当前位置: 仪器信息网 > 行业主题 > >

中红外光谱

仪器信息网中红外光谱专题为您提供2024年最新中红外光谱价格报价、厂家品牌的相关信息, 包括中红外光谱参数、型号等,不管是国产,还是进口品牌的中红外光谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中红外光谱相关的耗材配件、试剂标物,还有中红外光谱相关的最新资讯、资料,以及中红外光谱相关的解决方案。

中红外光谱相关的论坛

  • 中红外光谱

    [color=#444444]请问中红外光谱能测定什么呢?好多文献关于茶叶的测定都是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],中红外可以吗?农药残留可以用中红外嘛?[/color]

  • 中红外光谱仪光源问题

    小弟刚接触红外光谱仪,最近在搞一个中红外项目。使用的检测器是热释电红外检测阵列,光源为卤素灯。由于刚接触,所以对现在市场上的红外光谱仪使用的光源不是特别了解。所以想请问一下现在市场上的红外光谱仪(特别是进口仪器)所使用的光源大多数都是什么?不知道现在市场上有用热释电红外检测阵列做检测期间的么,如果有的话有什么品牌可以推荐么?谢谢!~~~~注:我现在的项目为便携式一起,故体积太大,重量太大的光源就不适合了

  • 近红外光谱与中红外光谱相比,各有哪些技术优势?

    [font=宋体]中红外光谱主要为基团基频振动的吸收,其吸收光谱强度大,灵敏度高,光谱指纹性相对较强,图库最为齐全,适合于化合物的结构鉴定,但存在光谱检测需要制样、光谱仪器易受环境影响的缺点;而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]主要为含氢基团的倍频及合频吸收,虽然存在吸收光谱强度弱、灵敏度低、光谱指纹性差的缺点,但具有测样方式简单灵活、光谱仪器成本低、信噪比高、环境适用性强的优势,在工业、农业等各领域应用广泛。[/font]

  • 红外光谱在中药指纹图谱研究中的应用

    转载:红外光谱在中药指纹图谱研究中的应用红外光谱在中药指纹图谱中的应用一直不被人们所重视,原因有很多,但我觉得主要是由于传统观念认为红外光谱的专属性差而不足以起到鉴别真伪的作用。在这里我想谈一下现阶段的理论突破,希望能引起足够的重视。中草药的发展历史是以中国药剂学独特的、内在的整体理论为基础的,它倡导的是药物的总体治疗效果。因此,研究药物的单一成分不足以判断药物的功效。像质谱和HPLC等现代分析手段已经大大促进了中药鉴定和区分药物有效成分的能力。然而这些技术的应用往往只着眼于特定化学成分的研究,因此违背了将存在相互作用的多种成分混合在一起来分析的整体观念。20世纪80年代后期曾出现过红外光谱法鉴别中药的某些报道,但由于光谱总体解析知识的贫乏、思路上的保守和缺乏交叉学科的相互渗透,其进展并不显著。。20世纪90年代后期以来,出现了将红外光谱法与计算机辅助解析技术有机的结合应用于中药鉴定的若干报道。二维相关红外分析通过交叉计算获得高分辨的“指纹图谱”作为中药宏观质量判别的依据。虽然各种中草药常常都是由数以百计的成分所组成,但由于各自所含化合物的组成不同,各种化合物的比例也有差异,其红外指纹图谱就不可能相同。将红外光谱技术应用于中药的全面质量控制是一种思路上的创新。

  • 中红外光谱的预处理方法

    各位前辈好: 本人是初学光谱者,想问一个简单的问题,就是一般中红外光谱的预处理方法都是有哪些呢,和近红外一样么

  • 【求助】中红外光谱

    [em09508],我们公司有台傅立叶变换的中红外光谱仪,但是仪器的验证资料,没有,一直都是按照普通光谱仪验证作,那位大虾能告诉我应该做哪些项目?还有这台光谱仪最近在1500-2000cm-1处总是噪音很大,影响到了样品光谱,这是什么原因呀!急!谢谢~!

  • 红外光谱仪与傅立叶变换红外光谱仪的区别

    大侠们,您们好: 红外光谱仪与傅立叶变换红外光谱仪的区别是什么啊,傅立叶红外是不是一种先进的红外啊,能够代替做中药检测用的红外啊。 做空气中的游离二氧化硅检测必须用傅立叶红外吗 谢谢。。

