性气体燃烧产生SO2,在催化剂作用下转化为SO3,再与气体中的水蒸气进行水和反应,生成气态硫酸,冷却为液态酸。  该工艺主要通过酸性气燃烧、过程气除杂、SO2 转化、硫酸冷凝冷却、热能回收利用等步骤,生产质量分数为98%的浓硫酸及中压过热蒸汽,多与真空碳酸钾法脱硫工艺配套使用。  2.2.3 克劳斯炉(SCL)生产硫磺  脱硫装置真空泵送来的含H2S、HCN 及CO2 等的酸性气体,进入克劳斯炉,酸气中1/3 的H2S 与空气燃烧生成SO2,2/3 的H2S 与生成的SO2 反应,生成单质硫。该工艺多与真空碳酸钾法脱硫工艺配套使用。  2.2.4 硫氰酸盐和硫代硫酸盐的提取  根据硫氰酸盐和硫代硫酸盐在水中溶解度的不同,通过控制蒸发浓度(比重)和冷却温度,达到分别提纯的目的。  以碳酸钠为吸收液的湿式催化氧化脱硫脱氰工艺为例,反应后脱硫富液催化剂浓度低,可忽略不计,溶液中主要含NaCNS、Na2S2O3 及Na2CO3 等。其中Na2CO3溶解度最小,且随温度升高变化不大。所以提取时可直接将脱硫富液吸收液蒸发浓缩,Na2CO3 首先析出并经过滤除去,再将过滤所得母液冷却、结晶和分离,可回收NaCNS 和Na2S2O3。  NaCNS 在水中的溶解度随温度的下降而降低,将NaCNS 饱和液温度降至过饱和状态时,NaCNS 结晶析出。但当吸收液中Na2S2O3 含量较高,超过NaCNS 含量的1/3 时,需首先将Na2S2O3 提出,否则将影响NaCNS产品质量。  2.2.5 昆帕库斯法制浓硫酸  该法一般作为FRC 法的一部分(即C 部分),脱硫吸收液多为氨源,脱硫后富液多为含单质硫、硫氰酸铵和硫代硫酸铵的脱硫富液,浓缩后与一定量的用于促进燃烧的煤气在燃烧炉内进行高温裂解,产生的SO2 随燃烧废气排出,对废气进行催化氧化处理,将正二价的硫化物氧化成正三价的硫化物,最后采用高浓度硫酸对其进行吸收,可生产出更高浓度的硫酸。该浓硫酸被送往硫酸铵工段。  2.2.6 希罗哈克斯法制硫酸铵  在273 ℃~275 ℃、7 000 kPa~7 500 kPa 的条件下,在氧化塔内将脱硫废液中的铵盐及硫磺氧化成硫酸铵,送入硫铵工段生产硫酸铵。该法与塔卡哈克斯法联用,亦可进行HPF 法脱硫废液的处理。  2.2.7 废液焚烧法  废液焚烧法又叫还原热分解法,脱硫浓缩液经蒸汽雾化后[9],喷入炉内火焰中,炉内操作温度约1 000℃。以碳酸钠碱源吸收液为例,浓缩液中的硫氰酸钠和硫代硫酸钠等受热分解,硫以硫化氢形式进入废气中,钠被还原成碳酸钠和硫化钠。  焚烧产生的废气出焚烧炉,经冷却后进入碱液回收槽内,碳酸钠和硫化钠等易溶解性盐被回收槽内液体吸收,废气被冷却至90 ℃左右。含水蒸气的废气由回收槽上部进入气液分离器,经冷却至约35 ℃后,进入废气吸收塔吸收硫化氢。排出的废气中含有微量的硫化氢和部分未完全燃烧的可燃性气体,送入回炉煤气管中进一步处理。  3 优化建议  3.1 工艺优选  3.1.1 产品生产的批量化、集成化  寻找煤气脱硫工艺与脱氨工艺产品的共性,实现产品的批量化、集成化生产。当采用T-H 法脱硫后配希罗哈克斯法脱硫工艺生成硫铵溶液时,因硫铵脱氨工艺产品为硫铵结晶,所以煤气净化工艺的脱氨工艺宜采用硫铵脱氨,而不采取磷铵等脱氨工艺。当采用FRC 法C 部分(昆帕库斯法)生产浓硫酸工艺时,应配套硫铵系统,供脱氨使用。  3.1.2 碱型及氨型脱硫吸收剂的选取  新建化产回收系统前,应先根据煤中元素组成,判断煤气中硫化氢、氨等气体含量,遵循脱硫与脱氨互补性原则,当氨含量能满足硫化氢去除、且脱硫后能满足不同煤气使用指标时,考虑采用氨型吸收剂脱硫;否则采用碱型吸收剂脱硫。  3.1.3 工艺位置的选择  碱型吸收剂前脱硫过程中,降低煤气中氰化氢含量,可减少煤气终冷洗涤水中氰化氢含量。相应的,终冷洗涤水通过凉水架冷却时,其中氰化氢被吹入空气中的量减少,也可减少大气污染。  当焦炉采用焦炉煤气加热时,因回炉煤气也经过前脱硫系统,煤气中硫化氢含量降低,焦炉烟气中二氧化硫含量明显减少。但由于前脱硫煤气处理量大,使投资成本比后脱硫系统大。因此,采用何种流程工艺,应在焦炉烟气脱硫投资和焦炉煤气脱硫系统投资间寻求经济平衡点。  3.1.4 运行工况的稳定性  在脱硫前,为降低煤气中焦油及灰尘含量,应定期维护电捕焦油设备,以免焦油堵塞脱硫塔内件,造成脱硫液品质恶化,影响再生效果。同时,应加强温度控制,减少萘结晶析出,防止脱硫工段进煤气管路阻塞。焦炉煤气除了回用焦炉燃烧供热以外,在钢铁焦化联合企业也供钢材加工和金属冶炼等使用,焦化厂还可利用煤气生产甲醇等新型煤化工产品。但由于各工段需根据市场情况组织生产,因此煤气用量波动较大,直接影响脱硫效率。在建厂前,需根据煤气全厂分配供应情况,综合考虑再生空气用量及脱硫液循环液量等因素,使其处于可调控范围,提高脱硫效率。  3.2 设备及技术开发  3.2.1 塔设备及配件研发设计  在湿法氧化脱硫系统再生单元中,空气中氧气起到催化剂再生作用,并使二价硫进一步反应生成单质硫。新型再生塔空气分布装置的研发设计,可以增强脱硫富液与空气混合效果,提高再生率,减少空气用量;再生塔新型高效塔盘的研发,可减小塔径,节省设备投资,节约占地面积。  3.2.2 填料的设计开发  填料是煤气脱硫装置的关键内件,基于碱源吸收酸性气体的传质动力学及煤气含尘、含萘的特点,新型填料的研究开发,应从提高气液传质效率和比表面积及提高通量、降低压降等方面入手。  3.2.3 催化剂的开发  根据阿伦尼乌斯化学动力学公式,活化能越低,HS -被氧化的速度越快,催化剂在反应过程中主要是降低HS -向S 转化的活化能。但是,由于脱硫脱氰催化剂价格昂贵,其使用量有一定限制。科研工作者应在原有催化剂成功使用的基础上,筛选出溶解效果好、使用寿命长、再生效果好的催化剂。催化剂多为由一种或几种有机物及变价金属离子配置的复合催化剂,且不同焦化企业炼焦过程中煤种及配比不同,炼焦煤气各杂质气体含量存在差异,脱硫废液组成随之变化,因此企业在开工调试前,需通过试验及现场经验,寻找合适的复合催化剂配比,从而减小催化剂使用量,降低运行成本。  3.3 废液资源化处理  目前,脱硫废液提盐法技术相对成熟。但在蒸发结晶前脱硫液的脱色吸附处理过程中,需投加大量的吸附脱色材料。如脱色后送煤厂与原煤混合炼焦或外运处理,会造成资源浪费和环境污染。为降低运行成本并减小污染,需寻找更合适的吸附材料或采取再生回用措施。  采用分步结晶法,需要与市场接轨,生产出满足工业级别纯度要求的硫氰酸盐及硫代硫酸盐,形成经济增长点。希罗哈克斯法、昆帕库斯法及克劳斯法等资源化处理工艺,有设备技术要求高、投资大及能耗高等缺点,需结合企业自身脱硫工艺特点及经济基础而选用。  4 结语  焦炉煤气脱硫脱氰是煤气净化的重要工艺单元,探寻技术可行、经济合理的煤气脱硫脱氰工艺,能够提高煤气脱硫脱氰效率。通过废液资源化回收途径,能够提高经济效益,减小脱硫废液造成的危害。脱硫脱氰后,煤气满足回用焦炉煤气或送用户煤气硫化氢含量标准的同时,可减少燃烧后有害气体对环境的污染,寻求经济效益与环境效益的平衡点。

