当前位置: 仪器信息网 > 行业主题 > >

磁性编码器

仪器信息网磁性编码器专题为您提供2024年最新磁性编码器价格报价、厂家品牌的相关信息, 包括磁性编码器参数、型号等,不管是国产,还是进口品牌的磁性编码器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁性编码器相关的耗材配件、试剂标物,还有磁性编码器相关的最新资讯、资料,以及磁性编码器相关的解决方案。

磁性编码器相关的资讯

  • 海顿科克推出全新的永磁式电机编码器
    海顿科克直线传动是直线传动领域的领军型企业,最近公司又推出了全新的应用于G4-25000系列电机上的编码器。 固态技术的应用使得该增量式编码器的结构极其紧凑,该编码器通过双检波电路,由一个信号芯片进行信号处理。在医疗设备、分析仪器或机器人行业中,为获得精准的位置反馈,就可以使用海顿公司的永磁式电机配套该编码器。 该64线正交脉冲编码器选用高性能的钕作为磁性材料,8位数字信号处理,每圈总计输出256个脉冲。该编码器有A/B相输出,相位差为90度。此外,还提供一个Z相脉冲即每转一个脉冲信号。该编码器最高每秒10000个脉冲,输出更新采样时间为100毫秒。 256脉冲磁编码器是普通光学编码器一个绝佳的替代品,几乎不受震动,冲击,灰尘和污染物等的影响和干扰。编码器可以使用一个3.3V或5V输入电压。它与海顿25000系列线性驱动结构配套使用,势必成为一个功能强大,结构紧凑的直线运动结构。 海顿G4-25000系列直线步进电机与市场其他同尺寸电机相比拥有更大的输出力,G4-25000产品使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承以保证产品在整个使用寿命中都能保持免维护和重复定位精度。 更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • 高精度、高分辨力绝对式光栅旋转编码器实现产业化
    高档数控机床与基础制造装备国家科技重大专项“高精度、高分辨力绝对式光栅旋转编码器”课题通过验收并实现产业化。  “高精度高分辨力绝对式光栅旋转编码器”是我国高档数控机床和基础制造装备急需的关键部件,被称为数控系统的“眼睛”。“十二五”期间,在国家科技重大专项的支持下,长春禹衡光学有限公司集中核心技术力量,成功解决了高精度、高分辨力绝对式旋转编码器的设计、制造、检测、应用等软硬件的核心问题,实现了高精度编码器的小型化和电子多圈计数,提高了光栅的生产效率,实现了编码器芯片功能的高度集成和编码数据的快速传输等,达到国际同类产品的先进水平,实现了系列化和产业化,年生产能力已达10万台。
  • 国内首创!光电编码器技术突破,多类仪器将摆脱进口
    p style="text-align: justify text-indent: 2em "8月29日,据中国高科技产业化研究会信息,经中国工程院院士尤政领衔的业内专家组评定,我国自主研发的高精度绝对式旋转光电编码器核心芯片及相关技术为国内首创,达国际先进水平。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 300px height: 200px " src="https://img1.17img.cn/17img/images/201908/uepic/6d62fd24-8c8c-4fa4-aee7-8ebf664f6ff4.jpg" title="我自主研发光电编码器核心技术取得突破.jpg" alt="我自主研发光电编码器核心技术取得突破.jpg" width="300" height="200" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "据介绍,旋转光电编码器是一种利用光电原理获取旋转轴转动角度变化的传感器,集光学、电子和精密机械技术于一体,广泛用于电梯、机器人、无人机、数控机床、精雕机、医疗器械等,是实现智能制造过程中不可或缺的高端控制传感器设备。/pp style="text-align: justify text-indent: 2em "据北京中微锐芯科技有限公司技术人员介绍,目前旋转光电编码器的核心芯片严重依赖进口,而国内编码器厂家的高端产品大多采用德日的整体解决方案。/pp style="text-align: justify text-indent: 2em "据了解,该团队自主研发攻克了光电编码器核心技术,旋转光电编码器芯片由光电二极管阵列、高精度低噪声运算放大器、第二级固定增益放大器和带回差的迟滞比较器等构成,精度达到23位。该芯片集成微型3通道光学游标编码技术、实时光强校准技术,能消除LED发光随温度变化、LED老化、码盘蒙受油污灰尘、探测器表面清洁度不高等环境因素对编码器读数造成的影响,提高编码器的重复精度和定位精度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "该团队还发明了一种新的分体式编码器结构,并由此结构衍生出新的分体式编码器校准方法和安装方法,降低分体式编码器校准和安装过程中的操作难度,显著减少分体式编码器的整机厚度,节省编码器的安装空间。/span/p
  • Nature:形状变形的纳米磁性编码微型机器人
    磁性软体机器人已有多种应用,特别是在与人体密切相关的生物医学领域。如自折叠式“折纸”机器人可以在肠道中爬行、修补伤口、将吞下的物体取出来;胶囊状的机器人可以沿着胃的内表面滚动,进行活组织检查并运送药物。此外,科学家们还研制出了尺寸从几百微米到几厘米不等的更薄的线型机器人,它们有可能在大脑血管中穿行,以治疗中风或动脉瘤。磁性软体机器人的进一步小型化可能带来新的应用,如在小的血管中进行操作甚至操纵单个细胞,但制备这样的微型机器人并非易事[1]。 2019年11月,瑞士联邦理工学院的Cui Jizhai(现任职复旦大学) 、Huang Tian-Yun 及其同事在Nature发表了名为“Nanomagnetic encoding of shape-morphing micromachines”的文章[2],该工作使用电子束光刻技术,制造出了只有几微米大小的可磁重组机器人,通过对单个区域的纳米磁体进行设计,将形状变化指令通过编程的方式输入微型机器人,对纳米磁体施加特殊的磁场序列后,实现微型机器人的形状变化,如图一所示。图一 四片式变形微机械的设计 a.磁体磁态随尺寸增大的示意图:i.超顺磁性;ii.室温下稳定的单畴;iii.多畴态。b. 部,四个面板微机械,面板I上有520 nm×60 nm(I型)纳米磁体阵列,面板II上有398 nm×80 nm(II型)纳米磁体阵列;底部,纳米磁体阵列的相应SEM图像。c. 体积相同但长宽比不同的单畴纳米磁体的磁光克尔效应磁滞回线。d.根据矫顽力的不同选择两个磁场对微机械进行编码的示意图。e. 应用控制磁场B=15 mT时的磁性结构(I型和II型纳米磁体)和微机械折叠行为示意图,光学显微镜图像显示了所制造器件的四种不同结构。从左到右,上/下折叠的面板数为4/0、3/1、2/2(折叠方向不同的对面面板)和2/2(折叠方向相同的对面面板)。 这项工作构建了一个模块化单元的集合,这些模块化单元可以编程为字母表中的字母,此外还构建了一个微型的“鸟”,能够进行复杂的行为,包括“拍打”、“悬停”、“转弯”和“侧滑”,如图二所示。这为创造未来的智能微系统建立了一条路线,这些智能微系统可以重新配置和原位重新编程,可以适应复杂的情况。图二 折纸式的微型“鸟”与多种形状变形模式 文章中,作者使用了英国Durham Magneto Optics Ltd.公司的磁光克尔效应系统-NanoMOKE3对不同型的纳米磁体进行了磁滞回线测试,同时使用该设备的电磁铁产生的磁场对纳米磁体阵列进行了编程。NanoMOKE3可以进行微区的超高灵敏度测试,在本工作中,作者通过激光聚焦在不同的纳米磁体上获得对应的磁滞回线,如图一c所示,为微型机器人的磁学编码工作提供了帮助。图三 磁光克尔效应系统-NanoMOKE3 NanoMOKE3主要技术特点:超高灵敏度~10-12emu微区磁滞回线,激光光斑~2μm超快测试速度,1秒内可获得磁滞回线克尔角检测<0.5 mdeg纵向/横向/向克尔磁畴成像扩展无液氦低温MOKE图四 与Montana S50超精细多功能无液氦低温光学恒温器联用的低温MOKE 温度范围4.2K~350K磁场纵向>0.4T,向>0.3T 参考文献:[1] X H,zhao. et al. Nature 575, 58-59 (2019)[2] Cui, J. et al. Nature 575, 164–168 (2019).
  • 成功完成编码PA扫查的基本工具包有多实用?奥林巴斯无损检测探伤仪带您解密!
    使用奥林巴斯OmniScan X3系列高级探伤仪采集编码相控阵(PA)超声数据有多个优势。可使您借助准确表示缺陷大小的数据视图定量缺陷。这些缺陷定量数据可用于判断产品是否符合在役服务要求的计算,使资产所有者充满信心地做出有关运营安全以及是否进行必要干预的关键性决策。获取编码PA数据所需的设备越来越便携且价格合理。将适当的探伤仪、扫查器、探头和编码器组合在一起,有助于您完成不同应用并采集到更有价值的数据。然而,尽管扫查技术取得了诸多进步,但许多扫查器在便携性方面依然存在着缺陷。自动和半自动扫查器的挑战尽管自动和半自动扫查器通常可以完成更高的扫查量,并能够处理更复杂的应用,但是对于需要随时动手进行扫查的工作,它们可能不太适合。以下是更简单的设备设置可能更可取的3个原因:大小:如果目标区域或被检焊缝周围的空间有限,那么较大的扫查器可能不太适合。配置:扫查器的设计或形状可能会妨碍将其安装到组件上。复杂笨重:当扫查器笨重、庞大或难以安装时,可能会使人们望而却步。如果没有扫查器,检测人员可能会选择手动扫查并放弃对数据进行编码。拥有合适的设备有助于避免扫查完成后只获得未编码的数据。每次都获取编码数据到达工作现场后,您和您的工作团队别无选择,只能将就使用手头的设备。真正做好准备意味着拥有用途广泛的扫查工具,这些工具应适用于各种组件尺寸、类型和材料,并适应不同的环境。要达到充分准备和随机应变的水平,请考虑将这3种扫查和编码工具添加到您的PA检测工具包中:1. 钢线编码器当检测空间非常狭小时,采用流线型单线设计的钢线编码器可以帮助您摆脱困境。只需稍微用力,就可以完成简单的牵拉动作,使您轻松完成单轴编码相控阵扫查。其用途广泛且易于操作得益于以下功能:2种安装底座(磁性和吸盘)可轻松安装在所有表面上,包括铁磁性和非铁磁性表面。由于占地面积小,适用于空间有限的区域。打包运输时,非常便于携带且占用空间很小,因此您可以随时将其作为备份随身携带。其定位系统可大幅减少错误,消除了发生滑动错误的风险,并且可以轻松拉动,使操作人员能够集中精力正确操控探头。2.通用托架我们的通用托架不需要任何工具,就可在三个不同方向上安装钢线编码器或者 Mini-Wheel编码器,而且几乎可装入任何相控阵(PA)楔块和探头组合。这是一种简单而经济的方式,可以提高您在接到通知后立即调整设置的能力。将通用托架添加到您的检测设备中,可使您为更多的部件形状和尺寸创建配置。您还可以增加用于编码检测的探头和楔块的类型,使其用途更为广泛。在无法使用楔块的情况下,可以将楔块直接连接到相控阵探头上,进行接触式检测。3. Mini-Wheel编码器Mini-Wheel编码器是一种久经考验的扫查工具,因其用途广泛而倍受赞誉。除了坚固耐用和小巧紧凑的特性之外,这款编码器还可装配一个橡胶轮,用于检测温度高达150°C的非铁磁表面,或装配一个磁轮,紧紧粘附在铁磁性部件上进行检测。Mini-Wheel编码器可用于多种不同的配置,以满足特定检测应用的要求,例如:为了对焊缝进行衍射时差(TOFD)检测,可以将Mini-Wheel编码器安装在带有两个PA探头和楔块的HST-X04扫查器上。当光栅扫查不切实际或不可能进行时,可以将其安装在通用托架上,或直接安装在楔块上,以便使用相控阵超声检测(PAUT)技术对整个体积进行手动单线扫查。Mini-Wheel编码器可与带有创新型Rexolite延迟块的RexoFORM楔块一起使用,对周围区域狭小的各种直径的管道进行腐蚀成像。为克服采集编码数据的障碍做好准备总而言之,以下是这三种工具共有的主要优势:小巧紧凑用途广泛简单易用这些工具易于运输和操作,您可以在不增加工作人员压力和负担的情况下将它们添加到标准检测设备中。
