当前位置: 仪器信息网 > 行业主题 > >

托蛋白定仪

仪器信息网托蛋白定仪专题为您提供2024年最新托蛋白定仪价格报价、厂家品牌的相关信息, 包括托蛋白定仪参数、型号等,不管是国产,还是进口品牌的托蛋白定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合托蛋白定仪相关的耗材配件、试剂标物,还有托蛋白定仪相关的最新资讯、资料,以及托蛋白定仪相关的解决方案。

托蛋白定仪相关的论坛

  • 【求助】牛血清白蛋白对UV吸光度检测是否有影响?哪里有供应质量稳定的牛血清白蛋白?

    最近在做公司产品含药量的释放情况,释放液是加了牛血清白蛋白的PBS液,释放后产品从释放液中取出,注射用水洗净后晾干。产品上残留药品再用乙酸乙酯超声洗脱,用UV测定乙酸乙酯中的药品浓度。因最近新换了牛血清白蛋白,后来实验数据与前比似乎有点偏低,怀疑产品上牛血清白蛋白没洗干净,对UV吸收有影响?牛血清白蛋白对UV吸光度值有什么影响呢?哪里有供应质量稳定的牛血清白蛋白?

  • 用高效液相色谱测乳清蛋白中各蛋白含量,拖尾峰严重是怎么回事

    我现在是一名研二学生,课题是从乳清蛋白中分离α-乳白蛋白,目前要用高效液相色谱做出α-乳白蛋白的标准曲线,实验室用的是型号POLARIS-211的液相色谱仪,目前出峰的拖尾峰明显,停留时间也不稳定,有用过这个仪器的朋友吗,希望得到大家的帮助http://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • 一种新型的重组蛋白A柱

    一种新型的重组蛋白A柱

    http://simg.instrument.com.cn/bbs/images/brow/em09511.gif一种新型的重组蛋白A柱 洗脱条件温和,充分防止蛋白变性蛋白A是一种金黄色葡萄球菌细胞壁蛋白质,能特异性地与人和哺乳动物抗体(主要是IgG)的Fc区结合。因而,将蛋白A与琼脂糖凝胶以一定的方式结合,可制备用于抗体纯化的亲和填料。早期的蛋白A柱结合的都是天然蛋白A。天然蛋白A由5个IgG结合域和其它未知功能的非Fc结合域组成,分子量约42KD,结构如图一所示。这种柱子对IgG的亲和能力很强,可以吸附大量的lgG。但同时,天然蛋白A的其他非结合域会和非目标蛋白结合,这样被洗脱下来的蛋白质纯度不够,会影响到后续的试验。为了解决这些问题,科学家们运用基因工程技术,克隆出蛋白A的基因,并对其进行改造,除去了一些不重要的非结合域。偶联这种重组蛋白A的琼脂糖凝胶柱在蛋白质纯化中,的确是提高了产物的纯度。目前,市场上绝大部分重组蛋白A柱都是这种产品。但是,纯化时所用的洗脱液一般为pH=2.7的甘氨酸溶液,如果洗脱效果不是很理想,还要降低pH,采用pH=1.9的甘氨酸溶液。由此可见,此法洗脱条件比较剧烈,最后收集的蛋白质很有可能变性,或者是复性困难。 这种洗脱条件剧烈的柱子结合的重组蛋白A一般具有5个串联结构域:E、D、A、B、C。虽然每个域均可以和IgG的Fc段结合,但不同的域结合强度略有差异。因此洗脱条件不均一,而且经常需要较低的pH值。GE的重组蛋白A柱即为这种类型,如图二所示。考虑到减少串联结构域的个数,并且采取同型结构域串联,就可以避免不同结构域与抗体Fc 段亲和性的差异从而使洗脱条件温和而均一,Putus研制出了含有三个串联B结合域的重组蛋白A,如图二所示。同时,我们用Putus重组蛋白A柱和GE重组蛋白A柱纯化人血浆,纯化的结果用于比较两种纯化柱的纯化效果,结果如图三所示。GE Putus 图二、重组蛋白A结构示意图待纯化样品:人血浆实验材料:GE公司的重组蛋白A柱(E、D、A、B、C结构域串联,见图二)Putus公司的重组蛋白A柱(3个B结构域串联,见图二)实验方法:分别按照每个公司的说明书来操作,洗脱条件分别为pH值3.0和4.5, SDS-PAGE检测结果如下: 上图从左边起,泳道1为标准蛋白Marker,泳道2为经过GE填料洗脱后抗体,泳道3为经过Putus填料洗脱抗体,泳道4为人血浆。从图中,我们可以看出,与GE 重组蛋白A填料从人血浆纯化抗体纯度比较,拥有3个同型结构域的Putus填料可以获得同样纯度的抗体。但是,后者的洗脱条件仅为4.5,高于前者的洗脱条件3.0。由此可见,使用具备较少B结构域的重组蛋白A柱也能获得高纯度的IgG,并且洗脱条件温和,能防止蛋白质聚集,保护蛋白质活性。http://cp00a3cee71b5f96adf6e669b5d7f56a9f11.jpg/http://C:\Documents and Settings\adim\桌面\001.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_632703_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187444_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187445_1672347_3.jpg

