当前位置: 仪器信息网 > 行业主题 > >

车辆检测器

仪器信息网车辆检测器专题为您提供2024年最新车辆检测器价格报价、厂家品牌的相关信息, 包括车辆检测器参数、型号等,不管是国产,还是进口品牌的车辆检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合车辆检测器相关的耗材配件、试剂标物,还有车辆检测器相关的最新资讯、资料,以及车辆检测器相关的解决方案。

车辆检测器相关的论坛

  • 在线监测,能否快速找出高污染车辆?

    随着机动车保有量迅速增加,我国城市大气污染已由过去的煤烟型污染为主转变成煤烟型和机动车排放污染并存的复合型污染。据预测,今后我国机动车数量仍将呈高速增长态势,我国城市也将面临更为严重的机动车尾气污染问题。而要有效控制机动车污染,排放检测至关重要。[b]  能否对在行驶车辆进行尾气监测?[/b]  通过提高油品质量、加严排放标准等,都可有效降低机动车污染排放。在这方面,相关部门已经出台了一些政策和要求。比如,《关于推进大气污染联防联控工作改善区域空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的指导意见》中明确,要全面推进大气污染联防联控,切实改善区域城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,对降低机动车排放也提出了明确要求。  目前,我国的机动车排放检测基本是每年一次,主要在检测场进行。然而,检测当天尾气排放合格并不能保证其在一年内都排放合格,机动车没有按时保养或零部件故障等都可能导致尾气排放超标。因此,如果能在车辆行驶状况下,对路面在用车尾气进行实时监测,就能及时发现车辆排放超标的情况,也有助于治理工作开展。  以氮氧化物为例,国内外研究表明,现在城市大气污染物总量中,60%以上的氮氧化物是由机动车排放造成的,最高比例甚至可以达到90%。而在机动车排放的污染总量中,80%的污染物是由占车辆总数20%的高污染排放车辆带来的,快速找出这些高污染车辆并加以治理,对改善城市环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量意义重大。 [b] 遥感监测可实时监控[/b]  机动车尾气激光遥感监测仪是目前国内外机动车尾气检测领域的高科技产品,而我国已经掌握了这一技术。作为国内专业从事机动车尾气激光遥感监测仪器研发、生产、销售的高新技术企业,安徽宝龙环保科技有限公司从2004年起致力于机动车遥测技术的产业化。经过在移动式尾气遥感监测领域多年的技术积累,公司成功开发了固定式尾气遥感监测设备,并已获得国家专利。  据介绍,固定式激光遥测设备系统可设置于道路两侧,对在单向和双向多车道上行驶车辆的污染物排放进行实时遥感监测。除此之外,这一设备还有很多优点。比如,设备安装灵活方便,可安装在城市的重要路段、收费口等地,而且设备可无人值守,能全天候实时在线监测,有效提高监测效率。  固定遥测设备在城市典型路段合理布局,可形成整个城市机动车尾气实时在线监控网络,结合网络传输技术,与环境监测中心可实现数据共享和结果实时显示。在数据应用方面,基于现有道路交通监测数据,可建设基于GIS(地理信息系统)的机动车污染动态显示系统,并动态显示城市机动车污染状况。  [b]可为机动车尾气联防联控提供支撑[/b]  通过城市固定式尾气遥测设备网络系统,可监测机动车尾气在城市各区域的分布以及车型、车流、路形、地域条件对尾气排放的影响,建立机动车尾气排放区域模型,为政府治理尾气提供相关依据。基于固定式尾气遥测设备城市监控网,可建立区域机动车尾气联防联控网络,继而为建立全国机动车尾气排放污染监控网络提供有力支撑。  据介绍,2007年,宝龙环保科技公司为北京奥运会开发了3套固定式尾气遥感监测设备,这些设备与20多套移动式尾气遥测设备组合共同服务北京奥运会,取得了很好的成效。  目前,北京、深圳、南京、呼和浩特、包头、淄博等城市共有20多套固定式遥测设备系统投入使用。通过这些设备,可以实现对高污染排放机动车的有效筛选,为当地节能减排工作顺利开展发挥重要作用。

