当前位置: 仪器信息网 > 行业主题 > >

通道粒子计

仪器信息网通道粒子计专题为您提供2024年最新通道粒子计价格报价、厂家品牌的相关信息, 包括通道粒子计参数、型号等,不管是国产,还是进口品牌的通道粒子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合通道粒子计相关的耗材配件、试剂标物,还有通道粒子计相关的最新资讯、资料,以及通道粒子计相关的解决方案。

通道粒子计相关的论坛

  • 尘埃粒子计数器有哪些特点

    尘埃粒子计数器有哪些特点

    [size=16px]  尘埃粒子计数器有哪些特点  尘埃粒子计数器的主要特点包括:  高灵敏度:可以检测微小颗粒,一般可测量0.3微米以上的粒子。  宽测量范围:可根据需要选择不同的粒径通道进行测量,能够覆盖较大范围的粒径。  实时监测:具有实时监测功能,能够实时显示空气中的颗粒数量和大小。  测量精度高,性能稳定。  功能强,体积小,操作简单方便。  有不同尺寸和重量可供选择,适应不同的应用场景。  通常采用铁制喷塑外壳制成。  配备彩色7寸触摸屏显示,易于观察和操作。  这些特点使得尘埃粒子计数器在医药、光学、化学、食品、化妆品、电子卫生、生物制品、航空航天等行业的洁净环境检测中得到广泛应用。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/12/202312111000040704_5136_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【原创】关于表面粒子计数器的问题

    我现在调试一台表面粒子计数器,型号是 Q Ⅲ,有个问题我不太明白:比如用0.3um的通道测试结果为50,这个意思是0.3um以下颗粒有50个,还是0.3um颗粒以上有50个呢?谢谢啊~~

  • 双通道表面等离子体共振系统应用方向

    [b][url=http://www.f-lab.cn/biosensors/2spr.html]双通道表面等离子体共振系统2SPR[/url][/b]用于制药,药物发现,抗体筛选、蛋白的结构与功能、基因表达调控、生物学和系统生物学。双通道表面等离子体共振系统可为科学研究人员提供重要的分子相互作用的全面表征,这些相互作用包括蛋白质、蛋白质肽、蛋白质核酸和蛋白质小分子。除了生物分子相互作用的研究,xantec SPR传感器还可以用来量化非生物系统,甚至在有机溶剂中的后续芯片表面的固相化学反应过程中的吸附和解吸过程。 [img=双通道表面等离子体共振系统]http://www.f-lab.cn/Upload/SPRSYS.jpg[/img]双通道表面等离子体共振系统:[url]http://www.f-lab.cn/biosensors/2spr.html[/url]

  • 大型强子对撞机最新发现“美丽粒子”

    http://photocdn.sohu.com/20120504/Img342377026.jpg大型强子对撞机的紧凑渺子线圈探测器发现了Xi(b)*存在的证据  【搜狐科学消息】据国外媒体报道,大型强子对撞机(LHC)最近在进行原子粉碎实验时检测到了一个新的亚原子粒子,这是一个美丽的粒子。新发现的粒子早已被理论所预言,但从未被发现。  新的粒子被称为Xi(b)* ,是一个重子。据悉,重子是由三个更小的被称为夸克的物质组成。组成原子核的质子和中子也是重子。Xi(b)* 粒子属于所谓的美重子,其包含一个底夸克,亦称美夸克。虽然发现Xi(b)*未必见得是一个惊喜,但这一发现应有助于科学家解决“物质是如何形成的”这一更大的难题。进行大型强子对撞机实验的美国康奈尔大学的物理学家詹姆斯•亚历山大(James Alexander)说:“这是墙上的另一块砖。”  不同于质子和中子,美重子的寿命极其短暂,Xi(b)*存在不到一秒钟就衰变成其它21个短命粒子。美重子需要极高的能量才能创造出来,所以它在地球上除了原子加速器的中心,如坐落于日内瓦欧洲核子研究中心(CERN)的大型强子对撞机,其它地方都找不到。  大型强子对撞机的科学家不是直接发现这个新的粒子,而是他们看到了它衰变的证据,大型强子对撞机的紧凑渺子线圈(Compact Muon Solenoid,CMS)探测器捕捉到新粒子在质子和质子碰撞后的凌乱余波中衰变的过程。CMS的物理学家文森佐•奇欧奇阿(Vincenzo Chiochia)说:“寻找这个粒子真的很辛苦,在这样一个混乱的状况下寻找这种复杂的衰变,使我们对自己的能力充满信心,未来我们也可以找到其它新粒子。”  CMS的科学家表示,这个新粒子的存在已被证实,研究人员有99.99%的信心认为这一结果不是因为偶然。没有参与这项研究的费米实验室的科学家帕特里克•卢肯斯(Patrick Lukens)说:“这一发现进一步证实物理学家对夸克如何结合在一起的理解在本质上是正确的。”  这个粒子曾被物理学中非常成功的理论模型预言,被称为量子色动力学(quantum chromodynamics),该模型演示了夸克如何结合,以及如何创造更重的粒子。然而,卢肯斯说,发现Xi(b)*对寻找希格斯玻色子没有影响。希格斯玻色子可以解释为什么质量存在于宇宙中,它也是由量子色动力学模型所预言的粒子。(尚力)

  • 【求助】定性粒子与定量粒子的选择原则是什么?

