当前位置: 仪器信息网 > 行业主题 > >

制氧机

仪器信息网制氧机专题为您提供2024年最新制氧机价格报价、厂家品牌的相关信息, 包括制氧机参数、型号等,不管是国产,还是进口品牌的制氧机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合制氧机相关的耗材配件、试剂标物,还有制氧机相关的最新资讯、资料,以及制氧机相关的解决方案。

制氧机相关的论坛

  • 【分享】2010年吸氧机-制氧机十大品牌榜单

    1鱼跃YUYUE(中国名牌,十大制氧机品牌,江苏鱼跃医疗设备股份有限公司)2新松SIASUN(十大制氧机品牌,沈阳新松维尔康科技有限公司)3杭氧(十大制氧机品牌,杭州杭氧股份有限公司)4海龟(十大制氧机品牌,沈阳昌泰医疗科技有限公司)5苏氧(十大制氧机品牌,江苏省著名商标,苏州制氧机有限责任公司)6龙飞(十大制氧机品牌,龙飞集团,浙江省名牌,浙江高新技术产品)7松下(十大制氧机品牌,松下电器(中国)有限公司)8亚奥(十大制氧机品牌,北京北辰亚奥科技有限公司)9奥吉(十大制氧机品牌,北京奥吉科技发展有限公司)10神鹿(十大制氧机品牌,北京神鹿

  • 【原创大赛】[第五届原创参赛]家用制氧机氧气含量的测定

    【原创大赛】[第五届原创参赛]家用制氧机氧气含量的测定

    家用制氧机氧气含量的测定图为朋友购买的一台家用制氧机http://ng1.17img.cn/bbsfiles/images/2012/12/201212301006_417202_2166779_3.jpg此制氧机的原理:此台是利用分子筛过滤而利用氧气的。原理先进:采用沸石分子筛,变压吸附技术(PSA)将空气中的氧气与氮气分离,滤除了空气中的有害物质,从而获取高纯度氧气。朋友叫我帮他测一下这台制氧机的氧含量与制氧机上所显示的氧含量是否相当。该制氧机有五个档次可供选择:当流量为1档时,氧气含量为90%;当流量为2档时,氧气含量为80%;当流量为3档时,氧气含量为60%;当流量为4档时,氧气含量为40%;当流量为5档时,氧气含量为30%;下面以测定当流量为1档时,氧气含量为90%为例,来验证下所购买的制氧机是否合格。我们实验室测定工业氧气含量的装置:http://ng1.17img.cn/bbsfiles/images/2012/12/201212301009_417205_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301010_417206_2166779_3.jpg测量步骤:http://ng1.17img.cn/bbsfiles/images/2012/12/201212301023_417219_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301023_417220_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301016_417211_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301016_417212_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301016_417213_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301016_417214_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301016_417215_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301016_417216_2166779_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212301017_417217_2166779_3.jpg④、样气进入量气筒之前,量气筒应该充满吸收液的(通过调整水准瓶),不该有任何气体(不存在与原来管中的氧气反应,⑤、这与吸收反应的活性和速率有关。新配的吸收液,没有一、二价铜氨离子,单凭铜与氧直接反应,这个速率是慢的,但如果溶液中含适量的氯化铜(生成铜氨离子),与铜丝接触后,未通氧气前,主要应该是亚铜氨络离子,有它存在,吸收反应速度就较快,因为它是吸收氧时传递电子的“中介”,非常重要的角色!新配制吸收液没有它,需要在吸收过程中逐渐产生,所以速度慢,按标准GB3863-2008《工业氧》的分析方法,分析时间远超过3分钟才能吸收完全。⑥、如果是新配制吸收液时,加一点氯化铜进去就会有所改进了。但标准里没讲必要时可做对照试验。⑦、量气管里的溶液与吸收瓶中的溶液是相同的,在吸收过氧气,随时都与铜丝接触,又处于隔离外部氧化的前提下,溶液中主要是亚铜氨离子溶液,通入样气时,它也跟氧气反应,由于本方法是体积测量法,因此,无论氧气是在量气管中反应还是在吸收瓶中反应,由于溶液是相通的,反应后的体积减小量只与原样气通入量有关,与在什么位置吸收反应无关,不影响结果的。气体一接触亚铜氨溶液的量气管就会发生吸收反应的。⑧、读数时要调整两端的液面保持相平,目的是使气体和外界的大气压相等,这样就减小了实验的误差。如果气体这边水低些,那么所测得的气体的体积就偏小;如果气体这边水高些,那么所测得的气体的体积就偏大。这是因为不平的话会存在液位水压差,筒内液体高气体压强变小即体积变大,相反则体积变小。只有液面相同时才能保证气体压强和大气压相等,体积也就是大气压下的体积了。所以随时往水准瓶中加入铜氨补充液是没有关系的。该朋友购买的制氧机的测定结果:档位为1时,仪器显示的氧含量为90%,我测的结果为90。5%,说明该制氧机制得的氧含量与显示的相符合,为合格的纯氧机,呵呵

  • 死鱼通过“鱼浮灵”复活,渔业部门,违禁药

    想象一下这样一幅画面:一把白色粉末撒向鱼池里,刚才还昏昏欲睡的鱼儿这会就活蹦乱跳了!据一名网友说,这世界上真有这种东西,能让水中鱼起死回生--它的名字叫鱼浮灵。"但事物总是一分为二的。"该网友又说,这种有点揠苗助长的猛药能致癌。  果真如此么?有专家称,鱼浮灵的原理是增加水中含氧量,对人体无害。不过,相关部门也承认,由于鱼浮灵不在违禁药品之列,对其是否合格的监管尚是一片空白。  网友:  "太活跃的鱼千万别买"  12月11日,微博网友"@乐活珠海"发了一条微博称:太活跃的鱼千万别买。这样说的理由是,他在去菜市场买鱼时看到了"惊人一幕":"摊贩往大水盆内加入一种白色粉末,迅速用手搅拌,一会工夫白色粉末就溶解了,接着把半死不活的鱼虾倒入其中,一会儿就活蹦乱跳开,好像这些鱼都是才从河中捕回来的。"  "@乐活珠海"说,这些白色粉末是一种能够致癌的催化剂,俗称鱼浮灵,对智力有影响。  前天,这条微博经"@生活在东莞"转发后,引起了东莞网友的热议。网友"@小金猪best"称,他在市场经常能够看到这些白色粉末,摊主都说加的是海盐,但是真是假很难辨别。另一些网友则由此开始吐槽食品安全问题。  不过,也有网友前来发声"辟谣"."@诳奔的蜗牛"就解释说,这种白色粉末只是一种增氧剂,能够短时间内增加水里的氧气含量。"鱼本来因为缺氧而半死不活,氧气一增加当然就活蹦乱跳啦。"  记者走访  鱼贩多用制氧机  市民鲜知鱼浮灵  昨日上午,记者在东城随机走访了几个农贸市场。记者发现,几乎所有鱼摊的鱼池都使用制氧机供氧。当记者向鱼贩们问起鱼浮灵时,多数鱼贩称从未用过,有的甚至还是第一次听说。  在火炼树市场,一鱼铺老板告诉记者,她曾经见别人使用过鱼浮灵。此药一放下去,鱼好像就生猛好多。"不过具体是不是氧化剂我就不知道了。我们增氧都是用制氧机。你如果放药,顾客肯定会怀疑你的鱼有问题。"  在泰和商业街上的友谊市场,鱼贩小张称,他知道鱼浮灵,"但我们从来不用,因为药效就那么一阵子,药效一过鱼马上就不行了。"  走访中,记者一并随机询问了部分买菜的市民。受访者中,多数人对鱼浮灵没有概念。他们说,买鱼时未见有鱼贩当面往鱼池里撒药。  当然,也有小部分市民对鱼浮灵有所耳闻,王女士就是其中一人。她告诉记者,几个月前,她在东城某市场买鱼时,看见一鱼贩往鱼池里撒了些白色的类似食盐的颗粒物。在此之后,原本已经躺在水面几乎不动的鱼,又翻过身来,在水里游来游去了。  "我当时问那个卖鱼的撒的是什么,他解释说是给鱼吃的。我当时就说是不是什么药,但那人矢口否认。"不过,王女士同时称,鱼贩们给鱼池增氧大多用制氧机。至于撒药,自己也就见过那一次。  各方说法  渔业部门:  鱼浮灵不在违禁药品之列  鱼浮灵到底是什么?它果真能让鱼儿起死回生?它会否给健康带来危害?  据东莞市海洋与渔业局方面了解,东莞鱼贩中确实有人使用鱼浮灵。该局答复记者称,鱼浮灵的主要作用是鱼池增氧。不过,他们并不清楚鱼浮灵的组成成分。工作人员这样解释:不清楚的原因是鱼浮灵并不在鱼类生产、运输和销售过程中禁止使用的药品之列。受此影响,该局对鱼浮灵使用的监管尚是一道空白。对于东莞鱼贩使用鱼浮灵的基本情况、用量规范以及是否危害人身安全等问题,他们也无法回答。  专家:单纯增氧对人体无害  对鱼浮灵颇有研究的上海海洋大学水产与生命学院胡鲲副教授告诉记者,鱼浮灵是一种混合物,主要由过氧化物组成,可以用来增加鱼池中的含氧量。  他说,投入水中的过氧化物很容易分解出氧气。利用这一原理,鱼贩们就用鱼浮灵让鱼儿临时吸一吸氧。  "一般使用鱼浮灵都是在鱼量特别大的运输过程中,为了避免鱼因为缺氧而死亡,就撒上一把。"胡鲲说,在鱼的贩售过程中,常用的供氧设备还是制氧机,鱼浮灵的使用只是应急。  至于鱼浮灵对人体是否有害,胡鲲说:"如果鱼浮灵单纯用来增氧的话,它对人体是无害的。"  国内著名科普社区果壳网就此曾刊发过一篇文章,称鱼浮灵不是致癌催化剂。但署名"DRY"的网友在文章中也提出,有些不法商贩可能会使用工业级纯度的原料生产出来的过氧化物来替代鱼浮灵。而这的确可能有引入重金属等有害成分的风险。因此,为了对消费者负责,相关部门对鱼药的生产和使用的监管需要大力加强。