  • 免脱盐柱除盐的蛋白组学前处理方法

    免脱盐柱除盐的蛋白组学前处理方法

    [align=center]免脱盐柱除盐的蛋白组学前处理方法[/align][align=center]季学猛,史爱莹,张 燕,王 硕[/align][align=center](南开大学 医学院, 天津 300071)[/align]摘 要:现有的蛋白组样品前处理中脱盐柱除盐的方法存在步骤繁多、易损失微量样品等缺点。这里,一种超滤管辅助酶解及加热潮解除盐的蛋白组学前处理方法被提出。具体而言,是利用超滤管辅助,通过离心在酶解前将缓冲液置换成碳酸氢铵溶液,酶解后多肽溶液中的碳酸氢铵被加热除去,最终得到脱盐的纯净多肽。该方法操作简便,无需洗脱步骤,可以方便地与[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]直接衔接,而且可以减少前处理引起的氨基酸残基去酰胺和氧化修饰,有利于蛋白组学及其蛋白修饰分析。关键词:蛋白组学;样品前处理;脱盐柱 加热 碳酸氢铵中图分类号:O657.63 文献标识码:[align=center]An Improved Proteomic Pretreatment Method without Desalination Column [/align][align=center]JI Xuemeng,SHI Aiying,ZHANG Yan,WANG Shuo[/align][align=center](School of Medicine, Nankai University, Tianjin 300071, China)[/align]Abstract: The existing method for desalting protein samples in pre-processing is associated with several drawbacks, including a high number of procedural steps and the potential loss of minute sample quantities. In this context, a novel protein sample pre-processing method is proposed, which utilizes ultrafiltration tubes to assist in enzymatic digestion and employs heat-induced desalting. Specifically, the ultrafiltration tubes are employed to facilitate the replacement of the buffer solution with an ammonium bicarbonate solution via centrifugation before enzymatic digestion. Subsequently, following enzymatic digestion, the ammonium bicarbonate within the peptide solution is removed through a heating process, ultimately yielding desalted and pure peptides. This method offers simplicity in operation, eliminates the need for elution steps, enables seamless integration with [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url], and serves to mitigate the formation of amino acid residue deamidation and oxidation modifications that may be induced during pre-processing, thereby benefiting both proteomics and protein modification analyses.Key words: Proteomic analysis Sample pre-treatment Desalting column Heating Ammonium bicarbonate通过高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱对生物系统中全蛋白进行定性定量,已经成为一种主流的分析工具。通过高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱对生物系统中全蛋白进行定性定量,已经成为一种主流的分析工具。大规模的蛋白组研究依赖于蛋白被切割成肽段,然后进行后续的定性定量分析。目前,蛋白组学样品前处理方法通常使用胰蛋白酶将蛋白质样品切割成多肽。胰蛋白酶的最适作用pH为7.5-8.5[sup][back=yellow][1][/back][/sup],碳酸氢铵是质谱预处理中最常用到的一种盐,50mM碳酸氢铵水溶液可以提供酶解过程需要的弱碱性环境。然而,碳酸氢铵在酶解过程中大量存在,容易影响后续质谱分析。目前常用反相C18树脂去除盐和缓冲液[sup][back=yellow][2-4][/back][/sup]。多肽在高水相流动相中与反相柱结合,盐和缓冲液被洗去,然后用高有机相流动相洗脱多肽。然而,多肽对C18吸附性有差异,包括磷酸化多肽在内的亲水肽可能不能与C18树脂很好地结合,疏水性强的多肽与C18树脂可能结合牢固,不易被洗脱[sup][back=yellow][5-7][/back][/sup],这些问题可能导致样品的损失;而且,用来洗脱多肽的有机溶剂还需进一步通过真空离心干燥去除,极性较小的有机溶剂还可能溶解塑料制品中聚合物,造成多肽样品的聚合物污染,导致质谱峰偏移[sup][back=yellow][8,9][/back][/sup]。这些问题可能导致蛋白质检出种类减少、重复性差、甚至无检出信号等问题。基于这种临床和科研上的需求, 需要对蛋白组学样品前处理方法进行改进。1? 实验原理蛋白质组学是后基因组时代的产物。基因需要依赖于转录和翻译后后的产物蛋白质行使功能。基因组是固定不变的,而蛋白质组会响应环境的变化。因此,同一生物在生物体不同部位、生命的不同时期以及不同的环境中,具有不同的蛋白质表达。人类基因组测序计划的完成并没有给人提供解开生命的密钥,科学家把兴趣转到蛋白质,希望通过蛋白质组的研究来进一步解开生命的本质。目前鸟枪法是蛋白质组学分析应用最广的分析策略[sup][back=yellow][10-12][/back][/sup]。该方法先将蛋白酶解成肽段,然后通过色谱分离肽段混合物,再用质谱的电喷雾电离(ESI)技术将肽段碎裂,根据碎裂谱图的离子峰信息进行数据库搜索来鉴定肽段,最后将鉴定的肽段进行组装、重新归并为蛋白质[sup][back=yellow][13][/back][/sup]。电喷雾电离具体包括以下几个过程:样品首先通过一个毛细管喷针被喷出来,进入质谱仪,在喷针的外面用鞘气加热样品,辅助样品的雾化。加热雾化过程中溶液中的流动相或者溶剂挥发,剩下的气态离子在毛细管喷针尖端被电离。这些离子在质谱仪入口处被真空抽到质谱仪里,电场驱动进入质谱仪进行分子量的检测[sup][back=yellow][14][/back][/sup]。一般来说,电喷雾质谱法对盐类的容忍度较低。一方面是因为小分子盐类在电喷雾系统中存在较强的竞争性电离效应,从而导致强烈的离子抑制效应,使待测物的灵敏度明显降低[sup][back=yellow][15][/back][/sup]。其次,盐类的存在会产生一系列的离子加成峰,这使得谱图的解析变得复杂[sup][back=yellow][16-18][/back][/sup]。此外,过多的盐分会腐蚀和污染质谱系统的硬件,严重时导致硬件损坏,需要及时清洗[sup][back=yellow][19][/back][/sup]。因此,蛋白组学样品前处理过程中,脱盐步骤是非常必要的。2? 存在问题为减少机器的损坏,并且提高检测灵敏度,上机前一般都会要求对蛋白组学样品脱盐处理。目前脱盐常用的方法是反相C18树脂脱盐柱法。脱盐柱法分为结合、清洗、洗脱三步。首先,利用疏水相互作用,多肽在高水相流动相中与反相柱结合。然后,使用水反复清洗盐和缓冲液。最后,用有机溶剂破坏多肽与C18的结合,洗脱多肽。然而,该方法存在一系列的弊端,比如多肽对C18吸附性有差异,包括磷酸化多肽在内的亲水性比较强的多肽可能不能与C18树脂很好地结合,会造成结合阶段的样品损失,而疏水性强的多肽与C18树脂结合牢固,洗脱阶段却难以洗脱下来,所以亲水性强的多肽和疏水性强的多肽都会在脱盐柱脱盐过程中损失,进而导致样品的选择性偏好,会损坏质谱结果的客观性。而且,最终多肽样品上机前需要在0.1%甲酸溶液中溶解,因此,有机溶剂洗脱后的多肽不能很好的与[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]衔接,还需真空离心干燥去除有机溶剂。使用有机溶剂洗脱样品可能会造成样品的PEG聚合物污染,导致质谱峰偏移。这些问题导致脱盐柱脱盐后的蛋白组学样品重复性差、检出蛋白质种类低问题,因此亟需一种脱盐柱脱盐的替代方法。3? 改进措施将酶解前超滤管中的缓冲液通过反复离心置换成碳酸氢铵水溶液。酶解后利用碳酸氢铵加热潮解的特性除去多肽溶液中的碳酸氢铵成分,最终得到纯净的多肽。多肽样品溶解在0.1%甲酸溶液中后可以直接上机检测。4? 改进后效果首先取100μg蛋白样品,用6 M 盐酸胍稀释至400μL。加入10μL 500mM 三-(2-羧乙基)膦、 8 μL 1M 碘乙酰胺,混匀。室温避光振荡反应 40 min。将样品转移至10KD超滤管,室温10000g离心30分钟。加入400 μL 50mM碳酸氢铵溶液置换5次。用200 μL 50 mM 碳酸氢铵溶液垂悬,加入2μg胰蛋白酶,于37 ℃酶解过夜。10000g离心10分钟,收集滤液。真空离心干燥滤液,干燥后观察管底,如有白色盐粉末,加入少量超纯水溶解白色盐,转入75℃金属浴烘干,碳酸氢铵在烘干过程中分解挥发。上机前加入50μL 0.1% 甲酸溶液,装入超洁净样品瓶,上机检测。4.1 潮解脱盐效果评估利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)分析表明,在五次洗涤步骤后 ,三-(2-羧乙基)膦和碘乙酰胺的浓度至少降低了100000倍,并且降至检测阈值以下,表明五次连续洗涤足以将杂质降低到不干扰的水平([color=#c45911]图1A[/color])。酶解后,离心[color=black]收集到滤液200μL。试纸法测滤液pH,呈弱碱性(pH 7.5-8.0)。[/color]多肽样品经过真空离心干燥后,观察管底,可见白色盐粉末,如[color=#c45911]图1B[/color]所示。加入2μL 超纯水溶解白色盐,转入75℃金属浴烘干,碳酸氢铵在烘干过程中分解挥发,白色粉末消失,如[color=#c45911]图1C[/color]所示。用200[color=black]μL超纯水复溶多肽,测pH为7.0。[/color]这些结果说明碳酸氢铵被去除。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411135143_5595_5680383_3.jpg[/img][color=#c45911]图1 [/color][color=#c45911]脱盐的效果与验证。A:高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)分析图;B:多肽干燥后可观察到管壁上残留白色盐分;C:加热碳酸氢铵潮解后管壁上白色盐分消失; D:潮解前后的氨离子浓度对比图。数据来自三次独立重复实验(n = 3)。[/color]为了直接确认碳酸氢铵的去除,采用分光光度尼斯勒试剂法对氨浓度进行定量。分光光度尼斯勒试剂法包括以下步骤:将样品用去离子水稀释,向样品中加入一定量的分光光度尼斯勒试剂,封闭瓶子并摇动,让混合物静置5-10分钟,使用分光光度计在紫外-可见光谱范围内的波长630nm处测量吸光度,通过相同方法处理一系列氨标准溶液,测量吸光度值并绘制标准曲线,最后,通过使用样品的吸光度值查找标准曲线上相应的氨离子浓度来计算样品浓度。实验结果显示氨离子浓度从50 mM降低到不到10 nM,证实了通过热力潮解去除碳酸氢铵的有效性([color=#c45911]图1D[/color])4.2 新方法对不同分子量的蛋白质进行的蛋白质回收性能的研究蛋白质的分子量分布范围很大,从几千到几十万道尔顿不等。为了研究在酶解之前,超滤管辅助酶解及加热潮解除盐的蛋白组学前处理方法(以下称为新方法)在蛋白质回收方面是否存在偏好,在酶解前比较了溶液法(in-solution)、过滤辅助样品制备法(Filter-Aided Sample Preparation, FASP) 和本研究提出的新方法中的蛋白质回收率。蛋白质定量采用了与还原剂相容的BCA蛋白质测定试剂盒,吸光度在分光光度计(Agilent Technologies,美国)上以562纳米的波长读取。在本研究中测试的蛋白质包括细胞色素C(约12.4 kDa)、绿色荧光蛋白(GFP)(约27 kDa)、抗凝血酶III(约58 kDa)、转铁蛋白(约80 kDa)、免疫球蛋白G(IgG)(约150 kDa)和纤维连接蛋白(具有广泛的分子量范围,通常超过200 kDa)。实验进行了三次重复,并使用小提琴图来呈现结果。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411144597_3153_5680383_3.jpg[/img][color=#c45911]图2使用溶液法、过滤辅助样品制备法和新方法对不同分子量的蛋白质进行的蛋白质回收率评估图。[/color]结果清晰地表明,在不同分子量的蛋白质中,无论是在溶液法、过滤辅助样品制备法还是新方法中,所有三种方法在蛋白质回收率方面均达到了80%以上(图2)。总的来说,在所测试的分子量范围内,过滤辅助样品制备法和新方法之间的蛋白质回收率没有显著差异。然而,值得注意的是,对于低分子量蛋白质,溶液方法展现了略高的回收率,这可能归因于使用了10 kDa分子量截止滤器。 具体来说,对于低分子量蛋白质细胞色素C,过滤辅助样品制备法和新方法的平均回收率分别为85%和83%,而溶液方法的回收率为96%。然而,随着蛋白质分子量的增加,过滤辅助样品制备法和新方法的回收率显著提高。例如,对于分子量约为27 kDa的绿色荧光蛋白(GFP),过滤辅助样品制备法和新方法的回收率约为93%,而溶液方法对GFP蛋白的回收率为97%。此外,对于分子量超过50 kDa的较大蛋白质,如抗凝血酶III,使用过滤辅助样品制备法和新方法的回收率与溶液方法没有显著差异,均达到约98%。可见,本发明方法在蛋白质酶解之前对不同分子量的蛋白质回收率能达到83%至98%范围,达到了较好的蛋白截流作用。4.3新方法中潮解脱盐对不同大小和亲水性的肽段回收性能的研究为了探究不同方法酶解后对不同分子量的肽段进行潮解除盐的潜在偏好,对潮解法脱盐和C18脱盐的多肽回收率进行比较分析。在脱盐过程之前和之后,使用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](HPLC)测量了肽段的浓度。使用了一个反相柱,并监测了220 nm处的吸光度。受测试的肽段包括亮氨酸脑啡肽(分子量:555.68 Da,由五个氨基酸组成)、血管加压素(分子量:1084.23 Da,由九个氨基酸组成)、生长抑素(分子量:约1637.89 Da,由十四个氨基酸组成)和胰高血糖素(分子量:约3483.87 Da,由二十九个氨基酸残基组成),三次重复实验的结果呈现在小提琴图中(图3A)。结果显示,通过C18柱脱盐得到的回收率在75%到90%之间,与肽段的分子量之间没有明显的相关性。这可能是由于在C18柱脱盐过程中样品损失的因素,比如柱子的结合性能和洗脱效率。相比之下,潮解脱盐在所有测试的肽段中实现了超过96%的回收率,而不受它们的分子量影响。这一结果表明,潮解脱盐在回收不同分子量的肽段方面非常有效。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411149252_2052_5680383_3.jpg[/img][color=#c45911]图3肽段回收性能比较。A:使用两种脱盐方法(潮解去盐和脱盐柱脱盐)评估不同分子量的肽段回收率;B:使用潮解去盐和脱盐柱脱盐对高亲水性和疏水性肽段进行比较回收分析;实验均进行了三次独立的重复。[/color]接下来,使用C18脱盐柱脱盐和潮解脱盐对高亲水性和疏水性肽段的回收率进行了比较分析。选择了抗菌肽(Cat. No. LL37-05MG)和细胞穿膜肽(CAS号:697226-52-1)分别代表疏水性和亲水性肽段。结果显示,脱盐柱脱盐对抗菌肽和细胞穿膜肽的回收率相对较低,平均回收率分别为45%和39%。相比之下,新方法潮解除盐后对这两种肽段都实现了超过95%的回收率,而不受它们的亲水性影响(图3B)。这些发现表明,脱盐柱脱盐中的回收率受到肽段亲水性的影响。这可能归因于脱盐柱脱盐依赖于疏水相互作用将肽段结合到C18柱树脂上,然后使用亲水溶剂进行洗脱,这可能导致不同亲水性的肽段被选择性保留。另一方面,潮解脱盐提供了原位操作的优势,从而在脱盐过程中避免了肽段的损失。我们的研究结果表明,潮解脱盐不会导致肽段的损失,并实现了比C18柱脱盐更高的多肽回收率。4.4 新方法在实际蛋白质组学分析中的应用比较小鼠肠组织用PBS磷酸盐缓冲液润洗两次,以去除任何残留物质,然后与蛋白酶抑制剂混合。