当前位置: 仪器信息网 > 行业主题 > >

滚动长量仪

仪器信息网滚动长量仪专题为您提供2024年最新滚动长量仪价格报价、厂家品牌的相关信息, 包括滚动长量仪参数、型号等,不管是国产,还是进口品牌的滚动长量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合滚动长量仪相关的耗材配件、试剂标物,还有滚动长量仪相关的最新资讯、资料,以及滚动长量仪相关的解决方案。

滚动长量仪相关的资讯

  • 教育部创新团队滚动支持推荐通知
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strong关于推荐教育部创新团队滚动支持的通知/strong/span/pp  各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局,有关部门(单位)教育司(局),有关高等学校:/pp  为稳定支持优秀创新团队,持续提升创新能力和综合竞争力,引领和支撑优势特色学科建设,根据《“长江学者和创新团队发展计划”创新团队支持办法》(教人〔2004〕4号)和《关于组织2013年度教育部创新团队结题验收工作的通知》(教技司〔2017〕32号)要求,拟对2013年度立项(培育)的优秀教育部创新团队给予滚动支持。有关事项通知如下:/pp  一、滚动支持条件/pp  1. 已按教技司〔2017〕32号文件要求,对2013年度立项(培育)的教育部创新团队进行了结题验收,且验收成绩为优秀。/pp  2. 截至2017年12月31日,团队带头人年龄一般不超过55周岁。如原带头人超龄,可推荐团队成员中符合条件的优秀青年骨干担任。鼓励面向国内外吸引顶级(拔尖)科学家担任团队带头人,年龄可适当放宽。/pp  3. 团队依托单位和主管部门能够保障滚动期建设经费每年100万元,鼓励采取多种方式加大投入力度。/pp  二、滚动推荐名额/pp  1. 凡是2013年度立项(培育)的教育部创新团队,符合滚动支持条件的均可推荐,不受名额限制。/pp  2. 对于2013年之前立项,经学校批准延迟到今年结题且符合滚动支持条件的优秀团队,也可申请滚动支持。/pp  三、滚动周期/pp  滚动支持一个周期为3年,从2018年1月1日至2020年12月31日。/pp  四、推荐和材料报送程序/pp  拟申请滚动支持的教育部创新团队须填写《教育部创新团队滚动支持申请表》(见附件),由团队依托学校审核盖章,电子化成PDF文件(文件命名格式为“学校名称-带头人姓名”),连同结题验收意见(PDF版本)于2017年6月10日前发送至科技司指定邮箱。/pp  联系人:史进程 王骁/pp  电子邮箱:tuandui@moe.edu.cn/pp  联系电话:010-66096685 010-66096298/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="line-height: 16px "/a href="http://img1.17img.cn/17img/files/201706/ueattachment/0b746662-d0dd-4094-8407-87599517dc51.doc" style="line-height: 16px "教育部创新团队滚动支持申请表.doc/a/pp style="text-align: right "  教育部科技司/pp style="text-align: right "  2017年6月1日/ppbr//p
  • 7实验室参与汽车轮胎滚动阻力测试比对
    汽车轮胎滚动阻力比对试验室工作会议日前在北京召开。会议认定2013-2014年度汽车轮胎滚动阻力测试比对试验室7家,国家橡胶轮胎质量监督检验中心作为唯一的第三方检测机构,分别获得了轿车和轻卡轮胎、载重汽车轮胎比对试验室的证书。  轮胎滚动阻力试验机由于其自身特性,不同机器之间的试验结果差别较大,不能进行轮胎滚动阻力水平的评价。为了解决这个问题,欧盟采取建立基准实验室的方 法,用同批次轮胎在9家不同实验室分别进行试验,取9家试验结果的平均值作为基准值,9家实验室通过一定的换算关系把各自的结果进行转换,使得到的结果能 够直接比较。  中国计量协会化工计控分会借鉴欧盟的方法,结合中国实际情况,建立了国内轮胎滚动阻力基准实验室网络,并向首批比对试验室颁发证书和牌匾。国家轮胎质检中 心也就此具备了完善的轮胎滚动阻力试验方法及数据评价体系,既可以按照欧盟限值法规和标签法规的要求提供测试数据,也可以按照国家标准方法提供权威的测试 结果。  比对试验室的成立,为国内轮胎试验室间建立数据相关性提供了有效途径,同时也为国内轮胎滚动阻力性能分级方法的研究铺平了道路。
  • 64个创新团队获教育部滚动支持 每项300万元
    p  日前,教育部公布2015年“创新团队发展计划”滚动支持名单,共计给予 64个建设效果显著、发展潜力大的教育部创新团队给予滚动支持。其中既包括北京大学、复旦大学等知名高校团队,也包括郑州轻工业大学、沈阳建筑大学、临沂大学等普通高校团队。/pp  资助期限为2016年1月至2018年12月,自然科学领域资助经费300万元,哲学社会科学领域150万元,中央部属高校由学校自筹经费支持,地方所属高校由主管部门和学校共同支持。/pp  通知中还指出:获滚动支持的团队应从团队工作积累和特色优势出发,围绕科学前沿和国家重大需求,科学规划研究目标和人才培养机制,加强中青年拔尖创新人才的培养和引进,进一步强化科教结合,努力营造自由宽松、求真务实的学术氛围。/pp style="TEXT-ALIGN: center"strong教育部办公厅关于公布2015年教育部“创新团队发展计划”滚动支持名单的通知/strong/pp style="TEXT-ALIGN: center"教技厅函[2015]88号/pp  有关省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局,有关部门(单位)教育司局,部属有关高等学校:/pp  为进一步支持优秀创新团队,持续提升创新能力,孕育重大标志性成果,经有关高校推荐,专家评审,我部决定对张正竹等 64个建设效果显著、发展潜力大的教育部创新团队给予滚动支持,现将有关事项通知如下:/pp  一、滚动支持团队的资助期限为2016年1月至2018年12月,自然科学领域资助经费300万元,哲学社会科学领域150万元,中央部属高校由学校自筹经费支持,地方所属高校由主管部门和学校共同支持。/pp  二、有关高校应按照我部《“长江学者和创新团队发展计划”创新团队支持办法》(教人〔2004〕4号)的规定,创造条件支持团队发展,规范过程管理,于2016年6月前组织建设论证,资助期满及时组织结题验收。/pp  三、获滚动支持的团队应从团队工作积累和特色优势出发,围绕科学前沿和国家重大需求,科学规划研究目标和人才培养机制,加强中青年拔尖创新人才的培养和引进,进一步强化科教结合,努力营造自由宽松、求真务实的学术氛围。/pp  附件:img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201511/ueattachment/81faefe6-2c1d-4770-91b5-0d4619ad4b76.docx"2015年教育部“创新团队发展计划”滚动支持名单.docx/abr//pp style="TEXT-ALIGN: right"  教育部办公厅/pp style="TEXT-ALIGN: right"  2015年10月12日br//p
  • 113个创新团队获教育部滚动支持 每项资助经费300万元
    日前,教育部公布2017年“创新团队发展计划”滚动支持名单,共计给予113个建设效果显著、发展潜力大的教育部创新团队给予滚动支持。其中既包括北京大学、复旦大学等知名高校团队,也包括浙江理工大学、昆明理工大学、石河子大学等普通高校团队。  资助期限为2018年1月至2020年12月,资助总经费300万元,中央所属高校从基本科研业务费和人才等专项经费中统筹安排,地方所属高校由主管部门和学校统筹支持。  通知中还指出:获滚动支持的团队应围绕国际科技前沿和国家重大需求,坚持“引领、融合、协同、开放”的发展理念,大力加强团队自身建设,积极承担国家重大科技任务,提升国际合作水平,用高水平科技成果支撑高质量学科建设和人才培养,努力建设有特色、高水平创新团队。  附件:2017年教育部“创新团队发展计划”滚动支持名单序号学校带头人研究方向资助期限资助金额1安徽大学朱满洲无机/有机杂化功能材料的可控制备及应用2018-2020年300万2北京大学邓宏魁干细胞与再生生物学2018-2020年300万3北京工业大学赵密土木工程抗震减震2018-2020年300万4北京航空航天大学向锦武长航时无人机关键技术2018-2020年300万5北京化工大学袁其朋生物资源的高效转化与利用2018-2020年300万6北京建筑大学张爱林大土木工程与地下建筑工程创新2018-2020年300万7北京交通大学李德才载运工具关键设备的磁性液体密封研究2018-2020年300万8北京林业大学张德强树木发育遗传调控与抗逆分子机制2018-2020年300万9北京师范大学薄志山能量转换与存储材料2018-2020年300万10北京协和医学院北京大学王洁基因分型为基础的肺癌个体化整治研究2018-2020年300万11北京中医药大学李彧中医药干预多器官纤维化与异病同治、同病异治科学内涵的研究2018-2020年300万12北京中医药大学时晶阿尔茨海默病及其神经变性病的中医药防治研究2018-2020年300万13大连海事大学匡海波港口协同发展与绿色增长2018-2020年300万14大连理工大学吕小兵小分子活化与仿生催化2018-2020年300万15大连医科大学刘强肿瘤干细胞的信号网络干预2018-2020年300万16第三军医大学杨桦严重创伤致肠稳态失衡机制及干预策略研究2018-2020年300万17第四军医大学陈吉华牙齿及颊面组织缺损修复材料研究与功能化改进2018-2020年300万18电子科技大学邓龙江隐身材料与技术2018-2020年300万19东北电力大学王擎能源有效利用与热力设备安全节能技术2018-2020年300万20东华理工大学陈焕文直接质谱方法研究2018-2020年300万21福建农林大学魏太云亚热带水稻重要病害致灾机制与调控策略2018-2020年300万22复旦大学葛均波缺血性心血管疾病的发生机理及防治2018-2020年300万23复旦大学龚新高计算物质科学2018-2020年300万24复旦大学张军中国经济的转型、发展与长期增长2018-2020年300万25复旦大学张卫集成电路新器件2018-2020年300万26广东外语外贸大学陈伟光中国参与全球经济治理机制与战略选择2018-2020年300万27广西大学范祚军中国-东盟区域发展2018-2020年300万28广州大学李志山结构隔震与减震(振)控制2018-2020年300万29广州医科大学王健COPD发病机制与防治系列研究2018-2020年300万30贵州大学许厚强高原山地畜禽种质资源发掘、保存与利用2018-2020年300万31贵州医科大学刘健认知功能障碍分子机制及临床研究2018-2020年300万32合肥工业大学吴信东多源海量动态信息处理2018-2020年300万33河北工业大学唐成春六方氮化硼制备及其应用关键技术2018-2020年300万34河海大学王沛芳水资源保护与生态修复2018-2020年300万35河海大学周海炜国际河流战略与情报监测研究2018-2020年300万36河南师范大学蒋凯绿色能源材料2018-2020年300万37华北科技学院尹尚先矿井水致灾机理及预警保障系统2018-2020年300万38华南理工大学彭明营新型玻璃光纤材料与器件2018-2020年300万39华南农业大学刘雅红兽用抗菌药的安全性评价研究2018-2020年300万40华南师范大学周国富类纸显示关键技术研究2018-2020年300万41华侨大学黄辉脆性材料加工技术与装备2018-2020年300万42华中科技大学陈建国心境障碍性疾病发病机制及干预策略2018-2020年300万43华中科技大学李亮脉冲强磁场科学与技术2018-2020年300万44华中科技大学史铁林微纳制造与纳米测量技术2018-2020年300万45华中农业大学郭文武园艺植物细胞工程与种质创新2018-2020年300万46华中师范大学彭双阶非线性偏微分方程及相关问题的研究2018-2020年300万47吉林大学卢革宇先进气体传感技术2018-2020年300万48昆明理工大学马文会有色金属真空冶金2018-2020年300万49昆明医科大学何黎高原光损伤性皮肤疾病机制及综合防治研究2018-2020年300万50兰州大学侯扶江草地农业系统耦合与管理2018-2020年300万51兰州理工大学朱彦鹏西北恶劣环境下土木工程防灾减灾研究2018-2020年300万52南京大学范从来经济转型期稳定物价的货币政策2018-2020年300万53南京大学陆延青基于人工微纳结构的新型光电器件2018-2020年300万54南京工业大学金万勤特种分离膜2018-2020年300万55南京农业大学李艳大豆生物技术育种研究2018-2020年300万56南京农业大学赵方杰植物营养生物学2018-2020年300万57南开大学卜显和无机固体材料的构筑及物质存储与能量转化2018-2020年300万58南开大学周启星污染生态地球化学2018-2020年300万59内蒙古农业大学韩国栋草地资源可持续利用的研究2018-2020年300万60内蒙古农业大学刘廷玺寒旱区水文过程与环境生态效应2018-2020年300万61宁夏大学王玉炯牛、羊重要传染病防控关键技术研究2018-2020年300万62青海大学李希来三江源生态演变与环境保护2018-2020年300万63清华大学朱纪洪飞行动力学与飞行控制2018-2020年300万64清华大学王建龙核废物处理2018-2020年300万65厦门大学黄培强杂环化学2018-2020年300万66厦门大学江云宝谱学分析2018-2020年300万67山东大学杨蕙馨产业组织与企业成长2018-2020年300万68山东大学沈月毛天然产物化学生物学2018-2020年300万69山东建筑大学张鑫建筑结构移位与加固改造2018-2020年300万70山西大学肖连团光与原子分子物理相互作用的量子效应2018-2020年300万71上海大学吴明红污染控制与环境毒理2018-2020年300万72上海交通大学曾赛星服务创新与绿色管理2018-2020年300万73沈阳农业大学陈温福北方粳稻核心科技创新与关键技术2018-2020年300万74石河子大学吕新绿洲现代农业精准技术研究与规模化应用2018-2020年300万75首都师范大学任东昆虫演化与环境变迁2018-2020年300万76首都医科大学杜杰大血管疾病转化医学研究2018-2020年300万77首都医科大学张罗鼻病基础和临床研究2018-2020年300万78四川大学杨胜勇小分子靶向药物设计合成与早期成药性评价研究2018-2020年300万79四川农业大学李学伟川猪遗传改良与安全生产2018-2020年300万80天津工业大学李建新新型中空纤维膜及其应用技术2018-2020年300万81天津科技大学邓天龙卤水资源综合利用2018-2020年300万82天津医科大学杨洁肿瘤微环境与肿瘤发生和转移2018-2020年300万83