当前位置: 仪器信息网 > 行业主题 > >

分析传感器

仪器信息网分析传感器专题为您提供2024年最新分析传感器价格报价、厂家品牌的相关信息, 包括分析传感器参数、型号等,不管是国产,还是进口品牌的分析传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分析传感器相关的耗材配件、试剂标物,还有分析传感器相关的最新资讯、资料,以及分析传感器相关的解决方案。

分析传感器相关的论坛

  • 试验仪器:波高采集系统压力传感器的10大误差分析

    在分析试验仪器波高采集系统压力传感器的总误差时,首先要考虑试验仪器每一个误差的来源,分析导致这些误差的因素,然后想办法减少这些误差,提高波高采集传感器系统总的性能。那么影响波高采集系统压力传感器性能的误差来源有哪些?  1、当计算波高采集系统压力传感器的总误差时,应使用下列定义的误差。为决定你已选择波高采集系统压力传感器特定误差的程度,参见在这目录中该传感器的规格说明。在特定用户应用中,有些标称的指标可以减少或消除的,例如,如果波高采集系统压力传感器用在规定温度范围的一半内,那么温度误差可以减少一半,如果使用自动调零技术,零点偏置和零飘误差可以消除。  2、零点偏置是同时加在膜片两侧上的相同压力时传感器输出。  3、量程是输出端点之间的代数差。通常二端点是零和满刻度。  4、零点温度偏移是由温度变化引起的压力传感器零点变化。零点偏移不是可预测的误差,因为每一个器件可以向上或向下偏移,温度变化将引起整个输出曲线沿电压轴向上或向下偏移。  5、灵敏度温度偏移是由温度变化引起的压力传感器灵敏度变化,温度变化将引起传感器输出曲线的斜率变化。  6、线性误差是在期望压力范围传感器输出曲线与一标定直线的偏差,计算线性误差的一个方法是最小二乘方,它从数学上提供对数据点的最佳配合直线。另一方法是末端基点线性度(T.B.L.)或端点线性度。T.B.L.由在输出曲线上二端数据点之间画一直线(L1)决定。接着从线L1 作一垂线至输出曲线, 选择相交数据点以达到垂线的最大长度,垂线的长度代表末端基点线性误差。  7、比率变化量是指在其他条件保持恒定情况下传感器输出比例于电源电压,比率变化量误差是在这比率中的变化,通常表达为压力传感器量程的百分值。  8、重复性误差是在其他条件保持恒定情况下连续加上任何给定输入压力在输出读数中的偏差。  9、迟滞误差通常表达为机械迟滞和温度迟滞的组合误差。机械迟滞:指输出在某一个给定输入压力时(上升、下降不同过程)的传感器误差。  10、温度迟滞是在一温度循环以前和以后在确切输入压力下的输出偏离。  以上是试验仪器波高采集系统压力传感器的误差来源总结。

  • 我国传感器产业技术及市场动向分析

    导读:传感器技术是现代科技的前沿技术,其水平高低是衡量一个国家科技发展水平的重要标志之一。感器技术已经从传统的物性型向集成化、多功能化、数字化、智能化、系统化、网络化发展,并不断应用新材料。    传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。    传感器的种类繁多,分类方法也多。目前常用的是按照传感器的用途,分为:力敏传感器、热敏传感器、湿敏传感器、磁敏传感器、气敏传感器、加速度传感器、生物传感器,等等。(3)技术动向与发展趋势    传感器技术是现代科技的前沿技术,其水平高低是衡量一个国家科技发展水平的重要标志之一。通过多国展,我们不难发现,感器技术已经从传统的物性型向集成化、多功能化、数字化、智能化、系统化、网络化发展,并不断应用新材料。应用领域也从高技术和军事领域迅速转移到传统基础工业改造、大型工程系统配套、汽车电子化配套、家电控制系统、医疗卫生、健康保健、环保监测治理等国民经济的各个领域。    1)传感器的集成化和多功能化    传感器集成化,即将传感器、信号处理器、控制系统、电源系统等产品一体化,作为投入市场的初始产品,才能获取行业的重视,满足市场需求。已经获得广泛应用的多功能硅压力/差压传感器是小型集成化的典型。它是在4mm*4mm的硅片上,采用微电子平面工艺和微机械加工工艺,采用三坯双岛的复合敏感结构,实现了差压、静压和温度3参数的同时测量。    2)传感器的数字化和智能化    传感器的数字化和智能化的出现是传感器产业又一次突破,也成为当今传感器行业发展的重要发展方向之一。智能传感器将微处理、通信总线接口、信息检测、信息处理和信息传输等功能一体化,并自行进行补偿、校正、故障排除,将只能进行单一检测、单一功能的传统传感器与智能化技术相结合,实现传感器的多种测量、多种变量的特性。另外数字传感器内部结构简单,利用纯数字电路进行测量,抗干扰性强。随着计算机技术的发展,使传感器的数字化和智能化得到了最大意义的体现,具有更大的发展潜力和空间。    3)传感器的系统化和网络化    传感器的系统化和网络化是必然,智能化传感器的发展,为传感器测控网络的实现提供了技术基础,网络技术和传感器技术的结合,使传感器随着无所不在的计算机网络的发展而发展。这种技术上的飞跃不仅使传感器的性能大大提高,而且将带来高额的技术附加值。要实现无所不在的参数检测,传感器向网络化发展将成为今后研究的热点,他将为系统的扩充提供了极大的方便,减少现场布线的复杂性和电缆的数量。网络传感器是以嵌入式微处理器为核心,集成了传感器、信号处理器和网络接口的新一代传感器。在网络传感器中,采用嵌入式技术和集成技术,使传感器的体积减小,抗干扰性能和可靠性提高;微处理器的引入,使网络化传感器成为硬件和软件的结合体,根据输入信号进行判断、决策、自动修正和补偿,提高了控制系统的实时性和可靠性;网络接口技术的应用,为系统的扩充提供了极大的方便,减少了现场布线的复杂性和电缆的数量。    (4)国内外的差距    物联刚应用已从政府政策扶持进入市场导入期,传感器作为物联网基础,处于产业链上游,在物联网发展之初受益较深。但传感器已成我国物联网发展瓶颈。据分析,我国传感器行业发展落后,困内传感器需求,尤其是高端需求严重依赖进口,困产化缺口巨大,目前传感器进口占比80%,传感器芯片进口占比达90%。国产化需求迫切。国内传感器厂商占据中低端市场从发展态势看,国内传感器厂商有三种情况:    一是国有企业发展处于平稳增长状态,总体上跟跟不上国外最新技术发展的步伐,除少数厂家外,总体差距有扩火的趋势。这是因为传感器技术发展快,工艺和制造设备更新快,许多新设备国内厂商无法制造等原因造成的。并且设备的单台价格少则几十万美元,多则数百万美元,绝大多数厂家靠白身积累很难购买新型设备,致使在许多新技术、新工艺方面无法跟国外企业飞速发展的步伐。    二是营或合资企业的产品占据了中低端市场,传统技术和装备手段可以满足绝火多数产品的制造要求,市场发展状态良好。除个别厂家在个别品种方面将国外生产的芯片拿到国内封装出相关产晶、.占据市场较大份额外,其他高端产品均是困外厂商在垄断。    三是外资企业的产品占据国内高端市场绝大多数的市场份额,并将会在今后很长一段时问内持续把持高端市场,这种势头在短期内不会得到根本转变。    我国传感器业取得的新进展主要表现在:一是在数景方面,通过多年的积累,随着装备的改进,产能在近几年得到了突飞猛进的发展,几乎以每年近一倍的速度在增长;是在品种方面,除少数品种外,目前国内能够生产多数品种的产品;三是在质量方面,国内厂商开发的多数产品性能能够满足工程需要,产品质量丌始接近困外产品水平:四是在新产品方面,由于创新能力小足以及工艺技术和加工手段的差距,我困企业自主发的新产品少。    面临的的问题在于:原刨技术少、新型加工手段缺少、工艺装备落后、持续发展的体系没有建立起来。新型传感器的产业化速度慢仍困扰着众多传感器企业。产品更新换代是行业持续发展的源泉,传感器正向更多领域拓展,这些领域不断增长的需求,要求新型传感器产品不断的涌现。网络的应用,IT业的迅速发展,也对传感器新品提出更多要求,因此本土传感器还有太多的地方需要学习和提高。在技术方面,我国传感核心技术缺乏,成为行业发展、甚至物联网产业进步的阻碍力量。在企业方面,我国传感器企业规模普遍较小,很难和世界级大型公司竞争。在政策方面,我国行业专业激励政策不明确,企业不易得到辅助。在市场方面,我国传感器业面临中高端依赖进口、低端价格战和同质化竞争的局面。