  • 【资料】红外检测器

    【资料】红外检测器

    红外检测就是利用红外辐射原理对设备或材料及其它物体的表面进行检验和测量的专门技术,也是采集物体表面温度信息的一种手段。 红外检测的原理 红外线检测物体表面温度分布的变化如图1所示。 [img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807231651_99712_1604460_3.jpg[/img]图1 红外检测物体表面温度变化示意 从图中可见,热流注入是均匀的,对无缺陷的物体,正面和背面的温度场分布基本上是均匀的,如果物体内部存在缺陷,在缺陷处温度分布将发生变化,对于隔热性的缺陷,正面检测方式,缺陷处因热量堆积呈“热点”,背面检测时,缺陷处则是低温点;而对于导热性的缺陷,正面检测时,缺陷处的温度是低温点,背面检测到缺陷处的温度是“热点”。可见,采用红外检测技术,可以形象地检测出材料表层与浅层缺陷和范围。 当一个物体本身具有不同于周围环境的温度时,不论物体的温度高于环境温度,还是低于环境温度;也不论物体的高温来自外部热量的注入,还是由于在其内部产生的热量造成,都会在该物体内部产生热量的流动。热流在物体内部扩散和传递的路径中,将会由于材料或投射的热物理性质不同,或受阻堆积,或通畅无阻传递,最终会在物体表面形成相应的“热区”和“冷区”,这种由里及表出现的温差现象,就是红外检测的基本原理。 红外检测器的分类 红外的检测器是红外分光光度计的重要组成部分,红外的检测器也有多种。 红外检测器分为热电检测器和光检测器两类。热电检测器是将红外的辐射热能转化为电能,从而检测电信号来测量红外线的强弱。光检测器则是利用红外线的热能使得检测器的温度发生改变,从而导电性发生变化,此时通过测量电阻来衡量红外信号的强弱。 热电检测器有:DTGS(氘化硫三肽)、LiTaPO3(钽酸锂)等。 光检测器有:MCT(汞铬碲)、InTe(锑化铟)等。 红外检测的基本方法 红外检测的基本方法分为两大类型,即被动式和主动式。被动式的红外检测在设备的红外检测诊断技术中应用比较多;主动式的红外检测又可分为单面法和双面法 红外检测中对被测目标的加热方式也分为稳态加热和非稳态加热。 红外检测仪器的安装和运载方式有固定式、便携式、车载式和机载式(直升机装载)等多种。 (1)被动式红外检测 所谓被动式系指进行红外检测时不对被测目标加热,仅仅利用被测目标的温度不同于周围环境温度的条件,在被测目标与环境的热交换过程中进行红外检测的方式。被动式红外检测应用于运行中的设备、元器件和科学试验中。由于它不需要附加热源,在生产现场基本都采用这种方式。 (2)主动式红外检测 主动式红外检测是在进行红外检测之前对被测目标主动加热,加热源可来自被测目标的外部或在其内部,加热的方式有稳态和非稳态两种,红外检测根据不同情况可在加热过程当中进行,也可在停止加热有一定时间后进行。 1)单面法:对被测目标的加热和红外检测在被测目标的同一侧面进行。 2)双面法:相对于上述的单面法而言,双面法是把对被测目标的加热和红外检测分别 在目标的正、反两个侧面进行。 (3)加热方式 1)稳态加热:将被测目标加热到其内部温度达到均匀稳定的状态时,再把它置放于一个低于(或高于)该恒定温度的环境中进行红外检测。 