武汉理工大学华林先进汽车零部件技术2018-2020年300万84西安建筑科技大学牛荻涛现代混凝土结构安全性与耐久性2018-2020年300万85西安交通大学任晓兵智能及功能材料2018-2020年300万86西安交通大学郑庆华大数据多模态碎片化知识的挖掘、融合与应用2018-2020年300万87西北大学彭进业文化遗产数字化保护与传播2018-2020年300万88西北民族大学马忠仁动物医学生物工程2018-2020年300万89西南交通大学李志林高速铁路运营安全空间信息技术2018-2020年300万90湘潭大学裴勇先进光电与超分子功能材料2018-2020年300万91湘潭大学钟建新微纳能源材料与器件物理2018-2020年300万92新疆大学孟吉翔组合优化与图论2018-2020年300万93新疆医科大学马依彤新疆少数民族心血管疾病基础及综合防治研究2018-2020年300万94云南大学张洪彬天然产物及类天然产物合成2018-2020年300万95长安大学付锐人-车系统安全理论与技术2018-2020年300万96浙江大学韩高荣功能材料微纳结构调控及能源应用2018-2020年300万97浙江工业大学陈建孟生物净化与转化2018-2020年300万98浙江理工大学陈本永微/纳驱动、测量及其应用2018-2020年300万99浙江农林大学柳参奎后备耕地修复技术与盐碱逆境分子育种基础2018-2020年300万100郑州大学贾瑜低维量子物理与量子功能材料2018-2020年300万101中国科学技术大学穆杨污染控制与资源化2018-2020年300万102中国科学技术大学姚雪彪细胞动力学和化学生物学2018-2020年300万103中国矿业大学周福宝煤矿瓦斯与煤自燃防治2018-2020年300万104中国矿业大学(北京)代世峰煤的微量元素地球化学2018-2020年300万105中国农业大学韩鲁佳农业生物质利用的工程基础2018-2020年300万106中国农业大学李洪文保护性耕作技术与装备2018-2020年300万107中国医科大学曹流细胞稳态维系与衰老性疾病2018-2020年300万108中南财经政法大学姚莉、徐汉明社会治理法治建设2018-2020年300万109中山大学李宝军微纳光子学材料与器件及光操控2018-2020年300万110中山大学马骏基于分子机制的鼻咽癌个体化治疗2018-2020年300万111中山大学毛宗万生物无机化学2018-2020年300万112重庆大学卢义玉非常规天然气高效开发与利用2018-2020年300万113遵义医学院龚其海老年痴呆的发病机制及防治研究2018-2020年300万
  • 青岛市质量协会发布《轮胎滚动阻力试验机(测力法和扭矩法) 校准规范》团体标准
    各有关单位:按照《青岛市质量协会团体标准管理办法》(试行)的规定,青岛市质量协会团体标准《轮胎滚动阻力试验机(测力法和扭矩法)校准规范》(T/QAQ 007—2023)已经完成相关工作程序,现予以发布。青岛市质量协会2023年9月20日                                                              关于发布《轮胎滚动阻力试验机(测力法和扭矩法)》团体标准的公告.pdf
  • 教育部公布高等学校学科“111基地”滚动支持名单
    p style="text-align: center "strong教育部科技司 国家外国专家局教科文卫专家司关于公布高等学校学科创新引智基地滚动支持名单的通知/strong/pp有关高等学校:/pp  根据《高等学校学科创新引智计划实施与管理办法》(教技函〔2016〕4号,以下简称管理办法)相关规定,“111计划”管理办公室组织专家对2011年立项建设的高等学校学科创新引智基地(以下简称“111基地”)进行了验收。为进一步支持基地建设,提高国际化合作水平,培育重大创新成果,持续提升创新能力和国际影响力,有力支撑“双一流”建设,教育部科技司和国家外国专家局教科文卫专家司决定对建设成效显著的13个“111基地”给予滚动支持(名单见附件),现将有关事项通知如下:/pp  一、完善发展规划。各“111基地”要以此次验收工作为契机,充分研究吸收验收专家意见,完善未来5年发展规划和年度工作计划,进一步聚焦国家重大需求、世界科技前沿和经济主战场,凝炼并落实发展目标和主要任务。/pp  二、提升国际合作水平。各“111基地”要把引智工作与高校人才培养、科学研究、社会服务、文化传承等职能有机结合起来,充分发挥引智效益。要提高服务外国专家水平,拓宽引智渠道,营造国际化的研究环境和氛围,广泛吸引国际学术人才,开展高水平、实质性、可持续科研合作。/pp  三、加强基地管理。各依托高校要按照管理办法要求,成立“111计划”领导小组统筹协调各相关部门,组建基地管理委员会、专家咨询委员会负责基地的日常管理、把握基地发展建设方向,形成规范顺畅的管理体系,强化管理责任,保障配套条件落实到位。/pp  四、“111基地”滚动支持周期为5年,5年期满后将对基地进行评估。基地每年需按要求通过“外国文教专家项目管理系统”(http://202.119.81.147:8006/)上报引智基地工作年度报告。/pp  附件:高等学校学科创新引智基地滚动支持名单/pp style="text-align: right "  教育部科学技术司 国家外专局教科文卫专家司/pp style="text-align: right "  2017年6月27日/pp style="text-align: center "strong高等学校学科创新引智基地滚动支持名单/strong/ptable cellspacing="0" cellpadding="0" border="0" align="center"tbodytr style=" height:56px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="59" height="56"p style="text-align:center"strongspan style="font-size:19px font-family:仿宋"序号/span/strong/p/tdtd style="border-width: 1px 1px 1px medium border-style: solid solid solid none border-color: windowtext windowtext windowtext currentcolor -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="98" height="56"p style="text-align:center"strongspan style="font-size:19px font-family:仿宋"项目编号/span/strong/p/tdtd style="border-width: 1px 1px 1px medium border-style: solid solid solid none border-color: windowtext windowtext windowtext currentcolor -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="385" height="56"p style="text-align:center"strongspan style="font-size:19px font-family:仿宋"基地名称/span/strong/p/tdtd style="border-width: 1px 1px 1px medium border-style: solid solid solid none border-color: windowtext windowtext windowtext currentcolor -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="95" height="56"p style="text-align:center"strongspan style="font-size:19px font-family:仿宋"依托单位/span/strong/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"1/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-01/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"数学科学中的若干前沿问题及其应用br/ 学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"清华大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"2/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-03/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"作物遗传改良与分子育种学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"中国农业大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"3/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-04/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"纤维材料先进制造技术与科学/span/pp style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"东华大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"4/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-05/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"新型人工电磁材料(Metamaterial)br/ 学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"东南大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"5/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-06/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"应用微生物及其生物制造技术/span/pp style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"江南大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"6/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-07/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"药物生物合成和生物转化学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"中国药科大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"7/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-09/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"环境考古学学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"山东大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"8/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-10/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"先进能源、信息与医用材料学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"武汉大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"9/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-12/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"癌变与侵袭原理学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"中南大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"10/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-13/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"建筑物理环境与建筑节能学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"华南理工大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"11/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-14/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"无线通信与信息编码学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"西南交通大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"12/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-15/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"集成电路与集成系统学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"电子科技大学/span/p/td/trtr style=" height:50px"td style="border-width: medium 1px 1px border-style: none solid solid border-color: currentcolor windowtext windowtext -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="59" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"13/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="98" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋"111-2-17/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="385" height="50"p style="text-align:center line-height:33px"span style="font-size:19px font-family: 仿宋 color:black"药物化学学科创新引智基地/span/p/tdtd style="border-width: medium 1px 1px medium border-style: none solid solid none border-color: currentcolor windowtext windowtext currentcolor padding: 0px 7px " width="95" height="50"p style="text-align:center"span style="font-size:19px font-family:仿宋 color:black"兰州大学/span/p/td/tr/tbody/table
