压差传感器

仪器信息网压差传感器专题为您提供2024年最新压差传感器价格报价、厂家品牌的相关信息, 包括压差传感器参数、型号等,不管是国产,还是进口品牌的压差传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合压差传感器相关的耗材配件、试剂标物,还有压差传感器相关的最新资讯、资料,以及压差传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

压差传感器相关的厂商

  • 福建省莆田市衡力传感器有限公司是一家集专业高精度传感器研发、设计、生产、销售为一体的传感器制造厂家。 公司位于中国海峡西岸经济中心地,素有东方“夏威夷”之称,海上女神妈祖故乡——福建莆田。公司主要以生产称重、非标等数字传感器为主,目前产品已销往全国各省市地区,在河南、河北、山东等地设有办事处,打开东南亚、南亚等国际市场,为进一步实现以技术创市场的目标,公司与国内著名院校结成研发队伍,实现了“销售一代、试制一代、研发一代”的技术成建设,为衡力发展国内市场,走向国际市场,成为数字化传感器专家型企业,奠定了雄厚的技术基础。 十年来福建省莆田市衡力传感器有限公司严格依照国际计量组织(OIML)相关建议组织生产,在生产上建立起以ISO为标准的基础质量体系,并积极引进CE认证、5S管理,不但保证了产品品种全,性能好,还具有防腐、防水、防震等持久耐用特点,产品近年来在机械、衡器、化工、钢铁、科研等行业广受好评,在市场上获得了衡力“以优质创市场,技术创品牌”的良好口碑。 规范化、数字化、专业化、国际化、服务化是衡力走向国际化一流传感器企业的五大战略标准,当公司初步达成专业化、数字化、规范化三大目标时,下一个目标就是向国际化、服务化迈进,为向客户提供一个具有专业技术、一流服务、高附加值专业数字化传感器品牌进军.....
    留言咨询
  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询
  • 湖北五岳传感器有限公司是中国第一支高温熔体压力传感器的诞生公司,成立20多年来,一直专注于PT111系列、PT124系列、PT131、PY1366B、PT167B系列传感器,压力传感器,压力变送器,高温压力传感器,熔体压力传感器,流体压力传感器,高温熔体压力传感器,高温熔体压力变送器,挤出机熔体压力传感器,化纤挤出机压力传感器,橡胶挤出机压力传感器,塑料机械熔体压力传感器,工业熔体压力传感器,和PY909、PY208、PY508、PY600、PY708系列高温熔体压力传感器智能数字显示压力仪表的开发,研制,销售及工程配套。是国内替代同类进口高温熔体压力传感器产品的最大生产商。五岳牌高温熔体压力传感器,变送器系列及高温熔体压力传感器智能数显仪表等产品在塑料,化纤,橡胶,石化等诸多工业门类的应用始终居于领导地位。五岳系列高温熔体压力传感器、高温熔体压力变送器、智能数字显示压力仪表还出口到东南亚、港澳台、韩国、中东及世界其它地区。同时维修美国DYNISCO意大利GEFRAN的同类高温熔体压力传感器产,提供关于各类高温熔体压力传感器的技术支持、使用维护!湖北五岳传感器有限公司荣誉榜:在中国制造出:第一支高温熔体压力传感器;第一支超高温熔体压力传感变送器;第一支**高温熔体压力传感器;第一台**高温熔体压力表;第一支高温熔体压力变送器;第一家与国际著名挤出业龙头企业合作的公司。
    留言咨询