这种方式多用于材料的质量检测,如被测物内部有裂纹、孔洞或脱粘等缺陷时,则被测物与环境的热交换中热流将受到缺陷的阻碍,其相应的外表面就会产生温度的变化,与没有缺陷的表面相比则会出现温差。 2)非稳态加热:对被测目标加热,不需要使其内部温度达到均匀稳定状态,而在它的内部温度尚不均匀、具有导热的过程中即进行红外检测。 3)如将热量均匀地注入被测目标,热流进入内部的速度要由它的内部状况决定,若内部有缺陷,则会成为阻档热流的热阻,经一定时间会产生热量堆积,在其相应的表面会产生热的异常。缺陷造成的热流变化取决于缺陷的位置、走向、几何尺寸和材料的热物理性能。 红外检测仪器的安装和运转方式 (1)固定式:用于对旋转型设备故障的监测、关键设备的监测和生产在线产品工艺、质量的监测。 (2)便携式:便携式的红外检测仪器应用十分广泛,在日常巡检、定期普测、配合设备检修和跟踪监测中都要使用(主要使用或配合使用)便携式仪器。 (3)车载式:在进行设备的定期普测时,由于被测设备数量多、检测路线长,必须采用车载式检测。车载式是把热像仪装载在汽车(或其它车辆)上,可以使用两组测距不同的镜头摄取远、近两处设备的红外图像;对于汽车不能到达的目标,则步行到位检测;车内有图像监视器显示,操作者发现异常(包括需要立即检修和进一步调查监测两种情况),则立即在车上纪录并打印,及时向主管人员递交红外检测报告;遇有紧急情况需要及时处理,可采用无线电电话取得联系。 (4)机载式:对于需要在上空检测的目标,特别是极长距离、人员和车辆都不便到达的高山峻岭处的设备检测,应该采用直升机机装载热像仪进行。 红外检测的优势 红外检测作为非破坏检测众多方法中的一个,它们的功能在相比之下是各有特色,但红外检测却有其独到之处,形成了它的检测优势,可完成X射线、超音波、声发射及激光全息检测等技术无法担任的检测。 (1)非接触性:红外检测的实施是不需要接触被检目标的,被检物体可静可动,可以是具有高达数千摄氏度的热体,也可以是温度很低的冷体。所以,红外检测的应用范围极为宽广,且便于在生产现场进行对设备、材料和产品的检验和测量。 (2)安全性极强:由于红外检测本身是探测自然界无处不在的红外辐射,所以它的检测过程对人员和设备材料都不会构成任何危害;而它的检测方式又是不接触被检目标,因而被检目标即使是有害于人类健康的物体,也将由于红外技术的遥控检测而避免了危险。 (3)检测准确:红外检测的温度分辨率和空间分辨率都可以达到相当高的水平,检测结果准确率很高。例如,它能检测出0.1℃,甚至0.01℃的温差;它也能在数毫米大小的目标上检测出其温度场的分布;红外显微检测甚至还可以检测小到0.025mm左右的物体表面,这在线路板的诊断上十分有用。在某种意义上说,只要设备或材料的故障缺陷能够影响热流在其内部传递,红外检测方法就不受该物体的结构限制而能够探测出来。 (4)操作便捷:由于红外检测设备与其它相比是比较简单的,但其检测速度却很高,如红外探测系统的响应时间都是以μs或ms计,扫描一个物体只需要数秒或数分钟即可完成,特别是在红外设备诊断技术的应用中,往往是在设备的运行当中就已进行完了红外检测,对其他方面很少带来麻烦,而检测结果的控制和处理保存也相当简便。