  • 【原创】近红外与中红外光谱分析的区别

    近红外与中红外光谱分析的区别 是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。 1800年,Herschel 首次发现了NIR光谱区 1900年前后,NIR光谱仪器使用玻璃棱镜和胶片记录器,其光谱范围局限于700 nm—1600 nm。50年代的商品NIR光谱仪使用硫化铅光敏电阻作检测器,其波长范围能延伸至3000 nm,能用于定量分析,但,由于NIR消光系数低和谱带宽而解析困难,该技术并没有获得广泛应用。60年代,Karl Norris 使用漫反射技术对麦子水分、蛋白和脂肪含量进行研究,发现NIR光谱用于常规分析的实用价值。随计算机发展和化学计量学(Chemometrics)诞生,NIR和化学计量学结合产生了现代NIR光谱学。NIR最先应用于农业领域。80年代,光谱仪器制作和计算机技术水平有了大的提高,NIR被广泛应用于在工业和其它领域。近几届匹司堡分析仪器会议上,NIR已成为红外光谱分析报道的热点。NIR在线分析应用给石化工业带来了巨大经济效益,更是引人注目。 根据红外辐射在地球大气层中的传输特性,通常分为近红外(0.75μm到3μm)、中红外(3μm到30μm)、远红外(30μm到1000μm)。 主要区别是波长不同,应用领域不同。 红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒物、药物等诸多方面,在未知化合物剖析方面具有独到之处。 (NIR)分析技术是近年来分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外区域按ASTM定义是指波长在780~2526nm范围内的电磁波,是人们最早发现的非可见光区域。由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]“沉睡” 了近一个半世纪。直到20世纪50年代,随着商品化仪器的出现及Norris等人所做的大量工作,使得[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,从此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进入了一个沉默的时期。80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在测样技术上所独有的特点,使人们重新认识了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的价值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在各领域中的应用研究陆续展开。进入90年代,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在工业领域中的应用全面展开,有关[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进入一个快速发展的新时期。 我国对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的研究及应用起步较晚,除一些专业分析工作人员以外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器、化学计量学软件、应用模型)的公司仍是寥寥无几。随着中国加入WTO及经济全球化的浪潮,国外许多大型分析仪器生产商纷纷登陆中国,想在第一时间占领中国的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析仪器市场。由此也可以看出[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界炙手可热的发展趋势。在不久的未来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在分析界必将为更多的人所认识和接受。 现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。 与常规分析技术不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是一种间接分析技术,必须通过建立校正模型(标定模型)来实现对未知样品的定性或定量分析。具体的分析过程主要包括以下几个步骤:一是选择有代表性的样品并测量其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];二是采用标准或认可的参考方法测定所关心的组分或性质数据;三是将测量的光谱和基础数据,用适当的化学计量方法建立校正模型;四是未知样品组分或性质的测定。由[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的工作过程可见,现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术包括了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]、化学计量学软件和应用模型三部分。三者的有机结合才能满足快速分析的技术要求,是缺一不可的。 与传统分析技术相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。因为建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法之前必须投入一定的人力、物力和财力才能得到一个准确的校正模型。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。加之其独有的诸多优点,决定了它应用领域的广阔,使其在国民经济发展的许多行业中都能发挥积极作用,并逐渐扮演着不可或缺的角色。主要的应用领域包括:石油及石油化工、基本有机化工、精细化工、冶金、生命科学、制药、医学临床、农业、食品、饮料、烟草、纺织、造纸、化妆品、质量监督、环境保护、高校及科研院所等。在石化领域可测定油品的辛烷值、族组成、十六烷值、闪点、冰点、凝固点、馏程、MTBE含量等;在农业领域可以测定谷物的蛋白质、糖、脂肪、纤维、水分含量等;在医药领域可以测定药品中有效成分,组成和含量;亦可进行样品的种类鉴别,如酒类和香水的真假辨别,环保废弃物的分检等。 相信随着科学技术的不断发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术这一先进的技术必将得到广泛的认同和应用。

  • 中红外光谱解析

    [color=#444444]刚接触中红外,想请问在解析中红外光谱时,除了关注出峰的位置,峰形及峰高有什么分析意义?[/color]

  • 五分钟了解电化学原位红外光谱

    本作品对电化学原位红外光谱这个热门的分析方法进行了一个全面的梳理,首先介绍了电化学原位红外光谱的定义,重要意义及应用领域;然后阐明了电化学原位红外光谱中常用的两种采样模式及其原理,并根据各自特点选取相

  • 红外光谱仪的应用

    红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。红外光谱仪的特点如下:1、 只需三个分束器即可覆盖从紫外到远红外的区段;2、 专利干涉仪,连续动态调整,稳定性极高;3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;4、 智能附件即插即用,自动识别,仪器参数自动调整;5、 光学台一体化设计,主部件对针定位,无需调整。红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。红外光谱仪还应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。(选自网络)

  • 【求助】求石棉的红外光谱图

    现单位要用红外光谱仪检测石棉,目前我只有温石棉的红外光谱图,闪石石棉的五种石棉的红外光谱图都没有。请有闪石石棉红外光谱图的朋友能够慷慨共享,小弟万分感激!