  • HZD-B-S型振动变送器

    HZD-B-S型振动变送器与ST系列速度传感器配套使用,主要用于检测旋转机械的绝对振动,如机壳振动、轴瓦振动、机械振动等;监测由于转子的不平衡、不对中、机件松动、滚动轴承损坏、齿轮损坏等引起的振动变化。适用于汽轮机、水轮机、风机、压缩机、制氧机、电机、泵、齿轮箱等大型旋转机械,尤其适合老机组改造。HZD-B-S型振动变送器技术参数◆ 外接电源:220VAC 50Hz或24VDC◆ 输入 信号:接受一个ST系列振动速度传感器的信号灵敏度:20mv/mm/s频响:5~300Hz输入阻抗:>100KΩ◆ 量程:0~50.0mm/s(真有效值)◆ 精确度:±1%满量程◆ 电流输出:4~20Ma,输出负载≤500Ω◆ 温度范围:运行时:-25℃~+65℃ 储存时:-40℃~+85℃◆ 相对湿度:至95%, 不冷凝◆ 外形尺寸:76×100×65mm◆ 安装螺孔尺寸:64×76mm◆ 重量:1Kg

  • 士气如虹-战况激烈,最新战报,相差5篇。

    团队标题积分马踏飞燕队 队长:langhuashang细数俺那实验室的那些角落、那些地方 2012-12-30 gl19860312 气相色谱法测定酮咯酸氨丁三醇中的乙醇和1,2-二氯乙烷 2012-12-30 ltkp 家用制氧机氧气含量的测定 2012-12-30 nphfm20092750积分http://simg.instrument.com.cn/activity/yc2012/images/view.gif平凡的独特 队长:li8888lili8888我与化学的第一次亲密接触 2012-12-29 wlh_2001 光度法中,纺织品与皮革的六价铬检测标准对比之疑问多多 2012-12-28 chrisneil 三磷酸腺苷二钠注射液含量方法学研究 2012-12-27 jncxyy20121610积分http://simg.instrument.com.cn/activity/yc2012/images/view.gif龙翔乐川 队长:54943110高温热胁对Achnanthes sp.光合影响再探 2012-12-31 54943110 离子选择电极法测定土壤中氟化物含量 2012-12-31 54943110 底泥疏浚的优缺点综合分析 2012-12-31 549431101300积分http://simg.instrument.com.cn/activity/yc2012/images/view.gif我爱分坛 队长:tangtang恒温恒湿箱湿度控制故障的一个简易应急措施。 2012-12-31 tangtang 一次恒温恒湿箱的维修过程 2012-12-31 tangtang 电感耦合等离子体发射光谱法测定铝锰铁中的Si/Mn/P方法 2012-12-31 denx52013141250积分http://simg.instrument.com.cn/activity/yc2012/images/view.gif

  • HZD-B-I型振动变送器

    HZD-B-I型振动变送器与ST系列速度传感器配套使用,主要用于检测旋转机械的绝对振动,如机壳振动、轴瓦振动、机械振动等;监测由于转子的不平衡、不对中、机件松动、滚动轴承损坏、齿轮损坏等引起的振动变化。适用于汽轮机、水轮机、风机、压缩机、制氧机、电机、泵、齿轮箱等大型旋转机械,尤其适合老机组改造。      HZD-B-I型振动变送器技术指标   外接电源:220VAC 50Hz或24VDC   输入   信号:接受一个ST系列振动速度传感器的信号   灵敏度:20mv/mm/s   频响:5?300Hz   输入阻抗:>100KΩ   量程:0?500μm(峰峰值)   精确度:±1%满量程   电流输出:4?20mA,输出负载≤500Ω   HZD-B-I型振动变送器温度范围:   运行时:-25℃?+65℃储存时:-40℃?+85℃   相对湿度:至95%,不冷凝   外形尺寸:76×100×65mm   安装螺孔尺寸:64×76mm   重量:1Kg