  • 特急 | 12月底前,全部道路运输车辆综合性能检测机构实现综检数据全国联网

    [b][color=#595959] 近日,交通运输部发布了《加快推进道路运输车辆综合性能检测联网 实现普通货运车辆全国异地检测工作方案》,重点要求各省建立综检联网系统,并在2019年底前实现普通货运车辆全国异地审验。[/color][/b][color=#595959] 据了解,通过道路运输车辆综合性能检测全国联网,构建开放共享、互联互通、统一规范、便民利民的车辆综合性能检测联网服务体系,实行检验检测结果互认,可实现普通货车全国异地检测,节省检验检测时间,减轻企业负担。[/color][b]具体如何实现?[color=#595959]1、建设综检联网系统。[/color][/b][color=#595959]由部组织开发机动车综合性能检测联网服务系统(以下简称综检联网系统,包括部级及省级综合版)。[/color][b][color=#595959]2、实现综检全国联网。[/color][/b][color=#595959]加快实现检验检测机构与省级综检联网系统、省级与部级综检联网系统联网 加快实现省级数据上传部级综检联网系统、接收部级综检联网系统下发的跨省异地检验检测数据,用于跨省异地检测结论互认。[/color][b][color=#595959]3、实现普通货运车辆全国异地检测。[/color][/b][color=#595959]2019年1月1日起,车籍地交通运输主管部门在办理普通货运车辆年度审验时,应采取在线获取车辆检测报告等信息的方式。加快推进普通货运车辆省内异地审验,2019年底前实现普通货运车辆全国异地审验。[/color][b][color=#595959]4、提升系统应用能力。[/color][/b][color=#595959]中国交通通信信息中心负责全国范围综检联网师资培训,省级交通运输主管部门负责辖区综检联网培训工作。各地交通运输主管部门、检验检测机构以及参与系统建设和应用的各有关单位要密切配合、相互协作,确保综检联网工作顺利开展。[/color][b]有哪些工作安排?[color=#595959]1、准备阶段:[/color][/b][color=#595959]2018年10月底前,完成部建省级综检联网系统开发建设,并部署上线试运行 11月5日前,各省级交通运输主管部门制定印发本省份实施方案,明确建设方式及工作时间节点,并及时报部。[/color][b][color=#595959]2、数据对接阶段:[/color][/b][color=#595959]2018年11月底前,完成辖区内检验检测机构与省级综检联网系统数据联网 省级综检联网系统与部级综检联网系统进行数据对接。确保省内检验检测机构完成数据对接并上传检验检测数据和检测结论 开展数据对接实施及系统应用培训。[/color][b][color=#595959]3、全面实施阶段:[/color][/b][color=#595959]2018年12月底前,全国31个省份全部检验检测机构实现综检数据全国联网。[/color]

  • 【求助】痕量硫检测器

    对于轻烃和油品中痕量含硫化合物的分析目前比较好的检测器是Agilent的ECD,PE的ASD和Varain的PFPD,请问各位高手它们的优缺点都有哪些? 哪一家的检测器在国内使用较多? 谢谢!

  • 激光散射检测器测分子量

    激光散射检测器测分子量的大师请出来指点最近用安捷伦的的激光散射检测器和RI测绝对分子量,冲了两天,15度的基线波动一直降不下来啊,现在用的屈成氏的水。

  • 检测器积水造成的基线不良

    检测器积水造成的基线不良

    案例: Shimadzu的GC2014,FPD检测器。仪器运行一段时间,更换了色谱柱,然后点火,发现基线不良。 稍作说明,一开始比较平直的基线,是系统开启,未点火的状态。 图中间部分是点火信号,基线突然跳起很高,表示检测器内火焰产生。然后基线回落,表示火焰熄灭。 接着系统自动进行第二次点火,基线再次上跳,如果点火成功,基线就会维持在一个较高的电压水平上。 注意最后一段,基线发生了不规律的跳动,仔细观察,这个跳动的速率并不太快,所以可能不是电气问题。http://ng1.17img.cn/bbsfiles/images/2013/06/201306212154_446887_1604036_3.jpg 猜测是FPD火焰不稳定造成的,打开检测器上盖,发现检测器内有大量水。 将水吹干,再次点火,仪器正常。 看来,可能是更换色谱柱的时候,检测器降温,但是没有关闭氢气空气,造成检测器内积水。再次开机点火,水造成了检测器出口不畅通,影响了火焰稳定性。

  • 紫外检测器和DAD检测器

    配制的固定浓度的两种物质的标准品溶液,相同条件在紫外检测器和DAD检测,其中一种物质峰面积相同,另一种物质紫外检测器检测比DAD检测峰面积大一倍。是为什么呢?