  • 回顾近二十年我国齿轮量仪的发展(下)
    前文回顾:近二十年我国齿轮量仪的发展(上)5 CNC大齿轮测量中心和超大齿轮测量系统是CNC齿轮测量中心在大齿轮及超大齿轮测量的扩展和创新(1)1989年,工具所推出的局部CNC式1.2m大齿轮测量仪CZE1200D,如前所述,该仪器由单片式计算机控制步进电机二联动,首次实现齿轮量仪螺旋线的CNC数控数字化测量。其改进型为2015年的CZE1200DA齿轮测量仪(图24);图24 工具所CZE1200DA齿轮测量仪(2)2004年,哈量国内首次开发2m CNC大齿轮测量仪CNC3929,改进型为CNC L200(图25);图25 哈量L200 CNC大齿轮测量中心(3)2011年,精达创新设计开发2.5mCNC大齿轮齿轮中心,其改进型为JLR300(图26),在国内创新采用了三坐标三联动(θ,X,Y)的渐开线成形原理,实现沿端面啮合线对大齿轮渐开线齿廓精度的测量,即“NDG”法向展成测量原理;精达公司将该原理创新应用于小模数齿轮的测量中,取得了良好效果。图26 精达JLR300大齿轮测量中心(4)2017年,哈尔滨同和光学公司展出精密CNC大齿轮测量中心T150A(图27)。作为哈尔滨工业大学精密超精密加工和测量设备领域的科技成果产业化基地的哈尔滨同和光学展出的大齿轮测量中心,集成了超高精度气浮轴系、气浮托盘调心技术及直线电机驱动等先进技术。近年不少国产大型CNC齿轮测量中心,如哈量CNC L200(见图25)、精达JW型(图28)和智达ZD(图29)型大齿轮测量中心,都采用了5轴坐标系统结构布局,即径向坐标采用了上下二层,既简化机械结构又可减少测头阿贝误差,具有提高仪器稳定性和精度等优点。智达2020年新开发的Z系列大齿轮测量中心甚至采用了三种齿廓测量原理:法线极坐标、极坐标和啮合线测量原理,以适应不同用户需求。仪器采用全新分层控制理念的3U架构全闭环控制器实现动态位置全闭环控制,仪器性能得到了提升。图27 哈尔滨同和T150A齿轮测量中心图28 精达JW型齿轮测量中心图29 智达ZD型齿轮测量中心(5)2013年,北京工业大学成功开发了用于超大齿轮的双测量装置集成综合测量系统——“激光跟踪+三维平台”在位测量系统(图30),首次进行了大胆创新和探索,在超大齿轮的测量理论、技术和实践上,取得了令人可喜的成果。(a)(b)(c)图30 北工大超大齿轮旁置式双测量装置集成综合测量系统6 自动化智能化齿轮测量分选仪器/系统实现CNC齿轮测量中心在齿轮生产现场在线测量(1)2005年,工具所推出车间用齿轮在线三维双啮测量分选机CQPF2000, 随后哈量—北工大也成功开发出3501齿轮分选机(图31),能在线实现批产齿轮径向综合三维误差测量及分选功能。图31 工具所及北工大—哈量齿轮三维双啮测量机(2)2013年,精达为东风汽车变速箱生产线开发了JDFX-1型齿轮自动分选机,用机械手实现半自动盘/轴类齿轮的双啮检测和分选。2015年精达、智达及金量展出风格迥异的双啮式齿轮自动/半自动分选机(图32)。2015年,南京二机床展出了由六轴机器人操作的“智能化齿轮加工岛”(见图5),在实现齿轮无人化双啮自动检测的同时,通过网络连结,能根据测量结果进行反馈,对系统中的数控滚齿机和剃齿机的加工参数进行智能化调整后再加工,实现批产齿轮闭环质量控制与制造,在我国圆柱齿轮制造业的数字化、智能化和自动化中树立了发展标杆。哈量于2017年推出具有时代感的3503齿轮分选机(图33)。此外还有2005年秦川机床推出的在数控磨齿机上的数字化在机测量装置,近年在国内也得到重视,国产全自动流水线齿轮分选机的开发发展迅速。其中,哈尔滨精达和智达(图34)都有相应产品系列相继问世,服务于齿轮制造企业。以上齿轮分选机基本上都是以齿轮双啮仪为检测仪器。在提升齿轮双啮仪的自动误差补偿功能上,精达于2017年展出了获得专利的补偿式齿轮智能双面啮合检查仪产品,既提高仪器测量精度也满足了国际市场标准要求,该双啮仪的补偿功能引起行业的关注与好评。(a)(b)图32 精达半自动在线分选机(a)(b)图33 哈量3503齿轮分选机(a)和秦川机床在机测量(b)(a)(b)图34 精达JFE全自动流水线齿轮分选机(a)及智达2020年为浙江双环传动改造的日本制造桁架式齿轮在线检测分选设备(b)(3)2020年,智达为株洲齿轮有限公司提供了2台六轴机器人齿轮在线快速智能检测系统(见图6),集成了包括国产CNC齿轮测量中心和齿轮双啮测量仪以及意大利光学图像测量仪在内的3台检测功能各异的齿轮精密测量仪器,实现在线轴类齿轮零件的精度检测和质量统计及分选,充分显现了我国齿轮在线检测成套技术和装备的开发制造能力,在数字化、智能化和自动化方面已经提升到了一个崭新高度。7 齿轮整体误差测量仪技术传承难能可贵,新的发展令人期待和鼓舞1970年前后,由工具所黄潼年为首的我国齿轮制造与测量业界众多科研技术人员共同努力,创新开发的成套齿轮整体误差测量技术,致力于研究分析,力图探索齿轮的几何形状及位置精度和齿轮的啮合运动综合精度之间的因果关联。齿轮整体误差技术目前可大致分为三类:即采用坐标式几何解析测量法的齿轮静态整体误差测量技术、采用啮合滚动点扫描测量法的运动态齿轮整体误差测量技术以及与虚拟数字化测量齿轮或虚拟数字化配对工件齿轮进行啮合滚动的虚拟啮合滚动点扫描测量技术,三者都归类于运动几何测量原理。测量项目有:静态齿轮整体误差曲线族、运动态齿轮整体误差曲线族以及虚拟齿轮整体误差曲线族。期待今后会有传动动力态齿轮整体误差测量技术及相应曲线出现。(1)2002年,工具所持续开发锥齿轮整体误差测量技术,建立了锥齿轮局部互换性测量的相对测量体系,实现锥齿轮齿廓二次局部基准误差的补偿(图35),曾应用于青岛精锻齿轮厂。(a)(b)图35 工具所锥齿轮整体误差测量仪及局部互换性测量体系(2)至2007年,工具所不断改进并生产齿轮整体误差测量仪系列产品,包括CZD1200EA齿条式圆柱渐开线齿轮整体误差测量仪(见图24)、CZ450蜗杆式圆柱齿轮整体误差测量仪(图36)及用于小模数圆柱齿轮的CZ150蜗杆式测量仪(图37)。图36 工具所CZ450齿轮整体误差测量仪图37 工具所CZ150小齿轮测量仪(3)2015年,工具所和北工大相继成功开发出齿轮单面啮合差动式小模数齿轮整体误差测量仪(图38)。(4)2015年,北工大在蜗杆式圆柱渐开线齿轮整体误差测量理论和啮合计算上取得重大突破,在大幅提高齿轮误差测量范围评定精度和可靠性的基础上,成功开发出齿轮在线快速测量机及相应测量系统(图39)。测量机采用蜗杆式间齿单啮整体误差测量原理,集成了实施自动上下被测齿轮工件的工业机器人,组成了可用于汽车齿轮生产线的在线检测系统。该齿轮在线自动检测系统已于2015 年底在北齿和浙江双环二个企业的生产现场中得到了实际使用。图38 差动式整体误差测量仪图39 北工大齿轮在线测量机(a)(b)图40 基圆智能小模数齿轮影像测量系统和虚拟整体误差曲线(5)2021年,原北工大博士后和基圆智能科技(深圳)有限公司合作,在2015年齿轮整体误差测量与啮合计算的突破成果基础上,成功开发出CVGM小模数齿轮测量软件和配套的小模数齿轮机器视觉影像测量系统(图40),实现微小/小模数齿轮的在线快速测量。该CVGM软件系统除了采用齿轮整体误差测量理论,能够按照齿轮精度标准迅速计算得到传统小模数齿轮的单项几何误差,还能以虚拟(静态、运动态)齿轮整体误差(曲线)方式表达测量误差数据,从而大大扩展了该测量系统的齿轮误差分析和综合能力,为我国批量小模数精密齿轮快速测量开创了一个新局面,也大大丰富了我国开创的齿轮整体误差测量理论和实践。8 齿轮传动链综合测量仪呈现良好势头,开辟了齿轮测量仪器发展新天地从单个齿轮的几何精度测量与质量评价,进入到对齿轮副传动链的使用性能测试和评估,这可以看成是我国齿轮质量保障体系更为重要的一个环节和阶段,是我国齿轮制造从单个零件制造向关键传动部件制造发展质量保证提升的重要标志。近年国产齿轮传动链综合测量仪的蓬勃发展也揭示了这个发展趋势。秦川机床工具集团近期荣获的2021年度中国机械工业科学技术进步奖一等奖的项目“工业机器人精密减速器测试方法与性能提升技术研究“ ,充分显示了我国在国产减速器测试技术与实践领域所取得的丰硕成果。(1)2005年,重庆工学院和内江机床厂合作开发并提供的YKN9550锥齿轮滚动检验机产品(图41);图41 YKN9550滚动检验仪(2)2017年,北京国际机床展览会上,精达首次展示了国产齿轮传动装置/传动链综合测量仪产品(图42),该仪器可实现齿轮装置运动性能和传动性能的综合检测,包括速度、载荷及温度等参数变量下传动链综合性能的精确测量与分析。智达展示了为谐波减速器开发的综合性能测试仪(图17)。图42 精达传动链综合检测仪(3)2019年,北工大、北京市精密测控技术及仪器工程研究中心在国际机床展览会上展出新开发的RV减速器传动链测量仪和小模数锥齿轮综合误差滚动测量仪(图43a);2021年又开发了用于额定输出扭矩达1500Nm的RV减速器综合性能测试台(图43b)。该测试台集先进传感器、数据采集、控制技术与一体的高精度测试仪器,可测量RV减速器的传动误差、回差、扭转刚度、背隙、空载摩擦扭矩、启动转矩、反向启动转矩、传动效率等多种性能参数,选配不同附件可实现多种规格RV减速器的综合性能测试,已为厦门理工大学、集美大学及河南科技大等提供了产品。(a)(b)图43 北工大精密中心RV减速器综合性能测试仪及测试台9 一级齿轮精度基准的精心制作创建,成绩斐然;非渐开线基准的新途径探索,别有洞天(1)大连理工王院士团队通过几十年埋头实干,以工匠精神铸造出我国精品齿轮样板:研制出一级精度渐开线基准样板(图44)和标准齿轮;成套的超精加工测量理论、超精加工测量技术和制造工艺、成套超精加工的技术装备,为我国齿轮精加工和超精加工奠定了坚实基础。图44 大连理工一级精度渐开线基准样板(2)近年国家计量院研制开发了我国首个国家级直径1m齿轮形渐开线齿轮精度基准(图45),其技术参数供参考(见表1)。表1 中国计量院标准大齿轮参数图45 计量院基准齿轮(3)北工大研制开发了我国非渐开线齿廓精度基准:2011年开发的双球式非渐开线齿廓精度样板和2021年的双轴圆弧形齿廓精度样板(图46)。尝试探索一条新的途径来解决高精度及超高精度渐开线实物基准,尤其是解决大尺寸高精度渐开线实物基准的制造难题,以利于更切实地建立起具有我国特色的大尺寸齿轮几何精度的实物溯源体系。(a)(b)图46 北工大双球和双轴圆弧非渐开线样板10 结语北京国际机床展览会作为我国机床工具制造业改革开放的窗口和平台,是我国机床工具行业技术进步和发展的重要标杆和旗帜。自1989年创办以来,北京国际机床展览会是迄今为止我国规模最大、历时最久的机床工具展览会。经过多年不懈努力,已荣登当今世界四大国际机床工具展览会之列, 成为推动我国机床工具行业对外技术交流和商贸合作的重要平台。近20年来,北京机床展览会上真切展现了我国精密数控齿轮量仪的发展历程,揭示出我国精密数控齿轮量仪的发展方向是数字数控化、信息网络化、自动智能化,集成融入生产制造全过程是必由之路;从被动地在计量室进行齿轮精度质检,到生产一线现场批量齿轮的在线自动化快速检测,再进一步融入生产过程,通过测量数据处理实时反馈调整加工参数、实施齿轮的闭环制造,甚至实现了包括齿轮刀具在内的闭环齿轮物联网制造系统的建立。作者不能不由衷感叹我国齿轮量仪制造行业所取得的可喜成就和坚守实干敬业的奋发精神,更体会到党和政府领导下改革开放方针政策的英明正确。“制造业是国民经济的主体,是立国之本、兴国之器、强国之基。十八世纪中叶开启工业文明以来,世界强国的兴衰史和中华民族的奋斗史一再证明,没有强大的制造业,就没有国家和民族的强盛。打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。” 为响应“中国制造2025”国家发展战略,支持并强化国产齿轮量仪制造业关键部件国产化精制化和齿轮测量与加工制造信息的网络闭环智能化,打造具有国际竞争力的齿轮量仪制造业,是我国齿轮制造业大国向齿轮制造业强国发展的必由之路。近来由北工大石照耀教授牵头的“小模数粉末冶金齿轮(MM/PM)高速高效大规模制造成套技术与产业化”项目,荣获“2021年度广东省科学技术奖”科技进步一等奖。该项齿轮制造成套技术与产业化的成功实施,显示了我国向齿轮制造强国目标阔步前进的强劲步伐。
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 又一台北斗仪器CA500动态接触角测量仪走进汇富研究所,测试涂料粉末的接触角
    又一台北斗仪器CA500动态接触角测量仪走进汇富研究所经过多家对比,汇富研究所最终确认CA500动态接触角测量仪的合同,主要测试涂料粉末的接触角。CA500动态接触角测量仪是整体倾斜方式测量滚动角,通过测量液滴在固体表面上的滚动角度来说明固体表面的润湿性能。滚动角是指液滴在固体表面上滚动的角度,液滴越容易在表面上滚动,滚动角度越小,表明固体表面越容易被液滴湿润。液滴在固体表面上的润湿性能受到固体表面的化学性质、物理形态、表面能等多种因素的影响,通过测量滚动角可以定量评价不同固体表面的润湿性能,并比较它们之间的差异。这对于材料表面处理、涂层设计、润滑材料开发等具有重要的指导意义,能够帮助科研人员了解材料表面的物理化学特性,并通过优化表面结构和调节表面能提高材料的润湿性能。接下来分享交付CA500动态接触角测量仪过程中的快乐:出发,果然去交机的路上空气都是甜的!现场认真的学习CA500动态接触角测量仪的相关操作。愉快的交机顺利完成,再次感谢汇富研究所信任,北斗仪器一定会继续扬帆起航,只做高品质接触角测量仪,与客户一起成长,解决更多客户的难题痛点。
  • 【新品发布】Biolin Theta系列光学接触角测量仪全新上市