  • 二维材料首现奇异“多铁性”状态,助力磁性数据存储设备开发
    美国麻省理工学院物理学家在单原子薄材料中发现了一种奇异的“多铁性”状态。他们的观察首次证实了多铁性可存在于完美的二维材料中。发表在最新一期《自然》杂志上的这一发现,为开发更小、更快、更高效的数据存储设备铺平了道路,这些设备由超薄的多铁性比特和其他新的纳米级结构组成。  研究作者、麻省理工学院物理学教授努格迪克称,二维材料就像乐高积木,不同组合会出现百变形状。“现在我们有了一个新的乐高积木:单层多铁体,它可与其他材料堆叠在一起,诱导出有趣的特性。”  实验证实,碘化镍在其二维形式中是多铁性的。更重要的是,这项研究首次证明了多铁有序可存在于二维中,这是构建纳米级多铁存储位的理想维度。  在材料科学中,“多铁性”指的是材料电子中任何属性在外场下的集体转换,如它们的电荷或磁自旋方向。材料可以表现为几种铁性状态中的一种。例如,铁磁材料是电子自旋集体沿着磁场方向排列的材料,就像向日葵向着太阳转一样。同样地,铁电材料由自动与电场对齐的电子电荷组成。  在大多数情况下,材料要么是铁电性的,要么是铁磁性的。它们很少能同时体现这两种状态。“这种组合非常罕见,”研究作者之一里卡多科明教授说。“即使对整个元素周期表都不加限制,也不会有太多这样的多铁材料生产出来。”  但最近几年,科学家们在实验室里以奇特的耦合方式合成了表现出多铁性的材料,既表现为铁电体,又表现为铁磁体。电子的磁自旋不仅可受磁场影响,还可受电场影响。  这种耦合的多铁性状态令研究人员十分兴奋,因为它具有开发磁性数据存储设备的潜力。在传统的磁性硬盘驱动器中,数据被写入快速旋转的磁盘上,磁盘上刻有微小的磁性材料域。悬浮在磁盘上的一个小尖端会产生一个磁场,它可以共同将域的电子自旋切换到一个方向或另一个方向,以表示编码数据的基本“位”——“0”或“1”。  尖端的磁场通常是由电流产生的,这需要大量的能量,其中一些能量可能会以热的形式损失。除了硬盘过热外,电流产生磁场和切换磁位的速度也有限制。科明和努格迪克等物理学家认为,如果这些磁性比特可由多铁性材料制成,它们就可使用更快、更节能的电场而不是电流感应磁场来切换。如果使用电场,写入比特的过程将会快得多,因为在电路中可在几分之一纳秒内产生场,这可能比使用电流快数百倍。
  • 快速灵活强大丨HPROBE 磁性自动测试设备 开启晶圆测试新纪元
    在全球半导体产业高速发展的今天,中国正以其前瞻性的战略布局和政策支持,推动国内半导体行业的跨越式发展。随着物联网、大数据和人工智能驱动的新计算时代的发展,我国对半导体器件的需求日益增长,对器件可靠性与性能指标的要求也越发严格。晶圆测试:质量与效率的保障 晶圆测试是半导体制造过程中不可或缺的一步,它能够确保芯片在制造过程中的每一个阶段都能达到设计规格和性能要求。自动化和高精度的测试设备可以显著提高测试速度,缩短生产周期;通过精确检测,确保每一片晶圆的可靠性和一致性,降低不良品率;有效的测试可以减少返工和废品,从而降低生产成本。 在晶圆测试中,磁性器件需要在磁场扫描下测试,而传统的设备和方法较为耗时,会增加芯片的制造成本。在晶圆上方以高扫速改变磁场是工业化大批量生产正面临的挑战,今天要为大家介绍的Hprobe 磁性自动测试设备,其专利的磁场发生器技术,可以完美应对这项挑战。Hprobe 磁性自动测试设备 Hprobe 磁性自动测试设备是通过实现每个器件的快速测试时间,以更高的通量对晶圆在磁场下进行电探测。其专利技术3D磁场发生器和Hcoil-2T磁场发生器,能够满足大规模生产中对晶圆级电子探测的要求,独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。快速:更高的磁扫率,每秒高达10000件样品,实现高通量测试,并与批量生产的测试时间相匹配。灵活:具有独立可控空间轴的三维磁场,用于垂直和平面磁场的任意组合。强大:单一方向的超高强度磁场,结合更快的扫描速度,可在20微秒内达到2特斯拉。 Hprobe 磁性自动测试设备使用100-300mm自动晶圆探针台。集成了磁场发生器的测试头被置于晶圆探针台上。测试设备与以下自动探针台兼容:TEL (Tokyo Electron Limited)、ACCRETECH、Electroglas。技术原理 1、三维磁场发生器:三维磁场发生器能够产生三维磁场,其中每个空间轴可被独立驱动。该发生器具有多种组态,可在特定的1D、2D或3D方向上更大化磁场强度或表面覆盖。磁场的扫描速率在场强和角度上是可控的,扫描速率可达每秒10000件样品。 2、Hcoil-2T 磁场发生器:Hcoil-2T 磁场发生器是一种创新性的超紧凑型技术,能够以更快的扫描速度在单一方向产生超强磁场。利用这项技术,可以在不到20微秒的时间内达到±2特斯拉磁场。主要特点平面内和垂直方向的高磁场强度磁场的三维控制场强和角度扫描(旋转场)嵌入式校准传感器自动化测试程序MRAM参数提取软件可用于100至300 mm晶圆与标准探针卡兼容完整且可定制的软件,可创建测试序列和自动探测空气冷却测试设备1、测试头:磁场发生器集成在测试头中,后者被安装在自动晶圆探针台上,与单个直流或射频探针和探针卡兼容。 2、仪表架:测试设备使用高端控制和传感设备。测试设备的仪器组态可以按照用户需求而配置。3、磁场校准套件:磁场发生器配有磁场校准组件,由三维磁传感器和自动定位系统组成,用于在与被测设备完全相同的位置校准磁场。 4、软件:带图形用户界面GUI(graphical user interface)的软件,用于磁场的生成、校准,以及MRAM和磁传感器的自动化电测量。软件还包括晶圆厂自动化和生产控制功能。IBEX平台(用于MRAM测试) IBEX平台与200毫米和300毫米自动晶圆探针台兼容,专用于测试MRAM磁性隧道结,以及基于自旋转移矩(STT-MRAM)、自旋轨道矩(SOT-MRAM)和电压控制(VC-MRAM)技术的位单元。该系统能够在快速可变磁场和超窄脉冲信号下进行高通量测试。1、IBEX-P MRAM参数测试 IBEX-P系统以单通道或多通道配置运行,测试结构中包含过程控制和监控(PCM),因而可用于晶圆验收测试(WAT)时生产产量的统计过程控制(SPC)。 IBEX使用Hprobe的带有图形用户界面的专用一站式软件,既可在研发环节中手动操作,又可在全自动晶圆厂中自动操作。该软件包括专用于MRAM器件的更优化生产测试程序。 该系统采用Hprobe的磁场发生器专利技术,将磁场发生器集成到测试头中,后者安装在晶圆探针台上。 该测试设备由精选高端仪器驱动, 从而以更快的测试时间来表征MRAM磁性隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。2、IBEX-F功能测试 IBEX-F系统专用于测试位阵列和片上系统(SoC)嵌入式MRAM存储器。 测试系统以单点或多点配置运行,用于MRAM阵列的表征和测试。其目的是进行产品开发、验证和鉴定,并转入生产。它还可用于嵌入式MRAM器件的大规模生产环境,在后端(BEOL)过程中进行芯片探测(CP)的筛选和分级。 该测试设备由精选高端仪器驱动,从而以更快的测试时间来表征MRAM磁隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于MRAM 测试 与传统采用电荷存储数据的半导体存储器不同,MRAM(磁阻随机存取存储器)是一种非易失性存储器,使用磁化(例如电子自旋)方向来存储数据位。 与现有的半导体技术相比,MRAM具有许多优点,因为它本质上是非易失性的(例如,当电源切断时能够保存数据),同时还表现出非常好的耐久性(例如读/写周期数)和较低的运行功率。全新一代的MRAM为pSTT-MRAM(垂直自旋转移矩随机存取存储器),已被业界选择取代28/22nm以下技术节点的嵌入式闪存,目前各大半导体代工厂均可提供该产品。LINX 平台(用于传感器测试) LINX平台与200mm和300mm自动晶圆探针台兼容,用于测试基于xMR(磁阻)和霍尔效应技术的磁性传感器。该系统能够在静态和快速变化的磁场下进行测试,磁场在空间任何方向可控。LINX-1–磁性传感器测试仪 LINX-1测试仪专用于磁性传感器芯片的晶圆级分选。 该产品使用Hprobes的带有图形用户界面的专用一站式软件,以单通道或多通道配置来生成和校准磁场,包括静态或动态模式下优化的磁场生成模式。该系统具有可编程功能,可与用户的测试平台集成。 LINX-1采用Hprobe专有的磁场发生器技术,与3轴自动化测试头集成。它可以使用手动或自动加载的探针卡进行操作。 磁场的产生由高性能仪器驱动,以实现稳定的静态磁场或高扫描率的可变场。 仪器组包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于传感器测试 磁性传感器检测由磁铁或电流产生的磁场和地磁场的强度。它们将磁场或磁编码信息转换成电信号,供电子电路处理。磁性传感器正变得越来越流行,因为它们可以用于多种应用场合,如传感位置、速度或运动方向。磁性传感器有以下几种类型: 霍尔效应传感器 霍尔效应传感器由半导体衬底上的条形载流导体构成,当置于磁通量中时,通过霍尔效应产生垂直于电流方向的电压。霍尔效应传感器被广泛应用于汽车和工业领域。AMR传感器 各向异性磁阻(AMR)传感器由条形或带状磁性各向异性材料组成,其等效电阻与磁化方向和导电方向的夹角有关。与其他磁电阻传感器相比,AMR传感器具有相对较低的磁电阻(MR)率。它们被用于工业、商业和空间技术,作为位移或角度传感器以及地磁场传感器。GMR传感器 巨磁阻(GMR)传感器具有三明治结构,由被界面导电层隔开的磁性薄膜组成。该传感器有两种电阻状态:当两个磁性层磁化方向平行时,器件为低阻态;而当两个磁性层磁化方向相反时,器件为高阻态。GMR传感器是一种温度稳定性好的精密磁场传感器。它们已被广泛应用于硬盘驱动器(HDD)行业以及工业应用中。TMR传感器 隧道磁阻(TMR)传感器由被隧穿势垒层分离的铁磁多层膜组成。TMR器件的电阻与两铁磁层磁化方向的夹角有关。与其它种类的磁场传感器相比,TMR传感器具有更好的信噪比、更高的精度、以及更低的功耗。TMR传感器在温度和寿命方面具有可靠稳定的性能。因此,TMR传感器在要求苛刻的应用中是首选。 关于Hprobe 法国Hprobe公司成立于2017年,总部位于具有“法国硅谷”的美誉格勒诺布尔,是SPINTEC(全球领先的自旋电子学研究实验室之一)的一家衍生公司。 法国Hprobe基于独有的三维磁场发生器等专利技术,致力于为磁性器件和传感器的晶圆级表征和测试提供系统解决方案。目前产品提供的服务内容涵盖磁技术开发所有阶段,能针对性的为MRAM(STT、SOT、VCMA)和磁性传感器(TMR、GMR等)进行表征和测试提供专用设备和服务。 依托投资方的自身优势,普瑞亿科半导体事业部聚焦国内半导体产业工艺发展,与Hprobe协力打造国内领先的晶圆级表征和测试系统解决方案,致力于为中国半导体行业客户提供研究级和生产级的MRAM和磁检测解决方案和服务支持。
  • 磁性随机存储器(MRAM)和斯格明子研究的最新利器!可精确调控磁性薄膜或晶圆磁性的离子辐照磁性精细调控系统Helium-S®