  • 纺织业中如何运用红外光谱仪、激光器等

    随着纺织工业的发展和纺织工艺更高要求,对高科技纺织检测仪器需求也日益增大。新的纺织机械和设备给纺织工业带来了前所未有的发展和突破。 在纺织工业中,多种高新技术,如红外光谱、激光、图像处理技术等都已得到广泛应用。红外光谱技术主要用于纺织纤维鉴别,利用红外光谱仪来进行操作。使用红外光谱仪能够快速对全部光谱进行千次扫描,并在同一时刻收集光谱中所有频率的信息。通过对纺织纤维红外光谱图的分析,就可以对混纺织物比例进行定量分析,灵敏度和效率都十分高。 激光检测技术在纺织中的应用十分广泛,可以用于验布,检测织物起球、毛羽及其粗糙度,检测织物纬斜,测定纱线直径、条干不匀、纱疵与纤维性能等众多领域,通过激光器来进行操作。 织物表面有没有疵点,可以利用激光辐射来检测。光电接收器光照度无规律变化时,就表示出现比较明显的疵点,通过图像分析器就能够显示结果。同时激光可以对起球织物进行客观评价,利用激光传感器通过三角测量技术检测织物粗糙度,精确度和效率都大幅提升。 图像处理技术也被应用于纺织行业多个领域,如纺织检测技术与纺织仪器开发、织物仿真CAD系统等。图像处理技术不仅能够促进纺织仪器的更新换代,而且能够利用模拟方法开发织物面料产品的软件,并可以对纱线进行检测。

  • 【红外光谱专家系列讲座】:8月4日 红外光谱联用技术

    【专家讲座】:红外光谱联用技术【讲座时间】:2015年08月04日 10:00【主讲人】:周群 (多年来一直从事红外、拉曼光谱的研究工作。主要研究领域为二维相关光谱,分子光谱法与文物鉴定,中药及食品的宏观质量控制。)【会议简介】第四讲:红外光谱联用技术内容提要:红外光谱显微成像技术的原理与应用,原子力显微镜-红外光谱联用技术的原理与应用,飞秒激光二维红外光谱的原理与应用,拉曼光谱-红外光谱联用技术的原理与应用,气相色谱-红外光谱联用技术的原理与应用,热重分析-红外光谱联用技术的原理与应用,流变仪-红外光谱联用技术的原理与应用。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年08月04日 9:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/15664、报名及参会咨询:QQ群—379196738

  • 近红外光谱仪、红外光谱仪有什么区别?

    近红外光谱仪、红外光谱仪有什么区别?咱们常规使用的紫外可见分光光度计,似乎只可以液体测量?而我见到过近红外光谱可以液体测量,也可以固体直接扫描测量,红外光谱是不是像近红外一样的测量样品呢?

  • [转帖]红外光谱原理概述

    红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。  红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。  由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。  分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。  人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。  另外,随着电子技术的日益进步,半导体检测器已实现集成化,焦平面阵列式检测器已商品化,它有效地推动了红外成像技术的发展,也为未来发展非傅里叶变换红外光谱仪创造了契机。随着同步辐射技术的发展和广泛应用,现已出现用同步辐射光作为光源的红外光谱仪,由于同步辐射光的强度比常规光源高五个数量级,这能有效地提高光谱的信噪比和分辨率,特别值得指出的是,近年来自由电子激光技术为人们提供了一种单色性好,亮度高,波长连续可调的新型红外光源,使之与近场技术相结合,可使得红外成像技无论是在分辨率和化学反差两方面皆得到有效提高。

  • 近红外光谱的产生及光谱特征

    近红外光谱的产生及光谱特征

    近红外光是电磁波,它具有光的属性,即同时具有“波”“粒”二重性。从光源发出上海牙防所的近红外光照射到由一种或多种分子组成的物质上,假如分子没有产生吸收,则光穿过样品,该物质分子为非红外活性分子,否则,为红外活性分子。只有红外活性分子中的键才能与近红外光子发生作用,产生近红外光谱吸收。所有近红外光谱的吸收谱带都是中红外吸收基频(4000~1600cm-1)的倍频及合频,由于分子的合频、倍频振动是跃迁禁阻的,谱带强度较弱。  正是近红外光谱具有:近红外区域的信号能量较弱,具有漫反射、散射、穿透深度大、透过玻璃不产生吸收等特征,赋予了近红外光谱分析一些独特的魅力,如样品可以不经过预处理,直接检测种植牙各种类型的样品,除液体外,还可检测粉末、纤维、糊状、乳状等形式样品。同时,构成近红外谱带的背景非常复杂,从近红外提取的是弱信号,通常使用化学计量学方法。