  • 焦炉煤气脱硫脱氰技术及优化建议

    简要回顾了煤气脱硫脱氰工艺的发展历程,介绍了湿式吸收法和湿式氧化脱硫法的原理及进展。总结了硫磺回收、WSA接触法制硫酸、克劳斯炉生产硫磺、硫氰酸盐和硫代硫酸盐的提取、昆帕库斯法制浓硫酸、希罗哈克斯法制硫酸铵等副产品回收工艺过程。并从工艺优选、设备及技术开发、废液资源化处理方面提出煤气脱硫脱氰技术的优化建议。  焦化产业是煤化工的支柱产业之一。炼焦原料煤主要由碳、氢、氮、硫和氧5 种元素组成,其中硫元素以有机硫和无机硫形式存在。一般干煤含全硫质量分数0.5%~1.2%,在成焦过程中,约有30%的硫进入煤气中,其中95%的硫以H2S 形式存在。煤气中一般含H2S(质量浓度4 g/m3~10 g/m3)和HCN(质量浓度1 g/m3~2.5 g/m3),在煤气净化过程中对工艺设备有腐蚀危害,燃烧后对环境有污染,因此需要对煤气进行脱硫脱氰净化处理。  笔者在煤气脱硫脱氰工艺原理分析的基础上,总结了副产品回收技术,并对煤气脱硫脱氰技术的优化提出建议,旨在促进新技术的开发。  1 焦炉煤气脱硫脱氰工艺发展简述  目前,国内的煤气脱硫脱氰技术是在煤气净化工艺基础上建立的。20 世纪70 年代以前,我国绝大部分焦化企业的焦炉煤气净化工艺沿用与原苏联20 世纪40 年代焦炉炉型相配套的初冷 -洗氨 -终冷 -洗苯的煤气净化工艺流程,一般不设置脱硫装置,仅对氨进行回收。  20 世纪80 年代末开始,随着煤气净化技术的引进,宝钢等一些大型钢铁企业,陆续引进了MEA 法、TH 法等脱硫工艺。但国内大部分焦化企业仍停留在采用氢氧化铁干法或ADA 法脱硫的阶段,甚至有些焦化企业没有脱硫装置。此时,我国的ZL 脱硫脱氰工艺正处于研究探索阶段。20 世纪90 年代初,国内焦化生产企业先后引进了FRC 法、氨 -硫化氢循环洗涤法(AS 法)、真空碳酸盐法等脱硫技术。  之后在湿式氧化脱硫技术基础上,开发出了诸多适合我国国情的煤气脱硫脱氰新技术,如栲胶法、HPF法、PDS 法、888 法、APS 法、OMC 法、OPT 法、YST 法和RTS 法等,极大地推动了我国焦化行业湿式脱硫脱氰技术的发展[3]。目前,湿式氧化法脱硫脱氰工艺分为3 个部分:硫化氢及氰化氢等酸性气体的脱除、脱硫富液的再生及副产品回收。湿式吸收法脱硫工艺也分为3 个部分:硫化氢的脱除、脱硫富液的再生及酸性气体再处理生产副产品。  2 煤气脱硫脱氰工艺原理及副产品回收技术  根据工艺原理不同,煤气脱硫脱氰技术主要分为干法脱硫技术和湿法脱硫脱氰技术。干法脱硫工艺设备体积庞大,脱硫剂容易结块、需定期更换,可作为湿法脱硫的补充精脱硫技术。国内目前主要采用湿法脱硫脱氰技术,根据工艺原理不同,可分为湿式吸收法和湿式催化氧化法。根据脱硫脱氰工艺在煤气净化工艺中的位置不同,又可分为前脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺前)和后脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺后)。根据脱硫脱氰所用吸收剂的不同,可分为以碳酸盐为碱源和煤气中制取的氨水为氨源2 种吸收剂。  2.1 煤气脱硫脱氰工艺原理  目前,我国焦炉煤气湿式催化氧化法脱硫工艺中使用的催化剂大致可分为2类:一类是酚 -醌转化(活性基团转化)类催化剂,如ADA、对苯二酚、栲胶、苦味酸和1,4 -萘醌-2 -磺酸钠等,通过变价离子催化。这类催化剂存在不能脱除有机硫、总脱硫效率低、硫泡沫不易分离、设备易堵塞、H2S 适应范围小和脱硫成本较高等缺点。另一类是磺化酞菁钴和金属离子类(铁基工艺、钒基工艺)脱硫催化剂,如PDS 和复合催化剂对苯二酚-PDS -硫酸亚铁等,这类催化剂通过本身携带的原子氧完成氧化和再生反应。  湿式吸收工艺主要建立在吸收 -解吸理论基础上。利用煤气混合物中各组分(溶质)在碱性脱硫脱氰吸收液中的溶解度不同,实现分离(硫化氢在碱性溶液中的溶解度远大于氨),利用酸性气体溶质在碱性溶液中的溶解度随温度升高而降低的规律,通过加热脱硫富液,脱除HCN 等酸性气体。  例如,以碳酸钾为碱源的湿式吸收脱硫脱氰工艺中,吸收方程式见式(1)~(3),解吸方程式见式(4)~(6):  K2CO3+H2S→KHCO3+KHS (1)  K2CO3+HCN→KCN+KHCO3 (2)  K2CO3+CO2+H2O→2KHCO3 (3)  KHS+KHCO3→K2CO3+H2S (4)  KCN+KHCO3→K2CO3+HCN (5)  2KHCO3→K2CO3+CO2+H2O (6)  湿式氧化脱硫工艺与湿式吸收工艺脱硫单元操作相同,再生工艺不同。脱硫富液再生时,在空气中氧气、催化剂作用下,S2 -氧化为单质硫,从而使煤气中酸性气体得以去除。  例如,以碳酸钠为碱源的湿法氧化脱硫工艺中,脱硫阶段的方程式见式(7)~(9),副反应见式(10)~(13):  Na2CO3+H2S→NaHS+NaHCO3 (7)  HS-+2V5+→2V4++S+H+ (8)  2V4++ 催化剂(氧化态)→2V5++ 催化剂(还原态)(9)  Na2CO3+2HCN→2NaCN+H2O+CO2 (10)  NaCN+S→NaCNS (11)  2NaHS+2O2→Na2S2O3+H2O (12)  2Na2S2O3+O2→2Na2SO4+2S (13)  氧化还原反应首先在脱硫吸收塔内发生,根据E°V5+/V4+=1.000 V,E°S/S2-= -0.508 V[5],标准电极电位高的V5+ 将S2 -氧化为单质硫。同时,V5+ 被还原为V4+。在碱性条件下,E°O2/H2O=1.23 V[5],则E°O2/H2OE°V5+/V4+E°S/S2-,催化剂携带的氧气可将V4+ 氧化为V5+,使脱硫富液再生。同时,氧气可将在脱硫塔未被氧化的负二价硫继续氧化为单质硫。  2.2 脱硫脱氰富液副产品的回收工艺  在湿式吸收脱硫脱氰工艺中,富液再生过程通过蒸汽加热实现。因此,反应速度慢,生成的废液极少。在湿式氧化脱硫脱氰工艺中,由于再生过程中氧气的带入而发生副反应,生成硫代硫酸铵、硫氰酸铵等副盐,总量为450 g/L~550 g/L。目前,每生产1 t 焦炭产生脱硫废液10 kg 左右,焦化厂虽配套废水处理设施,但其污染物浓度超高,难以有效处理。  目前湿式氧化工艺副产品回收技术主要为富液空气催化氧化产单质硫;剩余富液处理主要为希罗哈克斯法高温高压制硫铵、昆帕库斯法焚烧后制硫酸及还原热分解产单质硫。湿式吸收工艺技术主要为WSA接触法制酸和克劳斯炉(SCL)生产硫磺。  2.2.1 富液空气催化氧化产单质硫  再生塔脱硫富液中S2 -在空气中氧及催化剂作用下,生成悬浮单质硫,从再生塔顶分离出来的质量分数为5%~10%硫泡沫进入硫泡沫槽中,经初步分离,再经固液分离设备脱水,得到含水质量分数40%~ 50%的硫膏,最后经熔硫釜熔融并分离出杂质后,冷却制成硫块。  2.2.2 WSA 接触法制硫酸  脱硫脱氰富液经热解吸处理后,产生酸性气体,送入WSA 制酸系统。WSA 制酸工艺的基本原理为酸性气体燃烧产生SO2,在催化剂作用下转化为SO3,再与气体中的水蒸气进行水和反应,生成气态硫酸,冷却为液态酸。  该工艺主要通过酸性气燃烧、过程气除杂、SO2 转化、硫酸冷凝冷却、热能回收利用等步骤,生产质量分数为98%的浓硫酸及中压过热蒸汽,多与真空碳酸钾法脱硫工艺配套使用。  2.2.3 克劳斯炉(SCL)生产硫磺  脱硫装置真空泵送来的含H2S、HCN 及CO2 等的酸性气体,进入克劳斯炉,酸气中1/3 的H2S 与空气燃烧生成SO2,2/3 的H2S 与生成的SO2 反应,生成单质硫。该工艺多与真空碳酸钾法脱硫工艺配套使用。  2.2.4 硫氰酸盐和硫代硫酸盐的提取  根据硫氰酸盐和硫代硫酸盐在水中溶解度的不同,通过控制蒸发浓度(比重)和冷却温度,达到分别提纯的目的。  以碳酸钠为吸收液的湿式催化氧化脱硫脱氰工艺为例,反应后脱硫富液催化剂浓度低,可忽略不计,溶液中主要含NaCNS、Na2S2O3 及Na2CO3 等。其中Na2CO3溶解度最小,且随温度升高变化不大。所以提取时可直接将脱硫富液吸收液蒸发浓缩,Na2CO3 首先析出并经过滤除去,再将过滤所得母液冷却、结晶和分离,可回收NaCNS 和Na2S2O3。  NaCNS 在水中的溶解度随温度的下降而降低,将NaCNS 饱和液温度降至过饱和状态时,NaCNS 结晶析出。但当吸收液中Na2S2O3 含量较高,超过NaCNS 含量的1/3 时,需首先将Na2S2O3 提出,否则将影响NaCNS产品质量。  2.2.5 昆帕库斯法制浓硫酸  该法一般作为FRC 法的一部分(即C 部分),脱硫吸收液多为氨源,脱硫后富液多为含单质硫、硫氰酸铵和硫代硫酸铵的脱硫富液,浓缩后与一定量的用于促进燃烧的煤气在燃烧炉内进行高温裂解,产生的SO2 随燃烧废气排出,对废气进行催化氧化处理,将正二价的硫化物氧化成正三价的硫化物,最后采用高浓度硫酸对其进行吸收,可生产出更高浓度的硫酸。该浓硫酸被送往硫酸铵工段。  2.2.6 希罗哈克斯法制硫酸铵  在273 ℃~275 ℃、7 000 kPa~7 500 kPa 的条件下,在氧化塔内将脱硫废液中的铵盐及硫磺氧化成硫酸铵,送入硫铵工段生产硫酸铵。该法与塔卡哈克斯法联用,亦可进行HPF 法脱硫废液的处理。  2.2.7 废液焚烧法  废液焚烧法又叫还原热分解法,脱硫浓缩液经蒸汽雾化后[9],喷入炉内火焰中,炉内操作温度约1 000℃。以碳酸钠碱源吸收液为例,浓缩液中的硫氰酸钠和硫代硫酸钠等受热分解,硫以硫化氢形式进入废气中,钠被还原成碳酸钠和硫化钠。  焚烧产生的废气出焚烧炉,经冷却后进入碱液回收槽内,碳酸钠和硫化钠等易溶解性盐被回收槽内液体吸收,废气被冷却至90 ℃左右。含水蒸气的废气由回收槽上部进入气液分离器,经冷却至约35 ℃后,进入废气吸收塔吸收硫化氢。排出的废气中含有微量的硫化氢和部分未完全燃烧的可燃性气体,送入回炉煤气管中进一步处理。  3 优化建议  3.1 工艺优选  3.1.1 产品生产的批量化、集成化  寻找煤气脱硫工艺与脱氨工艺产品的共性,实现产品的批量化、集成化生产。当采用T-H 法脱硫后配希罗哈克斯法脱硫工艺生成硫铵溶液时,因硫铵脱氨工艺产品为硫铵结晶,所以煤气净化工艺的脱氨工艺宜采用硫铵脱氨,而不采取磷铵等脱氨工艺。当采用FRC 法C 部分(昆帕库斯法)生产浓硫酸工艺时,应配套硫铵系统,供脱氨使用。  3.1.2 碱型及氨型脱硫吸收剂的选取  新建化产回收系统前,应先根据煤中元素组成,判断煤气中硫化氢、氨等气体含量,遵循脱硫与脱氨互补性原则,当氨含量能满足硫化氢去除、且脱硫后能满足不同煤气使用指标时,考虑采用氨型吸收剂脱硫;否则采用碱型吸收剂脱硫。  3.1.3 工艺位置的选择  碱型吸收剂前脱硫过程中,降低煤气中氰化氢含量,可减少煤气终冷洗涤水中氰化氢含量。相应的,终冷洗涤水通过凉水架冷却时,其中氰化氢被吹入空气中的量减少,也可减少大气污染。  当焦炉采用焦炉煤气加热时,因回炉煤气也经过前脱硫系统,煤气中硫化氢含量降低,焦炉烟气中二氧化硫含量明显减少。但由于前脱硫煤气处理量大,使投资成本比后脱硫系统大。因此,采用何种流程工艺,应在焦炉烟气脱硫投资和焦炉煤气脱硫系统投资间寻求经济平衡点。  3.1.4 运行工况的稳定性  在脱硫前,为降低煤气中焦油及灰尘含量,应定期维护电捕焦油设备,以免焦油堵塞脱硫塔内件,造成脱硫液品质恶化,影响再生效果。同时,应加强温度控制,减少萘结晶析出,防止脱硫工段进煤气管路阻塞。焦炉煤气除了回用焦炉燃烧供热以外,在钢铁焦化联合企业也供钢材加工和金属冶炼等使用,焦化厂还可利用煤气生产甲醇等新型煤化工产品。但由于各工段需根据市场情况组织生产,因此煤气用量波动较大,直接影响脱硫效率。在建厂前,需根据煤气全厂分配供应情况,综合考虑再生空气用量及脱硫液循环液量等因素,使其处于可调控范围,提高脱硫效率。  3.2 设备及技术开发  3.2.1 塔设备及配件研发设计  在湿法氧化脱硫系统再生单元中,空气中氧气起到催化剂再生作用,并使二价硫进一步反应生成单质硫。新型再生塔空气分布装置的研发设计,可以增强脱硫富液与空气混合效果,提高再生率,减少空气用量;再生塔新型高效塔盘的研发,可减小塔径,节省设备投资,节约占地面积。  3.2.2 填料的设计开发  填料是煤气脱硫装置的关键内件,基于碱源吸收酸性气体的传质动力学及煤气含尘、含萘的特点,新型填料的研究开发,应从提高气液传质效率和比表面积及提高通量、降低压降等方面入手。  3.2.3 催化剂的开发  根据阿伦尼乌斯化学动力学公式,活化能越低,HS -被氧化的速度越快,催化剂在反应过程中主要是降低HS -向S 转化的活化能。但是,由于脱硫脱氰催化剂价格昂贵,其使用量有一定限制。科研工作者应在原有催化剂成功使用的基础上,筛选出溶解效果好、使用寿命长、再生效果好的催化剂。催化剂多为由一种或几种有机物及变价金属离子配置的复合催化剂,且不同焦化企业炼焦过程中煤种及配比不同,炼焦煤气各杂质气体含量存在差异,脱硫废液组成随之变化,因此企业在开工调试前,需通过试验及现场经验,寻找合适的复合催化剂配比,从而减小催化剂使用量,降低运行成本。  3.3 废液资源化处理  目前,脱硫废液提盐法技术相对成熟。但在蒸发结晶前脱硫液的脱色吸附处理过程中,需投加大量的吸附脱色材料。如脱色后送煤厂与原煤混合炼焦或外运处理,会造成资源浪费和环境污染。为降低运行成本并减小污染,需寻找更合适的吸附材料或采取再生回用措施。  采用分步结晶法,需要与市场接轨,生产出满足工业级别纯度要求的硫氰酸盐及硫代硫酸盐,形成经济增长点。希罗哈克斯法、昆帕库斯法及克劳斯法等资源化处理工艺,有设备技术要求高、投资大及能耗高等缺点,需结合企业自身脱硫工艺特点及经济基础而选用。  4 结语  焦炉煤气脱硫脱氰是煤气净化的重要工艺单元,探寻技术可行、经济合理的煤气脱硫脱氰工艺,能够提高煤气脱硫脱氰效率。通过废液资源化回收途径,能够提高经济效益,减小脱硫废液造成的危害。脱硫脱氰后,煤气满足回用焦炉煤气或送用户煤气硫化氢含量标准的同时,可减少燃烧后有害气体对环境的污染,寻求经济效益与环境效益的平衡点。

  • 天然气净化脱硫剂、脱硫石膏

    [font=微软雅黑][size=16px][color=#161616]天然气净化脱硫剂、脱硫石膏属于固体废物,不属于危险废物。天然气脱硫剂主要成分为氧化铁,本身不具有危险特性,未纳入《国家危险废物名录》(2016版),但天然气脱硫剂往往含有二氧化硫或其他有机成分,部分省市在管理过程中将其参照危险废物进行管理,提高管理级别。[/color][/size][/font][font=微软雅黑][size=16px][color=#161616]普通烟气脱硫剂与脱硫石膏最后成分主要为硫酸钙,不属于危险废物。如果脱硫剂、脱硫石膏中混入了其他危险废物(如重金属、焚烧飞灰),按照危险废物混合原则,按照危险废物进行管理。[/color][/size][/font]

  • SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理的应用

    前言  随着环保排放要求越来越严格,企业治理污染的力度也不断加大,焦炉烟气治理也越来越受到重视。焦炉生产过程中会产生含粉尘、SO2、NOx 等有害物质的废气,对环境造成污染。为减少焦炉烟气中SO2 和NOx 等有害物质排放量,使其满足环保要求,同时更好地改善大气环境质量,很多先进的方法已被应用于实际项目。卢昊等[1] 研究发现,SCR 脱硝技术在低温环境中具有很好的抗硫性能,烟气脱硝率达到85% 以上。金辉等[2] 将SCR 技术实际应用于江苏沂州煤焦化有限公司某项目,攻克了焦炉烟气无法在低温下处理的难题。王岩等[3] 认为焦炉烟气处理应有效融合源头控制、低氮燃烧、末端净化三方面,并对其引起重视。  通过脱硫脱硝除尘工艺净化后,焦炉烟气排放浓度达到SO2 ≤ 30 mg/m3,NOx ≤ 150 mg/m3,粉尘浓度≤ 15 mg/m3,满足GB 16171—2012《炼焦化学工业污染物排放标准》中的特别排放限值要求,并能够达到超低排放标准要求。  1 焦炉烟气脱硫脱硝工艺  1.1 工艺流程  焦炉烟气分别由地下机侧和焦侧烟道引出,经旁路烟气管道阀门和新增入口管道阀门切换并汇合后进入烟气总管。同时高效的脱硫剂(颗粒粒径为20~25 μm)通过SDS 干法脱酸喷射及均布装置喷入总烟道并在烟道内被加热激活,其比表面积迅速增大,与焦炉烟气充分接触后发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化,经吸收并干燥的含粉料烟气进入布袋除尘器进行进一步脱硫反应及烟尘净化。脱硫除尘后的烟气在SCR 脱硝反应器内进行脱硝净化,烟气中的NOx 与喷氨格栅喷出的NH3在静态混合器内充分混合,并在SCR 反应器内在中低温催化剂的作用下与NH3 发生化学反应,生成N2和H2O,从而达到去除烟气中NOx 的目的,净烟气由增压风机抽引,经出口烟道至原焦炉烟囱排入大气。  回原焦炉烟囱的烟气温度满足焦炉热备温度要求,可保证事故状态下焦炉烟囱热拔力依然保持正常。  1.2 副产物综合利用  SDS 干法脱硫的脱硫剂选用高效复合脱硫剂。由于SDS 工艺过喷量很小,因此与其他脱硫方法相比,该方案脱硫副产物很少。副产物中Na2SO4 所占比例  很高,便于综合利用。副产物为干态粉状料,其中,Na2SO4 质量约占总质量的80%~90%,Na2CO3 质量约占总质量的10%~20%。  焦炉脱硫副产物可作为矿山尾矿固化剂的生产原料以外,也可应用在以下领域:掺入水泥中,使水化产物硫铝酸钙更快地生成,加快水泥的水化硬化速度;在玻璃工业用以代替纯碱;在造纸工业中用于制造硫酸盐纸浆时的蒸煮剂;在化学工业中用作制造硫化钠、硅酸钠和其他化工产品的原料;在纺织工业中用于调配维尼纶纺丝凝固剂;还可用于有色冶金、皮革等方面。该脱硝系统更新后的废催化剂,由催化剂厂家回收。  2 工艺技术的选择比较  常用的焦炉烟气脱硫脱硝方法主要有SDS 干法脱硫+ 中低温SCR 脱硝,SDA(Na) 半干法脱硫+ 中低温SCR 脱硝,SDA(Ca) 半干法脱硫+GGH -中低温SCR 脱硝以及活性炭干法脱硫脱硝工艺等。  2.1 SDS干法脱硫工艺  高效脱硫剂(粒径为20~25 μm)通过SDS 干法脱酸喷射及均布装置被喷入烟道并在烟道内被加热激活,其比表面积迅速增大并与烟气充分接触后发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化。该技术的开发背景是垃圾焚烧行业开发的HCl脱除干法系统,其副产物的主要成分为NaCl,可被回收作为原料再用于生产纯碱。之后SDS 干法脱酸技术在欧洲得到迅速发展,其配套的喷射系统、研磨系统相继被开发。目前在欧洲市场该工艺主要用于垃圾焚烧炉尾气脱酸,但该技术在其他行业包括焦化、玻璃制造、燃煤电厂、危险废物焚烧炉、柴油发电、生物质发电、水泥等都取得了很好的应用效果。  SDS 干法脱硫+ 中低温SCR 脱硝工艺的优点是脱硫、脱硝效率高,无温降,无水操作,投资省,占面积小,副产物少,低电耗,无腐蚀,设备简单,操作维护,脱硫副产物产生量小,硫酸钠含量高等;缺点是会产生少量的脱硫副产物,需要对其进行综合利用。  2.2 SDA半干法脱硫工艺(包括Na法和Ca法)  旋转喷雾干燥(SDA)脱硫技术于二十世纪七十年代早期由丹麦[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o 公司研制开发。其脱硫过程是将CaO 或Na2CO3 加水配置成固含量为20%~25% 的Ca(OH)2 浆液或Na2CO3 溶液,通过雾化器高速旋将溶液雾化成30~80μm 的雾滴喷入吸收塔内,塔内的Ca(OH)2 浆液或Na2CO3 溶液雾滴(吸收剂)迅速吸收烟气中的SO2,达到脱除SO2 及其他酸性介张庆文,等:SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理中的应用质的目的。同时,焦炉烟气热量瞬间干燥喷入塔内的液滴,使其成为粉状干固体,由袋式除尘器捕集。脱硫工艺流程简单,吸收塔为空塔结构。  SDA(Na) 半干法脱硫+ 中低温SCR 脱硝的优点是脱硫效率高、无废水产生、低水耗、低电耗、无腐蚀;缺点是脱硫剂易结晶、维护困难、副产物难回收利用。SDA(Ca) 半干法脱硫+GGH -中低温SCR 脱硝工艺的优点是脱硫效率中、无废水产生、低水耗、低电耗、无腐蚀;缺点是占地面积大、烟气温度先降低后升高,能耗高、副产物难以利用。  2.3 活性炭干法脱硫脱硝工艺  以物理 -化学吸附原理为基础,活性炭吸附烟气中的SO2、H2O 和O2 后催化反应生成硫酸,然后将其迁移到微孔中储存,而烟气中的NOx 在活性炭催化作用下,和喷入烟气中的氨水发生还原反应,生成N2 和H2O。活性炭通过再生系统释放活性吸附位继续吸附SO2,再生系统排放的含SO2 烟气进入副产物回收系统,SO2 可被加工成多种硫化工产品。  活性炭在再生过程中会产生磨损及化学消耗,因此需要定期补充新的活性炭,磨损的活性炭粉则可返回配煤工段进行再利用。  活性炭干法脱硫脱硝工艺即采用活性炭的吸附作用吸附烟气中的SO2、颗粒物和NOx,从而实现同时脱硫、脱硝和除尘的目的。缺点是烟气温度需降低到150 ℃以下;脱硫副产物中包含硫酸的同时产生污染废水,一次性投资大,运行成本高。  综上所述,无论从工艺技术的先进性(脱硫、脱硝效率),还是从工艺技术的实用性,占地面积,投资成本,废水,副产物利用等方面进行综合分析比较,SDS 干法脱硫及中低温SCR 脱硝工艺是最适合焦炉烟气净化的最佳工艺技术,其配置合理,控制水平达到国际先进水平,可确保脱硫脱硝系统长期、安全、稳定、连续地运行。  3 工艺原理  3.1 SDS工艺原理  SDS 干法脱酸喷射技术是将高效脱硫剂(粒径为20~25 μm)均匀喷射在管道内,脱硫剂在管道内被加热激活,比表面积迅速增大,与酸性烟气充分接触发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化。  其主要化学反应为:  2NaHCO3 +SO2+1/2O2 → Na2SO4 +2CO2+H2O  2NaHCO3 +SO3 → Na2SO4 +2CO2+H2O  其与其他酸性物质(如SO3 等)的主要反应为:  NaHCO3 +HCl → NaCl +CO2+H2O  NaHCO3 +HF → NaF +CO2+H2O  3.2 SCR脱硝工艺原理  选择性催化还原法(SCR)即在装有催化剂的反应器内用氨作为还原剂来脱除氮氧化物,如图1 所示。  烟气中的NOx 一般由体积浓度约为95% 的NO 和5%的NO2 组成。NOx 经脱硝反应转化成分子态的氮气和水蒸气。SCR 主要反应方程式为:  4NH3+4NO+O2 → 4N2+6H2O  4NH3+2NO2+O2 → 3N2+6H2O31.jpg  4 工艺特点  4.1 SDS脱硫工艺技术特点  SDS 脱硫工艺具有良好的调节特性,脱硫装置运行及停运不影响焦炉的连续运行状态,脱硫系统的负荷范围与焦炉负荷范围相协调,保证脱硫系统可靠稳定地连续运行。该工艺技术特点如下:  (1)系统简单,操作维护方便 ;  (2)一次性投资少,占地面积小;  (3)运行成本低;  (4)全干系统,无需用水;  (5)脱硫效率高;  (6)合理的脱硫剂均布装置;  (7)灵活性很高,可以随时根据排放指标要求调整;  (8)对酸性物质具有较好的脱除效果;  (9)对焦炉工况适应性强;  (10)副产物量少,硫酸钠纯度高,便于回收利用;  (11)系统设置事故通道快速切换装置,一旦出现故障也不影响焦炉的正常生产。  4.2 SCR中低温脱硝工艺特点  焦炉烟道烟气脱硫后采用中低温脱硝催化剂进行脱硝,该催化剂具有催化反应温度窗口宽、SO2 转化率和NH3 逃逸率低、抗硫性好、脱除效率高、比表面积大、结构强度高、寿命长等特点。  脱硝系统运行一定时间后,为了使催化剂活性保持稳定(防止催化剂表面沉积较多黏稠状硫酸氢铵),采用原位再生热解析系统对催化剂进行再生。当催化剂寿命周期届满时,可将SCR 中低温脱硝催化剂进行返厂再生,有效解决了催化剂危废处理问题,同时降低了后期更换催化剂的成本。  5 脱硫脱硝工艺系统组成  焦炉烟气脱硫、脱硝系统由以下几个部分组成:  (1)SDS 脱硫剂投加及均布装置( 关键设备考虑备用) ;  (2)除尘设备及附属设备;  (3)脱硝反应器系统及附属设备;  (4)脱硫脱硝系统公辅设备,包括氮气供应系统、循环水供应等;  (5)仪表、通信、供配电、在线监测、消防与控制系统等。  6 脱硫系统实施后的效果  以鞍钢集团鞍钢炼焦总厂二炼焦7# 焦炉作为SDS+SCR 焦炉烟气脱脱硝试验项目进行实施,该项目基本情况如下。  6.1 焦炉烟气参数  焦炉烟气参数可见表1。32.jpg  该项目焦炉烟气采用SDS 法脱硫、SCR 脱硝及除尘净化工艺处理,设计时除了考虑将来焦炉泄漏率为5% 时的烟气处理净化能力外,还考虑了今后更严格的超低排放标准要求,为脱硫脱硝装置留有富裕的净化能力。  6.2 脱硫脱硝净化效果  该装置对烟气脱硫脱硝后的效果如下:SO2 排放浓度≤ 30 mg/m3,NOx 排放浓度≤ 150 mg/m3,颗粒物排放浓度≤ 15 mg/m3。  今后环保排放标准会更加严苛,即要求颗粒物限值为10 mg/m3,二氧化硫限值为15 mg/m3,氮氧化物限值为50 mg/m3。设计时充分考虑了余量,保证烟气能够达到超低排放标准要求。  6.3 现场应用情况  鞍钢二炼焦7# 焦炉于2017 年10 月10 日开始施工,2018 年2 月2 日该系统开始进行热负荷联动试车。通过对脱硫脱硝入口及烟囱外排口处进行在线监测发现,脱硫脱硝效果明显且系统设备运行稳定。  当入口处SO2、NOx 浓度及颗粒物浓度分别为35.49、447.22、26.51 mg/m3 时,脱硫脱硝后烟囱在线监测显示SO2 浓度、NOx 浓度及颗粒物浓度分别为3.45、70、4.62 mg/m3。在处理过程中无论入口如何变化,出口指标都能稳定控制在标准范围内,并能达到特排标准。经过一个月的功能考核及168 考核验收,鞍钢首套焦炉烟气脱硫脱硝装置正式投入使用,烟气满足现有焦化企业污染物排放标准,并达到特排要求,预计每年可减排SO2 146 t、NOx 263 t、颗粒物112 t。  图3~ 图5 所示为脱硫脱硝入口及烟囱外排口处烟气各成分的在线检测对比曲线。33.jpg34.jpg  从烟气进出口对比曲线可以看出出口处烟气SO2浓度、NOx 浓度及颗粒物浓度能够分别有效控制在30、150、15 mg/m3 以下,满足合同功能考核指标要求,同时通过严格控制可以满足特排指标要求。  7 结论  (1)SDS+SCR 工艺具有操作方便、易于维护、运行成本低等优点,且在实际运行中效果较好。  (2)经过SDS+SCR 工艺处理后,烟气能够达到特排标准,即SO2 排放浓度≤ 15 mg/m3,NOx 排放浓度≤ 50 mg/m3,颗粒物排放≤ 10 mg/m3。  (3)经过一个月的功能考核及168 考核验收,鞍钢首套焦炉烟气脱硫脱硝装置正式投入使用,预计每年可减排SO2 146 t、NOx 263 t、颗粒物112 t。  (4)项目投运后所产生的废弃物主要成分为Na2SO4,该副产物可以回收利用作为水泥添加料。  (5)该工程投产后具有较好的环境效益和社会效益,明显改善了该地区的大气环境,有效减少了酸雨的形成。  (6)该技术成功应用后,已被迅速推广到其他项目中, 目前鞍钢集团内的18 座焦炉均采用该技术进行烟气脱硫脱硝,该技术具有广泛的应用前景和推广价值。