    今年1月,三星电子在学术期刊 Nature 上发表了全球基于 MRAM(磁性随机存储器)的存内计算研究。存内计算由于毋需数据在存储器和处理器间移动,大大降低了 AI 计算的功耗,被视作边缘 AI 计算的一项前沿研究。三星电子的研究团队通过构建新的 MRAM 阵列结构,用基于 28 nm CMOS 工艺的 MRAM 阵列芯片运行了手写数字识别和人脸检测等 AI 算法,准确率分别为 98% 和 93%。研究人员表示,MRAM 芯片应用于 in-memory computing(内存内计算)电脑,十分适合进行神经网络运算等,因为这种计算架构与大脑神经元网络较为相似。 MRAM 器件在操作速度、耐用性和量产等方面具有优势,但其较低的电阻使 MRAM 存储器在传统的存内计算架构中无法达到低功耗要求。在本篇论文中,三星电子的研究人员构建了一种基于 MRAM 的新存内计算架构,了这一空白,这是MRAM研究的又一新突破。 近期,国内的众多课题组也在MRAM研究上取得了许多重量的工作。例如北航的赵巍胜课题组在2020年发表在APL上的——具有垂直各向异性的氦离子辐照W-CoFeB-MgO Hall bars中的自旋轨道矩(SOT)驱动的多层转换一文中,运用了特的氦离子辐照技术对W(4 nm)/CoFeB (0.6 nm)/MgO (2 nm)/Ta (3 nm)多层膜进行了结构的调控,通过对调控前后以及过程中磁学和电学性质变化的研究,表明这种使用离子辐照调控多层电阻的方法在实现神经形态和记忆电阻器件领域显示出巨大的潜力。图中Kerr 图像显示了 SOT 诱导的磁化转换过程中Hall bars电流的增加,白色虚线表示纵向电流线和横向电压线。红色方框对应于氦离子辐照区域。(ii) 和 (iv) 中的黄色箭头代表畴壁运动的方向。 离子辐照除了在MRAM研究领域小试牛刀外,在斯格明子的研究中也令人眼前一亮。 法国自旋电子中心(SPINTEC) 和法国Spin-Ion公司合作发表在NanoLetters上的一篇文章,题目为:氦离子辐照让磁性斯格明子“走上正轨”。文中指出,氦离子辐照可被用于在“赛道上”“创造”和“引导”斯格明子,文章证明了氦离子辐照带来的垂直磁各向异性和DMI的变小,可导致稳定的孤立斯格明子的形成。图中红色轨道尺寸为6000×150 nm2,间距为300 nm,用氦离子辐照的区域。图中显示了氦离子辐照的红色轨道区域不同磁场下的MFM图像。 以上两篇文章采用的离子辐照设备来自法国Spin-Ion公司。法国Spin-Ion公司于2017年成立,源自法国研究中心/巴黎-萨克雷大学的知名课题组。Spin-Ion公司采用Ravelosona博士的创新技术,在磁性材料的离子束工艺方面有20年的经验,拥有4项和40多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S,可通过紧凑和快速的氦离子束设备控制原子间的位移。该设备使用特有的离子束技术在原子尺度上加工材料,可通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业的用户以及合作伙伴使用该技术。2020年Spin-Ion公司在中国也已安装了套系统,Helium-S有的技术能力正吸引来自相关科研圈和工业领域越来越多的关注。 产品主要应用领域:磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM), 自旋轨道矩磁性随机存储(SOT-MRAM), 磁畴壁磁性随机存储(DW-MRAM)等自旋电子学:斯格明子,磁性隧道结,磁传感器等磁学相关:磁性氧化物,多铁性材料等其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等 产品特点:● 可通过紧凑和快速的氦离子束设备控制原子间的位移,通过氦离子辐照可调控磁性薄膜或晶圆的磁学性质。● 可提供能量范围为1-30 keV的He+离子束● 采用创新的电子回旋共振(ECR)离子源● 可对25毫米的试样进行快速的均匀辐照(如几分钟)● 超紧凑的设计,节省实验空间● 也与现有的超高真空设备互联 测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化 用户单位 已经购买该设备的国内外用户单位:University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Beihang University (China)Nanyang Technological University and A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany) 文章列表:[1]. Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)[2]. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)[3]. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)[4]. Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)[5]. Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)[6]. Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)[7]. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)[8]. Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)[9]. Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)[10]. Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)[11]. Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)[12]. Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)[13]. Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)[14]. Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)[15]. Magnetic field frustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)[16]. Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)[17]. Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)[18]. Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nano Lett. 2021 Apr 14 21(7):2989-2996 参考文献:[1]. Nature 601, 211-216(2022)[2]. Appl. Phys. Lett 116, 242401 (2020)[3]. Nano Lett. 2021 Apr 14 21(7):2989-2996
  • 基于屈曲不稳定性编码的非均质磁化实现软材料结构动态形貌的调控
    拥有主动变形能力的三维可变形结构在自然界中广泛存在,可有效提高生物对复杂环境的适应性。受这一特性启发,研究人员已开发了多种基于水凝胶、液晶高分子、硅胶弹性体等的软材料体系,在外界不同条件的刺激下(如化学溶剂、温度、酸碱度、光等),实现了各式三维结构的可控形貌变换(Nature 2021, 592, 386;Nature 2019, 573, 205;Nature 2017 , 546, 632)。 但是,目前已有的方案主要基于软材料形貌的准静态调制,如何实现多种尺度下多模态各向异性形貌与结构的动态调控,非常具有挑战性。近期,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授,联合香港城市大学张甲晨教授、中国科学技术大学王柳教授,提出了一种新型的软材料结构动态形貌调控方法。该团队结合硬磁性颗粒与弹性体制备得到磁性弹性体,并使其在一端受限的条件下溶胀产生可控的屈曲结构,接着加以磁化形成各向异性的三维磁畴分布。得到的磁性弹性体在外界可编程磁场的驱动下,能够实现多模态三维形貌的动态可控变换,在微流体操纵、软体机器人等领域中具有广阔的应用前景。相关研究成果以 “Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization” 为题发表在国际著名期刊《Nature Communications》。 图 1. 条带形与晶格状磁性弹性体的动态形貌调控示意图。如图1所示,该研究首先将未充磁的钕铁硼微颗粒掺入硅胶弹性体前驱体中,在亲水修饰的玻璃基底上固化形成一端固定的条形或晶格结构。接着将其置于与硅胶极性相似的有机溶剂中(如甲苯、正己烷等),由于溶剂分子被弹性体吸收并扩散至高分子网络中,引发磁性弹性体的溶胀行为。但是,由于一端受到基板约束,磁性弹性体溶胀形成的轴向压缩力只能使其非均质变形,最终产生屈曲结构。屈曲结构的具体三维形貌可通过弹性体的三维尺寸、人造缺陷乃至晶格连接方式进行精准调控。此后,将屈曲变形的磁性弹性体置于强脉冲磁场下(约2.5T)磁化,再浸泡于不相溶的溶剂中(如乙醇)收缩至原始的条形或晶格结构,能够得到一定程度上“记忆”屈曲变形形貌的三维磁畴分布。此时,施加不同强度、方向或梯度的外加驱动磁场,磁性弹性体基于内部磁畴与外加磁场的磁偶极相互作用,便可产生如波浪、褶皱等的多模态动态三维变形。这种基于不稳定性屈曲变形设计并排布软材料内部磁畴取向(即“磁编程”)的方法,无需额外的模板设计与辅助,便可快速实现各向异性的非均匀磁化分布的。结合外加可调制磁场的精准驱动,能够产生自由度远超准静态形貌调制的多模态动态形貌变换。此外,如图2所示,为了阐明磁性弹性体的调控机制,该研究团队开发了一套分析模型与有限元计算方法,在条形和晶格结构屈曲变形、充磁乃至磁控变形的过程中,可有效反映并预测各参数对动态形貌的影响行为,可为今后磁性软体材料的设计和开发提供一定参考。 图 2. 屈曲变形编码的磁性弹性体的理论分析模型。(a-b)条带形与晶格状磁性弹性体的屈曲变形模型。(c-d)条带形磁性弹性体的理论与实际屈曲变形行为。(e)条带形磁性弹性体的磁化与磁驱动变形模型。(f-g)条带形磁性弹性体在不同几何尺寸与连接条件下的理论与实际屈曲变形行为。(h-i)条带形磁性弹性体的理论与实际磁畴取向分布。(j)条带形磁性弹性体的理论与实际磁驱动变形行为。最后,通过利用各式屈曲变形产生的不同微流体行为(如定向流体、混合流体、涡流),该研究结合高精度3D打印技术(nanoArch S130,摩方精密)制备的微型模板、微流控芯片和尺寸定制的微颗粒,成功将磁性弹性体用于液滴的可控融合与精准操控(图3),颗粒的尺寸筛选,微液滴的富集检测,微流控的混合增强,以及软体机器人的可控驱动(图4)。总之,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授提出了一种利用屈曲不稳定现象编码的新型磁编程方式,用以实现软材料结构形貌的动态调控,为今后磁性软材料跨尺度的多模态变形行为提供了一种研究手段,有助于今后更好地理解自然界中复杂形貌变换的潜在机制,拓展可变形结构在格式工程领域的应用价值。 图 3. 屈曲变形编码的条形磁性弹性体在外加驱动磁场下的动态行为。a-c. 不同磁场参数下产生的不同微流体分布。d-e. 在液滴融合与可控运输中的应用。 图 4. 屈曲变形编码的磁性弹性体在微颗粒尺寸筛选(a),微液滴富集检测(b),微流控辅助混合(c),软体机器人运动控制(d)中的应用示例。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • 高自旋磁性团簇研究获进展