  • 中红外和近红外光谱有什么区别

    [color=#444444]老师想让我做中红外光谱对食品物质含量的测定,比如多糖,蛋白质等物质的测定。我查了相关文献都是用近红外做的,想问一下中红外和近红外有什么区别,中红外可以实现快速测定吗[/color]

  • 红外光谱

    红外光谱系研究化合物分子结构的有力工具之一,它可广泛应用于化学、皮革、造纸、医学、硅酸盐、食品发酵、生物代谢、石油化工等领域。 红外光谱水仅对单组份进行定性、定量分析,亦可对测定化学反应速度和研究化学反应机理,还可测定分析的键长、键岗、以及推定出分子的立体构型,可根据它的力常数知道化学的强弱。红外光谱可区分由不同原子和化学键所组成的物质以及识别各种同分异构体。可对无机化合物,金属有机化合物组合物进行鉴定。 红外光谱不受样品相态的限制,无论是固态、液态以及气态均可直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体也可直接获得其光谱。

  • 求助~~~~~测试红外光谱

    有几个问题向各位请教:1 测试红外光谱时使用的氯化钠和溴化钾使用的波数范围各为多少???2 为什么红外光谱时连续的曲线图谱??3 压片太厚,红外光谱有何变化???

  • 5月11日苏州红外光谱培训通知

    file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps4C18.tmp.png关于举办“红外光谱分析技术与应用”培训班的通 知各有关单位:红外光谱作为经典、传统的分子结构分析手段之一,已历经百多年的发展。该方法至今仍然在官能团结构解析、未知物结构鉴定中占有独特且无法取代的地位。甚至在复杂混合物体系的分析中红外光谱法也独具导向作用,展示出无与伦比的活力。尤其是从90年代后期以来,红外光谱测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。随着仪器制造和计算机技术的发展,以及统计学和化学计量学方法被广泛地应用于红外光谱的数据分析,使红外光谱技术已经和正在逐步地被用于现场应急分析和在线过程分析。为提高红外光谱分析与应用技术水平,系统了解国内外红外光谱的检测标准,缩短国内外在该技术上的掌握和应用上的距离,中仪标化(北京)技术咨询中心2015年5月11日在苏州举办红外光谱分析技术与应用技术培训班,特聘请国内知名专家授课。具体内容如下:一、 授课专家孙素琴 教授 清华大学化学系教授。主要研究领域为红外光谱法在复杂混合物体系中的应用,建立了“多级红外光谱宏观指纹分析法”等用于混合物体系分析的理论。兼任北京市理化测试技术协会常务理事和光谱分会副理事长,中国物理学会光散射专业委员会委员,《光谱学与光谱分析》和《中华中西医杂志》常务编委,《光散射学报》和《现代仪器》编委。目前已发表学术论文200余篇,获发明专利3项,出版专著三部。周 群 博士 清华大学化学系副教授。研究领域为分子光谱。多年来一直从事红外、拉曼光谱的研究工作。主要研究重点为中药材的快速无损分析和中药材稳定性的研究,以及采用分子光谱法结合二维相关技术对中药和食品进行宏观质量控制的研究。兼任《计算机与应用化学》常务编委、《光谱学与光谱分析》编委等。二、培训内容(一)红外光谱基础理论知识(1)基础知识分子光谱概述;红外光谱发展史;分子光谱振动理论;基本术语。(2)红外光谱解析红外光谱与分子结构;红外光谱解析三要素;常见化合物的红外光谱解析、混合物红外谱图的解析方法、近红外光谱解析(3)红外光谱定量分析基础包括郎伯-比尔定律和峰高度和峰面积的计算等。