    Theta Flow光学接触角测量仪Theta Flow是一款高级接触角测量仪,适用于高要求的表面研究和质量控制。用户友好,兼具高水平的自动化和准确度,通过配置的高端摄像头、图像增强和传感器,大幅提高测试精度,Theta Flow给大家带来全新的接触角测量体验。与Theta Flow同属Biolin Attension系列的Theta Flex接触角测量仪在2020年“红点产品设计大奖”中凭借其突破性的设计赢得了年度“红点设计奖”(Red Dot: Best of the Best),红点设计奖讲究创新设计,是红点产品设计大奖的优异奖项。完整的测量功能• 静态接触角• 动态接触角• 滚动角• 表面自由能• 表面张力• 界面张力• 批处理接触角• 粗糙度修正接触角• 界面流变(粘弹性)• 高压和高温测量• 单纤维接触角自动化水平达到新高相机全自动对焦,确保图像始终保持清晰;自动表面定位,可将样品移动到不同的测量位置;并使用业界领先的OneAttension软件自动生成结果。这些特点使光学接触角测量仪的自动化达到了一个新的水平,在简化测试的同时提高了实验精度。 准确性和用户独立性(无人为因素干扰)Theta Flow配备的相机分辨率高达500万像素,采用DropletPlus技术实现图像增强,传感器可跟踪周围环境(温度、湿度)以获得良好的可追溯性,这些功能使Theta Flow可提供高度准确的结果,而可靠的数据也成为独立于用户测量的关键组成部分。 触摸屏易于使用Biolin Theta Flow率先配备的内嵌式触摸显示屏改善了用户体验,使测量准备工作处理起来超级顺畅。从吸液到更换样品的所有步骤都可以在几秒钟内轻松完成。 Theta Flow可选附件:3D 形貌模块:可自动测量样品粗糙度和接触角,并得到粗糙度修正接触角,研究粗糙度对润湿性的影响。高压腔:可在400 bar压力和200 ℃温度下进行测试。专为提高采收率和超临界流体方面的应用而设计。振荡液滴模块:可以自动测量界面膨胀粘弹性,进行界面流变研究,适用于气-液界面和液-液界面。整机倾斜框架:用于自动测量动态接触角(前进角、后退角)和滚动角。自动皮升滴液器:用于非常小面积样品的接触角测量和喷墨应用,可自动分配皮升级液滴。温控单元:控制环境温度,用于接触角和表界面张力测试,多种温控单元可选。
  • 金蓉园实验室滚瓶机粉墨登场,一机在手,实验不愁!
    湖南金蓉园仪器设备有限公司近期向市场推出的实验室滚瓶机不但迅速获得了国家专利证书,也得到了市场积极响应。一机在手,实验不愁,该款设备兼具实验室搅拌、混匀、球磨、洗涤、抛光、烘干等功能,不但减轻了科研人员劳动强度,提高了工作效率,而且减轻了实验室粉尘、有害气体等职业危害。实验室滚瓶机是将一个样品或数个样品装在密封的滚瓶中,样品通过滚瓶快速滚动来实现搅拌、混匀、球磨、洗涤、抛光、烘干等功能,是材料、化学、生物、环境或第三方检测等实验室不可或缺的设备,滚瓶和样品架款式众多,性价比高。实验室滚瓶机的搅拌功能比较磁力搅拌具有样品量大,混合均匀等特点,滚瓶中可以加入钢珠或玛瑙珠增强搅拌效果,比较电机搅拌可以做到样品全密封,可以使用一次性塑料滚瓶,免除清洗电机搅拌之苦,实验室滚瓶机的搅拌功能是涂料实验室、石墨烯浆料、新能源材料、土壤等实验室的极佳选择。样品均匀程度对于材料实验室和检测实验室极其重要,实验室滚瓶机的混匀功能不但适合于液体混匀,也适合于粉末混匀,不但适合于大样品量混匀,也适合于数个内插管的混匀。通过给实验室滚瓶机中样品加入大小不同钢球或其它材质研磨球,以实现比行星球磨机更大量样品的研磨,而且操作比行星球磨机的操作更方便,噪音比较行星球磨机有大幅降低。实验室滚瓶机的洗涤、抛光、烘干原理也类似如上上述,主要特点是滚瓶耐腐蚀、塑料滚瓶金属离子本底极低、工作过程全密封不产生异味、操作简单、温度和转速控制精准。 湖南金蓉园仪器设备有限公司是一家15年专注实验室设备生产的高新技术企业,聚焦于市场空白,开发有竞争力的国产仪器,公司决定在实验室滚瓶机促销期间给科研机构提供二个月免费试用机会。
  • 新品推荐---LAUDA LSA100 全自动接触角测量仪
    LSA100全自动接触角测量仪由德国LAUDA Scientific公司研发生产,是LSA系列光学接触角测量仪中扩展性最强的仪器,可以满足样品和测量环境的特殊需求。顶视与侧视技术的完美结合可以更准确、更完美地测量接触角,大大提高了接触角的精度。独特的X轴针架和视频系统设计,拓宽了聚焦范围,更适合样品的多样性测量。LSA100全自动接触角测量仪具有功能强大,扩展性强,自动化程度高,应用广泛等优点。LAUDA Scientific LSA系列光学接触角测量仪将为您所有的应用找到完美的解决方案,如质量检验、高端研究等。所有LAUDA Scientific仪器都为其应用领域提供了精确性和可靠性,并且可以根据客户的要求,提供匹配的解决方案。LSA100全自动接触角测量仪的主要测量性能如下:测量静态、动态接触角测量滚动角测量表面、界面张力仪计算固体的表面自由能及其组成全自动测量临界胶束浓度(CMC) 基于光学视频法的接触角和表面张力测量的精度在很大程度上取决于软件算法。LAUDA Scientific为您提供适用于各种应用的软件包,适用于不同的任务和附件。LSA100全自动接触角测量仪的专用分析软件包及性能详情如下:接触角测量软件:静态接触角测量、动态接触角测量、滚动角测量、特殊基线接触角测量固体表面自由能计算软件悬滴法表面/界面张力测量软件顶端视频系统测量接触角软件全自动CMC测量软件 LSA100全自动接触角测量仪的独特优点:X、Y、Z轴可精确定位的样品台 X、Y、Z轴可精确定位针架,独特的X轴针架精确定位设计全自动测量临界胶束浓度(CMC)顶视法与侧视法同时测量接触角非接触式液体注射系统高速度高分辨率视频系统360°全自动倾斜台循环浴或半导体控温可选配温度控制单元、手动或电动斜板等蓝光LED侧视光源及红光LED光源,软件可控制光强的连续变化
  • 客户见证---LAUDA Scientific光学接触角测量仪入驻中科院宁波材料所
    在新年即将到来之际,东方德菲公司工程师在中国科学院宁波材料技术与工程研究所顺利安装调试了一台德国LAUDA Scientific公司生产的OSA60光学接触角测量仪。陆之毅研究员带领的多功能催化材料团队在氧气还原催化电极,电化学有机分子催化电极方向开展了深入的研究。在电极材料的润湿表征方面经常会用到带滚动角测量功能的光学接触角测量仪。他们实验室这次添置的德国LAUDA Scientific公司OSA60型接触角测量仪满足了用户在经费不太充裕的条件下高质量完成全自动滚动角测量的实验目的,而且预留了不同的电动注射功能接口。今后可以方便的升级功能,解决了当前实验的紧迫问题,用户感到非常满意。宁波材料所以新材料研究为核心,是华东地区新材料应用技术研发和规模产业化装备研究的龙头单位。作为东方德菲的老用户,我们非常了解用户的实际需求,所以一直能够本着从用户角度出发的思路,提供最适合用户的解决方案和优质的服务。
  • 东方德菲推出特惠产品LSA60 pro---高速视频接触角测量仪+电动斜板附件
    新冠病毒疫情期间,东方德菲公司结合当前形势,与德国Lauda Scientific公司商议推出一款高速多功能视频光学接触角测量仪LSA60 pro---电动倾斜台与高速测量相机相结合,特殊时期特价销售,打造出高性价比产品。同时德国Lauda Scientific公司在疫情期间打通特殊生产和运输渠道,将确保客户3周内使用上高性价比的多功能接触角测量仪。LSA60 pro视频光学接触角测量仪是由德国LAUDA Scientific公司生产的一款多功能的接触角测量仪器。它可以准确可靠的完成接触角测量,滚动角测量、表面自由能测量和界面张力测量等常用的测量任务。LSA60pro 视频光学接触角测量仪功能:静态接触角的测量特殊基线接触角测量动态接触角的测量滚动角的测量高速记录吸收材料的吸收过程实时跟踪显示液滴体积变化液体表面张力的测量液体界面张力的测量固体表面自由能的计算LSA60pro 配置:- 高速高分辨率视频系统- X轴精确导轨定位视频调焦台- Y/Z两轴精确导轨定位样品台- Y/Z轴精确导轨定位注射平台- 自动注射单元- 自动倾斜台- SurfaceMeter 专业测量软件 特点:高速视频接触角仪+ 电动斜板附件,特殊价格,3周到货期特价仅限于疫情的特殊时期,感兴趣的客户请与我们联系。东方德菲联系电话:400-860-5168转0629
  • 东方德菲演示实验室又添新成员——德国Lauda视频光学接触角测量仪
    近日,东方德菲公司演示实验室又添一位新成员——德国Lauda视频光学接触角测量仪,我公司演示实验室可以直接为感兴趣的客户提供仪器演示、免费样品测试等服务。欢迎对Lauda视频光学接触角测量仪感兴趣的客户惠临参观。 德国Lauda视频光学接触角测量仪是一款功能全面、性能卓越的测量仪器。它不仅可以准确可靠地完成接触角、表面自由能和界面张力测量等常见的测量任务,而且在高速动态、多功能测量方面显示出其明显的优势,可以完成从极短界面寿命起的动态表界面张力测量、视频Washburn法粉末/多孔材料的动态接触角测量和全自动临界胶束浓度测量等任务。Lauda视频光学接触角测量仪广泛应用于界面化学、材料科学等专业实验室,是科研工作者的有力工具。 Lauda视频光学接触角测量仪的主要测量功能:* 测量静态接触角 - 侧视测量静态接触角 - 俯视测量静态接触角 - 侧视+俯视双视测量静态接触角 - 侧视测量弯曲基线静态接触角 - 俯视测量弯曲基线静态接触角 - 侧视测量单一纤维静态接触角* 测量动态接触角 - 侧视针入法测量动态接触角 - 侧视斜板法测量动态接触角 - 侧视斜板法测量滚动角及滚动速度 - 侧视斜板法测量滑动角及滑动速度 - 俯视针入法测量动态接触角 - 滞留天平法测量动态接触角 - 视频washburn法测量粉末/多孔材料的动态接触角* 测量液体的表面/界面张力- 悬滴法测量液体的静态/动态表界面张力- 滴体积法测量动态表面张力- 液桥法测量表面/界面张力* 滞留天平法测量液固界面滞留力* 全自动测量临界胶束浓度(CMC)* 测量液体的界面粘弹属性和弛豫分析* 分析液体表面张力及其组成* 在线测量表面/界面张力* 计算固体的表面自由能及其组成* 计算及分析粘附功* 记录吸收材料的吸收过程 Lauda视频光学接触角测量仪的主要特点:- USB3.0高速高分辨率相机, 分辨率高达1920x1200 pixel,速度高达 3300 images/s- X轴可移动视频系统- X/Y/Z三轴可精确定位样品台- X/Y/Z三轴可精确定位注射平台- 可同时使用两套注射单元- 测量高黏度液体的直接注射单元- 非接触式电动注射单元- 360°全自动倾斜台- 全自动临界胶束浓度(CMC)测量附件- 视频washburn法粉末/多孔材料接触角测量附件- 滴体积法表界面张力测量附件- 滞留力测量附件- 温度控制单元- 俯视或双视测量系统- 振荡滴界面扩张流变测量系统 Lauda视频光学接触角测量仪的主要技术参数:- 接触角测量范围:0~180°;精度:±0.1°;分辨率:0.01°- 表面/界面张力测量范围:1×10-2~ 2×103mN/m;分辨率:0.01 mN/m- 视频图像系统: 镜头:6.5倍变焦镜头 光学曲度0.05% 高速相机:USB3.0高速相机 分辨率高达:1920×1200 pixel 拍照速度高达:3300 images/s 视野范围:2.7 x 1.7~ 17.5 x 11.0 mm(WxH)- 样品台 调节方式:X/Y/Z三轴精细调节;移动行程:100/100/35mm 尺寸:100x100 mm 载重:不低于12Kg- 视频调焦台调节方式:X轴方向精细调节 行程60mm- 加液单元调节台:双加液单元承载机构调节方式:X/Y/Z三轴精细调节;移动行程:85/60/40mm- 自动加液单元悬滴体积智能控制:反馈响应时间 20ms;液滴体积控制范围:10~96%- 样品尺寸:∞×290×45mm(L×W×H)- 光源:单色高均匀LED冷光源,亮度由软件和手动控制- 电源:50/60Hz 110/240V 120W- 仪器尺寸(基座)及重量:600×160×460 mm(LxWxH) 18Kg
  • 客户见证---LAUDA接触角测量仪入驻山东能源研究院
    北京冬奥会的赛事刚刚落下帷幕,东方德菲公司工程师便以昂扬的精神状态投入到紧张的工作之中。在山东能源研究院顺利安装调试了一台德国LAUDA公司的LSA100型光学接触角粘滞力测量仪。山东能源研究院面向国家能源战略需求和世界能源科技前沿,立足山东能源产业发展重大需求,开展洁净能源科技基础性、前瞻性和重大关键技术的创新研究,集中了一批包括院士科学家,杰出青年、长江学者领头的高科技人才。仪器使用培训时,我司工程师对用户特别感兴趣的滚动角测量和垂直粘附力及水平滞留力测量做了详细讲解并指导了操作实习。用户全面掌握了仪器的使用要领,并就一些关键的测量问题和我司工程师进行了充分的交流。 北京东方德菲仪器有限公司将一如既往地为客户提供优质的服务和高品质的专业仪器。
  • 几何尺寸测量仪
    产品名称:几何尺寸测量仪产品品牌:EVM-G系列产品简介:本系列是一款高精度影像测量仪,结合传统光学与影像技术并配备功能完备的2.5D测量软件。可将以往用肉眼在传统显微镜下观察到的影像传输到电脑中作各种量测,并将测量结果存入电脑中以便日后存档或发送电子邮件。其操作简单、性价比高、精确度高、测量方便、功能齐全、稳定可靠。适用于产品检测、工程开发、品质管理。在机械加工、精密电子、模具制造、塑料橡胶、五金零件等行业都有广泛使用。产品参数:u 变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率40X~400X连续可调,物方视场:10.6-1.6mm,按客户要求选配不同倍率物镜。u 摄像机:配备低照度SONY机芯1/3′彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。可以升级选配1/2′CMOS130万像素摄像机。u 底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。u 光栅尺:仪器平台带有高精度光栅尺(X,Y,Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。u 光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。u 导轨:双层工作平台设计,配备高精度滚动导轨,精度高,移动平稳轻松。u 丝杆:X,Y轴工作台均使用无牙光杆摩擦传动,避免了丝杆传动的间隙,灵敏度大大提高,亦可切换快速移动,提高工作效率。 工作台仪器型号EVM-1510GEVM-2010GEVM-2515GEVM-3020GEVM-4030G金属台尺寸(mm)354×228404×228450×280500×330606×466玻璃台尺寸(mm)210×160260×160306×196350×280450×350运动行程(mm)150×100200×100250×150300×200400×300仪器重量(kg)100110120140240外型尺寸L*W*H756×540×860670×660×950720×950×1020 影像测量仪是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个设备的主体。它能快速读取光学尺的位移数值,通过建立在空间几何基础上的软件模块运算,瞬间得出所要的结果;并在屏幕上产生图形,供操作员进行图影对照,从而能够直观地分辨测量结果可能存在的偏差。