    开发具有预期稳定性、规则结构和精确组分的功能材料是化学研究的重要内容之一。高自旋磁性团簇由于电子结构与几何构型、自旋态以及原子间相互作用区别于块体材料,展现出奇异的物理化学性质,为自旋电子学材料和微器件的设计开发提供了新思路。   中国科学院化学研究所分子动态与稳态结构实验室研究员骆智训课题组利用自主设计搭建的质谱与光电子能谱仪器,在金属团簇与超原子研究方面取得了系列进展。   近日,骆智训课题组、姚建年课题组,联合清华大学教授李隽理论团队,在探究阴离子Rhn-(n=3-33)簇与几种典型气体(包括O2、CO2、CH4和CH3Br)的反应中发现,Rh19-是具有特殊稳定性的幻数团簇,并结合光电子能谱确定了其高对称性与铁磁性的超八面体结构(S=10/2)。Rh元素本身并非磁性。研究表明,强磁性团簇Rh19-的特殊稳定性主要来源于其独特的电子结构与成键方式,且具有特殊的超原子轨道特征1S2|2S22P6|3S23P6。基于此,研究进一步提出了金属团簇“电子自旋态异构体”(Electron-spin state isomers,ESSIs)的新概念,剖析了Rh19-团簇光电子能谱热带(Hot-bands)。   该工作发现了一种高对称的、尺寸在1nm的Rh19-团簇,对应于面心立方晶体铑的一个片段,诠释了从金属原子到可调控磁/电性质固体材料的结构演变规律,为剖析过渡金属光电子性质提供了原子精准的范例,并为材料基因的原子构造提供了新思路。   相关研究成果发表在《科学进展》(Science Advances,DOI:10.1126/sciadv.adi0214)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。南方科技大学科研人员参与研究。图1. 铁磁性超八面体Rh19-团簇的发现图2. (a)基于自主研制仪器(TOF-MS)制备的阴离子Rhn-团簇与CO2反应前后的质谱图;(b)Rh19-团簇分别在355 nm和266 nm激光下的光电子能谱;(c)金属团簇电子自旋态异构体(Electron-spin state isomers,ESSIs)机制;(d)由全局搜索确定的Rh19-的最低能量结构及范德华半径;(e)Hirshfeld电荷布居;(f)Rh19-的自旋密度布居。
  • 对话“磁王”——晶界缠绕铽的钕铁硼磁性材料
    导 • 读 近年来由于新能源汽车、风能发电及电子产品等领域对节能电机小型化、轻量化的需求,被誉为“磁王”的稀土钕铁硼永磁材料得到飞速发展。添加铽(Tb)和镝(Dy)等稀土元素进行合金化处理,并使合金化元素主要分布于主相晶界位置,是提高钕铁硼磁性性能的有效方法。岛津电子探针具有高分辨率和高灵敏度的特征,对于晶界改性钕铁硼磁性材料主相晶界中富集的铽(Tb)可以予以直观地表征。 磁王 • 钕铁硼 钕铁硼(NdFeB)是所有稀土类磁体中磁性特征最强的,可在同样的磁场强度下大幅减小产品的体积,用于制造的各种永磁电机马达具有体积小、比功率高、有助于节省能源等优点,故而在电动自行车、风力发动机、汽车发动电机等凡是涉及到电能和动能转化的领域,均有着广泛应用。 钕铁硼微区 • 测试难点 一、分辨率 稀土元素之间的特征X射线波长(能量)非常接近,这需要仪器能把波长非常邻近的特征峰区分开来(能量分辨率)。尤其当添加Tb时,在能谱上Tb与Fe、Co和Nd元素互相重叠,无法分析(如图1)。 二、超轻元素 硼(B)为超轻元素,因基体对超轻元素特征X射线的吸收效应很大,含有超轻元素的微区定量测试一直是电子探针分析领域的一大难题,而在含有稀土元素的重基体中问题更甚。 图1 掺杂Tb的钕铁硼样品能谱图 图2 掺杂Tb的钕铁硼样品EPMA波谱图 针对钕铁硼 • 岛津方案 一、全聚焦分光晶体兼顾稀土元素测试的分辨率和灵敏度问题;能完美地分辨Tb与Fe、Co等元素的谱峰。(如图2) 二、特征X射线52.5°高取出角,很好地解决超轻元素的测试问题。(如图3) 图3 超轻元素分析例——钕铁硼中B元素分布分析岛津EPMA-8050G场发射型电子探针 钕铁硼晶界改性 • 直观表达 添加铽(Tb)和镝(Dy)等稀土元素进行合金化处理,是提高钕铁硼磁性性能的有效方法,但传统的直接烧结对矫顽力的提升有限且会大幅降低剩磁,只有使合金化元素主要分布于主相晶界位置,降低反磁畴形核的可能,才能提高矫顽力又不致过多降低剩磁性能。 图4为某烧结钕铁硼磁体的元素面分析结果,从中可以看出有助于提高矫顽力的Tb缠绕分布于主相晶界处,而元素Co、Cu、Ga分布在富Nd相附近,磁体中烧结残余的O主要以Nd2O3形式存在于富Nd相晶粒,元素Pr总是和Nd对应共存。 图4 晶界改性的钕铁硼磁体主要元素分布特征 将Tb晶界扩散处理后的钕铁硼磁体的表面区域、距表面1/2处的中间区域以及心部放大后进行面分析,如图5~图7所示,结果显示Nd2Fe14B主相晶粒呈多边形,晶粒直径为5μm左右,Tb集中在主相晶粒附近,形成了薄而均匀且连续的富Tb壳层。研究表明,获得这样的微结构,可以提高磁性材料的矫顽力,同时不会降低其他磁学性能。 图5 Tb晶界扩散处理后表面区域元素面分布图图6 Tb晶界扩散处理后距表面1/2处元素面分布图图7 Tb晶界扩散处理后心部的分布特征 小 • 结 岛津电子探针可以便捷、直观地钕铁硼磁性材料晶界改性情况进行表征,测试结果可为磁性材料开发专家提供稀土元素渗透情况、晶界富集微结构等关键指导信息。
  • 仪器情报,科学家利用先进设备揭示超晶格材料中的磁性现象!
    【科学背景】随着纳米技术的进步,磁性薄膜的研究成为了一个长期关注的课题。这些薄膜的厚度在纳米尺度,显示出了与其厚度密切相关的独特磁性特性。临界行为理论预言,随着薄膜厚度的减小,磁相变温度会显著降低,这在多个研究案例中得到了观察。特别地,在二维极限下,Mermin和Wagner提出了在有连续旋转对称性的模型(如Heisenberg或XY自旋哈密顿量)中,长波长波动会在有限温度下完全抑制长程磁序的理论。然而,这一预测严格适用于热力学极限,即无限大侧向尺寸的样品。对于有限尺寸的实验室样品,这一预测的适用性则引起了广泛的讨论。近年来,磁性van der Waals材料的发现为研究厚度达到单层的磁性材料提供了新的平台。例如,对于反铁磁NiPS3材料的研究表明,当其厚度为两层或更多时,反铁磁序在单层样品中则被抑制,这与Mermin-Wagner定理的预测一致。然而,由于单层样品的侧向尺寸较小,磁性的直接探测成为了一个挑战,通常通过间接方法如Raman光谱学来实现。为了深入理解在超薄膜中的磁性行为,马萨里克大学科M. Kiaba教授团队选取了反铁磁LaFeO3和非磁性SrTiO3层构成的超晶格作为研究对象,这些材料可以通过先进的沉积技术精确控制其结构。LaFeO3作为典型的钙钛矿反铁磁绝缘体,在室温下具有稳定的反铁磁序,这使其成为理想的研究对象。作者利用了脉冲激光沉积技术制备了具有1-3单层LaFeO3和5单层SrTiO3的超晶格样品,并通过低能缪子自旋转动光谱学进行了详尽的磁性研究。实验结果首次展示了在超薄LaFeO3层的不同厚度下,其磁性质的显著变化。具体地,作者观察到当LaFeO3层厚度为三个或两个单层时,其电子磁矩表现出静态的反铁磁序。相反地,在单层LaFeO3样品中,磁矩没有长程有序,符合Mermin-Wagner定理的预期。这些发现不仅深化了作者对超薄膜中磁性行为的理解,还为调控这些材料的磁性特性提供了新的视角和方法。【科学亮点】(1)实验首次探索了在超薄LaFeO3/SrTiO3超晶格中的磁性特性,利用了低能缪子自旋转动光谱学作为敏感的磁性探针。(2)实验结果如下:&bull 制备了具有1-3单层LaFeO3和5单层SrTiO3的超晶格,侧向尺寸为10×10 mm² ,并且展示了高结构质量和界面锐利度。&bull 通过X射线衍射谱确认了超晶格的完整性和结构特征,验证了层间扩散水平极低。&bull 使用低能缪子自旋转动光谱学成功测量了超薄LaFeO3层的磁性行为,表明在具有3和2层LaFeO3的超晶格中,铁电子磁矩表现出静态的反铁磁序。 &bull 对单层LaFeO3超晶格的研究显示,磁矩不会有序,而是在最低测量温度下符合Mermin-Wagner定理的预期,表现出波动行为。【科学图文】图1. 超晶格的结构表征。图2. 零场缪子自旋转动。 图3. 磁体积分数和Néel温度。图4. 静态和动态磁性的区分。【科学结论】总之,缪子自旋转动数据在零场、横场和纵场中一致显示出以下结果:(i) m = 3 和 m = 2 超晶格表现出长程反铁磁序,其Néel温度分别为175 K 和 35 K;(ii) m = 1 超晶格的磁性质与之有显著区别,没有长程序,直至最低测量温度5 K;(iii) 在这个温度下,电子磁矩表现出波动而非静态无序。这些发现指向了一个维度磁性的交叉点,对于单层铁氧化物的超晶格,由于长波长自旋波动的增强,静态反铁磁序被消失,符合Mermin-Wagner定理的预期。然而,需要注意的是,作者的结果并不完全与Jenkins等人的工作11存在显著分歧,他们预测在二维有限尺寸的实验室样品中磁序的稳定,因为 (i) 他们的计算是针对比作者样品小四个数量级的系统进行的,而 (ii) 作者的m = 1 超晶格在当前低能缪子自旋转动仪器中可以达到的最低温度为5 K,存在在更低温度下可能存在静态序的可能性。参考文献,Kiaba, M., Suter, A., Salman, Z. et al. Observation of Mermin-Wagner behavior in LaFeO3/SrTiO3 superlattices. Nat Commun 15, 5313 (2024). https://doi.org/10.1038/s41467-024-49518-0.
  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 科学岛团队构筑新型二维磁性同质偏置器件
    近期,中科院合肥研究院强磁场中心盛志高研究员课题组与中国科学技术大学张振宇教授等人合作,成功研发了一种新型二维同质偏置器件。与三维同类器件相比,该二维偏置器件具有无老化、可延长、可恢复等特点,不仅为低维磁性器件设计和交换偏置效应机理的研究提供了新思路,且有望成为二维电子技术与装备中的核心磁性元器件。相关研究成果发表在国际期刊先进材料(Advanced Materials)上,并申请了发明专利。   二维范德瓦尔斯磁性材料,因其层状结构、无悬键表面、强磁各向异性等特性,为基础磁性研究和低维磁性器件开发提供了极佳的平台。但弱的层间耦合作用,极大限制了二维磁性材料的功能器件应用。因此,如何有效通过界面工程,实现强的磁交换作用(如交换偏置效应,ExB),已成为构建二维磁性器件的关键科学问题之一。   针对这一问题,盛志高课题组经过大量材料筛选与技术探索,最终发现通过单轴压力技术,可以将具有铁磁基态的二维铁锗碲(Fe3GeTe2)材料诱导成为具有铁磁-反铁磁共存的材料同质、磁性异质结构,且发现该结构具有实用级的交换偏置效应。这一压力诱导相变被磁光测试、高分辨透射电子显微镜测试、及第一性原理计算证实。由于该材料同质、磁性异质结构的铁磁-反铁磁耦合发生在同质结内部,其原子级平滑的磁界面使其交换偏置效应展现出无老化(non-aging)、可延长(extendable),可恢复(rechargeable)等三维器件中不存在的优良特性。这一结果为设计和开发高性能二维磁性器件开辟了一条新的途径,其优异的交换偏置特性为二维磁性器件的有效应用提供了机遇。   强磁场中心盛志高研究员和中国科学技术大学张振宇教授为本文的共同通讯作者。山西师范大学许小红团队,中科院合肥研究院固体所罗轩、强磁场中心孙玉平团队共同参与此项课题研究。该项研究获得了国家重点研发计划、国家自然科学基金、安徽省实验室方向基金、中科院合肥研究院院长基金、以及国家重大科技基础设施“稳态强磁场实验装置”(SHMFF)的支持。图1:(a)单轴加压处理后诱导FGT磁转变的示意图;(b)加压后FGT的磁光现象;(c)FGT无老化、可延长、可恢复的交换偏置效应示意图
  • 上海计量院“大砝码磁性测量系统的研制”项目顺利通过验收
    近日,来自上海市计量协会、上海申北会计师事务所、上海市分析测试学会、上海舜宇恒平科学仪器有限公司及同济大学的专家对上海计量院机械制造所承担的上海市市场监督管理局科技项目“大砝码磁性测量系统的研制”进行验收。   与会专家听取项目组汇报,审阅验收资料,经充分讨论与质询,一致认为该项目达到计划任务书考核指标,同意验收通过。   该项目提出基于霍尔效应的高斯计磁性测量方法,区别于国内主要计量机构现有磁化率计法的砝码磁性测量方法,解决50 kg以上砝码难以进行磁性测量问题。同时,研制国内首套测量范围为100kg-1000kg大砝码磁性测量系统,实现测量范围5μT-2500μT(分辨率0.01μT)砝码极化强度测量,极化强度测量不确定度达到0.01μT-30μT(k=2),可覆盖E1-M3等级各形状大砝码。   项目成果将应用于各等级大砝码、高准确度力值砝码、压力砝码、扭矩砝码的磁性测量,提升质量量值测量准确度。
  • XPS小课堂| XPS能测磁性样品吗
