当前位置: 仪器信息网 > 行业主题 > >

助焊剂

仪器信息网助焊剂专题为您提供2024年最新助焊剂价格报价、厂家品牌的相关信息, 包括助焊剂参数、型号等,不管是国产,还是进口品牌的助焊剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合助焊剂相关的耗材配件、试剂标物,还有助焊剂相关的最新资讯、资料,以及助焊剂相关的解决方案。

助焊剂相关的资讯

  • 涉及880台仪器设备,德州仪器扩能项目详情曝光
    近日,德州仪器半导体制造(成都)有限公司凸点加工及封装测试生产扩能项目(二期)竣工验收。该二期工程建设内容包括:在集成电路制造厂(FABB)新增凸点加工产能18.7975万片/年(全为常规凸点产品),在封装测试厂(AT)新增封装测试产能 10 亿只/年(均为常规QFN产品)。二期工程建设完成后,扩能项目新增凸点加工产能33.3975万片/年(全部为常规凸点33.3975万片/年),新增封装测试产能 21.48 亿只/年(其中常规QFN 15.48 亿只/年,WCSP 6 亿只/年)。仪器信息网通过公开文件查阅到该项目的相关仪器设备配置清单和工艺流程。FABB 集成电路制造厂主要生产设备清单.封装测试厂(AT)主要生产设备清单生产工艺:1、凸点加工晶圆凸点是在封装之前完成的制造工艺,属于先进的封装技术。该工艺通过在晶圆级器件上制造凸点状或球状结合物以实现接合,从而取代传统的打线接合技术。凸点加工制程即从晶圆加工完成基体电路后,利用涂胶、黄光、电镀及蚀刻制程等制作技术通过在芯片表面制作铜锡凸点,提供了芯片之间、芯片和基板之间的“点连接”,由于避免了传统 Wire Bonding 向四周辐射的金属“线连接”,减小了芯片面积,此外凸块阵列在芯片表面,引脚密度可以做得很高,便于满足芯片性能提升的需求,并具有较佳抗电迁移和导热能力以及高密度、低阻抗,低寄生电容、低电感,低能耗,低信噪比、低成本等优点。扩能项目凸点包括普通凸点和 HotRod 凸点两种,其主要区别在于凸点制作所采用的焊锡淀积技术不同,普通凸点采用植锡球工艺,工艺流程如下图所示,Hot Rod 凸点采用电镀锡银工艺,工艺流程如下图所示。扩能项目凸点包括 RDL(Redistribution Layer)、BOP-on-COA(Bump on Pad –Copper on Anything)、BOP(Bump on Pad)、BOAC (Bond Over Active Circuit)、BOAC PI (Bond Over Active Circuit with Polyimide)、Pb-free HotRod,上述各类凸点结构如下图所示,主要区别为层次结构和凸点类型不同。扩能项目各类凸点结构示意普通凸点加工主要工艺流程及产污环节注:普通凸点产品中的 BOAC 不含灰化、回流焊与助焊剂去除工艺Hot Rod 凸点加工主要工艺流程及产污环节凸点加工的主要工艺流程简述如下:(1)晶圆检测分类(wafer sorting):对来料晶圆进行检测,主要是检测晶圆有无宏观缺陷并分类。(2)晶圆清洗(incoming clean):由于半导体生产要求非常严格。扩能项目清洗工艺分为两种工艺,第一种仅使用高纯水,另一种使用 IPA 清洗,清洗后再用纯水进行清洗。IPA 会进入废溶剂作为危废收集,清洗废水进入中和废水系统进行处理。(3)烘干(Dehydration bake):将清洗后的晶圆烘干。该工序产生的烘干废气通过一般废气排气系统排放。 (4)光刻(Photo)扩能项目采用光刻机来实现电镀掩膜和PI(聚酰亚胺)层制作,包括涂胶、曝光,EBR和显影。涂胶是在晶圆表面通过晶圆的高速旋转均匀涂上光刻胶(扩能项目为光阻液和聚酰亚胺(PI))的过程;曝光是使用曝光设备,并透过光掩膜版对涂胶的晶圆进行光照,使部分光刻胶得到光照,另外部分光刻胶得不到光照,从而改变光刻胶性质;显影之前,需要使用EBR对边缘光阻进行去除。显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上形成了沟槽。通过曝光显影后再进行烘干,晶圆表面可形成绝缘掩膜层。扩能项目该制程使用了各类光阻液、聚酰亚胺、EBR、显影液及纯水,完成制程的废液统一收集,作为危废外运处置。显影液中由于含有四甲基氢氧化铵,将产生少量的碱性废气,由于其浓度很低,扩能项目将其通入酸性废气处理系统进行处理;显影液及显影液清洗水排入中和废水处理系统。光刻工艺示意图(5)溅射(SPUTTER)溅射属于物理气相沉积(PVD)的一种常见方法,即金属沉积,就是在晶圆上沉积金属。UBM(凸点底层金属)是连接焊接凸点与芯片最终金属层的界面。UBM 应在芯片焊盘与焊锡之间提供一个低的连接电阻。为了形成良好的 UBM,一般采用溅射的方法按顺序淀积上需要的金属层。扩能项目采用 Ti:W 合金-Cu的顺序进行溅射。溅射示意图(6)电镀(Plate)凸点电镀根据需求,可单纯镀铜,也可镀铜、镍、钯或镀铜、锡银,镀层厚度也有差异,可为铜膜或铜柱。扩能项目普通凸点电镀工艺包括镀铜膜、镀镍和镀钯。扩能项目 HotRod 凸点电镀工艺包括电镀底层铜(plate COA,Copper on Anything)、电镀铜柱(plate Cu POST)、电镀锡银。基本的电镀槽包括阳极、阴极、电源和电镀液。晶圆作为阴极,UBM的一部分作为电镀衬底。在电镀的过程中,铜、锡银溶解在电镀液中并分离成阳离子。加上电压后,带正电的 Cu2+、Sn2+、Ag+迁移到阴极(晶圆),并在其表面发生电化学反应而淀积出来。电镀工艺原理示意图如下:电镀工艺示意图扩能项目采用的铜、镍阳极为颗粒状,会全部消耗,不产生废阳极;扩能项目使用的镀钯、锡银阳极是镀铂钛篮,呈网状支架作为电镀阳极,不消耗也不更换,镀银采用烷基磺酸盐无氰镀银工艺。阳极金属如下图所示:电镀阳极实物图b.电镀操作过程进机台→将每片晶圆上到杯状夹具上→用超纯水预湿→镀铜→清洗→镀锡银(或镀镍→清洗→镀钯)→清洗→甩干→出机台。c.电镀清洗扩能项目电镀清洗采用单槽快速喷洗,清洗水直接排入废水处理系统,不重复利用,清洗废水排入 FABB 一楼电镀废水处理系统进行处理,保证处理设施出口一类重金属排放达标。清洗过程中产生有机废气排入有机废气处理系统统一处理。d.电镀槽液更换项目对电镀槽中电镀液离子浓度定期检测,适时添加化学药剂,保证电镀液可用。使用一段时间后,因电镀液中悬浮物浓度升高,需对电镀液进行更换。扩能项目依托 FABB 一层现有的2个2m³的电镀废液收集槽将电镀废液全部收集暂存,委托有资质的危废处理公司外运处置。电镀废液约半年排放一次,年排放量约为 3.5m³,因此收集槽的容积可满足废液收集需求。(7)去光阻(Resist stripping)电镀完成后,利用光阻去除剂去除电镀掩膜光阻,依次使用 NMP 与 IPA 进行湿式清洗,最后用纯水进行清洗,清洗后进行干燥。干燥通过自燃烘干或者 IPA吹干。(8)蚀刻(ETCH)将凸点间的 UBM 刻蚀掉。扩能项目采用湿法腐蚀。湿法腐蚀是通过化学反应的方法对基材腐蚀的过程,对不同的去除物质使用不同的材料。扩能项目采用过氧化氢作为 Ti-W 合金的腐蚀材料,普通凸点采用硫酸腐蚀铜,含锡银凸点采用磷酸腐蚀铜,产生的含磷的酸性废水排入 CUB5c 氢氟废水处理系统进行处理,不含磷的酸性废水排入中和系统进行处理。蚀刻完成后,使用气体吹扫晶圆表面进行去杂质。(9)灰化(Ash)剥离光掩膜的过程可以使用干燥的、环保的等离子工艺(‘灰化’),即用氧等离子体轰击光掩膜并与之反应生产二氧化碳、水等物质使其得以剥离。该过程产生一般热排气,排入一般排气。(10)凸点制作晶圆凸点工艺最主要的 3 种焊锡淀积技术是电镀、焊锡膏印刷以及采用预成型的焊锡球进行粘球。RDL、BOP、BOAC 等凸点采用粘球工艺(Ball place),粘球的一般操作过程为,首先在晶圆表面涂抹一层助焊剂,然后将预先成型的焊锡球沾在助焊剂上,接着进行检查,确保每个晶粒都沾有焊锡球。Hot Rod 等凸点焊锡淀积技术采用电镀锡银工艺。回流(reflow),该过程将焊料熔化回流,使凸点符合后续封装焊接要求。最后,再使用纯水对助焊剂进行清洗去除(Flux wash)。助焊剂清洗废水排入中和废水系统进行处理。(11)自动检测(AVI) 对凸点加工完的晶圆进行自动检测,确认是否有缺陷。至此,晶圆上的凸点制作完成。 (12)晶圆针测(Probe)在凸点完成后,晶圆上就形成了一个个的小格,即晶粒。针测(Probe)是对每个晶粒检测其导电性,只进行通电检测操作,没有任何化学过程。不合格晶粒信息将被电子系统记录,在接下来的封装和测试流程中将不被封装。扩能项目晶圆针测工序全部在 OS5 进行。(13)包装(Packing):利用塑料盒、塑料袋等对完成凸点的晶圆进行简单包装,然后进入AT厂房进行封装(后工序)。2、封装测试QFN 封装测试QFN 封装即倒装式四周扁平无引脚封装(QFN,Quad Flat No lead Package),扩能项目 QFN 封装包括传统 QFN 封装和 FCOL QFN 封装(Flip Chip on Lead frame QFN Package,框架上倒装芯片封装)。传统 QFN 封装和 FCOL QFN 封装的结构如图所示。传统 QFN 封装和 FCOL QFN 封装结构对比覆晶框架QFN在工艺流程上相较传统QFN主要区别在芯片与载板框架的连接方式,传统 QFN 通过金属导线键合,覆晶框架 QFN 通过芯片倒装凸点键合,相比传统工艺新增助焊剂丝网印刷、覆晶结合、助焊剂清洗、等离子清洗等工艺,以下对 QFN 封装的工艺及产污进行表述。贴片:在自动贴膜机上在晶圆的正面贴一层保护膜(胶带),研磨过程中保护晶圆的电路表面。该工序可能产生废胶带。(1)背面减薄:研磨机台上,通过高速旋转的研磨轮(转速约为 2500 转每秒)对晶圆背面进行机械研磨,将晶圆减薄到规定厚度。研磨过程中需要用超纯水冲洗研磨硅屑和冷却研磨轮。清洗废水经回收系统回收利用后,浓水排入废水处理站进行絮凝沉淀+中和处理。(2)去膜:研磨完成后,去除晶圆正面的胶带。该工序可能产生废胶带。 (3)晶圆清洗:利用超纯水对晶圆表面进行冲洗,去除晶圆表面的尘埃颗粒等杂质。清洗废水经回收系统回收利用后,浓水排入废水处理站进行絮凝沉淀+中和处理。(4)背面贴膜:使用背面贴膜设备在晶圆背面贴一层 BSC 膜,使晶圆背面被胶带保护、支撑。该工序可能产生废胶带。(5)烘干:使用背面涂层烘烤设备将膜层烘干。(6)贴膜:使用晶圆贴片机在晶圆的背面再贴一层膜。该工序可能产生废胶带。(7)划片:在专门的划片机上,通过高速旋转的金刚石刀片(转速约在 50000转每秒)或激光将晶圆切割成符合规定尺寸的晶粒(die)。刀片的金刚石颗粒大小只有几个微米。切割过程中利用超纯水进行刀片冷却和硅屑冲洗。激光划片属非接触加工,无应力,因此切边平直整齐,无损坏;不会损伤晶圆结构,电性参数优于机械切割方式,用超纯水进行硅屑冲洗。(8)UV 照射:使用 UV 照射机进行 UV 照射使粘结剂失去黏性达到去膜的目的。(9)点银浆:将银浆点到框架上以备粘合用;(10)粘片:将芯片置入框架点银浆处;(11)银浆固化:在氮气保护环境下烘干固化,将芯片牢固的粘结在框架上;(12)引线键合:使用金线或铜线将芯片电路 Pad 与框架引脚 Lead 通过焊接的方法连接起来,实现电路导通,焊接采用超声波焊接,无焊接烟尘产生,主要产污为废引线。(13)助焊剂丝网印刷:在密闭机台内用丝网将助焊剂印刷到引线金属框架上,无排气。丝网采用 IPA 清洗,清洗有有两种情况,一种是用设备自动清洗,IPA 会喷到丝网上,然后用棉布擦拭,擦拭布吸收 IPA 及丝网上的脏物后就当作危废处理,没有废液,设备是密闭的,不连接排气;另外一种是人工擦拭,会在化学品通风橱内操作,也是用棉布擦拭,没有废液产生,通风橱连的一般排气。(14)覆晶结合:将晶圆 IC 反扣在引线金属框架上,让锡银铜柱对准丝网印刷的助焊剂。(15)回流焊:将覆晶结合后的芯片放在氮气保护的回焊炉内按一定的温度曲线通过该炉,使用回流焊的方式实现晶圆 IC 与引线金属框架的焊接,该过程使用的助焊剂无挥发性物质,后续使用专用清洗剂进行清洗。(16)助焊剂清洗:使用助焊剂清洗剂洗掉回流焊残留的助焊剂并用水冲洗干净。设备自带清洗废气冷凝装置,冷凝液进入废水处理系统,不凝气接入现有一般排气系统。(17)等离子清洗:使用等离子清洗剂激发氧氩等离子体实现更高级别的彻底清洗,将残留的微量氧化层清洗干净,清洗废气接入现有一般排气。 (18)塑封固化:使用环氧树脂对 IC 进行外壳封装。(19)去毛刺:去除塑封外壳毛刺并进一步烘烤固化成型将塑封固化好的芯片置入有机盐溶液中去除塑封外壳毛刺及溢出料,产生去毛刺废水。(20)激光打标:用激光将产品的 Lot No 刻录在产品表面(为了追踪产品的履历)。就是在产品的表面印上去不掉的、字迹清楚的字母和标识,包括制造商的信息、国家、器件代码,生产日期等,主要是为了产品识别并跟踪,该工序将产生打印粉尘和硅粉。(21)切带:切开胶带使单个晶粒分离。(22)自动检测:使用 2/3D 自动检测设备进行检测。均为物理测试。检查产品的电气及速度特性,包括基本测试,如电气特性可靠性测试、直流电、交流电运行测试、目视检查,以及运行速度测试等。(23)IC 分类:使用晶粒分类设备对封装好的晶圆进行分类。(24)终检:使用最终检测设备进行终检。(25)包装:使用真空包装设备对封装好的芯片进行包装并入库。该工序可能产生废包材。传统 QFN 工艺流程及产污环节FCOL QFN 工艺流程及产污环节2、WCSP 封装WCSP 封装(Wafer Chip Scale Packaging,晶圆级封装),即在晶圆片未进行切割划片前对芯片进行封装,之后再进行切片分割,完成后的封装大小和芯片尺寸相同。此外,WCSP 封装无需载板框架,可直接焊接在 PCB 印制线路板上使用。凸点和针测完成后,晶圆即进入封装测试厂 AT 厂房进行 WCSP 封装及测试,主要工艺流程如下:(1)贴片:在自动贴膜机上在晶圆的正面贴一层保护膜(胶带),研磨过程中保护晶圆的电路表面。该工序可能产生废胶带。(2)背面减薄:研磨机台上,通过高速旋转的研磨轮(转速约为 2500 转每秒)对晶圆背面进行机械研磨,将晶圆减薄到规定厚度。研磨过程中需要用超纯水冲洗研磨硅屑和冷却研磨轮。清洗废水经回收系统回收利用后,浓水排入废水处理站进行絮凝沉淀+中和处理。(3)去膜:研磨完成后,去除晶圆正面的胶带。该工序可能产生废胶带。(4)晶圆清洗:利用超纯水对晶圆表面进行冲洗,去除晶圆表面的尘埃颗粒等杂质。清洗废水经回收系统回收利用后,浓水排入废水处理站进行絮凝沉淀+中和处理。(5)背面贴膜:使用背面贴膜设备在晶圆背面贴一层 BSC 膜,使晶圆背面被胶带保护、支撑。该工序可能产生废胶带。(6)烘干:使用背面涂层烘烤设备将膜层烘干。(7)贴膜:使用晶圆贴片机在晶圆的背面再贴一层膜。该工序可能产生废胶带。(8)激光打标:用激光将产品的 Lot No 刻录在产品表面(为了追踪产品的履历)。就是在产品的表面印上去不掉的、字迹清楚的字母和标识,包括制造商的信息、国家、器件代码,生产日期等,主要是为了产品识别并跟踪,该工序将产生打印粉尘和硅粉。(9)划片:在专门的划片机上,通过高速旋转的金刚石刀片(转速约在 50000转每秒)将晶圆切割成符合规定尺寸的晶粒。刀片的金刚石颗粒大小只有几个微米。切割过程中利用超纯水进行刀片冷却和硅屑冲洗。(10)激光切片:首先进行晶圆黏片,即在晶圆背面贴上水溶性保护膜然后进行切割。激光切割属非接触加工,无应力,因此切边平直整齐,无损坏;不会损伤晶圆结构,电性参数优于机械切割方式;激光可以切割任意形状,如六角形晶粒,突破了钻石刀只能以直线式加工的限制,使晶圆设计更为灵活方便。切割过程中使用超纯水进行硅屑冲洗。 (11)UV 照射:使用 UV 照射机进行 UV 照射去膜。(12)自动检测:使用 2/3D 自动检测设备进行检测。均为物理测试。检查产品的电气及速度特性,包括基本测试,如电气特性可靠性测试、直流电、交流电运行测试、目视检查,以及运行速度测试等。(13)IC 分类:使用晶粒分类设备对封装好的晶圆进行分类。(14)终检:使用最终检测设备进行终检。(15)包装:使用真空包装设备对封装好的芯片进行包装并入库。该工序可能产生废包材。WCSP 工艺流程及产污环节
  • 盛美上海推出Ultra C vac-p 面板级先进封装负压清洗设备
    盛美半导体设备(上海)股份有限公司(以下简称“盛美上海”),作为一家为半导体前道和先进晶圆级封装应用提供晶圆工艺解决方案的卓越供应商,于7月30日推出适用于扇出型面板级封装应用的Ultra C vac-p负压清洗设备,该设备利用负压技术去除芯片结构中的助焊剂残留物,显著提高了清洗效率。标志着盛美上海成功进军高增长的扇出型面板级封装市场。盛美上海宣布一家中国大型半导体制造商已订购Ultra C vac-p面板级负压清洗设备,设备已于7月运抵客户工厂。 据Yole预测,扇出型面板级封装方法的应用增长速度高于扇出市场整体增长速度,其市场份额相较于扇出型晶圆级封装而言将从2022年的2%上升至2028年的8%。预计增长背后的主要动力是成本的降低,传统硅晶圆的使用率低于85%,而面板的使用率高于95%,600x600毫米面板的有效面积是300毫米传统硅晶圆有效面积的5.7倍,面板总体成本预计可降低66%。1 面积利用率的提高带来了更高的产能、更大的AI芯片设计灵活性以及显著的成本降低。 盛美上海董事长王晖博士表示:“在人工智能、数据中心和自动驾驶汽车的推动下,新兴的扇出型面板级封装方法能够提高计算能力、减少延迟并增加带宽。此方法正在迅速成为关键解决方案,它将多个芯片、无源器件和互连集成在面板上的单个封装内,可提供更高的灵活性、可扩展性以及成本效益。面板级负压清洗设备标志着盛美上海在解决下一代先进封装技术的清洗挑战方面迈出重要一步,彰显了半导体制造领域的持续创新,兑现了盛美上海始终致力于满足不断演变的行业需求的坚定承诺。”关于Ultra C vac-p面板级负压清洗设备在底部填充之前清除助焊剂残留物是先进封装流程中消除底部填充空隙的关键步骤。由于表面张力和有限的液体渗透力,传统清洗方法在处理小凸起间距(小于40微米)和大尺寸芯片时比较困难。负压清洗可使清洗液到达狭窄的缝隙,从而有效解决这一问题。此外,由于液体经过距离较长,因此传统方法可能无法满足较大芯片单元的清洗需求。采用负压清洗功能设备后,整个芯片单元甚至是中心部位均可得到彻底清洗,有效避免残留物影响器件性能。Ultra C vac-p面板级负压清洗设备专为面板而设计,该面板材料可以是有机材料或者玻璃材料。该设备可处理510x515毫米和600x600毫米的面板以及高达7毫米的面板翘曲。
  • 增加近千台仪器设备,AMD将在苏州扩建高性能CPU封测项目
    近日,苏州通富超威半导体有限公司公示了《苏州通富超威半导体有限公司高性能中央处理器等集成电路封装测试项目》。公示信息显示,苏州通富超威半导体有限公司将在江苏省苏州工业园区苏对高性能中央处理器等集成电路封装测试项目进行扩建,总投资达18.97062亿元。据了解,超威半导体技术(中国)有限公司成立于2004年3月,位于苏州工业园区苏桐路88号,是尖端的微处理器(CPU)制造企业,主要从事微处理器(CPU)、集成电路等的封装、测试,是一家有着世界顶级设备和优秀管理人员的现代化工厂。2016年05月23日,该公司名称变更为苏州通富超威半导体有限公司。苏州通富超威半导体有限公司目前主要进行CPU的生产。项目于2010计划建设13条新型可控坍塌芯片连接技术封装生产线,最终形成年产和测试13000万颗CPU的能力,但实际只建成及验收 5 条封装生产线,实际年产CPU5000万颗。由于市场需求发生变化,为抢占市场份额,企业拟购置新设备,采用倒装封装技术及先进测试技术,在新增封装线的同时对现有封装工艺五条线进行技术改造,调整现有产能,建成后预计最终年产CPU(中高端集成电路封装)1.4 亿颗。同时,本项目还将引进晶圆研磨机,用于加工半导体晶圆,使晶圆的尺寸达到公差范围内,预计年研磨片数4.0万片。同时购入圆片级测试机,新增晶圆级测试工艺,改造完成后有助于本土集成电路产业链的延伸,实现企业在晶圆制造后的全制程能力,预计可实现年产能5.0万片。根据公示信息透露出的本次扩建涉及到的设备信息,估计变化量达近千台。该项目涉及CPU封装工艺流程、产品测试工艺流程及晶片测试工艺流程等。CPU封装工艺流程晶圆检测:在高倍显微镜下对每叠芯片进行抽检,其余部分用裸眼全检,检测有没有焊球损坏或焊球变形,芯片碎裂或芯片背面损坏情况,同时在晶圆表面贴上晶圆胶带。 激光开槽:使用激光开槽机在激光切割保护液的保护下对晶圆进行开槽,随后使用纯水对晶圆进行冲洗。 机械切割:使用机械切割机对开槽后的晶圆进行进一步切割,同时使用纯水对晶圆进行冲洗、降温。UV固化:UV固化机对晶圆表面进行固化使表面膜跟晶圆更加贴合。抓取分拣:使用晶圆分拣机将晶圆按性能分拣归类。基板烘烤:使用基板烘烤机在125℃(电加热)条件下对基板烘烤约 2.5h,使其拥有更好的绝缘度。锡膏印刷:从干燥箱中取出已经烘烤结束的基板,冷却到室温,喷洒助焊剂,印刷锡膏;使用完成后的钢网需进行清洁,使用沾有异丙醇的擦拭纸进行擦拭。贴电容、贴芯片、回流焊:使用电容贴片机、晶圆贴片机分别将电容、晶圆芯片摆放在焊接位置,采用回流焊接的方式,利用热风和红外高温使焊接处的锡膏融化、回流、冷却使接点焊接牢固,焊接电容、芯片;随后进行检测,若有焊接不牢固产品,则用无尘纸沾取少量异丙醇对焊点处进行人工擦拭,然后进行返工。助焊剂清洗1:将助焊剂清洗剂与纯水按照一定比例进行配比,使用助焊剂清洗机对焊接后的半成品进行冲洗。底封胶填装:利用毛吸现象原理,使用底封胶填充机在晶元和基板间填充粘胶,来填充焊接球与基板间的缝隙,减少热应力的危害。固化:为保护电容,部分产品继续填充紫外线固化剂,后在 165℃(电加热)条件下对半成品烘烤一定时间。锡球植球、回流焊:使用锡球植球将锡球摆放在焊接位置并喷洒助焊剂,采用回流焊接的方式,利用热风和红外高温使焊接处的锡球融化、回流、冷却使接点焊接牢固。 助焊剂清洗2:焊接后送入清洗槽内浸泡 5-10min,清洗槽内为溶有清洗剂的纯水(50℃),将其表面粘附的助焊剂清洗干净。开闭路测试:通过开路和闭路测试,检测封装工艺是否完好,此过程会产生一定量的不良品,其中智能移动终端及图像处理集成电路及高性能中央处理器集成电路测试完成后合格品进行包装入库,CPU 流入下一工序。点胶、加盖子、烘干:使用点胶机在基板的四周点上粘胶,并用热传导贴胶机在芯片背面刷热传树脂,同时用贴盖机对集成电路加上散热盖,在烘干炉里加热烘干。产品测试工艺流程测试工艺流程1:封装后的集成电路经功能性测试、系统测试、激光打标、质量抽检、外观检测、Pin脚测试后包装入库,测试过程均会产生一定量的不良品,外观检测时用无尘纸沾取少量无水乙醇对进行人工擦拭(擦拭灰尘)。测试工艺流程2:对需要测试的产品进行登记记录,使用 X-ray 设备对需要进行检测的产品进行 X 光照射进行分析,使用盐酸进行破坏性测试,根据实验结果对分析的结果进行分析并出具实验报告。晶片测试工艺流程来料接收:根据物流的到料信息,进行晶圆的到料接收,物料收入后,存放于氮气柜中。 备料:根据排料计划进行提前准备。 来料检查:对来料晶圆进行抽检,对抽样品采用裸眼全检,检测晶圆在盒中是否斜插,有无破片划伤变色,再采用高倍显微镜抽检,确认晶圆焊球有无损坏变形缺失等异常。 探测:晶圆探测是对晶片上的每个晶粒进行针测,在检测头装上探针,与晶粒上的接点接触,测试其电性能力和电路机能,不合格晶粒会被标记淘汰,不再进行后端的一些制程,以免增加制造成本。在探针的正常维护和修理过程中,会使用无尘布沾取少量酒精对针处进行人工擦拭。出站检查:对测试后的晶圆进行抽检,对抽样品采用裸眼全检,检测晶圆在盒中是否斜插,有无破片划伤变色,再采用高倍显微镜抽检,确认晶圆焊球有无损坏变形缺失,针痕伤害等异常。存储:将需要出货的晶圆放置在氮气柜中存储。打包:将晶圆、干燥剂、湿度指示卡放入静电袋中,贴上晶圆信息的标签。若铝箔袋破损、标签信息错误,或者湿度指示卡变色,都需要废弃。出货检查:确认打包后的晶圆实物与标签一致,且标签完整,合格品厂内自用。
  • UP势力“电子新材料”成为NEPCON上海展独特风景线