  • 质量型检测器和浓度型检测器的区别

    大家知道什么时候选择用峰高定量,什么时候用峰面积定量吗?还有,有朋友问影响峰高和峰面积的因素。那么首先必须要了解的一个概念就是浓度型检测器和质量型检测器的区别。浓度型检测器浓度型检测器(concentration detector)在一定浓度范围(线性范围)内,响应值R(检测信号)大小与流动相中被测组分浓度成正比(R∝C)。浓度型检测器当进样量一定时,瞬间响应值(峰高)与流动相流速无关,而积分响应值(峰面积)与流动相流速成反比,峰面积与流动相流速的乘积为一常数。绝大部分检测器都是浓度型检测器,如:热导池检测器(TCD)、电子捕获检测器(ECD)、液相色谱法中的紫外-可见光检测器(UVD)、电导检测器与荧光检测器也是浓度型检测器。凡非破坏性检测器均为浓度型检测器。质量型检测器质量型检测器(mass detector)在一定浓度范围(线性范围)内,响应值R(检测信号)大小与单位时间内通过检测器的溶质的量(被测溶质质量流速)成正比,即响应值R与单位时间内进入检测器中的某组分质量成正比R∝dm/dt;。质量型检测器其峰高响应值与流动相流速成正比,而积分响应值(峰面积)与流速无关。这类检测器较少,常见的有氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、氮磷检测器(NPD)、质量选择检测器(MSD)等。浓度型检测器其响应值与载气流速的关系:峰面积随流速增加而减小,峰高基本不变。当组分的量一定时、改变载气流速时,只改变组分通过检测器的速度,即半峰宽,其浓度不变。因此,一般采用峰高来定量。当检测器的响应值取决于单位时间内进入检测器的组分的量时,为质量型检测器,一般破坏性的检测器,如FID,MSD,NPD等均为质量型检测器。其响应值与载气流速的关系是:峰高随流速的增加而增大,而峰面积基本不变.改变载气流速时,只改变单位时间内进入检测器的组分量,但组分总量未变。因此,一般采用峰面积来定量。所以,大家明白了吧,对于浓度型检测器和质量型检测器峰高和峰面积的影响因素是不同的。当然对于定量来讲,在条件一定的情况下,也是都可以用另一种定量方式的。对于峰高和峰面积的影响因素,这是其中之一。不同检测器都有其具体的影响因素。但是流速的影响大家一定要分开,其对于浓度和质量型检测器的区别。(来源:实验之家)