  • 【转帖】现行标准,问题多多

    现行标准,问题多多目前,我国相当一部分医院在救护病人时仍使用传统的钢瓶氧。直接用钢瓶氧给病人供氧存在着诸多缺陷,如钢瓶氧压力较高,很可能发生爆炸,不安全;钢瓶很笨重,使用不方便;钢瓶供氧压力不稳等。这种落后的供气方式正被先进的医用气体系统所代替。医用气体系统在国内推广并应用已有十多年历史。医院对这种集中供气系统的优越性已有深刻地认识。医用气体系统与液氧罐或PSA制氧机联合使用,在给医疗工作带来极大的安全和方便的同时,还能给医院带来巨大的经济效益和社会效益。目前国内不少大中型医院均已采用了这种集中供气系统。应该说医用气体系统在施工技术和工艺上都是相当成熟的,但作为一项综合性较强的技术,医用气体系统涉及较多的工艺过程,其施工质量紧密联系着医院使用时的安全性、有效性和可靠性。因此,对系统的流程设计、施工工艺、关键配件、项目验收等重要环节,应有严格、明确、统一的标准进行规范。现存的几个问题针对医用气体系统,我国现行的技术标准是《YY/T 0186-94医用中心吸引系统通用技术标准》和《YY/T 0187-94医用中心供氧系统通用技术标准》。该标准曾为我国医院推广使用医用气体管道系统和控制系统质量起到了指导和规范作用。但随着技术的不断进步,对比现有技术水平和国际上相应的技术标准,不难发现我国现行的医用供气标准确有许多不足的地方。比如:1.对医用气体范围覆盖不全现在医院用系统来传送的气体不仅只有氧气和真空,还有压缩空气、笑气、二氧化碳、氮气等。这些气体集中在一起,容易引起混淆和干扰,并且每一种气体的传送条件也不同,因此有必要用标准来明确规定。2.对系统的控制流程未加规范医用气体系统中的控制和处理流程,对气体的压力、流量、质量的控制和气体使用过程中的安全性起到重要的作用,但我国的相关标准却忽视了这个问题。系统标准《YY/T 0186-94》和《YY/T 0187-94》没有提到气体的控制和处理流程,制氧机技术标准《YY/T 0298-1998医用分子筛制氧设备通用技术规范》也未对压缩空气和产品氧气的控制和处理流程作出明确规定。与国内标准不同,国际标准对这个问题处理得十分认真。如《ISO 7396-1:2002》中用了大量的篇幅和详细的示意图来描述钢瓶氧、压缩空气等气体进入系统前的减压、并流、泄压、报警、截止等过程。PSA制氧机标准《ISO 10083:1992 Oxygen concentrators for use with medical gas pipeline systems》也用了详细的示意图来描述气体的处理和控制流程。尽管气体处理和控制不是很复杂的技术,但由于没有统一的标准,加上每个工程师都有自己的观念,所以设计出来的流程也各不相同。因此,一些方案难免要么有累赘的地方,要么存在一些缺陷。由于没有统一的标准,院方也很难在工程验收时及时发现存在的隐患。3.对不同气体用接头尺寸未加规范医用气体系统技术标准《YY/T 0186-94》和《YY/T 0187-94》没有对不同气体用的接头尺寸作明确的规定,只是提到不同气体用接头要用不同尺寸。这样做,在气体种类较少的情况下尚可,但在一般情况下极容易引起以下问题:(1)不同供货商的配置可能不同,一家医院不能同时用不同供货商的产品;(2)气体种类多时容易引起混乱;(3)终端器件难以升级换代。国际标准《ISO5359:2000(E) Low-pressure hose assemblies for use with medical gases》对不同气体用接头的类型和尺寸作了明确的规定,而且这些接头的设计科学、结构合理,值得借鉴。4.未明确不同医用气体的着色标准对于工业气体管道,国家标准《GB7231-2003工业管道的基本识别色、识别符号和安全标识》对一些气体使用的着色进行了规定,但对于医用气体尚未明确规定。当气体种类较多时,这个问题也变得重要起来。国际标准《ISO5359:2000》和《ISO9170-1:1999(E) Terminal units for medical gas pipeline systems》对不同气体和接头的着色作出了具体的规定。5.医用气体系统的脱脂除污工艺落后关于医用气体系统的脱脂除污工艺,我国还沿用《HGJ202-82脱脂工程施工及验收规范》,所用脱脂剂一般是四氯化碳溶剂。考虑到清洁剂的发展和环保的需要,脱脂除污工艺是否可以改变?脱脂剂是否可用某些清洁剂代替呢?6.系统供氧压力与高压氧舱的需要不符高压氧舱是一类特殊的用氧器械,标准《YY/T 0187-94》中未对其用氧条件进行规范。《YY/T 0187-94》仅规定了麻醉机、呼吸机等用氧器械终端处的氧气压力不小于0.4MPa。由于高压氧舱内部有压力,供氧压力一般不能低于0.55MPa,新标准应予以修正。关于建议一个好的标准对于提高行业的技术水平和产品质量有着极其深远的影响,我们有时认为进口的设备质量好、可靠性高,这往往是与他们严格执行较先进的技术标准相关的。对于医用气体系统的质量,我公司在日本进行的一个项目,给笔者留下了深刻的印象。2003年3月,我公司生产的PSA制氧系统出口日本广岛,设备由当地的新机工程公司安装,系统与固定件都是日本自产的。很快,一个化工厂复杂的供气系统被错落有致、美观整齐地搭接出来。试机一次通过,一点儿也没有在国内常见的漏水漏气,摇摇晃晃,需要修修补补的现象。仔细究其原因,笔者发现:(1)日本供货商对工程的细节考虑得很多,各种接头、支架、固定件都是标准件,品种齐全;(2)各种标准件的设计科学,受力合理,因此坚固耐用,而且可拆卸后重复使用;(3)各种标准件的加工尺寸很精确,表面处理得很精细;(4)施工队工具先进、品种齐全;(5)工人工作时一板一眼,决不马虎从事。一个标准的制定是一项艰苦而细致的工程,需要考虑到方方面面,会受到众多相关行业技术水平的影响。技术是一个不断发展的过程,标准很容易滞后于技术,任何标准也不可能一劳永逸地建立起来。因此我们要多借鉴国际先进的标准,加速现行标准的健全与完善,应是一条尽快提高产品质量,与国际先进水平接轨的可行之路。(摘自:)

  • 【原创大赛】POCT仪器之——便携红外人体血氧饱和度监测仪揭秘

    【原创大赛】POCT仪器之——便携红外人体血氧饱和度监测仪揭秘

    POCT仪器之——便携红外人体血氧饱和度监测仪揭秘 随着电子技术和传感器技术的发展,医院许多大型检测仪器实现了小型化,护士常常进行床边检测(又称“即时检验”Point-of-care Testing,POCT)。 人体除心率、血压、呼吸频率和温度外,脉搏血氧(PO)被认为是排在第5位的最关键健康状况指标。血红蛋白(Hb)是血细胞的重要组成部分,它负责将氧气从肺部输送到身体的其它组织。血红蛋白在任一时刻所含的氧气量被称为氧饱和度。氧饱和度以百分比表示,它是血红蛋白的含氧量与血红蛋白携氧能力之比。血氧饱和度是反映人体呼吸功能及氧含量是否正常的重要生理参数,它是显示人体各组织是否健康的一个重要生理参数,严重缺氧会直接导窒息、休克、死亡等悲剧的发生。 人体血氧饱和度仪应用在以下几个方面:病人在急救和转运过程中、消防抢险、高空飞行必须监测血氧;心脏病、高血压、糖尿病人,特别是老人都会有呼吸方面的问题,监测血氧指标可很好地了解自己的呼吸、免疫系统是否正常,血氧饱和度已成为普通家庭日常监测的重要生理指标;医护人员在查房和出诊是也将血氧作为必监测项目,使用数量有压过听诊器的趋势;呼吸疾病患者特别是长期打鼾的、使用呼吸机和制氧机的患者,在日常生活中使用血氧仪来监测治疗效果;户外动者、登山爱好者、体育运动者在运动时都使用血氧仪,及时知道自己的身体情况,并采取必要的保护措施。下面将市售的一款便携式人体血氧饱和度监测仪进行解析,揭开内部结构的神秘面纱。一、外观 血氧仪像一个大夹子:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482364_1807987_3.jpg电池仓在背面,使用两只7号电池。该仪器非常省电,不使用8秒钟后自动关机,两节电池可用30小时:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482365_1807987_3.jpg手指槽的上端有发射窗,下端有光信号接收窗:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482366_1807987_3.jpg将手指放进去,几秒钟后,显示出血氧饱和度、脉搏值:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170137_482367_1807987_3.jpg二、系统结构原理便携式人体血氧饱和度监测仪结构原理见下图,开机后,电源提供1.8V和3V、12V三组直流电给电路使用,嵌入式微处理器(MCU)向光头驱动电路发出控制信号,使双发光二极管(红光、红外光)交替发出调制光,该两组光线穿过手指,被另一面的光电池接收,信号通过前置放大、整理电路,输入MCU进行分析、计算,结果由LED数字显示板显示出来。http://ng1.17img.cn/bbsfiles/images/2014/10/201410271513_520299_1807987_3.jpg血氧饱和度监测原理:无创脉搏血氧饱和度测量是以朗伯 - 比尔定律,血液中还原血红蛋白 (Hb )和氧合血红蛋白(HbO2 )对光的吸收特性不同为基础的。通过两种不同波长的光(660nm红光和940nm近红外光)分别照射人手指组织后,再由光电检测器转换成电信号。在该波长处,氧合血红蛋白和还原血红蛋白的吸收差别较大,组织中的其他成分吸收光信号是恒定的, 经过光电检测器后得到直流分量 DC,而动脉血中的 HbO2 和Hb对光信号的吸收是随着脉搏搏动作周期性变化, 经过光电检测器后得到交流分量 AC, 由于 HbO2 和 Hb对同一种光线的吸收率各不相同, 微处理器计算所吸收的这两种光谱的比率,并将结果与存在存储器里的饱和度数值表进行比较,从而得出血氧饱和度。三、拆解主电路板可用指甲从上端缝隙处,将上盖分开:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170138_482369_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312170138_482370_1807987_3.jpg电路板正面的元件不多,显示采用LED数字显示板,占据了电路板主要面积:http://ng1.17img.cn/bbsfiles/images/2014/10/201410271514_520300_1807987_3.jpg电路板上的集成电路ULN2003A,74HC164:http://ng1.17img.cn/bbsfiles/images/2013/12/201312170138_482372_1807987_3.jpgULN2003A是高耐压、大电流反相器,内部由七个硅NPN 达林顿管组成的驱动芯片,电路框图如下:[im