影像测量仪是一种由高解析度CCD彩色镜头、连续变倍物镜、彩色显示器、视频十字线显示器、精密光栅尺、多功能数据处理器、数据测量软件与高精密工作台结构组成的高精度光学影像测量仪器。仪器特点采用彩色CCD摄像机;变焦距物镜与十字线发生器作为测量瞄准系统;由二维平面工作台、光栅尺与数据箱组成数字测量及数据处理系统;仪器具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;与电脑连接后,采用专门测量软件可对测量图形进行处理。仪器适用于以二维平面测量为目的的一切应用领域。这些领域有:机械、电子、模具、注塑、五金、橡胶、低压电器,磁性材料、精密五金、精密冲压、接插件、连接器、端子、手机、家电、计算机(电脑)、液晶电视(LCD)、印刷电路板(线路板、PCB)、汽车、医疗器械、钟表、螺丝、弹簧、仪器仪表、齿轮、凸轮、螺纹、半径样板、螺纹样板、电线电缆、刀具、轴承、筛网、试验筛、水泥筛、网板(钢网、SMT模板)等。ISO国际标准编辑影响影像测量仪精度的因素主要有精度指示、结构原理、测量方法、日常不注意维护等。 中国1994年实行了国际《坐标测量的验收检测和复检测量》的实施。具体内容如下:第1部分:测量线性尺寸的坐标测量机 第2部分:配置转台轴线为第四轴的坐标测量机 第3部分:扫描测量型坐标测量机 第4部分:多探针探测系统的坐标测量机 第5部分:计算高斯辅助要素的误差评定。 在测量空间的任意7种不同的方位,测量一组5种尺寸的量块,每种量块长度分别测量3次所有测量结果必须在规定的MPEE值范围内。允许探测误差(MPEP):25点测量精密标准球,探测点分布均匀。允许探测误差MPEP值为所有测量半径的值。ISO 10360-3 (2000) “配置转台轴线为第四轴的坐标测量机” :对于配备了转台的测量机来说,测量机的测量误差在这部分进行了定义。主要包含三个指标:径向四轴误差(FR)、切向四轴误差(FT)、轴向四轴误差(FA)。ISO 10360-4 (2003) “扫描测量型坐标测量机” :这个部分适用于具有连续扫描功能的坐标测量机。它描述了在扫描模式下的测量误差。大多数测量机制造商定义了"在THP情况下的空间扫描探测误差"。在THP之外,标准还定义了在THN、TLP和TLN情况下的扫描探测误差。 沿标准球上4条确定的路径进行扫描。允许扫描探测误差MPETHP值为所有扫描半径的差值。THP说明了沿已知路径在密度的点上的扫描特性。注:THP的说明必须包括总的测量时间,例如:THP = 1.5um (扫描时间是72 秒)。ISO 10360-4 进一步说明了以下各项定义:TLP: 沿已知路径,以低密度点的方式扫描。THN: 沿未知路径,以高密度点的方式扫描。TLN: 沿未知路径,以低密度点的方式扫描。几何尺寸测量仪工作原理影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。全自动影像测量仪编辑全自动影像测量仪,是在数字化影像测量仪(又名CNC影像仪)基础上发展起来的人工智能型现代光学非接触测量仪器。其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标扫描测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更的测量需要,解决制造业发展中又一个瓶颈技术。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现点哪走哪的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。全自动影像测量仪有着友好的人机界面,支持多重选择和学习修正。全自动影像测量仪性能使其在各种精密电子、晶圆科技、刀具、塑胶、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。选购方法编辑有许多客户都在为如何挑选影像测量仪的型号品牌所困扰,其实最担心就是影像测量仪的质量和售后。国内影像测量仪的生产商大部分都集中在广东地区,研发的软件功能大部分相似,客户可以不用担心,挑选一款能够满足需要测量的产品行程就行了。根据需要来选择要不要自动或者手动,手动的就比较便宜,全自动的大概要比手动贵一倍左右。挑选影像测量仪最重要看显像是不是清晰,以及精度是否达标(一般精度选择标准为公差带全距的1/3~1/8)。将所能捕捉到的图象通过数据线传输到电脑的数据采集卡中,之后由软件在电脑显示器上成像,由操作人员用鼠标在电脑上进行快速的测量。有的生产商为了节约成本可能会采用国产的,造价比较低,效果就稍微差点。常见故障及原因编辑故障1)蓝屏;2)主机和光栅尺、数据转换盒接触不良造成无数据显示;3)透射、表面光源不亮;4)二次元打不开;5)全自动影像测量仪开机找不到原点或无法运动。原因由于返厂维修周期长,价格昂贵,最重要的是耽误了客户的正常的工作。造成问题出现的原因很多,但无外乎以下原因:1)操作软件文件丢失或CCD视频线接触不良;2)光栅尺或数据转换盒损坏;3)电源板损坏;4)加密狗损坏或影像测量仪软件操作系统崩溃。以上问题可能是只出现一个,也有可能几个问题一起出现。软件种类编辑二次元测量仪软件在国内市场中种类比较多,从功能上划分主要有以下两种:  二次元测量仪测量软件与基本影像仪测量软件类似,其功能特点主要以十字线感应取点,功能比较简单,对一般简单的产品二维尺寸测量都可以满足,无需进行像素校正即可直接进行检测,但对使用人员的操作上要求比较高,认为判断误差影响比较大,在早期二次元测量软件中使用广泛。  2.5D影像测量仪在影像测量领域我们经常可以听到二次元、2.5次元、三次元等各种不同的概念,所谓的二次元即为二维尺寸检测仪器,2.5次元在影像测量领域中是在二维与三维之间的一种测量解决方案,定义是在二次元影像测量仪的基础上多加光学影像和接触探针测量功能,在测量二维平面长宽角度等尺寸外如果需要进行光学辅助测高的话提供了一个比较好的解决方案。仪器优点编辑1、装配2个可调的光源系统,不仅观测到工件轮廓,而且对于不透明的工件的表面形状也可以测量。2、使用冷光源系统,可以避免容易变形的工件在测量是因为热而变形所产生的误差。3、工件可以随意放置。4、仪器操作容易掌握。5、测量方便,只需要用鼠标操作。6、Z轴方向加探针传感器后可以做2.5D的测量。测量功能编辑1、多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;2、组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;3、坐标平移和坐标摆正,提高测量效率;4、聚集指令,同一种工件批量测量更加方便快捷,提高测量效率;5、测量数据直接输入到AutoCAD中,成为完整的工程图;6、测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca等各种参数;7、多种语言界面切换;8、记录用户程序、编辑指令、教导执行;9、大地图导航功能、刀模具专用立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头;10、可选购接触式探针测量,软件可以自由实现探针/影像相互转换,用于接触式测量不规则的产品,如椭圆、弧度 、平面度等尺寸;也可以直接用探针打点然后导入到逆向工程软件做进一步处理!11、影像测量仪还可以检测圆形物体的圆度、直线度、以及弧度;12、平面度检测:通过激光测头来检测工件平面度;13、针对齿轮的专业测量功能14、针对全国各大计量院所用试验筛的专项测量功能15、图纸与实测数据的比对功能维护保养编辑1、仪器应放在清洁干燥的室内(室温20℃±5℃,湿度低于60%),避免光学零件表面污损、金属零件生锈、尘埃杂物落入运动导轨,影响仪器性能。2、仪器使用完毕,工作面应随时擦干净,再罩上防尘套。3、仪器的传动机构及运动导轨应定期上润滑油,使机构运动顺畅,保持良好的使用状态。4、工作台玻璃及油漆表面脏了,可以用中性清洁剂与清水擦干净。绝不能用有机溶剂擦拭油漆表面,否则,会使油漆表面失去光泽。5、仪器LED光源使用寿命很长,但当有灯泡烧坏时,请通知厂商,由专业人员为您更换。6、仪器精密部件,如影像系统、工作台、光学尺以及Z轴传动机构等均需精密调校,所有调节螺丝与紧固螺丝均已固定,客户请勿自行拆卸,如有问题请通知厂商解决。7、软件已对工作台与光学尺的误差进行了精确补偿,请勿自行更改。否则,会产生错误的测量结果。8、仪器所有电气接插件、一般不要拔下,如已拔掉,则必须按标记正确插回并拧紧螺丝。不正确的接插、轻则影响仪器功能,重则可能损坏系统。测量方式编辑1、物件被测面的垂直测量2、压线相切测量3、高精度大倍率测量4、轮廓影像柔和光测量5、圆及圆弧均匀取点测量精密影像测绘仪测量软件简介:绘图功能:可绘制点、线、圆、弧、样条曲线、垂直线、平行线等,并将图形输入到AutoCAD中,实现逆向工程得到1:1的工程图。自动测绘:可自动测绘如:圆、椭圆、直线、弧等图形。具有自动寻边、自动捕捉、自动成图、自动去毛边等功能,减少了人为误差。测量标注:可测量工件表面的任意几何尺寸,不同高度的角度、宽度、直径、半径、圆心距等尺寸,并可在实时影像中标注尺寸。SPC统计分析软件:提供了一系列的管制图及多种类型的图表表示方法,使品管工作更方便,大大提升了品质管理的效率。报表功能:用户可轻易地将测量结果输出至WORD、EXCEL中去,自动生成检测报告,超差数值自动改变颜色,特别适合批量检测。鸟瞰功能:可察看工件的整体图形及每个尺寸对应的编号,直观的反应出当前的绘图位置,并可任意移动、缩放工件图。实时对比:可把标准的DXF工程图调入测量软件中与工件对比,从而快速检测出工程图和实际工件的差距,适合检测比较复杂的工件。拍照功能:可将当前影像及所标注尺寸同时以JPEG或BMP格式拍照存档,并可调入到测量软件中与实际工件做对比。光学玻璃:光学玻璃为国家计量局检验通过之标准件,可检验X、Y轴向的垂直度,设定比例尺,使测量数据与实际相符合。客户坐标:测量时无需摆正工件或夹具定位,用户可根据自己的需要设置客户坐标(工件坐标),方便、省时提高了工作效率。精密影像测绘仪仪器特点:经济型影像式精密测绘仪VMS系列结合传统光学与数字科技,具有强大的软件功能,可将以往用肉眼在传统显微镜下所观察到的影像将其数字化,并将其储存入计算机中作各式量测、绘图再可将所得之资料储存于计算机中,以便日后存盘或电子邮件的发送。该仪器适用于以二座标测量为目的一切应用领域如:品质检测、工程开发、绘图等用途。在机械、模具、刀具、塑胶、电子、仪表等行业广泛使用。变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率:40X~400X,可按客户要求选配不同倍率物镜。摄像机:配备低照度SONY机芯1/3”彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。光栅尺:仪器平台带有高精密光栅尺(X、Y、Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。导轨:双层工作平台设计,配备高精度滚动导轨,精度高、移动平稳轻松。丝杆:X、Y轴工作台均使用无牙光杆磨擦传动,避免了丝杆传动的背隙,灵敏度大大提高,亦可切换快速移动提高工作效率。
  • 滚球法初粘性测试仪和环形初粘性测试仪在测试双面胶初粘性时有什么区别
    在双面胶的初粘性测试中,滚球法初粘性测试仪和环形初粘性测试仪是两种常用的测试工具。尽管它们的最终目标都是为了评估双面胶的初粘性,但在测试原理、方法以及结果解读上却存在显著的区别。滚球法初粘性测试仪测试原理:滚球法初粘性测试仪通过在一定角度的斜面上滚动标准尺寸的钢球,以测量钢球在胶粘剂表面滚动时的粘附能力。测试时,钢球从斜面顶部释放,滚过涂有胶粘剂的测试表面,根据钢球滚动的距离来评估初粘性。特点:操作简单,测试速度快。测试结果受环境因素(如温度、湿度)影响较小。适用于各种类型的胶粘剂,包括双面胶。适用场景:适用于需要快速评估初粘性的生产环境。适用于胶粘剂的初步筛选和质量控制。环形初粘性测试仪测试原理:环形初粘性测试仪通过将一定直径的环形试样放置在胶粘剂表面,然后以一定速度提起试样,测量胶粘剂粘附环形试样所需的力。测试时,环形试样与胶粘剂接触,然后以恒定速度提起,直至环形试样脱离胶粘剂表面。特点:测试结果更精确,可以量化粘附力。适用于测量特定类型的胶粘剂,尤其是双面胶。测试过程可能受环境因素影响较大。适用场景:适用于需要精确测量粘附力的实验室环境。适用于双面胶的详细性能评估和研究。区别总结测试原理:滚球法侧重于通过钢球滚动的距离来评估初粘性,而环形法则通过测量提起环形试样所需的力来评估。操作复杂度:滚球法操作简单,环形法则可能需要更精确的操作和设备设置。测试速度:滚球法测试速度快,环形法可能需要更多时间来准备和执行测试。环境影响:滚球法结果受环境影响较小,环形法则可能更敏感于温度和湿度变化。结果精确度:环形法可以提供更精确的粘附力数值,而滚球法则提供相对的粘附性评估。适用性:滚球法适用于快速筛选和质量控制,环形法则适用于详细的性能评估和研究。测试成本:滚球法设备通常成本较低,环形法则可能需要更高级的设备。在选择测试双面胶初粘性的设备时,需要根据具体的测试需求、预算和测试环境来决定使用哪种测试仪。每种测试仪都有其优势和局限性,理解这些区别有助于选择最适合的测试方法。
  • dataphysics高温接触角测量仪入围2015科学仪器优秀新品
    第十届“科学仪器优秀新产品”评选活动于2015年3月份开始筹备,共有258家国内外仪器厂商申报了590台2015年度上市的仪器新品。经仪器信息网编辑初审、2015中国科学仪器发展年会新品组委会初评,现已确定本届“科学仪器优秀新产品”的入围名单。我公司总代理的德国dataphysics公司研发生产的OCA25HTV高温高真空接触角测量仪通过新品组初审,成功入围了2015年“科学仪器优秀新产品”。详情请见 http://www.instrument.com.cn/news/20160225/184819.shtml OCA25HTV高温高真空接触角测量仪由德国dataphysics公司研发生产,它不仅能在高温高真空或惰性气体保护环境下测量熔融金属的接触角和表面张力,还能通过更换光源位置,安装注射系统来实现室温下接触角、表面张力等的测量。OCA25HTV高温高真空接触角测量仪由软件控制程序升温,最高温度可达1800°C,最高真空度可达1×10-5mbar,可广泛应用于航空航天材料、冶金工业、焊接材料等研究领域。OCA25HTV高温高真空测量仪的高温区功能如下:用四种计算方法测量静态接触角 特殊基线(弯曲基线)的接触角测量测量表面张力(座滴法)动态测量接触角随时间变化通过更换光源位置,安装注射系统便可以实现在室温下测量,室温下的测量功能如下:用四种计算方法测量静态接触角特殊基线(弯曲基线)的接触角测量全自动测量动态接触角(座滴法)测量液体表面/界面张力(悬滴法)计算固体的表面自由能及其分布(色散力、极性力、氢键的分布)斜板法测量液体的滚动角测量液体的极性及色散力分布(悬滴法)粘附功,润湿包线和液体张力及极性分量的评估
  • 劳达 科学发布LAUDA Scientific 光学接触角测量仪 LSA200新品