  • 焦炉烟气脱硫脱硝技术进展与建议

    摘要:分析了我国焦化行业SO2、NOx排放现状及污染物浓度的主要影响因素,对比了以氨法、石灰/石灰石法、双碱法、氧化镁法、喷雾干燥法、循环流化床法等为代表的焦炉烟气脱硫技术,以低氮燃烧技术、低温选择性催化还原脱硝技术、氧化脱硝等为代表的焦炉烟气脱硝技术,以活性焦、液态催化氧化等为代表的焦炉烟气脱硫脱硝一体化技术的工艺原理、脱硫脱硝效率及各自优缺点;总结了焦炉烟气脱硫脱硝技术在工艺路线选择、烟气排放、次生污染等方面存在的问题。指出焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面,并不断加强焦炉操作管理水平及新技术的应用。  引言  燃煤烟气中的SO2和NOx所引起的酸雨、光化学烟雾和雾霾等环境污染已严重影响人类生存与发展。目前最有效且应用最广的燃煤烟气SO2和NOx污染治理措施是燃烧后烟气脱硫脱硝技术。作为国内第二大用煤领域,我国煤炭焦化年耗原煤约10亿t,占全国煤炭消耗总量的1/3左右。当前,燃煤发电领域气脱硫脱硝技术发展及应用相对成熟,大部分煤电企业SO2和NOx排放已达超净标12017年第6期洁净煤技术第23卷准;但作为传统煤化工行业,我国焦化领域发展相对粗放,污染物治理措施更是在近年来不断严苛的环保政策下迫以实行,多数焦化企业尚未实现焦炉烟气SO2和NOx排放有效防控,与GB16171—2012《炼焦化学工业污染物排放标准》中的规定有一定差距。由于焦炉烟气与燃煤电厂烟气在烟气温度、SO2和NOx含量等方面均存在差异,故二者的脱硫脱硝治理技术路线不能完全等同。研究与实践表明,我国焦炉烟气脱硫脱硝技术在工艺路线选取、关键催化剂国产化、系统稳定运行等方面存在一定问题,严重制约了焦化行业污染物达标排放。  1焦化行业SO2及NOx排放现状  据统计,2015年全国SO2排放总量为1859.1万t、NOx排放总量为1851.8万t。煤炭焦化是工业用煤领域主要污染源之一,焦炉烟气是焦化企业中最主要的废气污染源,约60%的SO2及90%的NOx来源于此。焦炉烟气中SO2浓度与燃料种类、燃料中硫元素形态、燃料氧含量、焦炉炭化室串漏程度等密切相关;NOx浓度则与燃烧温度、空气过剩系数、燃料气在高温火焰区停留时间等密切相关。以焦炉煤气为主要燃料的工艺,其烟气中的SO2直接排放浓度为160mg/m3左右、NOx直接排放浓度为600~900mg/m3(最高时可达1000mg/m3以上);以高炉煤气等低热值煤气(或混合煤气)为主要燃料的工艺,其烟气中的SO2直接排放浓度为40~150mg/m3、NOx直接排放浓度为300~600mg/m3。可见,无论以焦炉煤气或高炉煤气为主要燃料的工艺,如未经治理,其烟气中的SO2和NOx浓度均难以稳定达到标准限值排放要求。  随着国家对环境保护的日益重视,我国焦化领域烟气达标排放势在必行。2017年起,《排污许可证申请与核发技术规范-炼焦化学工业》将首次执行,该规范对焦化行业污染物排放提出了更高要求。如前所述,焦炉烟气中SO2和NOx达标排放的主要技术手段为末端脱硫脱硝治理,故本文将对比分析我国焦炉烟气现行脱硫脱硝技术工艺原理、硫硝脱除效率及各自技术优缺点,总结国内焦炉烟气脱硫脱硝技术应用存在的共性问题,以期为我国焦化行业脱硫脱硝技术的选择与优化提供参考。  2焦炉烟气脱硫脱硝技术  目前,我国焦炉烟气常用的末端脱硫脱硝的治理工艺路线可分为单独脱硫、单独脱硝、脱硫脱硝一体化等3类。  2.1脱硫技术  根据脱硫剂的类型及操作特点,烟气脱硫技术通常可分为湿法、半干法和干法脱硫。当前,焦炉烟气脱硫领域应用较多的为以氨法、石灰/石灰石法、双碱法、氧化镁法等为代表的湿法脱硫技术和以喷雾干燥法、循环流化床法等为代表的半干法脱硫技术,而干法脱硫技术的应用较为少见,故本文着重介绍湿法及半干法焦炉烟气脱硫技术。  2.1.1湿法脱硫技术  1)氨法  氨法脱硫的原理是焦炉烟气中的SO2与氨吸收剂接触后,发生化学反应生成NH4HSO3和(NH4)2SO3,(NH4)2SO3将与SO2发生化学反应生成NH4HSO3;吸收过程中,不断补充氨使对SO2不具有吸收能力的NH4HSO3转化为(NH4)2SO3,从而利用(NH4)2SO3与NH4HSO3的不断转换来吸收烟气中的SO2;(NH4)2SO3经氧化、结晶、过滤、干燥后得到副产品硫酸铵,从而脱除SO2。  焦炉烟气氨法脱硫效率可达95%~99%。吸收剂利用率高,脱硫效率高,SO2资源化利用,工艺流程结构简单,无废渣、废气排放是此法的主要优点;但该法仍存在系统需要防腐,氨逃逸、氨损,吸收剂价格昂贵、脱硫成本高、不能去除重金属、二噁英等缺点。  2)石灰/石灰石法  石灰/石灰石法脱硫工艺由于具有吸收剂资源丰富、成本低廉等优点而成为应用最多的一种烟气脱硫技术。该工艺主要应用氧化钙或碳酸钙浆液在湿式洗涤塔中吸收SO2,即烟气在吸收塔内与喷洒的吸收剂混合接触反应而生成CaSO3,CaSO3又与塔底部鼓入的空气发生氧化反应而生成石膏。焦炉烟气石灰/石灰石法脱硫效率一般可达95%以上。石灰/石灰石法脱硫的优点在于吸收剂利用率高,煤种适应性强,脱硫副产物便于综合利用,技术成熟,运行可靠;而系统复杂、设备庞大、一次性投资大、耗水量大、易结垢堵塞,烟气携带浆液造成“石膏雨”、脱硫废水处理难度大等是其主要不足。  3)双碱法  双碱法,即在SO2吸收和吸收液处理过程中使用了不同类型的碱,其主要工艺是先用碱金属钠盐清液作为吸收剂吸收SO2,生成Na2SO3盐类溶液,然后在反应池中用石灰(石灰石)和Na2SO3起化学反应,对吸收液进行再生,再生后的吸收液循环使用,SO2最终以石膏形式析出。双碱法焦炉烟气脱硫效率可达90%以上。双碱法脱硫系统一般不会产生沉淀物,且吸收塔不产生堵塞和磨损;但工艺流程复杂,投资较大,运行费用高,吸收过程中产生的Na2SO4不易除去而降低石膏质量,吸收液再生困难等均是该技术需要解决的问题。  4)氧化镁法  氧化镁法脱硫是一种较成熟的技术,但由于氧化镁资源储量有限且分布不均,因此该法在世界范围内未得到广泛应用;而我国氧化镁资源丰富,有发展氧化镁脱硫的独特条件。该工艺是以氧化镁浆液作为吸收剂吸收SO2而生成MgSO3结晶,然后对MgSO3结晶进行分离、干燥及焙烧分解等处理后,MgSO3分解再生的氧化镁返回吸收系统循环使用,释放出的SO2富集气体可加工成硫酸或硫磺等产品。该法脱硫效率可达95%以上。氧化镁法脱硫技术成熟可靠、适用范围广,副产品回收价值高,不发生结垢、磨损、管路堵塞等现象;但该法工艺流程复杂,能耗高,运行费用高,规模化应用受到氧化镁来源限制且废水中Mg2+处理困难。  2.1.2半干法脱硫技术  1)喷雾干燥法  喷雾干燥法脱硫是利用机械或气流的力量将吸收剂分散成极细小的雾状液滴,雾状液滴与烟气形成较大的接触表面积,在气液两相之间发生的一种热量交换、质量传递和化学反应的脱硫方法。该法所用吸收剂一般是碱液、石灰乳、石灰石浆液等,目前绝大多数装置都使用石灰乳作为吸收剂。一般情况下,喷雾干燥法焦炉烟气脱硫效可达85%左右。其优点在于脱硫是在气、液、固三相状态下进行,工艺设备简单,生成物为干态易处理的CaSO4、CaSO3,没有严重的设备腐蚀和堵塞情况,耗水也比较少;缺点是自动化要求比较高,吸收剂的用量难以控制,吸收效率有待提高。所以,选择开发合理的吸收剂是喷雾干燥法脱硫面临的新难题。  2)循环流化床法  该法以循环流化床原理为基础,通过对吸收剂的多次循环延长吸收剂与烟气的接触时间,通过床层的湍流加强吸收剂对SO2的吸收,从而极大地提高了吸收剂的利用率和脱硫效率。该法的优点在于吸收塔及其下游设备不会产生黏结、堵塞和腐蚀等现象,脱硫效率高,运行费用低,脱硫副产物排放少等。但此法核心技术和关键设备依赖于进口,且造价昂贵,限制了其应用推广。因此因地制宜的研究开发具有自主知识产权,适合我国国情的循环流化床焦炉烟气脱硫技术成为研究者关注的重点;此外,该法副产物中亚硫酸钙含量大于硫酸钙含量,并且为了达到高的脱硫率而不得不在烟气露点附近操作,从而造成了吸收剂在反应器中的富集,这也是循环流化床脱硫工艺有待改进的方面。  2.1.3焦炉烟气常用脱硫技术对比  焦炉烟气常用脱硫技术对比见表1。  2.2脱硝技术  当前,焦炉烟气常用脱硝技术主要包括低氮燃烧技术、低温选择性催化还原(低温SCR)技术和氧化脱硝技术等3种。  1)低氮燃烧技术  低氮燃烧技术是指基于NOx生成机理,以改变燃烧条件的方法来降低NOx排放,从而实现燃烧过程中对NOx生成量的控制。焦炉加热低氮燃烧技术主要包括烟气再循环、焦炉分段加热、实际燃烧温度控制等技术。烟气再循环是焦化领域目前应用较普遍的低氮燃烧技术,我国现有焦炉大部分采用该技术。研究实践表明:烟气再循环的适宜控制量32017年第6期洁净煤技术第23卷为10%~20%,若超过30%,则会降低燃烧效率;该方法的控硝效果最高可达25%。焦炉分段加热一般是用空气、煤气分段供给加热来降低燃烧强度,从而实现热力型氮氧化物生成量减少的效果。实际燃烧温度控制技术是我国自主研发的焦炉温度控制系统,该技术可优化焦炉加热制度,调整焦炉横排温度,降低焦炉操作火道温度,避免出现高温点,降低焦炉空气过剩系数,从而减少NOx生成。理论计算表明,焦炉若采用烟气再循环与分段加热技术组合,可实现NOx排放量低于500mg/m3以下的目标;若采用烟气再循环与实际燃烧温度控制技术组合,NOx排放可控制在600mg/m3左右。  2)低温SCR脱硝  与火电厂烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,焦炉烟气温度相对较低,一般为170~280℃;针对该特性,我国相关机构开发出低温SCR焦炉烟气脱硝技术,该技术的脱硝效率可达70%以上。低温SCR焦炉烟气脱硝工艺是在一定温度的烟气中喷入氨或尿素等还原剂,混有还原剂的烟气流经专有催化剂反应器,在催化剂作用下,还原剂与烟气中的NOx发生还原反应而生成氮气和水,从而达到脱硝的效果。  低温SCR烟气脱硝技术是目前焦炉烟气脱硝技术中相对成熟和可靠的工艺,脱硝效率较高且易于控制,运行安全可靠,不会对大气造成二次污染;催化剂是制约低温SCR脱硝技术发展的核心问题,降低催化剂进口依赖程度、防止催化剂中毒、解决废弃催化剂所产生的二次污染问题是低温SCR焦炉烟气脱硝技术应努力攻关的方向。  3)氧化脱硝  氧化脱硝技术是利用强氧化剂将NO氧化成高价态的氮氧化物,然后利用碱液进行喷淋吸收的脱硝工艺;目前,在焦炉烟气脱硫脱硝措施中应用的氧化剂主要为臭氧和双氧水。该法设备占地面积小,能同时脱除汞等其他污染物;但该工艺存在氧化剂消耗量大,运行费用高,能耗高,对设备材质要求高,易产生臭氧二次污染等问题。  2.3脱硫脱硝一体化技术  烟气脱硫脱硝一体化技术在经济性、资源利用率等方面存在显著优势,成为近年来研究与利用的点。焦炉烟气脱硫脱硝一体化技术主要集中于活性焦脱硫脱硝一体化技术和液态催化氧化法脱硫脱硝2种。  1)活性焦脱硫脱硝一体化技术  活性焦脱硫脱硝一体化技术是利用活性焦的吸附特性和催化特性,同时脱除烟气中的SO2和NOx并回收硫资源的干法烟气处理技术。其脱硫原理是基于SO2在活性焦表面的吸附和催化作用,烟气中的SO2在110~180℃下,与烟气中氧气、水蒸气发生反应生成硫酸吸附在活性焦孔隙内;脱硝原理是利用活性焦的催化特性,采用低温选择性催化还原反应,在烟气中配入少量NH3,促使NO发生选择性催化还原反应生成无害的N2直接排放。  该法SO2和NOx脱除效率可达80%以上。不消耗工艺水、多种污染物联合脱除、硫资源化回收、节省投资等是焦炉烟气活性焦法脱硫脱硝技术的优点;而该工艺路线也存在活性焦损耗大、喷射氨造成管道堵塞、脱硫速率慢等缺点,一定程度上阻碍了其工业推广应用。  2)液态催化氧化法脱硫脱硝技术  液态催化氧化法(LCO)脱硫脱硝技术是指氧化剂在有机催化剂的作用下,将烟气中的SO2和NOx持续氧化成硫酸和硝酸,随后与加入的碱性物质(如氨水等)发生反应而快速生成硫酸铵和硝酸铵。焦炉烟气液态催化氧化法SO2、NOx脱除效率可分别达到90%及70%以上。硫硝脱除效率高、不产生二次污染、烟温适应范围广等优势使焦炉烟气液态催化氧化法脱硫脱硝技术具有较好的推广前景;但硫酸铵产品纯度、液氨的安全保障、有机催化剂损失控制、设备腐蚀等问题仍是液态催化氧化脱硫脱硝技术亟需解决的难点。  2.4当前焦炉烟气脱硫脱硝技术存在的问题  1)单独脱硫与单独脱硝组合顺序的选择  根据工艺条件要求,脱硝需在高温下进行,脱硫需在低温下进行。若选择先脱硫后脱硝,则经过脱硫后烟温降低,进入脱硝工序之前需将烟温由80℃提升至200℃以上,这将造成能源浪费并增加企业成本;若选择先脱硝后脱硫,在脱硝催化剂作用下,烟气中SO2被部分催化氧化成SO3,生成的SO3与逃逸的NH3和水蒸气反应生成硫酸氢铵,硫酸氢铵具有黏性和腐蚀性,会对脱硝催化剂和下游设备造成堵塞和腐蚀,从而影响脱硝效果及设备使用寿命。  2)焦炉烟气脱硫脱硝后烟气排放问题  焦炉烟气经脱硫脱硝后,可选择直接通过脱硫脱硝装置自带烟囱排放或由焦炉烟囱排放2种方式。若选择直接通过脱硫脱硝装置自带烟囱排放,则当发生停电事故时,烟气必须通过焦炉烟囱排放,而焦炉烟囱由于长时间不使用处于冷态,无法及时形成吸力而导致烟气不能排放,从而引发爆炸等安全事故;脱硫脱硝后的烟气若选择通过焦炉烟囱排放,由于当前很多脱硫脱硝工艺经净化后焦炉烟气温度低于130℃,这种低温将使烟囱吸力不够、排烟困难,从而引起系统阻力增大、烟囱腐蚀,不利于整个生产、净化系统稳定,甚至引起安全事故。  3)焦炉烟气脱硫脱硝后次生污染问题  焦炉烟气经脱硫脱硝后可能产生以下次生污染:①湿法脱硫外排烟气中的大量水汽与空气中漂浮的微生物作用形成气溶胶,最终导致雾霾天气的发生;②氨法脱硫工艺存在氨由于挥发而逃逸的问题;③当前,脱硫副产物的市场前景及销路不畅,会大量堆存污染环境;④当前的脱硫脱硝催化剂大多为钒系或钛系,更换后,用过的催化剂成为危废,若运输和处理过程中管理不当易产生污染。  3结语与建议  1)焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面;应重视污染物源头控制措施,如:有条件的企业应采用高炉煤气或高炉煤气与焦炉煤气的混合作为加热燃料,从源头控制污染物的产生,从而为后续净化系统降低处理难度;选择合理的焦炉煤气脱硫工艺,将焦炉煤气中的硫化氢、氰化氢等尽可能脱除,以减少焦炉煤气作为加热热源燃烧时产生的硫氧化物。  2)加强焦炉操作管理,对控制污染物排放具有积极促进作用,如:通过加强炉体维护可有效控制炉体串漏,从而避免未经净化的荒煤气进入燃烧室而引起焦炉烟气污染物排放超标;故焦化企业应重视并采取可靠手段加强焦炉操作与管理,以实现控制污染物排放、延长焦炉使用寿命、维护产品质量稳定的多重效益。  3)烟气燃烧温度对氮氧化物产生量具有重要影响,煤炭焦化领域可采取适用的低氮燃烧技术从源头控制污染物产生;如:可采取分段燃烧、烟气再循环等加热方式,控制燃烧室温度,从而抑制氮氧化物产生,以减少后续脱硝系统净化难度。