将组织使用组织研磨仪进行破壁,然后在冰浴中使用超声波(200W)裂解,直到悬浮液变清澈。通过孔径为0.22μm的微孔滤器纯化得到裂解物。使用BCA分析试剂盒测定蛋白质浓度。随后,采用三种方法进行了酶解:溶液法、过滤辅助样品制备法和新方法[color=black](蛋白组学原始数据保存于PXD044209)[/color]。酶解后,使用高性能[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]将蛋白质分离,并使用QE质谱仪进行分析。具体来说,酶解后的肽样品采用Q Exactive Plus质谱仪联用EASY nano[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统进行分析,该系统配备了EASY纳米电喷雾接口。色谱装置包括Pepmap纳米捕获柱(C18,5 μm,100 ?,100 μm × 2 cm)和EASY-Spray柱(Pepmap RSLC,C18,2 μm,100 ?,50 μm × 15 cm)。在色谱梯度中使用溶剂A(0.1%甲酸)和溶剂B(80% CH3CN/0.1%甲酸),梯度如下:0–8% B持续3分钟,8–28% B持续42分钟,28–38% B持续5分钟,38–100% B持续10分钟。质谱数据经Maxquant软件处理,Maxquant分析考虑至少具有两个肽段的蛋白质,并根据特定的参数和说明搜索UniProt数据库。修饰方面,半胱氨酸的烷基化修饰被设置为固定修饰,而氧化(M)被考虑为可变修饰。设置蛋白质为胰蛋白酶的特异性剪切,最多允许两个漏切位点。片段质量容差设置为0.02 Da。为确保可靠的鉴定,要求蛋白质和肽段的最大假阳性发现率(FDR)均为1.0%。蛋白质的鉴定基于至少有一个唯一的肽段鉴定,而蛋白质的定量是通过计算每个蛋白质的唯一肽段的中位数来执行的。每种方法产生了不同的蛋白质鉴定结果,如[color=#c45911]图4A[/color]所示。总体而言,新方法鉴定的蛋白质数量最多(2975±52),其次是过滤辅助样品制备法(2964±102),最后是溶液法(2803±57)。每种方法的已鉴定肽段数量如[color=#c45911]图4B[/color]所示。使用溶液法,鉴定了10931±16个独特的肽段。过滤辅助样品制备法和新方法分别鉴定了10981±48和10959±23个独特的肽段。平均而言,在溶液法中每个蛋白质匹配到3.90个独有肽段,在过滤辅助样品制备法中匹配到3.70个独有肽段,在新方法方法中匹配到3.68个独有肽段。这表明新方法表现出最高的蛋白质鉴定效率。[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411151149_9928_5680383_3.png[/img][color=#c45911]图 4 不同蛋白组学前处理方法在实际蛋白质组学分析中的应用。A:使用三种方法(溶液法、过滤辅助样品制备法和新方法)比较蛋白质鉴定结果;图B为每种消化方法鉴定的独特肽段,结果代表了三次生物学实验;图C为使用组内相关系数(ICC)评估无标签定量分析的可重复性;每种方法都有三次生物学重复。[/color]随后,使用ICC评估无标签定量分析的可重复性([color=#c45911]图4C[/color])。发现新方法显示出最佳的可重复性,平均ICC值为0.622,有1375个蛋白质的ICC值大于0.4。过滤辅助样品制备法表现出稍弱的可重复性,平均ICC值为0.533,有1180个蛋白质的ICC值大于0.4。相比之下,溶液法的可重复性最差,平均ICC值仅为0.477,有1017个蛋白质的ICC值大于0.4。4.5 新方法有助于减少氨基酸残基的不利修饰[img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271411148874_7284_5680383_3.png[/img][color=#c45911]图 5 样品制备方法对氨基酸残基修饰的影响。A:比较三种样品制备方法(溶液法、过滤辅助样品制备法和新方法)引入的单氧化修饰;B:三种方法对氨基酸残基脱酰胺化修饰的影响,该实验作为生物学重复进行了三次。[/color]氧化修饰和去酰胺修饰通常在天然蛋白质和多肽样本中被观察到,研究这些修饰对于理解蛋白质的固有应激至关重要。然而,样品预处理引起的人为修饰可能会对修饰蛋白组学分析带来挑战。为了评估在样品处理过程中引入的这些不利修饰对样品的影响,我们比较了三种方法:溶液法、过滤辅助样品制备法和新方法,关于它们对氧化和去酰胺修饰的影响。我们鉴定和定量了不同数量的单氧化和去酰胺修饰,但未检测到双氧化和三氧化修饰。在这三种方法中,新方法和溶液法显示出相对较低水平的单氧化修饰([color=#c45911]图5A[/color])。此外,新方法还减少了非必要的去酰胺修饰([color=#c45911]图5B[/color]),鉴定了具有去酰胺修饰的蛋白质最少(473±8),其次是溶液法(485±23),最后是过滤辅助样品制备法(544±23)。考虑到有机溶剂中的羟基可以与酰胺键形成氢键,因此在溶液法和过滤辅助样品制备法中观察到较高水平的去酰胺修饰可能归因于在去盐过程中使用有机溶剂,而新方法更加高效的样品处理可能有助于减少人为的氧化修饰。总之,新方法有效减少了氨基酸残基的去酰胺和氧化修饰。5? 结语南开大学医学院实验室改进的蛋白组学样品前处理方法,利用超滤管将酶解缓冲液置换成碳酸氢铵水溶液,酶解后利用碳酸氢铵加热潮解的特性除去多肽溶液中的碳酸氢铵成分,最终得到纯净的多肽,可以方便地与[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]直接衔接,进行质谱分析。与传统的方法相比,无样品损失,提高了蛋白质检测数目,同时操作简单快捷。值得注意的是,与传统的过滤辅助样品制备法相比,新方法在最小化氧化和去酰胺修饰方面表现出卓越的性能。这一创新的方法代表了蛋白质组学分析的重大进展,为质谱分析提供可靠和高效的结果。虽然新方法和过滤辅助样品制备法在使用基于滤膜的蛋白质截断方法方面有相似之处,但它们之间的关键区别变得显而易见。过滤辅助样品制备法在酶解前需要进行更彻底的洗涤,通常需要使用碳酸氢铵水溶液进行5次洗涤,而过滤辅助样品制备法通常只需要进行2次洗涤[sup][color=black][back=yellow][20][/back][/color][/sup]。此外,新方法可以通过轻度加热实现原位样品脱盐和纯化方法的完美集成。相比之下,过滤辅助样品制备法通常需要额外的脱盐柱纯化步骤。与新方法和过滤辅助样品制备法不同,悬浮陷阱法(S-Trap)采用三维多孔材料来捕获蛋白质 [sup][color=black][back=yellow][21][/back][/color][/sup]。由于其较大(亚微米级)的孔径,悬浮陷阱法滤膜的每个离心循环只需1分钟,实现了比本文中新方法和过滤辅助样品制备法更高的洗涤效率[sup][color=black][back=yellow][22][/back][/color][/sup]。然而,值得注意的是,与悬浮陷阱法相比,超滤管目前的成本较低,悬浮陷阱法在酶解后需要多次使用有机溶剂(如甲酸和乙腈)进行洗涤。悬浮陷阱法还涉及额外的脱盐柱纯化步骤,增加了实验的复杂性。总之,本文描述了一种独特的蛋白组学前处理方式,显著提高了高效样品制备的能力。6? 数据可用性声明本研究所有数据均包含在论文中。所有的蛋白质组学质谱数据已被存储在ProteomeXchange,并可通过访问编号PXD044209:[url=https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD044209][color=#0563c1]https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD044209[/color][/url] [sup][color=black][back=yellow][23, 24][/back][/color][/sup]来获取。参考文献(References):[1]? Solari F A, Kollipara L, Sickmann A, et al. Two birds with one stone: parallel quantification of proteome and phosphoproteome using iTRAQ[M]//Proteomics in Systems Biology. Humana Press, New York, NY, 2016: 25-41.[2]? Zhang G, Xue W, Dai J, et al. Quantitative proteomics analysis reveals proteins and pathways associated with anthocyanin accumulation in barley[J]. Food chemistry, 2019, 298: 124973.[3]? Zhu Z, Chen T, Wang Z, et al. Integrated Proteomics and Metabolomics Link Acne to the Action Mechanisms of Cryptotanshinone Intervention[J]. Frontiers in pharmacology, 2021, 12: 700696.[4]? Liu C, Si X, Yan S, et al. Development of the C12Im-Cl-assisted method for rapid sample preparation in proteomic application[J]. Analytical Methods, 2021, 13(6): 776-781.[5]? Liu Q, Shi J, Sun J, et al. Graphene and graphene oxide sheets supported on silica as versatile and high‐performance adsorbents for solid‐phase extraction[J]. Angewandte Chemie, 2011, 123(26): 6035-6039.[6]? Kecskemeti A, Bako J, Csarnovics I, et al. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device[J]. Analytical and bioanalytical chemistry, 2017, 409(14): 3573-3585.[7]? Li L, Wu R, Yan G, et al. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold-nanoparticle-based depletion[J]. Analytical and bioanalytical chemistry, 2016, 408(2): 441-448.[8]? Shieh I F, Lee C Y, Shiea J. Eliminating the interferences from TRIS buffer and SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry[J]. Journal of Proteome Research, 2005, 4(2): 606-612.[9]? LaCava J, Molloy K R, Taylor M S, et al. Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives[J]. Biotechniques, 2015, 58(3): 103-119.[10]? Dupree E J, Jayathirtha M, Yorkey H, et al. A critical review of bottom-up proteomics: The good, the bad, and the future of this field[J]. Proteomes, 2020, 8(3): 14.[11]? Duong V A, Park J M, Lee H. Review of three-dimensional liquid chromatography platforms for bottom-up proteomics[J]. International Journal of Molecular Sciences, 2020, 21(4): 1524.[12]? 翟芳. 鸟枪法蛋白质组学质谱平台性能标准和参考数据集的建立[D]. 重庆大学, 2018.[13]? Shen Y, Toli? N, Zhao R, et al. High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry[J]. Analytical Chemistry, 2001, 73(13): 3011-3021.[14]? Livesay E A, Tang K, Taylor B K, et al. Fully automated four-column capillary LC? MS system for maximizing throughput in proteomic analyses[J]. Analytical chemistry, 2008, 80(1): 294-302.[15]? Ca?as B, Pi?eiro C, Calvo E, et al. Trends in sample preparation for classical and second generation proteomics[J]. Journal of chromatography A, 2007, 1153(1-2): 235-258.[16]? Wheeler A R, Moon H, Bird C A, et al. Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS[J]. Analytical chemistry, 2005, 77(2): 534-540.[17]? Kim K H, Compton P D, Tran J C, et al. Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry[J]. Journal of proteome research, 2015, 14(5): 2199-2206.[18]? Wang C, Wu Z, Yuan J, et al. Simplified quantitative glycomics using the stable isotope label Girard’s reagent p by electrospray ionization mass spectrometry[J]. Journal of Proteome Research, 2014, 13(2): 372-384.[19]? Righetti P G, Boschetti E, Lomas L, et al. Protein Equalizer? Technology: The quest for a “democratic proteome”[J]. Proteomics, 2006, 6(14): 3980-3992.[20]? Homsi C, Rajan R E, Minati R, et al. A Rapid and Efficient Method for the Extraction of Histone Proteins[J]. Journal of Proteome Research, 2023, 22(8): 2765-2773.[21]? Fu Q, Murray C I, Karpov O A, et al. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis[J]. Mass Spectrometry Reviews, 2023, 42(2): 873-886.[22]? Duong V A, Lee H. Bottom-Up Proteomics: Advancements in Sample Preparation[J]. International Journal of Molecular Sciences, 2023, 24(6): 5350.[23]? Ma J, Chen T, Wu S, et al. iProX: an integrated proteome resource[J]. Nucleic acids research, 2019, 47(D1): D1211-D1217.[24]? Chen T, Ma J, Liu Y, et al. iProX in 2021: connecting proteomics data sharing with big data[J]. Nucleic Acids Research, 2022, 50(D1): D1522-D1527.[size=12px]收稿日期:[/size][size=12px]2023-10-27[/size] [size=12px]修改日期:[/size][size=12px] [/size]基金项目:国家重点研发计划(32030083)。作者简历:季学猛,硕士,实验师,研究方向为微生物学、蛋白组学。E-mail:jixuemeng@nankai.edu.cn。