  • 分析仪器和传感器朝向智能化方向发展

    我国分析仪器和传感器产品,已经加大力度朝向智能化、信息化、网络化方向发展,以实现更灵敏、更准确、更快速、更可靠地实时检测。分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,以迅速改变我国分析仪器的落后状况。传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。(摘自中国教育装备采购网)

  • 【转帖】烟气分析仪中电化学气体传感器的使用与维护

    烟气分析仪中电化学气体传感器的使用与维护 烟气分析仪是对有害气体如二氧化硫、一氧化氮、二氧化氮、一氧化碳等排放以及氧含量的气体检测的仪器。用于燃油、燃气锅炉污染排放、烟道气及污染源附近的环境监测。气体传感器是烟气分析仪检测气体的核心,常用气体传感器多为电化学传感器。  电化学气体传感器性能比较稳定,寿命较长,耗电很小,对气体的响应快,不受湿度的影响,分辨率一般可以达到0.1μmol/mol(随传感器不同有所不同)。它的温度适应性也比较宽(有时可以在-40℃到50℃间工作)。然而,它受读数温度变化的影响也比较大。所以很多仪器都有软硬件的温度补偿处理。同时电化学式传感器又具有体积小、操作简单、携带方便、可用于现场监测及成本低等优点,所以,在目前各类气体检测设备中,包括烟气分析仪,电化学气体传感器占有很重要的地位。1 常用电化学传感器原理及结构  按照检测原理的不同,电化学气体传感器主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等等。目前,烟气分析仪中使用较多的是定电位电解式气体传感器和迦伐尼电池式氧气传感器。   定电位电解式气体传感器工作原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择地使气体进行氧化或还原,从而能定量检测各种气体。其结构是:在一个塑料制成的筒状池体内安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体在电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。可测量SO2、NO、NO2、CO、H2S等气体,但这些气体传感器灵敏度却不相同,灵敏度从高到低的顺序是H2S、NO、NO2、SO2、CO,响应时间一般为几秒至几十秒,一般小于1min;它们的寿命,短的只有半年,长则2年、3年,而有的CO传感器长达几年。  伽伐尼电池式气体传感器与定电位电解式一样,通过测量电解电流来检测气体浓度。但由于传感器本身就是电池,所以不需要由外界施加电压。这种传感器主要是用于O2的检测,检测缺氧的仪器几乎都使用这种传感器。隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分设置阳极(用铅、镉等离子化倾向大的金属)。用KOH、KHCO3作电解液。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。2 如何科学地延长电化学传感器的使用寿命  电化学气体传感器大都是以水溶液作为电解质,电解质的蒸发或污染,常会导致传感器的信号下降,使用寿命短;由于在空气中有被测物质存在,传感器中的有效成分被消耗,因此传感器一旦被启封,就视为参加了使用,即使没用于测量,它的生命也在缩短;电化学型气体传感器的寿命期望值为2年,使用不当它的寿命可能更短,而传感器更换的费用较高。因此如何保证其使用寿命,传感器的正确维护对烟气分析仪的使用尤为重要。  传感器长时间暴露在烟气中会极大影响使用寿命,只有短时间与被测对象接触,长期处于新鲜的空气中即可维护其正常使用寿命。因此,仪器开机时,一定要在清洁的空气中。测量完毕后,不要立即关机,仪器必须在清洁空气保持运行时间5~10min,待仪器气体显示值降至10单位以下,保持仪器内部处于新鲜空气的环境,方可关机或停泵,否则,传感器容易“中毒”并加速传感器的损耗。  对于装有粉尘过滤装置的仪器,要及时更换过滤芯,避免粉尘进入传感器内,污染传感器。对于便携式仪器,不论仪器是否经常使用,至少每隔2~3周充电一次,且采样时电池电量不应低于30%。  有些厂商安装了两个泵:抽气泵和内置的清洗泵,在仪器连续监测一段时间后,抽气泵会关闭,在仪器内部的清洗泵会自动开启,抽取仪器周围的清洁空气,使仪器的传感器得到充分的清洗,这样也延长了传感器的使用寿命。3 如何保证仪器的准确性  为了保证烟气分析仪的精度和系统的完整性,对仪器还需要进行正常运行性流量检查及示值标定。  烟气分析仪是通过抽取烟道中气体到气体传感器,对被测量气体检测的,为利于烟气排放,烟道常采用负压,也就是说在烟道中如果仪器的泵抽力小,即泵的流量小,当负压超过仪器中泵的吸力时,会导致实际测量数值偏低。因此,使用仪器时,既要根据测试工况的负压范围,选择相应型号的仪器,还要对仪器的流量进行测量,一般仪器的流量要保证在0.7L/min以上,才有可能保证仪器测量的准确性。  日常工作中,可以根据本身具备的环境及条件选择不同的方法进行示值标定,以保证仪器的正常运转,但要对外出具公证数据时,则一定要到计量检定部门按周期检定,以保证仪器的准确性。  其一:选择洁净的空气,对仪器的零点进行标定。此时有害气体的含量应为“零”,而氧的含量则应为20.9%。  其二,选择纯氮,通入氮气氧传感器的显示应迅速下降为0.2mg/m。以下,否则氧传感器失效,而有害气体的显示应为“零”。  其三,选择一定体积质量的被测量标准气体进行标定,按照仪器使用说明书对每个传感器进行一一标定,如果发现示值误差超过说明书给出的技术指标,可通过校准程序或仪器内部电器指标的调整,对仪器进行调整。如果在使用中监测的数据异常偏低,反应非常慢;或在标定过程中发现传感器反应非常慢,线性误差较大,无法调整;或是刚刚调整好,再进行测量数值又发生了变化,则可以考虑更换传感器。  在更换传感器之后,也要对传感器或仪器进行及时反复的标定,调整准确后,才能使用。  总之,科学合理的使用、维护,可有效地延长电化学传感器的寿命,以保证烟气分析仪的测量准确性。