    虽不属于高能耗产业,但我国迅猛发展的电子信息制造业,依然在环保和节能指标上与发达国家相去甚远。怎样早日摆脱&ldquo 穹顶之下&rdquo 的能耗压力,调整产业结构,促进电子制造从材料到制作工艺全面升级,将于2015年4月21日-23日在上海世博展览馆隆重开幕的第二十五届中国国际电子生产设备暨微电子工业展(NEPCON China 2015),首次推出全新电子新材料论坛,对我国电子材料行业现状及发展前景开始全面解读。  高端行业峰会,专业解读电子新材料发展之道  据了解,本次论坛是NEPCON China 2015的精选活动之一,也是关注电子材料行业发展专业人士的一次高端聚会。SMTA 、SPCA、中国电子材料行业协会电子锡焊料材料分会、ITRI-IPC中国焊料技术理事会等业界知名协会都对本次论坛举办提供了有力的专业支撑。届时,将有来自终端用户群体的研发与设计、项目主管、技术支持、采购/市场/销售等材料行业的权威专家,以及行业媒体等共约150人参加论坛,涵盖了消费电子及家电、电子制造、通信、汽车电子、控制/安全/测试服务等诸多领域。除了集中展示半导体材料、元器件材料,平面显示材料、印刷电路板材料、电池材料、电子锡焊料材料、胶黏剂等新产品和新技术外,与会人士还会就电子材料升级转型等热门话题直面交流分享经验。  放眼当前,伴随公众审美和环保意识的不断提高,电子产品正朝着绿色无害、小型节能的方向发展,渗透在电子产品制造工艺中的电子材料,也必须顺应历史潮流,更加注重自身的高效安全、灵活、和环境友好特性,这样才能适应市场多元化需求。可以预计的是,在未来几年推崇产业升级换代的电子产业中,电子新材料必将化身高新技术产业发展的先导,成为电子制造工业领域最具活力和发展潜力的UP新势力。  品牌引领潮流,电子新材料展品缤纷登场  即使只是一次行业峰会,但本次电子新材料论坛在沟通了上下游产业链、助力企业多元发展上的作用不容置疑。在NEPCON China 2015展会上,以AIM、ALPHA、Henkel、ITW、Zestron、化研为代表知名公司,均与论坛同步推出多款与绿色环保主题相关的焊锡材料、清洗设备,新材料闪亮登场,说明环保节能理念已经深入人心。  一直致力于为半导体封装、印刷电路板组装提供优质材料和高级焊接解决方案的汉高(Henkel)公司(展位号:B-1G35),在本次展会推出了全新耐温变锡膏- LOCTITE GC 10。该锡膏适合常温下超长时间保存,且制作工艺比传统焊锡膏有了显著升级。相对于普通材料的平均1至4小时暴露时间,汉高LOCTITE GC 10无卤素、无铅、恒温型配方,最长可暴露24小时。稳定一致的印刷转移效率,宽大的回流窗口,让LOCTITE GC 10具有更高的活性,能够大大提高生产线上焊接系统的稳定性。  知名焊材公司华加美(展位号:A-1G74)本次带来了M8完全新一代的免洗锡膏,基于无铅T4及更细锡粉开发设计,工艺更精致、使用更持久,适用工艺窗口更广泛。它可为超微粒子和umBGA装置提供稳定的印刷性,为最具挑战性的电子应用减少DPMO。更为关键的是,M8免洗锡膏制作时加入了清洁化学剂,保证残留物被轻而易举一扫而空,为产品设计打上了深深的环保印记。  首次进入国内市场的ALPHA公司(展位号:A-1D55),携旗下多款竞品入驻NEPCON,焊膏、焊料合金、助焊剂、卷带式低温SnBiAg预成型焊锡,各种型材应有尽有,为电子制造提供最全面的焊接工艺方案。其中ALPHA SnCX Plus&trade 07是一种无铅无银的助焊合金,专为简单至标准复杂的双面组装而设,其中包含的锡、铜以及各种独有添加品,让焊接过程更简单,效果更明显。  专注于研发、生产和销售电子清洗剂的依工特种材料有限公司(ITW,展位号:A-1D50),旗下包罗各种CBA工艺中清洗助焊剂,钢网板清洗剂,用于PCB保护的三防漆,各类ESD清洗或防护剂、锡编带、助焊笔、涂层笔等便利产品,一展打尽全部电子清洗材料,是工业电子、电路板组装等制造商的最佳选择。  引领全球的ZESTRON(展位号:B-1C35)水基清洗产品凭借独创的MPC微相清洗技术开发,能够高效去除电子元器件表面的助焊剂残留,保证卓越的清洗效果并提供良好的材料兼容性。ZESTRON 水基清洗产品可过滤循环使用,因此拥有超出寻常的清洗寿命,减少成本。该产品安全环保,累计帮助全球2000多家知名客户提升了工艺表现。  对精密电路板和半导体电子元件的清洗,一直以来是清洗剂行业的难题。化研科技株式会社(展位号:B-1J01)采用了超微净清洗系统,一键清洗所有精密电子元件。它不仅实现无污染清洗,同时推进了循环再生利用,是环保性能极高的精密清洗系统。  通过业界人士合作交流来探讨行业话题,这在NEPCON历史上不是唯一,但本次论坛却首次把关注焦点投向了电子新材料领域。作为电子制造业的重要参与者,电子材料的环保指数和安全系数,直接决定着整个行业的走向,更为紧迫的是从生产工艺和材料应用等关键环节上采用更为先进的技术,这样才能打造中国电子产品的高品质印象。  来源:NEPCON  2015 NEPCON China观众预登记途径:  · 发送短信&ldquo CNH+姓名+公司名&rdquo 至106900297333即可登记参观NEPCON China 2015并收到展会资讯  · 参观热线:国内观众&mdash 4006505611或86-10-5763 1818 国际观众&mdash 86-21-2231-7011  · 关注官方微博:NEPCONChina电子展 官方微信服务号:NEPCON_CHINA  · NEPCON China 2015详情请访问:www.nepconchina.com  · NEPCON South China 2015详情请访问:www.nepconsouthchina.com  关于励展博览集团大中华区&mdash &mdash 中国领先的展览会主办机构  励展博览集团大中华区是世界领先的展览及会议活动主办机构&mdash &mdash 励展博览集团的下属公司。励展博览集团在世界各地拥有3,700名员工,在43个国家举办500多个展会项目,其展览及会议组合为跨美洲、欧洲、中东、亚太和非洲地区43个行业部门提供服务。2014年,励展博览集团举办的展会吸引了来自世界各地的700余万名参与者,为客户达成了数十亿美元的业务交易。励展博览集团是励德爱思唯尔集团的成员之一,后者是全球领先的专业信息解决方案提供商,亦是一家FTSE-100上市公司。  励展博览集团大中华区历经30多年的快速发展,如今已成为中国领先的展览会主办机构,在华拥有八家出色的成员公司:励展博览集团中国公司、国药励展展览有限责任公司、励展华博展览(深圳)有限公司、北京励展华群展览有限公司、上海励欣展览有限公司、北京励展光合展览有限公司、励展华百展览(北京)有限公司和河南励展宏达展览有限公司。  目前,励展博览集团大中华区在中国拥有500多名员工,服务于国内11个专业领域:电子制造与装配 机床、金属加工与工业材料 包装 生命科学与医药、保健、美容与化妆品,休闲运动 礼品与家居 汽车后市场 生活方式 博彩 出版 地产与旅游 海洋、能源,石油与天然气。  2014年,励展博览集团大中华区主办的50余场展会吸引了100万余名观众以及近4万余名参会代表出席 在我们的展会上,共有3万多家供应商参与展示,其展位面积总计超过160万平方米。
  • “100家实验室”专题:访信息产业部专用材料质量监督检验中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。2011年1月14日,仪器信息网工作人员参观访问了本次活动的第六十二站:信息产业部专用材料质量监督检验中心。  信息产业部专用材料质量监督检验中心(以下简称“中心”)是经原国家计委、国务院国防工办批准在中国电子科技集团公司第四十六研究所(原信息产业部电子46所)扩建的材料检验中心,1988年由机电部批复成立,1990年12月通过机电部工程竣工验收,自此,中心成为电子材料研究、检测的专业机构,并且是国内最早从事半导体材料和光纤研究开发的单位之一。1991年,中心分别通过国家技术监督局国家计量认证验收、国家认证认可监督管理委员会的实验室认证,2010年获得国家实验室认可,成为国际互认实验室。  并且,中心是全国唯一一家具有电子材料质量监督认证与仲裁资质的机构、国际SIMS组织飞行试验室、联合国和国家环保总局资助的ODS实验室。 信息产业部专用材料质量监督检验中心的资质证书  中心主任董慧莪高级工程师介绍到,中心主要任务是对电子专用材料及其应用产品进行质量评价、检测、认证与仲裁,监督促进企业贯彻执行有关的技术标准,提高产品质量和经济效益。具体任务包括:电子专用材料的质量认证、认定、鉴定与仲裁 同时承担行业监督、行业抽查、电子材料及相关产品的进出口商检 国家标准、行业标准的制定、修订和标准的验证工作,研究制定有关的试验和检测方法 开展材料结构、工艺及缺陷分析研究,积累数据为提高产品质量和发展新产品提供技术咨询与技术服务 对本专业的质量监督检验测试工作进行技术指导、交流经验统一方法,培训检测人员。  中心占地面积40亩,建筑面积8000平方米。到2009年底中心仪器设备的投资总额达到了6000万元。中心的检测设备齐备,业务覆盖面广,是国内材料检测实验室规模最大、检测设备最齐全的实验室之一。中心分为四个室:物理分析室、结构与表面分析室、成分分析室和业务室。兼备了质量管理、分析测试和科学研究等方面。中心现已建成可开展半导体材料、金属材料(包括框架材料、引线材料、合金材料等)、焊接材料、清洗材料、绝缘材料、以及矿石、化工、轻纺、建材、化学试剂等材料的理化检测分析、有毒有害物质分析、材料和器件失效分析的综合性实验室。二次离子质谱仪 IMS 4f-E7  二次离子质谱仪是材料和器件分析的最重要手段之一,在半导体工艺中具有非常重要的用途。IMS-4F是法国CAMECA公司的产品,具有高灵敏度和深度分析等特点,主要用于固体材料表面/界面元素成份及杂质(可针对全元素)的深度分布及平面分布分析。 等离子体发射光谱仪 720-ES、原子吸收光谱仪 3110  720-ES是美国VARIAN公司的产品,具有很高的灵敏度、很低的检测限,基体和共存元素的干扰小;样品好量小,能对70余种元素进行定性及定量分析。  3110是美国珀金埃尔默公司的产品,其灵敏度高,一般为μg/g级到ng/g级;抗干扰能力强;空气-乙炔火焰可以测定约30种元素;操作简便。  本中心利用这两种检测器仪器可以对绝大多数的化学元素能做到精确快捷的检测。场发射扫描电子显微镜 Zeiss Supra 55VP  Zeiss Supra 55VP是德国蔡司公司(原英国剑桥公司)的产品,其低真空模式可以减轻荷电,不导电样品可不必喷镀导电层而直接观测;可对较大样品做无损检测;配备X射线能谱仪附件,可同时对样品成分进行定性和定量分析、线扫描、面扫描以及成分像。  在本中心,Zeiss Supra 55VP主要用于固体材料表面形貌及成份微区分析,材料镀层厚度及薄膜厚度等分析。 X光电子能谱 PHI 5000 Versa Probe、俄歇电子能谱仪 PHI 670  上述两台仪器都是日本PHI公司的产品,PHI 5000 Versa Probe主要用于材料表面/界面元素组成分析及化学价态分析,PHI 670主要用于材料表面/界面微区元素组成分析、元素深度分布及面分布分析。 电子式万能试验机 CSS-44300、WDW-50  长春试验机研究所的CSS-44300型电子式万能试验机、济南恒瑞金试验机有限公司的WDW-50电子式万能试验机主要用来检测材料的力学性能。比表面和孔隙度分析仪 Quadrasorb SI  该仪器是美国康塔仪器公司新近推出的一款全自动4站比表面和孔隙度分析仪,测定样品的比表面积及孔径。据介绍,该仪器具有4 组独立的样品分析系统,各分析系统独立运行,可选择不同的分析和测量条件,非常适合像本中心这样的多样品、大批量分析需要的实验室。可焊性测试仪 SAT-5100  随着全球无铅化焊接,电子产品小型化,高密度的表面贴装等技术的推进,焊接工艺会比从前更困难,焊接质量越来越难以保证,因此在焊接之前对电子产品的镀层部份、焊料、助焊剂等的综合参数做一个评价,变得越来越重要。可焊性测试仪在半导体及电子封装领域被广泛使用。日本力世科公司的SAT-5100型可焊性测试仪正是运用润湿平衡的测试方法,使焊接过程得到形象的再现性,利用SAT-5100能得到各种各样润湿信息,从而提高电子产品的焊接质量。  在本中心,SAT-5100主要用于助焊剂和焊锡等焊接材料的的润湿力、润湿时间、润湿角及张力等润湿性参数的测试,以及评价电子器件、线路板对焊接材料的附着性。 激光粒度仪 ADA2000、傅里叶变换红外光谱仪 TENSOR 27  ADA2000是英国马尔文公司的产品,主要用于材料粒度分析。  TENSOR 27是布鲁克光谱仪器公司的产品,主要用于对电子材料的杂质、缺陷及有机物的成份进行分析。 超高温综合同步热分析仪 STA 449F3、热膨胀仪 DIL 402C  上述两台仪器都是德国耐驰公司的产品,其中,STA 449F3覆盖-150至2000℃的宽广的温度范围,可以快速而深入地对材料的热稳定性、分解行为、组分分析、相转变、熔融过程等进行表征。在本中心,STA 449F3主要用于测定样品的熔点、玻璃化温度。  DIL 402C用于测量线膨胀系数。DIL 402C的炉体可以自行更换、操作简便 装载样品简便,即使非理想尺寸的样品都可以很轻松的放进管状样品支架的凹槽中。 布氏硬度计 HB-3000B-I、电动洛氏硬度计 500MRA  HB-3000B-I是济南时代试金仪器有限公司的产品,测量样品的布氏硬度;500MRA是沃伯特测量仪器(上海)有限公司的产品用来测样品的洛氏硬度。  中心现有工作人员35名,其中教授3名,高级工程师12名,工程师14名,大本以上学历的占90%。中心拥有一批具有良好理论基础和丰富实践经验的专业研究与检测人员,专业结构和年龄层次分布也较合理。  在为社会提供检测技术支持的同时,中心还多次承担了国家“八五”到“十一五”的多项材料科技攻关、材料质量检测方法研究和质量认证任务,承担了数十项国防科技攻关和材料检测和失效分析项目,获得了多项科研成果和科技进步奖,负责并参与了上百项材料检测标准的制定。合影  通过近二十年的运行和完善,中心不但为电子材料质量监督和行业归口管理做了大量工作,同时为国内相关企事业单位开展了大量的质量控制、质量分析、质量认证和仲裁工作,为企事业单位扩项目上规模起到了有效的技术支撑作用。得到了国家部委和广大用户的充分肯定和认可。  附录:信息产业部专用材料质量监督检验中心
  • 工信部发布7项电子行业标准报批公示
    p style="text-align: justify text-indent: 2em "2019年10月25日,工业和信息化部科技司发布7项电子行业标准报批公示。/pp style="text-align: justify text-indent: 2em "strong公示原文:/strong/pp/pp style="text-align: justify text-indent: 2em "根据工业和信息化部行业标准制修订计划,相关标准化技术组织已完成《无铅焊接用助焊剂》等7项行业标准的制修订工作。在以上标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2019年11月25日。span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "以上标准报批稿请登录中国电子工业标准化技术协会网站(www.cesa.cn)“标准报批公示”栏目阅览,并反馈意见。/pp style="text-align: justify text-indent: 2em "公示时间:2019年10月25日—2019年11月25日span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201910/attachment/79f4933c-e2e8-4148-b916-bd91b85a3527.doc" title="7项电子行业标准名称及主要内容.doc" style="font-size: 12px color: rgb(0, 102, 204) "7项电子行业标准名称及主要内容.doc/aspan style="text-indent: 2em " /span/pp style="text-align: right text-indent: 0em "工业和信息化部科技司/pp style="text-align: right text-indent: 0em "2019年10月25日/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/5c853ce4-944c-4da0-9996-0bbd092e2d80.jpg" title="7项电子行业标准名称及主要内容.png" alt="7项电子行业标准名称及主要内容.png"//p
  • 《岛津AIM-9000红外显微镜应用数据集册》发布啦!
    您知道吗?日常生活中,洗面奶中的微小塑料颗粒检测;海洋环境中,微塑料种类检测;刑侦案件中,微量物证成分检测;药物生产中,杂质异物成分检测等等,都离不开红外显微镜。红外显微镜是指傅立叶变换红外光谱仪和显微镜联用系统,该技术灵敏度高,可以实现微区、微量样品分析,对于常规无法检测的μm级别样品,也可方便快捷地进行检测。 岛津公司全新推出《岛津AIM-9000红外显微镜应用数据集册》,一起来看看吧! 岛津AIM-9000红外显微镜特点高灵敏度:拥有30000:1信噪比指标。全自动红外显微分析系统:观察、定义测量位置、测量、鉴别结果自动执行。装载:装载样品非常简单,轻轻一按“取出样品”按钮,自动降低样品台。观察:大视野相机和显微镜相机实现从目视尺寸(10x13mm)到显微异物尺寸(30x40μm)的连续放大。分析:异物自动分析程序,自动确认异物成分。丰富的附件:可以选配多种附件。 岛津AIM-9000红外显微镜应用数据集册特色案例抢先看 案例一 (环境) 海洋生物体中微塑料成分检测海洋微塑料一旦被海鸟、鱼类等生物摄入,是无法被消化的,极易导致海洋生物死亡。英国的纽卡斯尔大学和荷兰的瓦赫宁根海洋研究所从海洋生物北极鳕鱼的胃内分离出了微米级别的微塑料,使用岛津AIM-9000对北极鳕鱼胃内分离出的微塑料进行分析。 测试发现北极鳕鱼中采集的微塑料主要成分是PMMA(聚甲基丙烯酸甲酯),含有添加剂KAOLIN(硅酸铝)。 案例二 (医药) 注射剂中异物成分定性分析注射剂生产工艺或生产环境等原因,一些灌装药液产品中可能含有玻璃碎屑、纤维、橡胶、毛发、烟雾、白点等异物,对病人身体造成极大的危害。过滤某品牌注射液,在光学显微镜下挑出异物(红色框内),然后使用岛津AIM-9000对异物进行成分测试。 谱图分析结果结合显微镜下异物图片状态可知,该异物可能是毛发。 案例三 (公安司法) 车祸现场油漆碎片分析汽车车身油漆由底漆层、中涂层、面漆层、清漆层等组成,不同厂家和车型对应不同的车身油漆。因此汽车油漆隐含着汽车车型的重要信息,是道路交通事故逃逸案中重要的物证信息之一。了解汽车油漆的光谱特征,对于进行同一性认定,缩小嫌疑车辆范围,查找逃逸车辆有重要指导意义。油漆图片及红外谱图 谱图分析结果嫌疑车油漆样本与事故现场油漆碎片红外谱图差异性比较明显,排除该车是肇事车的可能。 案例四 (电子电气) 镜头上异物成分定性分析在电子电气行业,生产工艺流程复杂,过程中使用的物料众多,操作流水线上的稍微疏漏,都会导致产品中出现不明异物。这不仅影响产品外观,影响产品质量,甚至会导致生产停滞,给企业带来不可估量的经济损失。由于异物样品较小,显微红外法在微小异物分析中的显著优势得以体现。 谱图分析结果结合显微镜下异物图片状态推断,该异物可能是皮屑。 数据集册内容 (一)工业制造1.红外显微镜法在电子产品异物分析中的应用2.岛津红外显微镜对印刷电路板进行缺陷分析3.红外显微镜在焊锡电路板助焊剂残留分析中的应用4.红外显微镜ATR法对锂离子电池用隔离膜进行定性分析5.红外显微镜Mapping功能研究物质组分分布的均匀性6.红外显微镜系统Mapping功能测试锂电池用铝箔表面的油污7.红外显微镜法测定玻璃板上聚亚胺薄膜的环化率8.岛津EDX和红外显微镜AIM测试人工晶体上的异物9.岛津红外显微镜AIM-9000和EDX-8100联用鉴定树脂材料中的异物 (二)医药1.岛津红外显微镜定性分析医药包材的多层膜2.岛津红外显微镜可视观察的同步测定对多层薄膜进行分析3.岛津红外显微镜AIM-9000对药物片剂表面的异物进行分析4.岛津红外显微镜对注射液中异物进行成分分析 (三)环境1.岛津红外显微镜快速鉴定长江水中的微塑料成分2.使用岛津红外显微镜AIM-9000分析从海洋生物中采集的微塑料3.岛津红外显微镜检测磨砂洗面奶中的微小塑料颗粒4.岛津红外显微镜检测食盐中的微小塑料颗粒 (四)公安司法1.岛津显微光谱法分析车辆碰撞现场微量油漆物证2.岛津AIM-9000红外显微镜系统在打印字迹鉴别中应用3.岛津红外显微镜对口红物证样品进行成分对比分析4.使用红外显微镜AIM-9000进行毛发截面分析 (五)食品安全1.岛津AIM-9000和EDX对食品工序中异物进行定性分析2.岛津红外显微镜AIM和EDX测试水管异物 撰稿人:王娟娟 *本文内容非商业广告,仅供专业人士参考。
  • 普洛帝油液监测家族展播四DMA密度仪
    2017年7月3日英国普洛帝分析测试集团西安研发中心对外完成DMA系列密度仪的升级工作,升级后的手持式密度仪可对全范围的液体进行检测,分防爆型和通用型、高酸高碱型,本产品也是普洛帝PMT油液多参数监测平台认证入驻仪器。英国普洛帝分析测试集团对外宣布,2017年6月至9月是普洛帝油液监测技术型产品集体亮相的时间,普洛帝油液监测家族将汇集油液颗粒监测、油液物性监测、油液化学特性监测和油液磨损监测等相关监测设备及技术,集中向大家展示。英国普洛帝分析测试集团升级后的全新一代PULUODY/普洛帝DMA系列密度仪,它采用国际上先进的振荡U形管法原理,集结多种专利技术和精准算法,有效提升检测分析的灵敏度、准确性和重复性,几秒至几十秒钟内就可以测量出各种液体的液体密度、相对密度和API比重;同时有的产品可测试比重、浓度、酒精度、波美度等项目。目前可执行一下标准:GB/T 29617 - 2013 数字密度计测定液体密度、相对密度和API比重的试验方法。GB/T 2013 - 2010 液体石油化工产品密度测定法(U形振动管法)。SH/T 0604 - 2000 原油和石油产品密度测定法(U形振动管法)。SN/T 2383 - 2009 液体化工品 密度和相对密度的测定 数字式密度计法。DB/T 1231 - 2010 化工产品的密度测定方法 智能液体密度计法ASTM D4052 - 11 Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter(数字密度计测定液体密度,相对密度和API度的试验方法)。ASTM D5002 - 13 Standard Test Method for Density and Relative Density of Crude Oils by Digital Density Analyzer(数字密度分析仪用原油密度和相对密度的测试方法)。ASTM D3505 - 12e1 Standard Test Method for Density or Relative Density of Pure Liquid Chemicals(纯液态化学品密度或相对密度的试验方法)。ISO 12185 : 1996 Crude petroleum and petroleum products-Determination of density-Oscillating U-tube method(原油和石油产品-密度测定-振荡U形管法)。IP 559-2008 Determination of density of middle distillate fuel(中间馏份燃料 手提振荡U形管密度计法)JJG 1058-2010 Laboratory Oscillation-type liquid density meters(实验室振动式液体密度仪检定规程)普洛帝DMA系列密度仪应用面广泛 ,不仅应用于石油产品密度测量方面:机电行业中的绝缘用油、洗净液、切削油、压延油、润滑液; 化学工业中的各种化学试剂、溶剂、化妆品,清洁品;涂料密度及电子行业中的电镀液、助焊剂、电路板清洗液等;制药和食品工业中 ,需要对药品、酒类、饮料、调料、植物油等产品进行密度和浓度测量时有着不可替代的应用,更广泛用于大中专院校、科研机构、质检、生物、纺织、环保等领域。近期我司将向广大客户开展油液监测技术报告会,详情请关注公司新闻:简述:油液监测技术的应用与发展,明确油液监测定义,回顾油液监测历程,剖析油液监测正面临的现状,例举离线、现场、在线等技术的特点和趋势。企业链接:油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。产品链接:石油密度计、U形振动管密度仪、U形振动管密度计、普洛帝密度机、颗粒计数器、润滑油监测设备、车用油监测设备、润滑脂检测设备、油液水分、粘度、密度传感器,专注测控 用心服务普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!