  • 【资料】环氧乙烯基酯树脂简介!

    环氧乙烯基酯树脂从20世纪60年代开发以来,在众多工业领域得到推广应用,并逐步被用户接纳、认可,到90年代基本成为国际认可的新型耐蚀材料的代表,其应用范围逐步取代早期的传统耐蚀树脂。随着科研力度的加大更有不少性能及用途独特的乙烯基酯树脂得到推广或被进一步改性。该产品既然性能如此好,那么其性能到底由哪些因素决定?业界很多人不知所以然,为此中国环氧树脂行业协会(www.epoxy-e.cn)专家专门作了介绍。目前环氧乙烯基酯树脂应用量最大、范围最广的要算甲基丙烯酸型双酚A环氧乙烯基酯树脂(国内牌号相当于MFE-2)、甲基丙烯酸酚醛环氧型乙烯基酯树脂(国内牌号相当于W2-1)。在树脂产品中工程上曾对相当的材料及性能进行比较。不同品种的乙烯基酯树脂之间的性能差异较大,一般都是针对不同的使用要求而设计的。比起双酚A反丁烯二酸聚酯树脂来说,同属耐化学树脂的乙烯基酯树脂不但耐化学性优于聚酯,而且各项机械性能及耐热性能也都可能超过聚酯。在成型工艺上乙烯基酯树脂吸取了不饱和聚酯便于固化成型的优点,可以采取同样的交联固化工艺成型,从而显示了乙烯基酯树脂明显的优越性。据中国环氧树脂行业协会(www.epoxy-e.cn)专家介绍,环氧乙烯基酯树脂手糊玻璃钢的机械性能大大超过美国标准局为防腐用板材规定的PSl5-69标准,乙烯基酯树脂玻璃钢不仅具有较好的机械强度而且有较高的高温强度,适于制造高温下操作的防腐设备,已固化的乙烯基酯树脂具有较高的断裂延长率。这是这类树脂优于其他树脂的重要特征之一,这样不仅可以提高玻璃钢层板第一次出现裂纹时的应变量,而且可以显著提高层板的耐冲击能力。由此环氧乙烯基酯树脂以其优良的性能在各行各业中已经得到广泛应用。

  • 培养基配制的基本过程

    1.配制溶液  向容器内加入所需水量的一部分,按照培养基的配方,称取各种原料,依次加入使其溶解,最后补足所需水分。对蛋白胨、肉膏等物质,需加热溶解,加热过程所蒸发的水分,应在全部原料溶解后加水补足。  配制固体培养基时,先将上述已配好的液体培养基煮沸,再将称好的琼脂加入,继续加热至完全融化。并不断搅拌,以免琼脂糊底烧焦。  2.调节pH值  用pH试纸(或pH电位计、氢离子浓度比色计)测试培养基的pH值,如不符合需要,可用10%HCl或10%NaOH进行调节,直到调节到配方要求的pH值为止。  3.过滤  用滤纸、纱布或棉花趁热将已配好的培养基过滤。用纱布过滤时,最好折叠成六层,用滤纸过滤时,可将滤纸折叠成瓦棱形,铺在漏斗上过滤。  4.分装  已过滤的培养基应进行分装。如果要制作斜面培养基,须将培养基分装于试管中。如果要制作平板培养基或液体、半固体培养基,则须将培养基分装于锥形瓶内。  分装时,一手捏松弹簧夹,使培养基流出,另一只手握住几支试管或锥形瓶,依次接取培养基。分装时,注意不要使培养基粘附管口或瓶口,以免浸湿棉塞引起杂菌污染。  装入试管的培养基量,视试管和锥形瓶的大小及需要而定。一般制作斜面培养基时,每只15×150毫米的试管,约装3~4毫升(1/4~1/3试管高度),如制作深层培养基,每只20×220毫米的试管约装12~15毫升。每只锥形瓶装入的培养基,一般以其容积的一半为宜。  5.加棉塞  分装完毕后,需要用棉塞堵住管口或瓶口。堵棉塞的主要目的是过滤空气,避免污染。棉塞应采用普通新鲜、干燥的棉花制作,不要用脱脂棉,以免因脱脂棉吸水使棉塞无法使用。制作棉塞时,要根据棉塞大小将棉花铺展成适当厚度,揪取手掌心大小一块,铺在左手拇指与食指圈成的圆孔中,用右手食指插入棉花中部,同时左手食指与姆指稍稍紧握,就会形成1个长棒形的棉塞。棉塞作成后,应迅速塞入管口或瓶口中,棉塞应紧贴内壁不留缝隙,以防空气中微生物沿皱折侵入。棉塞不要过紧过松,塞好后,以手提棉塞、管、瓶不下落为合适。棉塞的2/3应在管内或瓶内,上端露出少许棉花便于拔取。塞好棉塞的试管和锥形瓶应盖上厚纸用绳捆札,准备灭菌。  6.制作斜面培养基和平板培养基  培养基灭菌后,如制作斜面培养基和平板培养基,须趁培养基未凝固时进行。  (1)制作斜面培养基。在实验台上放1支长0.5~1米左右的木条,厚度为1厘米左右。将试管头部枕在木条上,使管内培养基自然倾斜,凝固后即成斜面培养基。  (2)制作平板培养基。将刚刚灭过菌的盛有培养基的锥形瓶和培养皿放在实验台上,点燃酒精灯,右手托起锥形瓶瓶底,左手拔下棉塞,将瓶口在酒精灯上稍加灼烧,左手打开培养皿盖,右手迅速将培养基倒入培养皿中,每皿约倒入10毫升,以铺满皿底为度。铺放培养基后放置15分钟左右,待培养基凝固后,再5个培养皿一叠,倒置过来,平放在恒温箱里,24小时后检查,如培养基末长杂菌,即可用来培养微生物。