  • 紫外检测器与示差检测器的比较

    紫外检测器与示差检测器原理是什么?   紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。示差检测:是通用型检测器,凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统(当然现在糖类elsd很普遍)。  紫外:只要具有光吸收的都可以.  示差: 存在光的对比差或折射率  任意一束光有一种介质射入另一种介质时,由于两种截至的折射率不同而发生折射现象。折射率的大小表明了截至光学密度的高低。介质的折射率随温度升高而降低。一般选用20度时两纳线的平均值589.3nm为检测波长测定溶剂的折射率。示差折光检测器是通过连续测定色谱柱流出液体折射率的变化而对样品浓度进行检测的。检测器的灵敏度与溶剂和溶质的性质都有关系,溶有样品的流动相和流动相本身之间折射率之差反映了样品在流动相中的浓度。  紫外检测器的工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比.示差检测器是连续检测样品流路与参比流路间液体折光指数差值的检测器,是根据折射原理设计的,属偏转式类型。光源通过聚光镜和夹缝在光栏前成像,并作为检测池的入射光,出射光照在反射镜上,光被反射,又入射到检测池上,出射光在经过透射镜照到双光敏电阻上形成夹缝像。双光敏电阻是测量电桥的两个桥臂,当参比池和测量池流过相同的溶剂时,使照在双光敏电阻的光量相同,此时桥路平衡,输出为零。当测量池中流过被测样品时,引起折射率变化使照在双光电阻上的光束发生偏转,使双光敏电阻阻值发生变化,此时由电桥输出讯号,即反映了样品浓度的变化情况。  示差检测器主要是依据不同溶液的折光率来鉴定的,当浓度不紫外检测器:基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。  很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  示差检测器:对于偏转式示差折光检测器,光路在通过两个装有不同液体的检测池时发生偏转,偏转的大小与两种液体之间折光率的差异成比例。光路的偏转由光敏元件上的位移测得,显示了折光率的不同。 在光学系统中采用了多种精密装置,提高了运行的稳定性,也使检测器更加精致。从钨灯发射出的光束经过聚光透镜,狭缝1,准直镜和狭缝2检测池,然后光被检测池后的反光镜反射,再通过检.在光学系统中采用了多种精密装置,提高了运行的稳定性,也使检测器加精致。从钨灯发射出的光束经过聚光透镜,狭缝1,准直镜和狭缝2检测池,然后光被检测池后的反光镜反射,再通过检测池、狭缝2、准和零位玻璃调节器后在光敏元件上显示出狭缝1的影象 光敏元件上有两个并排的光敏接收元件。 当检测池中的样品和参比的折光率变化时,光敏元件上的影象水平移动。光敏接收元件各自发出的电信号的变化与影象的位例。因此,与折射率的差异相对应的信号可由两信号输出的差异获得。  紫外检测器的原理:被检测物质具有特定的吸收波长,在该波长下,响应值与浓度成正比。示差检测器原理:被测物质具有一定的折光系数。  各自的用途?  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质.示差检测是凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测.  示差折光检测器对没有紫外吸收的物质,如高分子化合物、糖类、脂肪烷烃等都能够检测。在凝胶色谱中示差折光检测器是必不可少的,尤其对聚合物,如聚乙烯、聚乙二醇、丁苯橡胶等的分子量分布的测定。另外在制备色谱中也经常用到。还适用于流动相紫外吸收本地大,不适于紫外吸收检测的体系。  示差折光检测器与紫外可见检测器相比,灵敏度较低,一般不适用于痕量分析,也不适用于梯度洗脱。  紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm延伸。  示差检测器属于通用性检测器,如果选择合适的溶剂,几乎所有的物质都可以进行检测。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测.  示差检测器属于通用性检测器,可以分析绝大多数的物质.  用途:一般当物质在200-400nm有紫外吸收时,考虑用紫外检测器。无吸收或吸收弱时可以考虑示差检测器。  它们有什么各自优点?  紫外吸收检测器它不仅有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。示差折光检测器这一系统通用性强、操作简单.  示差检测器属于总体性能浓度型检测器,其响应值取决于柱后流出液折射率的变化,采用含有样品的流出液和不含样品的流出液的同一物理量的示差测量。其响应信号与溶质的浓度成正比。属于中等灵敏度检测器,检测限可达1mg/ml-0.1mg/ml。  紫外检测器灵敏度高,噪音低,线性范围宽,对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此既使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  示差折光检测器是目前液相色谱中常用的一种检测器,它可与输液泵,色谱柱,进样器等组成凝胶渗透色谱仪或高速液相色谱仪系统,也可以配置适当的进样系统作为单独的分析仪器使用。对所有溶质都有响应,某些不能用选择性检测器检测的组分,如高分子化合物、糖类、脂肪烷烃等,可用示差检测器检测。由于不同的液体折光不同,因此本检测器通用性强,可广泛地应用于化工、石油、医药、食品等领域为科研、生产服务。  紫外检测器有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱,示差检测器几乎对所有溶质都有响应.  紫外优点:常用、方便。示差检测器:弱吸收物质定量准确。  它们之间的区别?  示差折光检测器这一系统灵敏度低(检测下限为10-7g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。UV检测的主要缺点在于紫外不吸收的化合物灵敏度很低。1.紫外是选择性检测器,示差是通用性检测器;2.紫外检测器灵敏度高,示差检测器灵敏度低;3.紫外检测器可进行梯度洗脱,示差检测器不能进行梯度洗脱;4.紫外检测器对压力和温度不敏感,示差检测器很敏感。  示差检测在原理上虽然是通用型检测器,但是它的灵敏度低,和梯度脱洗不相容,因此它对于HPLC来说不是理想的检测器。  而紫外检测器既可用于等度洗脱,也可用于梯度洗脱.(来自网络,侵删)

  • 知道是质量检测器和浓度检测器有什么意义吗?