  • 焦炉烟气脱硫脱硝技术应用

    1、前言  在烟气治理领域焦炉烟气脱硝一直是时下关注的重点,特别是国家颁布了最新的《炼焦化学工业污染物排放标准》之后,对焦化烟气脱硝技术提出了更高的要求,本文针对焦炉烟气脱硫脱硝技术进行阐述,希望能给钢铁企业提供一定的借鉴价值。  2、脱硫脱硝工艺及原理  2.1 密相干塔脱硫+SCR脱硝技术  密相干塔脱硫+SCR脱硝技术是利用脱硫脱硝等各分系统的协同组合,实现焦炉烟气大气污染物的协同治理,具有良好的脱硫脱硝除尘效果和技术经济性,正在逐步被国内各大钢厂所采用。其中脱硝采用烟气经热风炉升温后(烟气温度280—320℃)的准低温SCR技术,脱除效率高,运行稳定可靠,脱硝后烟气利用余热锅炉进行热量回收。  2.2 半干法SDA脱硫+SCR脱硝技术  半干法SDA脱硫+SCR脱硝的主要流程为:废气首先进入脱硫塔,在脱硫塔内进行脱硫;从脱硫塔出来的脱硫后烟气进入除尘装置,烟气先经除尘器布袋除尘,除尘后的烟气与加入的还原剂(氨气)充分混合,混合后的烟气进入脱硝催化剂层,在催化剂作用下发生还原反应,脱除NOx;净化后的洁净烟气经过系统引风机送回烟囱排放。该工艺采用低温脱硝工艺,在脱硝之前采用半干法高效脱硫并除尘,延长低温脱硝催化剂在高效脱硝区的使用寿命,降低烟气净化工艺运行费用。主要工艺流程图如下:  3、两套脱硫脱硝装置的优越性  3.1 密相干塔脱硫+SCR脱硝技术的优势  3.1.1对脱硫脱硝原料品质要求低,价格低廉  该脱硫脱硝使用的原料为CaO和自产氨水,CaO的价格相对便宜,而且原料充足,脱硝效果良好。脱硝效率在80%以上。  3.1.2、节能效果良好  脱硝后的烟气经余热锅炉进行余热回收,除盐水吸收热量最终形成饱和蒸汽,送至焦化厂蒸汽总管,降低能源消耗,余热锅炉采用全自动运行。  3.1.3、自动化性能高,安全性能好  整个过程采用自动控制,工艺流程简单,设备少,容易操作。热风炉程序设有自动点火和自动吹扫操作,当高炉煤气压力较低时,可以适当补充焦炉煤气,提高炉膛温度,进而提高废气温度,满足脱硝要求。  3.2 半干法SDA脱硫+SCR脱硝技术的优势  3.2.1采用旋转喷雾干燥法(SDA法)进行高效低温降烟气脱硫,满足SO2排放要求的同时,吸附烟气中焦油等粘性物质,降低烟气中SO2及其他组分對低温脱硝效率的影响;并可根据烟气入口SO2浓度调节脱硫剂溶液的喷入量,实现在满足排放要求的前提下减少脱硫剂的使用量,以最经济的方式运行。  3.2.2采用低温脱硝催化剂利用NH3-SCR原理进行低温脱硝。此种催化剂对焦炉烟气具有很强的适应性,具有良好的低温活性,焦炉煤气升温幅度小,降低了高炉煤气的用量。  3.2.3脱硝前除尘,减少烟气中的粉尘在通过脱硝催化剂层时对催化剂表面的磨损,可以有效延长脱硝催化剂的使用寿命,减少脱硝催化剂的用量,同时可以脱出烟气中的粉尘等颗粒物,使烟气的颗粒物排放达标。  4、结语  通过两套脱硫脱硝装置的应用,焦炉废气中的颗粒物、SO2和NOx等三大指标全部满足国家特排标准,氮氧化物和颗粒物已经完全实现了超低排放,确保了焦炉生产稳定,有很好的推广价值。

  • 【原创大赛】煤气化废水萃取脱酚工艺实验研究

    煤气化废水萃取脱酚能够实施的关键在于先选择合适的萃取剂,从而再确定合理的废水脱酚工艺流程、有机物回收和萃取剂再生方法以及合适的萃取设备等。本章先对煤气化废水进行水质分析,以确定废水中污染物的种类、总酚浓度和挥发酚浓度等。根据煤气化废水水质的特点,针对性的选择几种脱酚效果较好的溶剂作为萃取剂,通过综合考虑它们的萃取脱酚的效果、溶剂回收能耗和溶剂的经济性等方面,选定一种合适溶剂作为煤气化废水的脱酚萃取剂。在确定了煤气化废水的脱酚萃取剂之后,本章将对萃取温度、pH值和萃取相比等影响萃取脱酚效果的因素进行研究,以确定最佳的萃取脱酚条件。最后本章研究了煤气化废水三级错流萃取脱酚的效果,为煤气化废水萃取脱酚工艺流程的设计提供参考。 实验试剂及仪器 实验试剂 本论文研究所用的化学药品和分析试剂如表2-1所示。实验时所用的水均为蒸馏水。表1 实验化学药品和分析试剂Table 1The experimental chemical and analytical reagents 试剂和药品名称 生产商或供应商 规格、纯度 注释 甲基叔丁基醚 国药集团化学试剂有限公司 化学纯 实验所用化学药品未经进一步提纯处理,其质量纯度用气相色谱归一化法确认。 苯酚 广州化学试剂厂 分析纯 对苯二酚 天津市科密欧化学试剂有限公司 分析纯 溴酸钾 汕头市光华化学厂 分析纯 碘酸钾 天津市元立化工有限公司 基准试剂 硫代硫酸钠 广州化学试剂厂 分析纯 溴化钾 广州化学试剂厂 分析纯 可溶性淀粉 宜兴市第二化学试剂厂 生化试剂 重铬酸钾 汕头市光华试剂厂 基准试剂 硫酸亚铁铵 广州化学试剂厂 分析纯 1,10-菲啰啉 广州化学试剂厂 分析纯 硫酸银 天津市科密欧化学试剂有限公司 分析纯 硫酸 广州市东红化工厂 98%分析纯 氢氧化钠 广州化学试剂厂 分析纯 实验仪器 本论文研究所用的实验仪器设备在表2-2中列出表2主要实验仪器Table 2The experimental apparatus and instruments 仪器设备名称 型号、规格 生产商或代理商 带恒温夹套的平衡釜 100 mI 自制 分析天平 FA2104N 上海精密科学仪器有限公司 pH酸度计 pHS-25 上海精密科学仪器有限公司 [

  • 对于焦炉煤气脱硫方法的比较研究

    煤化行业作为能源消耗比较大、污染排放物比较多的一个行业,在生产运作中势必产生大量的焦炉煤气,因此要对其进行脱硫处理.一方面可以减少其对设备的腐蚀危害及维护成本,同时可以提高脱硫产品的回收质量,以便在循环使用中达到预期的目标.焦炉煤气不同脱硫方法的使用条件和范围上各有差异,这就需要明晰具体脱硫方法的特点,以便科学实效地应用,进而推动企业经济效益的提升.焦化企业在排放的时候对空气与环境的危害非常大,因为其中含有大量的硫化氢物质。近年来,焦化企业所取得的发展有目共睹,尤其是在技术更新和科学化、标准化、规范化管理方面下了很大功夫。此外焦化行业针对环境治理,也取得了很大成效。进而弥补了传统脱硫工艺脱硫效率的不足,而且还可以从煤气脱硫中回收硫氰酸铵、硫酸铵等高附加值的产品。改变了焦炉煤气脱硫产生废液危害物质的现状,实现了变废为宝。焦炉煤气在生成的时候会有很多的因素导致产量和用途的区别,所以焦化企业在对焦炉煤气进行脱硫处理时也要根据实际情况来选择适当的方法。总体来说,煤气的脱硫方法按吸收剂形态划分一般可为干法和湿法两大类。1 焦炉煤气脱硫方法的意义焦炉煤气脱硫处理在实际中的作用值极高,大大降低了煤气中硫化氢和燃烧后生成二氧化硫的含量,有力地减少了有毒物质的污染。而且可以有效保护周围的环境,还有助于企业降低生产成本、提高生产效率。此外还能够促使钢铁企业生产出优质的钢材,并防止设备的腐蚀。另外回收之后的硫磺还可以用到其它的生产领域。因此在实际的应用中要根据煤气脱硫方法的特征选择适当的方式,在保证质量的基础上提高实效。随着社会和行业的发展,也在持续推动着焦炉煤气脱硫方法的不断创新与完善。2 对焦炉煤气脱硫方法的比较研究2.1 干法脱硫的原理简单来讲,干法脱硫的原理是通过利用氢氧化铁或及其合剂作为催化剂来达到脱硫的目的,以脱除煤气中的硫化氢物质,多采用固定床原理,操作相对简单可靠,脱硫精度高,但处理量小。干法使用的脱硫剂为氧化铁、氧化锌、氧化铜、氧化钙、氧化锰、活性炭、分子筛以及复合氧化物,甚至还有近年来出现的第二代脱硫剂氧化铈等,其中常用的还是以铁系和锌系脱硫剂为主。2.2 干法脱硫的的特点干法脱硫的适用范围相对较窄,但是脱硫精度很高。干法一次脱硫有利于气体中的氢氧化铁的清除。干法脱硫的使用特征包括设备占地面积小,这样就会节约前期投资成本,并且脱硫的效率十分高,只要按照规定的标准进行脱硫就可以满足城市煤气的供需关系。干法脱硫通常又可以分为两种形式:箱式和塔式。两种方式在使用上各有优势,箱式的需要相对大的占地空间,且具体操作起来的环境质量没有塔式的舒适,在脱硫过程中比较容易更换脱硫剂,成本费用也不是很高。而塔式脱硫占地面积比较小,环境也好,但是设备的成本相对高一些。2.3 湿法脱硫的原理湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢,按溶液的吸收和再生性质又分为湿式氧化法、化学吸收法、物理吸附法和物理—化学吸收法。其在,湿式氧化法是采用脱硫催化剂在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]下进行氧化还原反应,使被弱碱溶液吸收的硫化氢随即被氧化成单质硫析出来,同时吸收液得到再生。该法是焦炉煤气脱硫比较普遍使用的方法,其实质就是使硫化氢被氧化生成单质硫;此外,化学吸收法、物理吸附法和物理—化学吸收法这三种方法主要用于天然气和炼油厂的煤气脱硫,不能直接回收硫磺,在焦炉煤气脱硫中较少使用。随着技术的进步,针对湿法脱硫改进及创新方法很多,例如:FRC 法、HPF 法、OPT 法、DDS法、MEA法、AS法、ADA法及改良ADA法、TH法TV法和PDS法等等。