    实验室的gc-ms终于调试好了,想先用一段时间再去参加厂商培训,开始在摸索中使用它做筛查。今天遇到一个问题,就是定性粒子与定量粒子的选择问题。关于定性粒子,是选择丰度最高的几个碎片粒子呢还是选择质量数相对较大的碎片粒子?关于定量粒子,是不是选择丰度最大的粒子峰就行了?请各位老师指教。先谢过大家了。[em0808]

  • 【原创大赛】聊聊SX-L301N型高浓度粒子计数器维护保养

    【原创大赛】聊聊SX-L301N型高浓度粒子计数器维护保养

    [align=center][color=#404040][size=18px]聊聊SX-L301N型高浓度粒子计数器维护保养[/size][/color][/align] 一.[color=#404040]粒子计数器示意图及各部件功能图解[/color][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301152275424_3611_2256877_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301152276538_3429_2256877_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301152280395_842_2256877_3.jpg[/img][color=#404040]二.粒子计数器原理[/color][color=#404040]使用光学粒子计数器来测量高浓度粒子气溶胶系统(粒子浓度≥3×10[/color][color=#404040]4[/color][color=#404040]个/L)的粒子数时需要通过稀释器把粒子浓度稀释到光学粒子计数器上限浓度以下的范围内才能正确计数。[/color][color=#404040]SX-L301N型高浓度粒子计数器中的稀释器是采用自身高浓度气流旁通式原理达到粒子稀释的目的[/color][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301152281714_1632_2256877_3.png[/img][color=#404040]三.技术参数[/color][color=#404040]2.1 2.83L/min ±5% (0.1 CFM)[/color][color=#404040]2.2 粒径通道:0.3μm,0.5μm,1μm,3μm,5μm,10μm[/color][color=#404040]2.3激光光源:日本进口激光二极管[/color][color=#404040]2.4检定标准:依据JJF1190-2008,GB/T6167-2007[/color][color=#404040]2.5 粒子测量重复性相对误差:≤±10%[/color][color=#404040]2.6粒径分布误差:≤±30%[/color][color=#404040]2.7[/color][font=calibri]自净时间:≤10min(10 分钟内计数连续3 次为零,95%置信度)[/font]四.[font=宋体]粒子计数器[/font]维护保养4.1 定期对粒子计数器进行自净测试;建议每天采样前进行自净,将绝对过滤器(如图)连接至采样口,按照正常测试步骤采样10min 且有连续3min 钟为零的数据为达标,方可进行测试。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301152283208_6665_2256877_3.png[/img][/align]4.2 [font=宋体]仪器内置锂电池,每月进行充放电测试,保护电池,延长电池寿命。[/font]4.3 [font=宋体]每两年更换一次稀释器上的高效过滤器。[/font]4.4 [font=宋体]每三年更换新的自净过滤器。[/font]五.注意事项5.1 [font=宋体]仪器表面有污迹时,可使用无尘布和[/font]75%[font=宋体]酒精擦拭干净。不能使用其他及强腐蚀性溶液擦拭表面。[/font]5.2 [font=宋体]连接稀释器的单根软管长度不能超过[/font]1 [font=宋体]米。 [/font]5.3 [font=宋体]勿使用粒子稀释器测试>[/font]0.1mm [font=宋体]的颗粒以及带有腐蚀性的气体。[/font]

  • 物理学基本粒子“上帝粒子”身份获新证据支持

    物理学基本粒子“上帝粒子”身份获新证据支持  新华网日内瓦3月14日电(记者 吴陈 王昭) 欧洲核子研究中心(CERN)14日发布公告称,对更多数据的分析显示,该中心去年宣布发现的一种新粒子“看起来越来越像”希格斯玻色子。  CERN去年7月4日宣布,该中心的两个强子对撞实验项目——ATLAS和CMS发现了同一种新粒子,它的许多特征与科学家寻找多年的希格斯玻色子一致。  物理学标准模型预言了62种基本粒子的存在,其他粒子都已被实验所证实,只有希格斯玻色子未得到确认。由于它极其重要又难以找到,故被称为“上帝粒子”。  根据最新公告,科学家分析了比去年的研究多两倍半的数据,计算新粒子的量子特性以及它与其他粒子之间的相互作用,结果“强有力地表明它就是希格斯玻色子”。  但CERN表示,目前还无法判断它到底是标准模型中的希格斯玻色子,还是其他理论预测的好几个最轻的玻色子的组合。要弄清这个问题,还需要大型强子对撞机搜集更多数据,对各种衰变模式进行分析,“找到这个答案需要时间。”  希格斯玻色子得名于英国爱丁堡大学物理学家彼得·希格斯,他预言了这种粒子的存在。假设中的希格斯玻色子是物质的质量之源,其他粒子在希格斯玻色子构成的“海洋”中游弋,受其作用而产生惯性,最终才有了质量。  对这一重大发现做出重大贡献的大型强子对撞机已于今年2月中旬进入第一次长期停机维护,CERN将对包括大型强子对撞机在内的整个系列加速器装置进行维护和升级。  停机期间很多实验工作将继续进行,其中包括对大型强子对撞机收集的新粒子数据进行分析。大型强子对撞机预计于2015年再次启动,届时其对撞能量将提高到设计最高能量——每粒子束流7万亿电子伏特。