    X P S为了提高XPS的检测灵敏度,高端的XPS往往会采用磁透镜技术来增加XPS的光电子的采集效率。但是如果样品本身具有磁性,磁性样品的磁场就会与磁透镜发生相互作用,干扰光电子的收集,因此也可关闭磁透镜,仅使用静电透镜模式进行XPS分析。但什么样品才是XPS测试中需要注意的磁性样品呢?首先我们需要了解一下磁性样品的分类。 磁性样品分类 在XPS测试中所指的磁性样品通常是指永磁材料,而对于软磁材料我们只需要注意样品的固定即可正常测试。在这里分享一个简单的方法判断测试的样品是不是永磁体? 注意!一定要用没有磁性的软磁材料(曲别针、大头针),不可以用永磁体!!! 永磁材料的XPS测试对于永磁材料,由于本身具有磁场,因此永磁材料在磁透镜中的情况存在如下情况 (a)永磁体材料的磁场方向与磁透镜一致,对光电子的收集有增强作用(b)永磁体材料的磁场方向与磁透镜相反,对光电子的收集有减弱的作用(c) 永磁体的杂散磁场将导致光电子的运动轨迹发生偏转,散焦而XPS不开启磁透镜,只使用静电透镜模式,测试时光电子的运动轨迹则是受样品本身的磁场情况影响,可能会使光电子的信号减弱。静电透镜模式测试时,不改变光电子的出射方向,因此测试的灵敏度较低。而岛津XPS具有最高600W的X射线源,可以弥补静电透镜下灵敏度的不足,获得信噪比极佳的测试结果。上海交通大学使用岛津XPS完成了镝代钕铁硼的XPS表征工作。使用静电透镜模式,成功完成了(Nd1-xDyx)2Fe14B (x=0,0.2,0.4,0.6,0.75,0.88) 中钕和镝的定性定量分析。[1] 软磁材料的XPS测试使用岛津XPS分析两种状态的软磁性材料:粉状镍基粉末、板状镀锡钢板,为避免样品在磁透镜作用下可能发生移动,粉末制样以量少为宜,板状材料则应将其通过螺丝、铜片等机械夹具固定在样品条上进行制样。在磁透镜模式下,对上述样品进行全谱和各元素的精细谱分析,可以得到粉末样中主要含有Ni、O、C元素,还含有少量N、Ca、Na等元素。,Ni元素主要由单质Ni(Ni1,852.01 eV)和Ni2O3(Ni3,861.05 eV)组成,此外还含有少量二价Ni成分(Ni2,855.56 eV)。图1.磁透镜模式下Ni2p精细谱图[2] 镍基粉末样品表面元素相对含量如下: 对板状镀锡钢板也同样能够得到上述的定性及定量的分析结果。此外由于岛津XPS具有最高600W的X射线源,对于只使用静电透镜模式的XPS测试,如下图所示,仍然能够获得信噪比很好的结果。 图2蓝色为磁透镜模式的板状锡钢板全谱,红色为静电模式全谱 课后小结:对于软磁材料,请固定好样品,使用磁透镜模式,对样品进行定性、定量分析。对于永磁材料(如钕铁硼体系等),建议采用静电透镜模式进行,而岛津X射线高功率(最高达600W)的配置可以弥补静电透镜下灵敏度的不足,仍然能够获得信噪比极好的结果,有利于磁性样品的分析。 [1] Wang, J., Yang, B., Liang, L., Sun, L.-min, Zhang, L.-ting, & Hirano, S.-ichi. (2015). Electronic structure of the (ND1−xDyx)2Fe14B (0 ≤ x ≤ 1) system studied by X-ray Photoelectron Spectroscopy. AIP Advances, 5(9), 097206.[2] 岛津XPS技术表征磁性材料 本文内容非商业广告,仅供专业人士参考。
  • 二维磁性材料非线性光学研究取得重要进展
    p style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。/span/pp style="text-align: center text-indent: 2em "span style="font-family: " times new roman" "img style="max-width: 100% max-height: 100% width: 400px height: 273px " src="https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width="400" height="273" border="0" vspace="0"//span/pp style="text-indent: 2em text-align: center "span style="font-family: " times new roman" font-size: 14px "双层三碘化铬 图片来自复旦大学物理系网站/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "将经典方法引入新领域 开辟广阔研究空间/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "“意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "创新研发实验系统 实现基础研究突破/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。/span/ppbr//p
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(1°)双层石墨烯的电学性质,次证实了由晶格重构导致的本征赝磁场。先,研究人员发现体系中赝磁场导致了低能载流子的能量量子化,并计算出这种本征赝磁场在实空间的分布。研究发现赝磁场的分布并不是均匀的,而是以AA堆叠为中心呈涡旋状,且在AA堆叠边界区域达到大值;另外,该赝磁场的大小随着转角的减小而增大,其分布和大小受到外加应力的调控。该项研究证实,在小角度扭转双层石墨烯中晶格重构导致的赝磁场和强关联电子态存在着内在的关联,层间相互作用对体系的结构重构和性质变化有着非常重要的影响。这一现象可以推广到其他范德瓦尔斯堆叠的二维材料体系中。这项工作同时表明,具有本征赝磁场的小角度扭转双层石墨烯是实现量子反常霍尔效应的一个可能平台,为研究二维材料的性质和应用提供了新的思路。RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 国家磁性材料质检中心落户中国计量学院
    6月30日,国家磁性材料及其制品质量监督检验中心(以下简称“中心”)在中国计量学院正式揭牌,开创了浙江省高校建立国家质检中心的先河。国家质检总局产品质量监督司司长刘卓慧,浙江省质量技术监督局党委委员、总工程师陈振华,浙江省教育厅高科处处长郜正荣,校长林建忠共同为中心揭牌。  浙江是我国磁性材料产业大省,磁性材料产品占全国的70%以上,每年约1/2的产品出口到欧美、日本、东南亚等国家,在国际上有相当的知名度,但由于我国缺少一个权威的磁性材料监测机构和监测体系,严重制约了磁性材料产业往高、精、尖方向发展,从而使我国磁性材料产业在国际上缺乏较强的竞争力。“希望中国计量学院能够集产科研于一体,使中心服务于国家磁性材料及其制品的发展,能在国内打造出一流的国家质检中心,并能尽快于国外同类的一流实验室相接轨,更好地服务于我国经济又好又快发展。”刘卓慧代表国家质检总局对中心的成立表示祝贺。据了解,该中心于2006年12月由国家质检总局授权建设,以现有的原财政部资助的“中国计量学院磁性材料工程检测中心”和浙江省政府资助的“浙江省磁性材料试验基地”为载体,集产品检测、研究开发和人才培养于一体。中心主要面向磁性材料生产企业开展研究及检测工作,对各种磁性材料及产品进行质量监督检测和可靠性试验,研究开发新型高性能磁体,解决行业关键技术和共性技术 同时参与制订磁性材料的国际标准、国家标准,为进一步完善我国磁性材料检测标准体系,提高产品质量,加快磁性材料产业发展发挥积极作用。  着眼于磁性材料检测技术的最前沿,中心开展了磁性材料检测设备研制以及磁性材料检测技术和检测体系标准化研究,先后承担了国家自然科学基金、国家质检总局项目、省国际合作重大项目、省科技攻关项目、省科技计划项目、省分析测试基金等20余项科研项目。中心成员先后参与了《稀土永磁材料磁性温度系数测量》、《永磁材料标准样品磁特性》、《软磁材料交流磁特性标准样品》等几项标准的制订和修订工作 累计发表文章50余篇,其中30篇被三大检索收录 申请发明专利10余项。由葛洪良教授主持的“CoPtW永磁薄膜及微型磁体制备”获得浙江省科学技术奖二等奖,浙江省高校科研成果奖一等奖。由舒康颖教授主持的浙江省科技计划重大项目“高工作温度钕铁硼磁体的研制”通过省科技厅验收,验收组专家一致认为项目技术性能指标达到国际先进水平,并实现了批量生产,产值达4000万,并获浙江省科学技术奖二等奖。由刘亚丕副教授主持的国家质检总局项目“磁性材料磁畴动态测试仪研制”获得浙江省高校科研成果奖二等奖。  “中心的成立是我省加快公共检验检测基地建设,提升公共检验检测能力的一件盛事。”省质量技术监督局党委委员、总工程师陈振华说。据介绍,通过中心这个公共技术平台,不仅可以大大方便企业磁性材料的出口,而且还可以向企业提供国内外标准宣传(国际、国内标准)、企业标准申报与评审组织等服务,为我国磁性材料企业逐步走向国际标准化、集团化乃至全国磁性材料产业的发展作贡献。随着业务水平的增强,中心在国内乃至国际磁性材料检测领域的影响力越来越大。中心目前已承接包括浙江大学、上海硅酸盐研究所等20余家省内外高校和科研单位的磁性能测试任务,检测业务辐射至国内10多个省市,优质的服务为中心在省内外赢得了良好的声誉。在2009年1月公布的第一批全国质量监管重点产品检验方法标准化技术委员会(检标委)专业工作组中,国家磁性材料及其制品质量监督检验中心被确定为磁性材料检验方法专业工作组的组长单位,负责本领域的标准立项和标准草案初审。这意味着中心正逐渐成为国内磁性材料检测的权威机构。  中国计量学院校长林建忠表示,“学校将坚持‘公正科学、优质高效、改进创新’的方针,依法独立开展工作,同时更好地整合和利用省内外在磁性材料及相关产品检测方面的设备、技术、人才等资源优势,在一个更高的起点、更高的平台上,把中心做大做强。”据悉,接下来,中心还计划建立材料磁特性参数的数据库平台,利用在检测过程中积累的大量实践经验和原始数据,为磁性材料行业提供信息资源,为材料开发可行性提供依据,这对于实现信息资源共享,节约生产成本,促进磁性材料产业又好又快发展具有重要的现实意义。
  • 具二维亚铁磁性石墨烯系统首次合成
    俄罗斯圣彼得堡国立大学的科学家与外国同事合作,在世界上首次在石墨烯中创造出二维亚铁磁性,所获得的石墨烯的磁性状态为新的电子学方法奠定了基础,有望开发出不使用硅的替代技术设备,提高能源效率和速度。描述被调查系统中霍尔效应的图表。图片来源:圣彼得堡国立大学石墨烯是碳的二维改性形式,是当今所有可用的二维材料中最轻、最坚固的,而且具有高导电性。2018年,圣彼得堡国立大学的研究人员与托木斯克州立大学、德国和西班牙的科学家一起,首次对石墨烯进行了修饰,并赋予了它钴和金的特性,即磁性和自旋轨道相互作用(在石墨烯中的运动电子与其自身磁矩之间)。当与钴和金相互作用时,石墨烯不仅保留了自身的独特性质,而且部分具有了这些金属的特性。作为新研究的成果,研究团队合成了一个具有亚铁磁性状态的石墨烯系统。这是一种独特的状态,在这种状态下物质在没有外部磁场的情况下具有磁化作用。他们使用了与之前类似的基底,该基底由一层薄薄的钴和表面的一种金合金制成。在表面合金化过程中,位错环在石墨烯作用下形成。这些环是钴原子密度较低的三角形区域,金原子更靠近这些区域。此前,人们知道单层石墨烯只能以均匀的方式完全磁化。然而,新研究表明,通过与基底结构缺陷的选择性相互作用,可以控制单个亚晶格的原子的磁化强度。“这是一个重大发现,因为所有的电子设备都使用电荷,并在电流流动时产生热量。我们的研究最终将允许信息以自旋电流的形式传输。这是新一代电子产品,一种根本不同的逻辑,以及一种降低功耗和提高信息传输速度的技术开发新方法。”圣彼得堡国立大学纳米系统电子和自旋结构实验室首席副研究员阿尔特姆雷布金解释说。此次合成的石墨烯的一个重要特征,就是强烈的自旋轨道相互作用,这种加强可以通过石墨烯下金原子的存在来解释。在磁性和自旋轨道相互作用参数的一定比例下,石墨烯有可能从熟悉的状态转变为一种新的拓扑状态。研究结果发表在最近的《物理评论快报》上。
  • 磁性二维材料领域取得重要进展!致真精密仪器助力高水平科研工作者发表SCI!