  • 光电传感器的性能优势及应用领域分析

    光电传感器的性能优势及应用领域分析

    光电传感器是采用光电元件作为检测元件的传感器,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由处理光学通路和光电处理元件2 部分组成。其基本原理是以光电效应为基础,把被测量的变化转换成光信号的变化,然后借助光电元件进一步将非电信号转换成电信号。光电效应是指用光照射某一物体,可以看作是一连串带有一定能量为的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应。[img=,503,330]http://ng1.17img.cn/bbsfiles/images/2017/11/201711271556_01_3332482_3.jpg!w503x330.jpg[/img]光电传感器的性能优点如下:1、[color=#333333]检测距离长。在对射型中保留[/color][color=#333333]10m[/color][color=#333333]以上的检测距离等,便能实现其他检测手段。[/color]2、[color=#333333]对检测物体的限制少。[/color][color=#333333]由于以检测物体引起的遮光和反射为检测原[/color][color=#333333]理,所以不象接近传感器等将检测物体限定在金属,它可对玻璃[/color][color=#333333].[/color][color=#333333]塑料[/color][color=#333333].[/color][color=#333333]木材[/color][color=#333333].[/color][color=#333333]液体等几乎所有物体进行检测。[/color]3、[color=#333333]响应时间短。光本身为高速,并且传感器的电路都由电子零件构成,所以不包含机械性工作时间。[/color]4、[color=#333333]分辨率高。能通过高级设计技术使投光光束集[/color][color=#333333]中在小光点,或通过构成特殊的受光光学系统,来实现高分辨率。也可进行微小物体的检测和高精度的位置检测。[/color]5、[color=#333333]可实现非接触的检测。可以无须机械性地接触[/color][color=#333333]检测物体实现检测,因此不会对检测物体和传感器造成损伤。因此,传感器能长期使用。[/color]6、[color=#333333]可实现颜色判别。通过检测物体形成的光的反[/color][color=#333333]射率和吸收率根据被投光的光线波长和检测物体的颜色组合而有所差异。利用这种性质,可对检测物体的颜色进行检测。[/color]7、[color=#333333]便于调整。在投射可视光的类型中,投光光束[/color][color=#333333]是眼睛可见的,便于对检测物体的位置进行调整。[/color]光电传感器应用领域如下:一、条形码扫描笔当扫描笔头在条形码上移动时,若遇到黑色线条,发光二极管的光线将被黑线吸收,光敏三极管接收不到反射光,呈高阻抗,处于截止状态。当遇到白色间隔时,发光二极管所发出的光线,被反射到光敏三极管的基极,光敏三极管产生光电流而导通。整个条形码被扫描过之后,光敏三极管将条形码变形一个个电脉冲信号,该信号经放大、整形后便形成脉冲列,再经计算机处理,完成对条形码信息的识别。二、烟尘浊度监测仪防止工业烟尘污染是环保的重要任务之一。为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的。如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化。三、光电式烟雾报警器没有烟雾时,发光二极管发出的光线直线传播,光电三极管没有接收信号。没有输出,有烟雾时,发光二极管发出的光线被烟雾颗粒折射,使三极管接受到光线,有信号输出,发出报警。四、测量转速在电动机的旋转轴上涂上黑白两种颜色,转动时,反射光与不反射光交替出现,光电传感器相应地间断接收光的反射信号,并输出间断的电信号,再经放大器及整形电路放大整形输出方波信号,最后由电子数字显示器输出电机的转速。最后工采网小编给大家介绍两款最先进、也是热销的光电传感器型号,是从美国进口过来的顶尖级光电传感器,质量和性能方面绝对的优质。美国Rain Wise 光电传感器 -ms-802,ms-802f :[img=,289,292]http://ng1.17img.cn/bbsfiles/images/2017/11/201711271556_02_3332482_3.jpg!w289x292.jpg[/img]ms-802标准pyran度计是测量全球太阳能的终极参考传感器,具有最高精度的辐照度,它坚固的黄铜机械结构使它成为一个耐用的传感器,适合在恶劣的环境中使用,ms-802被用作PV研究和气候研究的标准,ogy在世界各地的研究,与太阳跟踪器(str系列)或手动着色环(rsr-01)相结合,分别是全局的正常的入射(GNI)和漫射(DHI)的辐照度可以测量。ms-802f是ms-802综合呼吸机机组,以改善各种环境条件下的性能(防止或减少露水、雨、雪、冰和灰尘的影响)。Rain Wise 光电传感器ms-802和ms-802f特征:1、二级标准日射强度计2、快速响应时间(95%小于5S)3、温度补偿4、宽温度范围5、高品质光学玻璃圆屋顶6、适当的余弦响应7、ms-802f是ms-802,有110真空吸尘器/ 12 VDC通风系统8、防止任何可能的影响,霜,雪和尘土Rain Wise 光电传感器ms-802和ms-802f参数:[img=,690,367]http://ng1.17img.cn/bbsfiles/images/2017/11/201711271556_03_3332482_3.jpg!w690x367.jpg[/img]美国RainWise 光电传感器硅传感器 -ML-01:[img=,299,300]http://ng1.17img.cn/bbsfiles/images/2017/11/201711271557_01_3332482_3.jpg!w299x300.jpg[/img]ML-01型硅传感器是参考单元和宽带热电比热计的链接。与参考传感器相比,它有适当的余弦值,而且相对紧凑,但有好处与光伏组件(响应时间、光谱和温度响应)相同。ML-01是一种工业级太阳能传感器,专门用于性能比测量作为气象、农业和环境研究的辐照度测量应用。传感器体的紧凑尺寸使它易于集成在任何应用程序中使用它或者没有安装板。对于全球水平测量应用,传感器可以安装水平位置与标准可拆卸安装板与精神水平和水平脚。具有防紫外线扩散的单硅探测器在低太阳高程时也给出了余弦响应角度。由于圆锥的作用,使其在扩散面上的淤积或水沉积作用最小几何形状。ml - 01根据适用于PV的国际校准方法进行校准参考细胞(25°C/ AM1.5G 1000 w / m2 AAA太阳能模拟器(IEC 60904 - 3)。所有EKO贸易辐射传感器可追溯至世界辐射参考(WRR)。该传感器的低输出电压可以很容易地转换成4 - 20ma电流或更高的电压MS-4 . .20 ma转换器。mV/ mA转换器可以在程序中预先编程和优化操作范围与通用测量设备兼容。Rain Wise 光电传感器硅传感器ML-01特征:1、快速响应时间(10ms)2、CIE适应光的反应3、玻璃穹顶加上劝阻光学4、低温度依赖性Rain Wise 光电传感器硅传感器ML-01参数:[img=,627,415]http://ng1.17img.cn/bbsfiles/images/2017/11/201711271557_02_3332482_3.jpg!w627x415.jpg[/img]

  • 浅谈乳成分分析仪LM2传感器维修过程

    浅谈乳成分分析仪LM2传感器维修过程

    [align=center][size=18px]浅谈乳成分分析仪LM2传感器维修过程[/size][/align][align=left][size=16px]首先介绍一下乳成分分析仪LM2,这一型号是目前最常用来检测生乳理化指标的仪器。浅浅放个仪器照片,不然都不知道讲的是个什么仪器。[/size][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171654561949_9330_6198246_3.png[/img][/align][align=left][size=16px]这个仪器的核心部分就是传感器,主要技术是超声波技术。当传感器接触样品时,会产生每秒几万次的高频振动,这个时候传输超声波信号,我们就能得到检测的结果。[/size][/align][align=left]1、 [size=16px]传感器介绍[/size][/align][align=left][size=16px]图中绿色长方体的部件就是传感器,这个绿色的传感器是老款的,目前还有很多牧场在使用老款的乳成分分析仪LM2。白色的是新款传感器。[/size][/align][align=left][size=16px]老款的传感器的材质比较软,在更换传感器的时候会不自觉用力将传感器从主板上拔下来,用力过度就会捏坏传感器,然后导致传感器损坏。新款的传感器外壳材质比较硬,在更换传感器的时候不易损坏。[/size][/align][align=left][img=,690,291]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171656124906_7447_6198246_3.png!w690x291.jpg[/img][/align][align=left]2、 [size=16px]故障情况[/size][/align][align=left][size=16px]2.1仪器开机的时候界面一直显示在请等待系统,准备中。 [/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171654565430_4956_6198246_3.jpeg[/img][/align]2.2仪器测试的数据异常[align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171654566836_256_6198246_3.png[/img][/align][align=left][/align][align=left][size=16px]2.3仪器重复性测试重复性不好[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171654570166_4488_6198246_3.png[/img][/align][align=left][/align][align=left]3、 [size=16px]维修方案[/size][/align][align=left][size=16px]对于以上的三种情况,首要考虑的故障就是传感器,第一个情况出现原因的[/size][/align][align=left][size=16px]是传感器松动,传感器松动了,各部件之间没有办法通信,仪器就会显示在等待中不会进入主界面。第二和第三种情况就是传感器损坏,传感器是通过高频振动然后传输信号,长时间不间断使用传感器会导致传感器局部温度升高降低传感器使用寿命,久而久之传感器就会损坏。另外如果仪器使用之后清洗不及时,管路内部会有奶垢残留,残留的奶垢不仅会堵住管路还会影响传感器的振动传信,这样时间一长传感器也会损坏。[/size][/align][align=left][size=16px]维修办法就是更换传感器。对于这种情况的维修只能是更换传感器,没有办法维修。[/size][/align][align=left]4、 [size=16px]总结[/size][/align][align=left][size=16px]以上就是关于乳成分分析仪LM2传感器损坏维修方案的整理,传感器的质量其实很不错,一般损坏的大部分原因就是使用仪器之后没有好好清洗或者一直使用仪器不停歇。人一直工作不休息都会生病,何况传感器呢。所以如果有朋友有这个仪器,一定要好好使用这个仪器,检测完之后及时清洗。保障仪器的寿命和检测准确性。[/size][/align]