  • 费米实验室通过弱核力成功生成s-通道单顶夸克

    http://www.wokeji.com/shouye/guonei/201402/W020140226224411153378.jpg 上图表显示了s-通道单顶夸克的产生过程:在Tevatron粒子加速器中,来自注入质子的夸克和来自注入反质子的反夸克相互作用,形成一个质量更大的W玻色子;W玻色子随即衰变成一个顶夸克和一个反底夸克,并被CDF和Dzero两个实验小组探测到。 费米国家加速器实验室供图 科技日报讯 (记者陈丹)夸克是比质子、中子更微小的物质组成基本粒子,但它们并不会自然、独立地存在于自然界中,只有当粒子(电子或质子)以接近光速发生碰撞时,才有可能被制造出来,并且转瞬又会衰变成其他物质。美国能源部费米国家加速器实验室的CDF和Dzero两个实验小组日前共同宣布,他们已经观察到了创建一个顶夸克的最罕见方式——通过弱核力生成s-通道单顶夸克。这项发现有助于科学家们完整地了解顶夸克的“面貌”。 顶夸克是最重、最令人费解的基本粒子之一。它们的重量甚至超过了希格斯玻色子,几乎与一个金原子相当。在6种夸克中,顶夸克是最后被找到的,迄今只有两台机器曾经创建过它们:费米实验室的Tevatron粒子加速器和欧洲核子研究中心的大型强子对撞机(LHC)。按照粒子物理标准模型这一理论框架的预测,有几种方式可以产生顶夸克,其中最常见也是首先被观察到的方式就是:在粒子碰撞事件中,通过强核力创建出由一个顶夸克和它的反物质反顶夸克组成的对子。 在碰撞中通过弱核力产生单顶夸克非常罕见,对这一过程的探测也最具挑战性,而这也是Tevatron粒子加速器的终极目标之一。据物理学家组织网2月25日(北京时间)报道,两个实验小组的科学家对Tevatron粒子加速器在2001年至2011年间开展的超过500万亿次质子—反质子对撞实验所获得的数据进行了分析和筛选,最终确认在大约40次粒子对撞中,弱核力产生了与单底夸克成对的单顶夸克。 寻找单顶夸克的难度犹如大海捞针:在500亿次粒子加速器碰撞事件中,只有一次会产生s-通道单顶夸克。科学家仅从中选定了一小部分,将它们从背景中分离出来,这也是为什么在这一特定通道观测到的数量如此之少的缘故。不过,数据的统计显著性对于宣布一项发现已是绰绰有余。 CDF和Dzero两个实验小组是在2009年首次观察到粒子对撞中由弱核力产生单顶夸克的。这一结果后来获得了大型强子对撞机实验的证实。“这是一个重要的发现,为标准模型提供了一个有价值的补充。”美国能源部高能物理科学分部副主任詹姆斯·西格里斯特说。 总编辑圈点 每个中子或质子,都由三个夸克组成。夸克之间感情真挚,难舍难分。夸克间的距离稍微拉开一点,一股巨大的力量就会拽它们回来。因此,需要很强大的撞击,才有可能扯开它们的手。而从弱核作用(类似于衰变概念)产生夸克,更是500亿次碰撞才发生一回的特殊事件,比铁树开花还要稀奇。亏得有超级计算机帮忙筛查数据,光凭人力哪能有此发现?想要一窥世界基本结构的奥秘,可真费事啊。来源:中国科技网-科技日报 作者:陈 丹 2014年02月26日

  • 【分享】大型强子对撞机将长期运行 有望发现上帝粒子

    北京时间2月4日消息,据国外媒体报道,欧洲核子研究中心(CERN)发言人詹姆斯吉利斯2月3日表示,在最新一轮实验中,大型强子对撞机(LHC)项目科学家可能会揭开物质质量之源的谜团。大型强子对撞机此次将不间断运行近两年时间,直至2011年底。 大型强子对撞机是世界上最大、最昂贵的科学设施,将于本月晚些时候再度启动。吉利斯在接受媒体采访时表示,科学家或能在这次实验期间揭开希格斯玻色子的庐山真面目。希格斯玻色子的特性难以捉摸,被称为“上帝粒子”,科学家认为它是物质的质量之源。苏格兰物理学家彼得希格斯在30年前曾表示,希格斯玻色子或许能解释物质如何聚在一起,创造宇宙及宇宙万物。 吉利斯在谈到希格斯玻色子时说:“只要它确实存在,我们发现它的几率将相当大。”据吉利斯介绍,大型强子对撞机这次将运行18至24个月,在此期间它将给科学家带来丰富的信息和数据。大型强子对撞机是一座位于瑞士与法国边界、日内瓦近郊的粒子加速器与对撞机,作为国际高能物理学研究之用,由欧洲核子研究中心负责管理。 即便大型强子对撞机不能揭开希格斯玻色子神秘面纱,这并不意味着它不存在。经过第一次的长期运行和历时一年的停工准备,大型强子对撞机可能会再次在最高能级启动。吉利斯说:“要想捕获希格斯玻色子,这或许是我们所需要的能量强度。”大型强子对撞机于2008年9月首次启动,但在长达27公里的地下环形隧道发生爆炸后被迫关闭。 这台对撞机旨在推动以相反方向高能运转的粒子撞击。数十亿次撞击将产生大量数据,以供欧洲核子研究中心和全球各地一万名科学家研究和分析,每一次撞击都会产生类似于137亿年前宇宙大爆炸发生瞬间的状态,有助人类进一步探索宇宙起源之谜。宇宙大爆炸喷射的物质最终形成了恒星、行星和地球生命,但希格斯理论认为,只有在希格斯玻色子这样的粒子将物质聚集在一起,赋予其质量,上述一幕才有可能发生。 大型强子对撞机2009年底大约运行了两个月,令粒子束在地下隧道撞击产生了2.36万亿电子伏特(TeV)的能量,这也是质子流对撞能级的最高纪录。上周,在法国小城夏蒙尼召开的会议上,欧洲核子研究中心的物理学家、工程师和项目经理决定长期运行大型强子对撞机,冬天也不关停。 吉利斯表示,如果一切按计划顺利进行,对撞产生的能量最终将达到7万亿电子伏特。到明年年底,大型强子对撞机将再次关闭12个月之久,以便工程师可以对环形隧道进行维护,安装大量新设备,为接下来的新一轮对撞实验做准备。下一轮对撞实验可能在2013年开始,目标是产生14万亿电子伏特的能量。作者:孝文 来源:新浪科技 发布时间:2010-2-4 10:43:44