  • 预算约1.5亿元!中科院微电子所2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院微电子研究所(以下简称“微电子所”)是国内微电子领域学科方向布局最完整的综合研究与开发机构,是国家科技重大专项集成电路装备及工艺前瞻性研发牵头组织单位,是中国科学院大学微电子学院(国家示范性微电子学院)的依托单位,是中国科学院集成电路创新研究院的筹建依托单位。微电子所目前拥有2个基础研究类中国科学院重点实验室(微电子器件与集成技术重点实验室、硅器件技术重点实验室),5个行业服务类研发中心(EDA中心、集成电路先导技术研发中心、系统封装与集成研发中心、中科新芯三维存储器研发中心、光刻总体部),7个行业应用类研发中心(通信与信息工程研发中心、新能源汽车电子研发中心、健康电子研发中心、智能感知研发中心、智能制造电子研发中心、智能电子系统研发中心、电磁信息智能应用研究中心),4个核心产品类研发中心(硅器件与集成研发中心、高频高压器件与集成研发中心、微电子仪器设备研发中心、光电研发中心)。 微电子所与北京大学、清华大学、复旦大学等高校和武汉新芯、上海华力、华润微电子、北方微电子等企业结为战略合作伙伴,在北京、江苏、湖北、四川、广东、湖南等省市开展科技成果转移转化,在我国微电子领域拥有广泛的影响,为支撑我国微电子产业核心竞争力发挥了不可替代的重要作用。 成果的产出和人才的培养都离不开仪器的支持,微电子所每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对微电子所2022年仪器设备类政府采购意向进行了整理汇总。共收集到21个采购项目,预算金额相加约1.5亿元,采购品目涉及示波器、探针台、ALD、键合机、清洗机、退火炉等多种仪器类型。中国科学院微电子所2022年政府采购意向汇总表序号采购项目名称采购品目预算金额(万元)预计采购日期项目详情15.7寸移动作业终端A021199-其他电子和通信测量仪器2003月详情链接2示波器A032199-其他电工、电子专用生产设备1343月详情链接3多通道高精度阻抗谱分析子系统A02100305-电子光学及离子光学仪器285.244月详情链接4直流-6GHz 多频段微弱电信号高性能分析测试平台A02100305-电子光学及离子光学仪器389.84月详情链接512英寸晶圆贴膜揭膜减薄一体机A032199-其他电工、电子专用生产设备12005月详情链接612英寸芯片至晶圆微米级混合键合一体机A032199-其他电工、电子专用生产设备49305月详情链接7PA-连续波/脉冲功率测试系统A02100305-电子光学及离子光学仪器4405月详情链接8精密电感耦合等离子刻蚀系统A032199-其他电工、电子专用生产设备3505月详情链接912吋晶圆底填机A032199-其他电工、电子专用生产设备1306月详情链接1012吋晶圆助焊剂清洗机A032199-其他电工、电子专用生产设备6006月详情链接1112英寸超薄晶圆划片机A032199-其他电工、电子专用生产设备1706月详情链接1212英寸晶圆化学机械抛光机A032199-其他电工、电子专用生产设备17006月详情链接1312英寸晶圆键合退火炉A032199-其他电工、电子专用生产设备2006月详情链接1412英寸晶圆清洗机A032199-其他电工、电子专用生产设备3006月详情链接15大功率快脉冲测试仪A032199-其他电工、电子专用生产设备215.236月详情链接16高精度靶点识别与成型设备A032199-其他电工、电子专用生产设备1406月详情链接17三维堆叠键合机A032199-其他电工、电子专用生产设备7006月详情链接18大功率高温探针台A032199-其他电工、电子专用生产设备250.37月详情链接19清洗设备研发A032199-其他电工、电子专用生产设备1257月详情链接20多场原位电子全息三维高分辨成像系统A02100305-电子光学及离子光学仪器163512月详情链接21多腔室新型高k金属栅ALD生长系统A032199-其他电工、电子专用生产设备85012月详情链接值得而注意的是,微电子所除了采购仪器设备外,还采购了总额超四千万的流片服务。在集成电路设计领域,“流片”指的是“试生产”,就是说设计完电路以后,先生产几片几十片,供测试用。如果测试通过,就照着这个样子开始大规模生产了。流片服务采购意向汇总序号采购项目名称采购品目预算金额(万元)预计采购日期项目详情1砷化镓流片和SOI流片加工C0908-其他专业技术服务8103月详情链接2流片加工C0908-其他专业技术服务1302月详情链接3新型存储器流片加工服务C0908-其他专业技术服务3003月详情链接4测试调试C0908-其他专业技术服务1205月详情链接5芯片流片C0908-其他专业技术服务1205月详情链接6小芯片加工制造C0908-其他专业技术服务1506月详情链接7芯片分析C0908-其他专业技术服务1506月详情链接8MPW投片费C0908-其他专业技术服务1707月详情链接9流片C0908-其他专业技术服务1957月详情链接10流片、制版C0908-其他专业技术服务1907月详情链接11流片、制版C0908-其他专业技术服务2557月详情链接12流片、制版C0908-其他专业技术服务50944743详情链接13封装加工服务C0908-其他专业技术服务25012月详情链接14流片费C0908-其他专业技术服务10012月详情链接15流片加工服务C0908-其他专业技术服务70012月详情链接
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 四川赛恩思仪器与武桥重工达成合作
    近日,四川赛恩思HCS-801型高频红外碳硫仪顺利交付武桥重工,仪器安装调试完毕,客户顺利签收! 武桥重工集团股份有限公司的前身是铁道部大桥局桥机厂,主要从事桥梁工程装备、海洋工程装备、特种起重设备、铁路专用设备以及桥梁和建筑工程钢结构的研发、制造和安装。 此次,客户采购的HCS-801型高频红外碳硫仪用于钢铁、焊剂的检测。硫是钢中的有害元素,降低钢的机械性能和耐蚀性。焊剂对金属起着保护作用、冶金处理作用和改善工艺性能的作用。无论钢铁还是焊剂的检测,硫的准确测定都显得尤为重要。高频红外碳硫仪是利用CO2、SO2对红外线具有选择性吸收这一原理研制而成的,具有分析速度快、检出限低等特点。四川赛恩思仪器专注仪器研发销售20余年,高频红外碳硫仪是公司的明星产品,海内外合作客户上千家。优异的产品质量和完善的售后体系,获得了客户的一致好评。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司!
  • 14项电子行业标准报批,这些仪器大有可为
    p style="text-indent: 28px text-align: justify "span2020/span年span9/span月span17/span日,《半导体集成电路冲压型引线框架》等span14/span项行业标准已完成制修订工作,在标准批准发布之前,为进一步听取社会各界意见,工信部予以公示,截止日期span2020/span年span10/span月span23/span日。/pp style="text-indent: 28px text-align: justify "本次报批标准中明确提到的检测仪器就多达二十多种,如显微镜、spanX-RAY/span测厚仪、绝缘电阻测试仪、亮度计、分析天平等,此外标准还涉及多种其他类型的仪器设备和耗材,还有许多参数测试虽未明确指定检测设备,但也必然涉及多种仪器。随着标准的报批和发布,相关的检测仪器也将迎来巨大市场机遇。/pp style="text-indent: 28px text-align: justify "span14/span项电子行业标准名称及主要仪器如下:/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse"theadtr style=" height:36px" class="firstRow"td width="125" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center line-height:24px"strongspan style=" font-family:仿宋_GB2312"标准号/span/strong/p/tdtd width="236" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center line-height:24px"strongspan style=" font-family:仿宋_GB2312"标准名称/span/strong/p/tdtd width="250" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center line-height:24px"strongspan style=" font-family:仿宋_GB2312 color:black"主要检测仪器/span/strong/p/td/tr/theadtbodytr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11773-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"半导体集成电路冲压型引线框架/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"工具显微镜、变焦显微镜、投影测量仪、螺旋测微器、多功能试验仪、键合强度试验仪/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11774-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"集成电路引线框架电镀银层技术规范/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"光亮度仪、spanX-RAY/span测厚仪、光学显微镜等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11775-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"半导体材料多线切割机/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"千分表等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11776-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"谐波保护器/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"绝缘电阻测试仪、高频电流信号发生器等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11457.1.3-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"波导型介电谐振器 第span1-3/span部分:综合性信息和试验条件span-/span微波频段介电谐振器材料复相对介电常数的测量方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"合成扫频振荡器、检波器、网络分析仪、温度控制箱等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11457.1.4-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"波导型介电谐振器 第span1-4/span部分:综合性信息和试验条件span-/span毫米波频段介电谐振器材料复相对介电常数的测量方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"矢量网络分析仪、基准蓝宝/span/pp style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"石谐振器等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11460.3.3.1-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"液晶显示用背光组件 第span3-3-1/span部分:电视接收机用直下式spanLED/span背光组件详细规范/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"亮度计或光度计等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11777-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"半导体管特性图示仪校准仪技术要求和测量方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"数字多用表、微欧计、静电计、脉冲专用数字化仪、高压表等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11778-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"便携式家用电器用锂离子电池和电池组 安全要求/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"---/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 11779-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"印制电路用导热型涂树脂铜箔/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"---/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 2660-2022/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"锡焊用助焊剂试验方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"冷冻箱、烘箱、电子分析天平、玻璃温度计、悬浮式密度计、千分尺、显微镜、高阻仪、电阻仪等/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 10551-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"电子陶瓷用三氧化二铝中杂质的发射光谱分析方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"中型摄谱仪、直流电弧发生器、测微光度计、映谱仪、分析天平、高温炉、秒表、烘箱/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 10553-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"电子陶瓷用二氧化锆中杂质的发射光谱分析方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"中型摄谱仪、直流电弧发生器、测微光度计、映谱仪、分析天平、秒表、马弗炉、烘箱/span/p/td/trtr style=" height:36px"td width="125" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family:仿宋_GB2312 color:black"SJ/T 10552-2020/span/p/tdtd width="251" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"电子陶瓷用二氧化钛中杂质的发射光谱分析方法/span/p/tdtd width="250" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left vertical-align:middle"span style=" font-family: 仿宋_GB2312 color:black"中型摄谱仪、直流电弧发生器、测微光度计、映谱仪、分析天平、秒表、马弗炉、烘箱/span/p/td/tr/tbody/tablep style="text-align: center "br//p
  • 安全生产重于泰山-湖北电厂管道爆炸事故的警示
    2016年8月11日15时20分许,湖北当阳市马店矸石发电有限责任公司热电项目在建调试过程中发生高压蒸汽管道爆炸事故,事故已酿成22死4伤的惨剧。事后经国家安监总局调查,爆炸主要原因是蒸汽管道流量计阀门焊缝裂开,致管道外膜和填充物完全损毁,大量高温高压蒸汽外泄,现场温度近600℃,导致主控制室防护玻璃破裂,从而使主控制室二十多名作业人员严重伤亡。  据报道,事故现场直径约1米的银白色高压蒸汽管道出现破裂,只剩下里层一段较细的深色管道,地上随处可见管道外膜的碎片,能承受重压的金属外膜也已被爆炸冲击变形。跟据事故调查组了解,此前该公司曾多次出现焊缝裂开等类似的泄露事件。但是相关负责人并没有及时安排检修,而是继续开工作业,最终导致了这场惨剧的发生。  众所周知,焊缝强度在安全生产中占有重要地位,在过去发生的诸多严重的工业事故中,一半以上是由于合金材料混料与管道系统损坏引起的。相信我们都记得2013年11月位于青岛黄岛区的中石化输油储运公司潍坊分公司输油管线破裂,造成63死156伤,直接经济损失达7.5亿元的重大事故。以及2015年4月福建漳州古雷腾龙芳烃PX项目的剧毒物质泄露事故,也是由于二甲苯装置在运行过程当中输料管焊口由于焊接不实而导致断裂,泄露出来的物料被吸入到炉膛,后因高温导致燃爆,造成多人受伤,巨额经济损失的惨痛后果。  因此,作业现场焊缝的质量检验与焊接过程控制一直是安全生产的关键。国家有一系列相关标准对关键环节进行把控,如:《GB/T 12467.1~12467.4-1998 焊接质量要求金属材料的熔化焊》、《GB/T 17854-1999 埋弧焊用不锈钢焊丝及焊剂》、《GB/T 5293-1999 埋弧焊用碳钢焊丝及焊剂》、《GB/T 12470-2003 埋弧焊用低合金钢焊丝及焊剂》等。  依据行业要求和国家标准,无损检测是目前对这些关键环节把控的主要方法。管道常用焊接材料的可焊接性能及抗腐蚀性是检验焊缝强度的重要因素,这就需要对焊接材料中的Cr、Ni、Mo、Mn、W等关键元素做定性和定量的判定。那么对于关键元素的判定就离不开手持式合金分析仪的专业技术检测,一款轻便、精准、高效的手持X荧光光谱仪就是最优的选择。聚光盈安手持式合金分析仪MiX5系列,作为国产仪器中的佼佼者,检测精度高,数据接近实验室级别,并可切换多国合金牌号库。机身轻便、操作简便,用于现场检测,1-2秒即可出结果,仪器头部能够轻松检测弯曲或拐角部位,快速准确地了解管道焊接材质及强度,排查安全隐患,不放过任何一个细小的焊接点,为企业的安全生产保驾护航。关于聚光盈安  聚光盈安创立于1995年,在2007年成为聚光科技的一员。二十年来,聚光盈安始终致力于为客户提供高品质的科学仪器、专业的技术服务以及高效的分析测试解决方案,是中国分析仪器行业内的著名企业。公司拥有专业的研发、生产、应用研究及服务支持团队,坚持以客户和市场为主导,不断完善产品线:国内首款自主研发的AES产品——CCD直读光谱仪M5000,占据国内技术领先地位并获得海外市场认可;拥有国际领先技术的自有品牌手持式X荧光光谱仪——MiX5系列;以及首次在国内推出“穿透性激光烧蚀和检测引擎”技术的产品——手持式激光诱导击穿(LIBS)光谱仪。
  • 认监委对国家中低压输配电设备质量监督检验中心等9家单位继续授权
    国家认监委日前下发通知,对国家中低压输配电设备质量监督检验中心、国家家具产品质量监督检验中心(广东)、国家电器产品安全质量监督检验中心、国家特种防护服装质量监督检验中心、国家刀具质量监督检验中心、国家建筑卫生陶瓷质量监督检验中心、国家体育用品质量监督检验中心、国家汽车、农用车配件产品质量监督检验中心(河北)、国家电焊机质量监督检验中心等9家单位继续授权。  这9家单位已按要求通过了实验室资质认定和实验室认可,国家认监委批准这些单位可以继续以国家产品质检中心名义,在授权检验的产品范围内开展质量监督检验业务,业务工作受国家质检总局和国家认监委的监督和指导。  国家认监委要求这9家单位继续抓好自身建设,加强管理,保证出具的检验数据公正、科学、准确。
  • 中国石油集团电能有限公司320.00万元采购切割机
    基本信息 关键内容: 切割机 开标时间: 2022-03-29 09:00 采购金额: 320.00万元 采购单位: 中国石油集团电能有限公司 采购联系人: 吴奕霖 采购联系方式: 立即查看 招标代理机构: 大庆油田招标中心有限责任公司 代理联系人: 张蓬 代理联系方式: 立即查看 详细信息 中国石油集团电能有限公司加工定做(二次) 黑龙江省-大庆市-让胡路区 状态:公告 更新时间: 2022-03-19 一、招标条件 本项目已按要求履行了相关报批及备案等手续,具备招标条件,现进行公开招标。 二、项目概况与招标范围 2.1项目名称:中国石油集团电能有限公司加工定做(二次); 2.2招标编号:2021FWGK5035-2; 2.3计划投资:人民币320万元(含税); 2.4服务期限:自合同签订之日起至 2022年12月31日; 2.5项目实施地点:供应商所在地; 2.6招标范围:中国石油集团电能有限公司所属热电一公司、热电二公司、气电公司、电力技术服务公司四家单位需加工一批非标准零部件包括滑油冷却器加工、热工振动控制线定位架及燃机火焰探测器定位架、发电机前后端盖定位支架、联轴器改造、泵轴加工、电厂机、炉及其辅机的阀门铜套、滤网、垫圈、轴套、堵头、各种特殊法兰、泵轴、多种螺栓等零散加工、脱硫泵件、氧化风机配件及各种异型三通、法兰等管件加工、异型三通、法兰等管件加工等以供给日常生产需要,防止安全隐患的产生,确保电能公司所属厂网正常有序运行。机械加工(加工定作/再制造技术)服务项目,估算金额320万元(含税),根据生产需求及机械加工的专业特点,实际发生的合同金额可能低于估算金额,具体工作量与金额以合同双方共同确认的实际发生数据为准。关于招标范围的详细说明见招标编号为2021FWGK5035-2的招标文件中第四章“技术标准和要求”。 三、投标人资格要求 3.1本项目不接受联合体投标; 3.2本次招标要求投标人须为合格的法人或其他组织,具备有效的营业执照。投标人须提供营业执照原件扫描件,同时提供全国企业信用信息公示系统http://www.gsxt.gov.cn“营业执照基础信息”选项卡网络查询截图。 3.3基础设备:数控车床2台、钻床2台,电焊机2台(脉冲等离子焊机、氩弧焊机),切割机2台(电火花数控线切割机床、激光切割机),不能提供基本生产设备或者基本生产设备不全的不得分,并取消其中标资格。注:(1)需附带单台设备所在加工车间的整体布局实况照片(一台设备对应一张照片)扫描件并加盖本单位公章,并标注设备名称和规格型号。(2)需提供本单位设备购置发票原件扫描件。(发票日期应早于招标文件发售起始日);投标人为国有企业的无法提供购置发票的,需提供相应设备的资产台账并加盖企业资产设备管理部门公章。(3)如投标人取得了中标候选人资格,招标人在中标候选人公示期对中标候选人依次进行现场核验厂房、设备、人员,如核验结果与投标文件不符,将取消中标候选人资格。 3.4投标人须承诺:①本次投标提供评标资料全部真实准确;②无条件保证 24 小时(含节假日)应急服务;③如果在招标期间和公示期间发现投标人有违反①承诺的情况,将终止投标人中标资格;如果在合同履行期间发现投标人有违反①②承诺的情况,招标人有权终止合同。拟中标人(中标人)同意接受招标人现场勘察,并承担由违反承诺给招标人带来的一切损失。 3.5投标人须承诺:投标人须承诺:开标之日前三年内没有发生重大安全、质量责任事故,没有欠薪及员工上访讨薪等不良记录,未被工商行政管理机关在全国企业信用信息公示系统中列入严重违法失信企业名单,未被最高人民法院在“信用中国”网站(www.creditchina.gov.cn )或各级信用信息共享平台中列入失信被执行人名单,不存在法律法规或中国石油天然气集团公司或大庆油田有限责任公司规定的不良状况或不良信用记录。 3.6投标人累计失信分值达到下述①~④项标准之一的,将被否决投标。①投标人失信分累计达到8分,且最后一次失信开始时间距开标当日不足半年;②投标人失信分累计达到9分,且最后一次失信开始时间距开标当日不足一年;③投标人失信分累计达到10分,且最后一次失信开始时间距开标当日不足二年;④投标人失信分累计达到10.5分及以上,且最后一次失信开始时间距开标当日不足三年。投标人失信分以开标当日中国石油招标投标网发布的失信行为信息为准,由评委在评审时进行网络查询。 四、招标文件的获取 4.1 凡有意参加投标者,请于2022-03-19 09:00:00至 2022-03-24 23:59:59(北京时间,下同)投标人登录中国石油电子招标投标交易平台http://ebidmanage.cnpcbidding.com注册账户(已注册的,无需重复注册),并在线报名投标。 详见:附件1:关于潜在投标人信息注册与维护的说明(附件1位于名称为“公告附件”的压缩包中)。凡招标公告要求在中国石油电子招标投标交易平台上报名或递交投标文件的,投标人注册后,还须到昆仑银行股份有限公司办理电子招标平台U-Key。已有U-key的,无需重复办理。 4.2招标文件售价1000元。购买招标文件凡支付成功的,即视为招标文件已经售出,文件一经售出概不退款,大庆油田招标中心现已上线电子发票,电子发票开票信息默认为投标人通过中国石油电子招标投标交易平台初始录入信息,系统推送电子发票默认平台预留手机号及邮箱,若以上信息有误请在开标前修改为正确信息,招标中心将于开标后七个工作日内发送电子发票至投标人平台预留手机号及邮箱。领取发票咨询电话:0459-5183118潜在投标人在购买招标文件时,应确认投标人名称、通信地址、联系人、联系方式及发票信息等基本信息准确无误,招投标信息发布和联络以此为准。招标过程中因联络方式有误导致的一切后果由投标人自行承担。4.3在线购买招标文件。招标文件的售卖截止时间同报名截止时间,潜在投标人应在报名截止时间前完成招标文件的在线购买(注意:购买招标文件是投标报名的必经程序,报名截止时间前未完成招标文件在线购买的视为未完成对应的标段/包的报名,投标将被拒绝)。购买招标文件采用网上支付的模式,目前仅支持个人网银支付方式购买。通过个人账户购买,将被认为购买人已经获得了公司的授权,等同于公司购买,不接受个人名义购买。购买后发票会开据此账户公司名称发票。详见:附件3:购买和下载招标文件操作步骤(附件3位于名称为“公告附件”的压缩包中)。提醒:付款前请先安装昆仑银行插件。付款状态改变为“已付款”后,可在系统中下载招标文件。若付款后,刷新状态后显示未支付,可第二天(售卖期结束前)再查看相关信息。售卖期结束后状态为未支付的,视为未购买对应的标段/包。4.4支付成功后,潜在投标人直接从网上下载招标文件电子版。招标机构不再提供任何纸质招标文件。支付成功,即视为招标文件已经售出,文件一经售出概不退款。4.5招标文件购买操作失败或其他系统问题,请与平台运营单位联系。咨询电话:4008800114 五、投标文件的递交 5.1投标文件递交的截止时间:2022年03月29日9时00分,递交方式为在中国石油电子招标投标交易平台加密上传。投标人通过“中国石油电子招标投标交易平台”提报电子版投标文件,纸质版投标文件不予接受。5.2投标人需在投标文件递交截止时间之前完成投标文件的编制、签名、加密、上传及验签操作,并保证文件的完整性。(考虑投标人众多,避免受网速影响,以及网站技术支持的时间,建议投标截至时间前72小时完成网上电子版的提交。)电子投标文件的提交须使用已灌章的U-key。未办理U-key的投标人,需到昆仑银行办理U-key。 详见:附件2:U-KEY办理流程(附件2位于名称为“公告附件”的压缩包中)。 5.3投标截止时间前未被系统成功传送的电子版投标文件将不被系统接受,视为主动撤回投标文件。 5.4投标人应从其基本帐户通过企业网银或电汇形式向昆仑银行支付投标保证金20000元,并按照招标文件要求,在开标时间前将相应额度的资金提交(分配)至对应标段(包),支付成功后该标段的保证金购买状态将由未付款变为已付款,昆仑银行向中国石油招标投标网发送电子担保通知(考虑投标人众多,避免受网速影响,以及网站技术支持的时间,建议投标截止时间前72小时完成网上电子版投标文件以及投标保证金的提交)。 详见:附件4:投标保证金递交流程(附件4位于名称为“公告附件”的压缩包中). 投标保证金账户信息如下:昆仑银行账户名:昆仑银行电子招投标保证金 账号:26902100171850000010开户行:昆仑银行股份有限公司大庆分行开户行行号:313265010019 六、发布公告的媒介 本次招标公告同时在中国招标投标公共服务平台(http://www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com),大庆油田有限责任公司主页招标信息平台中发布。 七、开标 7.1开标时间:2022年03月29日9时00分 7.2开标地点: □大庆油田招标中心有限责任公司开标大厅(大庆市让胡路区西宾西路1号物资大厦(西宾桥西南侧))。投标人的法定代表人或其委托代理人须携带身份证、法人身份证明(授权委托书),赴开标现场递交审查资料原件及U盘,参加时可自行携带电脑、U-key以备使用。 √网上开标大厅:中国石油电子招标投标交易平台http://ebidmanage.cnpcbidding.com/bidder/ebid/base/login.html 。投标人可通过网上开标大厅,参加开标仪式。 八、联系方式 招标代理机构:大庆油田招标中心有限责任公司 单位地址:大庆市让胡路区西宾西路1号物资大厦(西宾桥西南侧) 联 系 人:张蓬 联系电话: 0459-5727307 邮箱: dqzhangpeng@cnpc.com.cn 招标人: 中国石油集团电能有限公司 联 系 人:吴奕霖 联系电话:0459-5182053 昆仑银行U-Key办理业务咨询电话:4006696569 电子招标运维单位:中油物采信息技术有限公司 咨询电话:4008800114 如有疑问请在工作时间咨询 按照电子提示音进行操作 公告附件:投标人注册及报名相关流程.zip × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:切割机 开标时间:2022-03-29 09:00 预算金额:320.00万元 采购单位:中国石油集团电能有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆油田招标中心有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国石油集团电能有限公司加工定做(二次) 黑龙江省-大庆市-让胡路区 状态:公告 更新时间: 2022-03-19 一、招标条件 本项目已按要求履行了相关报批及备案等手续,具备招标条件,现进行公开招标。 二、项目概况与招标范围 2.1项目名称:中国石油集团电能有限公司加工定做(二次); 2.2招标编号:2021FWGK5035-2; 2.3计划投资:人民币320万元(含税); 2.4服务期限:自合同签订之日起至 2022年12月31日; 2.5项目实施地点:供应商所在地; 2.6招标范围:中国石油集团电能有限公司所属热电一公司、热电二公司、气电公司、电力技术服务公司四家单位需加工一批非标准零部件包括滑油冷却器加工、热工振动控制线定位架及燃机火焰探测器定位架、发电机前后端盖定位支架、联轴器改造、泵轴加工、电厂机、炉及其辅机的阀门铜套、滤网、垫圈、轴套、堵头、各种特殊法兰、泵轴、多种螺栓等零散加工、脱硫泵件、氧化风机配件及各种异型三通、法兰等管件加工、异型三通、法兰等管件加工等以供给日常生产需要,防止安全隐患的产生,确保电能公司所属厂网正常有序运行。机械加工(加工定作/再制造技术)服务项目,估算金额320万元(含税),根据生产需求及机械加工的专业特点,实际发生的合同金额可能低于估算金额,具体工作量与金额以合同双方共同确认的实际发生数据为准。关于招标范围的详细说明见招标编号为2021FWGK5035-2的招标文件中第四章“技术标准和要求”。 三、投标人资格要求 3.1本项目不接受联合体投标; 3.2本次招标要求投标人须为合格的法人或其他组织,具备有效的营业执照。投标人须提供营业执照原件扫描件,同时提供全国企业信用信息公示系统http://www.gsxt.gov.cn“营业执照基础信息”选项卡网络查询截图。 3.3基础设备:数控车床2台、钻床2台,电焊机2台(脉冲等离子焊机、氩弧焊机),切割机2台(电火花数控线切割机床、激光切割机),不能提供基本生产设备或者基本生产设备不全的不得分,并取消其中标资格。注:(1)需附带单台设备所在加工车间的整体布局实况照片(一台设备对应一张照片)扫描件并加盖本单位公章,并标注设备名称和规格型号。(2)需提供本单位设备购置发票原件扫描件。(发票日期应早于招标文件发售起始日);投标人为国有企业的无法提供购置发票的,需提供相应设备的资产台账并加盖企业资产设备管理部门公章。(3)如投标人取得了中标候选人资格,招标人在中标候选人公示期对中标候选人依次进行现场核验厂房、设备、人员,如核验结果与投标文件不符,将取消中标候选人资格。 3.4投标人须承诺:①本次投标提供评标资料全部真实准确;②无条件保证 24 小时(含节假日)应急服务;③如果在招标期间和公示期间发现投标人有违反①承诺的情况,将终止投标人中标资格;如果在合同履行期间发现投标人有违反①②承诺的情况,招标人有权终止合同。拟中标人(中标人)同意接受招标人现场勘察,并承担由违反承诺给招标人带来的一切损失。 3.5投标人须承诺:投标人须承诺:开标之日前三年内没有发生重大安全、质量责任事故,没有欠薪及员工上访讨薪等不良记录,未被工商行政管理机关在全国企业信用信息公示系统中列入严重违法失信企业名单,未被最高人民法院在“信用中国”网站(www.creditchina.gov.cn )或各级信用信息共享平台中列入失信被执行人名单,不存在法律法规或中国石油天然气集团公司或大庆油田有限责任公司规定的不良状况或不良信用记录。 3.6投标人累计失信分值达到下述①~④项标准之一的,将被否决投标。①投标人失信分累计达到8分,且最后一次失信开始时间距开标当日不足半年;②投标人失信分累计达到9分,且最后一次失信开始时间距开标当日不足一年;③投标人失信分累计达到10分,且最后一次失信开始时间距开标当日不足二年;④投标人失信分累计达到10.5分及以上,且最后一次失信开始时间距开标当日不足三年。投标人失信分以开标当日中国石油招标投标网发布的失信行为信息为准,由评委在评审时进行网络查询。 四、招标文件的获取 4.1 凡有意参加投标者,请于2022-03-19 09:00:00至 2022-03-24 23:59:59(北京时间,下同)投标人登录中国石油电子招标投标交易平台http://ebidmanage.cnpcbidding.com注册账户(已注册的,无需重复注册),并在线报名投标。 详见:附件1:关于潜在投标人信息注册与维护的说明(附件1位于名称为“公告附件”的压缩包中)。凡招标公告要求在中国石油电子招标投标交易平台上报名或递交投标文件的,投标人注册后,还须到昆仑银行股份有限公司办理电子招标平台U-Key。已有U-key的,无需重复办理。 4.2招标文件售价1000元。购买招标文件凡支付成功的,即视为招标文件已经售出,文件一经售出概不退款,大庆油田招标中心现已上线电子发票,电子发票开票信息默认为投标人通过中国石油电子招标投标交易平台初始录入信息,系统推送电子发票默认平台预留手机号及邮箱,若以上信息有误请在开标前修改为正确信息,招标中心将于开标后七个工作日内发送电子发票至投标人平台预留手机号及邮箱。领取发票咨询电话:0459-5183118潜在投标人在购买招标文件时,应确认投标人名称、通信地址、联系人、联系方式及发票信息等基本信息准确无误,招投标信息发布和联络以此为准。招标过程中因联络方式有误导致的一切后果由投标人自行承担。4.3在线购买招标文件。招标文件的售卖截止时间同报名截止时间,潜在投标人应在报名截止时间前完成招标文件的在线购买(注意:购买招标文件是投标报名的必经程序,报名截止时间前未完成招标文件在线购买的视为未完成对应的标段/包的报名,投标将被拒绝)。购买招标文件采用网上支付的模式,目前仅支持个人网银支付方式购买。通过个人账户购买,将被认为购买人已经获得了公司的授权,等同于公司购买,不接受个人名义购买。购买后发票会开据此账户公司名称发票。详见:附件3:购买和下载招标文件操作步骤(附件3位于名称为“公告附件”的压缩包中)。提醒:付款前请先安装昆仑银行插件。付款状态改变为“已付款”后,可在系统中下载招标文件。若付款后,刷新状态后显示未支付,可第二天(售卖期结束前)再查看相关信息。售卖期结束后状态为未支付的,视为未购买对应的标段/包。4.4支付成功后,潜在投标人直接从网上下载招标文件电子版。招标机构不再提供任何纸质招标文件。支付成功,即视为招标文件已经售出,文件一经售出概不退款。4.5招标文件购买操作失败或其他系统问题,请与平台运营单位联系。咨询电话:4008800114 五、投标文件的递交 5.1投标文件递交的截止时间:2022年03月29日9时00分,递交方式为在中国石油电子招标投标交易平台加密上传。投标人通过“中国石油电子招标投标交易平台”提报电子版投标文件,纸质版投标文件不予接受。5.2投标人需在投标文件递交截止时间之前完成投标文件的编制、签名、加密、上传及验签操作,并保证文件的完整性。(考虑投标人众多,避免受网速影响,以及网站技术支持的时间,建议投标截至时间前72小时完成网上电子版的提交。)电子投标文件的提交须使用已灌章的U-key。未办理U-key的投标人,需到昆仑银行办理U-key。 详见:附件2:U-KEY办理流程(附件2位于名称为“公告附件”的压缩包中)。 5.3投标截止时间前未被系统成功传送的电子版投标文件将不被系统接受,视为主动撤回投标文件。 5.4投标人应从其基本帐户通过企业网银或电汇形式向昆仑银行支付投标保证金20000元,并按照招标文件要求,在开标时间前将相应额度的资金提交(分配)至对应标段(包),支付成功后该标段的保证金购买状态将由未付款变为已付款,昆仑银行向中国石油招标投标网发送电子担保通知(考虑投标人众多,避免受网速影响,以及网站技术支持的时间,建议投标截止时间前72小时完成网上电子版投标文件以及投标保证金的提交)。 详见:附件4:投标保证金递交流程(附件4位于名称为“公告附件”的压缩包中). 投标保证金账户信息如下:昆仑银行账户名:昆仑银行电子招投标保证金 账号:26902100171850000010开户行:昆仑银行股份有限公司大庆分行开户行行号:313265010019 六、发布公告的媒介 本次招标公告同时在中国招标投标公共服务平台(http://www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com),大庆油田有限责任公司主页招标信息平台中发布。 七、开标 7.1开标时间:2022年03月29日9时00分 7.2开标地点: □大庆油田招标中心有限责任公司开标大厅(大庆市让胡路区西宾西路1号物资大厦(西宾桥西南侧))。投标人的法定代表人或其委托代理人须携带身份证、法人身份证明(授权委托书),赴开标现场递交审查资料原件及U盘,参加时可自行携带电脑、U-key以备使用。 √网上开标大厅:中国石油电子招标投标交易平台http://ebidmanage.cnpcbidding.com/bidder/ebid/base/login.html 。投标人可通过网上开标大厅,参加开标仪式。 八、联系方式 招标代理机构:大庆油田招标中心有限责任公司 单位地址:大庆市让胡路区西宾西路1号物资大厦(西宾桥西南侧) 联 系 人:张蓬 联系电话: 0459-5727307 邮箱: dqzhangpeng@cnpc.com.cn 招标人: 中国石油集团电能有限公司 联 系 人:吴奕霖 联系电话:0459-5182053 昆仑银行U-Key办理业务咨询电话:4006696569 电子招标运维单位:中油物采信息技术有限公司 咨询电话:4008800114 如有疑问请在工作时间咨询 按照电子提示音进行操作 公告附件:投标人注册及报名相关流程.zip
  • 28726项行业标准复审 这些仪器分析标准将废止
    日前,工信部发布了28726项推荐性行业标准的复审结论的公告。其中《带压密封技术规范》等20466项行业标准继续有效,《镁钢制品绝热工程施工技术规范》等5511项行业标准予以修订,《化工蒸汽系统设计规定》等2749项行业标准自本公告发布之日起废止。  经粗略统计,复审的28726项行业标准包含近千条仪器分析标准。其中,《硅钙合金铝含量的测定电感耦合等离子体发射光谱法》等185条仪器标准予以修订,《惰性气体中微量氢、氧、甲烷、一氧化碳的测定氧化锆检测器气相色谱法》等79条仪器标准计划废止。  仪器信息网编辑特别摘录拟废止及修订的多项仪器分析标准,详情如下(复审结论见附件):拟废止的仪器分析标准序号标准编号标准名称复审结论安全生产—化工行业1HG/T23005-1992可燃性气体检测报警仪技术条件及检验方法废止2HG/T23006-1992有毒气体检测报警仪技术条件及检验方法废止3HG/T23007-1992氧气检测报警仪技术条件和检验方法废止化工行业1HG/T2686-1995惰性气体中微量氢、氧、甲烷、一氧化碳的测定氧化锆检测器气相色谱法废止2HG/T2954-2008原子吸收光谱分析方法标准编写格式废止3HG/T3516-2011工业循环冷却水中亚硝酸盐的测定分子吸收分光光度法废止有色金属行业1YS/T631-2007锌分析方法光电发射光谱法废止机械行业1JB/T5224-1991示波极谱仪技术条件废止2JB/T5225-1991气相色谱仪测试用标准色谱柱废止3JB/T5226-1991液相色谱仪测试用标准色谱柱废止4JB/T5233-1991电磁感应式数字化仪通用技术条件废止5JB/T5365.1-1991铸造机械清洁度测定方法重量法废止6JB/T5365.2-1991铸造机械清洁度测定方法显微镜法废止7JB/T5375-1991漏气量测量仪技术条件废止8JB/T5383-1991透射电子显微镜技术条件废止9JB/T5384-1991扫描电子显微镜技术条件废止10JB/T5476-1991旋光糖量计废止11JB/T5480-1991电子显微镜用光阑废止12JB/T5481-1991电子显微镜用灯丝废止13JB/T5489-1991光学仪器用润滑脂废止14JB/T5490-1991光学零件用刻线填料废止15JB/T5515-1991自动记录颗粒沉积天平废止16JB/T5516-1991加速度计校准仪技术条件废止17JB/T5519-1991高速冷冻离心机废止18JB/T5520-1991干燥箱技术条件废止19JB/T5584-1991透射电子显微镜放大率测试方法废止20JB/T5585-1991透射电子显微镜分辨力测试方法废止21JB/T5586-1991透射电子显微镜分类和基本参数废止22JB/T5590-1991光谱仪器用滤光片废止23JB/T5593-1991旋光仪废止24JB/T5594-1991荧光分光光度计废止25JB/T5595-1991测色色差计废止26JB/T5596-1991测微光度计废止27JB/T5667-1991光学和光学仪器大地测量仪器术语废止28JB/T5747-1991振动测量仪器型号命名及编制方法废止29JB/T6176-1992摄谱仪感光板暗盒和暗盒框架基本参数废止30JB/T6177-1992熔点测定仪废止31JB/T6777-1993紫外可见分光光度计废止32JB/T6778-1993紫外可见近红外分光光度计废止33JB/T6779-1993红外分光光度计废止34JB/T6780-1993原子吸收分光光度计废止35JB/T6781-1993手持式糖量计废止36JB/T6783-1993相位式红外测距仪废止37JB/T6793-1993冲天炉熔炼微机优化控制仪废止38JB/T6841-1993电子光学仪器术语废止39JB/T6842-1993扫描电子显微镜试验方法废止40JB/T6851-1993分析仪器质量检验规则废止41JB/T6860-1993测量激光辐射功率能量的探测器、仪器与设备废止42JB/T7393-1994活塞式压力计废止43JB/T7400-1994测长机废止44JB/T7403-1994光照度计废止45JB/T7412-1994固定式(移动式)工业X射线探伤仪废止46JB/T7413-1994携带式工业X射线探伤机废止47JB/T7440-1994压铸工艺参数测试仪废止48JB/T9300-1999精密仪器用开关废止49JB/T9304-1999光线示波器废止50JB/T9324-1999可见分光光度计废止51JB/T9325-1999分光光度计系列及其基本参数废止52JB/T9326-1999激光喇曼分光光度计废止53JB/T9329-1999仪器仪表运输,运输贮存基本环境条件及试验方法废止54JB/T9334-1999显微镜光谱滤光片基本规格废止55JB/T9335-1999平板仪废止56JB/T9338-1999坐标测量机技术要求废止57JB/T9339-1999测量显微镜废止58JB/T9341.3-1999计量光栅玻璃光栅尺技术要求废止59JB/T9341.4-1999计量光栅玻璃光栅盘技术要求废止60JB/T9354-1999pH值测定用甘汞电极废止61JB/T9355-1999原子吸收测量用校准溶液的制备方法废止62JB/T9362-1999离子选择电极技术条件废止63JB/T9364-1999极谱仪试验溶液制备方法废止64JB/T9368-1999电导电极通用技术条件废止65JB/T9387-2008液压式木材万能试验机技术条件废止66JB/T9402-1999工业X射线探伤机性能测试方法废止67JB/T9514-1999数显热量计废止轻工行业1QB/T1036-1991工业用三聚磷酸钠(包括食品工业用)氯化物含量的测定电位滴定法废止2QB/T1863-1993染发剂中对苯二胺的测定气相色谱法废止3QB/T1912-1993眼镜架金属镀层厚度测试方法X荧光光谱法废止4QB/T2261-1996灯用卤磷酸钙荧光粉发射光谱及色坐标的测试方法废止5QB/T2410-1998防晒化妆品UVB区防晒效果的评价方法紫外吸光度法废止拟修订的仪器分析标准序号标准编号标准名称复审结论化工行业1HG/T3710-2003直读式橡胶密度计技术条件修订2HG/T3243-2005硫化橡胶拉伸应力松弛仪技术条件修订3HG/T3987-2007电化学式硫化氢气体检测仪修订4JC/T728-2005水泥筛析用标准筛和筛析仪修订钢铁行业1YB/T178.6-2008硅铝合金、硅钡铝合金碳含量的测定红外线吸收法修订2YB/T178.7-2008硅铝合金、硅钡铝合金硫含量的测定红外线吸收法修订3YB/T4021-2007萘中全硫含量的测定方法-还原滴定法修订4YB/T4174.1-2008硅钙合金铝含量的测定电感耦合等离子体发射光谱法修订5YB/T4174.2-2008硅钙合金磷含量的测定电感耦合等离子体发射光谱法修订6YB/T5320-2006金属材料定量相分析-X射线衍射K值法修订7YB/T5337-2006金属点阵常数的测定方法X射线衍射仪法修订8YB/T5190-2007高纯石墨材料氯含量的分光光度测定方法修订9YB/T5191-2007高纯石墨材料总稀土元素含量的分光光度测定方法修订10YB/T5154-1993工业甲基萘中甲基萘、萘含量的气相色谱测定方法修订11YB/T5156-1993高纯石墨制品中硅的测定硅-钼蓝分光光度法修订12YB/T5157-1993高纯石墨制品中铁的测定邻二氮菲分光光度法修订13YB/T5176-1993炭黑用原料油试验方法钾\钠含量测定方法(火焰光度计法)修订14YB/T5312-2006硅钙合金化学分析方法高氯酸脱水重量法测定硅量修订15YB/T5313-2006硅钙合金化学分析方法EDTA滴定法测定钙量修订16YB/T5314-2006硅钙合金化学分析方法EDTA滴定法测定铝量修订17YB/T5315-2006硅钙合金化学分析方法磷钼蓝分光光度法测定磷量修订18YB/T5316-2006硅钙合金化学分析方法红外线吸收法测定碳量修订19YB/T5317-2006硅钙合金化学分析方法红外线吸收法和燃烧碘酸钾滴定法测定硫量修订20YB/T5338-2006钢中残余奥氏体定量测定--X射线衍射仪法修订有色金属行业1YS/T63.16-2006铝用炭素材料检测方法第16部分:微量元素的测定X射线荧光光谱分析方法修订2YS/T832-2012丁辛醇废催化剂化学分析方法铑量的测定电感耦合等离子体原子发射光谱法修订3YS/T833-2012铼酸铵化学分析方法铼酸铵中铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌和钼量的测定电感耦合等离子体原子发射光谱法修订4YS/T870-2013高纯铝化学分析方法痕量杂质元素的测定电感耦合等离子体质谱法修订5YS/T240.10-2007铋精矿化学分析方法三氧化二铝量的测定铬天青S分光光度法修订6YS/T240.11-2007铋精矿化学分析方法银量的测定火焰原子吸收光谱法修订7YS/T240.1-2007铋精矿化学分析方法铋量的测定Na2EDTA滴定法修订8YS/T240.2-2007铋精矿化学分析方法铅量的测定Na2EDTA滴定法和火焰原子吸收光谱法修订9YS/T240.3-2007铋精矿化学分析方法二氧化硅量的测定钼蓝分光光度法和重量法修订10YS/T240.4-2007铋精矿化学分析方法三氧化钨量的测定硫氰酸盐分光光度法修订11YS/T240.5-2007铋精矿化学分析方法钼量的测定硫氰酸盐分光光度法修订12YS/T240.6-2007铋精矿化学分析方法铁量的测定重铬酸钾滴定法修订13YS/T240.7-2007铋精矿化学分析方法硫量的测定燃烧-中和滴定法修订14YS/T240.8-2007铋精矿化学分析方法砷量的测定DDTC-Ag分光光度法和萃取-碘滴定法修订15YS/T240.9-2007铋精矿化学分析方法铜量的测定碘量法和火焰原子吸收光谱法修订16YS/T271.1-1994黄药化学分析方法乙酸铅滴定法测定黄原酸盐含量修订17YS/T271.2-1994黄药化学分析方法乙酸滴定法测定游离碱含量修订18YS/T271.3-1994黄药化学分析方法红外干燥法测定水分及挥发物含量修订19YS/T372.18-2006贵金属合金元素分析方法钆量的测定偶氮氯膦III分光光度法修订20YS/T372.19-2006贵金属合金元素分析方法钇量的测定偶氮氯膦III分光光度法修订21YS/T482-2005铜及铜合金分析方法光电发射光谱法修订22YS/T483-2005铜及铜合金分析方法X射线荧光光谱法修订23YS/T539.11-2009镍基合金粉化学分析方法第11部分:钨量的测定辛可宁称量法修订24YS/T539.1-2009镍基合金粉化学分析方法第1部分:硼量的测定酸碱滴定法修订25YS/T539.2-2009镍基合金粉化学分析方法第2部分:铝量的测定铬天青S分光光度法修订26YS/T539.5-2009镍基合金粉化学分析方法第5部分:锰量的测定高碘酸钠(钾)氧化分光光度法修订27YS/T539.7-2009镍基合金粉化学分析方法第7部分:钴量的测定亚硝基R盐分光光度法修订28YS/T539.8-2009镍基合金粉化学分析方法第8部分:铜量的测定新亚铜灵-三氯甲烷萃取分光光度法修订29YS/T37.1-2007高纯二氧化锗化学分析方法硫氰酸汞分光光度法测定氯量修订30YS/T37.2-2007高纯二氧化锗化学分析方法钼蓝分光光度法测定硅量修订31YS/T37.3-2007高纯二氧化锗化学分析方法石墨炉原子吸收光谱法测定砷量修订32YS/T37.4-2007高纯二氧化锗化学分析方法化学光谱法测定铁、镁、铅、镍、铝、钙、铜、铟和锌量修订33YS/T37.5-2007高纯二氧化锗化学分析方法石墨炉原子吸收光谱法测定铁含量修订34YS/T521.2-2009粗铜化学分析方法第2部分:金和银量的测定火试金法修订35YS/T540.1-2006钒化学分析方法高锰酸钾-硫酸亚铁铵滴定法测定钒量修订36YS/T540.2-2006钒化学分析方法二苯基碳酰二肼光度法测定铬量修订37YS/T540.3-2006钒化学分析方法CAS-TPC光度法测定铝量修订38YS/T540.4-2006钒化学分析方法邻菲啰啉光度法测定铁量修订39YS/T540.5-2006钒化学分析方法异戊醇萃取光度法测定铁量修订40YS/T540.6-2006钒化学分析方法正丁醇萃取光度法测定硅量修订41YS/T540.7-2006钒化学分析方法脉冲熔融-气相色谱法测定氧量修订42YS/T645-2007金化合物分析方法金量的测定硫酸亚铁电位滴定法修订43YS/T646-2007铂化合物分析方法铂量的测定高锰酸钾电流滴定法修订44YS/T806-2012铝及铝合金中稀土分析方法X-射线荧光光谱法测定镧、铈、镨、钕、钐含量修订稀土行业1XB/T601.1-2008六硼化镧化学分析方法硼量的测定酸碱滴定法修订2XB/T601.2-2008六硼化镧化学分析方法铁、钙、镁、铬、锰、铜量的测定电感耦合等离子体发射光谱法修订3XB/T601.3-2008六硼化镧化学分析方法钨量的测定电感耦合等离子体发射光谱法修订4XB/T601.4-2008六硼化镧化学分析方法碳量的测定高频感应燃烧红外线吸收法测定修订5XB/T601.5-2008六硼化镧化学分析方法酸溶硅量的测定硅钼蓝分光光度法修订6XB/T616.1-2012钆铁合金化学分析方法第1部分:稀土总量的测定重量法修订7XB/T616.2-2012钆铁合金化学分析方法第2部分:稀土杂质含量的测定电感耦合等离子体原子发射光谱法修订8XB/T616.3-2012钆铁合金化学分析方法第3部分:钙、镁、铝、锰量的测定电感耦合等离子体原子发射光谱法修订9XB/T616.4-2012钆铁合金化学分析方法第4部分:铁量的测定重铬酸钾容量法修订10XB/T616.5-2012钆铁合金化学分析方法第5部分:硅量的测定硅酸蓝分光光度法修订机械行业1JB/T5996-1992圆度测量三测点法及其仪器的精度评定修订2JB/T5228-1991测汞仪技术条件修订3JB/T6203-1992工业pH计修订4JB/T6245-1992实验室离子计修订5JB/T6855-1993工业电导率仪修订6JB/T6856-1993热重-差热分析仪修订7JB/T6858-1993pH计和离子计试验方法修订8JB/T9366-1999实验室电导率仪修订9JB/T9369-1999差热分析仪修订10JB/T9240-1999比色温度计修订11JB/T9259-1999蒸汽和气体压力式温度计修订12JB/T5592-1991V棱镜折射仪修订13JB/T6266-1992光学测角比较仪基本参数修订14JB/T6826-1993压电式振动测量仪技术条件修订15JB/T7520.1-1994磷铜钎料化学分析方法EDTA容量法测定铜量修订16JB/T7520.2-1994磷铜钎料化学分析方法氯化银重量法测定银量修订17JB/T7520.3-1994磷铜钎料化学分析方法钒钼酸光度法测定磷量修订18JB/T7520.4-1994磷铜钎料化学分析方法碘化钾光度法测定锑量修订19JB/T7520.5-1994磷铜钎料化学分析方法次磷酸盐还原容量法测定锡量修订20JB/T7520.6-1994磷铜钎料化学分析方法丁二酮肟光度法测定镍量修订21JB/T7948.10-1999熔炼焊剂化学分析方法燃烧-库伦法测定碳量修订22JB/T7948.11-1999熔炼焊剂化学分析方法燃烧-碘量法测定硫量修订23JB/T7948.12-1999熔炼焊剂化学分析方法EDTA容量法测定氧化钙、氧化镁量修订24JB/T7948.2-1999熔炼焊剂化学分析方法电位滴定法测定氧化锰量修订25JB/T7948.4-1999熔炼焊剂化学分析方法EDTA容量法测定氧化铝量修订26JB/T7948.5-1999熔炼焊剂化学分析方法磺基水杨酸光度法测定氧化铁量修订27JB/T7948.6-1999熔炼焊剂化学分析方法热解法测定氟化钙量修订28JB/T7948.8-1999熔炼焊剂化学分析方法钼蓝光度法测定磷量修订29JB/T7948.9-1999熔炼焊剂化学分析方法火焰光度法测定氧化钠、氧化钾量修订30JB/T9342-1999光学计量仪器用测帽修订31JB/T9343-1999分格值为1′的光学测角比较仪修订32JB/T9346-1999测角仪(分光计)基本参数修订33JB/T9385-1999刮板细度计技术条件修订34JB/T9386-1999摆杆阻尼试验仪技术条件修订35JB/T9395-2004四球摩擦试验机技术条件修订36JB/T10632-2006凸轮轴测量仪修订37JB/T10761-2007压路机压实度测量仪修订38JB/T6174-1992仪器仪表功能电路板老化工艺规范修订39JB/T6175-1992仪用电子元器件引线成型工艺规范修订40JB/T6178-1992焦距仪修订41JB/T6246-1992实验室震摆式筛砂仪修订42JB/T6248-1992记录式发气性测定仪修订43JB/T6261-1992电阻应变仪技术条件修订44JB/T6877-1993转矩转速测量仪修订45JB/T7441-1994涡洗式洗砂仪修订46JB/T7463-2005热阴极电离真空计修订47JB/T8230.5-1999显微镜目镜和镜筒的配合尺寸修订48JB/T8230.7-1999显微镜载物台装压簧和移动尺用孔的尺寸和位置修订49JB/T8230.8-1999显微镜可拆卸之聚光镜及滤色片的连接尺寸修订50JB/T9220.9-1999铸造化铁炉酸性炉渣化学分析方法磷矾钼黄甲基异丁基甲酮萃取光度法测定五氧化二磷量修订51JB/T9493.1-1999锰铜和新康铜电阻合金化学分析方法电解重量法测定铜量修订52JB/T9493.2-1999锰铜和新康铜电阻合金化学分析方法硝酸铵氧化-硫酸亚铁铵滴定法测定锰量修订53JB/T9493.3-1999锰铜和新康铜电阻合金化学分析方法丁二酮肟重量法测定镍量修订54JB/T9493.4-1999锰铜和新康铜电阻合金化学分析方法磺基水杨酸光度法测定铁量修订55JB/T9493.5-1999锰铜和新康铜电阻合金化学分析方法硅钼兰光度法测定硅量修订56JB/T9493.6-1999锰铜和新康铜电阻合金化学分析方法高氯酸脱水重量法测定硅量修订57JB/T9493.7-1999锰铜和新康铜电阻合金化学分析方法苯甲酸铵分离-EDTA滴定法测定铝量修订58JB/T10061-1999A型脉冲反射式超声波探伤仪通用技术条件修订59JB/T6207-1992氢分析器技术条件修订60JB/T6240-1992二氧化硫分析器技术条件修订61JB/T6242-2005荧光光度计修订62JB/T7439.4-1994实验室仪器术语噪声测量仪器修订63JB/T7439.5-1994实验室仪器术语振动测量仪器修订64JB/T8283-1999声发射检测仪器性能测试方法修订65JB/T9314-1999大地测量仪器的包装修订66JB/T9315-1999大地测量仪器水准标尺修订67JB/T9316-1999大地测量仪器强制中心机构配合尺寸修订68JB/T9317-1999激光指向仪修订69JB/T9318-1999大地测量仪器目视读数的度盘分划修订70JB/T9319-1999垂准仪修订71JB/T9332-1999大地测量仪器仪器与三脚架之间的连接修订72JB/T9333-1999显微镜光学显微术通用浸油修订73JB/T9336-1999大地测量仪器分划板修订74JB/T9337-1999大地测量仪器三脚架修订75JB/T9363-1999四极质谱计技术条件修订76JB/T9499.1-1999康铜电阻合金化学分析方法电解重量法测定铜量修订77JB/T9499.2-1999康铜电阻合金化学分析方法碘化钾-硫代硫酸钠滴定法测定铜量修订78JB/T9499.3-1999康铜电阻合金化学分析方法过硫酸铵氧化-硫酸亚铁铵滴定法测定锰量修订79JB/T9499.4-1999康铜电阻合金化学分析方法高碘酸钾光度法测定锰量修订80JB/T9499.5-1999康铜电阻合金化学分析方法电解除铜-EDTA滴定法测定镍量修订81JB/T9499.6-1999康铜电阻合金化学分析方法磺基水杨酸光度法测定铁量修订82JB/T9499.7-1999康铜电阻合金化学分析方法硅钼兰光度法测定硅量修订83JB/T8230.1-1999光学显微镜术语修订船舶行业1CB/T3746-2013平板式油位计修订2CB/T3788-2013船用声波计程仪修订3CB/T3905.10-2005锡基轴承合金化学分析方法第10部分:原子吸收光谱法测定铅量修订4CB/T3905.11-2005锡基轴承合金化学分析方法第11部分:邻菲啰啉光度法测定铁量修订5CB/T3905.1-2005锡基轴承合金化学分析方法第1部分:总则修订6CB/T3905.12-2005锡基轴承合金化学分析方法第12部分:原子吸收光谱法测定铁量修订7CB/T3905.13-2005锡基轴承合金化学分析方法第13部分:原子吸收光谱法测定锌量修订8CB/T3905.14-2005锡基轴承合金化学分析方法第14部分:铬天菁S光度法测定铝量修订9CB/T3905.15-2005锡基轴承合金化学分析方法第15部分:硫脲光度法测定铋量修订10CB/T3905.16-2005锡基轴承合金化学分析方法第16部分:蒸馏分离-砷钼蓝光度法测定砷量修订11CB/T3905.2-2005锡基轴承合金化学分析方法第2部分:溴酸钾滴定法测定锑量修订12CB/T3905.3-2005锡基轴承合金化学分析方法第3部分:高锰酸钾滴定法测定锑量修订13CB/T3905.4-2005锡基轴承合金化学分析方法第4部分:电解法测定铜量修订14CB/T3905.5-2005锡基轴承合金化学分析方法第5部分:二乙基二硫代氨基甲酸钠光度法测定铜量修订15CB/T3905.6-2005锡基轴承合金化学分析方法第6部分:原子吸收光谱法测定铜量修订16CB/T3905.7-2005锡基轴承合金化学分析方法第7部分:丁二酮肟光度法测定镍量修订17CB/T3905.8-2005锡基轴承合金化学分析方法第8部分:原子吸收光谱法测定镍量修订18CB/T3929-2013铝合金船体对接接头X射线检测及质量分级修订19CB/T4390.9-2013螺旋桨用高锰铝青铜化学分析方法第9部分:电感耦合等离子体原子发射光谱法修订轻工行业1QB/T2578-2002陶瓷原料化学成分光度分析方法修订2QB/T2623.6-2003肥皂试验方法肥皂中氯化物含量的测定滴定法修订3QB/T2561-2002实验室玻璃仪器试管和培养管修订4QB/T2110-1995实验室玻璃仪器分液漏斗和滴液漏斗修订5QB/T2631.1-2004金饰工艺画金层厚度与含金量的测定ICP光谱法第1部分:金膜画修订  附件:  1.行业标准复审结论统计表.doc  2.工程建设、节能与综合利用和安全生产领域行业标准复审结论表.doc  3.原材料(化工、建材、钢铁、有色金属、稀土、黄金)行业标准复审结论表.doc  4.装备(机械、汽车、船舶、航空)行业标准复审结论表.doc  5.消费品(轻工、纺织、包装)行业标准复审结论表.doc  6.兵工民品和核工业行业标准复审结论表.doc  7.电子和通信行业标准复审结论表.doc