  • 基于电化学酶生物传感器的食品和药物分析的研究进展

    [font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 近年来,基于电化学酶的生物传感器已成为一种简单、快速、超灵敏的检测药物和食品样品中不同化合物的装置.本文介绍了酶的分类、固定化和抑制信息等方面的研究进展,对电化学酶基生物传感器进行了详细的论述,总结并列出了一些用于食品和药物分析的电化学酶生物传感器研究.[/color][/font]

  • MEMS传感器三大细分市场分析

    MEMS传感器行业是一个新兴的行业,在中国商业化的时间不到10年,而在全球也只有20余年的产业化历程。MEMS传感器代表了未来传感器的发展方向,具有体积微小、低功耗、一致性高等特点,可大批量、低成本制造,大大拓宽了传感器的应用领域,为智能设备的发展奠定了重要的技术基础,亦是物联网的重要组成部分。目前,MEMS传感器主要有三大细分市场,分别是:MEMS麦克风市场、MSME压力传感器市场、MEMS惯性传感器市场。[url=http://www.861718.com/shichang/show-1930.html]阅读全文请前往仪商网[/url]

  • 国内外pm2.5传感器市场分析和选型参考

    近年来,伴随着国内特别是北方地区空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的持续恶化, 使得相应的空气净化类产品不断升温,作为空气净化类产品的重要组成部分的粉尘传感器(也作灰尘传感器,,颗粒物传感器)被广泛的运用于空气清新机、空气净化器、空气调节器、通风设备、环境监控设备等产品中。粉尘传感器从没有到现在走到行业产品的标配,这两年来不管是产品和技术都取得了飞速的发展,粉尘传感器从红外散射,被动进气到红外散射,主动进气,从激光散射自带风扇,主动进气到激光散射自带风扇,主动进气差分计算,再到激光散射,气泵主动进气,产品也已经形成了低中高档等不同层次,面对不同应用场合的终端需求。2013年的时候市面上存在的供应商有:国内的赛纳威和华曼等,国外的有日本神荣、日本夏普、韩国三瀛(代表低价的产品,被大多数山寨厂家选用)和美国的GE(2013年3月开始进入市场,进入后开始推数显概念,2013年12月上海国际家电展数显PM2.5一炮而红);2014年行业飞速度发展,供应商开始变多,神荣开始有部分客户跟进数显,夏普由一家代理商开始提出数显国产化,GE在性能和品牌优势下,市场份额不断上升对神荣构成大的影响,由于代理体系的问题开始走下坡路,GE传感器事业部卖给了安费诺,品牌知名度丢失。以攀藤为首的激光粉尘传感器2014开始出货并迅速的占领了空气净化类互联网品牌,国产品牌中以深圳为中心的抄袭厂家不断涌现,郑州炜盛,诺方和四方等厂家开始发力;2015年行业不景气,神荣销量下滑严重,夏普迅速填补三瀛的空缺,同时以数显产品替换了部份神荣和GE的客户,国产品牌中技术实力有提升,服务有提升,但市场接受度仍然不高。2018盛思锐推出的SPS30和霍尼韦尔的HPW系列颗粒物传感器在市场都有不错的反馈;ISweek工采网代理的日本费加罗PM2.5传感器TF-LP01和韩国三瀛的粒子传感器模块PDSM010凭借优势的价格、优秀的产品性能、稳定的供应渠道,近年在颗粒物传感器市场占有率上升势头迅猛,行业内享有极好的声誉和极高的影响力。以上是简单的市场供需状况,下面让我们来看看[url=https://www.isweek.cn/category_50.html]PM2.5传感器[/url]的技术特点,1数显是未来的标准需求,不能数显的产品不适合市场,传感器本身输出PM值大大减少厂家的研发工作量;2 ug/m3 这个单位需要两方面的精准:a 精确的计数然后适合中国特点的数量转重量算法,精确的计数由光源和风道决定,同时也与处理速度有关系,PM2.5的颗粒物成份决定了中间的运算方法,如果全部转化为PM1.0最终的结果将于国家公布的称重法相差甚远。b 稳定的气流在单位时间内的空气体积要精准,绝对精确度以户外数据为准,向国家公布的采样点数据看齐,一致性向5%看齐量程范围0~500ug/m3比较科学,这个取决于厂家的研发及标定。空气净化类产品在野蛮生长了几年后会迎来一个平稳洗牌期,厂家应根据自己的定位选择合适的[url=https://www.isweek.cn/category_5.html]传感器[/url],激光PM2.5传感器代表着PM2.5传感器的未来趋势。最后工采网技术工程师来分析一下一款激光粉尘传感器的综合要求以及技术瓶颈:1、 寿命,激光发射管的寿命是几千小时,同时还会有突然失效的可能性,在千分之五左右,这是激光传感器的特性,寿命是您需要特别关注。 比激光传感器要命的是气泵或者风扇的寿命,泵的寿命只有2000小时,风扇的寿命就要看传感器厂家的设计和选材了;2、 精度,激光传感器的优势是能多测到0.3~1.0区间的颗粒物,相关检测结果更接近真实值,准与不准请不要拿TSI来做直观的比较,要和气象局的数据来做比较,同时推荐一个"空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量指数"的APP,比较时候注意找离自己最近的国控点的数据;3、 一致性, 一批传感器100个为例,平均值为100ug/m3,要看看这100个传感器偏离100ug的比例,以10%以内为合格,以5%以内为优秀。写这么多方便不明真相的群众购买净化器产品时候做个参考,也方便净化器新风机厂家的工程师设计的时候,根据自己的实际需求选择最适合自己产品的红外或者激光粉尘传感器,因为选择大于努力,选择奠定格局,选择决定成败。后记:PM2.5检测值等同于空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量吗?很多人以为,通过检测空气中的PM2.5值,就可以判断空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量好坏,其实不然,PM2.5指标也是近年才纳入我国空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量评价体系的,影响空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量的因素包括:CO2、SO2、CO、氮氧化物、TVOC、PM2.5、PM10、臭氧等等。剔除一些复杂的因素,实际上室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量(IAQ)指标,往往以CO2、VOCs以及PM2.5值、温湿度值来进行衡量,这也是净化空调、空气净化机、新风设备通常采用的控制因子。目前,传感器越来越多地被应用到社会发展及人类生活的各个领域,如工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等。近年来,全球传感器产业飞速发展。2017年颗粒物传感器市场规模为1.5亿美元,预计2023年将超过2亿美元。颗粒物传感器市场不像气体传感器市场那么分散,四家厂商占据90%以上的市场份额,因此新厂商的发展空间有限。随着物联网的高速发展,国内传感器产业也迎来了黄金发展期。PM2.5传感器是传感器世界里的沧海一粟,带给行业的肯定也不仅仅是空气监测类产品的价格下调、产品普及。以国内为例,雾霾天气严重,PM2.5威胁人体健康,虽是不争的事实,但大部分普通人还没有给予足够的重视,一个原因就是意识不到这其中的严重性。当怵目惊心的数字可以呈现在用户眼前时,带来的震撼和关注肯定是巨大的。此前有报道称,芝加哥市将在今年夏天实验性部署约50个“路灯传感器”,用于采集公共部门所需的多种数据,空气类传感器只是打开了“智慧城市”中的一个小窗口,而像CeNSE这样的项目则是智慧地球的必经之路。未来的世界,一定是被传感器覆盖的世界,无处不在的传感器将会搜集地球上的各种数据,物理的、化学的、生物的,这个世界处处可以被量化、实时可以被感知。人们认知世界的方式再次被改变,就像互联网、移动互联网一样再次带来商业模式的巨变。也许,未来每一个移动传感器背后都是一个数以百亿的产业。在此,深圳工采网有限公司提供检测户外环境,智能家居方面的PM2.5,PM10的PM2.5传感器:[img=日本figaro 激光颗粒物传感器 PM2.5传感器,300,300]https://www.isweek.cn/Thumbs/300/0180605/5b16045e70e3a.jpg[/img]日本figaro 激光颗粒物传感器 PM2.5传感器 - TF-LP01描述:TF-LP01型激光颗粒物传感器是利用散射原理对空气中粉尘颗粒进行检测的小型模组,具备体积小、检测精度高、重复性好、一致性好、实时响应可连续采集、抗干扰能力强、采用超静音风扇,传感器出厂100%检测和标定等优点。应用:空气净化器、便携式空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量检测设备、智能家居等场所。特点:检测精度高、响应时间短、产品小型化[img=韩国syhitech 粒子传感器模块 PM2.5传感器,300,300]https://www.isweek.cn/Thumbs/300/0180322/5ab376e4d35f9.jpg[/img]韩国syhitech 粒子传感器模块 PM2.5传感器 - PDSM010描述:[b]PM2.5传感器[/b]PDSM010探测约1㎛ 的粒子,如室内灰尘、花粉、微生物、尘螨和香烟烟雾,测量不超过30㎥ 空间内浮游粒子的浓度。该传感器适用于房间内的自动空气监测系统,如空气净化器。[b]PM2.5传感器[/b]PDSM010的信号通过内部电路和MCU程序转换为PWM输出;另外,传感器的滤波电路和MCU程序能够移除噪声,以使设备在信号中有噪声流入时工作更加稳定。[b]PM2.5传感器[/b]PDSM010产品检测能力稳定,生产效率高,具有双重优势。不同于之前的型号(DSM),传感器设备上没有附加的控制点(VR Trimmer)。这可以防止因用户随意修改而经常导致的潜在故障。应用:空气净化器、空调,通风系统,风扇控制,IAQ,IoT特点:为应用中的有效控制而定制灵敏度、检测约1㎛ 的粒子、MCU控制(工厂校准)、维护简便、PWM输出(低逻辑脉冲激活)、噪声防护产品的具体参数可在工采网官网查询选购 https://www.isweek.cn/