  • 【求助】离子交换蛋白洗脱不下来?

    采用Agilent的zobrax SAX (强阴离子柱)4.6*150。蛋白样品:BSA 分子量约60kDa,pI=4.8。上样浓度1mg/ml,进样50ul,流速:0.8ml/min,280nm紫外检测。流动相 A 20mM,pH7磷酸钠buffer,B:A+1M NaCl。程序0~15min:100%A;15~45min:梯度B至100%;45~50min:100%B没有蛋白样品峰我尝试过pH6.5,6.0的buffer,也尝试过pH8.0的Tris-HClbuffer,B的洗脱盐尝试过1M硫酸铵。以上条件均无法洗脱出蛋白峰。直接0.5M NaOH再生柱子可以从柱子上洗脱出峰。离子交换一般用NaCl或者硫酸铵即可。很奇怪,BSA上样后没有洗脱峰,不知诸位版友有和建议?

  • 稳定细胞系助力重组蛋白高效生产

    [b][font=宋体]前言[/font][/b][font=宋体]在蛋白质研究领域,稳定细胞系的应用已成为生产高质量结构生物学蛋白质的关键手段。随着技术的不断进步,稳定细胞系的生成与筛选方法得到了显著改进,从而推动了蛋白质生产的高效化与精准化。[/font][font=Calibri] [/font][b][font=宋体]细胞系的建立和应用[/font][font=宋体][font=Calibri]HEK293[/font][font=宋体]和[/font][font=Calibri]CHO[/font][font=宋体]细胞系[/font][/font][/b][font=宋体]因其稳定的蛋白表达和适当的翻译后修饰而被广泛用于结构生物学研究。这些细胞系能有效地生产具有复杂糖基化模式的蛋白质,这对于确保蛋白质的功能和稳定性至关重要。糖基化缺陷细胞系通过特定的基因改造,能够分泌脱糖基化糖蛋白,为蛋白质生产提供了更加纯净的原料。[/font][font=Calibri] [/font][b][font=宋体]稳定细胞系的生成[/font][/b][font=宋体][font=宋体]传统的稳定细胞系生成技术如瞬时转染,虽然方法简便,但存在整合频率低、转基因沉默等问题。为了克服这些困难,研究者们开发出了一系列新技术,如细胞分选技术、位点特异性重组(如[/font][font=Calibri]FLP/FRT[/font][font=宋体]系统)、转座子系统(如[/font][font=Calibri]piggyBac[/font][font=宋体])、慢病毒系统以及噬菌体整合酶等,提高了稳定细胞系的生成效率和稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]序列特异性基因组工程也为稳定细胞系的生成提供了新的思路。通过敲除或修饰特定的基因,研究者们能够实现对细胞功能的精准调控,从而优化蛋白质生产的效率和纯度。例如,一种同时缺乏[/font][font=Calibri]GnTI[/font][font=宋体]和谷氨酰胺合成酶([/font][font=Calibri]GS[/font][font=宋体])活性的[/font][font=Calibri]CHO[/font][font=宋体]细胞系被成功开发出来,为高效筛选具有[/font][font=Calibri]GS[/font][font=宋体]标记的稳定细胞系提供了有力工具。[/font][/font][font=Calibri] [/font][b][font=宋体]稳定细胞系与瞬时转染的比较[/font][/b][font=宋体]稳定细胞系相较于瞬时转染具有多个优点,包括能够进行大规模生产和保持高水平的蛋白表达稳定性。尽管瞬时转染在某些情况下能快速产生大量蛋白,但其表达水平和重复性通常不如稳定细胞系。[/font][font=Calibri] [/font][b][font=宋体]展望[/font][/b][font=宋体]近年来,利用稳定细胞系高效生产结构生物学蛋白质已成为研究的热点和趋势。通过引入新技术、优化筛选方法和改进整合系统,不仅能够提高蛋白质生产的效率和纯度,还能够为结构生物学研究提供更加精准、可靠的实验工具。随着基因编辑和细胞工程技术的进步,预计在未来,通过精确的基因操作能够更有效地创建和利用稳定细胞系。这些技术的进步将促进结构生物学和药物开发中蛋白质的高效和可持续生产。[/font][font=宋体] [/font][font=宋体]本文由义翘神州进行整理,同时提供[/font][url=https://cn.sinobiological.com/services/stable-cell-line-development-service][u][font=宋体][color=#0000ff]稳定细胞系构建服务[/color][/font][/u][/url][font=宋体],详情可点击了解![/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=Calibri]Büssow K. Stable mammalian producer cell lines for structural biology. [/font][i][font=Calibri]Curr Opin Struct Biol[/font][/i][font=Calibri]. 2015 32:81-90. doi:10.1016/j.sbi.2015.03.002[/font]