  • 【分享】干式烟气脱硫技术进展及其应用前景分析

    燃煤锅炉烟气脱硫途径通常可分为三种:1,燃烧前脱硫,如机械浮选法、强磁分离法等;2,燃烧中脱硫,如炉内喷钙以及采用CFBC等;3,燃烧后脱硫,即烟气脱硫(FGD),这是当今世界上普遍采用的方法。而烟气脱硫按反应产物的物质形态(液态、固态)可分为湿式、半干式和干式三种,湿法烟气脱硫技术占85%左右,其中石灰石石膏法约占36.7%,其它湿法脱硫技术约占48.3%;喷雾干燥脱硫技术约占8.4%;吸收剂再生脱硫法约占3.4%;炉内喷射吸收剂及尾部增湿活化脱硫法约占1.9%;其它烟气脱硫形式有电子束脱硫、海水脱硫、循环流化床烟气脱硫等。由于对环境保护的日益重视和大气污染物排放量的更加严格控制,我国新建大型火电厂和现役电厂主力机组必须安装相应的烟气脱硫装置以达到国家环保排放标准。 就我国的烟气脱硫技术而言,西南电力设计院早在80年代就完成了旋转喷雾干燥法烟气脱硫技术的研究,并在四川白马电厂建立了处理烟气量为70000Nm3/h的旋转喷雾干燥法脱硫工业试验装置,1991年正式移交生产运行。“八五”期间电力部门在有关部门的支持下进行了华能珞璜电厂2台360MW机组石灰石-石膏法湿式烟气脱硫、山东黄岛电厂旋转喷雾干燥法烟气脱硫、山西太原第一热电厂高速水平流简易石灰石-石膏法湿式烟气脱硫、南京下关电厂2台125MW机组的炉内喷钙尾部增湿活化脱硫、四川成都热电厂电子束烟气脱硫、深圳西部电厂300MW机组海水脱硫等不同工艺的中外合作示范项目或商业化试点脱硫项目。国家经贸委在《“九五”国家重点技术开发指南》中确定了燃煤电厂脱硫主要技术开发内容有1,石灰/石灰石洗涤法脱硫技术;2,喷雾干燥法脱硫技术;3,炉内喷钙及尾部增湿活化脱硫技术;4,排烟循环流化床脱硫技术,这给我国烟气脱硫技术的研究与开发指明了方向。其中湿式石灰/石灰石洗涤法脱硫技术已经由国家电力公司引进国外技术消化吸收并形成国产化;喷雾干燥法脱硫技术我国通过多年的研究和试验已基本掌握设计、制造100MW机组烟气脱硫技术的实力。 纵观当今烟气脱硫技术的现状,目前世界上大机组脱硫以湿法脱硫占主导地位,选用湿法脱硫装置的机组容量占总数的85%,但湿法脱硫一次性投资昂贵、设备运行费用较高。随着经济的发展,发展中国家的环保形势越来越严重,为适应这些国家脱硫市场的需要,许多国家都在致力开发高效干法脱硫技术。本文简单介绍目前有广泛市场前景的几种干式烟气脱硫技术,结合这些脱硫方法的特点和我国特别是上海地区的实际情况,提出并着手研究开发高钙粉煤灰增湿活化脱硫和循环流化床烟气脱硫,并建立国内规模较大的多功能烟气脱硫试验台。1, 炉内喷钙及尾部增湿润活化脱硫技术 LIFAC(Limestone Injecyion into Furnace and Activation of Unreacted Calcium)烟气脱硫工艺即锅炉炉膛内喷射石灰石粉,并配合采用锅炉尾部烟道增活化反应器,使未反就的CaO通过雾化水进行增湿活化的烟气脱硫工艺。目前世界许多厂商研究开发的以石灰石喷射为基础的干法脱硫工艺中,芬兰Tampella和IVO公司开发的这种脱硫工艺最为典型,并于1986年首先投入商业性运行。LIFAC工艺主要包括以下几个子系统:(1) 石灰石粉系统 包括石灰石粉的制备、计量、运输、贮存、分配和喷射等设备。(2) 水利化反就器系统 包括水利化水雾化、烟气与水混合反应、下部碎渣与除渣、器壁防垢等设备。(3) 脱硫灰再循环系统 包括电除尘器下部集灰、贮存、输送等装置。(4) 烟气再热系统 包括烟气再热装置和主烟气混合用喷嘴等。LIFAC脱硫工艺的基本原理如下: 炉膛内喷钙脱硫的基本原理:石灰石粉借助气力喷入炉膛内850~1150度(摄氏)烟温区,石英钟灰石煅烧分解成CaO和CO2,部分CaO与烟气中的SO2。炉膛内喷入石灰石后的SO2。反应生成CaSO4,脱除烟气中一部分SO2。炉膛内喷入石灰石后的SO2脱除率随煤种、石灰石粉特性、炉型及其空气动力场和温度场特性等因素而改变,一般在20%~50%。 活化器内脱硫的基本原理:烟气增湿活化售硫反应的机理主要是由于脱硫剂颗粒和水滴相碰撞以后,在脱硫剂颗粒表面形成一层水膜,脱硫剂及SO2气体均向其中溶解,从而使脱硫反应由原来的气-固反应转化成水膜中的离子反应,烟气中大部分未及时在炉膛内参与反应的CaO与烟气中的SO2反应生成CaSO3和CaSO4。活化反应器内的脱硫效率通常在40%~60%,其高低取决于雾化水量、液滴粒径、水雾分布和烟气流速、出口烟温,最主要的控制因素是脱硫剂颗粒与水滴碰撞的概率。 由于活化反应器出口烟气中还有一部分可利用的钙化物,为了提高钙的利用率,可以将电除尘器收集下来的粉尘返回一部分到活化反应器中再利用,即脱硫灰再循环。活化器出口烟温因雾化水的蒸发而降低,为避免出现烟温低于露点温度的情况发生,可采用烟气再加热的方法,将烟气温度提高至露点以上10~15度(摄氏)加热工质可用蒸气或热空气,也可用未经活化器的烟气。 整个LIFAC工艺系统的脱硫效率η为炉膛脱硫效率η和活化器脱硫效率η之和,即η=η1+(1-η1)η2,一般为60%~85%。LIFAC脱硫方法适用于燃用含硫量为0.6%~2.5%的煤种、容量为50~300MW燃煤锅炉。与湿式烟气脱硫技术相比,投资少,占地面积小,适合于现有电厂的改造。2 新型一体化脱硫技术 NID技术是瑞典ABB公司80年代初开发的新颖脱硫技术,借鉴了旋转雾干燥法的脱硫原理又克服了使用制浆系统的种种弊端,既具有干法的廉价、简单等优点,又有湿法的高脱硫效率,且原料消耗和能耗都比喷雾干燥法有大幅度下降。1996年在波兰的2*125MW样板机上运行成功,进一步拓展了它在欧洲的垃圾焚烧、煤粉炉及其它工业炉中的脱硫市场份额,迄今已有10套装置在欧洲各国运行。 NID烟气脱硫系统,从锅炉或除尘器排出的未经处理的热烟气,经烟气分布器后进入NID掇应器,与增湿的可自由流动的灰和石灰混合粉接触,其中的活性组份立即被子混合粉中折碱性组份吸收,同时,水分蒸发使烟气达到有效吸收SO需要的温度。对烟气的分布、混合粉的供给速率及分布和增湿用水量进行有效控制,可以达到最佳期脱硫效率。经处理的烟气进入除尘器(布袋除满面春风器或静电除尘器)除去其中的粉尘,再经引风机排入烟囱。除尘器除掉的粉尘经增湿后进入NID反应器,灰斗的灰位计控制副产品的排出。 NID系统可以采用生石灰(CaO)或消石(Ca(OH)作为吸收剂。采用生石灰时,,生石灰要在一体式的消化器中消化。如果采用消石灰,则不需提供石灰消化器。加入NID系统的水量取决于进入和排出NID反应器的烟气温度差(即喷水降温量)。温差越大,需要蒸发的水量也越大。一般情况下,吸收效率和石灰石利用率与离开反应器的烟气的相对湿度有关。出口温度低限受最终产物的输送特性限制,最佳状态是将“接近温度”保持在15~20度(摄氏)。 增湿润搅拌机是NID工艺的主要部件之一,增湿搅拌机根据控制出口烟气温度和SO脱除效率的要求,按需要的比例混合石灰、循环飞灰和水。培湿搅拌机独特的设计,保证在搅拌时间很短的情况下能达到良好的搅拌效果。加入的水在粉料微粒表面上形成一层几μm的水膜,从而增大了酸性气体与碱性粉料的接触表面。大面积的密切接触保证了吸收剂和SO之间几乎是瞬间的高效反应,所以可以将反应器的体积保持在最小。二氧化硫与氢氧化钙反应生成容易处理的亚硫酸钙/硫酸钙。

  • 【转帖】兰州城关区污染物排放有新规定:污水管拒绝锅炉废水

    新华网甘肃频道消息 为防止兰州市城区冬季大气污染,城关区环保局对污染物排放进行了规定,严禁锅炉企业将锅炉系统内的有害、有色以及对环境产生潜在污染的废水排入城市污水管网、排洪沟污染水体。这是记者10月21日从城关区环保局了解到的。 城关区环保局要求辖区内凡拥有以煤、油、气等为燃料的炉、窑和非经营性饮食灶的各级行政、企事业单位、洗浴场所及个体经营户,必须在规定时间内对烟尘、噪声、污水、工业固体废物等各类污染物的排放情况、污染防治设施及《污染物排放许可证》进行2009年度检审。燃煤锅炉使用单位严格控制所用煤炭的灰分、硫分,必须使用硫分低于0.8%、灰分低于18%的优质煤;湿法除尘设施及时补水,防止因除尘设施缺水造成烟尘超标排放,并按时加入固硫剂进行脱硫。不得擅自停运锅炉除尘、脱硫设施,确保锅炉除尘、脱硫设施的正常运行,已使用清洁能源燃料的锅炉不得擅自改变燃料。 另外,锅炉使用管理单位在锅炉运行、停炉期间,严禁将锅炉系统内的有害、有色以及对环境产生潜在污染的废水排入城市污水管网、排洪沟污染水体。 为防止产生二次扬尘污染,城关区环保局要求燃煤锅炉使用管理单位对煤场、渣场采取遮盖或定期喷水防尘等措施,煤炭、煤渣在装卸过程中进行喷水防尘,锅炉房应建有封闭储煤、储渣场所。锅炉使用管理单位制定突发环境污染事件应急预案和环保管理制度,防止环境污染事故发生