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 分析仪器常用传感器 编码式位置和位移传感器

    分析仪器常用传感器 编码式位置和位移传感器

    [align=center][font=宋体][font=宋体]分析仪器常用传感器[/font] [font=宋体]编码式位置和位移传感器[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]编码式位移传感器基于脉冲编码原理,用以测量运动部件的直线位置和速度变化、转轴旋转角度和速度变化等,其输出信号为电脉冲。[/font][align=center][font=宋体]简述[/font][/align][font=宋体][font=宋体]现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]是一套复杂的精密机[/font][font=Calibri]-[/font][font=宋体]电[/font][font=Calibri]-[/font][font=宋体]光学[/font][font=Calibri]-[/font][font=宋体]化学系统,为保证其高性能的运行,需要精细控制机械部件的运动位置、运动距离、角度和速度。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或者[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]需要精确控制进样针运行位置和速度、样品瓶的准确识别检测、柱温箱后开门控制、色谱进样阀和切换阀控制等,均需要使用位置和位移传感器。[/font][/font][font=宋体]期间需要使用到位置和位移传感器,一般需要确定部件运行的起点(原点),各个部件位置,或者部件相对于原点的移动位置以及运动速度。[/font][font=宋体]通常情况下,机械部件需要安装反射式或者透射式的码盘,与机械部件运动同步或者通过齿轮、齿条、皮带或者丝杆连接,随着机械部件的运动位置(位移)传感器会连续输出脉冲信号。色谱系统根据接收到脉冲的时间点、时间间隔和脉冲个数,可以确定机械部件的运行是否正确和实时。[/font][font=宋体]高精度的脉冲编码器每个旋转周期可以输出数百至数万个脉冲信号,以满足高精度位置(或位移)检测的需要。按码盘的读取方式,脉冲编码器可以分为光电式、电磁式和接触式,其中光电式脉冲编码器的可靠性和精密度较高。根据编码类型,脉冲编码器可以分为绝对式编码器和增量式编码器。[/font][font=宋体][font=宋体]脉冲编码器使用的码盘的常见形式如图[/font][font=Calibri]1[/font][font=宋体]所示,图[/font][font=Calibri]1-a[/font][font=宋体]、[/font][font=Calibri]b[/font][font=宋体]为反射方式码盘,分别为二进制码盘和格雷码盘,码盘表面有黑色和白色不同区域组成,需要反射式光电开关配合工作,可用于绝对式编码器;图[/font][font=Calibri]1-c[/font][font=宋体]为透射式码盘,码盘上面均匀制作刻槽,需要透射式光电开关配合工作,可以用于绝对或者增量式编码器。[/font][/font][align=center][img=,467,170]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300833063950_3062_1604036_3.jpg!w690x249.jpg[/img][font=宋体] [/font][/align][font=宋体][font=宋体]图中所示的二进制码盘或格雷码盘旋转一周,即可以产生[/font][font=Calibri]0000-1111[/font][font=宋体]共计[/font][font=Calibri]16[/font][font=宋体]个二进制数字,可以将圆盘分成[/font][font=Calibri]16[/font][font=宋体]等份。某些型号[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]圆盘状自动进样器样品架采用此种码盘,用以确定样品瓶位置。[/font][/font][font=宋体][font=宋体]图[/font][font=Calibri]1-a[/font][font=宋体]所示的二进制形式码盘,如果传感器发生位置偏差,可能会出现较大的定位差异。例如[/font][font=Calibri]7[/font][font=宋体]号位置([/font][font=Calibri]0111[/font][font=宋体])向[/font][font=Calibri]8[/font][font=宋体]号位置([/font][font=Calibri]1000[/font][font=宋体])运行时,由于传感器位置发生偏差,可能会导致实际运行为[/font][font=Calibri]8[/font][font=宋体]([/font][font=Calibri]1000[/font][font=宋体])号位置至[/font][font=Calibri]15[/font][font=宋体]([/font][font=Calibri]1111[/font][font=宋体])号位置,一般称此类误差为非单值性误差。采用图[/font][font=Calibri]1-b[/font][font=宋体]所示的格雷码盘可以消除此类问题,格雷码盘的特点是相邻两个二进制数值仅有一位数字不同,运行偏差不超过一个单位,可以提高可靠性。[/font][/font][font=宋体][font=宋体]图[/font][font=Calibri]1-c[/font][font=宋体]为平动码盘,码盘可以选用透明或者不透明材质,对应制作不透明或透明的精密刻线或者刻槽,可以用作多位自动进样器样品瓶位置的位置传感器。[/font][/font][font=宋体]平动码盘还可以用作位移传感器,色谱系统通过识别码盘输出脉冲的数量和时间间隔,用以确定机械部件的移动距离和移动速度。多位样品盘的定位误差要求较高,采用精密刻线的码盘可以协助完成此项工作。[/font][font=宋体]色谱仪器较多部件的运动方式为直线型,一般需要采用皮带、齿轮齿条或丝杆将电机的旋转运动转换成直线运动,码盘一般与电机同步旋转工作。与普通光电开关相同,需要保持光路的清洁,避免严重灰尘或者油污的干扰。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明光电编码器的原理。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 光电液位传感器对比电容式液位传感器