    德国劳达科学仪器公司(LAUDA Scientific GmbH)是一家拥有60多年历史的著名科学仪器设备研发制造企业,是德国最早涉及表界面和黏度测量表征技术的专业厂家。从上世纪60年代起,劳达就着手研发包括表面膜天平和液滴体积法、力天平法和最大气泡压力法等测量表面单分子层和表界面张力的仪器,是这一领域的开拓者和先锋,其各类仪器被广泛地应用于科学研究、产品研发和质量控制等领域。目前劳达公司研发生产的视频光学接触角张力测量仪,以其丰富而卓越的功能拓宽了该仪器的应用领域,把接触角测量仪的应用提升到了一个新的高度。 作为LAUDA Scientific GmbH公司中国区指定代理,北京东方德菲仪器有限公司将继续秉承“Leading by professional”的理念,与LAUDA Scientific公司一起为您推荐先进的仪器,提供专业的售前、售后技术服务。 LAUDA Scientific 光学接触角测量仪 LSA200是一款功能齐备、性能卓越的全功能型视频光学接触角张力测量仪,是一款利用液滴形状分析技术探索界面现象的测量仪器,它具有功能多样化的特点,并且能够实现仪器的智能化全自动控制。LSA200不仅可以准确可靠地完成接触角,滚动角、固体表面自由能和界面张力测量等常用的测量任务,而且在高速动态、多功能测量方面显示出了明显的优势。 滞留力测量功能是 LSA200 具有的第二代接触角测量仪器的标志性功能。此外 LSA200 灵活的配置可以完成单一纤维接触角测量,俯视法接触角测量,界面扩张流变测量,全自动临界胶束浓度测量(CMC)等特殊任务。LSA200为材料科学、界面化学与胶体化学、以及液滴流体动力学等相关实验室提供了更加专业,更加高效的解决方案。LAUDA Scientific 光学接触角测量仪 LSA200的测量功能介绍:1. 自动测量接触角软件具有成像清晰度判别功能,测量接触角时能够自动寻找基线、自动拟合轮廓。支持捕获气泡法测量模式。选用程序模板操作时软件显示操作向导,可以完成一键测量。对于材料表面特殊形状或结构形成的弯曲基线,可使用手动模式测量。2. 测量动态接触角可以选用插针法或倾斜台法测量前进角和后退角,使用专用的Truedrop算法能够更加准确的测量不对称液滴的接触角。3. 同步测量滞留力和动态接触角此功能是LSA200在常规接触角测量仪上引入了离心力旋转台和视频同步触发技术,从而实现的。LSA200配置滞留力旋转台时固体材料固定在旋转台之上,在快速旋转状态下置于材料表面上的液滴,受离心力驱动产生横向水平滑动的趋势,迫使液滴形状发生变化。当离心驱动力达到最大滞留力数值的时候,液滴沿材料表面发生横向水平滑动。在这一动态过程中,仪器利用视频同步触发技术准确的抓拍到液滴形状和位置变化的一系列照片并记录相对应的旋转速度,通过软件自动处理得到滞留力数据以及前进接触角和后退接触角的变化曲线和最大值。滞留力能够直接反映液体和固体之间界面上的相互作用力。利用滞留力和动态接触角同步测量功能,可以分析滑动过程中滞留力和液滴形状变化等因素之间的相互关系。最大离心力达到 40 倍重力加速度 最大转速 800 转/分钟滞留力测量功能为材料润湿性的研究提供了一种有力的工具,使得LSA200在动态、多功能测量方面展示出了巨大的潜力,它能够同时使用几何参数和物理参数表征液体和固体材料之间界面上的相互作用,必将在特殊功能材料、液体的传送和过滤过程、表面的自清洁和易清洗等众多领域发挥出关键作用。4. 非接触式注射功能LSA200能够利用注射泵推进时产生的脉冲推射液体,使液滴直接落到材料表面上。这种注液方式避免了液滴在注射针头上的粘附,解决了向超疏水材料表面转移液滴的问题。5. 全自动倾斜台测量滚动角全自动倾斜台和视频系统由软件控制,自动记录倾斜过程中液滴的形状变化,倾斜角度和位置移动,自动测量滚动角、前进角和后退角等相关参数。6. 测量单一纤维的接触角单一纤维润湿接触角的测量经常应用在复合材料和特殊功能材料领域。不同于微升级液滴在平面材料上的接触角测量,单一纤维测量需要特殊的理论计算方法和高放大倍数的显微光学镜头等特殊附件。LSA200可以在同一台仪器上完成普通平面材料和单一纤维材料的润湿接触角测量。7. 记录并分析粉末或多孔材料对液体的吸收过程高速视频系统可以完成粉末或多孔材料对液体吸收过程的连续录像,并自动计算全过程的接触角变化数值。8. 俯视法测量接触角在已知液体表面张力和密度的前提下,LSA200能够准确控制液滴体积并利用俯视模块从正上方向下对液滴成像,能精确测量三相接触线或液滴最大直径处周边线的形状尺寸,利用Laplace-Young模型计算得到接触角数值。俯视法和传统侧视法联用可以同时对同一液滴进行接触角测量。俯视法解决了凹表面接触角和超亲表面极小接触角测量的难题,并在各向异性材料接触角测量和多角度润湿动态行为观察方面具有明显优势。9. 表面能的计算和粘附功的分析固体表面自由能测量软件包括了多种表面自由能数值及其组成计算方法,粘附功分析软件可以进一步分析粘附功。涉及到一般表面、低能表面、高能表面、等离子体处理表面等实际应用。 10. 双液滴接触角测量在测量固体表面能的时候往往需要至少两种不同的标准液体,LSA200具备两种液体同时注射,一键式测量接触角的功能,这明显提高了进行大量固体材料表面能测量实验的工作效率。11.测量表面张力LSA200使用悬滴法对液体的表面张力或界面张力进行测量。测量方法符合国际标准ISO 19403-3/ISO 19403-4和德国工业标准DIN 55660-3。软件使用优化的Young-Laplace算法全自动计算张力,具有更快的动态计算速度,与高速注射单元联用时能对极短寿命的界面进行动态张力测量。12. 振荡滴方式测量界面扩张流变界面扩张流变研究是对表面活性物质界面可溶膜实施规律性的扰动,记录界面张力响应,测量粘弹模量等参数,通过数据处理和理论分析,最终获得界面膜性质的丰富信息。LSA200既可以做液-液界面的振荡又可以做气-液界面的气泡振荡。13. 全自动临界胶束浓度(CMC)测量基于表面界面张力测量CMC的方法是传统测量CMC的方法中常见的一种。传统上,采用DuNoüy环法或Wilhelmy片法来确定表界面张力,但无论是DuNoüy环法或Wilhelmy片法都不适合与含表面活性剂溶液一起使用。Wilhelmy片法遇到表面活性剂分子吸附到探针金属(通常是铂)表面的问题,会导致明显的测量误差,甚至可能影响溶液中表面活性剂的浓度。DuNoüy环法则仅适用于单组分(即纯净)液体, 当涉及表面活性剂时密封圈通常很难彻底清洁,并且对应于特定的动态或平衡状态无法获得表面张力值。与传统测量方法形成鲜明对比,LSA200CMC采用光学悬滴分析法测量临界胶束浓度(CMC),LSA200配置两个连续注射单元时可使用表面张力法进行全自动临界胶束浓度的测量,其中一个注射单元进行不同浓度溶液的配置,另一个注射单元连续形成液滴,测量全过程在程序自动控制下工作,而且避免使用吊片法测量时活性剂分子在铂金片上吸附时产生的影响,是测量临界胶束浓度的理想方法。与传统测量方法相比,LSA200CMC提供了一种新颖的全自动测量方法,在几乎所有都涉及到准确性,可靠性,便利性和对各种表面活性剂溶液的适用性以及自动化程度方面,都具有明显的优势:- 全自动测量- 适用于各种表面活性剂;- 能够同时测量静态CMC和动态CMC。LSA200的基础功能:- 静态/动态接触角测量 - 粉末或多孔材料的吸收过程分析- 表面自由能测量和粘附功分析- 表面界面张力测量 LSA200的基础配置:- 8.6 倍变焦视频系统 - 三套液体注射单元- X轴精密导轨定位视频调焦太- X/Y/Z三轴精确导轨定位样品台- X/Y/Z三轴精确导轨定位注射平台- SurfaceMeter专业测量软件 LSA200的选配功能:- 8.6 倍变焦高速视频系统 - 全自动样品台 - 全自动注射平台 - 全自动倾斜台 - 滞留力旋转台 - 温度控制单元- 俯视法测量模块 - 振荡滴扩张流变模块- 双液滴注射功能 - 非接触式注射功能- 单一纤维接触角测量模块- 全自动临界胶束浓度测量模块(CMC) 技术参数 型号LSA200接触角测量范围精度分辨率0~180°±0.1°0.01°表面/界面张力测量范围: 分辨率1×10-2 ~ 2×103mN/m0.01 mN/m1)视频图像系统(系统可升级) 镜头 分辨率 相机速度 视野范围8.6倍变焦光学镜头1920×1200 pixel3300 fps2.1×1.3~17.5×11(mm×mm)视频调焦台 调节方式X轴方向精密导轨调节 调焦范围:100 mm样品台 调节方式 尺寸 载重X/Y/Z三轴精密导轨调节;移动行程100/100/50 mm100x100 mm12 Kg加液单元调节台 调节方式X/Y/Z三轴精密导轨调节 移动行程:85/118/60 mm自动倾斜台 角度范围0~360°最大样品尺寸∞×310x76 mm(L×W×H)光源高亮度高均匀LED冷光源,亮度可手动/软件调节软件SurfaceMeter 专业软件接触角计算方法Circle Width-Height Conic TrueDrop Young-Laplace Tangent2)Drop-on-Filament 3)Liquid Bridge/Meniscus张力计算方法Young-Laplace3)Liquid Bridge/Meniscus4)Drop volume电源50/60Hz 110/240V 90 W仪器尺寸(基座)及重量620×200×536mm(L×W×H) 22Kg 1)LSA200 的视频系统可选配 45 倍变焦光学镜头,适合于单一纤维接触角的测量。 2)此计算方法为纤维包覆法,专用于单一纤维接触角测量。 3)此计算方法为液桥法/弯液面法,专用于单一纤维接触角测量和表面张力测量。 4)此计算方法为滴体积法,专用于表面张力测量创新点:1.标配 8.6 倍变焦视频系统,可升级为8.6 倍变焦高速视频系统2.独特的滞留力测量功能:引入了离心力旋转台和视频同步触发技术,可以同时测量滞留力和动态接触角3.同时利用俯视法和侧视法测量同一液滴的接触角4.新颖的CMC测量方法:采用光学悬滴分析法测量临界胶束浓度(CMC)LAUDA Scientific 光学接触角测量仪 LSA200
  • IKA 两款摇床荣获红点大奖--翻转式试管混匀器、滚轴摇床
    IKA "Trayster" 翻转式试管混匀器以及"Roller digital" 滚轴摇床获得红点大奖-2015产品设计奖. 两款产品均在去年上市。来自56个不同国家,1994个参赛单位,4928个入围产品共同角逐这一荣誉。这些产品由国际评委进行评选,评判基于产品的创新性、功能性、技术质量、人体工程学、耐用性、人文内涵、产品配套、功能简便性以及对环境的影响。 Trayster翻转式摇床转速范围在5-80rpm,运动方式为垂直旋转。因而,适用于温和高效地混匀生物样品如血液。最大50ml的粉末及液体样品在Eppendorf或Greiner管中也可以得到混匀。Trayster可最大装载3块不同的夹具同时转摇以适合各种应用。 Roller digital数显型滚轴摇床通过摇摆及滚动的运动方式, 用于温和地混匀试管中的样品。得益于转棍可轻易被取出,样品出现泼洒的时候亦可进行快速清洁。该滚轴摇床非常耐用,适用于长时间连续工作。一个特别之处在于具有侧板,可防止样品管从侧面滑落。IKA滚轴摇床具有“Roller 6”和“Roller 10”两种型号,每个型号均有基本型和数显型的版本。IKA 顶置式搅拌机欧洲之星40数显型、欧洲之星200控制型,T10基本型、T25数显型分散机,以及已获专利的批次研磨系统UTTD控制型,曾在2012年获得红点大奖。在2013年,LR1000实验室反应釜也获得这一殊荣。 关于红点大奖( www.red-dot.org)“红点奖”为举世公认的针对卓越设计的最具分量的奖项之一。从1955年,德国著名设计协会给国际上出色的产品设计颁以其出色的红点标记。该奖涵盖时尚以及消费电子界的设计,乃至汽车、家居用品以及家具。目前,生产厂家以及工业产品设计师可以在红点的31个类别中投放作品。 关于 IKA ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板,恒温循环系统, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有分公司.IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 王道元董事长受邀拜访日本R-DEC公司社长佐佐木先生
    王道元董事长受邀拜访日本R-DEC公司社长佐佐木先生近日王道元董事长受佐佐木社长邀请拜访了日本R-DEC公司总部.双方就TDS,RHEED,MBE等进行了长时间交流.希望进一步加强中日高科技研究设备方面的全面合作.日本R-DEC公司创建于1988年,公司总部设于日本科技城筑波市。公司创立以来,业务迅速发展,由创设当初的设备销售商发展为集生产开发,软件集成的综合型研究设备开发供应商。经过二十余年的努力与发展,旗下拥有一系列专业而完整的产品线。产品用户已经涵盖日本相关领域的各主要科研机关,大学及企业。成为日本业界最具信赖的真空设备为主导产品的供应商之一。该公司除了推出世界上独此一家的专门用于研究氢脆的测氢装置TDS和可以用于监控有机物薄膜结晶状态的PICO-RHEED以外,最近又推出性能优良小型MBE装置.继TDS,RHEED相继成为深受中国客户欢迎的产品外,希望有更多客户关注该公司的MBE装置.其最大特点是性价比高,成膜再现性非常高.该公司生产MBE装置历史悠久,已经拥有超过300多用户.相信该小型MBE装置的推出将为我国客户材料研究学者提供一个良好的合作机会.参见如下照片和参数. 日本R-DEC公司小型MBE装置特点1. 适用于半导体薄膜生长,太阳能电池用薄膜生长的研究开发领域。2.利用超高真空技术,为用户的薄膜生长提供最优越的环境。3.进样室搭载磁悬浮型分子泵以及滚动泵,可以在不破坏真空环境的条件下实现衬底的传送。4..提供丰富可组件选择,可根据研究开发的要求自由搭配组合,实现高精度原位分析的小型MBE系统技术规格关于生长室(极高真空对应脱气处理)蒸发源端口8 端口衬底尺寸~3inch (付衬底旋转功能)*衬底加热/冷却可选功能生长室到达真空度10-9Pa级生长室排气系统付离子泵 /分子泵*液氮屏蔽罩可选功能 关于传样室(小巧角形腔体)衬底传送超高真空传送装置传样室排气系统300l/s 磁悬浮型分子泵/滚动泵关于蒸发源 (可选组件)努森池蒸发源 (高温源/SUMO源/阀式裂解源)电子束蒸发源离子源关于原位解析 (可选组件)RHEED装置 + kSA400解析系统高精度实时温度监控系统 BandiT原位薄膜应力计 MOS 日本R-DEC公司的测氢仪钢铁研究总院和中国一重于2009年,2012年分别导入特点, 世界唯一, 真实大样品可测(如高强螺栓等),可精确测出从室温到1000℃条件下的氢放出量,对研究氢脆和腐蚀非常重要,精度达到0.01PPM 日本R-DEC公司反射高能电子衍射仪陕西师范大学千人计划获得者刘生忠教授首次成套购买RHEED+KSA400FRHEED是观察晶体生长最重要的实时监测工具。它可以通过非常小的掠射角将能量为10~30KeV的单能电子掠射到晶体表面,通过衍射斑点获得薄膜厚度,组分以及晶体生长机制等重要信息。因此反射高能电子衍射仪已成为MBE系统中监测薄膜表面形貌的一种标准化技术。  R-DEC公司生产的反射式高能电子衍射仪,以便于操作者使用的人性化设计,稳定性和耐久性以及拥有高亮度的衍射斑点等特长得到日本国内及海外各研究机构的一致好评和认可。特长◆可远程控制调节电压,束流强度,聚焦位置以及光束偏转◆带有安全闭锁装置◆镍铁高导磁合金磁屏蔽罩◆拥有高亮度衍射斑点◆电子枪内表面经特殊处理,能实现极低放气率◆经久耐用,稳定可靠◆符合欧盟RoHS指令世界上首次推出低电流反射高能电子衍射仪PICO-RHEEDPICO-RHEED(Low Emission Reflection High-Energy Electron Diffraction)是利用微通道板技术,大幅减少对样品损伤的同时,并且保证明亮反射电子衍射图像的新一代低电流反射高能电子衍射仪。可以用于有机薄膜材料等结晶结构的分析研究。特长◆大幅度减少电子束对样品的损伤(相当于普通RHEED的1/500-1/2800)◆带有安全闭锁装置◆搭载高亮度微通道板荧光屏◆可搭载差动抽气系统◆kSA400 RHEED分析系统兼容◆符合欧盟RoHS指令