  • 一认证公司被罚
    苏州市吴江区市场监督管理局行政处罚决定书吴江市监处罚(2022) 762号当事人:河北质量认证有限公司主体资格证照名称:营业执照统一社会信用代码: 9113**************住所(住址) :河北省石家庄市长安区中山东路39号勒泰中心B座901法定代表人(负责人、经营者):东皓身份证件号码:******************2021年10月25日,我局接到区市场局质量与认证认可监管科移送的关于当事人认证活动中存在认证范围与认证对象营业执照经营范围不符、审核计划中审核地址与事实不一致的相关材料。2021年10月25日,我局向当事人邮寄了询问通知书,要求当事人于2021年11月5日到我局接受调查。当事人收到通知书后向我局提交了情况说明,由于疫情原因无法准时接受调查,最终当事人派员工赵晓丽和史云炜于2021年11月26日到我局接受调查。2021年12月2日,当事人的认证对象(吴江市鸿兴电器有限公司)法定代表人李伟芳到我局接受调查。2021年11月29日和2022年3月16日,当事人的认证对象(吴江市鸿兴电器有限公司)法定代表人叶金元到我局接受调查。经查,吴江市森威复合材料有限公司的营业执照经营范围为玻璃钢产品生产、销售;玻璃钢制品及相关配件、保温设备、冷却设备销售。当事人给吴江市森威复合材料有限公司出具的认证证书上认证覆盖的业务范围为玻璃钢胶衣、玻璃钢色浆、玻璃钢制品的生产和销售。在2021年度江苏省自愿性认证获证组织监督检查中,检查人员发现玻璃钢产品的生产和色浆的生产是两种完全不同的工艺流程,不同的工艺流程会影响专业代码和审核组的成员组成。认证范围与营业执照经营范围不一致。吴江市鸿兴电器有限公司的营业执照经营范围为干燥、烘烤设备、温度控制设备、焊剂回收机械生产、销售;设备租赁;热处理工程安装、检修及技术服务(凭资质经营);电器配件、五金、建材、钢材、纺织品销售 道路货运经营(危险货物除外)。当事人给吴江市鸿兴电器有限公司出具的认证证书上认证覆盖的业务范围为烘箱、温度控制设备、电加热器、焊剂回收设备的生产(涉及国家强制许可要求的除外),金属热处理服务。在2021年度江苏省自愿性认证获证组织监督检查中,检查人员发现金属热处理服务是具体的金属零部件的热处理加工服务而热处理工程安装、检修及技术服务是基于热处理设备的安装检修及技术,两者不一致。认证范围与营业执照经营范围不一致。上述事实,主要有以下证据证明:营业执照、身份证、《2021年度江苏省自愿性认证获证组织监督检查事实确认表》及情况说明、调查笔录等。2022年4月26日,本局依法向当事人送达了《行政处罚告知书》(吴江市监罚告[2022]平038号),当事人在收到《行政处罚告知书》后在规定期限内未提出异议。本案中,当事人出具的认证证书上认证范围与认证对象营业执照经营范围不一致的行为已经违反了《认证机构管理办法》第十七条第一款第(一)项“认证机构在从事认证活动时,应当对认证对象的下列情况进行核实: (一)具备相关法定资质、资格 ”以及第二款“认证对象不符合上述要求的,认证机构不得向其出具认证证书。”的规定,我局按照《认证机构管理办法》第三十八条第一款第(二)项“认证机构有下列情形之一的,地方认证监督管理部门应当责令其改正,并处3万元罚款:(二)违反本办法第十七条规定,向认证对象出具认证证书的 ”的规定,决定除责令当事人立即改正上述违法行为外,对当事人作出如下处罚:1、罚款30000元,上缴国库。当事人应自收到本处罚决定书之日起十五日内(末日为节假日顺延)将罚没款缴到苏州市吴江区财政局非税收入专户: 510558213379,开户行:中国银行股份有限公司苏州长三角一体化示范区分行营业部。“收款人” 栏填写“苏州市吴江区财政局非税收入专户”,“用途”栏填写“苏州市吴江区市场监督管理局罚没款”。当事人可通过网银转账的方式进行缴款。逾期不缴纳罚款的,根据《中华人民共和国行政处罚法》第七十二条和《中华人民共和国行政强制法》第四十五条的规定,每日按罚款数额的百分之三加处罚款(加处罚款数额不超出罚款数额),并将依法申请人民法院强制执行。当事人如对本行政处罚决定不服,可于收到本决定书之日起六十日内向苏州市吴江区人民政府申请复议,也可以于六个月内依法向苏州市姑苏区人民法院提起诉讼。苏州市吴江区市场监督管理局2022年05月09日
  • 河南安钢周口钢铁有限责任公司2580.00万元采购切割机
    详细信息 周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购-招标公告 河南省-周口市-沈丘县 状态:公告 更新时间: 2024-02-27 周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购-招标公告 发布时间: 2024-02-27 17:15:25 周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购公开招标公告 1.招标条件 本次招标,已由安阳钢铁集团有限责任公司批准建设,立项编号:2023-014,建设资金来自自筹,项目出资比例为100%,招标人为河南安钢周口钢铁有限责任公司。项目已具备招标条件,现对该项目进行公开招标。 2.招标内容 2.1 项目名称:周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购。 2.2 招标范围:本次招标采购范围为宽厚板实验室试样加工中心设备,主要包含(1)全自动加工设备:试样自动加工系统包含全自动激光切割、一拖二全自动高速圆盘锯系统、一拖一全自动高速圆盘锯系统、全自动拉伸试样加工中心、全自动冲击试样加工中心、全自动圆拉伸试样加工中心、AGV传输系统、控制系统、物流运转系统、安全防护等。实现中厚板来样接收、登记、传递、样品自动加工全过程的自动化控制,加工结果自动上传到相关信息系统。 (2)离线加工设备:数控偏析试样加工中心、落锤冲击试样缺口压制机、线切割机、砂轮机、堆焊机、摩擦压力焊机、激光打标机、带锯床、数控卧式车床、冲击试样缺口拉床、立式铣床、平面磨床、台式钻床实现宽厚板试样的离线加工,亦可作为自动加工的备用设备。 (3)配套热敏打印机,用于试样二维码标识的打印和粘贴。电瓶式叉车(1t),用于宽厚板试样运输流转及废样传输。 中标人负责本项目实验室试样加工中心设备(含软件系统)的设计、设备制造/装配/集成供货、运输、安装、调试、性能达标等工作。 上述具体要求详见第五章《技术规格书》。 2.3 交货期:5个月,合同生效之日起至所有设备运抵现场及安装。 2.4质量要求:相关技术指标满足《周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购项目技术规格书》,设计及制造装配质量应满足国家及行业相关规范。 2.5 交货地点:河南安钢周口钢铁有限责任公司厂区内(河南周口市沈丘县钢铁产业园区内)。 2.6 最高投标限价:2580万元人民币,含税价。如遇国家税收政策调整,不含税价不变,税率执行新税收政策。 3. 投标人资格要求: 3.1在中华人民共和国境内注册的独立法人并依法取得企业营业执照,营业执照处于有效期; 3.2要求投标人为生产型供应商,须提供《质量管理体系认证证书》(销售除外)、《生产许可证》、排污许可至少一项能证明为生产企业的材料。 3.3投标人须具有并提供2018年1月1日以来(以合同签订时间为准)全自动试样加工系统设备(至少包括全自动高速圆盘锯切系统、全自动高速圆盘锯床、全自动激光切割系统、全自动多功能试样加工中心、全自动冲击试样加工中心、全自动圆拉伸试样加工中心6项设备中的1项)供货业绩合同至少一份(业绩合同须至少提供合同首页、承包范围页、签字页的原件扫描件或复印件加盖公章的扫描件)。 注:1)“全自动”是指带机器人(或机械手)及配套装置,合同如不能体现,须提供技术协议等证明材料; 2)全自动高速圆盘锯切系统来料最大厚度不小于100mm,或全自动激光切割系统来料最大厚度不小于25mm,合同如不能体现,须提供技术协议等证明材料。 3.4本项目不接受联合体投标。 4. 招标文件的获取 4.1凡有意参加且符合上述资格要求的投标人请于2024年2月27日至2024年3月4日23时55分登陆《安钢公共资源交易平台》“http://www.aygtggzy.cn”,凭企业数字证书点击登录系统并投标报名,获取电子版招标文件及其它招标资料(登录《安钢公共资源交易平台》----参与投标----点击本项目后的参与投标----网上投标,下载招标文件EGP版、普通版及所有附件),只有缴纳标书费并成功绑定后才能下载招标文件。此为获取招标文件的唯一途径。本招标项目自公告发布之日起至投标截止时间止,安钢公共资源交易平台网站均允许投标报名和下载招标文件及其附件。 4.2办理数字证书:投标人携带相关证件到安钢公共资源交易中心(安钢大道与钢一路交叉口向南200米路东)1楼办理CA数字证书(支持异地远程办理),节假日除外,来时请先致电0372-3123477确定办理CA数字证书所需材料信息。 4.3若为联合体投标,由联合体牵头人办理CA数字证书 4.4招标文件售价:400元/每套,售后不退,投标截止时间之前以电汇方式缴纳虚拟账户(标书费与保证金交款账户为不同账户,须严格按照缴费说明单生成的账户分别缴纳,否则无法绑定)。 4.5招标文件费用缴纳方式:投标人登录http://www.aygtggzy.cn:8004/ggzy系统,网上报名后,依次点击“会员向导”→“参与投标”→“费用缴纳说明”→“缴费说明单”,获取缴费账号,根据每个标段的标书费缴纳说明单缴纳相应金额至收款账户(其中收款账户后缀“-******”信息必须全部保留,包括“-”不可删减。);在“费用缴纳查询”中查询到这笔标书费并在“标书费绑定”中绑定。一旦成功绑定切勿重新报名该标段。登录安钢公共资源交易系统-组件下载-《保证金缴纳绑定操作指南》。可参照《保证金缴纳绑定操作指南》进行操作。 投标人可从系统备案的基本户转出标书费,也可以进行会员信息变更增加一般户转出标书费(会员信息变更经交易平台工作人员审核后生效)。 5.投标文件的递交 5.1电子投标文件递交方式(网上递交):进入《安钢公共资源交易平台》“http://www.aygtggzy.cn”,凭企业数字证书登录系统,投标人必须在投标截止时间(同开标时间)2024年3月19日9时00分前完成所有投标文件(安钢公共资源交易平台投标文件编制工具生成的.file格式文件)的上传(只有按照要求缴纳投标保证金并绑定成功的才能上传投标文件),逾期上传视为网上投标无效。 5.2本项目采用“远程不见面”开标方式,投标人无需到现场参加开标会议;投标人应当在开标时间前,通过CA锁登录“《安钢公共资源交易平台》网站”进入“不见面开标大厅”,在线准时参加开标活动并进行投标文件解密、答疑澄清、开标记录表电子签章等。(1.系统解密时长默认为60分钟,错过解密时长者视为自动放弃本次投标;2.开标记录表电子签章时间:开标记录表电子签章时间自“不见面开标大厅”中右下角文字互动中主持人发出“开标记录表电子签章”的通知时间始30分钟结束,超期未签章,视为同意开评标过程,对开标结果无异议。) 注:投标人在规定的开标时间前进入“不见面开标大厅”后,须按照主持人在文字互动中的提示进行投标文件电子解密及开标记录表电子签章等操作,不得擅自离开,直至“不见面开标大厅”中开标状态显示“开标已结束”方可离开,否则,后果自负。 具体操作方法可登录安钢公共资源交易系统-组件下载-《不见面开标操作手册》,参照《不见面开标操作手册》进行操作。 6. 发布公告的媒介 本次招标公告同时在《安钢招标采购交易平台》(http://61.54.245.41/)、《中国招标投标公共服务平台》、《安钢电子招标网》、《河南钢铁集采平台》上发布。 7.联系方式 7.1招标人:河南安钢周口钢铁有限责任公司 联系人:李工(技术咨询) 15837212824 任工 18790768972 7.2招标代理机构:河南安钢招标代理有限公司 地 址:安钢大道与钢一路交叉路口向南200米路东,安钢公共资源交易中心大楼 联系人:贾工 电 话:0372-3125925 18567790600 监督部门:河南安钢招标代理有限公司监督管理部 平台操作使用及技术咨询:0372-3120028 注册咨询及审核:0372-3125930 CA数字证书华测办理:0372-3124606,13513839082; CA使用技术咨询:400-620-2211,13526680751 CA数字证书深圳办理:0372-3123477,13569008899; CA使用技术咨询:400-112-3838,13733834222 平台监督与投诉:0372-3125919 业务服务时间:周一至周五:上午:8:00----12:00;下午:14:00----18:00 注: 1、本项目采用全过程电子标系统,投标前,请先仔细阅读《安钢招标采购交易平台》浮窗“公共资源交易中心网站常见问题汇总”及“操作手册-投标人”。投标人应充分考虑并预留技术处理和上传数据及发生异常情况处置所需时间,最好提前1-2日上传电子版投标文件,如有CA数字证书相关疑问或问题请及时与相应的CA技术咨询电话联系。 2、投标人必须查看《安钢公共资源中心郑重提示》 http://61.54.245.41/tzgg/13801.jhtml。 3、本项目支持河南互认CA,持有相关CA的可以自主绑定。 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:切割机 开标时间:2024-03-19 09:00 预算金额:2580.00万元 采购单位:河南安钢周口钢铁有限责任公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南安钢招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购-招标公告 河南省-周口市-沈丘县 状态:公告 更新时间: 2024-02-27 周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购-招标公告 发布时间: 2024-02-27 17:15:25 周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购公开招标公告 1.招标条件 本次招标,已由安阳钢铁集团有限责任公司批准建设,立项编号:2023-014,建设资金来自自筹,项目出资比例为100%,招标人为河南安钢周口钢铁有限责任公司。项目已具备招标条件,现对该项目进行公开招标。 2.招标内容 2.1 项目名称:周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购。 2.2 招标范围:本次招标采购范围为宽厚板实验室试样加工中心设备,主要包含(1)全自动加工设备:试样自动加工系统包含全自动激光切割、一拖二全自动高速圆盘锯系统、一拖一全自动高速圆盘锯系统、全自动拉伸试样加工中心、全自动冲击试样加工中心、全自动圆拉伸试样加工中心、AGV传输系统、控制系统、物流运转系统、安全防护等。实现中厚板来样接收、登记、传递、样品自动加工全过程的自动化控制,加工结果自动上传到相关信息系统。 (2)离线加工设备:数控偏析试样加工中心、落锤冲击试样缺口压制机、线切割机、砂轮机、堆焊机、摩擦压力焊机、激光打标机、带锯床、数控卧式车床、冲击试样缺口拉床、立式铣床、平面磨床、台式钻床实现宽厚板试样的离线加工,亦可作为自动加工的备用设备。 (3)配套热敏打印机,用于试样二维码标识的打印和粘贴。电瓶式叉车(1t),用于宽厚板试样运输流转及废样传输。 中标人负责本项目实验室试样加工中心设备(含软件系统)的设计、设备制造/装配/集成供货、运输、安装、调试、性能达标等工作。 上述具体要求详见第五章《技术规格书》。 2.3 交货期:5个月,合同生效之日起至所有设备运抵现场及安装。 2.4质量要求:相关技术指标满足《周口钢铁二期公辅项目宽厚板实验室试样加工中心设备采购项目技术规格书》,设计及制造装配质量应满足国家及行业相关规范。 2.5 交货地点:河南安钢周口钢铁有限责任公司厂区内(河南周口市沈丘县钢铁产业园区内)。 2.6 最高投标限价:2580万元人民币,含税价。如遇国家税收政策调整,不含税价不变,税率执行新税收政策。 3. 投标人资格要求: 3.1在中华人民共和国境内注册的独立法人并依法取得企业营业执照,营业执照处于有效期; 3.2要求投标人为生产型供应商,须提供《质量管理体系认证证书》(销售除外)、《生产许可证》、排污许可至少一项能证明为生产企业的材料。 3.3投标人须具有并提供2018年1月1日以来(以合同签订时间为准)全自动试样加工系统设备(至少包括全自动高速圆盘锯切系统、全自动高速圆盘锯床、全自动激光切割系统、全自动多功能试样加工中心、全自动冲击试样加工中心、全自动圆拉伸试样加工中心6项设备中的1项)供货业绩合同至少一份(业绩合同须至少提供合同首页、承包范围页、签字页的原件扫描件或复印件加盖公章的扫描件)。 注:1)“全自动”是指带机器人(或机械手)及配套装置,合同如不能体现,须提供技术协议等证明材料; 2)全自动高速圆盘锯切系统来料最大厚度不小于100mm,或全自动激光切割系统来料最大厚度不小于25mm,合同如不能体现,须提供技术协议等证明材料。 3.4本项目不接受联合体投标。 4. 招标文件的获取 4.1凡有意参加且符合上述资格要求的投标人请于2024年2月27日至2024年3月4日23时55分登陆《安钢公共资源交易平台》“http://www.aygtggzy.cn”,凭企业数字证书点击登录系统并投标报名,获取电子版招标文件及其它招标资料(登录《安钢公共资源交易平台》----参与投标----点击本项目后的参与投标----网上投标,下载招标文件EGP版、普通版及所有附件),只有缴纳标书费并成功绑定后才能下载招标文件。此为获取招标文件的唯一途径。本招标项目自公告发布之日起至投标截止时间止,安钢公共资源交易平台网站均允许投标报名和下载招标文件及其附件。 4.2办理数字证书:投标人携带相关证件到安钢公共资源交易中心(安钢大道与钢一路交叉口向南200米路东)1楼办理CA数字证书(支持异地远程办理),节假日除外,来时请先致电0372-3123477确定办理CA数字证书所需材料信息。 4.3若为联合体投标,由联合体牵头人办理CA数字证书 4.4招标文件售价:400元/每套,售后不退,投标截止时间之前以电汇方式缴纳虚拟账户(标书费与保证金交款账户为不同账户,须严格按照缴费说明单生成的账户分别缴纳,否则无法绑定)。 4.5招标文件费用缴纳方式:投标人登录http://www.aygtggzy.cn:8004/ggzy系统,网上报名后,依次点击“会员向导”→“参与投标”→“费用缴纳说明”→“缴费说明单”,获取缴费账号,根据每个标段的标书费缴纳说明单缴纳相应金额至收款账户(其中收款账户后缀“-******”信息必须全部保留,包括“-”不可删减。);在“费用缴纳查询”中查询到这笔标书费并在“标书费绑定”中绑定。一旦成功绑定切勿重新报名该标段。登录安钢公共资源交易系统-组件下载-《保证金缴纳绑定操作指南》。可参照《保证金缴纳绑定操作指南》进行操作。 投标人可从系统备案的基本户转出标书费,也可以进行会员信息变更增加一般户转出标书费(会员信息变更经交易平台工作人员审核后生效)。 5.投标文件的递交 5.1电子投标文件递交方式(网上递交):进入《安钢公共资源交易平台》“http://www.aygtggzy.cn”,凭企业数字证书登录系统,投标人必须在投标截止时间(同开标时间)2024年3月19日9时00分前完成所有投标文件(安钢公共资源交易平台投标文件编制工具生成的.file格式文件)的上传(只有按照要求缴纳投标保证金并绑定成功的才能上传投标文件),逾期上传视为网上投标无效。 5.2本项目采用“远程不见面”开标方式,投标人无需到现场参加开标会议;投标人应当在开标时间前,通过CA锁登录“《安钢公共资源交易平台》网站”进入“不见面开标大厅”,在线准时参加开标活动并进行投标文件解密、答疑澄清、开标记录表电子签章等。(1.系统解密时长默认为60分钟,错过解密时长者视为自动放弃本次投标;2.开标记录表电子签章时间:开标记录表电子签章时间自“不见面开标大厅”中右下角文字互动中主持人发出“开标记录表电子签章”的通知时间始30分钟结束,超期未签章,视为同意开评标过程,对开标结果无异议。) 注:投标人在规定的开标时间前进入“不见面开标大厅”后,须按照主持人在文字互动中的提示进行投标文件电子解密及开标记录表电子签章等操作,不得擅自离开,直至“不见面开标大厅”中开标状态显示“开标已结束”方可离开,否则,后果自负。 具体操作方法可登录安钢公共资源交易系统-组件下载-《不见面开标操作手册》,参照《不见面开标操作手册》进行操作。 6. 发布公告的媒介 本次招标公告同时在《安钢招标采购交易平台》(http://61.54.245.41/)、《中国招标投标公共服务平台》、《安钢电子招标网》、《河南钢铁集采平台》上发布。 7.联系方式 7.1招标人:河南安钢周口钢铁有限责任公司 联系人:李工(技术咨询) 15837212824 任工 18790768972 7.2招标代理机构:河南安钢招标代理有限公司 地 址:安钢大道与钢一路交叉路口向南200米路东,安钢公共资源交易中心大楼 联系人:贾工 电 话:0372-3125925 18567790600 监督部门:河南安钢招标代理有限公司监督管理部 平台操作使用及技术咨询:0372-3120028 注册咨询及审核:0372-3125930 CA数字证书华测办理:0372-3124606,13513839082; CA使用技术咨询:400-620-2211,13526680751 CA数字证书深圳办理:0372-3123477,13569008899; CA使用技术咨询:400-112-3838,13733834222 平台监督与投诉:0372-3125919 业务服务时间:周一至周五:上午:8:00----12:00;下午:14:00----18:00 注: 1、本项目采用全过程电子标系统,投标前,请先仔细阅读《安钢招标采购交易平台》浮窗“公共资源交易中心网站常见问题汇总”及“操作手册-投标人”。投标人应充分考虑并预留技术处理和上传数据及发生异常情况处置所需时间,最好提前1-2日上传电子版投标文件,如有CA数字证书相关疑问或问题请及时与相应的CA技术咨询电话联系。 2、投标人必须查看《安钢公共资源中心郑重提示》 http://61.54.245.41/tzgg/13801.jhtml。 3、本项目支持河南互认CA,持有相关CA的可以自主绑定。
  • 挪威建议对铅等四种有害物质颁布禁令
    挪威气候和环境污染据希望对以下四种物质颁布禁令,这四种物质分别是:铅、中链氯化石蜡、五氯苯酚以及全氟辛酸。这四种物质常存在于蜡笔、玩具、油漆、地毯、塑料、纺织品以及其他产品中。  近日,挪威气候和环境污染局(Klif)提出一项草案,草案中建议,禁止在消费品中使用铅和其他三种有害物质。  据了解,该草案是减少部分产品对健康和危害行动的一部分。该局的官员Ellen Hambro表示,“该草案的目的在于通过对含有这些物质的产品颁布禁令或者实施更严格的生产、进口、出口以及销售等方式,保护消费者的健康和人类的生存环境。”  据报道,挪威和欧盟已对许多对人类健康有害的物质颁布了禁令,或者制定了更严厉的监管政策。但是,全球市场每天都会出现新的化学物质,因此,这些机构并未对部分物质制定法规。  目前,该局已经颁布了对这四种物质的评估报告,并且将其提交至环境部。环境部将会考虑该议案。  附:  中链氯化石蜡:主要存在于绝缘材料、塑料、接合泡沫、密封剂、窗户和室外门中。该物质对水生生物有极高毒性,可对环境带来永久性影响。  铅:主要存在于汽车电池、油漆、捕鱼设备、弹药、焊剂、蜡烛芯、窗帘、建筑配件中。胎儿的大脑和婴儿特别容易被铅损害。对水生生物有极高毒性,而且会导致环境产生一些不期望看到的永久性的影响。  五氯苯酚:主要用于处理、浸渍木材和纺织品。主要存在于进口产品中,数量尚不清楚。新规定将有助于减少该物质的毒性,防止其与其他物质合成一些有害物质。  全氟辛酸:主要存在于浸渍体、纺织品(休闲装、地毯、油漆清漆、盆和平底锅中使用的特氟隆涂料以及灭火泡沫中。该物质可能对胎儿的健康带来影响,极有可能致癌。
  • 中标喜讯:杰博直读光谱仪走进天津金桥焊材
    热烈祝贺杰博科技公司2018年8月喜中天津市金桥焊材集团有限公司采购理化设备项目2台直读光谱仪。由于该材料是特殊样品,样品直径小于12mm, 针对这种材质含量检测要求必须达到国家标准,经过市场多方了解和咨询,一般直读光谱仪器检测焊材¢5以下很难达标,无锡杰博黄经理听了贵公司的阐述,告诉客户杰博公司直读光谱仪可以检测,并为他们作出了详细的解决技术方案和报价。诚邀他们可以带样上门免费测试和观摩,最终各种焊材小样品检测结果让客户非常满意。杰博科技公司生产的JB-750直读光谱仪是分析黑色金属及有色金属成份的快速定量分析仪器,广泛应用于:铸造、炉前、机械、工业、科研等。JB-750直读光谱仪国内每年的销量日益剧增,国外出口50多个国家,受到用户的一致好评。天津市金桥焊材集团有限公司,是专业研究和生产焊接材料的大型民族企业。 作为当今世界最大的综合性焊接材料研发、生产企业,金桥焊材集团下设2个分公司,3个合资公司,15个子公司,主要生产碳钢、低合金钢、耐热钢、低温钢、不锈钢、堆焊、铸铁等七类电焊条和气保实心焊丝、药芯焊丝、埋弧焊丝、氩弧焊丝、铝和铝合金焊丝、焊剂等七大类焊接材料共400多个品种,产品应用涵盖船舶海工、石油石化、轨道交通、桥梁钢构、压力容器、军工电力等诸多领域,这次贵公司与杰博科技公司合作,杰博品牌产品的质量再次得到了认可。在此感谢参与项目投标工作的同仁,也感谢公司各位幕后英雄兢兢业业的工作正是大家的支持与协作,才能让我们在众多竞争者中脱颖而出,顺利中标,这无疑是对公司综合实力,技术水平和公司团队凝聚力的又一次肯定。成绩是前进途中的里程碑,今日的成功是昨日的汗水灌溉所结出的硕果。而今后我们需要加倍的努力,以适应瞬息万变的市场,以实现远大的目标;脚下的路,任重而道远。公司领导希望每一位员工都能不断进步,在平凡的岗位上有不凡的表现。最后,让我们一同来分享这份喜悦,一起加油努力!希望大家能够在2018年的工作中再接再厉,争取更大的成绩,相信未来会更好!