压差传感器相关的仪器

  • 差压式压力传感器 – 692系列0 ... 0.1 - 25 bar 692系列压力传感器采用瑞士富巴自己开发的陶瓷芯片技术,其标准化电压或电流输出信号经过校准和放大。有多种压力和电气接头以及适用不同介质的外壳材料可供选择。介质: 液体和气体量程: 0 ... 0.1 – 25 bar输出: 0 ... 5 V0 ... 10 V4 ... 20 mA精度: 满量程的0.5%电气连接: 1.5m电缆DIN EN 175301-803-A60130压力连接: 软管连接外螺纹管接头7/16-20UNF内外螺纹管接头G1/8 温度影响可忽略不计抗极端温度影响能力强没有机械爬行众多连接方式和材料可选506.931A06101W,506.940A08121W-1-60BAR,506.931A06101W0-200PSI/OUT1-6V,506.932A03131W -1-24BAR,508.931003070,508,931003070,520.930S13L301,,,506.931A01101.9500002 ,520.954S033401,520.941S033401W,520.930S043401,540.954S300401,520.955S031801,520.954S081801,210.910241K,692.918007141,692.919007101,692.931007001,水压差开关630.930117 HUBA,[GKY]空气压差开关,604.9110030,HUBA,量程:50~500par,精度:±5pa,]压力传感器,520.930S13L301,Huba,量程:0-10bar,精度:≤±0.8%FS,压差开关 630.95.0.0.0.5 HUBA 量程1~3bar,精度0.4mbar,压力接头G1/8,压力介质流体和气体,水压差开关支架100997 HUBA,630.950005,压力开关625.6532,625.9330R100,625.9132,625.9732,625.6640,630.950404R,501.931003141,501.930003141,604.S110000,604.S110000.506.932A03101,506.931A03101,506,930A03101,692.930007101,604.9210000,506.931A06101W,506.940A08121W-1-60BAR,506.931A06101W0-200PSI/OUT1-6V,506.932A03131W -1-24BAR, 506.931A01101.9500002 ,520.954S033401, 520.941S033401W, 520.930S043401, 540.954S300401, 520.955S031801, 520.954S081801, 210.910241K,692.918007141,692.919007101,692.931007001,水压差开关 630.930117 HUBA,[GKY]空气压差开关,604.9110030,HUBA,量程:50~500par,精度:±5pa,]压力传感器,520.930S13L301,Huba,量程:0-10bar,精度:≤±0.8%FS,压差开关 630.95.0.0.0.5 HUBA 量程1~3bar,精度0.4mbar,压力接头G1/8,压力介质流体和气体,水压差开关支架 100997 HUBA,630.950005,压力开关625.6532,625.9330R100,625.9132,625.9732,625.6640,450.9300111,, 699.915226045.,699.913226045,,699.917226145,,699.915226145.699.911226045
    留言咨询
  • 微差压传感器美国西特266266微差压传感器是专门为那些成本有限,但依然追求高质量的用户定制开发。266压力传感器检测差压或表压压力,并把该压差转换为比例的电输出。具有0-5VDC,0-10VDC或4-20mA高电平输出,用于楼宇能源系统管理系统。该传感器能够测量楼宇增压和空气流动控制所需要的精神压力和流量。266微差压传感器可提供低至0到±25Pa 高至0-5000Pa的量程。静态精度在常温下为1%Fs,温度补偿范围是-18到+65℃,在温度补偿范围外的热漂移小于=0.06%FS/℃266微差压传感器独有的电容技术采用不锈钢氩弧焊敏感元件。张力不锈钢膜片和一个固定电极构成一个可变电容。正压使膜片向电极移动电容值增大,减小压力,膜片则远离固定电极。电容的这种变化通过西特独特的电子电路检测并转变为线性直流信号。氩弧焊张力敏感元件允许在任何方向有69KPa的过压而不损坏,另外敏感元件的各部分具有良好的热匹配系数。改善了传感器的温度特性和长期稳定性。266微差压传感器 HVAC行业性价比更高 对于HVAC行业的客户来说,266可以让客户在支付较低价格同时,依然享受到西特产品的高品质。266微差压传感器的特性24VDC 和24VAC激励 0-5VDC 0-10VDC及4-20mA高电平模拟输出与所以的能源管理系统兼容 误接线全保护 内部调整电路允许使用非稳压电源 1%的精度提高了VAV系统的性能 阻燃外壳(UL94V-0认证)266微差压传感器的应用:暖通空调(HVAC) 能源管理系统 VAV及风扇控制 环境污染控制 静态管路和洁净间压力 烟雾罩控制 烘箱增压及炉通风控制266微差压传感器的输出:4-20mA 0-5VDC 0-10VDC 266微差压传感器电气接口:接线端子
    留言咨询
  • 201微差压表压压力传感器美国西特201201微差压压力传感器是一款高精度 低成本的压力传感器,可用于测量非常低的表压压差。该产品采用全焊接 无O型圈结构的无懈漏设计,非常适合特别严苛的低量程应用。201的低量程连接件适用于与不锈钢和600系列铬铁合金相容压力介质。201可测液体 只有电流输出 4-20mA201超低表差压传感器采用西特公司专利的可变电容传感器设计,将极致简约性 高精度和优异的热稳定性融为一体。它采用膜片和绝缘电极。其工作原理是膜片的电容值会随压力升降而相应变化,然而通过检测该电容变化,将其转换成完全调制的线性电流输出信号。201微差压传感器高性价比 具有设计坚固耐用 过压能力高达45PSI(310 KPa) 宽工作温度范围等特点 成为众多严苛应用场合的理想选择。201微差压传感器的应用:蒸汽回收系统 排气控制系统 工业用洗涤器201微差压传感器的压力接口:1/4 18NPT外螺纹 1/4管接头 1/4 18NPT内螺纹 7/16SAE37°扩口式管接头201微差压传感器的电气接口:导管 2英尺(60cm)电缆 端子板201微差压传感器的输出:4-20Ma 精度是:±0.5%FS ±0.25%FS
    留言咨询