  • 煤气净化湿法脱硫的几种化学工艺

    煤气净化中脱除硫化物的净化技术一般分为湿法和干法两种工艺。而随着现代煤化工项目的大型化,湿法脱硫精度的提高,干法脱硫已作为湿法脱硫后的精细净化环节。湿法脱硫的化学工艺是先用液体将硫化物从粗煤气中分离出来并加以富集,再通过解析生成H2S富气或催化氧化后转化为单质硫或硫酸。一般而言,湿法脱硫比较适用于气体中含硫高且处理量大的情况,其投资、操作费用高,动力消耗比较大。而溶剂可连续重复使用,装置占地较少,操作环境较好,对保护环境有利。1、栲胶脱硫法栲胶脱硫技术经过近些年的改进,目前,已在国内一些焦化厂普遍使用,并获得满意效果,新建装置应用在煤焦化装置的焦炉气脱硫。1.1栲胶脱硫的化学反应机理这种化学反映属于湿法脱硫,是利用碱性栲胶的水溶液吸收煤气,主要用于半水煤气或焦炉气中的H2S,借助栲胶和矾作为载体和催化剂将吸收的H2S转化为单质硫,发生吸收反应后的栲胶溶液利用空气在溶液再生槽中进行再生,再进入溶液循环槽重复循环使用。其脱硫反应机理如下:1.2栲胶脱硫方法的优缺点分析(1)栲胶脱硫法的优点:①不管是气体净化度、溶液硫容量、硫回收率等主要指标都可与改良ADA法相提并论,栲胶资源丰富、价格低廉、没有毒性、脱硫溶液成本及运行费用低,没有硫磺堵塞脱硫塔的问题。②脱硫溶液的活性好、性能稳定、腐蚀性小。栲胶本身是氧化剂也是钒的络合剂,脱硫溶液的组成比改良ADA法简单。③脱硫效率大于98%,析出的硫容易浮选和分离。(2)栲胶脱硫法的缺点:①栲胶脱硫液具有很高的选择性,在适宜的条件下,它能从99%的CO2原料气中将200mg/m 的H2S脱除至45mg/m 以下,而因溶液吸收CO2后使溶液的pH值下降,使脱硫效率降低,且脱硫精度比较低。②设备较大,处理气量较小,得到的硫磺纯度比较低,对于加工不利。2、烷基醇胺法醇胺类脱硫脱碳溶剂在气体净化过程中应用较为广泛,尤其在天然气脱硫中的重要位置。目前广泛使用的醇胺类溶剂脱硫剂主要成分主要是MDEA。MDEA属于叔胺,与其他烷基醇胺法相比,它对H2S吸收具有较高的选择性,不易降解,腐蚀性小,其吸收H2S与吸收CO2的速度之比为27,尤其适用于从高浓度的酸性气体中选择性吸收H2S。该法在煤化工项目中在中小型项目上有应用。由于硫的容入,其溶剂循环量比其他胺法小,投资和操作费用较低。2.3MDEA脱硫方法的优缺点3、环丁砜法环丁砜法是一种理化吸收法。溶液由化学吸收溶剂烷基醇胺、物理吸收溶剂环丁砜和水混合而成。可使用的烷基醇胺包括MEA、MDEA及DIPA。一般采用浓度较高的醇胺溶液,而环丁砜与水的比例按其用途确定。此法可以用于煤气工艺气体的净化。3.1基本原理3.2环丁砜法的优缺点(1)环丁砜法的优点:环丁砜能降低吸收溶液的表面张力,抑制溶液的起泡倾向。同时它也是缓蚀剂,可以减轻溶液对设备的腐蚀;溶液受热后比较稳定,不容易变质。(2)环丁砜法的缺点:环丁砜有吸收重烃,特别是芳烃的倾向,如果原料气中重烃和芳烃含量高时,气体进入脱硫工序前一定要先除去其中的重烃和芳烃。

  • 【资料】工业脱硫技术---作者:雷仲存等

    作者:雷仲存等出版社:化学工业出版社ISBN:750253103原价: ¥30介绍了工业脱硫的各种工艺、设备及运行参数。包括国内外脱硫技术的发展概况与趋势;燃烧前脱硫的几种方法;燃烧中炉内脱硫技术;燃烧后脱硫技术与工艺。全书分为五章,内容有:国内外脱硫技术发展概况、燃烧前脱硫、燃烧中脱硫、燃烧后脱硫、国内中小锅炉常用脱硫设备及应用实例。-----------------------------------------------------------------------------------------------------------------[url=http://www.instrument.com.cn/download/shtml/070302.shtml]工业脱硫技术[/url]

  • 【分享】我国火电厂烟气脱硫产业化现状及有关建议

    近年来,我国通过自主研发和引进、消化吸收、再创新,烟气脱硫产业化取得了重大进展,国产化能力基本可以满足“十一五”时期减排二氧化硫的需要。一、火电厂烟气脱硫产业化取得重大进展 2005年底,我国建成投产的烟气脱硫机组容量由2000年的500万千瓦上升到了5300万千瓦,增长了近10倍,约占火电装机容量的14%,正在建设的烟气脱硫机组容量超过1亿千瓦。目前,已有石灰石-石膏湿法、烟气循环流化床、海水脱硫法、脱硫除尘一体化、半干法、旋转喷雾干燥法、炉内喷钙尾部烟气增湿活化法、活性焦吸附法、电子束法等十多种烟气脱硫工艺技术得到应用。与国外情况一样,在诸多脱硫工艺技术中,石灰石-石膏湿法烟气脱硫仍是主流工艺技术。据统计,投运、在建和已经签订合同的火电厂烟气脱硫工艺技术中,石灰石-石膏湿法占90%以上。总体看,我国烟气脱硫产业已具备了年承担近亿千瓦装机脱硫工程设计、设备制造及总承包能力。 (一)脱硫设备国产化率已达90%以上。石灰石-石膏湿法烟气脱硫工艺中的关键设备,如浆液循环泵、真空皮带脱水机、增压风机、气气换热器、烟气挡板等,国内已具备研发和生产加工能力。如石家庄泵业有限公司生产的系列脱硫浆液循环泵已应用于96个脱硫工程;成都电力机械厂生产的脱硫增压风机已应用于100个脱硫工程;上海锅炉厂生产的气气换热器已应用于60个脱硫工程。从设备采购费用看,石灰石-石膏湿法脱硫工艺技术设备、材料国产化率达到90%左右,部分烟气脱硫工程国产化率超过了95%,其它工艺技术的设备国产化率大于90%。 (二)烟气脱硫主流工艺技术拥有自主知识产权。通过自主研发和引进、消化吸收再创新,我国已拥有了30万千瓦级火电机组自主知识产权的烟气脱硫主流工艺技术,并经过了一年以上的工程实践检验。如苏源环保工程股份有限公司研发的具有自主知识产权的石灰石-石膏湿法烟气脱硫技术,已成功应用于太仓港环保发电有限公司二期2×300MW烟气脱硫工程;北京国电龙源环保工程有限公司在引进德国技术基础上消化、吸收和再创新,拥有了自主知识产权的石灰石-石膏湿法烟气脱硫技术,并成功应用于江阴苏龙发电有限公司三期2×330MW烟气脱硫工程。以上两个工程项目经过一年多的实际运行检验,并通过了工程后评估,专家认为两公司拥有自主知识产权的烟气脱硫工艺技术都具有成熟、可靠、适用性强的特点,达到了国际先进水平。其它工艺技术我国大多也拥有自主知识产权,只是应用于机组容量20万千瓦及以下火电机组,有些刚刚投运或正在施工建设,有待实践检验。 (三)具备烟气脱硫工程总承包能力。截止2005年底,具备一定技术、资金、人员实力,且拥有10万千瓦及以上机组烟气脱硫工程总承包业绩的公司近50家;其中,合同容量超过200万千瓦装机的公司有17家,超过1000万千瓦装机的公司有7家。北京国电龙源环保工程有限公司总承包合同容量达到了2471万千瓦。 (四)脱硫工程造价大幅度降低。由于烟气脱硫设备国产化率大幅度提高及市场竞争等因素,烟气脱硫工程造价大幅降低,如30万千瓦及以上新建火电机组的烟气脱硫工程每千瓦造价已由最初的1000多元(人民币,下同)降到目前的200元左右。20万千瓦及以下现有火电机组的烟气脱硫工程每千瓦造价也降至250元以下。二、存在的主要问题 (一)烟气脱硫技术自主创新能力仍较低。截止目前,我国只有少数脱硫公司拥有30万千瓦及以上机组自主知识产权的烟气脱硫技术,大多数脱硫公司仍需采用国外技术,而且消化吸收、再创新能力较弱。采用国外技术,要向国外公司支付技术引进费和技术使用费。据初步测算,已向国外公司支付技术引进费约3.2亿元,技术使用费约3亿元。 (二)脱硫市场监管急需加强。近几年,由于脱硫市场急剧扩大,一批从事脱硫的环保公司如雨后春笋般诞生。但行业准入缺乏监管,对脱硫公司资质、人才、业绩、融资能力等方面无明确规定,脱硫公司良莠不齐,一些脱硫公司承建的烟气脱硫工程质量不过关。另外,对烟气脱硫工程招投标的监管不到位或监管不力,部分工程招投标存在走过场现象。 (三)部分脱硫设施难以高效稳定运行。据业内人士反映,目前已建成投产的烟气脱硫设施实际投运率不足60%,减排二氧化硫的作用没有完全发挥。主要原因:一是有些脱硫公司对国外技术和设备依赖度较高,没有完全掌握工艺技术,系统设计先天不足,个别设备出现故障后难以及时修复;二是部分老电厂的脱硫电价政策没及时到位;三是环保执法不严,对脱硫设施日常运行缺乏严格监管

  • 焦炉烟道气脱硫脱硝除尘技术应用

    炼焦行业中焦炉煤气燃烧给焦炉加热时会产生大量的大气污染物,包括二氧化硫(SO2)、氮氧化物(NOx)及烟尘等,此类污染物经焦炉烟囱呈有组织高架点源连续性排放至大气中,对环境造成严重污染,尤其是SO2和NOx这两类有害气体不仅会形成酸雨,破坏臭氧层,而且还是PM2.5的主要气态物质,严重危害人体健康。鉴于此,国家于2012年6月颁布了《炼焦化学工业污染物排放标准》(GB16171—2012),明确规定了现有焦化企业2015年1月1日后焦炉烟道气中污染物的排放限值和特别限值,部分地区更是提出了更为严格的要求,以临汾市为例,《临汾市大气污染防治2018年行动计划》里明确要求:焦化行业分步实施大气污染物特别排放限值改造,2018年10月1日前50%的焦化企业完成大气污染物特别排放限值改造,2019年10月1日前全市焦化企业全部完成大气污染物特别排放限值改造。  在此严苛的环保形势下,位于临汾市洪洞县的山西焦化股份有限公司新上了脱硫脱硝工艺装置,山西焦化股份有限公司2#、3#焦炉烟道气中前期NOx、SO2及颗粒物的排放量分别为1 200mg/m3、200mg/m3 和30mg/m3,不能满足炼焦化学工业污染物排放标准(GB16171-2012)的要求,因此山西焦化股份有限公司于2018年6月建成了焦炉烟道气脱硫脱硝及余热回收工艺装置,该工艺采用“SCR脱硝+余热回收+半干法脱硫”的路线,保证了出口NOx、SO2及颗粒物排放量分别低于150、30、15mg/m3。  1 工艺流程  脱硫脱硝与余热回收工艺流程示意图,如图1所示。焦烟道气自2#、3#焦炉原有地下烟道分别引出汇合经脱硝预处理后,进入脱硝系统,在脱硝反应器上游设置喷氨格栅,将氨气送入烟气中充分混合,混有氨气的烟气进入脱硝反应器中,在催化剂作用下进行还原反应生成N2和H2O,经过脱硝后的烟气继续进入热管式余热锅炉进行热量回收,产生的饱和低压蒸汽输送到公司热力管网,冬季供居民采暖使用,降温后的烟气则进入脱硫系统,脱硫系统采用半干法脱硫,脱硫后的烟气经除尘后通过引风机增压排放至原有烟囱,实现烟气的达标排放。image.png  1.1 烟气脱硝系统  本系统选择中低温SCR脱硝技术,还原剂采用NH3。其脱硝的原理是NOx在催化剂作用下,在一定温度条件(中低温230℃~300℃)下被氨气还原为无害的氮气和水,不产生二次污染,SCR 脱硝的化学反应式见式(1)~式(5):  4NO+4NH3+O2——4N2+6H2O(主反应)(1)  6NO2+8NH3——7N2+12H2O (2)  6NO+4NH3——5N2+6H2O (3)  NO+NO2+2NH3——2N2+3H2O (4)  2NO2+4NH3+O2——3N2+6H2O (5)  来自液氨站的氨气与稀释风机来的空气在氨/空气混合器内充分混合后与焦炉烟道气一起进入SCR脱硝反应器,反应器内混合烟气竖直向下流动,反应器入口设有气流均布装置和整流装置,确保混合烟气流场均匀;反应器内装有专用的中低温催化剂,催化剂的活性温度230℃~300℃,催化剂能够满足烟气最大量时脱硝效率达到87.5%以上的需求,同时SO2/SO3的转化率控制在1%以内。另外,催化剂采用“2+1”布置方式,具有较高的化学稳定性、热稳定性和机械稳定性,从而保证了SCR脱硝反应器出口氨逃逸不大于10×10-6。该SCR脱硝反应器适应焦炉50%~100%工况之间任何负荷运行。  1.2 余热回收系统  余热锅炉采用立式布置,自脱硝系统处理后的烟道气竖直进入锅炉蒸发器、省煤器后进入后续脱硫系统。来自供气的除氧水进入省煤器,预热后送入锅筒。在锅筒内部汽水通过上升、回流管路参与蒸发器换热面的吸热循环,产生压力0.8MPa饱和蒸汽,经气液分离后输出,输出饱和蒸汽外送至蒸汽管网。锅筒、蒸发器、省煤器设有排污口,可定期清除内部残留污物及水垢。锅炉系统中共设置两个安全阀,在系统超压0.85MPa时,安全阀自动依次起跳,泄放压力,保证锅炉系统安全,当系统压力恢复正常时,安全阀回座。  1.3 脱硫除尘系统  烟道气从底部进入脱硫塔,与再循环灰和添加的碳酸钠溶液进行反应,反应除去烟道气中的SO2和其他酸性物质后烟道气到达脱硫塔顶部,供应的碳酸钠通过真空上料机送进碳酸钠粉仓,碳酸钠粉通过粉仓底部的星型卸料阀送至碳酸钠溶液箱内,在溶液箱内与水搅拌制成一定浓度的碳酸钠溶液,碳酸钠溶液通过多级离心泵打入脱硫反应器,通过调节溶液输送管道上的调节阀改变进入脱硫塔的碳酸钠溶液量,以达到最佳的雾化效果。反应后的烟道气以混合物形式从脱硫塔顶部离开进入布袋除尘器,在布袋除尘器进行气体和固体进行分离,分离的固体大部分通过螺旋输送机回到脱硫塔继续脱硫,少部分通过螺旋输送机出口的分料阀送至灰仓,灰仓内物料达到一定高度后经散装机通过运输车外送。布袋除尘器出口的烟道气粉尘含量降低到15mg/m3,除尘后的烟道气经过引风机送入原有烟囱。净化烟道气的排气温度在140℃以上,不会在烟囱周围产生烟囱雨,并可以避免烟气温度低于酸露点而引起的烟囱腐蚀。  在脱硫塔内,碳酸钠浆液与脱硫塔内烟气接触迅速完成吸收SO2的反应,在低温降下具有极高的SO2脱除效率,由于喷入塔内的碳酸钠浆液是小雾滴,因此完成脱硫反应后的脱硫产物也为极细的颗粒,并且完成反应的同时也即迅速干燥。碳酸钠转化成亚硫酸钠和硫酸钠的反应方程式,见式(6)~式(7):  SO2+Na2CO3 →Na2SO3+CO2 (6)  2Na2SO3+O2 →2Na2SO4 (7)  2 技术特点  (1)直接利用焦炉烟道气原有温度进行脱硝,最大程度的保证了脱硝温度在较高的温度范围内,同时免去了对烟气进行加热产生的能源消耗,且烟气经过SCR反应器后,温度损失5℃~10℃,不影响后序余热回收系统运转,符合热能回收利用的要求;(2)余热回收系统可以对焦炉尾气显热高效回收利用,实现了按温度梯度进行热量梯级利用,符合国家对企业环保节能的要求;(3)脱硫系统脱硫效率高。  3 工艺运行指标  截止到2019年2月,装置已运行半年多,取得了良好的效果,焦炉烟气各项污染物如NOx、SO2和粉尘质量浓度均符合《炼焦化学工业污染物排放标准》排放限值规定,脱硫脱硝除尘工艺性能参数,如表1所示。image.png  4 结语  山西焦化股份有限公司焦炉烟道气脱硫脱硝及余热回收技术工艺流程设计简单,布置合理,占地面积小,能耗低,热能回收充分,运行成本低,烟道气治理效果好,可有效提升企业环保管理水平和治理能力,该套技术的成功投用,为焦化行业相关企业焦炉烟道气脱硫脱硝提供了经工业验证的技术选择。