    二维铁磁材料因其薄层结构和独特的物理特性,在电子、自旋电子学和磁性存储等领域具有广泛的应用潜力。这些材料的研究对于推动相关技术的发展至关重要。低温强场微区激光克尔显微成像系统在研究二维铁磁材料时具有独特的优势。近日,山西师范大学的许小红教授和薛武红教授合作,利用致真自主研发的低温强场微区激光克尔显微成像系统进行实验研究,报道了二维铁磁Cr5Te8材料的亚毫米级可控制备,并发现该材料具有畴壁成核控制的磁化反转过程和非单调磁场相关的磁电阻,研究成果以“Controlled Growth of Submillimeter-ScaleCr5Te8 Nanosheets and the Domain-wall Nucleation Governed Magnetization Reversal Process”为题,在国际顶级期刊Nano Letters(SCI一区TOP,影响因子:10.8)上发表。论文原文:https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04200亚毫米级二维Cr5Te8及其磁畴演化和非单调磁电阻低温强场微区激光克尔显微成像系统对该研究助力具体表现在:1. 磁化反转过程的直接观察:高分辨率的克尔显微镜结合真空制冷台,对Cr5Te8纳米片的磁化过程进行了全面的研究。通过首先用大磁场饱和样品的一个方向,然后施加相反方向的磁场,观察到了磁化反转的详细过程。2. 磁畴结构和演化的分析:克尔显微镜用于捕捉Cr5Te8纳米片的磁畴演化过程,包括磁畴壁的传播。文章中指出,通过逐步增加磁场,清晰地捕捉到了磁化反转过程中的磁畴壁传播。3. 磁畴壁传播的最小场强确定:通过克尔显微镜的观察,确定了在样品中磁畴壁传播所需的最小场强大约是30-45 mT,无论是对于两个磁化方向中的哪一个。4. 磁化反转机制的理解:克尔显微镜的观察结果揭示了磁畴壁成核在控制磁化反转过程中的主导作用,这为优化相关设备的性能(如效率、稳定性等)提供了重要的参考。6. 温度依赖性研究:通过在不同温度下使用克尔显微镜,研究了Cr5Te8纳米片的磁化过程随温度变化的行为,发现了居里温度(Curie temperature, TC)随样品厚度变化的倾向。低温强场微区激光克尔显微成像系统是研究Cr5Te8纳米片磁化过程、磁畴结构和演化、以及磁化反转机制的关键工具,为深入理解材料的磁性能和优化磁电子器件的性能提供了重要的实验数据和见解。二维铁磁材料磁性能表征利器低温强场微区激光克尔显微成像系统,能够将高分辨率磁畴成像与高精度磁滞回线扫描结合,常温垂直强磁场(1.4 T)与面内强磁场(1 T);样品处温度范围:5K-420 K,温度稳定性±50 mK;激光功率可调;磁铁及样品托采用滑道设计,方便不同需求测试的切换;预留扩展接口,将磁场及低温环境平台化,方便兼容其他类型的光学测试;运用差分放大和锁相技术可实现二维材料磁性的精确探测;适用于自旋器件或微米尺寸材料的磁性精确测量,集电学、磁学、光学、变温测试于一身,是专为二维磁性材料研究打造的专家级科研设备。微米级光斑和精确定位在样品待测区域,实现微区的磁滞回线精确探测弱磁薄膜测试结果对比致真激光克尔显微镜测试结果↑↑↑某国际顶尖公司产线级设备测试结果↑↑↑研究背景:以电子自旋为主要信息载体的自旋电子器件具有体积小、速度快、功耗低等优势,是后摩尔时代信息存储器件的有力竞争者。特别是,二维磁性材料的发现为构建新功能的磁电子器件提供了材料基础。二维磁性材料在原子层厚度依然保持长程磁序,具有表面无悬挂键、弱层间耦合、可进行“原子乐高”功能异质集成、易于调控等优势,在高密度磁信息存储和自旋电子学领域具有重要应用前景,成为国际上的前沿热点。然而,二维磁性材料目前存在居里温度较低、环境不稳定、难以大尺寸可控制备等困难,极大地限制了其应用和发展。因此,探索稳定性更好的新型二维磁性材料,并用简便、经济可控的方法实现其大尺寸超薄制备,对于推动二维磁性材料的应用具有重要的意义与价值。此外,磁性二维材料的磁畴及其演变能够为相关器件的性能优化提供重要参考。结论:基于此,该团队开发了一种简单、经济、可扩展、氢修饰的化学气相沉积方法,可控合成了亚毫米级超薄高质量Cr5Te8磁性纳米片。值得一提的是,纳米片横向尺寸最大可达450μm、空气稳定性好且居里温度较高。此外,通过对Cr5Te8纳米片的磁畴演化的直接观察,揭示了畴壁成核在控制磁化逆转过程中的主导作用。有趣的是,Cr5Te8纳米片表现出非单调磁电阻特性。该工作在CVD法制备大尺寸二维磁性材料领域实现了重要突破,为在二维尺度理解和调控磁相关性质提供了理想平台,有望推动二维磁性材料在自旋电子学器件中的应用和发展。致真精密仪器拥有核心专利四十余项,研发的多款产品曾多次助力国内优秀的科研工作者取得高水平科研成果。我们拥有一支专业且经验丰富的研发、销售、技术支持和本地化服务的团队,团队中大多数人员为高学历专业硕博人才,致力于为先进材料科学与技术创新领域的科研及企业客户提供个性化、专业化的产品、服务和整体解决方案,让先进材料领域的科研与创新更加简单、高效。致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。致真精密仪器通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“产品包含原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 高精度MOKE磁性检测系统助力中国磁随机存储技术的腾飞
    磁随机存储器(Magnetic Random Access Memory, MRAM)利用磁隧道结自由层磁矩取向不同引起的磁阻不同作为存储单位0和1,同时结合传统的磁存储(PMR)非易失性及静/动态随机存储器(SRAM/DRAM)读写速度快的双重优点,在科研及工业界广受欢迎,并被认为是替代传统随机存储器的下一代存储技术的潮流和趋势。随着自旋转移矩效应(Spin Transfer Torque, STT)的发现及迅速应用,长期制约MRAM由科研阶段向工业量产阶段转变的技术难点“写入困难”被成功解决,同时为了进一步提高磁随机存储器的存储密度,近年来垂直取向的磁随机存储单元-隧道结(MTJs)取代了水平取向的磁随机存储单元,与STT技术一道成为了新的磁随机存储技术-垂直型STT-MRAM。图1 MRAM晶圆及MTJs存储单元 MRAM器件化和产业化的关键是对晶圆的磁性薄膜及磁性存储单元的生长和性能实现控制,特别是存储单元中的核心部件磁隧道结(MTJs),磁隧道结一般由磁性各异的多层膜构成,而隧道结终的性能又由多层膜中各层薄膜的性能所综合决定,然而MTJs的多层膜中每一层的厚度一般在几纳米至几十纳米之间,每一层的磁矩信号都非常弱(5*10-6emu),因此需要高精度的磁性检测设备来对晶圆薄膜及磁性存储单元的磁学性能进行测试,并反过来监控和改进晶圆的生长工艺。 图2 PKMRAM_300设备 美国Microsense公司的垂直磁随机存储器晶圆专用的PKMRAM_300型MOKE系统为目前少数可实现大尺寸晶圆(直径300mm)的高精度磁性检测设备,具有检测灵敏度高,测量精度高,测样速度快,设备操作高度智能化和自动化的特点,可实现无人值守式工作,因此在全球磁随机存储器研发生产单位中广受欢迎。 图3 PKMRAM_300典型测试结果图 日前,国内套PKMRAM_300正式落户杭州,将在新型磁随机存储器技术的研发及实现量产化的进程中发挥作用。祝愿此次PKMRAM_300 磁随机存储器磁检测系统的落户,能够帮助科学研究人员在磁随机存储技术领域内取得更多突破,在范围内占据技术点。相关产品链接:磁电阻随机存储器向克尔效应测量系统 http://www.instrument.com.cn/netshow/SH100980/C202460.htm面内磁存储纵向克尔效应测量系统 http://www.instrument.com.cn/netshow/SH100980/C202463.htm充磁系统 http://www.instrument.com.cn/netshow/SH100980/C203306.htmDiskMapper H7 http://www.instrument.com.cn/netshow/SH100980/C202452.htm
  • 物理所在对称性失配诱导的界面铁磁性研究方面取得进展
    4d钌酸盐(ARuO3)作为复杂氧化物体系中一个重要家族,表现出巡游铁磁性、磁性Weyl费米子、磁单极、非常规超导、非费米液体等一系列丰富多彩的物理性质。SrRuO3作为唯一天然具有铁磁性和强自旋轨道耦合(SOC)的钙钛矿氧化物,成为该体系研究的明星材料。 SrRuO3高达160K的铁磁居里温度和良好的金属导电性使它在自旋电子学器件研究中具有巨大潜力,而由铁磁性和强SOC共存所导致的巨大反常霍尔效应、拓扑霍尔效应甚至量子反常霍尔效应等新奇物性也备受人们关注。然而,在各种4d、5d过渡金属氧化物中,SrRuO3的巡游铁磁性似乎成为一个特例,给以此为基础的新型自旋/轨道器件设计带来局限性。 4d、5d氧化物虽然具有较强的SOC,但由于d轨道能带的扩展导致电子关联性下降,通常难以形成长程磁序。人工设计出更多集强SOC和时间反演对称性破缺(即铁磁性)于一体的新材料体系,是目前自旋电子学研究中高度关注的问题。  CaRuO3的块体材料具有与SrRuO3完全相同的GdFeO3型正交晶体结构和电子构型。但由于Ca离子半径较小,使得CaRuO3的Ru-O-Ru键角仅为148°,远低于SrRuO3的 163°。因此CaRuO3体材料或薄膜材料在整个温区中均表现为顺磁金属性。中国科学院物理研究所研究团队近年来致力于氧化物异质界面物性设计及调控方面的研究工作,希望利用异质界面晶体场、应力场、电荷重组、轨道重构等效应,诱导出完全不存在于体相材料的界面新物态。 近日,团队研究人员等成功利用结构近邻效应在CaRuO3体系中诱导出了长程铁磁序。他们利用脉冲激光沉积技术在衬底基片上交替生长抗磁SrTiO3 (a0a0a0)和顺磁CaRuO3(a-a-c+)两种对称性失配薄膜,获得了高质量的外延超晶格样品;利用界面氧八面体的耦合畸变,成功抑制了CaRuO3层中RuO6八面体的倾斜/旋转。 扫描透射电镜的结果表明,界面处约3个晶胞厚度的CaRuO3层的RuO6八面体的扭转度被大幅度地调控,其Ru-O-Ru键角从~150°增加至~165°,与SrRuO3薄膜中的Ru-O-Ru键角较为接近。这种界面结构耦合的调控必然会带来电子结构的改变。第一性原理计算表明,RuO6八面体的倾斜/旋转的抑制将大幅提高CaRuO3费米面处的态密度【N(EF)】,最终使得界面3个晶胞层CaRuO3层将满足巡游铁磁性的Stoner判据【IN(EF) 1,I为Stoner系数】,由块体的顺磁态进入铁磁有序态。 霍尔输运测量以及宏观磁测量给出了该体系出现界面铁磁相的充分证据,其最高居里温度约为120K,最大饱和磁化强度为~0.7μB/f.u.。各向异性磁电阻测量进一步表面CaRuO3界面铁磁相的磁易轴在面内方向。该工作报道了一种完全基于界面氧八面体耦合畸变设计产生界面铁磁性的示例,特别是构成异质界面的两种氧化物各自均不具备长程磁序,其部分原理也将适用于其他具有类似对称失配的氧化物体系,为探索多功能氧化物材料和器件提供了新思路。   相关成果以Symmetry-mismatch-induced ferromagnetism in the interfacial layers of CaRuO3/SrTiO3 superlattic为题发表在《先进功能材料》 (Advanced Functional Materials)上。相关研究工作得到科学技术部、国家自然科学基金委项目、中科院战略性先导科技专项和中科院重点项目的支持。
  • 磁性薄膜测量新突破:铁磁共振FMR实现全方位搭配、升级!