    光电液位传感器对比电容式液位传感器

    [align=left][font=宋体][color=#333333]在工业生产和日常生活中,液位传感器是一种常见的用于检测和测量液体位置的设备。根据检测原理的不同,液位传感器可以分为多种类型,如光电液位传感器和电容式液位传感器。本文将对光电液位传感器和电容式液位传感器进行对比分析,以便更好地了解它们的特性和应用。[/color][/font][/align][align=left][font=宋体][color=#333333]光电液位传感器利用光学原理来检测液位的存在。当光线通过液体时,光线的传播速度会因液体的存在而发生变化,从而改变反射光线的强度。通过检测反射光线的强度,可以确定液体的位置。因此,光电液位传感器不受液体的纯度、浓度或长期使用后沉淀的污垢的影响。相比之下,电容式液位传感器则是利用水位变化而产生的电容量不同来判定水位的高低。由于不同水质具有不同的电阻率,因此电容式液位传感器的准确性会受到水质的影响。此外,电容式液位传感器无法检测某些液体,如导电性较差的液体。[/color][/font][/align][align=left][font=宋体][color=#333333]在周边环境中,金属物体会对电容式液位传感器产生干扰,影响其正常工作。相反,光电液位传感器不受金属物体的影响。这使得光电液位传感器在某些应用场景中具有更好的适应性。[/color][/font][/align][align=center][img=光电液位传感器,600,449]https://ng1.17img.cn/bbsfiles/images/2023/10/202310211530394404_4872_4008598_3.jpg!w600x449.jpg[/img][/align][align=left][font=宋体][color=#333333][url=https://www.eptsz.com]光电液位传感器[/url]的水面精度为±[/color][/font][font='Tahoma',sans-serif][color=#333333]0.5mm[/color][/font][font=宋体][color=#333333],而电容式液位传感器的水面精度为±[/color][/font][font='Tahoma',sans-serif][color=#333333]1.5 mm[/color][/font][font=宋体][color=#333333]。这意味着光电液位传感器在检测液体位置时具有更高的精度和更低的误差。[/color][/font][/align][align=left][font=宋体][color=#333333]光电液位传感器的安装方式更为灵活,可以在机器水箱的任意方位进行安装。而电容式液位传感器的安装方式相对局限,往往需要特定的安装位置和角度。这使得光电液位传感器的使用更加方便,适应性更广。[/color][/font][/align][align=left][font=宋体][color=#333333]光电液位传感器在多个方面相较于电容式液位传感器具有优势。它们对液体性质的要求较低,不受金属物体的干扰,具有更高的精度以及更灵活的安装方式。因此,在选择液位传感器时,光电液位传感器是一个值得考虑的选项。然而,根据具体应用场景的不同,电容式液位传感器也有其适用的场合,具体选用哪种传感器还需根据实际需求进行选择。[/color][/font][/align]

  • 【原创】传感器的选用

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量?环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1)根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标2)灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械?系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便5)稳定性 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。?在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响 传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。?在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验6)精度 精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器 对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求http://www.yb3721.com

  • 【分享】传感器选用原则

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1)根据测量对象与测量环境确定传感器的类型要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。2)灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。5)稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6)精度精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求

  • 【讨论】氧气传感器

    在网上查了一下目前市场上氧气传感器的测试原理,主要有以下几种:电化学氧气分析仪—— 采用完全密封的燃料电池氧传感器是当前国际上最先进的测氧方法之一。燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e=4OH- 2Pb+4OH=2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电极不需定期清洗或更换。样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量,这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程,“金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中,传感器可以非常稳定可靠的工作很长时间。事实上, 燃料电池氧传感器是完全免维护的。磁氧分析仪—— 是利用常温下,氧气分子的顺磁性的原理,也就是可以被磁场吸引的原理制作的,这种仪器对氧气有独特的选择性,其他气体几乎没有干扰(NOx干扰,但不严重),它分为:1、热磁式,2、磁机械式--两种基本结构。热磁式是利用被加热的氧气会失去顺磁性的原理制造的,由于冷的顺磁的氧气不断被吸引到磁场里,而热的反磁的氧气不断被挤出磁场,形成所谓的“氧风”,测定这个氧风的强度,就可以换算出氧的浓度。热磁式氧分析仪虽然具有结构简单、便于制造和调整等优点,但也具有反应速度慢、测量误差大、容易发生测量环室堵塞和热敏元件腐蚀严重等缺点。磁机械式的也是利用相似的原理制造的,空心的不含氧气的石英泡在强磁场附近,不会受到磁场的吸引,而当环境中有氧气存在时,氧被磁场吸引,它必然将石英泡向磁场外排挤,测定这个排挤的力的大小,就可以换算出氧的浓度。磁机械式的氧气分析仪的精度更高一些,它甚至可以测定PPM级的氧浓度,功耗小,耐腐蚀,但是怕震动,价格贵。 二氧化锆式氧传感器—— 多孔体固体电解质内。温度较高时,氧气发生电离。只要锆管内外侧氧含量不一样,存在氧浓度差,则在固体电解质内部氧离子从大气一侧向排气一侧扩散,使锆管形成微电池,在锆管铂极间产生电压。 当混合气体稀时,排气中氧含量多,两侧氧浓度差小,产生的电压小;当混合气体浓时,排气中氧含量少,CO、HC、H2的含量较多,这些成分在锆管外表面的铂的催化作用下,与氧发生反应,消耗废气中残余的氧,使锆管外表面氧浓度变成零,这样使得锆管内、外两侧的氧浓度差突然增大,两极间产生的电压也增大。二氧化钛式氧传感器—— 电控单元ECU将一个恒定的IV电压加在二氧化钛氧传感器的正极,并将传感器负极上的电压降与电控单元控制程序中设定的参考电压相比较。发动机混合气浓度变化时,排出的废气中的氧分子含量也发生变化,氧传感器的电阻也随之改变,使得与电控单元连接的氧传感器负极上的电压降也产生变化。 当发动机的可燃混合气浓(A/F14.7)时,排气中氧含量高,氧化钛管外表面氧浓度大,二氧化钛呈现高电阻。电阻在混合气空燃比理论空燃比14.7(过量空气系数约为1)时产生突变。通过这样的反馈控制,使混合器的浓度保持在理论空燃比附近的狭小范围内。铅氧电池的测试精度与铅的纯度关系密切,之前用过这种传感器,他们做标线的时候用两条直线近似替代对数曲线,其测量值与实际值差别比较大。[color=#DC143C]请教大家:这些传感器有没有特定的适用范围?哪些牌子和型号的传感器测试精度比较高,使用寿命比较长?[/color]

  • 光电传感器与红外传感器:工作原理和应用领域的比较

    光电传感器与红外传感器:工作原理和应用领域的比较

    [font=宋体][color=#1E1F24]传感器在各种技术和应用中都发挥着关键作用,其中光电传感器和红外传感器以其独特的运作原理被广泛应用。尽管它们都涉及光信号的转化,但光电传感器和红外传感器在工作原理和应用领域上存在明显的区别。[/color][/font][font=宋体][color=#1E1F24]光电传感器主要基于光电效应,即光照射在某些物质上时,物质的电子吸收光子的能量而发生相应的电效应现象。这种效应被用来将光信号转化为电信号,进而进行识别、检测或控制。根据光电效应现象的不同,光电传感器可以分为外光电效应、内光电效应及光生伏特效应三类。这种传感器在许多领域都有广泛应用,如工厂自动化、机器人技术、医疗诊断等。[/color][/font][align=center][img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/10/202310231657105279_6094_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][color=#1E1F24]相对而言,红外传感器则利用红外线的特性进行检测。红外线具有穿过某些物质的能力,例如人体和大多数非金属材料,因此红外传感器可以用于检测这些物质的存在或表面温度。由于红外线可以穿过一些可见光不能穿过的物质,因此红外传感器在某些情况下可以提供更准确的检测结果。红外传感器通常具有较高的灵敏度和响应速度,因此适用于快速、高精度的检测。例如,它们常被用于无接触温度测量、气体成分分析和无损探伤等领域。[/color][/font][font=宋体][color=#1E1F24]总结来说,[url=https://www.eptsz.com]光电传感器[/url]和红外传感器的主要区别在于它们的工作原理和应用领域。光电传感器主要基于光电效应,适用于各种需要光信号转化的应用;而红外传感器则利用红外线的特性进行检测,主要用于温度测量、气体分析等领域。无论是哪种类型的传感器,它们都在现代科技和工程中发挥着不可或缺的作用。[/color][/font][font='Segoe UI',sans-serif][color=#1E1F24] [/color][/font]