  • 【分享】配制培养基的原则

    1、选择适宜的营养物质总体而言,所有微生物生长繁殖均需要培养基含有碳源、氮源、无机盐、生长因子、水及能源,但由于微生物营养类型复杂,不同微生物对营养物质的需求是不一样的,因此首先要根据不同微生物的营养需求配制针对性强的培养基。自养型微生物能从简单的元机物合成自身需要的糖类、脂类、蛋白质、核酸、维生素等复杂的有机物,因此培养自养型微生物的培养基完全可以(或应该)由简单的无机物组成。例如,培养化能自养型的氧化硫硫杆菌(Thiobacillusthiooxdans)的培养基组成见表3.9。在该培养基配制过程中并末专门加入其他碳源物质,而是依靠空气中和溶于水中的CO2为氧化硫硫杆菌提供碳源。就微生物主要类型而言,有细菌、放线菌、酵母菌、霉菌、原生动物、藻类及病毒之分,培养它们所需的培养基各不相同。在实验室中常用牛肉膏蛋白胨培养基(或简称普通肉汤培养基)培养细菌,用高氏I号合成培养基培养放线菌,培养酵母菌一般用麦芽汁培养基,培养霉菌则一般用查氏合成培养基。

  • 【讨论】培养基配制

    配制完培养基后,都要求用酸度计校正液体培养基的PH值,那时培养基的大致温度在多少比较合适啊?还有测量PH值时是直接在配制容器中测量,还是倒出一小部分进行测量呢?怎么样做才能既保证了培养基PH值的准确性,又做起来比较方便呢?

  • 培养基的制备方法

    培养基的制备方法 以下为常规方法,如配方中有特殊规定或要求,以配方为第一依据。1.根据配方,计算各种营养成分用量。一般药品可用普通药物天平称量,用量少的药品,可按比例配成高浓度溶液,再按所需量用移液管吸取。称好的药品放入玻璃烧杯或搪瓷杯中。2.在另一容器中将所需量的水(一般可用自来水,有特殊要求时需用蒸馏水)加热,取全量的1/3左右倒入放药品的容器中,用玻璃棒搅拌,待药品全溶后,再将其余热水全部倒入。3.若配制固体培养基,则称取1.5~2%的琼脂放入已溶化的营养液中,继续加热至琼脂全部溶解。加热中随时搅拌,防止溢出或糊底。烧糊的培养基营养物质破坏,并产生有毒物质,不宜再用。4.待溶化的培养基稍冷却后,按配方要求调整pH值。先取10毫升培养基装入试管中,用pH试纸测其自然pH,再用1%NaOH(或1%HCl)调至所需pH,根据用量计算,换用10%NaOH(或10%HCl)调整所配全量培养基的pH。加碱(或酸)溶液时,应边滴加边搅拌,至应加量将近用完时,再次测试,最后调至要求的pH值。5.配好的培养基,根据需要趁热分装至试管或锥形瓶中。分装需用漏斗,以免琼脂粘在管口或瓶口上。装瓶量一般为瓶容量的1/3~1/2;装试管一般为试管高度的1/5~1/4,以免灭菌时培养基上溢,粘湿棉塞。6.用预先制好的棉塞塞住管口或瓶口。棉塞既有利于通气,又有滤菌作用,故松紧、大小应适当,以免使用时影响操作(如图)。最后用牛皮纸或报纸包住棉塞,扎紧在瓶颈或试管上方,以免灭菌时水蒸汽沾湿棉塞或脱落。7.灭菌后取出的固体培养基,根据需要可将试管立即斜放,冷凝后即成斜面培养基,用于菌种扩大培养及保藏;锥形瓶中的培养基,倒入无菌培养皿中,冷凝后即制成平板培养基,可用于菌种的分离、鉴定等。液体培养基冷却后可直接根据需要接入菌种