  • 7月份 有330项仪器及检测相关标准将实施
    7月份有330项仪器及检测相关标准将实施——农林/机械/环境标准领衔我们通过国家标准信息平台查询到,在2022年7月份将有330项仪器及检测行业的国家标准、行业标准和团体标准将实施。7月份将要实施标准分布如下:7月份将要实施标准类别图农林牧渔食品将要实施的标准独具鳌头,占据了将要实施标准的18%,涉及农业、农产品产品质量等方面标准。机械类将要实施标准紧随其后,主要是机械的无损检测 等相关标准为主。环境也是分析检测人员重点关注的领域,有多达41个标准将实施,主要是关于大气监测 、水方面的监测 、不同企业排污情况要求等标准。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(58个)DB42/T 1864.2-2022家禽疫病诊断技术规程 第2部分:禽大肠杆菌致病群双重探针法检测 DB42/T 1864.4-2022 家禽疫病诊断技术规程 第4部分:禽白血病抗原ELISA检测方法 GB 34914-2021 净水机水效限定值及水效等级 GB/T 1600-2021 农药水分测定方法 GB/T 18691.1-2021 农业灌溉设备 灌溉阀 第1部分:通用要求 GB/T 18691.2-2021 农业灌溉设备 灌溉阀 第2部分:隔离阀 GB/T 18691.3-2021 农业灌溉设备 灌溉阀 第3部分:止回阀 GB/T 18691.4-2021 农业灌溉设备 灌溉阀 第4部分:进排气阀 GB/T 18691.5-2021 农业灌溉设备 灌溉阀 第5部分:控制阀 GB/T 19136-2021 农药热储稳定性测定方法 GB/T 1927.10-2021 无疵小试样木材物理力学性质试验方法 第10部分:抗弯弹性模量测定 GB/T 1927.1-2021 无疵小试样木材物理力学性质试验方法 第1部分:试材采集GB/T 1927.12-2021 无疵小试样木材物理力学性质试验方法 第12部分:横纹抗压强度测定 GB/T 1927.17-2021 无疵小试样木材物理力学性质试验方法 第17部分:冲击韧性测定 GB/T 1927.18-2021 无疵小试样木材物理力学性质试验方法 第18部分:抗冲击压痕测定 GB/T 1927.19-2021 无疵小试样木材物理力学性质试验方法 第19部分:硬度测定 GB/T 1927.20-2021 无疵小试样木材物理力学性质试验方法 第20部分:抗劈力测定 GB/T 1927.2-2021 无疵小试样木材物理力学性质试验方法 第2部分:取样方法和一般要求 GB/T 1927.3-2021 无疵小试样木材物理力学性质试验方法 第3部分:生长轮宽度和晚材率测定 GB/T 1927.4-2021 无疵小试样木材物理力学性质试验方法 第4部分:含水率测定 GB/T 1927.5-2021 无疵小试样木材物理力学性质试验方法 第5部分:密度测定 GB/T 1927.6-2021 无疵小试样木材物理力学性质试验方法 第6部分:干缩性测定 GB/T 1927.7-2021 无疵小试样木材物理力学性质试验方法 第7部分:吸水性测定 GB/T 1927.8-2021 无疵小试样木材物理力学性质试验方法 第8部分:湿胀性测定 GB/T 1927.9-2021 无疵小试样木材物理力学性质试验方法 第9部分:抗弯强度测定 GB/T 20882.2-2021 淀粉糖质量要求 第2部分:葡萄糖浆(粉) GB/T 20882.3-2021 淀粉糖质量要求 第3部分:结晶果糖、固体果葡糖 GB/T 20882.4-2021 淀粉糖质量要求 第4部分:果葡糖浆 GB/T 20882.6-2021 淀粉糖质量要求 第6部分:麦芽糊精 GB/T 20886.1-2021 酵母产品质量要求 第1部分:食品加工用酵母 GB/T 20886.2-2021 酵母产品质量要求 第2部分: 酵母加工制品 GB/T 22173-2021 噁草酮原药 GB/T 22178-2021 噁草酮乳油 GB/T 22268-2021 香荚兰 词汇 GB/T 22301-2021 干迷迭香 GB/T 22304-2021 干甜罗勒 规范 GB/T 23528.2-2021 低聚糖质量要求 第2部分:低聚果糖 GB/T 23549-2021 丙环唑乳油 GB/T 24694-2021 玻璃容器 白酒瓶质量要求 GB/T 30359-2021 蜂花粉 GB/T 41184.1-2021 土壤水分蒸发测量仪器 第1部分:水力式蒸发器 GB/T 41185-2021 水生动物病原DNA检测参考物质制备和质量控制规范 质粒 GB/T 41186-2021 鲜、活鲍分级 GB/T 41187-2021 农业物联网应用服务 GB/T 41188-2021 鹿茸加工技术规程 GB/T 41189-2021 蛋鸭营养需要量 GB/T 41190-2021 鹿营养需要量 GB/T 41194-2021 肉用母牛体况评分技术规范 GB/T 41199-2021 木牙签 GB/T 41219-2021 酿酒酵母和乳酸克鲁维酵母的鉴定方法 GB/T 41220-2021 食品包装用复合塑料盖膜 GB/T 41222-2021 土壤质量 农田地表径流监测方法 GB/T 41223-2021 土壤质量 硝化潜势和硝化抑制作用的测定 氨氧化快速检测法 GB/T 41224-2021 土壤质量 土壤相关数据的数字交换 GB/T 41227-2021 蜜蜂饲养管理技术规范 GB/T 41228-2021 棉花加工调湿通用技术要求 GB/T 8618-2021 制盐工业主要产品取样方法 GB/Z 40948-2021 农产品追溯要求 蜂蜜 冶金标准(18个)GB/T 22565.1-2021 金属材料 薄板和薄带 回弹性能评估方法 第1部分:拉弯法 GB/T 228.1-2021 金属材料 拉伸试验 第1部分:室温试验方法 GB/T 26016-2021 高纯镍 GB/T 10117-2021 高纯锑 GB/T 26018-2021 高纯钴 GB/T 26301-2021 屏蔽用锌白铜带箔材 GB/T 29502-2021 硫铁矿烧渣 GB/T 3670-2021 铜及铜合金焊条 GB/T 41079.1-2021 液态金属物理性能测定方法 第1部分:密度的测定 GB/T 41080-2021 钼及钼合金金相检验方法 GB/T 41153-2021 碳化硅单晶中硼、铝、氮杂质含量的测定 二次离子质谱法 GB/T 41154-2021 金属材料 多轴疲劳试验 轴向-扭转应变控制热机械疲劳试验方法 GB/T 41155-2021 烧结金属材料(不包括硬质合金) 疲劳试样 GB/T 5121.28-2021 铜及铜合金化学分析方法 第28部分:铬、铁、锰、钴、镍、锌、砷、硒、银、镉、锡、锑、碲、铅和铋含量的测定 电感耦合等离子体质谱法 GB/T 6730.25-2021 铁矿石 稀土总量的测定 草酸盐重量法 GB/T 6730.28-2021 铁矿石 氟含量的测定 离子选择电极法 GB/T 6730.48-2021 铁矿石 铋含量的测定 二硫代二安替吡啉甲烷分光光度法 GB/T 8643-2021 含润滑剂金属粉末中润滑剂含量的测定 索格利特(Soxhlet)萃取法 环境标准(41个)DB41/T 2252-2022 集中式地下水饮用水水源地基础环境状况调查技术规范 DB32/ 4147-2021 表面涂装(工程机械和钢结构行业)大气污染物排放标准 DB32/ 4148-2021 燃煤电厂大气污染物排放标准 DB32/ 4149-2021 水泥工业大气污染物排放标准 DB41/T 2255-2022 石油污染土壤修复验收技术规范 DB51/ 2864-2021 四川省水泥工业大气污染物排放标准 DB51/ 2865-2021 四川省加油站大气污染物排放标准 GB/T 13277.6-2021 压缩空气 第6部分:气态污染物含量测量方法 GB/T 13277.7-2021 压缩空气 第7部分:活性微生物含量测量方法 GB/T 18916.10-2021 取水定额 第10部分:化学制药产品 GB/T 18916.11-2021 取水定额 第11部分:选煤 GB/T 18916.57-2021 取水定额 第57部分:乳制品 GB/T 18916.58-2021 取水定额 第58部分:钛白粉 GB/T 18916.59-2021 取水定额 第59部分:醋酸乙烯 GB/T 18916.60-2021 取水定额 第60部分:有机硅 GB/T 21534-2021 节约用水 术语 GB/T 30887-2021 工业企业水系统集成优化技术指南 GB/T 41012-2021 含有色金属固体废物回收利用技术规范 GB/T 41015-2021 固体废物玻璃化处理产物技术要求 GB/T 41016-2021 水回用导则 再生水厂水质管理 GB/T 41017-2021 水回用导则 污水再生处理技术与工艺评价方法 GB/T 41018-2021 水回用导则 再生水分级 GB/T 41019-2021 矿井水综合利用技术导则 GB/T 41025-2021 煤层气废弃井处置指南 GB/T 41058-2021 水泥窑协同处置污泥及污染土中重金属的检测方法 HJ 1237—2021 机动车排放定期检验规范 HJ 1244-2022 排污单位自行监测技术指南 稀有稀土金属冶炼 HJ 1245-2022 排污单位自行监测技术指南 聚氯乙烯工业 HJ 1246-2022 排污单位自行监测技术指南 印刷工业 HJ 1247-2022 排污单位自行监测技术指南 煤炭加工—合成气和液体燃料生产 HJ 1248-2022 排污单位自行监测技术指南 陆上石油天然气开采工业 HJ 1249-2022 排污单位自行监测技术指南 储油库、加油站 HJ 1250-2022 排污单位自行监测技术指南 工业固体废物和危险废物治理 HJ 1251-2022 排污单位自行监测技术指南 金属铸造工业 HJ 1252-2022 排污单位自行监测技术指南 畜禽养殖行业 HJ 1253-2022 排污单位自行监测技术指南 电子工业 HJ 1254-2022 排污单位自行监测技术指南 砖瓦工业 HJ 1255-2022 排污单位自行监测技术指南 陶瓷工业 HJ 1256-2022 排污单位自行监测技术指南 中药、生物药品制品、化学药品制剂制造业 HJ 19-2022 环境影响评价技术导则 生态影响 HJ 2.4-2021 环境影响评价技术导则 声环境 医疗卫生生物标准(10个)GB/T 15981-2021 消毒器械灭菌效果评价方法 GB/T 38479-2021 壳聚糖含量测定 高效液相色谱法 GB/T 38478-2021 虾青素旋光异构体含量的测定 液相色谱法 GB/T 38482-2021 动物源性I型胶原蛋白成分测定 聚丙烯酰胺凝胶电泳法 GB/T 38485-2021 微生物痕量基因残留测定 微滴数字PCR法 GB/T 38488-2021 微生物快速测定方法 GB/T 38490-2021 微生物高通量适应性进化测定 微流控芯片法 GB/T 41144-2021 放射性气溶胶的通风防护衣要求与测试方法 GB/T 41212-2021 纳米技术 荧光素二乙酸酯法检测纳米颗粒诱导巨噬细胞产生的活性氧 GB/T 41221-2021 中药材种子检验规程 化工橡胶塑料标准(37个)DB41/T 2251-2022 危险化学品安全生产风险监测预警系统管理规范 DB41/T 2250-2022 化工园区整体性安全风险评估导则 GB/T 15592-2021 聚氯乙烯糊用树脂 GB/T 17934.3-2021 印刷技术 网目调分色版、样张和生产印刷品的加工过程控制 第3部分:新闻纸冷固型平版胶印 GB/T 17934.5-2021 印刷技术 网目调分色版、样张和生产印刷品的加工过程控制 第5部分:网版印刷 GB/T 41197-2021 印刷技术 印刷纸张特性沟通交流规则 GB/T 20724-2021 微束分析 薄晶体厚度的会聚束电子衍射测定方法 GB/T 21636-2021 微束分析 电子探针显微分析(EPMA) 术语 GB/T 2384-2021 染料中间体 熔点范围测定通用方法 GB/T 24166-2021 染料产品中含氯苯酚的测定 GB/T 24282-2021 塑料 聚丙烯中二甲苯可溶物含量的测定 GB/T 24370-2021 纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法 GB/T 2449.1-2021 工业硫磺 第1部分:固体产品 GB/T 25808-2021 硫化黑2BR、3B 200% GB/T 29732-2021 表面化学分析 中等分辨俄歇电子能谱仪 元素分析用能量标校准 GB/T 3637-2021 液体二氧化硫 GB/T 3681.1-2021 塑料 太阳辐射暴露试验方法 第1部分:总则 GB/T 3681.2-2021 塑料 太阳辐射暴露试验方法 第2部分:直接自然气候老化和暴露在窗玻璃后气候老化 GB/T 41003.1-2021 塑料泡沫垫通用技术条件 第1部分:聚乙烯/乙烯-醋酸乙烯酯共聚物儿童泡沫垫 GB/T 41003.2-2021 塑料泡沫垫通用技术条件 第2部分:室内聚氯乙烯泡沫垫 GB/T 41050-2021 纳米技术 光催化纳米材料降解苯性能测试方法 GB/T 41064-2021 表面化学分析 深度剖析 用单层和多层薄膜测定X射线光电子能谱、俄歇电子能谱和二次离子质谱中深度剖析溅射速率的方法 GB/T 41067-2021 纳米技术 石墨烯粉体中硫、氟、氯、溴含量的测定 燃烧离子色谱法 GB/T 41068-2021 纳米技术 石墨烯粉体中水溶性阴离子含量的测定 离子色谱法 GB/T 41070-2021 裸眼3D柱透镜光栅膜 光学测量方法 GB/T 41071-2021 染料产品中多环芳烃的测定 GB/T 41073-2021 表面化学分析 电子能谱 X射线光电子能谱峰拟合报告的基本要求 GB/T 41074-2021 微束分析 用于波谱和能谱分析的粉末试样制备方法 GB/T 41075-2021 荧光增白剂 迁移性的测定 GB/T 41076-2021 微束分析 电子背散射衍射 钢中奥氏体的定量分析 GB/T 41086-2021 基于拉曼光谱技术的危险化学品安全检查设备通用技术要求 GB/T 41168-2021 食品包装用塑料与铝箔蒸煮复合膜、袋 GB/T 41169-2021 食品包装用纸铝塑复合膜、袋 GB/T 41225-2021 苯氧羧酸类除草剂中游离酚限量及检测方法 GB/T 5138-2021 工业用液氯 GB/T 7991.1-2021 搪玻璃层试验方法 第1部分:耐碱性溶液腐蚀性能的测定GB/T 7991.3-2021 搪玻璃层试验方法 第3部分:耐温差急变性能的测定石油地质矿产标准(34个)DB41/T 2248-2022 地质勘查企业安全生产风险隐患双重预防体系建设实施指南 DB41/T 2249-2022 石油天然气开采企业安全生产风险隐患双重预防体系建设实施指南 GA 1551.6-2021 石油石化系统治安反恐防范要求 第6部分:石油天然气管道企业 GB/T 10762-2021 工矿电机车质量测量方法 GB/T 12691-2021 空气压缩机油 GB/T 12692.2-2021 石油产品 燃料(F类)分类 第2部分: 船用燃料油品种 GB/T 14914.3-2021 海洋观测规范 第 3 部分:浮标潜标观测 GB/T 14914.4-2021 海洋观测规范 第4部分:岸基雷达观测 GB/T 14914.5-2021 海洋观测规范 第5部分:卫星遥感观测 GB/T 14914.6-2021 海洋观测规范 第6部分:数据处理与质量控制 GB/T 32065.11-2021 海洋仪器环境试验方法 第11部分:冲击与碰撞试验GB/T 17674-2021 原油中氮含量的测定 舟进样化学发光法 GB/T 18188.1-2021 溢油分散剂 第1部分:技术条件 GB/T 23251-2021 煤化工用煤技术导则 GB/T 23511-2021 石油天然气工业 海洋结构的通用要求 GB/T 23810-2021 商品煤质量 直接液化用煤 GB/T 25210-2021 商品煤质量 中低温热解用煤 GB/T 29722-2021 商品煤质量 气流床气化用煤 GB/T 31428-2021 煤化工术语 GB/T 33440-2021 天然气互换性一般要求 GB/T 34273-2021 煤液化柴油十六烷指数计算法 四变量公式法 GB/T 35212.3-2021 天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第3部分:硫磺回收及尾气处理催化剂技术要求及分析评价方法 GB/T 41029-2021 石油天然气钻井海洋弃井作业规程 GB/T 41031-2021 液化煤层气 GB/T 41039-2021 现代煤化工项目设计煤种和校核煤种确定通则 GB/T 41042-2021 煤中有价元素含量分级及应用导则 GB/T 41043-2021 煤与煤层气协调开发效果评价指标及计算方法 GB/T 41044-2021 煤矿区煤层气抽采指南 GB/T 41066.1-2021 石油天然气钻采设备 海洋石油半潜式钻井平台 第1部分:功能配置和设计 GB/T 41163-2021 煤矿井下煤层水射流冲击增透工艺设计规范 GB/T 41164-2021 碎软低渗煤层顶板水平井分段压裂技术规范 GB/T 41192-2021 岩土工程仪器 振弦式反力计 GB/T 7363-2021 石油蜡中稠环芳烃试验法 GB/T 9143-2021 商品煤质量 固定床气化用煤 玻璃陶瓷建材标准(14个)GB/T 17671-2021 水泥胶砂强度检验方法(ISO法) GB/T 24807-2021 电梯、自动扶梯和自动人行道的电磁兼容 发射 GB/T 41020-2021 建筑物财产保险火灾风险评估指南 GB/T 41048-2021 城镇排水用塑料检查井技术要求 GB/T 41055-2021 预应力钢筒混凝土管无损检测(远场涡流电磁法)技术要求 GB/T 41057-2021 预应力钢筒混凝土管分布式光纤声监测技术要求 GB/T 41059-2021 陶瓷砖胶粘剂技术要求 GB/T 41060-2021 水泥胶砂抗冻性试验方法 GB/T 41061-2021 纤维增强塑料蠕变性能试验方法 GB/T 41062-2021 摩擦材料和制动器间的热传导试验方法 GB/T 41063-2021 玻璃纤维 密度的测定 GB/T 41065-2021 玄武岩纤维 可燃物含量的测定 GB/T 41078-2021 建筑防水材料有害物质试验方法 GB/T 41156-2021 外墙砖用弹性胶粘剂 轻工标准(3个)GB/T 41049-2021 纤维金属层板弯曲性能试验方法 GB/T 41166-2021 铸铁搪瓷炊具质量要求 GB/T 41167-2021 聚对苯二甲酸乙二醇酯(PET)饮品瓶通用技术要求 机械标准(53个)GB/T 10827.2-2021 工业车辆 安全要求和验证 第2部分:自行式伸缩臂式叉车 GB/T 10892-2021 固定的空气压缩机 安全规则和操作规程 GB/T 12604.12-2021 无损检测 术语 第12部分:工业射线计算机层析成像检测 GB/T 1456-2021 夹层结构弯曲性能试验方法 GB/T 15829-2021 软钎剂 分类与性能要求 GB/T 16318-2021 旋转牵引电机基本试验方法 GB/T 20076-2021 摩托车和轻便摩托车发动机最大扭矩和最大净功率测量方法 GB/T 20969.1-2021 特殊环境条件 高原机械 第1部分:高原对内燃动力机械的要求 GB/T 20969.2-2021 特殊环境条件 高原机械 第2部分:高原对工程机械的要求 GB/T 20969.4-2021 特殊环境条件 高原机械 第4部分:高原自然环境试验导则 内燃动力机械 GB/T 20969.5-2021 特殊环境条件 高原机械 第5部分:高原自然环境试验导则 工程机械 GB/T 22522-2021 测量螺纹用米制系列量针 GB/T 24604-2021 滚动轴承 机床丝杠用推力角接触球轴承及单元 GB/T 24606-2021 滚动轴承 无损检测 磁粉检测 GB/T 25364.1-2021 涡轮增压器密封环 第1部分:技术条件 GB/T 25364.2-2021 涡轮增压器密封环 第2部分:检验方法 GB/T 25717-2021 镁合金热室压铸机 GB/T 26641-2021 无损检测 磁记忆检测 总体要求 GB/T 29022-2021 粒度分析 动态光散射法(DLS) GB/T 30574-2021 机械安全 安全防护的实施准则 GB/T 38265.11-2021 软钎剂试验方法 第11部分:钎剂残留物的可溶性 GB/T 38265.13-2021 软钎剂试验方法 第13部分:钎剂溅散性的测定 GB/T 38265.14-2021 软钎剂试验方法 第14部分:钎剂残留物胶粘性的评价 GB/T 38265.15-2021 软钎剂试验方法 第15部分:铜腐蚀试验 GB/T 38265.5-2021 软钎剂试验方法 第5部分:铜镜试验 GB/T 41093-2021 机床安全 车床 GB/T 41095-2021 机械振动 选择适当的机器振动标准的方法 GB/T 41104.1-2021 实心和药芯软钎料丝 规范和试验方法 第1部分:分类和性能要求 GB/T 41104.2-2021 实心和药芯软钎料丝 规范和试验方法 第2部分:钎剂含量的测定 GB/T 41104.3-2021 实心和药芯软钎料丝 规范和试验方法 第3部分:药芯软钎料丝功效的润湿平衡试验方法 GB/T 41105.1-2021 无损检测 X射线管电压的测量和评价 第1部分:分压法 GB/T 41105.2-2021 无损检测 X射线管电压的测量和评价 第2部分:厚板滤波法稳定性核查 GB/T 41105.3-2021 无损检测 X射线管电压的测量和评价 第3部分:能谱法 GB/T 41107.1-2021 金属材料焊缝破坏性试验 焊件的热裂纹试验 弧焊方法 第1部分:总则 GB/T 41107.2-2021 金属材料焊缝破坏性试验 焊件的热裂纹试验 弧焊方法 第2部分:自拘束试验 GB/T 41114-2021 无损检测 超声检测 相控阵超声检测标准试块规范 GB/T 41115-2021 焊缝无损检测 超声检测 衍射时差技术(TOFD)的应用 GB/T 41116-2021 焊缝无损检测 衍射时差技术(TOFD) 验收等级 GB/T 41118-2021 机械安全 安全控制系统设计指南 GB/T 41119-2021 无损检测 微磁检测 总则 GB/T 41120-2021 无损检测 非铁磁性金属材料脉冲涡流检测 GB/T 41123.1-2021 无损检测 工业射线计算机层析成像检测 第1部分:原理、设备和样品 GB/T 41123.2-2021 无损检测 工业射线计算机层析成像检测 第2部分:操作和解释 GB/T 41123.3-2021 无损检测 工业射线计算机层析成像检测 第3部分:验证 GB/T 41124-2021 无菌吹灌旋一体机通用技术要求 GB/T 5289.2-2021 卧式铣镗床精度检验条件 第2部分:带移动立柱和固定工作台的机床 GB/T 5267.2-2021 紧固件 非电解锌片涂层 GB/T 6445-2021 滚动轴承 滚轮滚针轴承 外形尺寸、产品几何技术规范(GPS)和公差值 GB/T 6476-2021 立轴矩台平面磨床 精度检验 GB/T 7777-2021 容积式压缩机机械振动测量与评价 GB/T 9441-2021 球墨铸铁金相检验 GBT 9491-2021 锡焊用助焊剂 GB/Z 41107.3-2021 金属材料焊缝破坏性试验 焊件的热裂纹试验 弧焊方法 第3部分:外载荷试验 电子电器标准(30个)GB/T 1001.1-2021 标称电压高于1 000V的架空线路绝缘子 第1部分:交流系统用瓷或玻璃绝缘子元件 定义、试验方法和判定准则 GB/T 14598.118-2021 量度继电器和保护装置 第118部分:电力系统同步相量 测量 GB/T 14598.181-2021 量度继电器和保护装置 第181 部分:频率保护功能要求 GB/T 17626.31-2021 电磁兼容 试验和测量技术 第31部分:交流电源端口宽带传导骚扰抗扰度试验 GB/T 17743-2021 电气照明和类似设备的无线电骚扰特性的限值和测量方法 GB/T 20629.4-2021 电气用非纤维素纸 第4部分:含云母颗粒的聚芳酰胺纤维纸 GB/T 21419-2021 变压器、电源装置、电抗器及其类似产品 电磁兼容(EMC)要求 GB/T 21437.1-2021 道路车辆 电气/电子部件对传导和耦合引起的电骚扰试验方法 第1部分:定义和一般规定 GB/T 21437.2-2021 道路车辆 电气/电子部件对传导和耦合引起的电骚扰试验方法 第2部分:沿电源线的电瞬态传导发射和抗扰性 GB/T 21437.3-2021 道路车辆 电气/电子部件对传导和耦合引起的电骚扰试验方法 第3部分:对耦合到非电源线电瞬态的抗扰性 GB/T 31723.412-2021 金属通信电缆试验方法 第4-12部分:电磁兼容 连接硬件的耦合衰减或屏蔽衰减 吸收钳法 GB/T 31723.413-2021 金属通信电缆试验方法 第4-13部分:电磁兼容 链路和信道(实验室条件)的耦合衰减 吸收钳法GB/T 31723.414-2021 金属通信电缆试验方法 第4-14部分:电磁兼容 电缆组件(现场条件)的耦合衰减 吸收钳法GB/T 41032-2021 宇航用元器件结构分析通用指南 GB/T 41033-2021 CMOS集成电路抗辐射加固设计要求 GB/T 41034-2021 宇航用电磁继电器通用设计规范 GB/T 41036-2021 宇航用超高低温圆形电连接器通用规范 GB/T 41037-2021 宇航用系统级封装(SiP)保证要求 GB/T 41040-2021 宇航用商业现货(COTS)半导体器件 质量保证要求 GB/T 41041-2021 宇航禁限用元器件控制要求 GB/T 41092-2021 多重应用环境场所电气安全风险评估和风险降低指南 GB/T 41134.1-2021 电驱动工业车辆用燃料电池发电系统 第1部分:安全 GB/T 41134.2-2021 电驱动工业车辆用燃料电池发电系统 第2部分:性能试验方法GB/T 41141-2021 高压海底电缆风险评估导则 GB/T 41146-2021 绝缘液体取样方法GB/T 41147-2021 静止同步补偿装置用电压源换流器阀 电气试验 GB/T 41148-2021 气体燃料发电机组通用技术条件 GB/T 6113.101-2021 无线电骚扰和抗扰度测量设备和测量方法规范 第1-1部分:无线电骚扰和抗扰度测量设备 测量设备 GB/T 6113.104-2021 无线电骚扰和抗扰度测量设备和测量方法规范 第1-4部分:无线电骚扰和抗扰度测量设备 辐射骚扰测量用天线和试验场地YD/T 1181.7-2022 光缆用非金属加强件的特性 第7部分:纤维增强塑料柔性杆 能源标准(20个)DL/T 2447-2021 水电站防水淹厂房安全检查技术规程 DB41/T 2253-2022 地下管线探测与信息系统技术规程 DB41/T 2254-2022 地埋管地源热泵系统监测仪器安装规程 GB/T 11807-2021 核电厂安全重要松脱部件声学监测系统的特性、设计和运行规程 GB/T 13286-2021 核电厂安全级电气设备和电路独立性准则 GB/T 13627-2021 核电厂事故监测仪表准则 GB/T 13976-2021 压水堆核电厂运行状态下的放射性源项 GB/T 41030.1-2021 太阳能 集热器部件与材料 第1部分:真空集热管 耐久性与性能 GB/T 41038-2021 气流床水煤浆气化能效计算方法 GB/T 41087-2021 太阳能热发电站换热系统技术要求 GB/T 41088-2021 海洋能系统的设计要求 GB/T 41140-2021 压水堆核电厂堆芯及乏燃料组件辐射源项分析准则 GB/T 41142-2021 核电厂安全重要数字仪表和控制系统硬件设计要求 GB/T 41143-2021 核电厂仪表和控制术语 GB/T 41191-2021 沼气工程火焰燃烧器 GB/T 41192-2021 岩土工程仪器 振弦式反力计GB/T 41193-2021 沼肥肥效评估方法 GB/T 41203-2021 光伏组件封装材料加速老化试验方法 GB/T 41232.2-2021 纳米制造 关键控制特性 纳米储能 第2部分:纳米正极材料的密度测试 GB/T 5204-2021 核电厂安全系统定期试验与监测 其他标准(12个)GB/T 14088-2021 船用卤代烷灭火系统 GB/T 41027-2021 航空用MJ螺纹铝合金带小凸缘盲孔自锁镶嵌件 GB/T 41028-2021 航空航天流体系统液压软管、管道和接头组件的脉冲试验要求 GB/T 41035-2021 航天用可扩展架构计算机电源测试方法 GB/T 41165-2021 海洋预报结果准确性检验评估方法 GB/T 41204-2021 纳米技术 纳米物体表征用测量技术矩阵 GB/T 41206-2021 空间环境(自然和人工) 宇宙线和太阳能量粒子穿入磁层 有效垂直地磁截止刚度的确定方法 GB/T 41209-2021 月球与行星探测激光测距仪通用规范 GB/T 41211-2021 月球与行星原位光谱探测仪器通用规范 GB/T 41214-2021 空间环境(自然和人工) 地磁活动的预报方法 GB/T 41215-2021 空间材料科学实验 地面匹配试验规范 GB/T 41368-2022 水文自动测报系统技术规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 第11届半导体设备年会主峰会、专题论坛议程发布