  • 【原创】一种新型的重组蛋白A柱

    【原创】一种新型的重组蛋白A柱

    [em09511]一种新型的重组蛋白A柱 洗脱条件温和,充分防止蛋白变性蛋白A是一种金黄色葡萄球菌细胞壁蛋白质,能特异性地与人和哺乳动物抗体(主要是IgG)的Fc区结合。因而,将蛋白A与琼脂糖凝胶以一定的方式结合,可制备用于抗体纯化的亲和填料。早期的蛋白A柱结合的都是天然蛋白A。天然蛋白A由5个IgG结合域和其它未知功能的非Fc结合域组成,分子量约42KD,结构如图一所示。这种柱子对IgG的亲和能力很强,可以吸附大量的lgG。但同时,天然蛋白A的其他非结合域会和非目标蛋白结合,这样被洗脱下来的蛋白质纯度不够,会影响到后续的试验。为了解决这些问题,科学家们运用基因工程技术,克隆出蛋白A的基因,并对其进行改造,除去了一些不重要的非结合域。偶联这种重组蛋白A的琼脂糖凝胶柱在蛋白质纯化中,的确是提高了产物的纯度。目前,市场上绝大部分重组蛋白A柱都是这种产品。但是,纯化时所用的洗脱液一般为pH=2.7的甘氨酸溶液,如果洗脱效果不是很理想,还要降低pH,采用pH=1.9的甘氨酸溶液。由此可见,此法洗脱条件比较剧烈,最后收集的蛋白质很有可能变性,或者是复性困难。 这种洗脱条件剧烈的柱子结合的重组蛋白A一般具有5个串联结构域:E、D、A、B、C。虽然每个域均可以和IgG的Fc段结合,但不同的域结合强度略有差异。因此洗脱条件不均一,而且经常需要较低的pH值。GE的重组蛋白A柱即为这种类型,如图二所示。考虑到减少串联结构域的个数,并且采取同型结构域串联,就可以避免不同结构域与抗体Fc 段亲和性的差异从而使洗脱条件温和而均一,Putus研制出了含有三个串联B结合域的重组蛋白A,如图二所示。同时,我们用Putus重组蛋白A柱和GE重组蛋白A柱纯化人血浆,纯化的结果用于比较两种纯化柱的纯化效果,结果如图三所示。GE Putus 图二、重组蛋白A结构示意图待纯化样品:人血浆实验材料:GE公司的重组蛋白A柱(E、D、A、B、C结构域串联,见图二)Putus公司的重组蛋白A柱(3个B结构域串联,见图二)实验方法:分别按照每个公司的说明书来操作,洗脱条件分别为pH值3.0和4.5, SDS-PAGE检测结果如下: 上图从左边起,泳道1为标准蛋白Marker,泳道2为经过GE填料洗脱后抗体,泳道3为经过Putus填料洗脱抗体,泳道4为人血浆。从图中,我们可以看出,与GE 重组蛋白A填料从人血浆纯化抗体纯度比较,拥有3个同型结构域的Putus填料可以获得同样纯度的抗体。但是,后者的洗脱条件仅为4.5,高于前者的洗脱条件3.0。由此可见,使用具备较少B结构域的重组蛋白A柱也能获得高纯度的IgG,并且洗脱条件温和,能防止蛋白质聚集,保护蛋白质活性。[IMG]http://CP00A3CEE71B5F96ADF6E669B5D7F56A9F11.jpg[/IMG][URL=http://C:\Documents and Settings\adim\桌面\001.jpg]http://C:\Documents and Settings\adim\桌面\001.jpg[/URL][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187443_1672347_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187444_1672347_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187445_1672347_3.jpg[/img]

  • 多肽蛋白偶联

    多肽蛋白偶联

    蛋白多肽多肽:多肽是α-氨基酸以肽键连接在一起而形成的化合物,是蛋白质水解的中间产物。由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质。蛋白质:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。是α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合合而成的高分子化合物。蛋白偶联KLH/BSA/Ovalbumin etc 偶联小肽/半抗原必须耦合到载体蛋白(KLH,BSA,Ova),才可以获得高效的抗体。一般来说,多肽可以与蛋白偶联的条件如下:1 有一个自由的氨基或羧基2 半胱氨酸上的-SH也可以与载体蛋白偶联目前我公司提供高质量的偶联载体蛋白(KLH,BSA,OVA)[img=,690,300]https://ng1.17img.cn/bbsfiles/images/2019/02/201902191022256586_4193_3531468_3.jpg!w690x300.jpg[/img]我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。请移步百度搜“[b]合肥国肽生物[/b]”即可

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

  • 蛋白胨和胰蛋白胨

    本文引用自cheney《蛋白胨和胰蛋白胨简介》蛋白胨是将肉、酪素或明胶用酸或蛋白酶水解后干燥而成的外观呈淡黄色的粉剂,具有肉香的特殊气息。蛋白质经酸、碱或蛋白酶分解后也可形成蛋白胨。蛋白胨富含有机氮化合物,也含有一些维生素和糖类。它可以作为微生物培养基的主要原料,在抗生素、医药工业、发酵工业、生化制品及微生物学科研等领域中的用量均很大。不同的生物体需要特定的氨基酸和多肽,因此存在着各种蛋白胨,一般来说,用于蛋白胨生产的蛋白包括动物蛋白(酪蛋白、肉类)和植物蛋白(豆类)等两种。能为微生物提供C源、N源、生长因子等营养物质。因此,蛋白胨从来源上可分为动物性蛋白胨和植物性蛋白胨。胰胨、肉胨、骨胨等都是动物性蛋白胨,而大豆蛋白胨等则是植物性蛋白胨。动物性来源的蛋白胨还有:蚕蛹蛋白胨、血液蛋白胨等。   不同来源的蛋白质和不同的水解条件,其水解物中组成可千差万别。所以胨往往是一个复杂的多肽混合物。可溶于水,过热不凝固,在饱和硫酸铵中不发生沉淀但可为蛋白质沉淀剂所沉淀。可用作微生物和动物细胞培养基、特种功能性食品和化妆品的配料,也有用作啤酒等产品的稳定剂。胰蛋白胨,又称胰酪蛋白胨(Casein Tryptone)、胰酶消化酪蛋白胨(Pancreatic digest of casein),是一种优质蛋白胨,是以新鲜牛肉和牛骨经胰酶消化,浓缩干燥而成的浅黄色粉末。具有色浅、易溶、透明、无沉淀等良好的物理性状。含有丰富的氮源、氨基酸等,可配制各种微生物培养基,用于细菌的培养、分离、增殖、鉴定,以及无菌试验培养基、厌氧菌培养基等细菌生化特性试验用培养基的配置。胰蛋白胨还广泛应用于高品质的抗生素、维生素、医药工业,氨基酸、有机酸、酶制剂、黄原胶等发酵工业,生化制品及微生物学科研等领域中的用量均很大,临床用于抗炎消肿,工业上用于皮革制造,生丝处理,食品加工。在国际市场上,胰蛋白胨也属于货紧价昂的短线品种之一。   胰酪蛋白胨质量标准及其检验标准:   常规各项理化指标:   1. 澄清度(磷酸盐、碱性沉淀):无沉淀、澄清   2. 2%水溶液:透明   3. 酸碱度:6-7   4. 氨基氮:≥3%   5. 色氨酸:≥0.8%   6. 胨含量:≥80%   7. 总氮:≥13%   8. 水份:≤5%   9. 灰份:≤6%   10. 氯化钠:≤0.2%胰蛋白胨特指用胰蛋白酶酶解酪蛋白生成的蛋白胨产物,与一般蛋白胨的区别在于酶解工艺处理上,属于水解度更高、胨分子量更小更均衡的蛋白胨。