  • 【分享】传感器与检测技术2-2:电阻传感器:压阻传感器

    【分享】传感器与检测技术2-2:电阻传感器:压阻传感器

    我只是照书照抄,虽然讲的是在线仪表,可许多都在线分析仪器的工作原理。如果谁有类似或相同的附件,也请发上来,大家共同学习下!第2章:电阻传感器第2节:压阻传感器[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904210901_145608_1605035_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904210902_145609_1605035_3.jpg[/img]

  • 什么是气体传感器

    气体传感器是用来检测气体的成份和含量的传感器。在上世纪70年代,气体传感器就成为传感器的一个大系列,属于化学传感器的一个分支。目前市场上流行的气体传感器分为: 半导体式气体传感器、催化燃烧式气体传感器、热导池式气体传感器、电化学式气体传感器、红外线气体传感器、磁性氧气传感器、检测仪中的0-100% LEL与0-n PPM、其他。下边介绍下半体导体式气传感器:半体导体式气传感器它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。我公司生产的氧化锆氧分析仪采用的是氧化锆锆管,被测气体(烟气)通过传感器进入氧化锆管的内侧,参比气体(空气)通过自然对流进入传感器的外侧,当锆管内外侧的氧浓度不同时在氧化锆管内外侧产生氧浓差电势(在参比气体确定情况下,氧化锆输出的氧浓差电势与传感器的工作温度和被测气体浓度呈函数对应关系)该氧浓差电动势经显示仪表转化成与被测烟气含氧量呈线性关系的标准信号供显示和输出。半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。我公司产的氧化锆氧分析仪已经达到了日本、美国、德国、韩国等国际水平。

  • 【资料】传感器产业发展新动向

    传感器(Sensor)技术(Technology)是现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。 我国自动化方面的专家呼吁:目前复杂系统越来越复杂,仪器仪表自动化已经陷入低谷,其主要原因之一是传感技术的落后,一方面表现为传感器在感知信息方面的落后;另一方面也表现为传感器自身在智能化和网络化方面的技术落后。 分析仪器产业迫切需要新型传感器。分析仪器是我国科技、经济和社会持续发展的基础,红外测温仪无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、红外测温仪专用化、简用化、家庭化(甚至个人化)的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。 而技术推动是加速传感器技术发展的保证和机遇。几十年来,风速仪以微电子技术为基础,促进了传感器技术的发展。未来10~20年,传统硅技术将进入成熟期(预测为2014年~2017年)。届时,直径300mm硅晶片将大量用于生产,使得硅的低成本制造技术和硅的应用(Application)技术将得到空前的发展,这无疑将为研制生产微型传感器、智能传感器等新型传感器提供技术保障。从总体发展看,传统硅技术将一直延续到2047年(即晶体管发明100周年)才趋于饱和(即达到芯片特征尺寸的极限)和衰退。而当前微电子技术仍将依循“等缩比原理”和“摩尔定律”两条基础规律走下去,在尽力逼近传统硅技术极限中,不断扩展硅的跨学科横向应用(如MEMS等)和突破“非稳态物理器件”风速仪(量子、分子器件),而上述微电子技术发展中的两大方向正是当前乃至未来20年传感器技术的主要发展方向。 同时,多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS(微电子与微机械的结合)、MOMES(MEMS与微光学的结合)、智能传感器(MEMS与CPU、信息控制技术的结合)、生物化学传感器(MEMS与生物技术、电化学的结合)等以及今后将大力开发的网络化传感器(MEMS网络技术的结合)、纳米传感器(纳米技术与传感技术的结合)均是多学科、多种学科技术交叉融合的新一代传感器。

  • 【原创】如何选择适当的传感器

    我们在提供解决方案的时候,选择合适的产品是很重要的一个环节,就传感器而言,种类就有很多,一旦选的不好,就会给后期工作带来很多的麻烦,下面总结几种选择传感器的简单方法.   1、根据测量对象与测量环境确定传感器的类型   要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量.在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。   2、灵敏度的选择   通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。   3、频率响应特性   传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。   4、线性范围   传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。   5、稳定性   传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。   6、精度   精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。   在一般情况下,如果考虑到了上面几点,就可以选择到合适的传感器了.

  • 电流氧传感器_电流氧传感器详细概述

    电流氧传感器一般都是比较稳定的,一般是通过气体扩散控制供给阴极的氧而得到期限电流,OFweek Mall针对电流氧传感器做了详细的概述,包括电流氧传感器工作原理、参数等。一、极限电流氧传感器SO-D0-020-A100C描述:SO-D0-020-A100C是极限电流氧传感器,量程为0.01%~2%,线长1米,最低可以检测100ppm的氧气,微量氧传感器SO-D0-020-A100C广泛用于金属激光烧结3D打印机、制氮、发酵等领域。二、极限电流电流氧传感器SO-D0-020-A100C工作原理:因为在氧化锆电解质中电流的载体是氧离子,所以当电压施加到氧化锆电解槽时,氧气通过氧化锆盘被抽到阳极。如果给电解槽阴极加上一个带孔的盖子,氧气流向阴极的速率就会受到限制。受到这个速率的限制,随着所施加的电压逐渐增加,电解槽内的电流会达到饱和。这个饱和电流被称为极限电流,它与周边环境中的氧气浓度成正比。三、极限电流氧传感器SO-D0-020-A100C应用:医疗:氧气浓缩器、恒温箱实验室:惰性气体处理柜(手套式操作箱)、细菌培养箱食品产业:包装、食品检验、监控水果成熟过程(储存/运输)家庭/烹饪:自动化烘焙/烘烤(高温100℃)测量技术:固定式/便携式氧气测量仪、在控制氧含量的情况下进行测量、空气调节和流通安全技术/监控:防火(氮气增加,例如服务器机房)、温室,酒窖、气体贮藏,精炼厂、潜水、发酵单元电气工业:惰性气体处理器和柜、惰性气体焊接监控、在氮气增加的情况下进行储存(防氧化)、干燥设备、氮气浓缩器、废气测量四、极限电流氧传感器SO-D0-020-A100C特点:可以测试100~20000ppm的氧气浓度高精度多款型号呈线性特征传感器信号对温度的依赖性小交叉灵敏度低使用寿命长在多数情况下只需进行一次“单点校准”五、电流氧传感器SO-D0-020-A100C特性数据:测量气体氧气测量介质气体测量原理极限电流氧传感器测量范围0,01~2,0%响应时间(t90)2~25秒(取决于电流氧传感器类型,气流量,测量室)传感器电压0,7~1,6伏特加热电压3.6~4.4伏特功耗1.3~1.8瓦特(取决于应用和封装)冷电阻R(25°C)=3.25Ω±0.20Ω预热时间至少30s最高工作温度350℃取决于电缆和过滤器总成允许流量100~500(250最佳)寿命(MTTF)20.000小时(*)电流氧传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨[url=http://mall.ofweek.com/1787.html]电流氧传感器[/url][/color]