  • 发酵培养基的配制

    首先需了解微生物需要的营养物质。 (1)微生物需要的营养物质营养物质应满足微生物的生长、繁殖和完成各种生理活动的需要。它们的作用可概括为形成结构(参与细胞组成)、提供能量和调节作用(构成酶的活性和物质运输系统)。微生物的营养物质有六大类要素,即水、碳源、氮源、无机盐、生长因子和能源。① 水水是微生物的重要组成部分,在代谢中占有重要地位。水在细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水(或称为非结合水)则可以被微生物利用。② 碳源碳在细胞的干物质中约占50%,所以微生物对碳的需求最大。凡是作为微生物细胞结构或代谢产物中碳架来源的营养物质,称为碳源。作为微生物营养的碳源物质种类很多,从简单的无机物(CO2、碳酸盐)到复杂的有机含碳化合物(糖、糖的衍生物、脂类、醇类、有机酸、芳香化合物及各种含碳化合物等)。但不同微生物利用碳源的能力不同,假单孢菌属可利用90种以上的碳源,甲烷氧化菌仅利用两种有机物:甲烷和甲醇,某些纤维素分解菌只能利用纤维素。大多数微生物是异养型,以有机化合物为碳源。能够利用的碳源种类很多,其中糖类是最好的碳源。异养微生物将碳源在体内经一系列复杂的化学反应,最终用于构成细胞物质,或为机体提供生理活动所需的能量。所以,碳源往往也是能源物质。自养菌以CO2、碳酸盐为唯一或主要的碳源。CO2是被彻底氧化的物质,其转化成细胞成分是一个还原过程。因此,这类微生物同时需要从光或其他无机物氧化获得能量。这类微生物的碳源和能源分别属于不同物质。③ 氮源凡是构成微生物细胞的物质或代谢产物中氮元素来源的营养物质,称为氮源。细胞干物质中氮的含量仅次于碳和氧。氮是组成核酸和蛋白质的重要元素,氮对微生物的生长发育有着重要作用。从分子态的N2到复杂的含氮化合物都能够被不同微生物所利用,而不同类型的微生物能够利用的氮源差异较大。固氮微生物能利用分子态N2合成自己需要的氨基酸和蛋白质,也能利用无机氮和有机氮化物,但在这种情况下,它们便失去了固氮能力。此外,有些光合细菌、蓝藻和真菌也有固氮作用。许多腐生细菌和动植物的病原菌不能固氮,一般利用铵盐或其他含氮盐作氮源。硝酸盐必须先还原为NH+4后,才能用于生物合成。以无机氮化物为唯一氮源的微生物都能利用铵盐,但它们并不都能利用硝酸盐。有机氮源有蛋白胨、牛肉膏、酵母膏、玉米浆等,工业上能够用黄豆饼粉、花生饼粉和鱼粉等作为氮源。有机氮源中的氮往往是蛋白质或其降解产物。氮源一般只提供合成细胞质和细胞中其他结构的原料,不作为能源。只有少数细菌,如硝化细菌利用铵盐、硝酸盐作氮源和能源。④ 无机盐无机盐也是微生物生长所不可缺少的营养物质。其主要功能是:① 构成细胞的组成成分;② 作为酶的组成成分;③ 维持酶的活性;④ 调节细胞的渗透压、氢离子浓度和氧化还原电位;⑤ 作为某些自氧菌的能源。磷、硫、钾、钠、钙、镁等盐参与细胞结构组成,并与能量转移、细胞透性调节功能有关。微生物对它们的需求量较大(10-4~10-3 mol/L),称为“宏量元素”。没有它们,微生物就无法生长。铁、锰、铜、钴、锌、钼等盐一般是酶的辅因子,需求量不大(10-8~10-6 mol/L),所以,称为“微量元素”。不同微生物对以上各种元素的需求量各不相同。铁元素介于宏量和微量元素之间。在配制培养基时,可通过添加有关化学试剂来补充宏量元素,其中首选是K2HPO4和MgSO4,它们可提供需要量很大的元素:K、P、S和Mg。微量元素在一些化学试剂、天然水和天然培养基组分中都以杂质等状态存在,在玻璃器皿等实验用品上也有少量存在,所以,不必另行加入。⑤ 生长因子一些异养型微生物在一般碳源、氮源和无机盐的培养基中培养不能生长或生长较差。当在培养基中加入某些组织(或细胞)提取液时,这些微生物就生长良好,说明这些组织或细胞中含有这些微生物生长所必须的营养因子,这些因子称为生长因子。生长因子可定义为:某些微生物本身不能从普通的碳源、氮源合成,需要额外少量加入才能满足需要的有机物质,包括氨基酸、维生素、嘌呤、嘧啶及其衍生物,有时也包括一些脂肪酸及其他膜成分。各种微生物所需的生长因子不同,有的需要多种,有的仅需要一种,有的则不需要。一种微生物所需的生长因子也会随培养条件的变化而变化,如在培养基中是否有前体物质、通气条件、pH和温度等条件,都会影响微生物对生长因子的需求。从自然界直接分离的任何微生物,在其发生营养缺陷突变前的菌株,均称为该微生物的野生型。绝大多数野生型菌株只需简单的碳源和氮源等就能生长,不需要添加生长因子;经人工诱变后,常会丧失合成某种营养物质的能力,在这些菌株生长的培养基中,必须添加某种氨基酸、嘌呤、嘧啶或维生素等生长因子。⑥ 能源能源是指为微生物的生命活动提供最初能量来源的营养物或辐射能。化能异养型微生物的能源即碳源;化能自养型微生物的能源都是还原态的无机物,如NH4+、NO2-、S、H2S、H2、Fe2+等,它们分别属于硝化细菌、亚硝酸细菌、硫化细菌、硫细菌、氢细菌和铁细菌等。一种营养物常有一种以上营养要素的功能,即除单功能营养物外,还有双功能,甚至三功能营养物。辐射能是单功能;还原态无机养分常是双功能的(NH4+既是硝化细菌的能源,又是它的氮源)甚至是三功能的(能源、氮源和碳源);有机物常有双功能或三功能作用。(2)配制培养基必须遵循的原则微生物的培养基通常指人工配制的适合微生物生长繁殖,或积累代谢产物的营养基质。广义上说,凡是支持微生物生长繁殖的介质或材料,均可作为微生物的培养基。一个适当的培养基配方,对发酵产品的产量和质量有着极大的影响。针对不同微生物,不同的营养要求,可以有不同的培养基。但它们的配制必须遵循一定原则。① 营养物质应满足微生物的需要。不同营养类型的微生物对营养的需求差异很大,应根据菌种对各营养要素的不同要求进行配制。② 营养物的浓度及配比应恰当。营养物浓度太低,不能满足微生物生长的需要;浓度太高,又会抑制微生物生长。糖和盐浓度高有抑菌作用。碳氮比(C∶N,以还原糖含量与粗蛋白含量的比值表示):一般培养基为C∶N=100∶0.5~2。在设计培养基配比时,还应考虑避免培养基中各成分之间的相互作用,如蛋白胨、酵母膏中含有磷酸盐时,会与培养基中钙或镁离子在加热时发生沉淀作用;在高温下,还原糖也会与蛋白质或氨基酸相互作用而产生褐色物质。③ 物理、化学条件适宜。pH:各种微生物均有其生长繁殖的最适pH,细菌为7.0~8.0,放线菌为7.5~8.5,酵母为3.8~6.0,霉菌为4.0~5.8。对于具体的微生物菌种,都有各自的特定的最适pH范围,有时会大大突破上述界限。在微生物生长繁殖过程中,会产生能够引起培养基的pH改变的代谢产物,尤其是不少微生物有很强的产酸能力,如不适当地加以调节,就会抑制甚至于杀死其自身。在设计培养基时,要考虑培养基的pH调节能力。一般应加入缓冲液或CaCO3,使培养基的pH稳定。其他:培养基的其他理化指标,如水活度、渗透压也会影响微生物的培养。在配制培养基时,通常不必测定这些指标,因为培养基中各种成分及其浓度等指标的优化,已间接地确定了培养基的水活度和渗透压。此外,各种微生物培养基的氧化还原电位等也有不同的要求。④ 培养目的:培养基的成分直接影响培养目标。在设计培养基时,必须考虑是要培养菌体,还是要积累菌体代谢产物;是实验室培养,还是大规模发酵等问题。用于培养菌体的种子培养基营养成分应丰富,氮源含量宜高,即碳氮比值应低;相反,用于大量积累代谢产物的发酵培养基,氮源应比种子培养基稍低;当然,若目的产物是含氮化合物时,有时还应该提高培养基的氮源含量。在设计培养基时,还应该特别考虑到代谢产物是初级代谢产物,还是次级代谢产物。如果是次级代谢产物,还要考虑是否需加入特殊元素(如维生素B12中Co)或特殊的前体物质(如生产青霉素G时,应加入苯乙酸)。在设计培养基,尤其是大规模发酵生产用的培养基时,还应该重视培养基组分的来源和价格,应该优先选择来源广、价格低廉的培养基。(3)几种培养基的配制原则① 种子培养基:适用于微生物菌体生长的培养基,目的是为下一步发酵提供数量较多,强壮而整齐的种子细胞。一般要求氮源、维生素丰富,原料要精。② 发酵培养基:用于生产预定发酵产物的培养基,一般的发酵产物以碳源为主要元素。发酵培养基中的碳源含量往往高于种子培养基。如果产物的含氮量高,应增加氮源。在

  • 培养基配制后的质量控制

    配制后质量控制(1)培养基外观情况:包括颜色、透明度、有无沉淀和凝固。如发现培养基表面有裂纹或与培养皿的边缘分离,说明培养基有脱水现象,必须丢弃。(2)无菌试验:每一批配好的培养基均须进行无菌试验。先灭菌后分装的培养基,可采用抽样方法试验,少于100个样本通常选取5%~10%的量,如果配制大量培养基,则任意选取10 个培养基;无菌分装培养基则需全部做无菌试验。样本在35 ℃ 或其他适宜的温度下隔夜培养,如培养基含有血液,则需再置于室温1天,以检查嗜冷菌。选择性培养基因含有抑制物质,能抑制许多微生物,因此,可加入10倍量的无菌液体培养基,稀释抑制物质,以利于检出污染菌。即使做过无菌试验,接种时,也要检查每个平板上的可见菌落。(3)性能测试:每一批新制或新购的培养基,使用前均须取已知性质的库存菌种进行性能测试。培养基按目的不同可分为增菌培养基、分离培养基和鉴定培养基。①增菌培养基:接种少量难以生长的细菌,在一定时间内观察增菌情况,细菌能生长的最小接种浓度越小,说明增菌培养基性能愈好。②分离培养基:要求目的菌生长良好,非目的菌被抑制。一般要求生长的目的菌接种量不可过多,较好的方法是将测试菌调成0.5麦氏浊度的菌悬液,再用0.001ml的标准接种环涂划在培养基上,观察菌落生长。③鉴定培养基:应选择具有典型特征的菌株作性能试验。如三糖铁琼脂,须用弗劳地枸橼酸杆菌、福氏志贺菌及铜绿假单胞菌3种菌分别接种3支培养基,若反应结果为斜面产酸/高层产酸、硫化氢阳性,斜面产碱/高层产酸,斜面产碱/高层产碱,质量才算合格。