    老实说我一直搞不懂这两种检测器分类方式的区别,反正就知道在色谱条件固定的情况下样品浓度变高了/进样量变大了,出峰就会相应变大。那为什么还要一定知道某种检测器的分类呢?还是知道是质量检测器和浓度检测器,就证明自己高大上了?

  • 求教PDD检测器和HDPID检测器的区别?

    PDD检测器是脉冲放电检测器,HDPID检测器是氦离子化检测器,请问这两个检测器的区别在哪里?网上查了好多资料都没有详细的解说,知道的朋友帮忙下,谢谢。

  • 浓度型检测器和质量型检测器定量方法有区别吗

    浓度型检测器响应值取决于载气中组分的浓度,当载气载气流速时,组分浓度是不会改变的,那么定量的时候是以峰高还是以峰面积来计算?质量型检测器响应值取决于单位时间内通过检测器的质量,当改变流速时,单位时间内的通过检测器的物质的量是会发生变化的,具体是在峰高上还是峰面积上体现出来?

  • 激光检测器灯不亮是怎么回事?

    贝克曼毛细管电泳仪,我用LIF检测器,同学用PDA检测器,我们一个月轮换做实验。这次轮到我用LIF的时候,开机--开检测器,仪器运行得都很正常,但检测器上的Laser on 这个灯不亮,能听见检测器在响,但是不见灯亮。上上个月做的时候也有这种情况出现,当时开开关关好几次,终于亮了。难道是由于许久没用LIF检测器就会出现这种状况?这也太不稳定了。有木有人遇到和我一样的情况。。。。这怎么处理。。。总不能每次都开关机好几回吧

  • 气相色谱讲义-检测器

    目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)(一)灵敏度——应答值单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示:(3)由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:对于浓度型检测器:当试样为液体时,S的单位为 mV•ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;当试样为气体时,S的单位为mV•ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;对于质量型检测器:当试样为液体和气体时,S的单位均为:mV•s/g,即每秒钟有1g的组分被载气携带通过检测器所产生的mV数。灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。(二)检测限(敏感度)噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以 RN 表示。噪声大,表明检测器的稳定性差。检测限——是指检测器产生的信号恰是噪声的二倍(2RN)时,单位体积或单位时间内进入检测器的组分质量,以D 表示。灵敏度、噪声、检测限三者之间的关系为:(4)检测限的单位:对于浓度型检测器为mg/ml或 ml/ml;对质量型检测器为:g/s。检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。D 越小,表明检测器越敏感,用于痕量分析的性能越好。在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。所以常用最低检出量表示:图2 检测器噪声(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以 Q0 表示。 (三)线性范围检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。通常用最大允许进样量QM与最小检出量Q0的比值来表示。比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。

  • 更换检测器

    问个很菜的问题。我用的是安捷伦7890A,后进样口安了自动进样器,两个检测器,前检测器NPD,后检测器ECD。只装了一根柱子,一直用的是后进样口后检测器。现在我想用前检测器,我只要把柱子一头连后进样口,一头连前检测器就可以了吧?工作站会自动识别的吧????菜鸟一枚,希望大神们指点!

  • 【求助】关于检测器

    请问ECD检测器和μECD检测器有什么区别啊~?测同一物质时,两种检测器的温度一样还是不一样呢?

  • 电导检测器和紫外检测器可否串联使用?

    我看到有人提到电导检测器和紫外检测器可以串联起来使用,但是没有详细的说明。在下很想知道两者是否真的可以串联起来使用?有哪些需要注意的事项?使用过的高手可否说说您的体会?多谢!

  • 能否快速找出尾气高污染车辆?

    随着机动车保有量迅速增加,我国城市大气污染已由过去的煤烟型污染为主转变成煤烟型和机动车排放污染并存的复合型污染。据预测,今后我国机动车数量仍将呈高速增长态势,我国城市也将面临更为严重的机动车尾气污染问题。而要有效控制机动车污染,排放检测至关重要。能否对在行驶车辆进行尾气监测?机动车尾气激光遥感监测仪技术是否已成熟?怎样为机动车尾气联防联控提供更好技术支撑?欢迎各位坛友踊跃发言讨论!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制