  • 【原创】多通道紫外辐射计LS125与紫外辐照计LS126C的区别

    多通道紫外辐照计LS125是林上科技最近刚上市不久的新产品,功能含盖了医院杀菌灯管光的强度测试(紫外辐照计LS126C)及UV固化行业UV灯管光的强度测试(紫外辐照计LS126A)。 最近有很多医疗器械行业的客户朋友们常问到同一个话题,就是关于紫外辐照计LS126C与多通道紫外辐射计LS125的区别是什么? 想要了解两样产品的相同点与不同点,或者其中存在的区别,我们可以从二者的作用、外观、应用行业等方面来了解。 就好比多通道紫外辐照计LS125与紫外辐照计LS126C的区别,主要有两大点: 第一、分别列出两个产品的作用,就能找到其中的区别; 多通道紫外辐射计LS125又称多探头紫外辐射计,它的组成是由一个LS125主机,再加UVA探头与UVC探头,即又称LS125多探头紫外辐照计,它的作用是当LS125主机接通UVA探头时,就可以测试UV固化机行业UVA波段灯管光的强度测试,而要是当LS125主机接通UVC探头时,我们就可以将UVC探头配套好的挂钩等附带,依据说明书组装好,即可直接测试医院杀菌灯管光的强度值。另外,使用一年后,LS125多通道紫外辐照计是需要寄回厂家进行重新校准的,此时就只需将UVA探头与UVC探头寄回即可,LS125主机是不需要寄回来的,因为LS125是数据化探头,记忆测试的数据都是储存在各自的探头里面。 而紫外辐照计LS126C,它的组成是直接由LS126C主机连接1M长的探头线。作用是与LS125多通道紫外辐射计UVC探头的作用一样,也是依据说明书,将配件组装好,即可直接测试医院杀菌灯管光的强度值。另外,关于使用一年后,需要校准时,是必须要将整个LS126C寄回给厂家进行校准的。 第二、首先就是使用行业不一样,像多通道紫外辐射计LS125,一般主要推向的市场是需要测试UVC波段跟UVA波段的客户群。那么,我们选择仪器时,最主要的是要先了解我们需要测试的波段是多少?主要测试哪些参数?我们清楚明白了自己的需求,在选择仪器的同时,可以将自己知道的参数信息,告诉客服,客服就会根据客户的需求,为客户介绍一个低成本,又实用的产品,这样子相应的又可以帮自己节省很多时间跟成本等费用。就好比前几天,有一个客户,他就是要找测试UVC波段跟UVA波段的仪器,他当时并没有将他的需求告诉我司客服,就直接在淘宝下单购买了LS126A跟LS126C两个产品,LS126A售价是1430元/台,LS126C售价是2180元/台。合计就是3610元,而且还是没有加上运费的。类似情况,如果这个客户下单前,有向客服咨询了解,并将自己的需求告诉客服,那这个客户也许就会购买LS125多探头紫外辐射计,LS125多通道紫外辐照计售价2960元/套,LS125的性能、测量数据等都是没得说的,绝对不低于LS126A跟LS126C的。然后就是外观不一样,关于外观就不多作解释,我们可以通过观看各自的产品图片,即可找出二者的区别所在。

  • 激光尘埃粒子检测仪如何使用

    激光尘埃粒子检测仪如何使用

    [size=16px]  激光尘埃粒子检测仪如何使用  使用激光尘埃粒子检测仪可以按照以下步骤进行:  按下电源按钮并等待仪器启动。  根据仪器说明书进行校准操作,确保数据的准确性。  通过仪器的操作界面或按钮选择测量模式和粒径范围,根据实际需要设置采样时间和采样间隔。  将仪器放置在待测空气中,确保其稳定且不受干扰。  启动仪器开始测量,观察仪器显示屏上的实时数据,根据实际情况,可以连续监测或设置测量时间。  测量完成后,停止仪器。  此外,使用激光尘埃粒子检测仪时,需要注意以下几点:  在开始采样前应先自净,以确保仪器内部无残留粒子,要使用设备自带的清零过滤器进行清零,当仪器上面每一项的数值均为0的时候表示清零完成!  采样时一定要用等动能取样头,并注意采样管不要堵塞、弯死,采样管不要太长。  在使用过程中,应避免仪器受到强烈的机械振动和外部强光的干扰。  在使用过程中,应保持仪器的清洁和干燥,避免水滴、灰尘等杂质进入仪器内部。  在使用过程中,应严格按照仪器说明书进行操作,避免错误操作导致仪器损坏或测量结果不准确。  综上所述,使用激光尘埃粒子检测仪需要注意多个方面的问题,包括仪器的启动和校准、测量模式和粒径范围的选择、仪器的放置和测量、以及仪器的保养和维护等。只有正确使用仪器,才能获得准确的测量结果。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/02/202402040951364042_3693_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 科学家发现上帝粒子足迹 存在可能性增加

    2012年07月03日 13:49 新浪科技微博  新浪科技讯 北京时间7月3日消息,据国外媒体报道,欧洲粒子物理研究所科学家近日表示,他们距离证实希格斯-玻色子的存在仅咫尺之遥。研究人员声称,他们已经发现了一个“足迹”和一个“阴影”,现在剩下的唯一工作就是他们自己亲眼看到这种捉摸不定的亚原子粒子。  希格斯-玻色子也被称为“上帝粒子”,宇宙中所有物质的大小和形状都被认为是由这种粒子所决定。位于欧洲粒子物理研究所的欧洲大型强子对撞机项目科学家计划于周三宣布,他们已经接近证实“上帝粒子”的存在。证实“上帝粒子”的存在,将有助于重新构造对物质为何有质量的理解。  长期以来,科学家们一直在致力于寻找所谓的“上帝粒子”,现在他们对这种亚原子粒子有了更新的认识。欧洲粒子物理研究所的科学家表示,他们编译了大量的观测数据,这些数据都显示了希格斯-玻色子的“足迹”和“阴影”,尽管他们仍然从未实际看到这种粒子。  在数十年的艰苦研究和数十亿美元投入的基础上,欧洲粒子物理研究所两个独立的科学家团队虽然都取得了相似的研究成果,但他们仍然对结果相当谨慎。他们并不打算使用“发现”一词。科学家们表示,他们将尽可能发布最贴近“找到了”这一层意思的声明,但也不会去夸大他们的发现成果。英国理论物理学家约翰-埃利斯自上世纪70年代就开始工作于欧洲粒子物理研究所。他表示,“我认为,任何理智的外界观察家都会说,‘这看起来像是一个发现。’我们已经发现了一些与希格斯-玻色子非常相符的事物。”  美国国家费米实验室希格斯-玻色子研究项目负责人罗伯-罗塞尔表示,“粒子物理学家对于承认一项发现,有相当高的认定标准。”他认为,这与发现希格斯-玻色子的距离只在毫发之间。罗塞尔将欧洲粒子物理研究所科学家将于周三宣布的发现结果比喻成发现一只恐龙的化石足迹。“你看到了一个物体的足迹和阴影,但也许你实际上看不到。”就好比恐龙,现在人们只能看到恐龙的化石足迹,但已无法实际看到恐龙。  美国国家费米实验室科学家表示,这些数据也许并不能解释希格斯-玻色子的问题,但是问题的解决已经极其地接近了。巴黎大学物理学家格雷高里奥-贝尔纳迪在美国国家费米实验室中领导实施了一项主要实验。他表示,“这是一个真正的悬念。在我们的多次观测中,发现了希格斯-玻色子强烈的衰变信号。”  对于大多数人来说,希格斯-玻色子是一个难以理解的深奥概念。科学家们希望利用这一概念来解释亚原子粒子本身是如何形成的,是如何赋予物质质量的。这一理论最初是由苏格兰物理学家彼德-希格斯于上世纪60年代提出的。该理论猜想,存在一个能量场,粒子在其中与一种关键粒子相互影响,这种关键粒子就是希格斯-玻色子。  本周在澳大利亚举行的一次物理学会议上,欧洲粒子物理研究所正式提供了他们的证据,但他们计划在日内瓦会议上正式发表声明。两个独立的研究团队,即ATLAS项目组和CMS项目组,也计划分别于十月和十二月的会议上公开披露更多关于希格斯-玻色子的数据。这两个研究团队分别独立地开展研究工作,以确保发现结果的准确性。  研究过欧洲粒子物理研究所最新数据的科学家们均表示,数据分析显示,希格斯-玻色子已经被发现的确定性很高。再结合两个独立研究团队的非公开结果,可以认为已经接近发现希格斯-玻色子。欧洲粒子物理研究所发言人詹姆斯-吉利斯周一表示,他对于ATLAS项目组和CMS项目组数据的非正式组合研究结果表示非常谨慎。“将两个实验数据结合研究,是一项非常复杂的任务。这就是为什么这项实验很耗时间,也是为什么我们周三并不会提供组合研究成果的原因。”  美国加州大学物理学教授约翰-圭诺恩表示,“如果计算确实是正确的,那么可以直接说,我们在某种意义上已经登上了顶峰。”美国加州理工学院物理学家西恩-卡罗尔将于周三飞赴日内瓦参加发现成果宣布大会。卡罗尔表示,“如果ATLAS项目组和CMS项目组确实独立地发现了希格斯-玻色子足迹,那么只有最小气的人才不相信科学家们的发现。”(彬彬)