  • 药物绑定靶蛋白的效果首次可直接测量

    新技术有助于开发更好的药物2013年07月06日 来源: 中国科技网 作者: 陈丹 科技日报讯 据物理学家组织网7月5日(北京时间)报道,瑞典卡罗林斯卡医学院的研究人员开发出一种方法,首次能够直接测量药物抵达其位于细胞中的目标蛋白的效果。《科学》杂志上描述的这项新技术,对于开发新的、改良型的原料药将是一个重大贡献。 大多数药物都是通过与一种或多种蛋白质结合并影响其功能来发挥效力的,但药物开发也因此面临两个常见问题:认定正确的目标蛋白,并设计能够有效地找出和绑定它们的药物分子。此前没有任何一种手段可用于直接测量药物分子定位和绑定其靶蛋白的效率,这使得药物开发过程的很多阶段都存在一定程度的不确定性。在某些情况下,候选药物在人体临床试验中没有达到预期效果,经证实正是由于药物分子没有与正确的蛋白质结合造成的。 而卡罗林斯卡医学院研究人员利用靶蛋白与药物分子结合时通常会变得稳定的观念,开发出了这个被称为CETSA(细胞热转移分析)的新技术。他们认为,这项技术可作为药物开发过程中一个重要的控制阶段,也可作为对其他方法的一个补充。“我们已经证明,该方法适用于多种靶蛋白,使我们能够直接测量药物分子是否抵达了其位于细胞或动物模型中的目标。”该医学院医学生物化学与生物物理学系首席研究员帕尔·诺德隆德说,“我们相信,CETSA技术最终将帮助提高许多药物的效率,并有助于开发更好的药物分子和更有效的治疗方案。” 研究人员还对可能导致细胞耐药性的工序进行了仔细检查,并表示,这一技术能够确定现有药物是否适合个别患者,因此其具有应用于个性化治疗的潜在价值。 “我们认为,该方法可以为癌症治疗提供一个重要的诊断工具,比如,从原则上来说,CETSA技术让我们能够确定哪种药物针对肿瘤中的蛋白质最有效,临床医生也可以在早期治疗阶段确定肿瘤是否已经具备了某种抵抗力、哪种治疗方案对病人更合适。”诺德隆德的同事丹尼尔·马丁内兹·莫利纳说,他带领的团队正在开展一个旨在将CETSA技术用于病患研究的项目。(记者陈丹) 总编辑圈点 体温可以测量,骨密度可以测量,就连药物绑定靶蛋白的效果也可以直接测量,让人不得不慨叹医学技术发展的速度之快。文中提到的细胞热转移分析技术,就好比狙击手的瞄准镜,能帮助狙击手调整位置以便更准确地击中目标。这样一来,不仅可以更好地提高药效,还尽可能地减少副作用,其实际应用价值非同一般。那种“杀敌一千,自损八百”的诊疗方法或将成为过去,那些原本被认为的绝症或将“绝”处逢生。 《科技日报》(2013-07-06 一版)

  • 什么是大豆分离蛋白?

    [size=10.5pt][color=#0000ff][font=微软雅黑]什么是大豆分离蛋白?[/font][/color][/size][size=10.5pt][font=微软雅黑]大豆分离蛋白是以低温脱溶大豆粕为原料生产的一种全价蛋白类食品添加剂。大豆分离蛋白中蛋白质含量在90%以上,氨基酸种类有近20种,并含有人体必需氨基酸。其营养丰富,不含胆固醇,是植物蛋白中为数不多的可替代动物蛋白的品种之一。[/font][/size][b][size=12pt][font=微软雅黑]喷雾干燥在大豆分离蛋白中的应用-生产工艺[/font][/size][/b][size=10.5pt][font=微软雅黑]大豆分离蛋白(Soy Protein Isolate,简称 SPI)是指干基蛋白质含量≥90%的粉状大豆制品,大豆分离蛋白的制取工艺有多种,如碱溶酸沉法、膜分离法等,其中碱溶酸沉法生产大豆分离蛋白是目前世界上最常用的工艺,它以低温脱脂脱溶豆粕为原料,通过碱溶及等电点沉淀将脱脂豆粕中的可溶性和不溶性碳水化合物除去。[/font][/size][size=10.5pt][font=微软雅黑]工艺流程:低温豆粕-碱液提取-离心分离-酸沉-离心分离-中和-杀菌-喷雾干燥-大豆分离蛋白。[/font][/size]

  • “蛋白变性”的望文生义

    现在人们是越来越注重食品健康了,于是任何关于某种食品不健康的说法都能吸引一堆眼球。有人说自己买的乳清蛋白粉不容易溶在水中,立刻有人跳出来说千万不能用热水,蛋白质会变性。于是有一堆看起来对蛋白质有一点了解的人纷纷附和,大谈如何保持蛋白不变性。 很多人看到“蛋白变性”这个词,就望文生义地想到“变质”“变坏”,仿佛“变性”了就有害健康了。最常见的还有一个例子,反对微波炉的人总是说微波炉会导致蛋白质的变性。 蛋白质通常是由20种不同的氨基酸组成的,不同的蛋白质只是各种氨基酸的组成和连结方式不同。因为各种氨基酸的理化特性不同,它们会互相影响,最后会像积木一样形成一定的空间结构。通常也就说是蛋白质的天然构象。如果因为某种原因,蛋白质分子失去了它的天然构象,被称为变性。而蛋白质被吃到肚子里,首先要被水解(消化)成一个个的氨基酸分子,才能被吸收。而在多数情况下,变性的蛋白更容易被水解。可见,蛋白质变性对于食物来说,不仅不是“变质”,而且是好事。 我们所吃的所有蛋白,比如肉、鱼、鸡蛋、牛奶、豆浆、豆腐,作熟的过程就是蛋白质变性的过程。豆浆中的蛋白质不变性是变不成豆腐的。而作为商品出售的各种蛋白粉,多数都经过了高温灭菌和干燥处理,早已经变性了。对于某些产品而言,适当的工业处理甚至能够提高蛋白质的品质。比如大豆中的蛋白,其蛋白质质量指数(蛋白质消化校正计分)是0.91 ,但是经过分离纯化高温干燥等处理之后,就能达到1了。还有相当多的蛋白质产品甚至经过了酶解处理,以获得更好的理化特性。那些蛋白质,不仅是空间构象,连化学结构都变了,更是“变性”得深入。

  • 蛋白提取前处理问题

    实验目的:提取海参中的金属结合蛋白我看很多文献做鱼肝脏什么的都是先用制作成丙酮粉,或用其他方法脱色脱脂,我想问一下,不脱色脱色对提取蛋白结果影响大吗?

  • 蛋白液顶空测乙腈残留

    本人刚接触气相没多久 最近做了一个蛋白液的乙腈残留,参考了药典白介素的方法,精密量取1ml顶空进样(1ml定量环),80℃平衡30min,4ml/min柱流速,45摄氏度等温,分流比5:1。对照为0.0004%乙腈,超纯水稀释,峰面积大约35左右。样品为蛋白液,其中有多种无机盐,twen80。问题:现在做了挺多样品,对照品出峰重现性还可以接受,倒是样品峰面积直接差到姥姥家了,几乎每次都相差很大,一个峰面积为5,下一针可能就是20!求有这方面经验的大神不吝赐教啊!

  • 测定蛋白分子量

    我想请问一下用ESI测定蛋白分子量是要用什么作为质量分析器呢?此外,测定蛋白分子量是用ESI好还是MALDI好呢?然后样品是脱盐以后直接进样就可以了吗?望解答。

  • β-乳球蛋白属于乳白蛋白还是属于乳球蛋白里面的一种成分?

    β-乳球蛋白属于乳白蛋白还是属于乳球蛋白里面的一种成分?最近看到有两种版本,其一,说是属于乳白蛋白里面的一种成分,乳白蛋白包括α-乳白蛋白、β-乳球蛋白和血清白蛋白。乳球蛋白即免疫球蛋白。其二,乳白蛋白包括α-乳白蛋白和血清白蛋白,乳球蛋白包括β-乳球蛋白和免疫球蛋白。现在不知道哪种说法对,请各位指教!!!谢谢!!!