    2018年度“亚洲磁学联盟奖”(aums award)于6月4日在韩国揭晓,物理所韩秀峰研究员凭借“基于磁性缘体的磁子阀效应”项目荣获此奖。韩秀峰研究员团队创新性地采用yig磁性缘体作为磁性电、au作为中间层研制出了高质量、新型磁性缘体/金属/磁性缘体(mi/nm/mi)磁子阀结构,并且在该结构中次观测和发现了磁子阀效应(magnon valve effect),揭示了磁子阀比值主要取决于磁性缘体/金属界面磁子-电子自旋转换效率的原理。[1] 图1:(a) 磁子阀结构、原理和测量示意图(b)-(c) ggg/yig和yig/au/yig区域的透射电镜图该项工作的相关研究进展发表在 phys. rev. lett.[2],并且作为亮点文章在prl网站页重点推荐。在此我们祝贺quantum design的ppms和microsense vsm用户韩秀峰研究员团队,也祝愿他们今后能够再创辉煌!在上述的研究中,yig作为磁性缘体材料,有着其特的物理性能,其拥有低的gilbert阻尼因子。sun[3]等利用铁磁共振系统对yig薄膜进行了阻尼的测试研究,测出yig的阻尼因子大小约10-4。在对磁性材料的研究中,阻尼因子α是一个比较重要的参数,可以帮助我们提升电路及电子器件的传输效率和传输速度。图2:铁磁共振测试系统主机:phasefmr(常温);cryofmr(低温)quantum design携手nanosc提供的高精度铁磁共振测试系统,可以快速有效地获取阻尼系数α,以及有效磁矩 meff、旋磁比γ、非均匀展宽δho等动态磁学参数,也可以表征静态磁学性能,如饱和磁化强度ms、各向异性、交换偏置等。该系统基于共面波导技术,无需矢量网络分析仪,可以提供宽频2~40ghz测试,并应用锁相测试技术,大大提高了信噪比,可以测试到1.4nm厚的薄膜。 图3 :室温测试用共面波导 图4:用于ppms(versalab)铁磁共振样品杆图5:montana低温恒温器升cryofmr铁磁共振测试系统目前该系统可以应用于室温(基于电磁铁平台)、低温(配合ppms、versalab、montana恒温器),在上有包括中国科学院物理研究所、南京理工大学、三峡大学等用户在内的多套设备在运行,并使用该系统在prb等期刊上发表多篇文章。如franco[4]等用铁磁共振测试系统phasefmr对垂直磁化各向异性[cofeb/pd]n多层膜进行了研究,发现有效垂直各向异性随多层重复次数的增加而增大,部分测试数据见图6。 图6:phasefmr用户文章数据铁磁共振测试系统参数如下: 配置 带宽 温度范围 磁场大小phasefmr 2-18ghz 室温 根据电磁铁大小而定phasefmr-40 2-40ghzcryofmr 2-18ghz4-400k:ppms/dynacool™ 55-400k: versalab™ 10-350k: mi cryostation±9, 14, 16 t:ppms/dynacool™ ±3 t: versalab™ ±0.7 t: mi cryostationcryofmr-40 2-40ghz 如果您拥有电磁铁平台,快来升铁磁共振测试系统吧!如果您拥有ppms或者versalab,快来升铁磁共振测试系统吧!如果您拥有montana标准型低温恒温器,快来升铁磁共振测试系统吧!如果您也想在squid上进行铁磁共振测试,目前quantum design的工程师正在努力研发中,相信不久后,我们将会为您带来在squid上成功应用fmr的好消息! 参考文献:[1]中国科学院物理研究所官网http://www.iop.cas.cn/xwzx/snxw/201806/t20180605_5021775.html[2] h. wu, l. huang, c. fang, b. s. yang, c. h. wan, g. q. yu, j. f. feng, h. x. wei, and x. f. han, phys. rev. lett. 120, 097205 (2018)[3] y. sun, h. chang, m. kabatek, y. y. song, z. wang, m. jantz, w. schneider, m. wu, e. montoya, b. kardasz, b. heinrich, s. g. e. te velthuis, h. schultheiss, and a. hoffmann, phys. rev. lett. 111, 106601 (2013).[4] a. f. franco, c. gonzalez-fuentes, j. a° kerman, and c. garcia, phys. rev. b 95, 144417 (2017) 相关产品及链接:1、铁磁共振仪(fmr):http://www.instrument.com.cn/netshow/c221410.htm2、ppms综合物性测量系统:http://www.instrument.com.cn/netshow/c17086.htm3、多功能振动样品磁强计versalab系统:http://www.instrument.com.cn/netshow/c19330.htm4、montana instruments超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/c122418.htm5、超导量子干涉仪器件squid:http://www.instrument.com.cn/netshow/c17093.htm
  • 再次突破创新!浅谈唯公编码微球的发展历程
    近期,唯公的磁性荧光编码微球(液相芯片)(EasyMagPlex)再次取得突破,其可自动分析的编码数量达到84重,并将码微球表面活性基团的种类从单一的羧基扩展到了羧基(亲水,疏水),链霉亲和素、氨基、环氧基、甲苯磺酰基等,即将上线“喀斯玛商城”。唯公编码微球的升级给客户和合作伙伴提供了更多的选择,再次引领国产磁性编码微球!EasyMagPlex 84重编码微球散点图,在EasyCell上的散点图磁性编码微球(液相芯片)的选择从1990年代起,国内就陆续有编码微球相关的专利和优秀文章发表,但一直未见国产编码微球商业化。直到近年唯公突破了Luminex技术壁垒,成为国内第一家(全球第二家)拥有自主知识产权并实现了磁性荧光编码微球商业化的公司。近年来,国内也有不少公司以唯公为标杆,奋起直追,一起推动流式荧光应用和发展[1-2]。通俗地讲,磁性荧光编码微球,是一种以超顺磁性微球为基础,通过微球的不同荧光波长及发光强度来区别不同种类(编码)的磁性微球。严格地讲,微球可具有多个荧光发光光谱,可以是单粒径或多粒径,所有在流式分析仪上可区分的微球特征都可以是编码的参数。在常见的编码微球应用中,主要是以单粒径微球为基础,采用流式中红光激发的荧光为编码通道,用蓝光(或绿光)激发的荧光(如,PE荧光素)为检测通道。也有公司在荧光编码数量不能满足要求时,引入不同粒径的微球来增加编码数量。各种编码参数的优劣势:一 、编码微球种类市场上目前主要有三种编码微球:(1)Luminex磁性编码微球;(2)唯公编码微球(兼容主流流式磁性编码微球);(3)兼容主流流式的非磁性编码微球。1 Luminex编码微球,具有超顺磁性,它采用了一套特有的荧光素组合来编码微球,而这套荧光素组合无法完全被主流的流式分析仪上识别,需要专门定制的流式分析仪。通过知识产权保护,其封闭的编码微球组合和定制的检测平台垄断了流式荧光市场。使用Luminex的微球开发试剂通常需要获得Luminex的授权,并使用Luminex专用的检测仪器平台或光学模块。相对高昂的编码微球和专用的检测平台,限制了所开发试剂的使用及推广。2 唯公编码微球(EasyMagPlex)除了具有超顺磁性,还在编码微球荧光素的选择上下了功夫,我们的微球在编码荧光通道兼容主流流式的荧光配置(例如唯公、碧迪、贝克曼等),现有的流式用户都可以成为基于我们微球而开发的流式荧光试剂的潜在用户,可以降低用户使用流式荧光试剂的门槛,无需额外采购其他专用设备。同时,在在唯公的设备上(EasyCell和EasyPlex),唯公的编码微球均可实现的自动分析,保证后续流式荧光检测的全流程自动化。为解决编码微球试剂样本制备时间长、操作流式复杂的痛点,唯公配套了全自动细胞因子样本制备仪(EasySampler C),其制备功能还可以通过调整流程,扩展到唯公的自身免疫抗体检测试剂、过敏原检测试剂等。对于唯公微球开发的试剂在其他主流流式上,唯公也有专门的分析软件(WellCKAS)可以对微球团族自动分析,自动建立标准曲线和自动分析结果。3 兼容主流流式的非磁性编码微球,顾名思义,既可以兼容主流流式的荧光配置(例如碧迪、贝克曼、唯公等),但由于编码微球不具磁性,其样本制备自动化受到研发难度大、制造成本高等限制,让后续的样本制备自动化面临巨大的挑战。使用这类编码微球开发的试剂有碧迪、BioLegend和AimPlex的细胞因子试剂,样本制备必须手工操作,极易引入人为误差。二、 编码微球数量在对Luminex编码微球的商业宣传中,我们常常会听到Luminex可以编码500重的三维编码。这其实是一个误区,因为编码微球的目的是用来开发试剂的,不是用来数编码重数的。而且,Luminex的三维编码微球,对仪器设备又提出了更高的要求。选多少重的编码微球,要根据开发试剂的种类。常见的临床编码微球试剂很少能见到30重以上的联检,因为联检的重数超过30重,在试剂开发的过程中,要去解决待测物间的相互干扰的难度和所需的资源都会大幅增加。现有联检较多的细胞因子检测试剂、自免抗体检测试剂,过敏原检测试剂都不超过30重,选用唯公30重或50重编码微球系列就可以满足要求,对于特殊需求的科研试剂,唯公也有新开发的84重编码微球。编码重数适中,可以保证每个编码点(编码微球团族)之间有足够的分离间隙,不仅降低了编码点之间相互“串扰”,而且在一定的仪器、试剂批间偏差的情况下,还能保证了自动分析的准确性。三、 编码微球粒径在单粒径编码微球数量不足的时候,有的公司会通过不同粒径的微球对编码数量进行补充,以达到弥补编码数量的不足。另外,对于采用两种或多种粒径的微球编码组合,通常是通过前散/侧散信号先区分不同粒径的微球,然后再展开不同粒径微球的编码。在前散/侧散散点图中,小粒径微球在偶联/包被抗体/抗原后会形成部分二聚体或多聚体,会与大粒径微球在信号上重叠,被误计入到大微球中,从而对大粒径微球的检测项目产生干扰,影响检测结果。所以在选择不同粒径的编码微球组合时,要认真评估这种因微球粒径的影响而导致测结果不准确的风险。对于不同粒径的微球,其比表面积不尽相同,反应动力学会有差异,且单位质量的微球的总表面积也会不一样。因此对应的最佳包被抗体量亦会有区别,需要不同的包被工艺和条件,对于试剂研发增加了一定的难度。再则,由于微球的表面积与微球粒径的平方呈平方关系,因此不同粒径的微球,其反应信号值差异很大。比如常见的约为3μm、6μm、8μm粒径的微球,以6μm微球的信号强度为1,则3μm球的理论信号强度仅为6μm球的四分之一。而8μm球则为1.78。如果所用的微球粒径跨度较大,则很难保证联检的信号在一个数量级上达成统一。另外大微球(例如,8μm球)虽然在信号强度上能够提高,但在重量上,则大幅增加,如8μm球的重量要比6μm球重2.37倍!重量越重,沉降速度就会加快,对反应过程的混匀要求较高,否则大小不同粒径的球的免疫反应可能达不到均相,会影响检测结果。最后微球会有一定的来源于材料本身的背景荧光信号,在检测荧光的PE通道上,微球粒径越大,在检测荧光通道(PE通道)的自发荧光信号(背景荧光信号)就会越高,直接影响检测试剂的检测下限。