(4)红外光谱分析的特点(5)红外光谱分析的新进展(二)红外光谱仪器设备与操作(1)红外光谱仪器的基础知识仪器的发展;仪器的主要部件(光源、分光系统和检测器);傅里叶变换红外光谱仪;色散型红外光谱仪;红外光谱的主要干扰及其消除(2)红外光谱仪的主要技术指标分辨率、信噪比、稳定性波数和光度重复性、波数和光度准确度、背景能量分布和谱图的质量评价等(3)红外光谱制样技术常规制样技术、采样技术、联用技术和低温红外光谱技术等(4)红外光谱仪的使用日常分析操作和仪器使用要求及注意事项。(5)红外光谱仪的维护日常维护、分束器、检测器、光源的维护,常见故障与排除,紧急情况的处理原则等(6)红外光谱仪的仪器校准和期间核查仪器校准和期间核查(三)红外光谱分析结果的数据处理(1)红外光谱数据分析的特点(2)常规数据处理技术坐标转换、基线校正、光谱平滑、光谱归一化、光谱求导、光谱差减、光谱去卷积等其他数据处理方法。(3)多元数据处理技术光谱比对、光谱检索、模式识别、定量分析和二维相关红外光谱技术。(四)红外光谱分析标准与应用(1)红外光谱分析方法常见通用技术规范一红外光谱分析方法通则、傅里叶变换红外光谱仪检定规程、色散型红外光谱仪性能规范、红外光谱定性分析方法通用技术规范、法庭涂料的检定和比较指南。(2)红外光谱法在燃油、润滑油分析中的应用应用示例:测量脂肪酸甲酯的含量。(3)红外光谱法在半导体产品分析中的应用应用示例:测量硅单晶中III、V族杂质的含量。(4)红外光谱法在刑侦技术领域的应用应用示例:微量物证的理化检验。(5)红外光谱法在高分子材料分析中的应用应用示例:橡胶分析。(6)红外光谱法在药物分析中的应用应用示例:化学药、化学原料药等的红外光谱分析;中药红外光谱分析通用方法;中药无机成分的鉴别;中药活性成分的鉴别。(7)红外光谱法在食品、保健品分析中的应用应用示例:食品及油脂中反式脂肪酸含量的检测;奶粉主要营养成分的整体分析(8)红外光谱法在生物医学分析中的应用应用示例:生物可降解材料的快速筛选。(9)红外光谱法在宝石鉴定中的应用应用示例:翡翠鉴定。(10)近红外光谱分析方法标准与应用实例标准示例:近红外分析定标模型验证和网络管理与维护通用规则;应用示例:测定稻谷中蛋白质的含量。(五)红外光谱分析方法常见通用技术规范二(1)红外光谱分析方法通则(2)傅里叶变换红外光谱仪检定规程(3)色散型红外光谱仪性能规范(4)内反射光谱法规范(5)红外显微分析方法通用规范(6)GC/IR通用技术规范(7)TGA/IR通用技术规范(8)LC/IR通用技术规范(9)红外光谱定性分析方法通用技术规范(10)红外光谱定量分析方法通用技术规范(11)红外光谱多元定量分析规范(12)多元校正方法验证的规范(13)开放光路FTIR测量气体和水蒸汽的技术规范(14) 法庭涂料的检定和比较指南。三、培训对象各单位负责化学分析及红外光谱仪器的等相关人员四、培训时间、地点、收费2015年05月11日-05月15日 苏州(05月11日全天报到)2015年11月02日-11月06日 重庆(11月02日全天报到)培训费2500元包括授课费、讲义、考核、证书、午餐费;住宿统一安排,费用自理(第二轮报到通知标明)优惠措施:1、 开班前一周报名并汇款或中仪标化往期学员本人报名,培训费优惠100元/人2、 团体报名,培训费6人免费1人,在校学生报名,培训费3人免费1人五、培训考核与发证培训结束后由经考试合格颁发“红外光谱分析技术及应用”培训合格证书;六、报名事宜1、报名者请尽早按要求填写《培训班报名回执》传真、E-mail或者网站报名。2、开班前一周,向您函发正式报到通知,报到时间、地点等事宜将在正式报到通知中说明。全国统一咨询热线:010-57146768 咨询电话:15711486005报名传真:010-61772365(人工) 报名Q Q:1846223526报名邮件:fxyq001@126.com 联系人:周志华