  • 影响凯氏定氮法测定粗蛋白准确性应注意的细节问题

    影响凯氏定氮法测定粗蛋白准确性应注意的细节问题摘 要 阐述了影响凯氏定氮法测定粗蛋白准确性应注意的一些细节问题,并进行了相关分析,且提出了相应的解决办法。关键词 凯氏定氮法;粗蛋白;测定;准确性;问题随着饲料行业的飞速发展,饲料原料及其饲料产品的价格也居高不下。而粗蛋白的检测是评定饲料原料及其产品的重要指标之一,目前常用的为凯氏定氮法,即国家颁布的《饲料中粗蛋白的测定方法》(GB1996-6432)。但是该方法也存在着测定过成较复杂、费时等缺陷,测定时除严格按照规定程序操作外,还需要一定的实验技巧和实践经验。因此有很多饲料企业在实际操作过程中总是出现各种问题,导致检测结果异常而不知如何去分析。下面,笔者以GB/T6432—1994为准,针对影响凯氏定氮对测定结果标准性应注意的细节问题和大家共同探讨。1 试剂的配制粗蛋白测定中所用的化学药品如浓硫酸、盐酸、氢氧化钠、硼酸、硫酸铜、硫酸钾(硫酸钠)、硫酸铵、蔗糖等均为化学纯,标定盐酸标准溶液用的无水碳酸钠为基准试剂。在配制试剂前一定要用PH试纸或酸度计检测一下蒸馏水是否为中性,所用的烧杯、试剂瓶等配液设备清洗干净。1.1 盐酸标准溶液的配制配制的盐酸标准溶液尽量为低浓度,一般C(HCl)=0.02~0.05mol·L-1。低浓度虽然用量大,但可减少操作误差和读数误差。配制盐酸标准溶液一定要严格按照标准操作进行,基准无水碳酸钠已定于270~300℃灼烧至恒重,称准至0.0001g,做4~6个平行样,去掉最高值和最低值后取平均值,同时还要做空白试验。盐酸标准溶液的配制量尽量不要太多、使用时间太长,防止水分蒸发和盐酸挥发而影响其浓度的准确性。1.2 其他试剂的配制400g·L-1氢氧化钠溶液、20g·L-1硼酸溶液、混合指示剂(1g·L-1甲基红乙醇溶液与5g·L-1溴甲酚绿乙醇溶液等体积混合)等主要是在称量时要做到快、准、稳,再就是防止使用时间太长,特别是混合指示剂不要超过3个月。

  • 质谱技术在蛋白组研究中的应用(一)

    [摘要] 质谱对于现代蛋白质化学研究是一项重要的技术。也可用于蛋白组分析,在同一时间监控上千种蛋白的表达情况。首先蛋白质混合物可以用双向凝胶电泳分开,再用质谱及随后的蛋白质数据库检索对单个蛋白进行鉴定和分析。最近几年,质谱领域取得了令人鼓舞的进展,使得全自动、高通量的蛋白检测成为可能。质谱也可以用来分析蛋白的转录后调节以及研究蛋白质复合体。本文将介绍目前蛋白组研究中质谱方法的应用并对其优缺点进行讨论。关键词: 质谱;二维电泳(2-DE);蛋白组分析MALDI-TOF1 前 言蛋白组学是研究生物特定组织或细胞内表达的所有蛋白质成分,蛋白质组的一门学科。蛋白组分析一般是用双向凝胶电泳(2-DE),质谱(MS)以及数据检索来完成。2-DE要回顾到20世纪70年代初[1],但是用质谱技术对蛋白质进行鉴定和分析是在近十年内才成为可能。其中最重要的一个原因是新的软离子技术即基质辅助激光解析电离(MALDI)[2]和电喷雾电离(ESI)[3,4]技术的发展和应用,以及样本制备技术和质谱仪的发展等。从数据库中获得成指数上升的序列信息也促进了质谱技术的发展。跟转录组学中的全自动DNA微阵列技术相比,蛋白组分析需要更多的手工操作,尤其在2-DE上会出现很多问题[5,6]。尽管存在很多困难,蛋白组学的重要性还是公认的。DNA微阵列技术是建立在对mRNA稳定水平的检测上,然而蛋白组学研究的对象是细胞中最活跃的因子——蛋白质。最近有研究证明,mRNA的表达和蛋白的水平并非具有相关性[7,8]。蛋白质有转录后修饰过程,并会以不同的形式出现。而这些修饰过程是相应的DNA测序技术所不能预测的。质谱技术在蛋白质修饰分析过程中具有重要的作用。2 质谱对蛋白质的检测质谱仪是由离子源,质量分析,离子检测器,以及数据检索等单元组成。首先,被分析的分子在离子源中被离子化,然后在质量分析器里根据不同的质荷比分开,再对分开的离子进行检测。随着MALDI和EIS的出现,质谱技术已经广泛用来分析蛋白质。质量分析器有很多种,最常用的方法是将飞行时间检测器(TOF)与MALDI或三级四级串联质谱仪联用,或者将四级杆-TOF,离子阱等连接到ESI上。蛋白组分析中,可以用两种不同的方法检测电泳分离后的单个蛋白质。最简单的方法叫做肽指纹谱测定(PMF)[9~13]。这个方法是用特殊的酶对2-DE分离后的蛋白质点进行降解,产生的肽从凝胶中分离出来后再用质谱分析和检测肽的分子量。数据库检测能够产生所有蛋白质理论上的PMF,把它们和质谱分析所获得的肽片进行比较就可以得出结果。第二种方法是在质谱仪中把凝胶分离后的肽分解成片段,产生局部的氨基酸序列(序列标签)。那么就可以用分子量或者序列信息进行数据库检索[14,15]。PMF一般用MALDI-TOF来实现,序列标签可以用串联质谱技术MS-MS进行检测[16~18]。用质谱检测蛋白的灵敏性可以精确到飞摩的水平,甚至已有报道其精确度可以达到阿摩水平[19]。3 用MALDI-TOF进行肽指纹谱分析凝胶分离后的蛋白质鉴定以及肽指纹谱分析是目前质谱实验室常规使用的方法。在进行MALDI分析之前需要最优化的凝胶上消化[20~22]和脱盐过程。胰岛素是最常用的凝胶消化酶,因为它在赖氨酸和精氨酸位点能够特异性切割蛋白质,产生分子量在600~2500Da之间的小分子肽,并能够从凝胶上有效的分离出来。MALDI-TOF是质谱技术中相对简单并很容易使用的一种方式,对样本中的盐和其他污染物有很高的耐受性,这点优于ESI。提取的肽片混合物中较小的片段可以直接沉积在靶板上做PMF分析,剩下的样本可以储存起来作为以后的ESI-MS分析。如果经凝胶分离后所有的肽全用来做MALDI分析,那么样本经脱盐以后将会取得更好的结果。脱盐的过程可以用商品化的试剂盒ZipTip(Millipore),或者在凝胶电泳仪的末端放置一个小的逆向塑料柱来实现[23,24]。PMF中非常重要的一个因素就是质谱测量分子量的准确度[25]。现代的MALDI-TOF仪都具有延迟取样反射器装置,用它们检测的肽段分子量可以精确到10~30ppm。这样的精确度使得4~5个肽段足以清楚的鉴定蛋白质的分子量。MALDI产生的大多数都是单电荷离子,所以它的图谱很容易解释。4 肽质指纹谱分析的自动化为了实现高通量蛋白检测,样本准备,质谱检测,资料分析和数据检索必须实现自动化操作。目前有些实验室用机器人对蛋白质进行自动化取点,凝胶上消化,样本脱盐以及对MALDI平板进行定点测定等。而且,现代化的MALDI-TOF仪完全能够让MALDI检测自动化。资料分析和数据检索过程同样可以自动化。在进行蛋白组分析时,如果在凝胶上不用单个分离就可以对所有蛋白质进行鉴定将是非常具有诱惑力的。为此,研究人员做了很多努力,由Hochestrasser及其同事建立了一套称作分子探测术的方法(molecular scanner)[26,27]。它是将整个2-DE胶上蛋白质样本同时酶解,并将酶解片段一起原位转移至另一张膜上,再直接用MALDI- TOF 质谱对膜上样本进行整体扫描,为实现蛋白质组学研究的自动化、规模化以及临床应用提供了一个崭新的思路和方法。这种思路的优点是显而易见的,不过按照目前的方法,要普及此种技术主要的难点是,质谱扫描一张图谱所需的时间过长,如用0.4mm的精度扫描一张4cm×4cm的膜需55个小时,这就意味着一张16cm×16cm的常用膜的扫描,至少需要36天不间断的工作和大约40G的磁盘空间存储如此庞大的原始数据。5 用ESI-MS/MS的方法创建序列标签只有当被消化的蛋白存在于已有的蛋白或基因组数据库中,并且能从MALDI分析器中得到四五个肽片的数据才能成功进行。如果在EST数据库中只有目的蛋白的部分序列,那么就需要知道肽片的序列信息。创建序列标签的优势在于,用肽的分子量和序列作为数据库检索对象比只用分子量作为检索对象具有更高的特异性。有了序列标签信息后,也可以用EST数据库进行检索[28]。通常来自于一个肽上的序列标签就足以鉴定蛋白质。同MALDI相比,纳升-ESI-MS/MS费时费力,而且在做ESI分析之前必须对样本进行脱盐处理。这些问题可以通过ESI-MS与HPLC联用得到解决。做ESI分析对样本浓度很敏感,用现代化的纳升-HPLC方法可以提供很高的局部肽片凝聚物,分离后的样本可以直接用于质谱分析,而不需要再分解。当分析混合物的时候,在质谱之前做LC分离尤其重要,因为它使得数据依赖的实验(DDE)成为可能,在DDE中,所有的离子都进入检测器进行测量,如果从HPLC到质谱之间出现一个峰的话,软件将自动从质谱转换到MS/MS模式并对产生的离子进行扫描。跟纳升-ESI相比,用这个方法可以从一份标本产生更多的MS/MS数据。Yates等已经详细叙述了如何进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS全自动蛋白检测的策略[29]。