唯公编码微球的发展历程从唯公成立之初,我们就把突破Luminex编码微球的技术壁垒作为一项核心技术储备。2018年,我们陆续推出了7重和12重磁性编码微球。2020年我们自主开发的基于唯公编码微球的6/7/12细胞因子联检试剂也获证上市。EasyMagPlex 7/12重磁性编码微球散点图2021年唯公开始对外公开销售其30重磁性编码微球,并根据用户的需求,我们又大幅提升了表面羧基基团密度和耐超高温的性能。目前,唯公开发了“羧基密度通用版”、“羧基密度加强版”和“PCR适用版”,三套微球产品系列,不仅更富了我们的产品线,使之更有层次,更满足了不同用户不同项目的不同需求。在一些比较普遍(即抗原抗体研发相对成熟,反应性高,容易购买,价格便宜等)的项目上,羧基密度通用版的微球即可以满足要求。而对于羧基密度加强版的微球,则适用于一些原料较贵、不易购买或抗原抗体对信号值低的项目。可以将一些处于可用与不可用边缘挣扎的抗原/抗体对儿“抢救回来”。因此用户也不再需要选择大粒径来增加抗体/抗原的包被量,而用我们6um羧基密度加强版编码微球就达到了他们混用6um和8um编码微球的效果,同时避免了不同粒径微球的相互干扰。PCR适用版微球,提高了微球的在超高温和不同温度变化的环境下的稳定性,在PCR不同温度的实验过程中,微球的性能几乎无变化,可满足PCR不同反应体系的要求。EasyMagPlex 30重磁性编码微球散点图,常规及高密度羧基基团性能编码微球比对随着我们编码微球用户不断增多,科研客户特殊的需求也逐渐增多。2022年我们又固化了一套50重磁性编码微球的生产工艺,完成了量产转产,这套编码微球同样具有“羧基密度通用版”、“羧基密度加强版”和“PCR适用版”。EasyMagPlex 50重磁性编码微球近期我们有对我们的编码微球再次升级,完成了84重磁性编码微球的研发。与此同时,我们也完成了不同表面活性基团微球的生产工艺,将全部唯公微球表面活性基团的种类从单一的羧基扩展到了羧基(亲水,疏水),链霉亲和素、氨基、环氧基、甲苯磺酰基等,给用户提供了更多的选择。EasyMagPlex 84重磁性编码微球散点图由于Luminex是最早拥有编码微球技术的公司,我们也把我们的编码微球和Luminex的编码微球在前散/测试及APC编码通道上的一些性能进行了比对。唯公编码微球和Luminex编码微球比对微球试剂开发其他考虑因素因为编码微球是用来开发试剂的!试剂开发需要编码微球最少可以放置两年,而且不同批次的批间差要可控,要具有尽可能低的检测下限。在唯公编码微球的研发过程中,我们对编码微球的稳定性、批间差以及背景荧光信号进行了大量的研究。一 、编码微球的稳定性在试剂的开发过程中,编码微球是试剂开发的原材料之一。作为试剂原料,就必须能存放较长的时间,例如前面提到的两年,因为体外诊断试剂的效期最少都在一年以上。唯公的编码微球在37°C存放一个月后和新制备时进行了比较,其编码荧光值几乎不变。由此可见,我们的编码微球的稳定性可远超出了两年的要求。EasyMagPlex的稳定性加速试验结果二 、编码微球的批间差我们对采用了同样的工艺的不同批次的三批编码微球,通过夹心法进行了批间差验证。其结果显示几乎没有差异,表明我们的工艺稳定,完全符合试剂开发的要求。EasyMagPlex的批间差比较三 、编码微球的背景荧光信号众所周知,任何物质都会有自发荧光,编码微球也不例外。在检测信号通道(PE)上所能检测到的编码微球的自发荧光,我们称之为背景荧光信号(又称,背景噪声信号)。背景荧光越低,检测信号的信噪比就越好,对低值样本检测的干扰就越小,相应试剂的可检测下限就越低。在EasyCell同样设置的情况下,我们对Luminex的一维编码微球裸球和唯公的一维编码微球裸球进行了比对,发现EasyMagPlex在PE通道上的背景荧光信号要明显低于竞品。也就是说,基于EasyMagPlex开发的试剂,可达到更低的检测下限。Luminex编码微球和EasyMagPlex的背景荧光信号比对唯公微球试剂的表现我们以唯公磁性编码微球开发的7重细胞因子联检试剂为例,展示一下唯公微球和国内竞品微球开发的5联检肿标微试剂球对比。可以看出唯公EasyMagPlex在不同待测物浓度下都有更清晰分离度,每个团族都更团聚,且有明显的分界区域(竞品的数据来自公开发表的文章)。除了编码通道的分离度(纵轴)外,唯公的EasyMagPlex在PE检测荧光通道(横轴)也非常聚集,这说明EasyMagPlex的均一性要明细优于竞品的表现。国内竞品磁性编码微球5重肿瘤标志物联检试剂散点图EasyMagPlex7重细胞因子联检试剂散点图我还将唯公的基于磁编码微球7重细胞因子联检试剂和进口的基于无磁编码微球的两家试剂进行过比对(A公司和B公司)。通过比对可以看出,由于EasyMagPlex具有更低的PE背景荧光信号,我们的试剂在接近低端检测限(2 pg/mL)时,依然有非常好的线性,优于进口试剂。EasyMagPlex7重细胞因子联检试剂和进口试剂比对唯公的整体解决方案唯公的流式分析仪(EasyCell),全自动流式荧光分析仪(EasyPlex)均支持唯公编码微球的自动分析。为解决样本制备时间长、操作流程复杂的痛点,还配套了全自动细胞因子样本制备仪(EasySampler C)。EasySampler C不仅支持唯公现有细胞因子检测的样本制备,还也可以通过调整制备流程,扩展至其他唯公的流式荧光试剂,例如自身免疫抗体检测试剂、过敏原检测试剂等。同时,唯公还为其他主流流式(例如,碧迪、贝克曼等)配套了目前国内唯一获证的细胞因子分析软件(WellCKAS),WellCKAS也可以通过调整参数支持其他唯公的流式荧光试剂。参考文献1.前瞻者说|专访唯公科技李为公:打破国际技术垄断,国内免疫诊断迎来新“黄金赛道”,前瞻网(https://www.qianzhan.com),2021.12.31,2.国产流式荧光突破技术壁垒,高通量多联检发展趋势可期——唯公科技创始人李为公博士,仪器信息网(https://www.instrument.com.cn),2023.04.10.
  • 新品速递 | 瑞沃德推出无柱式磁性细胞分选平台
    细胞分选:根据细胞具有的特性,从异质细胞混合物中分离一个或多个特定细胞群的过程,它是对某一特定细胞类型进行生化分析和功能分析的前提和基础,是细胞学研究过程的重要技术。 磁珠细胞分选:基于抗体与特定的细胞表面蛋白结合,被置于磁场中,经磁珠标记的细胞在磁场作用下被吸附、富集与分选。纳米磁珠细胞分选无需大型仪器、具有简单快速、分选纯度高的特点。 瑞沃德纳米磁珠细胞分选系统1.纳米磁珠是磁性细胞分选的重要成员,是吸附或偶联各种生物反应性分子的理想材料。瑞沃德自主研发纳米级磁珠,可与链霉亲和素偶联,生物相容性好;纳米磁珠可降解,稳定性好,分散性好,不影响细胞状态。2.自主开发磁珠细胞分选全链条实验的产品,包括种类丰富的细胞分选试剂盒、分选磁极、细胞分选柱。3.多维打造有柱式细胞分选平台、无柱式细胞分选平台。纳米磁珠细胞分选平台(无柱式) 新品介绍通过向PBMC或单细胞悬液中是加入生物素化的抗体标记非目的细胞(阴选),再用链霉亲和素磁珠结合被标记的非目的细胞。仅需通过手持式永久性磁极吸附的方式获取目的细胞,纳米磁珠细胞分选平台(无柱式),可以快速、简便、大量地分离出与磁珠无接触、未标记的目的细胞。目的细胞可以直接应用于流式分析、细胞培养以及多种分子实验。纳米级磁珠:磁性强、温和无损细胞手持式磁级:操作简便、性价比高无需分选柱:高纯度、高效率阴性分选:去除非目的细胞应用广泛:用于多种细胞实验、分子实验 实验流程 应用表现01.细胞分选后保持高活性使用RWD人NK细胞分选试剂盒-CF(科研级)分选人PBMC,经过流式鉴定,分选前细胞活性99.73%,分选后的细胞活性99.72%,说明经过RWD无柱式细胞分选对细胞活性没有影响。 02细胞分选后目的细胞保持高纯度使用RWD人NK细胞分选试剂盒-CF(科研级)分选人PBMC,经过流式鉴定,分选前human NK细胞(CD3-/CD56+)占比12.93%,富集分选后human NK细胞(CD3-/CD56+)占比92.31%,说明RWD无柱式细胞分选富集的目的细胞表现高纯度。 03细胞分选后应用原代细胞培养实验使用RWD人NK细胞分选试剂盒-CF(科研级)从人PBMC中富集分选的NK细胞,能够快速贴壁并增殖生长,生长状态良好,说明RWD无柱式细胞分选富集的细胞可以用于下游细胞生物学实验。 订购信息
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)
  • 美科学家研发新型电子显微技术 可在原子尺度上测磁性
    美国能源部橡树岭国家实验室研究人员与瑞典乌普萨拉大学的同行合作,开发出一种新型电子显微技术,可在原子尺度上检测材料的磁性。研究人员称,这一技术或可为制造体积更小的磁性硬盘驱动器提供新思路。  在电子显微技术领域,光学镜头造成的像差是一个让人头疼的问题,像差的扭曲效果会使图像模糊,不利于观测。因此,在过去数十年,研究人员一直想方设法消除各种像差,以求得到更清晰的图像。但此次橡树岭国家实验室和乌普萨拉大学的研究人员却反其道而行之,他们不但没有设法完全消除像差,还有意添加了一种被称为四倍散光的像差,利用这种像差效果成功地从镧锰砷氧化材料中收集到了原子水平的磁信号。  研究人员称,这还是第一次有人利用电子显微镜的像差效果来检测材料的磁性。在原子尺度上检测材料的磁性特点具有重要意义,但目前使用的观测手段还不足以让他们在这么小的尺度上进行观测,新方法则赋予了他们一个全新的观测手段,使其有了研究材料的全新方式,具有重要价值。比如,利用这种方法可在原子尺度上弄清磁性硬盘驱动器的磁性特点,从而造出体积更小的硬盘驱动器。  研究人员还指出,这一新的电子显微技术是对现有技术,如X射线光谱和中子散射技术的有效补充。这些技术是目前研究磁性的标准技术,但其分辨率不够高,而新技术明显弥补了这一缺点。
  • 美国开发出检测纳米材料磁性特征新方法
    美国仁斯里尔工业学院12月8日宣布,研究人员成功地将直径为1纳米至10纳米的钴纳米结构团镶嵌于多层碳纳米管中,开发出了一种检测纳米材料磁性特征的新方法。  在经过一系列实验之后,研究人员最终确定,他们获得的由钴纳米材料和碳纳米管组成的混合结构具有足够的导电性灵敏度,可用来探测钴纳米结构这样微小的磁性材料的磁行为。据悉,这是研究人员首次展示利用独立的碳纳米管实现探测微小磁性材料磁场的技术。相关报道刊登在新出版的《纳米快报》上。  当人们常见的材料小到纳米级时,它们展示出了有趣和有用的新特征。纳米技术面临的一个重要的挑战就是要了解这些新特征,即特性的变化。磁性材料的磁性变化同材料本身的尺寸大小变化密切相关,过去纳米材料磁性变化的难以测量影响了人们对该课题的深入研究。  “由于在我们的混合材料中,钴纳米结构团是镶嵌在碳纳米管中而不是在其表面上,因此它们不会引起电子散射,从而不会影响碳纳米管宿主的传导特性。”仁斯里尔工业学院物理、应用物理和天文系助理教授兼研究带头人斯瓦斯迪克卡尔表示,“从根本上讲,这种混合纳米结构属于一类新的磁性材料。”  同系副教授萨偌吉纳亚克认为,这种新的混合纳米结构不仅为基础和应用物理研究开创了新方法,而且还有望帮助人们利用磁性自由度,为增加碳纳米管电学功能铺平道路。该混合结构的潜在应用包括新型纳米级导电传感器、新的电子存储器件、自旋电子器件和人体定向药物微型输送器组件等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制