  • 中国船舶704所自主研制的超精密导程误差测量仪取得成功
    近日,中国船舶集团七〇四所自主研制的超精密行星滚柱丝杠导程误差动态测量仪取得成功。经计量技术机构验证,其技术指标达到国际先进水平,七〇四所在科技自立自强的道路上,又迈出了坚实一步!超精密行星滚柱丝杠导程误差动态测量仪面临技术难题 行星滚柱丝杠是船舶、大型电站、冶金行业等领域高端装备的核心功能部件,随着所内行星滚柱丝杠产品不断推广应用,对其产品性能提出了更高的要求。 导程误差动态测量仪用于检测行星滚柱丝杠的导程误差,而行星滚柱丝杠的导程精度又直接影响丝杠螺母的直线移动位置的重复精度。 然而,国内鲜有导程误差动态测量仪,大多使用静态轮廓仪测量数据替代,难以准确描述螺纹全螺线的导程误差,且高精度轮廓仪长期依赖进口。自主研制成功 因此,为了满足行星滚柱丝杠的生产需要,针对国内导程误差动态测量仪定位精度低、自动化程度不足等难题,七〇四所自主设计并成功研制了超精密导程误差动态测量仪。 该导程误差动态仪采用空气静压导轨,是一台超精密多参数的复合动态测试仪器。技术团队在研发过程中攻克了精密气浮移动平台设计技术、精密主轴驱动技术、高同步性数据采集、浮动自适应测头设计等多项关键技术,并不断的优化设计与精密制造装配,最终获得了仪器的研发成功。 该导程误差动态测量仪导程为3000mm,测量精度优于±2μm,达到了国际先进水平。 超精密导程误差测量仪的成功研制不仅为七〇四所行星滚柱丝杠产品提供了可靠、有效的检测手段,提升了行星滚柱丝杠产品的市场竞争力,进一步推动了该产品的产业化发展,还可以作为新一代电驱化、智能化装备的核心传动部件的高精度测量设备,为其他相关企事业单位提供测量服务,进一步助力海洋强国建设。
  • 兰州石化成功研制油品质量在线光谱和色谱分析仪
    近日,由兰州石化公司承担的国家863重点课题《基于光谱、色谱、软测量等先进测量技术的在线分析装置》顺利通过了国家科技部组织的现场验收。  《基于光谱、色谱、软测量等先进测量技术的在线分析装置》课题包括三个子课题,课题由兰州石化公司负责,浙江大学控制系与中控软件共同承担在线光谱分析仪的研制开发 兰州石化所属自动化院承担在线色谱分析仪的研制开发 东北大学自动化仪表研究所负责钢水温度连续测量仪表的研发工作。通过课题的实施,课题组运用近红外光谱与色谱在线分析技术,成功研制出了具有滚动校正、自动诊断功能的油品质量在线光谱和色谱分析仪表。同时针对钢铁冶炼生产过程,研发出了具有精度高、可靠性高和远程监控能力的黑体空腔式钢水温度连续测量仪表。验收专家组认真评审了验收报告和相关材料,同时结合技术难点、热点及实际应用中的问题,与课题组人员进行了广泛深入的交流。最后,专家组一致同意课题通过验收,并对项目组提出了宝贵的意见和建议。
  • AVL Tippelmann 使用LaVision公司的滚流/湍流软件进行发动机缸内流场分析
    发动机研发中的流场微分研究视频演示的实验结果是北京欧兰科技发展有限公司代理的德国LaVision公司和奥地利AVL Tippelmann公司合作完成的(AVL Tippelmann 和 LaVision) 在一个研究型光学发动机上进行了滚流和湍流(或扭转流)现象的观测研究。透明的光学气缸安装在一个真实发动机气缸顶上。空气被抽走。测量的目标对象是气缸顶(像一个流动的盒子)安装在透明光学气缸体的顶部。其直径和发动机的缸内径相同。流动的PIV测试系统由LaVision公司提供.LaVision提供了一个附加的软件模块通过累计扭矩,刚性体的旋转等来计算滚流和湍流数.同时软件还具有生成体积流和滚流角的功能。对于滚流/湍流数计算所需要的像发动机缸径和发动机冲程等参数可以从一个遥控计算机输入,也可以手动输入。LaVision的全套系统都可以通过一个遥控计算机来完成全部的控制和分析操作。执行从启动实验记录,到速度场矢量计算直至生成滚流和湍流数。
  • 回顾近二十年我国齿轮量仪的发展(上)
    1 引言受中国机床工具工业协会工具分会特约,作者于2001-2019年间参访两年一度在北京举办的国际机床展览会,并撰写了十届展会的量具量仪述评。十届展会时间跨度近20年,我国经历了改革开放、加入WTO以及金融和经济风险等诸多重大历史事件和风雨涤荡,机床工具制造业及量具量仪行业在经受风雨历练的同时,就整体制造能力而言,无论在技术质量水平和产品品种性能上,都得到了显著的提升和蓬勃的发展。基于对精密测量仪器的感触体验,作者撰文回顾了近二十年来我国齿轮测量技术和仪器的发展历程和部分成果。我国齿轮量仪的生产始于哈量,哈量建厂源于苏联的156项经济援助项目;在国家经济改革开放时期,通过精密传感技术、数字技术、数控技术、计算机技术和坐标测量仪精密量仪制造技术的引进开发和自我发展,推动了我国齿轮测量技术和仪器向基于计算机的数字化数控坐标式测量技术和仪器的发展。CNC齿轮测量中心代表了当今齿轮测量技术和仪器的先进水平,也是齿轮及齿轮刀具制造精度质量检测领域的主流需求。从上世纪80年代开始到90年代,CNC齿轮测量中心逐步形成了系列化产品,同时也是精密机械制造技术、精密位移探测传感技术、数字信息技术、计算机技术和数控技术在齿轮测量仪器上集成的结晶。它基于坐标式几何解析测量原理,对齿轮单项几何形状误差进行测量,是坐标式齿轮测量仪器发展中的一个里程碑。CNC齿轮测量中心实质上是由笛卡尔式直角三坐标系和一个回转角坐标所构建而成的四坐标测量机——圆柱坐标测量机,主要用于齿轮单项几何精度的检测,也可用于(静态)齿轮整体误差的测量。除了齿轮以外,也可用于齿轮刀具(如滚刀、插齿刀、剃齿刀)、蜗杆、蜗轮及凸轮轴等复杂型面回转体的单项几何误差进行高精度测量。由国外首先推出的、基于计算机技术的数字坐标式CNC齿轮测量中心取代了传统机械展成式的齿轮量仪,成为单个齿轮几何精度测量中独占鳌头的齿轮测量仪器和技术。国内通常认为,美国Fellows公司于七十年代成功开发的Microlog 50(图1)是世界上首台高水平的CNC数控齿轮测量中心,它采用了花岗石基座、四轴独立伺服驱动系统、激光干涉仪长度位移测量系统和光栅角度编码盘,其技术起点很高。图1 美国MICROLOG 60齿轮测量中心我国齿轮测量中心的开发历经了艰辛和曲折。成都工具所和哈量于1986年开始着手计划立项开发齿轮测量中心,直至1995年底在陕西省教委和陕西省机械局的支持下,西安工业大学和汉江工具厂合作成功开发出了我国第一台CNC齿轮测量中心CCZ40(图2)。这是一台由计算机控制的、可实现数控四轴联动的圆柱四坐标式齿轮测量仪器样机。经专业技术鉴定,确认达到预期目标,填补了国内空白。随后,哈尔滨精达公司经过努力,在2001年于国内首先开发研制出齿轮测量中心产品(图3),成功推向了首家用户——重庆宗申公司,并逐渐形成强大批产能力和竞争实力,打破了由国外齿轮测量中心产品一统国内市场的局面。此后,哈量、工具所、智达、爱德华、同和光学及秦川等公司陆续推出了自行设计开发的CNC齿轮测量中心,开创了我国齿轮测量仪器发展新面貌,品种和质量的持续提升令人鼓舞,和国外先进齿轮测量中心的技术与质量差距日益缩小,竞争力明显上了一个台阶。图2 西安工大汉江工具首台国产样机CCZ40图3 精达公司首台国产CNC齿轮测量中心经过近15年持续不断的努力和坚持,取得了阶段性成果,并分别在CIMT展会上展示,通用技术集团所属的哈量集团于2019年成功推介出配套完整、集成度高、技术含量水平高、完全拥有自主知识产权的“成套螺旋锥齿轮闭环专家生产制造系统”和技术(图4),其硬件涵盖了螺旋锥齿轮齿面的数控加工机床(铣齿机、硬齿面加工机床和磨齿机)。螺旋锥齿轮齿面的数控刀具和装备包括铣刀刀盘刀条装调仪、硬齿面刀具测量机以及螺旋锥齿轮齿轮测量中心等。这标志着我国锥齿轮的成套制造和加工测量技术跃上了一个新水平。(a)(b)(c)图4 哈量成套螺旋锥齿轮闭环专家生产制造系统随着我国数字化、信息化、网络化、智能化的发展,机器人近年来快速集成进入在线齿轮自动化智能测量生产线。2015年南京二机床在北京展会上展示的“智能化齿轮加工岛”,吹响了国内汽车齿轮自动化在线测量技术集成于齿轮制造加工过程的号角(图5);而2020年精达为株洲齿轮公司提供的“智达快速齿轮检测自动线”配备2台六轴机器人,将意大利光学影像测量仪、自产CNC齿轮双啮仪和CNC齿轮测量中心等3台仪器有机联结,构建了一条齿轮快速智能检测系统(图6),将我国齿轮在线自动检测装备技术水平提升到一个数字化、信息化、自动化的新台阶。(a)(b)图5 南京二机床“智能化齿轮加工岛”(a)(b)图6 智达齿轮在线快速智能检测系统在近20年的十届北京国际机床展览会上,可以清晰看到我国齿轮测量仪器制造业的显著进展。如上所述,这正是我国齿轮测量技术与仪器装备行业“管(官)用产学研”,凝聚共识,坚持不懈,科学实干,以开发CNC齿轮测量中心为标志,在我国齿轮量仪制造行业的奋发自强和努力下,从无到有;从打破国外垄断到自主创新,不断推进我国齿轮制造业从齿轮制造大国向齿轮制造强国的蜕变,是不断提升国产齿轮质量做出重大功绩和历史贡献的20年。可以毫不夸张地说,近20年我国齿轮量仪的发展历史,就是我国CNC齿轮测量中心发展所引导的历史,是我国齿轮测量技术和仪器装备制造业在数字化、信息化、数控化、网络化和智能化的发展道路上阔步前行、转型升级和追赶世界先进水平而成效斐然的20年。本文根据这近20年间北京国际机床展会上我国齿轮测量仪器展品的概况,按类别和年代进行分述,以便读者能从中看到我国齿轮量仪的发展脉络。2 CNC齿轮测量中心融合并集中体现了当今齿轮测量技术和制造技术的发展水平和趋势(1)1989年工具所推出CZE1200D大齿轮测量仪(图7)。它由一台单板计算机同时控制二台步进电机联动,采用“粗传动精测量”技术实现CNC式齿轮螺旋线的测量(齿廓误差由棒状单齿测头啮合测量实现)。经上海计量所鉴定后当年成功交付用户上海冶金机械厂;同期,工具所还成功开发出CNC式步进电机光栅式/激光式滚刀检测仪GCW200(图8)。(a)(b)图7 工具所的CZE1200D大齿轮测量仪及齿廓测量原理(a)(b)图8 工具所GCW200光栅式滚刀检测仪(2)1995年西安工业大学和汉江工具厂合作,成功开发出我国首台CNC齿轮测量中心CCZ40样机,成果通过专业鉴定(图2)。该仪器采用计算机控制步进电机四轴(θ,X,Y,Z)联动,首次实现圆柱渐开线齿轮的齿廓、齿向螺旋线和齿距等单项几何精度以及齿轮刀具精度在国产CNC齿轮测量仪器上的测量。(3)2001年,哈尔滨精达成功生产出我国第一台国产CNC齿轮测量中心产品,用户为重庆宗申摩托。该测量仪器产品的问世,打破了国外同类产品十余年来对国内市场的垄断,填补了国产CNC齿轮测量中心产品空白(图3),开启了我国“齿轮测量中心”的规模制造生产以及进入国内外市场参与竞争的发展进程。(4)2003年北京国际机床展览会哈量和精达分别展出了各自开发的CNC齿轮测量中心(图9,图10)。此后在北京展会上展出CNC齿轮测量中心的有:2005年工具所CV450(图11)和西安交大思源GMC500(图12);2007年精达新开发JA系列齿轮测量中心(图10),该中心采用DDR电机直接驱动工作台主轴、直线电机驱动测量滑板花岗石底座,提升了产品测量精度和稳定性;2011年,哈量、精达及智达等公司纷纷推出花岗石结构的CNC齿轮测量中心。哈量展出的L45型齿轮测量中心(图13),采用测量运动轨迹全闭环控制,可对K形齿廓、凸形齿廓及螺旋线鼓度等项目进行评定;西安爱德华秉承了三坐标测量机的成熟精密量仪设计加工制造技术,成功开发并于2011年展会上展出了G40高精度齿轮测量中心(图14);2015年智达测控展出平行簧片结构的三维光栅数字式扫描测头Z3DDP(图15),并成功地应用于CNC齿轮测量中心,打破了该关键精密扫描测头部件产品的国外垄断。2017年展会上,青岛海拓推出了专用的平面二包测量中心(图16)。这实际上是通用齿轮测量中心的变型仪器,其主要功能是实现对我国首创的二次包络环面蜗杆/蜗轮/滚刀等复杂型面零件的高精度检测;2019智达则展出了以“谐波齿轮测量”为主题的成套测量仪器,包括检测谐波齿轮单项几何误差的齿轮测量中心和谐波减速器综合性能检查仪(图17),成为该届展会上国产齿轮量仪的一条亮丽风景线。(a)2003年产品(b)2005年产品(c)图9 哈量CNC齿轮测量中心(a)2003年产品 (b)2007年产品(花岗石基座)图10 精达CNC齿轮测量中心(a)2005年产品(b)2007年产品图11 工具所2005-2007年CV450齿轮测量中心图12 西安交大思源GMC500齿轮测量中心(a)L45(b)PREC40(近年开发新型号)图13 哈量L45和PREC40齿轮测量中心图14 爱德华G40齿轮测量中心图15 智达三维测头图16 海拓测量仪图17 智达谐波齿轮测量成套测量系统(5)2014年,中国计量科学研究院几何量所开发的“螺旋线(齿轮)测量基准仪器”项目完成验收。在完成与德国PTB的国际比对工作后,于2019年仪器通过鉴定和国家基准评审(图18)。该基准仪器采用了独立的激光跟随测量系统和独立的CNC测头运动轨迹生成系统(“驱动”和“测量” 两套系统独立又关联的设计)。该基准仪器的技术特点可归纳为:具有一维气浮回转工作台具有负载偏心下的角度自校准、二维激光干涉测长布局降低仪器阿贝误差、三维平行位移机构探测系统的测杆变形补偿、六轴联动主从级闭环精密驱动控制和采集等技术,以及自主建立的仪器精度补偿模型和相应误差补偿软件。这台由西安爱德华协助开发的超高精度和高稳定性的新一代齿轮螺旋线/渐开线测量装置的研制成功,标志着我国可直接溯源的复合式齿轮螺旋线/渐开线基准测量装置的技术指标达到了国际先进水平。该基准仪器实现了齿轮参量最短溯源链的直接溯源,其二路激光跟随测长误差0.1μm,修正后的探测系统误差0.3μm,修正后的回转台角误差≤0.15”;经比对测试,其螺旋线偏差测量不确定度为0.9μm/100mm (k=2)。其对外提供校准测量服务能力为:测量范围:β(0°-60°),d ( 25-400 ) mm 测量不确定度:螺旋线倾斜偏差(0.9-1.2)μm/100mm(k=2),螺旋线形状偏差0.8μm(k=2) 螺旋线总偏差(1.2-1.5)μm/100mm(k=2)。值得提及的是,2009年,中航工业北京长城计量测试技术研究所更新研制的JLC齿轮测量中心基准仪器,测量齿轮渐开线样板基圆半径的不确定度: 当rb=100mm,U=1.1μm(k=3) ;测量齿轮螺旋线样板螺旋角的不确定度:当β=15°,U=1.0μm/100mm(k=3),因此也成为代表当时我国齿轮测量中心制造/升级再制造的顶尖水平之作。(a)(b)(c)图18 国家计量院“齿轮测量基准仪器”设计原理和消除周期误差的有12个读数头光栅的圆光栅(6)2021年,通用技术集团哈量公司研发了具有自主知识产权的 ”L45P高精度计量型三维齿轮测量中心“(图19),该仪器具备高精度机械主机、误差修正补偿技术、多功能智能化实时测控系统及三维齿轮测量软件等多项自主关键核心技术,具有在线分析、自我诊断功能,具备稳定性高、扩展性强、抗干扰等优点。