  • 2019传感器市场持续增长

    2019传感器市场持续增长

    [img=,900,521]https://ng1.17img.cn/bbsfiles/images/2019/03/201903261456064446_4291_3859729_3.jpg!w900x521.jpg[/img]中国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。传感器技术历经了多年的发展,其技术的发展大体可分三代:第一代是结构型传感器,它利用结构参量变化来感受和转化信号。第二代是上70年代发展起来的固体型传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成。如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器。第三代传感器是以后刚刚发展起来的智能型传感器,是微型计算机技术与检测技术相结合的产物,使传感器具有一定的人工智能。物联网作用于采集或获取自然界的各种物理量、化学量、生物量;传感器是把自然界的各种物理量、化学量、生物量变成可测量的电信号。作为一个整体系统的物联网概念,在感知、传输和应用三个层次中,传感器对于物联网来说一定是相辅相成,荣辱共担。  传感器市场规模稳步提升  物联网的发展和智能终端的广泛应用,传感器产品需求大幅增加,重心逐渐转向技术含量较高的MEMS传感器领域。  Yole Developement 数据显示,全球MEMS传感器产品需求近年增势迅猛,2017年MEMS传感器市场规模为437.6亿元,平均以超过15%的增长率增长,2020年预计将达到721亿元。[img=,558,216]https://ng1.17img.cn/bbsfiles/images/2019/03/201903261456265916_3943_3859729_3.jpg!w558x216.jpg[/img]全球传感器市场规模多年来保持稳定高速增长,智能传感器产业三年行动指南中提出,到2019年,我国智能传感器产业取得明显突破,产业生态较为完善,涌现出一批创新能力较强、竞争优势明显的国际先进企业,技术水平稳步提升,产品结构不断优化,供给能力有效提高。产业规模快速壮大。智能传感器产业规模达到260亿元;主营业务收入超10亿元的企业5家,超亿元的企业20家。  传感器将作为万物互联实现的基础  传感器是工业4.0时代的重要角色,随着物联网在工业领域的应用推广,越来越多的设备需要采用传感器采集数据,进一步去挖掘数据的价值,通过数据分析提升设备效率,预测一些可能发生的事情,减少停机损失,让工厂更贴近市场需求。  智慧城市是在城市当中实现物物相连,每一个需要识别的物体上,都需要安装传感器。因此,传感器的升级换代成为智慧城市能否快速发展的关键。西班牙小城桑坦德是传感器之城。建筑和路灯布满了25000个用于测量光线、噪音、碳排放量、温湿度及压力的传感器;路边则拥有地磁传感器,监测道路和停车状况。  农业传感器让传统的农业生产走向了智能化、自动化和远程控制化的智慧农业发展之路。通过传感器,既可以摆脱天气等自然因素的限制,实现田地、大棚、水产和畜牧等领域的远程科学监测,有效降低人力消耗。还能够利用科学分析提高整个农业抗灾抗风险的能力,提升农业产率。  传感器推进物联网发展  物联网发展核心在于传感器部署,多年以来,因物联网广泛应用落地,传感器产业迎来了巨大的发展契机,2019年,全球传感器市场规模有望超过2660亿美元,特别国内增长迅猛。  伴随传感器部署呈现快速增长态势,推动物联网蓬勃发展,为云平台发展提供了坚实基础,云端作为各种设备联网后所产生的数据提供存储、管理、分析等。云平台其核心在于数据集散中心,对万物互联所收集的数据加以利用,将会诞生出很多创新商业模式及应用。  与此同时传感器更大规模部署,所采集的大数据,其潜在的价值也将被逐渐挖掘,数据产生、收集、处理、决策和应用,可以说,物联网是一个以“数据”为驱动的产业。即万物互联所产生的海量数据,经智能化的处理、分析,最终透过数据形成产品或服务,而正是物联网最核心的商业价值所在,也将为社会创造出更多创新商业机遇。  物联网现状与趋势  物联网发展已经成为国家层面技术及产业创新的重点方向,推进物联网产业化、规模化发展的技术环境已基本具备,为了保障物联网产业化规模化发展,尤其在技术标准规范、自主知识产权、信息安全等方面相关政策成为加快推进物联网发展的主要动力之一。近几年中国物联网产业增速都在20%以上,2017年,中国物联网市场规模超过10000亿元。[img=,511,311]https://ng1.17img.cn/bbsfiles/images/2019/03/201903261456389088_5274_3859729_3.jpg!w511x311.jpg[/img]随着物联网的发展越来越快、应用面越来越广,作为物联网感知层最重要的核心的传感器来说,未来数十年都是其发展的好时机,有非常大的发展空间。发展前景很客观。可以预见的是,特种行业的专用传感器以及精密度高的传感器都会有很大的发展空间。更多内容请关注嘉兆科技嘉兆公司拥有40年测试测量行业经验,专业的销售、技术、服务团队,在众多领域都非常出色,包括:通用微波/射频测试、无线通信测试、数据采集记录与分析、振动与噪声分析、电磁兼容测试、汽车安全测试、精密可编程测量电源、微波/射频元器件、传感器等。并分别在深圳、北京、上海、武汉、西安、沈阳、珠海、成都设有全资分公司、生产工厂、办事处。

  • 如何选对传感器

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。[b] 1.根据测量对象与测量环境确定传感器的类型[/b] 要进行—个具体的测量工作,首先要考虑应采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题: ①量程的大小; ②被测位置对传感器体积的要求; ③测量方式为接触式还是非接触式; ④信号的引出方法,有线或是非接触测量; ⑤传感器的来源,国产还是进口,价格能否承受,还或者是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。[b] 2.灵敏度的选择[/b] 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。[b] 3.频率响应特性[/b] 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因此频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。[b] 4.线性范围[/b] 传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。[b] 5.稳定性[/b] 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。 在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,对所选用的传感器的稳定性要求更严格,要能够经受住长时间的考验。[b] 6.精度[/b] 精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。 这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。 对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。

  • 解读传感器未来的发展方向

    [font=宋体][size=14pt]传感器在人工智能领域的应用很广泛,通过智能传感器将人机连接起来,并结合软件和大数据分析,可以突破物理和材料科学的局限性。[/size][/font][font=宋体][size=14pt]下面工采网小编和大家一起来看看传感器未来的发展方向如何?[/size][/font][font=宋体][size=14pt]近年来,国内外传感器机构和技术研究与开发的投入不断增加,传感器技术也取得了飞速的进步。随着传感器技术的不断发展,新型高性能的传感器应用成本将不断降低,应用效果将不断提高,从而带动传感器行业的可持续发展。[/size][/font][font=宋体][size=14pt][font=宋体]通过传感器使得智慧城市建设不断促进公共基础设施和服务体系的完善,有效地聚集资金、人力以及社会各类资源发挥产业带动效应[/font] [font=宋体]以重点领域为突破口,瞄准市场需求广、领域带动效果明显的惯性传感器、环境传感器等产品进行重点投入,鼓励企业并购重组,加快进军高端传感器市场[/font][font=Calibri] [/font][font=宋体]加快建立并落实信息安全保障体制,加强信息保护技术研发,建立安全风险等级评估体系。[/font][/size][/font][font=宋体][size=14pt]因此[/size][/font][font=宋体][size=14pt]作为整个物联网的末端,传感器具有最大的潜在需求。国内传感器行业对进口的巨大依赖已成为中国物联网发展的瓶颈。只有国内企业实现传感器的国产化才能提升整个产业的整体实力,才能实现加快物联网产业的飞速发展。[/size][/font][font=宋体][size=14pt]特别是[/size][/font][font=宋体][size=14pt]在国家大力加强传感器开发和应用的一系列政策的指导和支持下,中国传感器产业有着良好的发展前景,并有望获得未来的增长空间。许多公司积极构建物联网和传感器共同发展的生态环境,依靠移动互联网,积极整合产业链的所有环节,引导消费者参与,拉近产品与市场的距离。[/size][/font][font=宋体][size=14pt][font=宋体]未来传感器将朝着高性能、低成本、低功耗技术水平发展。关键技术包括新材料新功能传感器、单芯片集成传感器和微处理系统的[/font]MEMS[font=宋体]芯片、支持微处理器信息处理和存储的智能化传感器、适应各类特殊环境的高精度传感器等技术。今后,随着[/font][font=Calibri]CAD[/font][font=宋体]技术、[/font][font=Calibri]MEMS[/font][font=宋体]技术、信息理论及数据分析算法的继续向前发展,未来的传感器系统必将变得更加微型化、综合化、多功能化、智能化和系统化。[/font][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制