  • 培养基配制时的质量控制

    (1)容器:配制和分装培养基的烧瓶、平皿或试管等器材应为中性,无酸、碱抑制物残留,平皿底部要平,以免琼脂厚薄不一,影响药敏试验结果。(2)成分来源:各种成分来源可靠,不含对目的菌生长有抑制的物质。特殊要求的培养基,如葡萄糖氧化发酵试验(O/F 试验),除加入葡萄糖外,不能含有其他糖类,指示剂不能用乙醇溶液,避免O/F试验的假阳性。培养基配制用水应是蒸馏水。(3)pH值调整:根据培养基的不同要求调整pH 值,控制在要求范围的±0.2之内。应当注意,培养基在高压灭菌后其pH 值降低0.1~0.2,故矫正时应比实际需要p H值高0.1~0.2。(4)灭菌:根据培养基所含成分及配制数量的不同,选择不同的灭菌方式,既要达到灭菌效果,又不破坏培养基成分。一般对稳定的培养基,如MH琼脂、营养琼脂可用高压灭菌,即121℃15min ;而含糖的培养基则以108℃灭菌为好,以防止糖类破坏。不耐高热的物质如血清、牛乳等,可采用间隙灭菌法灭菌。(5)分装:根据使用的目的和要求决定分装量。分装培养基所用的平皿、试管要求清洁,不残留酸碱;制备平板培养基时,操作台要水平,以避免琼脂平板厚薄不一,同时确保无菌操作。

  • 空分气体分析仪新手上路之2——样品的制取

    前言:随着空分行业的的不断发展,气体分析仪(以下简称分析仪)由于其实时监测、快速准确,已逐步取代了手工分析在空分行业中的应用,从而变得越加普及。对于空分制氧机面言,所分析的样品绝大多数为气体,其测量的组分无非是氧、氮、氩、二氧化碳、水份、碳氢化合物、氮氧化合物、油脂等。即环境空气中所含有的常量或微量的元素及设备运行过程中所添加的物质。无论是何种样品,对于分析仪而言都是从工艺管道或容器中用取样器制取出样品后经管道输送到分析仪进行检测。分析仪作为一种产品质量检测及过程控制的仪器,即有同于一般热工仪表的特点,又有其自身的独特性。且无论何种分析仪,就其单独性而言就是一个完整的检测体系,有些甚至还配有一此复杂的样品预处理系统,这些都为分析仪的精确性提供了强有力的保证。但是如果所分析到的样品不能够及时的、有效的、具有代表性的反应实际工况的情况与变化;就算分析仪精度再高、准确性再强,也不能发挥其应有的作用,甚至会产生误导的作用。而这些往往也是检测人员及仪器维护人员经常所忽视的一个问题。本文就这个问题提出一点看法与同行们进行探讨。一、样品分析的及时性问题。样品分析的及时性是指所分析的样品能够以最快的速度进行分析。而影响样品分析的及时性主要是滞后,滞后一般而言由两种原因所引起,一是样品传送滞后时间,二是分析仪的响应滞后时间。对于现代分析仪而言,响应时间都比较迅速;一般都保持在T90<15S,因此相对较小。而气体分析仪一般都集中在分析小屋内以便维护与管理,距离工艺管道或容器的位置相对较远,被分析的气体传送至分析仪进行检测所花费的时间较长,由此产生的滞后时间占主导因素。滞后时间的运算一般有两种方式。一是体积流速计算法、二是压差流速计算法,而一般采用体积流速计算法较为便利。体积流速计算法如下式所示: Tt:总的样品传送时间,min; d:样品传送管线内径,m; L:样品管线传送长度,mVi:样品部件处理容积,m3; F:样品流速m3/min由上式我们可以得知,当管线越短,管径越小,处理部件越少,样品流速越大时,传送的时间则越少。但管径不能过小,否则样品的流速无法提高,甚至堵塞,造成样品无法分析。因此一般情况下样气分析管宜采用直径为6mm的管道即可。对于样品处理部件在能满足样气处理的前提下,越少越好。且处理部件不能有死体积。对于深冷法空分而言,气体相对较洁净,只须要在样气进分析仪之前加一直通型筛网除尘过滤器即可,筛网要多层,孔径要适中,过滤器的容积要小。对于样品流速,一般希望越大越好,而大部份分析仪对样气的要求都有一个明确的规定。不可过大或过小。因此要想加大样气流速就必须设置旁通流路及旁通阀。旁通阀应尽可能设置在靠近分析仪的位置。在能满足分析仪测量需求的前提下,一般旁通流量应越大越好,但也有些特殊情况除外(例如液态气体样品的取样)。二、样品分析的有效性问题样品的有效性又称准确性,是指样气中的各个组分和含量在从工艺管道或容器内传送到分析仪时未发生任何的改变,从而能够有效的、准确的提供给分析仪进行测量,对于样气的准确性影响有多种方面。1、管道材质对样气的吸附与解吸作用,此点对于常量分析影响较小,但对于微量分析则影响较大(例如气体中的微量氮、氧、水份、碳氢化合物、二氧化碳等检测)。2、死体积置换问题,如果在传输或样品预处理过程当中存在有较大的死体积,当样品组分变化时,由于死体积的作用,使变化的组分与死体积之间发生混匀作用,死体积越大,混匀时间就越长,样品失真的过程也就越长。此点无论是常量还是微量组分分析均有影响,特别是微量分析,可能造成长期的失真,甚至根本无法测量准确。3、管道的泄漏与渗透问题,1)当取样管道安装不到位或材质有缺陷时,样气则极易发生泄漏。虽然从表面上来看,由于取样管内样气压力一般均会高于环境气压,样气发生泄漏时,气体会从管道内向外流动,只会消耗掉部分样气,而样气中的各组成成分并不受影响。其实不然,由于环境空气中存在有大量的氧、氮、水分等气体;当发生泄漏时,由于外部气体的分压与样气管道内的气体组分的分压相差可能会有数万倍,环境空气中的氧、氮等气体分子将会沿着泄漏的部位逆着压力梯度渗透进入样气管道,从而改变了样气中的组分含量。2)当管道材质气密闭和抗渗透性不强时,环境大气中的一些气体分子将可能直接通过管道参透到样气当中。特别是水分,其渗透性较强,特别是当采用一些四氟乙烯管、乳胶管、白胶管之类管材时,水分极易发生渗透现象。当水分渗透时,不仅会改变样气中的水分含量,而且由于水分对氧分子具有溶解与解析作用,将会破坏了样气中氧气的成分,从而造成更深远的影响。由于一般情况下样气管道较长且绝大部分都是暴露在环境大气当中。因此,该类影响将非常严重。特别是对微量分析,将造成较大的偏差。4、鉴于以上几点可知,为了保证样气的有效性,应注意以下几点问题:1)在取样管道材质上应首选不锈钢管(304、316无缝不锈钢管)或盘式铜管,以防止吸附与渗透问题。2)布管时最好采用盘管(即一卷整管),从现场取样点到分析仪组柜接口处无接头连接。即使要使用接头,也必须是使用双卡套接头进行压接(密闭性好,死体积较小),且管件材质、规格应与管子相匹配,不可使用大管套小管的焊接方式连接(死体积大)。3)管道应预先进行退火处理,以便于弯曲施工及连接。但弯曲的角度不宜过大(弯曲夹角不应小于90度),管径要适中,一般选用管径为6mm,壁厚在1mm的管道。4、管道内壁应预先进行过抛光处理(对微量组分分析影响较大),且内、外壁均应洁净、干燥、无油脂类物质,否则必须进行清洗、脱脂。三、样品分析的代表性问题样品的代表性是指从工艺管道或容器当中所取出的样品应能实际反应工艺流体的性质、组成及含量。要想做到此点,取样的位置至关重要,应满足以下几点:1、取样点应位于能反映工艺介质性质和组成变化的灵敏点上。2、取样点应位于对过程控制最适宜的位置,以避免不必要的工艺滞后。3、取样点最好能位于工艺压差构成快速循环回路的位置上。4、取样点应选择在不影响样品组成、性质、含量的情况下,样品的温度、压力、清洁度及干燥度和其他条件尽可能满足分析仪要求的位置,以便使样品的预处理部件降至最少。一般认为,在大多数气体或液体管线当中,只有当介质产生湍流时才能够完全混合。因此取样点最好布置在被测介质产生湍流的位置,才能保证样品具有真正的代表性。取样点可布置在一个或多个90°的弯头之后,紧接最后一个弯头的顺流位置上,或选在节流元件下游一个相对平静的位置上(不要紧靠节流元件)。应尽可能避免在一个相当长而直的管道下游取样,因为这个位置流体的流动往往处于层流状态,管道的横截面上易产生一个浓度梯度。而且不要在管壁或容器壁上直接钻孔取样,因为在这个位置上的样品,长期处于层流状态,样品得不到混合。即使处于湍流状态。由于管道或容器内壁对样品的吸附与解吸作用,使样品容易发生异常的变化,与实际工况不符(特别是微量分析影响较大)。应采用专用的取样探头组件进行取样。一般样品取样可采用剖口呈45°的杆式取样探头,插入管道或容器内30mm左右(或管内径的三分之一)。当管道为水平时,如是气体取样探头应从管顶部插入,以避开可能的凝液或液滴;如是液态气体取样应从管道侧壁插入,以避开管道上部可能存在的蒸气和气泡,以及管道底部可能存在的残渣和沉淀物。如若是垂直管道,从管道侧壁插入,且应从下至上流动的管段中取出,以避免下流液体流动不正常时的气体混入。5、低温液态气体的取样问题在空分制氧机的运行当中,经常需要对低温液态气体中的组分及含量进行分析,例如下塔富氧液空中的氧含量、下塔液氮、污液氮的纯度及主冷液氧中碳氢化合物。这些组分在工艺流程当中都是以低温液态的形式存在。而分析仪所分析的样品必须是常温气态形式。因此这些低温液态气体必须转换成常温气态形式后经管道输送至分析仪进行分析,这就导致样品在取样的过程中发生了相变。由于样品中各组成成分的沸点不同,当样品发生相变时,单位体积中各组分蒸发的程度各不相同,因此当样品从液态转变成气态时单位体积中的各组分含量就容易发生改变。现以下塔富氧液空为例,进行简单的一个分析与同行们进行探讨。下塔的富氧液空,在正常工况时其温度一般均在-170~-195℃之间(受下塔压力及其自身组份的变化影响),而其含氧量因受进塔空气的氧浓度(20.9%O2)的限制总要比它的平衡浓度低一些(例:下塔压力为0.55Mpa与氧含量20.9%的蒸汽相平衡的液体中氧浓度为40.8%,而实际液空中氧含量应更低)。液空的取样一般是直接从下塔底部或是在下塔去上塔的液空管道中取出,以5%的斜度向上倾斜,并在靠近冷箱约800mm处做一向上的弯管,高度为6—10的管道直径,有的在引管的向上捌点处加还设一个加热器,以避免液体在5%的倾斜处存在气、液两相的现象,从而能使液体完全气化,此种设计在液位计正相管是完全适用的,因液位计在正常使用时,其引压管内部的气体是股“死气”,它只是作为压力传送的媒介而已,并不存在流通性,而气体成份分析则不同,低温液态气体气化后生成的气体在源源不断的流出,始终保持流通性,且为了防止分析结果的滞后,往往将取样管路的旁通阀调至较大,这样就加速了气体的流通,管道内就很可能存在气液夹带的现象,下表1是笔者在保证液空进样流量不变,改变旁通流量时,进行的一个重复性试验所得的一组数据。(在工况相对稳定,使用仕富梅4100系列氧分析仪进行测量)表1进样流量(L/h) 1.2 1.2 1.2 1.2 1.2 1.2旁通流量(L/h) 0