    第11届(2023年)中国电子专用设备工业协会半导体设备年会暨产业链合作论坛、第11届(2023年)半导体设备材料与核心部件展示会(CSEAC) 将于8月9日-11日在无锡太湖国际博览中心举行。大会以展览+论坛相结合,搭建一个技术交流、经贸洽谈、市场推广的友好平台。目前参展企业超360家,会展面积近30000平方米,覆盖了设备与关键核心部件的全产业链。参展企业包括北方华创、盛美半导体、上海微电子装备、拓荆科技、华卓精科、中科飞测、烁科中科信等行业龙头;外资企业如川崎机器人、韩国帕克股份、德国JULABO、约翰内斯.海德汉、霍廷格、魏德米勒等;更有华润微电子、长电科技、华虹无锡、卓胜微电子、吉姆西半导体、先导集团、江苏雅克科技、无锡力芯微、中科芯、华进半导体、太初(无锡)电子、无锡矽创精密、恩纳基、芯百特微电子、研微(江苏)半导体、无锡芯朋微电子等行业优质企业以及大批新锐企业。 论坛将邀请产业界高管和学术界代表共同探讨当下半导体设备、核心部件以及材料亟待解决的问题,从宏观架构到技术难点,全方位展现半导体产业面临的机遇和挑战。大会安排总览8月9日09:00-17:30半导体设备与核心部件配套新进展论坛13:00-17:20半导体人才培养暨校企合作交流论坛13:00-17:30新器件新工艺推动新材料新设备创新发展09:00-17:00专题活动:新品发布、企业专场09:00-12:00半导体封测专用设备和与材料专题论坛12:00-17:00先进封装技术与系统集成专题论坛8月10日09:00-17:00 CSEAC 主峰会09:00-17:00制造工艺与半导体设备产业链联动发展论坛09:00-12:00化合物装备与材料发展论坛13:00-17:00半导体制造技术与设备材料董事长论坛09:00-17:00专题活动:新品发布、企业专场8月11日09:00-12:00二手设备产业交流合作论坛09:00-12:00半导体设备与核心部件产业投资论坛主峰会议程时间:8月10日 09:00-17:00 地点:A6馆开幕式主持人:王晖 博士 中国电子专用设备工业协会半导体设备分会理事长、盛美半导体设备(上海)股份有限公司董事长09:00-09:10 领导致辞09:10-09:20 无锡高新区集成电路产业高质量发展政策兑现仪式 无锡市新吴区人民政府09:20-09:40 创“芯”引领 半导体产业链发展新格局李 虹 博士 华润微电子有限公司执行董事、总裁09:40-10:10 集成电路设备产业发展的现状和挑战,人类第三次工业革命的到来尹志尧 博士 中微半导体设备(上海)股份有限公司董事长兼总经理10:10-10:30 茶歇洽谈主持人:金存忠 中国电子专用设备工业协会常务副秘书长10:30-10:50国产装备进入集成电路大生产线的瓶颈与对策李晋湘 中国电子专用设备工业协会副秘书长、华大半导体有限公司、上海积塔半导体有限公司董事/总工程师10:50-11:10以“先”领“芯” 先导集团产业园国产装备自主之路王燕清 先导控股集团有限公司/无锡先导集团董事长11:10-11:30新形势下中国半导体装备企业的定位与思考王坚 盛美半导体设备(上海)股份有限公司总经理11:30-11:50集成电路光学检测设备在中国的发展和挑战陈 鲁 深圳中科飞测科技股份有限公司董事长11:50-12:10科技创新与仪器设备技术褚君浩 中国科学院院士12:10-13:00 自助午餐主持人:李晋湘 中国电子专用设备工业协会副秘书长、华大半导体有限公司、积塔半导体(上海)有限公司董事/总工程师13:00-13:20原子层沉积技术在先进半导体芯片的应用及国产化展望黎微明 江苏微导纳米科技股份有限公司副董事长兼首席技术官13:20-13:40聚焦先进前道工艺应用,提高国产光学量测和检测设备的竞争力杨 峰 睿励科学仪器(上海)有限公司总经理兼首席执行官13:40-14:00新时代下国产设备的发展张孝勇 拓荆创益(沈阳)半导体设备有限公司 副总经理、首席技术官14:00-14:20半导体设备国产替代加速叶国光 无锡邑文电子科技有限公司副总经理14:20-14:40“芯”挑战化为新机遇 思锐智能再出发聂 翔 青岛四方思锐智能技术有限公司董事长14:40-15:00 茶歇与展览交流15:00-15:20刻蚀-沉积一体化赋能化合物半导体功率器件的大规模制造许开东 博士 江苏鲁汶仪器股份有限公司董事长兼CEO15:20-15:40芯鑫租赁,综合金融服务资源整合者—投租结合,助力国家集成电路产业发展袁以沛 芯鑫融资租赁有限责任公司 联席总裁15:40-16:00高精度2D&3D检量测结合深度学习,为芯片良率保驾护航郑 军 博士 聚时科技(上海)有限公司 CEO16:00-16:20临时键合及解键合助力后摩尔时代张羽成 苏州芯睿科技有限公司 副总16:20-16:40智算融合 筑基创新——智能计算系统解决方案赋能AIGC发展加速度赵文来 太初(无锡)电子科技有限公司首席科学家16:40-17:00中国半导体设备回顾与展望金存忠 中国电子专用设备工业协会常务副秘书长17:30-19:30 欢迎晚宴 专题论坛议程 专题一 半导体设备与核心零部件配套新进展专题论坛时间:8月9日 09:00-17:00 地点:A6馆 赞助单位:泓浒、品宙、复享光学、爱安特、金桥、史陶比尔、汇专集团、精量电子、通嘉宏瑞、固高科技、科慕化学、阿米精控、鲁汶仪器、珠海诚锋电子、颇尔、中导光电、12所主持人:叶乐志 博士 中国电子专用设备工业协会副秘书长时间/Time内容/Contents09:00-09:20EP级超高纯管道国产化思考陶然 宣城品宙洁净科技有限公司 总经理 09:20-09:40国产化晶圆传送设备的机遇与挑战林坚 泓浒(苏州)半导体科技有限公司 创始人&执行总裁09:40-10:00终点检测在等离子体刻蚀工艺中的应用陆祺峰 博士 上海复享光学股份有限公司市场经理10:00-10:20高性能电连接技术助力半导体设备稳定运行杨智斌 史陶比尔(杭州)精密机械电子有限公司北方大区销售经理 10:20-10:30茶歇与展览交流10:30-10:50共筑稳健供应链体系:交付需求的系统化分析许孟 爱安特(常州)精密技术有限公司销售总监10:50-11:10汇专超声绿色机床在半导体行业的创新应用 李伟 汇专科技集团股份有限公司 半导体行业销售总监11:10-11:30传感器在高性能工业控制里的发展及应用郑婷婷 TE Connectivity传感器事业部亚太区业务拓展负责人 11:30-11:50聚焦干泵“芯”机遇,助力行业新发展魏民 北京通嘉宏瑞科技有限公司 副总经理11:50-12:10网络式运动控制系统在高端半导体装备中的技术与实践李泽源 固高科技股份有限公司技术副总经理12:10-13:00自助午餐13:00-13:20半导体封装测试设备国产化叶乐志 博士 中国电子专用设备工业协会副秘书长13:20-13:40Krytox™ 高性能润滑剂在半导体设备中的应用何彦祯 科慕化学(上海)有限公 亚太区技术服务经理13:40-14:00微纳测量与超精密运动伺服技术及其在集成电路装备中的应用闫鹏 阿米精控科技(山东)有限公司 执行董事14:00-14:20离子束刻蚀-AR/VR领域的图形化解决方案 杨宇新 博士 江苏鲁汶仪器股份有限公司 离子束刻蚀技术经理14:20-14:40国产零部件的机遇与挑战郑广文 沈阳富创精密设备股份有限公司董事长14:40-15:00茶歇与展览交流15:00-15:20过程检技术在Wafer扩膜品控的应用武秉文 珠海诚锋电子科技有限公司 副总经理15:20-15:40共享全球科技 助力智慧中国 ——Pall本土化在路上刘亚文 颇尔(中国)有限公司 产品经理 15:40-16:00半导体芯片制造缺陷检测技术及设备 徐景瑞中导光电设备股份有限公司 副总裁16:00-16:20集成电路装备静电卡盘技术现状及发展趋势赵世柯 中国电子科技集团公司第十二研究所 功能陶瓷中心主任16:20-16:40集成电路装备静电卡盘技术现状及发展趋势赵世柯 中国电子科技集团公司第十二研究所 功能陶瓷中心主任16:40-17:00投资新片区 引领新发展陈婷雯 上海金桥临港综合区投资开发有限公司副总经理17:00-17:20自主知识产权与技术标准化,助力硬科技企业上市马志勇 博士 北京超凡知识产权管理咨询有限公司副总经理 专题二:半导体人才培养暨校企对接合作论坛 时间:8月9日 13:00-17:20 地点:A3馆 赞助单位:盛美 摩尔精英主持人:闫娜 复旦大学微电子学院副院长13:00-13:30国家集成电路产教融合创新平台建设工作交流张玉明 西安电子科技大学微电子学院院长13:30-14:00产教深度融合,努力探索实践集成电路高质量工程人才培养新模式于奇 成都电子科技大学副院长14:00-14:30校企联合共建中国集成电路装备人才高地王新征 盛美半导体设备(上海)股份有限公司资深公共关系总监14:30-14:50茶歇与展览交流14:50-15:20加速人才培养模式改革,提升集成电路创新能力耿莉 西安交通大学微电子学院教授/院长15:20-15:50共建共享产教融合工程人才培养的思考与实践时龙兴 东南大学首席教授15:50-16:20从实训云到设计云,摩尔精英一站式设计和封测平台赋能芯片创新张竞扬 摩尔精英董事长兼CEO 16:20-16:35集成电路全产业链自主人才培养模式的探索与实践陆瑛 中国半导体行业协会集成电路分会主任 16:35—16:45第三批人才储备基地入选单位和专家的名单公布16:45-17:35主持人: 张竞扬 摩尔精英董事长兼CEO 嘉宾:王坚 盛美半导体设备(上海)股份有限公司总经理张玉明 西安电子科技大学微电子学院院长于奇 电子科技大学副院长耿莉 西安交通大学微电子学院教授/院长时龙兴 东南大学首席教授 专题三:新器件新工艺推动新材料新设备创新发展时间:8月9日 13:00-17:00 地点:A4馆主办单位:中国电子专用设备工业协会半导体设备分会、上海集成电路行业协会、江苏省半导体行业协会、上海集成电路材料研究院、集成电路材料创新联合体、长三角集成电路设备材料推进小组主持人:冯黎 上海集成电路材料研究院副总经理、集成电路材料创新联合体秘书长领导致辞13:30-13:35郭奕武 上海市集成电路行业协会秘书长13:35-13:40秦舒 中国半导体行业协会集成电路分会秘书长、长三角融合创新联盟轮值理事长、江苏省半导体行业协会(JSSIA)秘书长主题演讲13:40-14:00AI for IC Materials - 加速集成电路材料研发与产业化进程冯黎 上海集成电路材料研究院副总经理、集成电路材料创新联合体秘书长14:00-14:20先进MEMS传感器对集成电路设备材料的创新需求王诗男 上海集成电路材料研究院首席技术专家14:20-14:50碳化硅器件工艺发展趋势以及相应需求的核心设备贺中鹤 积塔半导体(上海)有限公司制造技术发展与评估部部长14:50-15:20卓粤创芯,强链补链,高端模拟工艺技术之特色设备需求探讨赵斌 粤芯半导体技术股份有限公司市场与战略产品中心副总裁15:20-15:40构建中国的本土半导体零部件供应链吕志鹏 拓荆创益(沈阳)半导体设备有限公司副总裁15:40-16:00完整布局,深耕半导体核心零部件国产化边逸军 宁波江丰电子材料股份有限公司副总经理16:00-16:10合影留念16:10-18:00上下游对接会(邀请制)主持人:毛彩虹 上海集成电路行业协会副秘书长/长三角设备材料推进小组联合发起人【需求方发言】 华润微、粤芯半导体技术股份有限公司、江苏长电、拓荆等【材料和消耗品企业发言】【设备零部件企业发言】16:25-17:30自由交流 专题四:制造工艺与半导体设备产业链联动发展论坛时间:8月10日 09:00-17:00 地点:A1馆 赞助单位:微导纳米、思锐智能、拓荆科技、飞潮、合肥芯碁、东方晶源、魏德米勒、苏州芯默、中电二、寄云科技、青岛天仁微、芯梦、华芯智能、中电环境、浙江科赛、成川科技、苏州天准、智造家 主持人:周仁 江苏微导纳米科技股份有限公司总经理 时间/Time内容/Contents09:00-09:20“芯机遇”新布局-思锐智能进一步开拓半导体装备领域 陈祥龙 青岛四方思锐智能技术有限公司 副总经理09:20-09:40赋能技术延伸的原子层沉积和晶圆键合设备的开发陈新益 拓荆创益(沈阳)半导体设备有限公司副总经理09:40-10:00顺势而为,过滤设备的国产化进程李楹轩 飞潮(上海)新材料股份有限公司应用技术主管10:00-10:20原子层沉积技术在半导体中的应用聂佳相 江苏微导纳米科技股份有限公司 半导体事业部资深销售总监10:20-10:30茶歇与展览交流10:30-10:50用于集成电路良率监控的电子束检测量测设备的国产化之路孙伟强 东方晶源微电子科技(北京)股份有限公司创新技术研究院院长10:50-11:10直写光刻在高性能封装中的应用曲鲁杰 合肥芯碁微电子装备股份有限公司首席科学家&副总经理11:10-11:30晶圆级多点控温式热处理成套设备赖政志 苏州芯默科技有限公司副董事长11:30-11:50全球化、数字化—魏德米勒助力中国半导体智能制造新飞跃施剑金 魏德米勒电联接(上海)有限公司 半导体行业经理11:50-13:00自助午餐13:00-13:20先进半导体洁净厂房的精益设计研讨陆晶 中国电子系统工程第二建设有限公司设计总院常务副院长13:20-13:40从装备智能化到生产智能化柯晗 北京寄云鼎城科技有限公司COO13:40-14:00纳米压印光刻:AR衍射光波导生产解决方案冀然 青岛天仁微纳科技有限责任公司董事长14:00-14:20创新引领,共同助力芯发展廖周芳 江苏芯梦半导体设备有限公司首席执行官14:20-14:40AMHS的挑战与演进蔡志贤 华芯(嘉兴)智能装备有限公司董事兼副总经理14:40-15:00茶歇与展览交流15:00-15:20超纯水水质标准与半导体制程相关性探讨李晓波 江苏中电创新环境科技有限公司 设计院副院长15:20-15:40含氟工程塑料应用及探索徐金戈 浙江科赛新材料科技有限公司项目经理15:40-16:00半导体全自动化生产线构筑解决方案肖永刚 成川科技(苏州)有限公司副总经理 16:00-16:20半导体国产光学量测检测设备的应用与挑战 阎海滨 苏州天准科技股份有限公司副总经理16:20-16:40数智变革,非标制造应用落地新趋势刘晓亮 广州智造家网络科技有限公司首席营销官16:40-17:00浅谈光罩生产相关设备国产化王兴平 宁波冠石半导体有限司总经理 专题五 化合物装备与材料专题论坛时间:8月10日 09:20-12:00 地点:A3馆 赞助单位:北方华创、盛美、中微、邑文、中科院光电所、熹贾精密、惠然科技主持人: 周贞宏 博士 CEO of BelGaN BV09:00-09:20面向化合物半导体的装备与工艺解决方案 张轶铭 博士 北京北方华创微电子装备有限公司产品与解决方案经理 09:20-09:40新能源与元宇宙的国产半导体设备进展叶国光 无锡邑文电子科技有限公司副总经理09:40-10:00从LED照明到功率器件应用,中微设备助力化合物半导体产业高速发展陈耀 博士 中微半导体设备(上海)股份有限公司工艺技术总监 10:00-10:20第三代半导体电镀挑战和进展贾照伟 盛美半导体设备(上海)股份有限公司资深工艺总监10:20-10:40茶歇与展览交流10:40-11:00特种芯片光刻技术与装备 王建 中国科学院光电技术研究所研究员11:00-11:20风雅颂之 “风”6000——适用广泛的泛半导体电子显微镜 杨润潇 惠然科技有限公司副总工程师11:20-11:40半导体密封件技术演变和国产化进程叶寅 上海熹贾精密技术有限公司总经理11:40-12:00化合物半导体设备和材料产业机遇—立足中国面向欧洲周贞宏 博士 CEO of BelGaN BV12:00-13:00自助午餐 专题六 2023半导体制造技术与设备材料董事长论坛时间:8月10日 13:00-17:10 地点:A3馆 赞助单位:主持人:杨绍辉 光大证券研究所首席分析师13:00-13:10领导致辞13:10-13:25中国半导体设备现状与发展机遇杨绍辉 光大证券研究所首席分析师13:25-13:45底层创新实现半导体设备竞争力的突破洪 峰 深圳市埃芯半导体科技有限公司总经理13:45-14:05先进陶瓷材料在半导体装备中的应用刘先兵 苏州珂玛材料科技股份有限公司董事长兼总经理14:05-15:15圆桌论坛A圆桌嘉宾:尹志尧 博士 中微半导体设备(上海)股份有限公司董事长兼总经理吕光泉 拓荆科技股份有限公司董事长王燕清 先导控股集团有限公司/无锡先导集团 董事长郑广文 沈阳富创精密设备股份有限公司董事长俞宗强 博士 东方晶源微电子科技(北京)股份有限公司董事长兼首席技术官刘先兵 苏州珂玛材料科技股份有限公司董事长兼总经理李勇军 上海凯世通半导体股份有限公司董事长洪 峰 深圳市埃芯半导体科技有限公司总经理15:15-15:35后摩尔时代的挑战及人工智能的机遇——芯片制造从艺术到科学到智能俞宗强 博士 东方晶源微电子科技(北京)股份有限公司董事长兼首席技术官15:35-15:55高效电性监控方案保障高质量集成电路量产郑勇军 杭州广立微电子股份有限公司董事长15:55-17:05圆桌论坛B王 晖 盛美半导体设备(上海)股份有限公司董事长宗润福 沈阳芯源微电子设备股份有限公司董事长程 卓 合肥芯碁微电子装备股份有限公司董事长郑勇军 杭州广立微电子股份有限公司董事长曾 安 南京中安半导体设备有限责任公司董事长宋维聪 上海陛通半导体能源科技股份有限公司董事长兼CEO林 坚 泓浒(苏州)半导体科技有限公司执行总裁兼首席技术官 17:05-17:10合影留念 专题七 二手设备产业交流合作论坛时间:8月11日 09:00-12:00 地点:A3 赞助单位:芯鑫租赁主持人:王作义 广奕科技董事长09:00-09:20二手半导体制造设备在供应链中的定位与作用 陈真 盈球半导体科技有限公司中国区总经理09:20-09:40半导体二手设备企业的挑战及机遇杨伟才 三井住友金融与租赁株式会社中国总代理/上海健照半导体科技有限公司总经理09:40-10:00二手光刻机在半导体国产化大潮中的挑战和机会姚庆利 上海赛瑾精密科技有限公司总经理10:00-10:20聚焦集成电路设备融资 助力国内二手设备/新设备厂商发展闫波 芯鑫融资租赁有限责任公司集成电路及半导体部总经理10:20-10:30茶歇与展览交流10:30-10:50半导体设备企业如何借助资本市场快速发展张银 上股交金融服务中心 总经理10:50-11:10中国芯片制造设备的现状及历史机遇王作义 上海广奕电子科技股份有限公司 董事长11:10-12:10圆桌对话:主持人:王作义 上海广奕电子科技股份有限公司董事长圆桌嘉宾:陈 真 盈球半导体科技有限公司 中国区总经理杨伟才 三井住友金融与租赁株式会社中国总代理/上海健照半导体科技有限公司 总经理姚庆利 上海赛瑾精密科技有限公司 总经理孙海兵 吉姆西半导体科技(无锡)有限公司 副总经理符友银 新毅东(上海)科技有限公司 副总经理12:10-13:00自助午餐 专题八 半导体设备与核心零部件产业投资论坛时间:8月11日 09:00-11:50 地点:A1馆 赞助单位:兴业证券、中信银行主持人:季总亮 季华资本创始人09:00-09:20一代材料,一代设备,一代工艺,建设国产自主可控的生态圈印琼玲 新阳硅密(上海)半导体技术有限公司副董事长09:20-09:40外忧内卷下半导体零部件国产化道路司奇峰 芜湖通潮精密机械股份有限公司董事长09:40-10:00半导体高端密封圈和真空阀件的解决方案丁晓荣 温州邦欣源科技有限公司董事长10:00-10:20半导体企业与资本市场的协同发展王怡人 兴业证券股份有限公司董事总经理10:20-10:40半导体晶圆制造附属设备布局与发展崔汉博 高昇创芯(上海)半导体设备有限公司董事长 10:40-11:00第三代半导体检测量测设备的机会及挑战唐德明 上海优睿谱半导体设备有限公司总经理 11:00-11:10 茶歇与展览交流11:10-12:00头脑风暴主持人:季宗亮 季华资本创始合伙人 嘉 宾:牛俊岭 元禾璞华(苏州)投资管理有限公司董事总经理 姜寅明 浑璞投资合伙人李昌哲 托伦斯半导体设备(启东)有限公司副总经理司奇峰 芜湖通潮精密机械股份有限公司董事长 郭启航 上海超越摩尔私募基金管理有限公司董事总经理 半导体封测专用设备与材料生态创新合作论坛时间:8月9日 09:00-12:10 地点:A1馆 赞助单位:阿达、腾盛、触点智能、埃克斯工业、新凯莱、江苏雷博微、芯印能、平安主持人:何洪文 博士 沛顿科技(深圳)有限公司首席技术官09:00-09:20高密度焊线机与倒装封装设备国产化贺云波 阿达智能装备(江苏)有限公司董事长 09:20-09:40半导体划片制程及精密点胶工艺分享周云 深圳市腾盛精密装备股份有限公司精密切割事业部总监 09:40-10:00存储芯片固晶设备的机遇与挑战欧阳小龙 博士 东莞触点智能装备有限公司研究院副院长10:00-10:20创新性“人工智能+ROPN”解决方案赋能国产半导体设备商刘斌 埃克斯工业有限公司首席技术官10:20-10:30茶歇与展览交流10:30-10:50为客户带来更大价值,新凯来IGBT/SiC生产测试解决方案 唐荣昆 深圳市新凯莱技术有限公司 电子装备销售部长 10:50-11:10无助焊剂甲酸回流机的国产化进程王良栋 江苏雷博微电子设备有限公司 资深工艺工程师11:10-11:30APT压力烘箱在先进包装中的应用——经济高效的解决方案苏恒平 芯印能半导体科技(上海)有限公司副总经理11:30-11:50半导体行业风险管理解决方案岳巍 中国平安财产保险股份有限公司产险北京分公司重客部总监11:50-12:10 DAF/CDAF在半导体芯片粘结领域的技术优势与应用 沈双双 东莞德邦翌骅材料有限公司技术服务经理12:00-13:10自助午餐 新品发布专场 初步安排时间:8月9日/10日 地点:A5馆 主持人:待定8月9日09:45-10:3012寸键合及解键合设备介绍 苏州芯睿科技有限公司10:30-11:15纳米级芯片到晶圆高精度混合键合设备苏州艾科瑞思智能装备股份有限公司11:15-12:00SOI800系列全自动光学缺陷检测设备上海微电子装备(集团)股份有限公司13:00-13:45车规级高边驱动开关及能量链半导体解决方案稳先微电子有限公司13:45-14:30第三代半导体八寸薄膜刻蚀设备无锡邑文电子科技有限公司14:30-15:15(高产)High-K ALD薄膜沉积设备研微(江苏)半导体科技有限公司15:15-16:00高密度超薄芯片堆叠固晶机嘉兴景焱智能装备技术有限公司 16:00-16:45Wirebond 3D AOI嘉兴轻蜓光电股份有限公司8月10日09:45-10:30晶圆研磨机沈阳和研科技股份有限公司10:30-11:15IC贴合机WBD2200 Plus日东智能装备科技(深圳)有限公司11:15-12:00雾化器专用芯片智矽源集成电路设计(无锡)有限公司13:00-13:45新型自制Aligner光刻机江苏雷博微电子设备有限公司13:45-14:30前道涂胶显影Track设备盛美半导体设备(上海)股份有限公司14:30-15:15iTomic® MW系列批量式原子层沉积镀膜系统江苏微导纳米科技股份有限公司 15:15-16:00自主可控高性能通用计算芯片若贝(无锡)微电子有限公司*议程持续更新中,请以现场实际为准最新限时福利!现在提前报名可直接免费参加CSEAC所有论坛!长按识别 立刻报名
  • 高精度三维扫描打造工业机器人“智慧之眼”,开辟锻造模具修复新路径!
    工业机器人在制造生产中发挥着越来越重要的作用,与此同时,高精度三维视觉等技术的发展,也推动着工业机器人的多元化应用。本期,我们将介绍高精度三维扫描这项三维视觉技术,如何打造工业机器人的“智慧之眼”,实现以机器代替人工进行锻造模具修复的案例。本期案例的用户,以锻造工艺进行产品加工,在生产过程中,模具较易磨损。之前,用户单位是找第三方专业公司进行模具修复,主要通过人工一层一层堆焊+机加工的方式进行修复。如此一来,效率较低,加上模具来回运输时间等,使得模具修复耗时较久而影响企业的生产效率。考虑到降本增效,用户单位考虑用自己的堆焊机器人和加工中心进行模具修复,并找到了先临天远,一起将这个创新方案落地。以机器代替人工修复锻造模具的技术突破口工业机器人具有高速和高效率的特点,由于机器人不受时间和疲劳的限制,它可以连续进行堆焊作业,可以大幅提高效率。但是,使用工业机器人进行堆焊,其难点在于,如何让机器人“看清”模具,“掌握”作业位置以及具体作业数值。高精度三维扫描技术则解决了这一问题,能够将物理世界的模具特征转化成机器人可识别可操作的数字化信息,为工业机器人打造一双“智慧之眼”,助力机器人顺利完成堆焊作业。高精度三维扫描+工业机器人修复锻造模具流程1.工作人员使用碳刨将模具疲劳层清理干净。2.通过FreeScan Combo三维扫描需修复的模具,获取完整三维数据。一方面与原始的模具CAD设计数模进行对比测量所需堆焊作业的具体数值,另一方面,为模具的物理信息变成数字化信息提供数据基础。- 三维扫描 -3.将三维扫描数据和作业数值导入软件,进行工业机器人堆焊作业编程。4.通过工业机器人进行堆焊,实现模具的初步修复。- 工业机器人堆焊工作示意图 -- 工业机器人堆焊后效果 -5. 通过加工中心进行模具型腔的加工,进行模具的完整修复。作为工业机器人的“智慧之眼”,FreeScan Combo具有以下优势:“看得准”:高精度,精度0.02mm,且重复性精度稳定,能够为后面的堆焊修复提供准确的数据支撑;*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第 3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。“看得快”:扫描速度最高可达225万点/秒,配合软件算法,扫描快速流畅;同时,FreeScan Combo还具有便携易用以及材质适应性广泛等优势,能够轻松进行整个修复过程中的3D测量工作。通过高精度三维扫描技术,用户单位实现了模具物理特征向数字化信息的转变,使得堆焊机器人得到良好应用,从原来的人工堆焊转化成工业机器人作业,从而提升效率,节降成本。高精度三维扫描技术,作为一种三维视觉,能够扩展工业机器人等的应用空间,除了这个锻造模具修复创新方案,接下来,我们也将分享更多创新应用案例,为工业制造企业提供降本增效的新思路!