  • 【原创大赛】牙刷+醋+替代电池 修好Y09-301型激光尘埃粒子计数器

    【原创大赛】牙刷+醋+替代电池 修好Y09-301型激光尘埃粒子计数器

    一台洁净区用的激光尘埃粒子计数器出现故障,拆机进行检修,并对原理结构、电子元件进行分析,供感兴趣的朋友参考。仪器基本情况:Y09-301型激光尘埃粒子计数器用于测量洁净环境中单位体积空气内的尘埃粒子大小及数目,可直接检测洁净度等级为三十万级至十级的洁净环境。该仪器采用半导体激光光源,液晶屏显示,体积小、重量轻、检测精度高、功能操作简单明了,电脑控制,可存储、打印采样结果,测试洁净环境十分便利。广泛用于电子、光学、化学、食品、化妆品、医用卫生、生物制品、航空航天等部门。http://ng1.17img.cn/bbsfiles/images/2012/12/201212271849_416325_1807987_3.jpg故障现象:液晶显示屏蓝屏,字符无规律乱码。http://ng1.17img.cn/bbsfiles/images/2012/12/201212271849_416326_1807987_3.jpg http://ng1.17img.cn/bbsfiles/images/2012/12/201212271850_416327_1807987_3.jpg http://ng1.17img.cn/bbsfiles/images/2012/12/201212271954_416383_1807987_3.jpg一、基础知识(专家飘过)由于是专用仪器,使用面比较窄,先科普一些知识:空气尘埃粒子计数器是用来测量空气中微粒的数量及大小及多少的仪器,为空气洁净度的评定提供依据。常见的尘埃粒子计数器是光散射式(DAPC)的,测量粒径范围0.1-10μm(即PM0.1- PM10),此外还有凝聚核式的尘埃粒子计数器(CNC),可测量尺寸更小的尘埃粒子。以自动监测PM2.5为例,有三种国际认可的方法:振荡天平法,β射线法,光谱法(光散射法)。光散射式尘埃粒子计数器仪器工作原理(见下图):空气中的微粒在光的照射下会发生散射,这种现象叫丁达尔现象(Tyndall Effect)。光散射和微粒大小、光波波长、微粒折射率及微粒对光的吸收特性等因素有关。但是就散射光强度和微粒大小而言,有一个基本规律,就是微粒散射光的强度随微粒的表面积增加而增大。这样只要测定散射光的强度就可推知微粒的大小。来自光源的光线被透镜组1聚焦于测量腔内,当空气中的每一个粒子快速地通过测量腔时,便把入射光散射一次,形成一个光脉冲信号。这一光信号经过透镜组2被送到光检测器,正比地转换成电脉冲信号,再经过电子线路的放大、甄别,拣出需要的信号,通过计数系统显示出来。http://ng1.17img.cn/bbsfiles/images/2012/12/201212271851_416329_1807987_3.jpg光散射式尘埃粒子计数器结构示意图:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271852_416330_1807987_3.jpg二、仪器外貌本次拆机维修的型号是Y09-301,属于激光光散射式,能同时测六个粒径通道的尘埃粒子数(PM0.3--PM10)。由于激光的单色性好,光能量集中稳定,采用激光光源的尘埃粒子计数器其传感器有较高的信噪比,广泛适用于各行业的精加工、精密试验所需的洁净室(区)的检测需要(注:环保部门的PM2.5尘埃粒子监测器往往采用专用型)。仪器装在铝合金手提箱中:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271853_416331_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212271853_416332_1807987_3.jpg随机附件有三脚架、16V直流电源适配器、通讯线、取样管、空气导管:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271854_416333_1807987_3.jpg仪器前面:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271854_416334_1807987_3.jpg仪器后部,2007年10月出厂,苏净公司生产;外接16V直流电源,功耗10W;有RS232接口,可接计算机或控制用:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271854_416335_1807987_3.jpg仪器上贴有年检签,为了保证准确性,每年要到有资质的机构校核:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271855_416336_1807987_3.jpg二、拆机过程及电子元件功能解析卸下仪器上面四颗螺丝,打开机器:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271855_416337_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212271856_416338_1807987_3.jpg首先将锂电池组附近的电源插接头断开(即对主板断电!):http://ng1.17img.cn/bbsfiles/images/2012/12/201212271856_416339_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212271857_416340_1807987_3.jpg主机结构为:电源板、锂电池组、主电路板、液晶显示板、自净过滤器、空气泵、测量腔组件、空气自净过滤器。http://ng1.17img.cn/bbsfiles/images/2012/12/201212271857_416341_1807987_3.jpg 下面是电源板;锂电池组18650(2600mAH)×8只,充满电后,可工作8小时:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271858_416342_1807987_3.jpg 由于仪器采用外接16V直流输入,电源板电路相对简单。用了两只LM317T构成双稳压电源,W2、W3微调电位器分别用于空气泵流量、激光管功率调整;测量腔组件所需的光电倍增管阳极负高压电路在PCB背面:http://ng1.17img.cn/bbsfiles/images/2012/12/201212271858_416343_1807987_3.jpg主电路板微处理器(MCU)采用了飞利浦的P89V51RD2FA,带64KB程序Flash和1024B数据RAM的80C51单片机;6个尘埃粒径通道有6只精密微调电位器(天蓝色)供调整参数:http://ng1.