  • 下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量占大豆蛋白复合纤维的比例来确定大豆蛋白复合纤维含量,有点不可理解?大豆蛋白复合纤维,目前是大豆蛋白和聚乙烯醇复合,仅仅用蛋白溶解后,剩余的聚乙烯醇的含量来‘推算’出来大豆蛋白复合纤维的含量,是有点欠妥,虽然规定了大豆蛋白复合纤维的蛋白含量,但是实际的大豆蛋白复合纤维中,大豆蛋白和聚乙烯醇含量的比例不一定的,也就是说比例不是那么固定的,这样的检测方法对检测公司来说是没有任何问题的,也是标准的一个进步,但对生产企业来说,确实是致命的,没有规定大豆蛋白复合纤维的配比必须是多少,这个检测很可能每批次大豆与羊毛动物纤维,蚕丝产品的标示和实际检测结果是不合格的。而实际生产添加的各成分是标准的?比如填充,大豆与羊毛动物纤维,蚕丝混合,生产企业是烘干后,按照回潮率计算,按重量比添加混合的,这样企业就根据这样的比例进行标示,这个是最准确的,也是最合理的?大家认为呢?[img=,690,172]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250916_01_2154459_3.png!w690x172.jpg[/img][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250913_01_2154459_3.png!w690x138.jpg[/img]

  • 重组蛋白是什么?融合蛋白和重组蛋白的区别

    [font=宋体][b]什么是重组蛋白?[/b][/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白[/b][/url]的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体][b]融合蛋白和重组蛋白的区别[/b][/font][font=宋体][font=Calibri]1[/font][font=宋体]、重组蛋白[/font][/font][font=宋体]重组蛋白是指应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。[/font][font=宋体][font=Calibri]2. [/font][font=宋体]融合蛋白[/font][/font][font=宋体][font=宋体]融合蛋白是指通过重组[/font][font=Calibri]DNA[/font][font=宋体]技术将你要表达的目的蛋白基因同表达载体上融合蛋白基因相连,这样表达出的蛋白质就会是同时具有目的基因蛋白和融合基因蛋白两个部分的重组蛋白。[/font][/font][font=宋体][font=宋体]融合蛋白与重组蛋白不是一个层次上对立的概念,融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。融合蛋白又称标签([/font][font=Calibri]Tag[/font][font=宋体]),常用的[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体]总结:在生物制药领域,重组蛋白具有较高的活性和纯度,更易吸收,安全性也更高的特点。重组蛋白的利用率也更高。[/font][font=宋体] [/font][font=宋体]为了生产重组蛋白,基因被分离并克隆到表达载体中。重组蛋白的生产需要蛋白表达系统、蛋白纯化系统和蛋白识别系统。[/font][font=宋体] [/font][font=宋体][b]获取重组蛋白的基本步骤:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]目标基因的扩增。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]插入克隆载体。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]亚克隆到表达载体中。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]转化到蛋白表达宿主中[/font][font=Calibri]([/font][font=宋体]细菌[/font][font=Calibri]([/font][font=宋体]大肠杆菌[/font][font=Calibri])[/font][font=宋体]、酵母细胞、哺乳动物细胞或杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞系统[/font][font=Calibri])[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]5.[/font][font=宋体]重组蛋白鉴定试验[/font][font=Calibri](Western blot[/font][font=宋体]或荧光[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]6.[/font][font=宋体]大规模生产。[/font][font=Calibri]([/font][font=宋体]大规模发酵[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]7.[/font][font=宋体]分离和纯化。[/font][/font][font=宋体] [/font][font=宋体]需要考虑多种因素:[/font][font=宋体][font=Calibri]1.[/font][font=宋体]选择哪个宿主系统?[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]如何分离和纯化重组蛋白?[/font][/font][font=宋体] [/font][font=宋体]选择适当的表达宿主或使用正确的纯化方法并不容易,应考虑目标重组蛋白的性质。下面列出了一些重要因素:[/font][font=宋体] [/font][font=宋体]? 膜结合[/font][font=宋体]? 溶解度[/font][font=宋体]? 单或多结构域[/font][font=宋体][font=宋体]? 大小[/font][font=Calibri]([/font][font=宋体]分子量[/font][font=Calibri])[/font][/font][font=宋体]? 表达位置[/font][font=宋体] [/font][font=宋体][font=宋体]对于大多数没有足够经验来表达和分离重组蛋白的人来说,重组蛋白的生产是非常耗时的。许多生物公司为各种不同规模的重组蛋白表达提供良好的服务,例如义翘神州[/font][font=Calibri]([/font][font=宋体]参考重组蛋白生产的详细服务清单)[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供重组蛋白和[url=https://cn.sinobiological.com/resource/protein-review/fusion-protein][b]融合蛋白[/b][/url]等相关信息,详情可以关注[/font][font=宋体][font=宋体]融合蛋白:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白生产:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font]

  • 整合蛋白和跨膜蛋白区别?跨膜蛋白制备详解

    [b][font=宋体]整合蛋白和跨膜蛋白定义:[/font][/b][font=宋体] [/font][font=宋体]整合蛋白和跨膜蛋白是两类重要的蛋白质,它们在细胞分子水平上起着重要的作用。[/font][font=宋体] [/font][font=宋体]整合蛋白,也称为内在蛋白或跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。它们是生物膜的基本结构成分,许多具重要生理功能的膜蛋白均属整合蛋白,如膜结合的酶类、载体蛋白、通道蛋白、膜受体等。[/font][font=宋体] [/font][font=宋体]跨膜蛋白,是可以跨越细胞膜的蛋白,它在细胞的信号传递系统中担当着重要的角色。跨膜蛋白在结构上可以分为单次跨膜、多次跨膜、多亚基跨膜等,它们具有能够跨越细胞膜的能力。[/font][font=宋体] [/font][b][font=宋体]整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异[/font][/b][font=宋体] [/font][font=宋体]①位置:整合蛋白主要存在于细胞质内,细胞核或其他非细胞膜结构中,它们容易在细胞中自由移动。而跨膜蛋白则嵌入细胞膜中,一部分位于细胞膜的胞外侧,另一部分位于细胞膜的胞内侧,形成了一个穿过细胞膜的通道。[/font][font=宋体][font=宋体]②结构:整合蛋白的结构通常由两个独立的部分组成,一个是靠近细胞膜的膜结合区域([/font][font=Calibri]TM[/font][font=宋体]),另一个是靠近细胞骨架的非膜结合区域([/font][font=Calibri]N-TM[/font][font=宋体])。当接受到外界的信号时,整合蛋白的[/font][font=Calibri]TM[/font][font=宋体]区域会被激活,把来自外界的信号转化为细胞内可以识别的信号,直接参与细胞信号传导系统中。[/font][/font][font=宋体]③功能:整合蛋白主要是用来从外界传达信号到细胞内,充当细胞与外界信号的桥梁。而跨膜蛋白则在细胞的信号传递系统中担当着重要的角色。[/font][font=宋体]总的来说,整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异,这些差异使得它们在生物体中扮演着不同的角色。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达与制备服务[/b][/url],制备流程图:基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜脂提取→膜脂增溶→蛋白纯化→质量检测,同时义翘拥有[/font][/font][b][font=宋体]三大跨膜蛋白制备平台[/font][/b][font=宋体],可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 跨膜蛋白与通道蛋白的区别:跨膜蛋白制备平台详解

    [font=宋体]跨膜蛋白是生物体内广泛存在的一类蛋白质,它们在细胞膜上以不同的方式与其相互作用,从而发挥各种生物学功能。根据不同的结构和功能,[/font][b][font=宋体]跨膜蛋白可以分为三种类型:通道型跨膜蛋白、受体型跨膜蛋白和泵型跨膜蛋白。[/font][/b][font=宋体] [/font][font=宋体][font=宋体]通道型跨膜蛋白是跨膜蛋白中最为简单的类型,它们主要的功能是在细胞膜上形成一些具有选择性通透性的孔道,使得离子和小分子物质能够通过。通道型跨膜蛋白具有多个跨膜域,通常由[/font] [font=宋体]α 螺旋和 β 折叠两种二级结构组成。α 螺旋通道如 [/font][font=Calibri]K+ [/font][font=宋体]通道能够容纳阳离子,β 折叠如离子泵[/font][font=Calibri]Na+/K+-ATPase [/font][font=宋体]能够承载各种离子。[/font][/font][font=宋体] [/font][font=宋体]受体型跨膜蛋白是一类比较复杂的蛋白质,它们能够接受信号分子的结合,从而调节细胞内的生物学路径。受体型跨膜蛋白通常由单个跨膜域和两个不同构的端基组成,其中一个端基是细胞外的受体结构域,能够特异性地与信号分子结合;另外一个端基是细胞内的调节结构域,能够将受体活性传递到细胞内部。受体型跨膜蛋白具有多种作用方式,如酪氨酸激酶受体,转录因子受体等。[/font][font=宋体] [/font][font=宋体][font=宋体]泵型跨膜蛋白是一类能够通过能量输入来驱动物质运输的蛋白质。它们能够将离子或者小分子物质从低浓度区域转运到高浓度区域,从而维持细胞内的化学平衡和稳态。泵型跨膜蛋白一般由多个跨膜域组成,并能借助外源性能量如[/font][font=Calibri]ATP[/font][font=宋体]进行运输。常见的泵型跨膜蛋白有[/font][font=Calibri]Na+/K+-ATPase, H+/K+-ATPase[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州提供跨膜蛋白制备平台,包括:[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][font=Calibri]/[/font][font=宋体]去垢剂技术平台[/font][font=Calibri]/Nanodisc[/font][font=宋体]技术平台。[/font][/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制