  • 山东产品质监院采购127台/套仪器设备
    山东英大招标有限公司受山东省产品质量监督检验研究院委托,就其所需实验室仪器、设备发布采购招标公告,本次招标分三次进行采购,分28个包项,招标仪器设备总量为127台/套。详情如下:山东省产品质量监督检验研究院实验室仪器、设备采购招标公告  一、采购人:山东省产品质量监督检验研究院  地 址:经十东路31000号  联系方式:0531-89701975  二、采购代理机构:山东英大招投标有限公司  地 址:山东省济南市马鞍山路2-1号山东大厦四层8406室  联系方式:0531-85198189、0531-85198109  三、政府采购计划编号:406011201200029,406011201200022,406011201200012  四、项目名称及编号:  项目名称:山东省产品质量监督检验研究院实验室仪器、设备采购  项目编号:SDYD2012-208-1   五、采购内容及分包情况:  本项目为山东省产品质量监督检验研究院实验室仪器、设备采购,共分3个包,分包情况详见附件,详细技术要求详见招标文件。  六、获取招标文件地点:山东省济南市马鞍山路2-1号山东大厦四层8406室  时间:2012年7月26日开始至2012年8月14日止,上午8:30到下午17:30(北京时间,节假日除外)。购买招标文件时请携带营业执照副本原件(或复印件加盖公章),若要以邮寄方式获取招标文件,请加邮寄费50元,连同招标文件费用汇至我方(开户单位:山东英大招投标有限公司,开户银行:中国银行济南趵突泉支行,帐号:242913021560)。招标文件售出不退。  售价:200元/包  七、投标截止日期:2012 年8月16日上午9:00-9:30(北京时间)  八、开标日期:2012 年8月16日上午9:30(北京时间)  开标地点:省级政府采购招标大厅开标会议室(五)  地址:济南高新技术产业开发区伯乐路316号(省级机关政府采购中心办公楼)。  九、本项目联系人:邓惠真、常威  联系电话:0531-85198189、0531-85198109  传 真:0531-85198109  十、其他:届时请参与投标的供应商代表出席开标仪式,逾期递交或不符合规定的投标文件恕不接受。包号序号设备名称单位数量11建筑构配件耐火性能水平试验炉台121全谱直读型电感耦合等离子体发射光谱仪(可采进口)台131采样环境试验舱套1山东省产品质量监督检验研究院实验室仪器、设备采购招标公告  一、采购人名称: 山东省产品质量监督检验研究院  地 址:经十东路31000号  联系方式:0531-89701975  二、采购代理机构名称:山东英大招投标有限公司  地址:山东省济南市马鞍山路2-1号山东大厦四层8406室  联系方式:0531-85198189、0531-85198109  三、政府采购计划编号:406011201200009/10/11/13/17/14/15/16/23/24  四、项目名称:山东省产品质量监督检验研究院实验室仪器、设备采购   项目编号:SDYD2012-208-2  五、采购内容及分包情况:  本项目为山东省产品质量监督检验研究院实验室仪器、设备采购项目,共分10个包,分包情况详见附件,具体参数详见招标文件第三章项目说明部分。  六、投标企业资格要求:在中国境内注册、具有独立法人资格,并具备本采购文件要求的提供货物能力的供应商,详细资质要求见采购文件。  七、获取招标文件:  地点:山东省济南市马鞍山路2-1号山东大厦四层8406室   时间:2012年8月2日开始,至2012年8月14日截止,每日上午8:30到下午17:30(北京时间,节假日除外)   方式:购买招标文件时请携带营业执照副本原件(或复印件加盖公章),若要以邮寄方式获取招标文件,请另加邮寄费50元,连同招标文件费用汇至我方(开户单位:山东英大招投标有限公司,开户银行:中国银行济南趵突泉支行,帐号:242913021560),招标文件售出不退   售价:200元/包。  八、投标截止日期:2012 年8月16日上午9:00-9:30(北京时间)  开标日期:2012 年8月16日上午9:30(北京时间)  开标地点:省级政府采购招标大厅开标会议室(五)  地 址:济南高新技术产业开发区伯乐路316号(省级机关政府采购中心办公楼)。  九、本项目联系人:邓惠真、常威  联系方式:0531-85198189、0531-85198109   传真:0531-85198109  十、其他:届时请参与投标的供应商代表出席开标仪式,逾期递交或不符合规定的投标文件恕不接受。包号序号设备名称单位数量11气相色谱仪(可采进口)台12气相色谱仪(可采进口)台121高频往复试验机台131煤油烟点测定仪台142煤油燃烧性测定仪台13赛波特颜色比色计台14液化气硫化氢检测仪(乙酸铅)台15苯类蒸发残余物测定仪台16苯类结晶点测定仪台17砷含量测定仪台18硫磺有机物测定仪台19石油和添加剂产品机械杂质测定仪台110汽油饱和蒸气压测定仪台111低温箱台112全自动生物柴油氧化安定性测定器台113柴油氧化安定性测定器台114电热恒温鼓风干燥箱台115石油产品饱和蒸气压测定仪(微量法)台116润滑脂漏失量测定器台117润滑脂氧化安定性测定器台118润滑脂蒸发度测定器台119盐雾实验箱台120湿热试验箱台121镜面光泽仪台122杯突试验仪台123涂料闪点测定仪台124数显式拉开法附着力试验仪台11露点仪(可采进口)台151制动片压缩热膨胀系数试验机台12简支梁冲击试验机台13全站仪套14泄漏电流测试仪台15交直流绝缘耐压测试仪台16智能接地导通测试仪台17交流弧焊机台18直流弧焊机台19CO2气体保护焊机台110氩弧焊机台111埋弧焊机台112电子吊秤套113电动式标距划线机台114声级计台115电子台秤台161水冷散热器热工试验台(同时满足欧标的)套171微波消解仪(可采进口)台181火焰/石墨炉原子吸收分光光度计(可采进口)台1山东省产品质量监督检验研究院实验室仪器、设备采购招标公告  一、采购人名称: 山东省产品质量监督检验研究院  地 址:经十东路31000号  联系方式:0531-89701975  二、采购代理机构名称:山东英大招投标有限公司  地址:山东省济南市马鞍山路2-1号山东大厦四层8406室  联系方式:0531-85198189、0531-85198109  三、政府采购计划编号:406011201200018/19/20/21/25/26/27/28  四、项目名称:山东省产品质量监督检验研究院实验室仪器、设备采购   项目编号:SDYD2012-208-3  五、采购内容及分包情况:  本项目为山东省产品质量监督检验研究院实验室仪器、设备采购项目,共分8个包,分包情况详见附件,具体参数详见招标文件第三章项目说明部分。  六、投标企业资格要求:在中国境内注册、具有独立法人资格,并具备本采购文件要求的提供货物能力的供应商,详细资质要求见采购文件。  七、获取招标文件:  地点:山东省济南市马鞍山路2-1号山东大厦四层8406室   时间:2012年8月2日开始,至2012年8月21日截止,每日上午8:30到下午17:30(北京时间,节假日除外)   方式:购买招标文件时请携带营业执照副本原件(或复印件加盖公章),若要以邮寄方式获取招标文件,请另加邮寄费50元,连同招标文件费用汇至我方(开户单位:山东英大招投标有限公司,开户银行:中国银行济南趵突泉支行,帐号:242913021560),招标文件售出不退   售价:200元/包。  八、投标截止日期:2012 年8月23日下午13:00-13:30(北京时间)  开标日期:2012 年8月23日下午13:30(北京时间)  开标地点:省级政府采购招标大厅开标会议室(五)  地 址:济南高新技术产业开发区伯乐路316号(省级机关政府采购中心办公楼)。  九、本项目联系人:邓惠真、常威  联系方式:0531-85198189、0531-85198109   传真:0531-85198109  十、其他:届时请参与投标的供应商代表出席开标仪式,逾期递交或不符合规定的投标文件恕不接受。包号序号设备名称单位数量11锥形量热仪气体分析系统)(可采进口)套121标准烟箱(可采进口)台12标准温箱(可采进口)台131可燃性试验炉台12单体燃烧试验装置台141建筑构配件耐火性能垂直试验炉台12直流电动叉车辆151阻燃材料调制试验室间161多用途耐火性能试验炉台171温湿度记录仪台102水带试验台台13水带磨耗试验机台14数字式扭力测试仪台15消火栓压力损失测试装置套16灭火器水压、爆破实验装置套17超声波测厚仪台28涂层测厚仪台19绝缘耐压测试仪台110振动试验台台111样品架个3212试验台米1281可燃气体探测器温湿试验箱台191冰箱试验测试系统套1101太阳能热水系统现场检测设备套12测试用辅助装备套13太阳能热水系统电参数测量设备套1
  • 广东激光后来居上 湖北激光正“加速”突围
    自2006年汽车产业率先突破千亿大关后,湖北的千亿产业一路小跑,划出一道靓丽的上升曲线。截至2012年底,汽车、钢铁、石化、电子信息、食品、纺织、机械、电力、建材、有色金属等十大“台柱”产业支撑湖北经济快速发展。肩负工业强省重任,走新型工业化道路,湖北哪些产业将策动经济实现弯道超车?  为此,记者多方探寻未来助力湖北经济快速发展的源动力。  作为中国激光技术的发源地、先行者、排头兵,湖北汇聚了大批激光领域的优秀技术人才和研究成果,但在激光业的产值上,湖北激光业先后被广东、江浙和环渤海地区超越。用“起了个大早,赶了个晚集”这句俗语来形容湖北激光产业,再恰当不过。  在新一轮竞争中,如何发挥湖北激光技术优势,向激光产业大省迈进?  “成为下一个千亿产业,激光业有很大的潜力”。全国政协常委,湖北省工商联主席赵晓勇去年曾对湖北激光业的发展有过深入的调研,日前在接受记者采访时感叹:我省激光业在经历了萌芽、突破性、规模化发展阶段后,目前已经进入进阶发展阶段,只要打通全产业链的发展链条,激光业将有望实现千亿产业的大跨越。  竞争比拼日趋激烈  赵晓勇提供给本报的一份《关于推动湖北千亿元激光产业建设的建议》的调研报告显示:经过十多年的发展,截至2011年底,武汉地区规模以上(产值1000万以上)激光企业仅26家,其中包括,产值规模过亿元以上企业7家、5亿以上企业3家、10亿以上企业2家、15亿以上企业1家(团结激光) 在全国规模以上激光企业数量占比25%左右,其中,激光装备制造规模以上企业占比40%左右,全国第一。  而深圳大族激光一家以民用激光为主营方向企业,2011年的营收总额就超过36亿元,远远超过湖北相关激光企业的营收。  不仅在单个企业的比拼上,湖北不如外省,在全省或地区激光产业的产值上,截至2011年,约150亿元产值的湖北,也远远落后于国内相关省份,处于“抱着技术、却饿肚子”的尴尬境地:数据显示,2011年,广东地区激光设备产值虽然仅35亿元,但激光加工及激光制品产值达到260亿元以上,在激光应用领域排在全国第一位。  不仅广东的激光业产值后来居上,长三角、环渤海湾地区特别是辽宁依托庞大的经济规模和快速的产业升级,激光产业发展大有后来居上之势。去年初,辽宁省在鞍山市规划建设我国首个以激光技术为特色的产业园辽宁(鞍山)激光科技产业园,最终打造成集激光技术研发、应用和生产为一体的国家级激光产业基地,目标产值1000亿元。  “广东等华南地区激光业后来居上,源于其先天优势。”华工科技常务副总裁、华工激光董事长、总经理闵大勇分析,最近10年,当地企业承接了来自世界的代加工服务,要求其适合激光产业的应用,所以激光加工及其制品的产值比较大。这既是区位优势使然,也是市场资源配置的结果。  有望彰显集群效应  后来者居上,激光产业的竞争日趋激烈,在技术上更占优势的湖北,怎样才能立于不败之地?记者在多日的调研中获悉,湖北已悄然擂响了“打造激光千亿产业”的战鼓:相关部门已为激光产业的发展筹划并完善产业规划。  借助东部产业转移,以及中部崛起等外围政策和环境的变化,湖北激光业也正在迎接着“美好时光”。  面对这样的机遇,赵晓勇建议:目前仅依靠单个企业自发的发展壮大的动力还不足,还要把分散的动力集合起来,推动其发展。延伸产业的覆盖面,使企业合作,产业合作,区域合作,技术合作有效地结合起来。逐步完善激光产业的产业链条。  闵大勇也表示:“政府搞好产业规划、引导及招商,可以极大促进武汉激光产业。”  公开资料显示,东湖高新技术开发区拟在左岭新城筹建目前国内最大的激光产业基地。根据武汉官方说法,该基地一期工程预计5年建成,届时,园区科工贸年生产总值可达300亿元,创税25亿元并间接带动相关产业生产总值500亿元左右,最终基地将打造千亿激光产业链。  据了解,正是基于光谷激光产业的这种集群效应,截至2012年底,仅华工科技就将国家千人计划人才徐进林等12位全球顶尖激光人才收入麾下。如今,华工激光从上游激光器到下游激光先进精密微细加工装备、大功率数控激光加工系统、激光再制造系统,已形成完整的产业链。  湖北优势下的“加速度”  闵大勇估算,激光产业链产业规模往下游成几何级数放大增长,1个单位的激光材料产值,将产生约10倍的激光器产值、约5—10倍的激光系统集成产值、约20倍激光应用产值。  “激光产业特征就是规模不大,所有新的市场开拓都是基于不断发现新的应用领域。”闵大勇称。  去年6月,华工科技公司与武钢研究院历时两年合作,开发出了国内首套激光拼焊机组,并将投入使用。武钢将在全国建20条激光拼焊设备生产线,建成后年产值将达百亿元。  不仅华工激光,在湖北规模最大的团结激光、产业品类最全的楚天激光也都拥有自身的拳头产品。  楚天激光2007年底与欧洲一流的激光系统制造商—意大利ELEN集团合资组建武汉奔腾楚天激光公司,专业生产经营中高功率激光切割设备,如今在国内占有重要市场份额,还实现批量出口,该公司已成为我国航天器精密加工装备的供应商。  而团结激光下属武汉科威晶激光公司2007年产值仅1000万,得益于国际合作,2011年产值突破2亿元。  “我感觉,5年左右,中国将取代日本,在激光产业与美国、德国形成三强鼎立的格局。”闵大勇称。  他山之石  在美国,受激光技术应用影响和推动的国民经济年产值约为7.5万亿美元,涉及生物与国民健康、交通与能源、通信与IT业、文学艺术与制造业等。  在我国,激光技术在国民经济中逐步显现放大效应。  2011年,全国激光产业总产值约1100亿元。其中,激光设备销售收入约300亿元,产业链下游的激光加工服务业约350亿元,激光制品约450亿元。
  • 山大奥太获准成立“山东省现代焊接装备工程实验室”
    山大奥太公司申请的“山东省现代焊接装备工程实验室”已通过山东省发展与改革委员会的审批,并获得扶持资金50万元。  实验室将紧密围绕焊接行业的发展要求,进行焊接装备关键技术的研究与开发,致力于研发先进的焊接设备、焊机专机、焊接机器人及相关产品,加快产业化进程,提高焊接装备技术研发、生产、标准化与焊接质量检测的自主创新能力,积极完成国家和省市相关部门委托的科研课题,开展相关产业关键技术攻关,凝聚、培养产业急需的技术创新人才,提升产业技术水平。  奥太将借助“山东省现代焊接装备工程实验室”搭建的平台,进一步加大研发力度,充分发挥焊接技术优势与在行业内的影响力,培育和促进焊接高新技术产业的发展!
  • LI-2100 | 基于稳定同位素分析毛乌素沙地东北部不同林龄人工沙柳的水分利用来源
    近年来,全球环境问题日益突出,资源的合理利用和环境的保护已成为全人类共同面临的挑战。水分是生命的基础,对于植物的生长发育和生态系统的稳定运行起着至关重要的作用。然而,人类的过度开采和污染已导致严重的水资源短缺、土壤荒漠化等问题。沙柳作为一种生长在贫瘠土壤和干旱地区的植物,具有很强的水分利用能力和环境适应性。沙柳生长迅速,枝叶茂密,根系繁大,固沙保土力强,是中国沙荒地区造林面积最大的树种之一。同时,它长而发达的根系,能够迅速吸收土壤中的水分,高效利用水资源。其表面一层厚厚的叶蜡,也能够减少水分的蒸发和流失,有效避免土壤干燥和水分的浪费。因此,通过对沙棘的深入研究和广泛应用,我们可以有效地解决环境保护的问题。接下来这篇相关论文,我们来了解一下沙柳的水分利用来源。基于稳定同位素分析毛乌素沙地东北部不同林龄人工沙柳的水分利用来源沙柳具有很好的应对非生物胁迫(如干旱、寒冷、低肥力)的能力,已广泛引入毛乌素沙地东北部以防风固沙及改善生态系统功能和服务。然而,早期引入的沙柳出现了退化和枯死现象。预计由于气候持续变暖和人为干预增加,沙柳人工灌丛将出现更严重的干旱胁迫。鉴于人类世日益严重的水资源短缺和土壤荒漠化的持续扩大。了解植物与土壤水分关系并实施合理的水分管理策略,必须确定人工植被在沙漠生态系统中的水分利用模式。然而,对于不同发育阶段沙柳的特性、调控和水源差异等研究还知之甚少。基于此,为确定毛乌素沙地圪丑沟小流域(38°11′–38°53′ N,109°21′–110°03′ E)不同林龄(6年、12年和18年)人工沙柳水分利用模式的季节变化和控制因素,揭示老化沙柳枯死的潜在机制,理解土壤水-植物的关系和人工植被的生态适应性。来自中国科学院地理科学与资源研究所的研究者们于2019-2021年5-10月(5、6、10月为旱季;7、8、9月为雨季)植物生长季进行了相关研究。试验开始前,作者采集了土壤样品,确定其土壤颗粒组成,总N含量(TN)及总P含量(TP)。采集了根系样品,确定植物根系分布。试验期,采集了0-20 cm、20-40 cm、40-60 cm、60-90 cm、90-120 cm、120-150 cm、150-200 cm、200-250 cm及250-300 cm土壤样品,将其分为两部分,一部分用来测定同位素,一部分用来测定土壤含水量(SWC)。同时采集了植物木质部样品。并于降水事件后收集降雨,采集降水量和气温数据。通过计算土壤干燥化指数(SDI)描述土壤水分亏缺状态。利用LI-2000植物土壤水分抽提系统(北京理加联合科技有限公司)提取木质部和土壤中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水及降水的δ18O和δ2H。同时确定木质部水的δ18O和δ2H。最后通过MixSIAR模型区分并量化植物水源。【结果】试验期降水δ2H和δ18O(c)及降水量与δ2H/δ18O之间的关系(d)。生长季土壤水δ2H和δ18O的深度和时间分布。潜在水源对沙柳水分吸收贡献率的季节性变化。【结论】在整个生长季,6年沙柳60%的水源来自于0–120 cm土壤层。相比之下,12年和18年沙柳具有更大程度的生态可塑性,分别从旱季120-300 cm(71.93%)和40-200 cm(68.91%)水源转变到雨季的0-120 cm(65.09%和56.14%)水源。根系和土壤含水量垂直分布的变化是影响不同林龄沙柳水分利用模式季节性变化的主要因素。18年林分中,严重的土壤干涸和死根削弱了老化沙柳的生态可塑性,降低了其吸收深层水(200-300 cm)的能力,从而导致沙柳退化。因此,野外管理措施,例如(i)通过沙柳退化枝条覆盖地面以减少土壤水蒸发;(ii)使成熟沙柳稀疏以减少水分消耗;(iii)通过对最佳植物密度或生物量进行建模来确定植被阈值,以指导所研究地区的未来植被恢复。在这项研究中,针对沙柳拟议的管理实践可以为世界其他沙漠地区相似林龄人工恢复植物的水分利用策略提供参考。
  • 预算1.8亿!合肥研究院2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院合肥物质科学研究院(以下简称合肥研究院)是中国科学院所属最大的综合性科研机构之一,由安光所、等离子体所、固体所、智能所、强磁场中心、核能安全所、健康所7个研究单元组成。与地方政府共建了6个成果转化平台,拥有30多个国家或省部级重点实验室和研究中心,以及10多个大型实验平台。合肥研究院的科研方向包括等离子体物理、磁约束核聚变工程、大气环境光学遥感、激光与光电子科学技术、强磁场科学与技术、环境科学与工程、先进核能、生物物理、转化医学、先进诊疗技术、材料科学与工程、人工智能与机器人、智慧农业技术等,并取得了诸多重大科研成果。 成果的产出和人才的培养都离不开仪器的支持,合肥研究院每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对合肥研究院2022年仪器设备类政府采购意向进行了整理汇总。共收集到42个采购项目,预算金额相加达1.8亿元,采购品目涉及X射线光电子能谱仪、傅里叶红外光谱仪、电子束曝光系统、高分辨红外热成像仪等多种仪器类型。中国科学院合肥物质科学研究院2022年政府采购意向汇总表序号采购项目名称预算金额(万元)采购日期项目详情1傅里叶红外光谱仪1504月详情链接2低温强磁场光学探测平台2004月详情链接3真空压力浸渍用混胶脱气设备1504月详情链接4X射线光电子能谱仪2404月详情链接5CRAFT-NNBI多驱动射频负离子源等离子体发生器3004月详情链接6CRAFT-NNBI超高静电耐压测试平台1504月详情链接71064nm大功率激光器1434月详情链接8BES光谱诊断系统集成开发1754月详情链接9大功率射频功率源5204月详情链接10大功率高压假负载1504月详情链接11低温泵组6084月详情链接12NNBI低温冷却系统18004月详情链接13多通道超声波高温流体测量系统2504月详情链接14高分辨红外热成像仪1804月详情链接153D显微断层扫描仪6004月详情链接16数字射线检测系统1654月详情链接17250W/1.8K制冷机冷箱20004月详情链接18氦常温减压泵2004月详情链接19螺杆压缩机20554月详情链接20透平膨胀机5874月详情链接21氦循环泵3204月详情链接22水路流量压力测试集成设备2904月详情链接23低温恒温器1204月详情链接24光谱仪1604月详情链接25激光光源1404月详情链接26高精度长焦光栅光谱仪1184月详情链接27无液氦综合物性测量系统3504月详情链接28AJA PVD3404月详情链接29快速高分辨组织细胞三维扫描仪1504月详情链接30超高温激光导热仪2304月详情链接31新一代测序系统1405月详情链接32电感耦合等离子体质谱仪2285月详情链接33激光剥蚀系统2005月详情链接34低温脉冲电子顺磁共振波谱仪4905月详情链接35电子束曝光系统10005月详情链接36裂变电离室中子探测器试制1205月详情链接371.5MW 高功率宽频发射机18895月详情链接38跨温区结构万能试验机4005月详情链接3920kA超导样品电源2005月详情链接40氦进出口自动焊机2005月详情链接41tension link 自动焊机1505月详情链接42真空获得及其应用设备2605月详情链接
  • 同位素 | 利用稳定同位素研究亚高山生境植物水源差异
    水分是植物生长不可或缺的因素,水分有效性的波动直接影响植物的生长、数量和空间分布。在全球气候变化下,区域降水格局已经发生了改变。植物不同水源的贡献率反映了生态系统对气候变化的响应程度。因此,追踪和分析植物水源可以为研究全球气候变化提供参考。祁连山位于青藏高原东北缘,是中国西北地区重要的生态屏障。因此,研究亚高山生境植物水源对于理解祁连山生态和水文过程具有重要意义。已有很多学者利用氢氧稳定同位素(δ2H和δ18O)进行了诸如此类的研究,但关于亚高山生境不同坡向植物水源的研究鲜少报道。基于此,在本研究中,来自西北师范大学和中科院西北生态环境资源研究所的研究团队监测了青藏高原东北缘祁连山东段冷龙岭北坡的上池沟(37°38′10″N,101°51′9″E,3080 m a.s.l.,图1)的降水、土壤水、木质部水、降水和泉水的稳定同位素组成以及相关环境变量(气象和土壤水变量),利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分,并利用ABB LGR T-LWIA-45-EP液态水同位素分析仪测定所有水样的δ2H值和δ18O值。基于这些数据,分析了不同水体稳定同位素的变化,并利用多源线性混合模型(IsoSource)计算不同水源对植物的相对贡献率。本研究目标是:(1)观察相同和不同生境下亚高山灌木的水源以及(2)研究亚高山灌木对水源变化的适应性。图1 研究区和采样点位置。【结果】图2 不同水体δ2H和δ18O之间的关系。图3 半阳坡和半阴坡不同亚高山灌木的水源。表1 亚高山灌木主要水源及其贡献率。图4 5-12月半阳坡不同亚高山灌木的植物水源。图5 5-12月半阴坡不同亚高山灌木的植物水源。【结论】青藏高原东北缘的亚高山生境中灌木的水分吸收特征相似。特别是灌木木质部水分主要来源于0-30cm土壤水。在降水量少或需水量大的月份,同一生境的亚高山灌木争夺浅层土壤水。在此期间,为了满足生长所需的水分,一些亚高山灌木增加了对深层土壤水的利用,导致同一生境中亚高山灌木水源存在明显差异。同样,在旱季或生长季,半阳坡或半阴坡的亚高山灌木对深层土壤水的利用增加,导致不同生境中同一亚高山灌木物种水源存在显著差异。与其他亚高山灌木相比,杯腺柳(Salix cupularis),山生柳(Salix oritrepha),金露梅(Potentilla fruticosa),硬叶柳(Salix sclerophylla),烈香杜鹃(Rhododendron anthopogonoides)和 陇蜀杜鹃(Rhododendron przewalskii)根据降水和土壤水条件改变了其水分利用模式,表明其具有较强的环境适应性。在全球变化背景下,为了恢复亚高山生态环境,应选择能够在旱季或生长季调整其水分利用策略的灌木树种。请点击下方链接,阅读原文https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310499&idx=1&sn=50381317af5c0f25d0739b6cbcdcfa3f&chksm=bee1ab9c8996228a367dd8cc6f778f80a7deff7b49c807bac194f912428231318b4544693e27#rd
  • 市场监管总局发布《中华人民共和国认证认可条例(征求意见稿)》
    为适应构建新发展格局、推动高质量发展的要求,全面加强认证认可检验检测工作,市场监管总局组织对《中华人民共和国认证认可条例》进行修订,已于2021年11月22日至12月22日向社会公开征求意见。在吸收采纳相关意见的基础上,形成《中华人民共和国认证认可条例(征求意见稿)》。现根据立法审查工作需要,再次向社会公开征求意见,意见反馈截止日期为2023年7月29日。公众可通过以下途径和方式提出意见:1.登录市场监管总局网站(网址:www.samr.gov.cn),进入首页“互动”栏目下的“征集调查”提出意见。2.邮件发送至:fgs@samr.gov.cn,邮件主题请注明“《认证认可条例》修订意见”字样。3.信函寄至:北京市西城区三里河东路8号,市场监管总局法规司(邮编:100820),并请在信封上注明“《认证认可条例》修订意见”字样。附件: 《中华人民共和国认证认可条例(征求意见稿)》市场监管总局2023年7月13日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制