  • 激光粒子计数器哪里才能全指标校准

    各位好,目前手边有climet的激光粒子计数器,如何才能进行0.3/0.5/5.0粒径和浓度的检测?华东计量院那里粒径只能做一个0.5的,浓度做出来也只给两个数据,不写做的是哪个粒径大小?请问各位,除了送供应商那里,哪里还能进行全范围指标的校准?

  • 洁净室尘埃粒子实时监控系统

    为了提高激光尘土粒子计数器的分辨率和计数效率,对国产传感器规划进行了功能优化。以半导体激光器作为传感器光源,选用带有"清洁空气保护靴"的采样设备代替原有的采样设备,间接改进了光敏区的光强均匀度,同时对气路紊流也起到了抑制作用。散射光搜集体系为球面反射镜,其对粒子散射光的搜集角规模从30°~150°。并对该光学传感器的功能进行了丈量。结果表明:该体系除具有离散度小、分辨率高的长处外,同时还能有用的下降标定本钱和标定时刻。跟着电子、精细机械加工、军工、医疗、药品和食物出产等职业的开展,对空气中尘土粒子和细菌微粒的操控要求越来越高。激光尘土粒子计数器作为一种有用的空气洁净度监测设备,其商场需求量越来越大。因为现在这类监测设备多为国外产品,产品价格昂贵,维修困难,而国内出产厂家数量和出产能力有限,且激光尘土粒子计数器的要害零件和相关器材受外商操控。因而,进行激光尘土粒子计数器的国产化研讨和开发具有现实意义和实用价值。 在剖析国外产品的基础上,确认了仪器国产化研讨和开发的方向、重点和难点,论文首要阐述了激光尘土粒子计数器的要害部件——光学传感器的研讨和开发出产,解决了如下问题: (1)经过研讨比较剖析,确认了激光尘土粒子计数器光学传感器的结构,首要包括光源的选择、照明体系规划和散射光搜集体系规划。传感器选用半导体激光器作为光源,并选用直角方向散射光搜集方式,与洁净室的环境相适应,并且能取得较高的信噪比,计数效率更高。 (2)探索了尘土粒子计数器传感器中的首要结构件---椭球反射镜的规划和加工,在满足仪器功能的前提下,结合本地区的加工能力,经过一系列加工试验,选用Ly12制造椭球面反射镜,并将其加工分为四个阶段:精细数控车削成型、精细研磨、精细抛光和镜面镀膜,优化了加工工艺、下降了制造本钱。三通道远程遥测激光尘埃粒子计数器及远程监控系统CW-RPC300CW-RPC300远程遥测激光尘埃粒子计数器是智能多点净化检测系统的终端设备。为用户提供实时准确地远程测量所监控环境的微粒数量和净化等级。根据不同需要增加或减少控制终端,可实现7*24实时远程自动监测,通过RJ45网络接口、WiFi、485(moudbus)等,将数据送给PC终端,显示当前监测环境的洁净状况。该粒子计数器按照国际标准ISO14644-1,GMP和日本工业标准(JIS)要求标定,专业应用于电子行业、制药车间、半导体、光学或精密机械加工等洁净室环境自动监测系统。主要功能特点同时对两个通道粒径进行采样监控采样模式:累积/差分/浓度自动远程现场超限报警RJ45接口高速数据传输POE供电或6~9V直流适配器供电POE自动识别终端的合法性和安全性POE自动供电与自动断电的智能机制7/24连续远程监测

  • 能量基本粒子(光粒子)就是构成万物(宇宙)的基本粒子

    连基本粒子都是永动的了,宇宙还不会永动吗?宇宙不仅永动,而且永变永存。只要物质是运动的就可以说明组成物质的基本粒子也是运动的,同理,只要能量是运动的,就可以说明组成能量的基本粒子(基本能量)也是运动的,能量与物质只有现象的区别,没有本质的区别,它们之间最终还是可以相互转变的。能量基本粒子(光粒子)就是构成万物(宇宙)的基本粒子。

  • 求购a粒子计数仪、α辐照仪(含α源)和内环切片机

    名称用途以及要求a粒子计数仪用于测试器物年剂量,要求测试放射性元素U、Tu中的a粒子计数率α辐照仪(含α源)α源对器物辐照α射线用于确定器物年代,α辐照仪用于存放α源,要求与TL/OSL-DA-20型热释光仪配套内环切片机将器物厚度可切到小于200μm,同时对器物的磨损较小且均匀度较高 联系方式 电话:13881868702 李女士

  • 上帝粒子的悬念有尽头吗?