  • 煤气净化湿法脱硫的几种化学工艺

    煤气净化中脱除硫化物的净化技术一般分为湿法和干法两种工艺。而随着现代煤化工项目的大型化,湿法脱硫精度的提高,干法脱硫已作为湿法脱硫后的精细净化环节。湿法脱硫的化学工艺是先用液体将硫化物从粗煤气中分离出来并加以富集,再通过解析生成H2S富气或催化氧化后转化为单质硫或硫酸。一般而言,湿法脱硫比较适用于气体中含硫高且处理量大的情况,其投资、操作费用高,动力消耗比较大。而溶剂可连续重复使用,装置占地较少,操作环境较好,对保护环境有利。1、栲胶脱硫法栲胶脱硫技术经过近些年的改进,目前,已在国内一些焦化厂普遍使用,并获得满意效果,新建装置应用在煤焦化装置的焦炉气脱硫。1.1栲胶脱硫的化学反应机理这种化学反映属于湿法脱硫,是利用碱性栲胶的水溶液吸收煤气,主要用于半水煤气或焦炉气中的H2S,借助栲胶和矾作为载体和催化剂将吸收的H2S转化为单质硫,发生吸收反应后的栲胶溶液利用空气在溶液再生槽中进行再生,再进入溶液循环槽重复循环使用。其脱硫反应机理如下:1.2栲胶脱硫方法的优缺点分析(1)栲胶脱硫法的优点:①不管是气体净化度、溶液硫容量、硫回收率等主要指标都可与改良ADA法相提并论,栲胶资源丰富、价格低廉、没有毒性、脱硫溶液成本及运行费用低,没有硫磺堵塞脱硫塔的问题。②脱硫溶液的活性好、性能稳定、腐蚀性小。栲胶本身是氧化剂也是钒的络合剂,脱硫溶液的组成比改良ADA法简单。③脱硫效率大于98%,析出的硫容易浮选和分离。(2)栲胶脱硫法的缺点:①栲胶脱硫液具有很高的选择性,在适宜的条件下,它能从99%的CO2原料气中将200mg/m 的H2S脱除至45mg/m 以下,而因溶液吸收CO2后使溶液的pH值下降,使脱硫效率降低,且脱硫精度比较低。②设备较大,处理气量较小,得到的硫磺纯度比较低,对于加工不利。2、烷基醇胺法醇胺类脱硫脱碳溶剂在气体净化过程中应用较为广泛,尤其在天然气脱硫中的重要位置。目前广泛使用的醇胺类溶剂脱硫剂主要成分主要是MDEA。MDEA属于叔胺,与其他烷基醇胺法相比,它对H2S吸收具有较高的选择性,不易降解,腐蚀性小,其吸收H2S与吸收CO2的速度之比为27,尤其适用于从高浓度的酸性气体中选择性吸收H2S。该法在煤化工项目中在中小型项目上有应用。由于硫的容入,其溶剂循环量比其他胺法小,投资和操作费用较低。2.3MDEA脱硫方法的优缺点3、环丁砜法环丁砜法是一种理化吸收法。溶液由化学吸收溶剂烷基醇胺、物理吸收溶剂环丁砜和水混合而成。可使用的烷基醇胺包括MEA、MDEA及DIPA。一般采用浓度较高的醇胺溶液,而环丁砜与水的比例按其用途确定。此法可以用于煤气工艺气体的净化。3.1基本原理3.2环丁砜法的优缺点(1)环丁砜法的优点:环丁砜能降低吸收溶液的表面张力,抑制溶液的起泡倾向。同时它也是缓蚀剂,可以减轻溶液对设备的腐蚀;溶液受热后比较稳定,不容易变质。(2)环丁砜法的缺点:环丁砜有吸收重烃,特别是芳烃的倾向,如果原料气中重烃和芳烃含量高时,气体进入脱硫工序前一定要先除去其中的重烃和芳烃。

  • 浅谈沼气分析仪使用前的脱硫工艺

    谈沼气分析仪使用前的脱硫工艺沼气在使用前的必须要进行脱硫处理,脱硫工艺一般有三种:1.湿法脱硫  湿法脱硫可以归纳分为物理吸收法、化学吸收法和氧化法三种。物理和化学方法存在硫化氢再处理问题,氧化法是以碱性溶液为吸收剂,并加入载氧体为催化剂,吸收H2S,并将其氧化成单质硫,湿法氧化法是把脱硫剂溶解在水中,液体进入设备,与沼气混合,沼气中的硫化氢与液体产生氧化反应,生成单质硫吸收硫化氢的液体有氢氧化钠、氢氧化钙、碳酸钠、硫酸亚铁等。成熟的氧化脱硫法,脱硫效率可达99.5%以上。  在大型的脱硫工程中,一般采用先用湿法进行粗脱硫,之后再通过干法进行精脱硫。2干法脱硫  干法脱除沼气气体中硫化氢的设备基本原理是以O2使H2S 氧化成硫或硫氧化物的一种方法,也可称为干式氧化法。干法设备的构成是,在一个容器内放入填料,填料层有活性炭、氧化铁等。气体以低流速从一端经过容器内填料层,硫化氢氧化成硫或硫氧化物后,余留在填料层中,净化后气体从容器另一端排出。3.生物脱硫  生物脱硫技术包括生物过滤法、生物吸附法和生物滴滤法,三种系统均属开放系统,其微生物种群随环境改变而变化。在生物脱硫过程中,氧化态的含硫污染物必须先经生物还原作用生成硫化物或H2S然后再经生物氧化过程生成单质硫,才能去除。在大多数生物反应器中,微生物种类以细菌为主,真菌为次,极少有酵母菌。常用的细菌是硫杆菌属的氧化亚铁硫杆菌,脱氮硫杆菌及排硫杆菌。最成功的代表是氧化亚铁硫杆菌,其生长的最佳pH值为2.0~2.2。转载的

  • 【转帖】发改委关于脱硫电价及脱硫设施运行管理办法

    为减少二氧化硫排放,进一步保护环境,国家发展和改革委员会、原国家环保总局于2007年联合发布《燃煤发电机组脱硫电价及脱硫设施运行管理办法(试行)》,明确规定了脱硫设施建设安装、在线监测、脱硫电厂电价加价、运行监管、脱硫产业化等方面的政策措施。   发展改革委有关负责人表示,出台上述管理办法的目的,是为了贯彻落实国务院节能减排工作部署,加快燃煤机组烟气脱硫设施建设,提高脱硫设施投运率,减少二氧化硫排放。   根据上述办法,新(扩)建燃煤机组必须按照环保规定同步建设脱硫设施,其上网电量执行发展改革委公布的燃煤机组脱硫标杆上网电价;现有燃煤机组应按照发展改革委、国家环保总局印发的《现有燃煤电厂二氧化硫治理“十一五”规划》要求完成脱硫改造,其上网电量执行在现行上网电价基础上每千瓦时加价1.5分钱的脱硫加价政策。   这部文件规定,煤炭平均含硫量大于2%或者低于0.5%的省(区、市),脱硫加价标准可单独制定,具体标准由省级价格主管部门提出方案,报发展改革委审批。   上述办法要求发电企业安装的烟气脱硫设施必须达到环保要求,并安装烟气自动在线监测系统,由省级环保部门和省级电网企业负责实时监测。发电企业要保证脱硫设施的正常运行,不得无故停运。脱硫设施投产运营率达不到要求的,由省级价格主管部门扣减脱硫电价,并向社会公告。   上述文件鼓励新(扩)建燃煤机组建设脱硫设施时不设置烟气旁路通道,鼓励专业化脱硫公司承担污染治理或脱硫设施运营并开展烟气脱硫特许经营试点。这部文件还规定了对发电企业、电网企业、省级环保部门、价格主管部门违法违纪行为的处罚措施,要求加强对电厂脱硫的监督检查和新闻舆论监督,鼓励群众举报。

  • 【转帖】微生物脱硫技术

    煤炭是世界能源的重要组成部分,我国是世界上最大的产煤国和煤消耗国,煤炭占我国一次能源的3/4,高硫煤储量约占总储量的1/3,并且高硫煤开采比例也逐年上升,而黄铁矿硫约占总硫的60%。煤中通常含有0.25%~7%的硫,如我国西南地区煤平均含硫量为3.23%,西北地区为3.05%,中南地区为2.02%,华北地区为1.65%。煤炭中的硫分为可燃硫和不燃硫。不燃硫主要是硫酸盐,可燃硫包括无机硫和有机硫。可燃硫经燃烧生成SO2随烟气排入大气,导致了严重的环境污染,造成的经济损失每年达数百亿元。据报道,1997年,我国的SO2年排放量已达2 346万吨,居世界第一位,62%的城市大气SO2日平均浓度超过国家三级标准;全国酸雨区面积已占国土面积的30%,华中酸雨区酸雨频率高达90%以上。2000年我国一次能源的消 耗量将超过12亿吨。SO2年排放量将会达到3822万吨。《中国21世纪议程》中指出:“发展少污染的洁净煤技术是中国政府履行国际公约、承担相应国际义务的重要方面,也是促进中国以煤为主的能源系统向环境无害的可持续发展的模式转变的战略组成部分。”可见洁净煤是中国能源的未来。   近年来研究人员把煤的物理选煤技术之一的浮选法和微生物处理相结合,即把煤粉碎成微粒与水混合,并将微生物加入溶液中,让微生物附着在黄铁矿表面,使其表面变成亲水性,能溶于水。在浮选中其难以附着在气泡上,下沉至底部,从而把煤和黄铁矿分开。由于它仅处理黄铁矿的表面,因此脱硫时间只需数分钟即可,从而大幅度缩短了处理时间,可脱除无机硫约70%。另外,该法在把煤中的黄铁矿脱硫时,灰分也可同时沉底,所以也具有脱去灰分的优点。目前,浮选法微生物脱硫已成为国际上洁净煤技术开发的热点。

  • 铜粉脱硫

    预处理当中加入铜粉脱硫的原理是什么?铜粉与硫反应?加入的铜粉是活化过的还是直接加?谢谢各位老师了,麻烦帮忙解答一下

  • 电厂脱硫陶瓷调节球阀,已广泛应用,并得到一致好评!

    一直以来,电厂脱硫上我们国家一直用进口的脱硫阀,价格昂贵,货期长。现在我们终于不用再看外国人的眼色了,因为我们有了自己的电厂脱硫专用阀---陶瓷球阀,我国现在国内已经有好几家陶瓷球阀生产厂家了[em32]烟气脱硫,污水处理,为中华环保贡献一份力量! [em61]电动陶瓷调节阀作为电厂脱硫系统中不可缺少的必备军!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制