  • 近红外光谱技术在食品检测中的应用

    [font=宋体][font=宋体]由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术具有诸多优点,其技术在食品营养成分、品质、微生物、真实性以及有害物质检测等众多方面得到了广泛的应用,见图[/font][font=Times New Roman]6-[/font][/font][font='Times New Roman']6[/font][font=宋体]所示。[/font][align=center][img=,458,315]https://ng1.17img.cn/bbsfiles/images/2024/06/202406261013492017_4580_4070220_3.png!w690x493.jpg[/img][b][font='Times New Roman'] [/font][/b][/align][align=center][font=宋体]图[/font][font='Times New Roman']6-6[/font][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在食品检测中的应用[/font][/align][b][font='Times New Roman']1. [/font][font=宋体]蛋白质检测[/font][/b][font=宋体]凯氏定氮法是蛋白质检测的常规手段,其实验操作繁琐,耗时较长,需要强腐蚀性化学试剂,是一种破坏性分析手段,检测样品无法进行二次销售。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术具有快速无损的优势,可实现乳品、肉制品等食品中蛋白质的测定。此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术还可实现氨基酸态氮的定量检测。氨基酸态氮含量是判定酱油、醋等调味品质量的重要指标之一,常规氨基酸态氮的检测手段有双指示剂法以及电位滴定法,操作复杂且耗时较长,不利于快速无损检测。[/font][b][font='Times New Roman']2. [/font][font=宋体]碳水化合物检测[/font][/b][font=宋体]食品中碳水化合物主要包括淀粉、纤维素、蔗糖、葡萄糖和果糖等,是食品中重要的营养素以及风味物质。通常,食品中不同种类碳水化合物用途不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现对不同碳水化合物的定性定量分析。因具有快速无损的优势,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术被广泛用于水果中糖类、大米中淀粉等物质的测定。[/font][b][font='Times New Roman']3. [/font][font=宋体]脂类物质检测[/font][/b][font=宋体]食品中脂类物质的传统检测手段是索氏提取、酸水解法等,存在耗时长,无法同时实现大批量样品检测等弊端。近年来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术被广泛用于肉制品、大豆、核桃、鸡蛋等食品中脂类物质的快速测定。[/font][b][font='Times New Roman']4. [/font][font=宋体]酸度检测[/font][/b][font=宋体]酸度是食品风味呈现的重要部分之一。食醋是一种历史悠久的酸味调味剂,而有机酸是评价食醋品质的重要指标之一。传统分析手段如滴定法、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法等存在检测时间较长、样品无法二次销售等缺点,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现食品中酸度的快速无损测定,具有较好的预测精度和稳定性。[/font][b][font='Times New Roman']5. [/font][font=宋体]水分检测[/font][/b][font=宋体]水分是食品品质的重要指标之一,如肉的嫩度与水分紧密相关。传统水分分析手段多为直接干燥法、减压干燥法、蒸馏法以及卡尔费休法等,但实验操作复杂且耗时较长。由于水分对近红外有强吸收,故[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现食品中水分含量准确、快速、无损的测定。[/font][b][font='Times New Roman']6. [/font][font=宋体]其他[/font][font=宋体]化学成分检测[/font][/b][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术还可实现酒中酒精度、黄酮、茶叶中的茶多酚和咖啡碱、油脂中的酸价和过氧化值等化学成分和指标的无损检测。[/font][b][font='Times New Roman']7. [/font][font=宋体]食物微生物检测[/font][/b][font=宋体]微生物中的核酸、蛋白质等成分产生的光谱信息不同。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可用于微生物的定性和定量检测,如食品中菌落总数、致病菌、霉菌以及毒素的检测,还可用于微生物发酵过程中活菌数量的在线监测。[/font][font='Times New Roman'][font=宋体]然而[/font][/font][font=宋体],[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的灵敏度不高,[/font][font='Times New Roman'][font=宋体]较难实现痕量微生物的检测[/font][/font][font=宋体]。[/font][b][font='Times New Roman']8. [/font][font=宋体]食物真实性检测[/font][/b][font=宋体]近年来,假奶粉事件、地沟油事件、假酒事件等不断发生,一系列重大食品安全事件严重危害到广大人民的身体健康。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术因其快速、无损、简单、高效的优点,被广泛用于食品真实性检测,如乳制品的品种产地鉴别以及肉类、酒类和饮料掺假鉴别等。通过建立鉴伪模型,可以快速获得检测对象是否掺假、掺假种类及掺假比例等信息。[/font][b][font='Times New Roman']9. [/font][font=宋体]食物污染物检测[/font][/b][font=宋体]现有研究表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可用于乳制品中三聚氰胺、面粉中滑石粉等食品污染物的检测。然而,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术尚较难实现对于低含量的食品污染物如农药与兽药残留的检测,以及无近红外吸收的污染物如重金属等物质的准确定量分析。[/font]

  • 近红外光谱在复杂体系分析中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在复杂体系分析中的应用中国农业大学 严衍禄 李军会 赵龙莲本文所指“复杂体系分析”主要指谷物、食品、果品、中药等天然产品的无损分析。与常规复杂体系相比,天然产物的背景更加复杂;与中红外光谱的基频谱相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分子振动的各级倍频与合频,每种含氢基团在本谱区通常有五、六个以上的谱带,光谱更加重叠;与常规的液态样品分析相比,近红外无损分析受样品的状态、制样和进样条件等影响更加严重,使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]具有显著的统计性的波动。因此,“复杂体系分析”是复杂、重叠、变动的光谱中提取弱信息。与常规多组分分析不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]复杂体系分析需要采集样品的复杂背景、解析光谱的重叠、消除光谱的干扰因素实现弱信号分析,主要依靠化学计量学方法通过对光谱的预处理,用多元校正来实现分析。用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]做复杂体系分析的优点是:信息量极为丰富,而且本谱区的透过率强,适合做无损分析、在线分析、多组分同时分析、原位分析与瞬间分析等。因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析在农业、食品、药物等领域有着广泛的应用,并取得了极大的成功。在2000年的匹茨堡(PITTCON)会议上,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析被认为是所有光谱分析最受重视的一类分析方法。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析在复杂体系分析中的几个理论与实践问题:

  • 【原创大赛】近红外光谱技术中的水探针

    【原创大赛】近红外光谱技术中的水探针

    水是生命的源泉,是生命体系中的重要组成部分。在化学体系中,水是最简单的小分子之一,是水溶液的基本组成。因此,关于水分子的结构与功能研究一直是非常活跃的课题之一。但是,水分子在100 nm到100 μm的光谱区间都有吸收,在大部分光谱区域有很强的吸收,导致很多光谱技术难以用于水溶液体系或含水量较多的分析体系,如生物样品。在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区间,水的吸收相对较弱,在水分子的组合频(5150 cm[sup]-1[/sup])和一级倍频(6950 cm[sup]-1[/sup])有两个较宽的吸收峰。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可以测量水溶液体系或含水量较多的生物样品,并且可以无侵入、实时、动态地进行分析。同时,由于水的结构特点,使其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]很容易受到“扰动”因素的影响。当水分子的环境改变时,其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]将发生变化。在水溶液中,水的光谱包含着溶质的大量信息。 1984年,Inoue等研究了不同化合物溶液在高压条件下的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],发现水的结构随溶质及压力的变化而改变。2000年,Ozaki课题组采用近红外二维相关谱技术研究了人血清蛋白(HSA)随温度的变化,同时研究了温度对水化作用的影响。2005年,Czarnecki等同样采用近红外二维相关谱技术研究了水对N-甲基乙酰胺结构的影响。近年来,关于水分子在蛋白质稳定性、蛋白质内部的质子转移以及蛋白质构象变化中的作用也开展了大量研究工作。2006年,Tsenkova 教授在研究了不同质量牛奶制品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]特征的基础上首次提出了“水光谱组学(Aquaphotomics)”并开展了一系列研究工作。水光谱组学通过研究体系中“水”的光谱信息在温度和溶质(种类和含量)等的“扰动(perturbation)”下产生的变化,了解不同物质及含量对水结构产生的影响,然后再通过水的结构推断溶质的结构与功能。研究结果表明,水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸收模式的不同不仅可以作为生物标记物对疾病或异常状态进行无损诊断,而且可以作为“镜子”反映溶质的动力学过程。例如,利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合水光谱组学对大豆类植物叶片进行快速无损检测,利用水化层中水结构的不同实现了对大豆花叶病潜伏期的诊断。近期的研究工作表明,利用水光谱组学可以有效地提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于稀溶液定量分析的准确度和灵敏度,并应用于糖类旋光异构体的定量分析。 在我们的研究工作中,曾利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建立了温度和浓度的定量模型。2015 年以来,利用多级同时成分分析(MSCA)方法对水-乙醇-异丙醇混合液的温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行了分析,利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅可以建立温度的定量模型(QSTR),还可以建立混合体系中各组分含量的定量模型。利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术研究了葡萄糖对水结构的影响,通过水在一级倍频区吸收带的变化,讨论了葡萄糖对水的氢键结构的影响,并发现葡萄糖使水的有序结构增强,为解释糖类化合物在生物体系中的“保护作用”提供了新的依据。在近期的研究工作中,分别利用水的吸收谱带和葡萄糖的吸收谱带建立了溶液和血清样品中葡萄糖含量的定量模型,说明了水可以作为葡萄糖含量的传感探针。在化学计量学方法研究方面,对高阶解析算法进行了研究,如高维主成份分析(NPCA),平行因子分析(PARAFAC)和交替三线性分解(ATLD)等。发展了共因子分析(MFA)方法用于温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析,可以准确地对溶质进行定量分析。将该方法应用于实际样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析中,实现了人血清样品中血糖的定量分析。我们还对蛋白质的结构变化开展了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析。采用连续小波变换提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分辨率,通过分析人血清白蛋白(HSA)和水的光谱信息随温度的变化,研究了HSA二级结构的热变性过程,并发现水结构变化可以反映HSA的展开过程。进一步将该方法应用于复杂血清样本中,并结合蒙特卡罗-无信息变量消除法(MC-UVE)排除由于血清复杂性带来的干扰,筛选出与蛋白质特征吸收相关的变量研究了不同水结构在蛋白质的热稳定性过程中的变化。应用二维相关光谱研究了卵清蛋白受热形成凝胶的过程中水结构的变化,分析了不同水结构在凝胶形成过程中的变化顺序及功能。[align=center][img=MFA提取[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的水信息,690,589]https://ng1.17img.cn/bbsfiles/images/2018/10/201810081747522818_9206_2695586_3.png!w690x589.jpg[/img][/align] 今后,我们将利用更多[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的信息拓展水光谱组学的概念,开展光谱解析、特征提取等化学计量学方法研究,获取水溶液体系中水的结构及其随“扰动因素”(温度、溶质等)的变化,通过水的光谱信息及其随“扰动因素”的变化建立溶液体系(包括实际体系及生物体系等)的定量、定性分析方法,利用水的光谱信息探测和理解水在化学和生物过程中作用与功能。

  • 【分享】------近红外光谱在石油产品测试评定中的应用!