    本报记者 张梦然 梦然快语http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130705/021372953844250_change_wangxl3712_b.jpg 霍金常赌常败。本来希格斯粒子一事这么多年没苗头,他是想拿来翻盘的,但在去年的这个时间,他认栽了,随后也很大方的请诺贝尔奖评委会关注一下彼得·希格斯。 2012年的7月4日,希格斯粒子出现的新证据搅动了物理学界。如今一年过去,有人操心起物理学的未来命运;有人依然对新粒子持怀疑及否定态度。在欧核中心(CERN)那边,支持这种亚原子粒子存在的证据正不断增加中。 但到了研究小组成员嘴里,说法几乎没变化。3日物理学家组织网文章援引CERN一位成员的话称:“现在毫无疑问的确定我们多了一枚新粒子,玻色子的一种。但还要再证明它是否就是人们苦苦寻觅的希格斯玻色子。” 爱好物理的网友纳闷道,这怎么还不如去年发布会上来的确定呢。当时CERN主任还对媒体称,如以一个外行人的角度,他们已经发现希格斯玻色子了。 一年的日子里,物理学家们也分析了铺天盖地的信息,数据总量是发现那时的2.5倍。今年3月,CERN小组已对外宣布,新粒子至少有两点“希格斯特征”:一是自旋为零;二是处于低能正宇称态。而且其表现恰如预期,让人越看越觉得它就是一直所企盼的结果。 但为何至今不敢绝对肯定地说,这个具备了希格斯粒子“五脏六腑”的新丁,就是那个答案呢? 因为其中有一些数据的疑点和观点的交锋仍待解决。 数据中不符合期望的值,不久前被判断为不具有影响整体结果的意义。但学派间的争论就没那么容易解决了。传统理论派认为,标准模型的希格斯玻色子是唯一的,只有一个;而诸如弦理论等新锐派提出,这个数字最少也应当是5。 目前CERN搜集到的所有证据都在为“唯一论”提供有力的支持。但不管是多有话语权的实验室还是多么高瞻远瞩的物理学家,都不可能为上帝粒子的唯一性下定论,因为始终有可能存在其他超出强子对撞机乃至人类认知能力的粒子存在。 亦因此,科学家敢于将新粒子存在的证据拿到即将在斯德哥尔摩召开的欧洲物理学会会议上发布,但一致认为要彻底证明新粒子的身份,更庞大的数据才是硬道理。 我们在此必须先赞赏CERN对待科学的严谨(忘了他们和意大利人闹的中微子超光速吧)。只是事态也在走向悲观,新粒子身份的悬念怕是没有揭晓的一天了,它最后成了“两分法悖论”里那个走也走不到终点的路人。 这些科学上的新突破,像是只为了解答“脑子出问题的人才会考虑”的艰涩理论,技术的进步则在为此提供帮助。但理论是不能被证明的——或者说,我们永远不能肯定是否找到了100%正确的理论。就算标准模型因希格斯粒子的确认而趋于完美,那它也仅描述了组成宇宙所有物质的5%而已——常规物质在宇宙中所占的比重。 不过,科学上虽永远无法证明某些事物是正确的,却可以进行相反的论证。其方法只有一个,不断减去那无穷的可能性。然后只要它在数学上是协调的、和人们一直以来的观察是一致的,那么它就有权力给一个长期争论的命题划上休止符。 也不用被此蛊惑的忧心起物理学的未来命运了。量子力学奠基人玻恩曾对一群科学家说:“尽我所知,物理学将在6个月内完结。”说话时是上世纪20年代末。 其实,如我等一般人眼中,上帝粒子这项物理学界“30年甚至40年间最大的发现”,最好有朝一日能变得像地球围着太阳转那样清楚明白,或者哪怕像天圆地方说一样荒谬也行——但恐怕,只有时间才是此事唯一的裁决者。 背景链接: 希格斯玻色子,因其难以寻觅又极为重要,也被称为“上帝粒子”。它是一种由物理学家彼得·希格斯于1964年首次提出的行迹诡秘的粒子。被认为在大爆炸后宇宙冷却之时,赋予了物质“质量”的属性。在它被预言之前,标准模型有一个致命缺陷——它所演绎出的世界里没有质量,而当其他粒子在希格斯玻色子构成的“海洋”中游弋,受其作用而产生惯性,最终才有了质量,这也是标准模型62种基本粒子中最后一块基石。 希格斯玻色子无法直接观测到,但能通过观测到某种粒子衰变之后产生的光子等其他粒子,反推这些光子会不会对撞机中粒子碰撞产生的希格斯玻色子衰变出来的。于是,自2008年起,依照彼得·希格斯本人以及其他重要学者的理论,全世界数以千计的物理学家们以欧核中心的大型强子对撞机为工具,花费三年多时间进行了捕捉上帝粒子的浩大工程。经过对撞机的能级不断调整以及数据经验的累积,在2012年7月4日,研究小组宣布发现了一种与希格斯理论描述高度一致的基本粒子。此被誉为现代物理学的最重要时刻之一,是人们理解自然的一个里程碑。 而著名科学家霍金此前一直对这种粒子不怎么“感冒”,甚至愿意打赌100美金说它不存在。不过,在2012年BBC的采访中,霍金说:看来我是输了这100块钱。 《科技日报》(2013-07-05 二版)

  • 在线粒子计数器的校验问题

    各位好!我们企业现在用的在线粒子计数器(型号为Rnet)是PMS的,想咨询两个问题:①关于型号为Rnet的PMS在线粒子计数器是否在使用前需要将采样口的防尘盖打开再进行通电,不然会导致内部的激光器烧掉的说法是否属实?②关于零过滤器的问题。针对厂区很多的在线粒子计数器,除了定期的外送校验,是否可以用零过滤器来进行企业内部的在线粒子计数器的自检,这种方法是否科学?有人能给我科普下零过滤器的相关知识吗?