其配套的三维齿轮测量软件具有圆弧圆柱齿轮、弧锥齿轮、转子、弧齿刀盘等检测功能,仪器还具备测针库管理、空间修正、数据安全与管理等功能,是我国高精度计量型齿轮量仪又一突破,整体技术达到国际先进水平,是中国科协2021 “科创中国” 榜“突破短板关键技术榜(装备制造领域)”十个项目之一。图19 哈量计量型L45P三维齿轮测量中心3 弧锥齿轮测量中心及其闭环制造系统使CNC齿轮测量中心集成弧锥齿轮的测量和制造(1)2005年哈量和精达分别在北京国际机床展会上展出拥有弧锥齿轮测量功能软件的CNC齿轮测量中心。哈量展出3903A齿轮测量中心(见图9a),与重庆工学院合作、在国内首先成功开发的齿轮测量中心锥齿轮测量软件所测得的锥齿轮三维齿廓误差(见图9c);此后精达、智达也各自开发了相应的锥齿轮测量软件应用于齿轮测量中心产品。(2)2015年哈量在展会上重点推介“锥齿轮数字化网络化闭环制造系统”。该系统将哈量生产的数控锥齿轮切齿机床和数控锥齿轮磨齿机床与数控锥齿轮测量仪器——锥齿轮测量中心等整合集成,融通锥齿轮的设计加工及检测软件,实现锥齿轮加工参数的反馈调整,成功构建了锥齿轮闭环制造系统(见图20);中大创远集团和智达合作于同年展出了类似锥齿轮闭环制造成套技术和仪器产品。该年展会呈现了我国锥齿轮智能化制造技术与装备发展的新景象、新格局。2017年哈量集团长沙哈量凯帅(现更名为长沙津一凯帅)还展出了HCS260硬齿面螺旋伞齿轮加工刀盘调刀仪(见图22)和CNC L65G高精度螺伞齿轮测量中心。(a)(b)(c)图20 哈量锥齿轮数字化网络化闭环制造系统和齿廓反调计算图形图21 工具所GCW300 CNC滚刀测量仪图22 哈量硬刀盘检测仪(3)2019年,哈量展出了具有自主知识产权、最新版本成套“螺旋锥齿轮闭环制造系统”(见图4)。它包括螺旋锥齿轮铣齿机/磨齿机/铣齿刀刀盘/刀条/刀具装调机和齿轮测量中心等螺旋锥齿轮和切齿刀具的所有加工制造和测量装置的硬件和软件,(借助于物联网)进行数据信息的融合集成,对我国螺旋锥齿轮制造业的发展,具有标志性的示范引领作用。4 齿轮刀具测量中心及其闭环制造系统是CNC测量齿轮中心在齿轮刀具制造中的数字化应用在齿轮刀具测量领域,工具所于1989年开始开发专业的卧式CNC光栅式齿轮滚刀测量仪GCW200,经不断改进后于2005年前后推出花岗石底座的GCW300(图21),具有一定的卧式齿轮测量中心的功能。哈量集团2017年展出的弧齿锥齿轮的铣刀盘和硬齿面螺旋伞齿轮刀盘的CNC刀盘装调检测仪(图22),在弧齿轮加工刀具的数字化闭环制造上,为我国做出了突破性重大贡献。值得一提的是,西安工业大学和汉江工具厂在1995年合作开发了我国首台CNC齿轮测量中心样机后,又于2009年在北京展出了成功合作开发的全套国产数控刀具离线闭环制造系统和装备——数控齿轮刀具磨齿机+CNC齿轮测量中心+数控砂轮修整机+数据处理平台(图23)。首次实现齿轮测量中心与数控砂轮修整机之间的数据整合集成,成功构建了国内首套离线齿轮刀具闭环制造系统。据悉,近期西安工业大学和秦川机床及汉江工具合作,正在进一步开发高新水准的、数字化网络化智能化的齿轮刀具制造闭环系统。图23 西安工业大学-汉江工具联合研发的齿轮刀具离线闭环制造本文作者:谢华锟,邓宁
  • 舜宇“光电振动测量仪”重大仪器项目启动
    2月28日下午,国家重大科学仪器设备开发专项项目协调推进会在余姚河姆渡宾馆三楼尊茂厅举行,标志着由舜宇集团承担的&ldquo 跨尺度三维光电振动测量仪的开发和应用&rdquo 项目全面启动实施,进入实质性研发和应用定义阶段 同时也标志着舜宇在承担国家重点、重大项目上又迈出了坚实的一步,为今后更好地参与国家重大科技工程夯实了基础。  中国工程院院士、清华大学教授金国藩,中国工程院院士、上海理工大学教授庄松林,中国工程院院士、天津大学教授叶声华,中国工程院院士、中国计量科学院研究员张钟华,中国仪器仪表学会秘书长朱险峰,科技部条财司条件处处长孙增奇,省科技厅条件与基础研究处处长王桂良,宁波科技局计划处处长张永庆以及项目相关单位的专家和领导出席会议。  国家重大科学仪器设备开发专项于2011年首次启动,强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。&ldquo 跨尺度三维光电振动测量仪的开发和应用&rdquo 项目于2013年10月经国家科技部批准立项,由舜宇集团牵头,多家产、学、研、用单位共同参与,是继&ldquo 高通量优选开发及应用&rdquo 项目后,舜宇承担的第二个国家重大科学仪器设备开发专项。该项目旨在攻克三维激光运动姿态测量、视觉多点三维振动测量、三分量振动校准等技术,通过系统集成和软件开发以及在汽车NVH测试、陀螺电机转子振动测量、数控机床动态性能识别、火炮振动测试等的应用开发,丰富仪器功能,优化技术方案,形成具有自主知识产权、功能健全、质量稳定可靠的跨尺度三维光电测振仪,为我国航空航天、兵器工业、汽车工业等精密制造领域提供测试技术支撑。同时通过产学研用的合作实践,进一步完善及优化光电振动测量产业链,以提升行业的全球竞争力,进而促进国民经济、国防和科学技术的发展。  科技部条财司条件处处长孙增奇在项目协调推进会上强调,项目的全面实施不仅是要完成国家的任务,更重要的是通过项目的执行提高参与单位的研发能力,提高行业竞争力,最终通过整个项目的实施促进我国科学仪器整个产业的健康发展,并预祝项目取得圆满成功。  省科技厅条件与基础研究处处长王桂良也对项目的全面实施表示祝贺,并提出了三点要求:一要精诚团结,开展协同创新 二要科学组织,做到分工明确 三要规范管理,保证项目顺利进行。  舜宇集团董事长王文鉴向与会领导和专家长期来对舜宇仪器事业发展的关心、帮助和支持表示衷心感谢,同时郑重承诺:一定做到资金到位、人员到位、工作到位,全力以赴推进项目的实施 一定认真落实各位领导的指示和要求,做好各项目组成员之间的协同配合,严格按照项目要求及任务书展开工作,系统推进各项目标的达成 一定努力加快项目产业化进程,并践行舜宇的&ldquo 共同创造&rdquo 理念,通过项目组成员的充分磋商,公正评价各方贡献,合理分享合作的效益与成果。他表示,舜宇一定不辜负国家所托,为中国科学仪器事业做出自己的贡献,回报国家与社会各界对我们的信任和支持。  会上,各位专家和领导听取了宋云峰博士所作的项目报告。王文鉴董事长还分别向参与项目的技术专家和用户专家颁发了聘任证书。各位专家也分别从市场宣传、应用领域、产业化、产品稳定性及可靠性等方面就项目的具体实施展开&ldquo 会诊&rdquo ,提出了许多有益的建议和意见。
  • 重庆川仪IPO计划总投资额为6.26亿元
    川仪股份新股研究报告:底蕴深厚的综合性自动化仪器仪表企业  公司作为综合性自动化仪器仪表企业,产品线全面,下游应用领域广泛,总体需求较为稳定。公司的主要产品是工业自动控制系统装置及工程成套,包括系统集成及总包服务、智能调节阀、控制设备及装置、智能变送器、分析仪器、智能流量仪表、智能执行机构、温度仪表等,2013年收入约26.5亿元,占总收入的83%。下游较为分散,涵盖石油、化工、火电、核电、冶金等行业和环保、节能减排、轨道交通等新兴市场领域,需求较为稳定。  公司所处的自动化仪器仪表行业需求格局好于传统制造业,公司将充分受益。我国制造业生产自动化、信息化的发展趋势催生对仪器仪表的大量需求:2013年我国仪表行业收入达7682亿元,同比增长14.6%,明显好于传统制造业。同时国内企业的技术进步有望通过进口替代提高市场份额,在此过程中,公司作为国内综合型的龙头企业将获得较大优势。  募投项目计划总投资额为6.26亿元,其中偿还银行借款2亿元,其余募投项目投产后将新增智能流量仪表、智能执行机构、分析仪器和配套2座百万千瓦智能核电温度仪表的生产能力,其分别是现有产能的1.47倍、1.21倍、1.89倍和2倍。一方面,公司目前产能利用率较高,募投项目投产将大大缓解产能瓶颈,根据测算投资利润率在25-30%,具有较好的盈利前景 另一方面,我们估计募集资金到位将降低公司财务费用年均约2500万元。  公司期间费用率较高,未来若能对内夯实管理基础,控制费用率,则有望带来较大业绩弹性。2013年公司合计主营业务毛利率为25.95%,而销管费用率合计达19.9%,销售净利率仅为4.63%,盈利能力稍弱。公司正在积极推动营销体系改革、集中采购平台建设等管理创新,降低运营成本的努力若能取得实效将给公司业绩带来较大弹性。  盈利预测、估值与申购建议。我们预测公司2014-2016年完全摊薄后每股收益分别为0.42、0.53、0.59元,增速分别为16.94%、26.30%和11.10%。仪器仪表制造业平均滚动市盈率约35倍,剔除部分不盈利企业的影响,我们给予公司14年25-30倍PE,对应合理每股价值区间为10.5-12.6元。本次发行价格为6.72元/股,建议申购。  主要不确定因素。宏观经济持续不景气影响下游需求 应收账款坏账风险 募投项目效益不及预期 费用率失控。
  • 今年上半年分析仪器及装置增长32.25%
    p style="line-height: 1.5em " 日前,国家发改委产业协调司发布今年上半年机械工业运行情况信息。今年上半年,机械工业规模以上企业经营状况总体良好。机械工业增长值增长8.4%。机械工业主要产品产量稳定增长。仪器仪表制造业企业经营状况良好,增长态势平稳。重点检测的120种主要产品种,分析仪器产品增长表现良好,增长达32.25%。具体统计如下:/pp style="line-height: 1.5em " 据国家统计局统计,今年1-6月,通用设备制造业、专用设备制造业、汽车制造业、电器机械和器材制造业、strong仪器仪表制造业/strong规模以上企业strong主营业务收入/strong分别为20725亿元、15893亿元、40931亿元、31733亿元、strong3950亿元/strong,同比增长9.5%、13.3%、10.6%、9.4%、strong9.6%/strong,strong利润/strong分别为1315亿元、1067亿元、3360亿元、1712亿元、strong350亿元/strong,同比增长7.3%、19.4%、4.9%、2.3%、strong6.9%/strong,企业经营状况总体良好。br//pp style="line-height: 1.5em "  据机械联合会统计,2018年1-6月,机械工业增加值增长8.4%。机械工业主要大类行业中,通用设备制造业同比增长7.9%,专用设备制造业同比增长11.1%,汽车制造业同比增长10.9%,电气机械及器材制造业同比增长7.6%,strong仪器仪表制造业同比增长7.3%/strong,均高于全国工业增速。/pp style="line-height: 1.5em "  2018年1-6月,机械工业重点监测的120种主要产品中,产量同比增长的产品有76种。一是消费类产品稳定增长,汽车产量同比增长4.2%,摩托车增长5.29%,制冷设备用压缩机增长10.08%。二是strong环保类产品保持快速上升势头/strong,新能源汽车产销分别增长94.4%和111.5%,环境污染防治专用设备增长13.31%。三是智能制造类产品表现良好,工业机器人增长23.89%,工业自动调节仪表与控制系统增长17.37%,strong分析仪器及装置增长32.25%/strong。四是工程机械主要产品全部增长,挖掘、装载、压实、起重机械分别增长43.52%、29.83%、26.04%、39.6%。五是配件产品普遍增长,交流电动机增长7.77%,滚动轴承增长9.32%,阀门增长9.96%,液压元件增长19.71%,气动元件增长13.4%,模具增长26.6%。/pp style="line-height: 1.5em " 同时,制造业利用外资质量进一步提升,高技术制造业实际利用外资同比增长25.3%,电子及通信设备制造业、计算机及办公设备制造业、strong医疗仪器设备及仪器仪表制造业/strong增长较快,同比分别增长36%、31.7%和strong179.6%/strong。/pp style="line-height: 1.5em "br//ppbr//p
  • 安东帕流变仪、折光仪亮相高分子学术论文报告会
    2013年10月13日至15日,安东帕公司将携旗下流变、光学、黏度、微波等产品线参加于上海世博中心举办的全国高分子学术论文报告会。该报告会由国家自然科学基金委员会支持,中国化学会高分子学科委员会主办,是中国高分子材料界地位最高的学术会议,也是我国高分子材料届学者、科研人员和企业研发人员两年一度的融学科未来展望、学术交流、科研成果发布、产学研用相结合的盛大聚会。 对高分子材料的深入研究也离不开流变测量技术的不断革新和拓展。作为流变测量技术的全球领先者,安东帕拥有80多年的精密机械和电子制造领域的历史和传统,也是当前市场上唯一一家由自己工厂生产流变仪的供应商。目前,安东帕已成为欧洲市场第一品牌,其流变仪产品的年销售量已位居全球第一。安东帕的Phycica旋转流变仪早在2006年就独家获得为美国国家标准技术协会提供整套非牛顿高分子材料流体的流变学测试方案,为美国国家标准技术协会的标准物质SRM2490进行认证,认证平台基于安东帕的Phycica旋转流变仪。 展会期间,安东帕还将集中展出微波消解仪、落球黏度计、全自动折光仪等诸多在业内享有盛誉的产品,并为您展示并提供应用于高分子科学与材料领域前期研发、生产过程、品质管理的一系列测量/检测解决方案。届时我们的产品专家将在现场为您提供全面的产品和技术支持,安东帕展位号:No. 58,诚邀您光临我们展台! 单模微波合成 Monowave 300Monowave 300是一款专门针对研发实验室中小型微波合成应用而设计的高性能微波反应器。现今,微波辐射不仅成功地部署用于有机合成领域,在无机合成、材料科学、高分子化学和其他学科中也可以成功实施该项技术。如果配合使用 MAS 24 自动取样器选件,还可以在无人值守的情况下连续处理 24 个实验。 Abbemat系列折光仪Abbemat系列折光仪测量准确度高,仪器性价比好。凭借其内置的测定方法和优化的设计,Abbemat几乎覆盖了所有行业,是一款真正的万能折光仪。无需专用的行业解决方案。Abbemat应用于制药,香精香料,化学品以及饮料、食品等行业,快速精确的测量样品的折光率或浓度。Abbemat折光仪可实现快速无损的折光率测量。折光仪出厂时均已遵照德国国家计量研究院(PTB,德国联邦物理技术研究院)的标准物质执行校准。折光率测量精度达到 ± 0.0001 nD。 Lovis 2000 M/MELovis 2000 M/ME 是根据霍普勒落球原理而设计用于测量滚球在透明和混浊液体中的滚动时间的滚球黏度计。测量只需 100 µ L 的样品。测量结果以相对黏度、运动黏度或动态黏度表示。Lovis 2000 M/ME 结构小巧,经济实用,可以大大节省实验室的空间。Lovis 2000 M/ME 微量黏度计是安东帕 AMVn 自动化微量黏度计的接替者。 更多产品信息,请登录:www.anton-paar.com 流变学测量流变学测量是观察高分子材料内部结构的窗口,通过高分子材料,诸如塑料、橡胶、树脂中不同尺度分子链的响应,可以表征高分子材料的分子量和分子量分布,能快速、简便、有效地进行原材料、中间产品和最终产品的质量检测和质量控制。流变测量在高聚物的分子量、分子量分布、支化度与加工性能之间构架了一座桥梁,所以它提供了一种直接的联系,帮助用户进行原料检验、加工工艺设计和预测产品性能。 关于安东帕(中国)奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制