  • 铝钒土熔融制样法?????急

    我们这里需要具体的铝钒土熔融制样法,熔剂配比?脱膜剂配比?是否需要氧化剂?需要多高的温度?(我们的炉子最高1200摄氏度),敬请各位高手提供详细的方法,谢谢!!

  • 马丁氏培养基的配制

    一、目的要求 通过对分离真菌用的马丁氏(Martin)培养基配制,掌握对选择培养基的配制方法,并明确选择的原理。 二、基本原理 马丁氏培养基是一种用来分离真菌的选择性培养基。此培养基是由葡萄糖、蛋白胨、KH2PO4、MgSO4•7H2O、孟加拉红(玫瑰红,Rose Bengal)和链霉素等组成。其中葡萄糖主要作为碳源,蛋白胨主要作为氮源,KH2PO4和MgSO4•7H2O作为无机盐,为微生物提供钾、磷和镁离子。而孟加拉红和链霉素主要是细菌和放线菌的抑制剂,对真菌无抑制作用,因而真菌在这种培养基上可以得到优势生长,从而达到分离真菌的目的。 马丁氏培养基配方如下: KH2PO4 1g MgSO4•7H2O 0.5g 蛋白胨 5g 葡萄糖 10g 琼脂 15—20g 水 1000ml pH 自然 此培养液1000ml加1%孟加拉红水溶液3.3ml。临用时每100ml培养基中加1%链霉素液0.3ml。 三、器材 KH2PO4,MgSO4•7H2O,蛋白胨,葡萄糖,琼脂,孟加拉红,链霉素; 试管,三角烧瓶,量筒,玻棒,培养基分装器,扭力天平,牛角匙,高压蒸汽灭菌锅等。 四、操作步骤 1.称量和溶化 按培养基配方,准确称取各成分,并将各成分依次溶化在少于所需要的水量中。待各成分完全溶化后,补足水分到所需体积。再将孟加拉红配成1%的溶液,在1000ml培养液中加入1%的孟加拉红溶液3.3ml,混匀后,加入琼脂加热溶化(方法同实验十九)。 2.分装、加塞、包扎、灭菌,无菌检查与实验十九相同。 3.链霉素的加入 由于链霉素受热容易分解,所以临用时,将培养基溶化后待温度降至45℃左右时才能加入。可先将链霉素配成1%的溶液,在100ml培养基中加1%链霉素液0.3ml,使每毫升培养基中含链霉素30μg。

  • 化学需氧量(COD)预装管试剂的配制

    群里的大神们,有谁知道化学需氧量(COD)预装管试剂的配制方法么?我们老板丧心病狂,说COD预装管贵的,让我研究一下自己配预装管,具体是哪几种试剂?各比例是多少?

  • 氢氧化四丁基铵的配制?

    请教如何配制氢氧化四丁基铵标准溶液?中国药典和欧洲药典中配制和标定都不一样,不知道该采用何种方法

  • 培养基的配制原理

    原理培养基是人工地将多种物质按各种微生物生长的需要配置而成的一种混和营养基质,用以培养或分离各种微生物。因此,营养基质应当有微生物所能利用的营养成分(包括碳源、氮源、能源、无机盐、生长因素)和水。根据微生物的种类和实验目的不同,培养基也有不同的种类和配制方法。操作步骤1、计算称量 根据配方,计算出实验中各种药品所需要的量,然后分别称(量)取。2、溶解 一船情况下,几种药品可一起倒入烧杯内、先加入少于所需要的总体积水进行加热溶解。加热溶解时,要不断搅拌。如有琼脂在内,更应注意。待完全溶解后,补足水分到需要的总体积。3、调节pH 用滴管逐滴加入1N NaOH或lN HCl边搅动;边用pH试纸测其pH值,直到符合要求时为止。4、过滤 要趁热用四层纱布或滤纸过滤。5、分装 按照实验要求进行分装。6、加塞 培养基分装好以后,在试管口或烧瓶口上应加上棉塞。7、灭菌 在塞上棉塞的容器外面再包一层牛皮纸,便可进行灭菌。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制