  • 带电粒子在四极杆内的运动轨迹

    正弦或余弦驱动四极杆滤质器的理论离子的运动方程按照理论计算可知,在数字化四极杆滤质器的各工作参数保持不变的情况下,质量数为1271和624的离子在x轴上轨迹稳定,在y轴上轨迹不稳定;质量数为578的离子在x轴和y轴上都有稳定的轨迹;质量数为565和529的离子则在轴上有稳定轨迹,在yx轴上轨迹不稳定。 离子的受力分析设相邻极杆间电势差为02φ,其中0cosUVtφω=u数字化四极杆滤质器的理论计算令(cosekUVr ωω=−,ux其中()(kTk ξξ+=ua,若为正值时,离子在kx方向上所受到的力就是回复力,即离子在x方向上的运动就可以看做是简谐振动,而在y方向上所受到的力却是随着位移的增加而增加,所以是振幅逐渐增加的振动。若这与之前的分析完全吻合。k为负值时,离子在x方向上的运动就是振幅逐渐增加的振动,而此时y方向上离子的运动则是简谐振动。由于0φ是交流电势,因此值交替正负,这样就将离子的轨迹束缚在“稳定”状态。通过不断的改变k值,而使得离子在x方向和y方向上不断的交替进行简谐振动,使得离子能够在xy平面内具有稳定的轨迹。在四极杆工作时在其电极上施加射频电压和直流电压以形成随时间变化的四极场。离子在该电场中的运动轨迹稳定性会因质量数的不同而不同,因此可根据轨迹稳定性的不同分离离子。然而迄今为止,质谱仪的电源驱动信号都是正弦或余弦波周期信号。这就使得通常各种四极质谱仪中都有一个高频振荡器,用于产生高频电压,由于电压幅值正比于被分析离子的质量数,因此在分析大质量数的离子时,常需要提供几千甚至上万伏的高频高压。这不仅增加了电路的复杂性(例如大电压下谐振点飘移问题),也可能导致器件内的放电问题,这样就对真空度提出了更高的要求以避免产生放电现象。分析四极场的特征可知利用电势变化频率实现质量分析可以降低高频电压的要求。然而正如前面所提,传统四极质谱仪上的高频高压是通过谐振网络得到的,因此很难实现利用频率变化进行质量分析。其实,驱动四极质谱仪工作并不一定是正弦或余弦波周期。E.Sheretov很早就提出脉冲射频电压驱动双曲场质谱仪的理论。现今数字技术的发展推动了分析仪器的数字化。数字化电压简单地说即为矩形波电压来驱动四极杆滤质器。这样以来,在软件的控制下,频率和波形可独立调节,使得实现频率扫描,避免了电压过高带来的种种弊端。而且它能够允许波形延时或暂停,可灵活地对离子进行控制(如引入、引出离子),所以数字化四极杆滤质器具有传统正弦波驱动时无法实现地优越性。在此基础上介绍正弦或余弦波驱动四极杆滤质器的理论计算,包括离子运动轨迹、稳定曲线和稳定图以及质量扫描图。最后是本章将着重阐述矩形波驱动四极杆滤质器的理论计算,以证明矩形波不仅能够完全代替正弦或余弦波驱动四极杆实现滤质功能,而且还能够实现正弦或余弦波所不能实现的频率扫描。 四极场理论 离子的空间束缚场首先考虑怎样才能将一个带电离子动态束缚在一个有限的空间内。一个类似的物理原型给出了提示。这个物理原型就是简谐振动,最为简单的就是弹簧振子。小球所受到的回复力使得它在一维空间上的一段有限距离内往复做周期振动。其回复力的数学表达式如所示: K=KX从公式能定性的看出,小球所受到的回复力总是和它的位移方向相反。因此小球的运动始终被回复力提供的力场束缚在一个有限距离的空间内。这也就给出了一个方向寻找将电离子束缚在有限空间内的场。随时间变化的四极场实现了这一功能。理想的随时间变化的四极场能将带电离子束缚在一个有限的空间内[ 四极场的数学形式四极场可以表示成它在笛卡尔坐标系中位置的线性组合形式值得注意的是,该场在0Ex,y和三个方向上不相关。这使得离子运动分析变得简单,因此四极场还可以用公式表示根据xExφ∂=−∂、yEyφ∂=−∂和zEzφ∂=−∂

  • 【分享】上帝粒子!

    人们将Higgs粒子称为“上帝粒子”,正如有些人称IPhone为“上帝”手机一样,我突然想到一个可能遭到无视的问题,那就是这个前缀意味着什么。考虑到当下激烈的文化冲撞,这个绰号之流行倾向显得有些莫名其妙。难道是为了给大众呈现一个抽象粒子的常规解释吗?还是人们对宗教的人道主义妥协?倘如此,那么宗教文化真的会因这透明策略而被动摇吗?——你知道,Higgs玻色子就是像上帝一样,造就了质量。据我所知,“上帝粒子”的称呼主要是媒体的掺和,来源于Leon M. Lederman的一部同名科普读物,但是,让很多科学家不爽的是,他在书中过分抬高了Higgs粒子的重要性。Lederman 自己也在书中交待了“上帝粒子”怎样一步步被科学家推出,成为揭示自然之神秘的一种多姿多彩的表述,而非仅限字面上的理解。爱因斯坦作为享誉全球的科学家而非斯宾诺莎学派人士,曾说:“我们作为斯宾诺莎的追随者在现实中可以看到上帝所创造出的协调、有序的世界。”“上帝”一词被广泛应用并不少见,但是在后智能设计科学领域,这个惯用手法略显苍白。然而当我们试图去寻找一个新的,更为适合的隐喻来形容这个“躲避我们视野,宏伟、壮观的宇宙”时,却发现上帝竟依旧指引着。

  • 关于尘埃粒子计数器

    尘埃粒子计数器,采样量28.3L/min,我想问下哪些厂商比较好(最好三家比对),不是代理商。还有 我们是做洁净室,洁净台,生物安全柜检测的,我想问下关于检漏和洁净度这块,尘埃粒子计数器,光度计,还有计数检漏仪该如何选择?还是每一个都必须配备?请做过这块的大神指点一二!谢谢

  • 空气粒子计数器的使用

    用尘埃粒子计数器测量实验室的环境时,尘埃粒子计数器停电关机后 ,充电半小时 ,继续测量环境,结果不到15分钟, 就又停电关机了,这是什么情况

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制