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在石油产品测试评定中的应用石油是一种主要由碳氢化合物组成的复杂混合物,对石油及其产品的组成和质量指标的测试,有利于有效地利用石油资源、选择合理加工条件和提高石油产品质量。 对石油及其产品的组成和质量指标的测定是依*化学分析、模似台架等手段。这些方法无一例外地存在如样品分析周期长、分析结果的精密度和精确度差、对操作人员要求高、实验条件苛刻、费用高和操作人员需要量大等缺点,从而不适合在线分析和工厂的质量控制分析,影响经济效益和产品质量,更不适合野外和快速分析。 于是,人们一直在探寻新的石油及石油产品的质量指标的测试方法,力求从根本上解决目前所存在的问题。这样,仪器分析法在石油及其石油产品分析中的应用就成为一个热门话题。这些方法测定的准确度及精度是鼓舞人心的,但普及存在一定困难[1]。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术作为一种被重新重视的分析方法[2],应用日趋广泛,与化学计量学结合产生了现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]学[3],非常适合于烃类功能团分析。油品的理化性质和使用性能与油品中各种功能团及其量有着密切的关系,Meyers[4]和Honigs[5]的研究工作证实了这点。1 油品中结构功能团的分析 组成石油及石油产品的有机化合物主要是碳氢化合物。石油产品主要结构基团有:甲基、亚甲基、次甲基、烯基、芳基。这些基团的测定,可用不同方法,如核磁共振和红外光谱法等。通过对烃类结构功能团的测定,可以完整地对有机烃类混合物进行表征,了解脂肪烃的支化程度、环烷烃和芳香烃的取代程度及不饱和烃的含量。 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可获得类似于'H NMR所取得的信息[6]。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区(800~2500nm)的光谱有3个重要的特征:(1)仅有x—H基团(X=C、O、S、N、P)产生吸收;(2)由于不同的C—H键振动存在不同的非谐振性常数,各基团的近红外吸收谱带较基频区分离得好,这种现象称之为“Self-Cleaning Effect”;(3)吸收强度随谱带级次的增加而迅速减小。为充分利用“Self-Cleaning Effect”,通常选第二泛频区(1100~1250nm)分析烃类混合物中的结构功能团。分析时,采用1cm的吸收池测定未经稀释的样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]。烃类的近红外吸收带的吸收系数与混合物中各功能团的浓度无关[7]。研究发现,饱和基团与芳基的吸收谱带相距甚远;链烃与环烷烃的亚甲基吸收带差别较小,吸收系数相同,通常作为一种基团来测定;次甲基吸收谱带的位置相当稳定,位置的偏移主要是由亚甲基吸收谱带的重叠引起的。因此,对饱和CH基团的分析不存在任何问题。 1100~1250nm光谱区的烃类的近红外谱各功能团的最大吸收互不重叠,通过联立方程的方法求解烃类混合物中各种结构功能团的量[8]。 对分子量为100~300的9种化合物中的各功能团含量测定结果的平均偏差为:±0.27(CH3), ±0.19(CHA), ±0.8(CH2)和±0.38(CH)。后两种功能团的测定偏差较大,可能是由于环烷烃的介入及采用简单的吸光度加合处理方法引起的[9]。 测定时,要考虑的另一个问题是温度。当温度变化幅度不大时,影响可以忽略不计。变化幅度较大时,则必须加以校正,或在恒温下进行测试。除上述介绍的联立方程法求解外,还可用多元校正方法来求得烃类混合物中各功能团的量。 可见,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在一定程度上可以代替氢核磁共振法对烃类的功能团进行分析,并且省时[10]。如果产品中仅含饱和烃,环烷烃中的亚甲基含量可通过IR/NIR法求得。由于链烃和环烷烃中的亚甲基具有相同的吸光系数,那么用NIR法可求得总亚甲基含量,从中减去IR法求得的链烃中亚甲基含量即为环烷烃中亚甲基的量。2 油品中主要烃类组成(芳烃、烯烃和脂肪烃)的分析[11] 这3类烃用荧光指示法测定最为精确, 但对操作人员要求高,且与测定用材料的性质有关,分析周期长及分辨力低。质谱法、高效液相色谱法、核磁共振法及超临界流体色谱法等,也能测定这几类烃,测定的准确度优于荧光指示法,但仪器价格昂贵,分析周期较长(20~60min)。一种较为理想的方法是HPLC法,它采用烯烃预集柱配以介电常数检测,分析标准物质时对3种结构类型烃测定的绝对误差在10%之内,但对操作人员有较高要求,分析周期也较长。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制