压差传感器相关的资讯

  • 基于表面增强拉曼光谱的新传感器或彻底改变新冠筛查方式
    随着技术的进步以及相关应用的拓展,拉曼光谱技术呈现了越来越诱人的应用前景,特别是在生命科学领域,不仅引领了前沿研究,而且与人类的生活越来越贴近。拉曼光谱作为一种无损、无需标记的分析方法,能够从分子层面对生命科学领域的样品提供丰富的信息,可在不损伤细胞的条件下实时动态地监测细胞分子结构变化,而且拉曼成像还可以提高疾病的早期检测技术水平。疾病快速筛查、手术辅助治疗、癌症标志物检测等领域的一系列应用已经为大家勾画了美好的蓝图,让大家对其产生了更多期待。随着新冠疫情的蔓延,新冠病毒检测新方法的开发一直是大家关注的焦点。不少业内人士都表示,希望拉曼光谱技术可以在新冠病毒检测方面发挥作用,据悉目前国内外有不少单位或者课题组正在开展相关的研究。据科技日报报道,美国约翰斯霍普金斯大学开发出一种基于表面增强拉曼光谱方法的新冠病毒传感器,可同时提高准确性和检测速度,有望彻底改变病毒检测方式。据介绍,该传感器基于大面积纳米压印光刻、表面增强拉曼光谱和机器学习技术,可通过一次性芯片形式在刚性或柔性表面进行大规模测试。它不需要样品制备和操作专业知识,与现有的检测方法相比具有强大的优势,特别适用于大规模群体检测。该技术的关键是研究人员开发的大面积、柔性场增强金属绝缘体天线(FEMIA) 阵列。唾液样本被放置在材料上并使用表面增强拉曼光谱进行分析,该光谱使用激光来检查样本分子如何振动。由于纳米结构的FEMIA显著增强了病毒的拉曼信号,因此该系统可快速检测病毒的存在,即使样本中仅存在少量痕迹。该系统的另一项重大创新是使用先进的机器学习算法来检测光谱数据中非常微妙的特征,使研究人员能够查明病毒的存在和浓度。传感器材料可放置在从门把手、建筑物入口到口罩等任何类型的表面上。图片来源:KAM SANG KWOK和AISHWARYA PANTULA/约翰斯霍普金斯大学“这项技术就像在设备上滴一滴唾液,然后得到阴性或阳性结果一样简单。”约翰斯霍普金斯大学机械工程副教授伊桑巴曼说,其新颖之处在于这是一种无标记技术,这意味着不需要分子标记或抗体功能化等额外化学修饰。传感器最终可用于可穿戴设备。巴曼称,这项新技术产品尚未在市场上销售,它弥补了两种最广泛使用的新冠病毒检测方式的局限性。PCR(聚合酶链式反应)检测非常准确,但需要复杂的样品制备,在实验室处理结果需要数小时甚至数天;另一种抗原检测则在检测早期感染和无症状病例方面不太成功,还可能导致错误的结果。新传感器几乎与PCR检测一样敏感,并且与快速抗原检测一样方便。在初始检测期间,该传感器在检测唾液样本中的新冠病毒方面表现出92%的准确度,与PCR检测不相上下。该传感器在快速确定其他病毒方面也非常成功,包括H1N1和寨卡病毒。“我们的平台超越了当前的新冠病毒检测。”巴曼说,“我们可将其用于针对不同病毒的广泛检测,例如,区分新冠病毒和H1N1,甚至是变体。这是当前快速测试无法轻易解决的主要问题。”
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 关亚风团队研制深海原位气相色谱仪、荧光传感器海试成功
    p style="text-align: justify line-height: 1.5em text-indent: 2em "近日,中科院大连化学物理研究所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队与中国科学院深海科学与工程研究所共同研制的4500米级深海原位气相色谱仪、深海原位有色溶解有机物(CDOM)荧光传感器和深海原位叶绿素荧光传感器于8月14日至9月7日搭载深海勇士号/探索二号在某海域科考航次中海试成功,均获得了有效数据。深海原位气相色谱仪进行了两次海底试验,最大潜深1637米 深海原位CDOM荧光传感器和深海原位叶绿素荧光传感器进行了八次海底试验,最大潜深3961.9米。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/ac0cd68f-5f82-48f1-bedc-8ab77b37a2b3.jpg" title="W020201123364060937305.jpg" alt="W020201123364060937305.jpg"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/9dfb6c93-35ab-4857-9a7a-39034961aa87.jpg" title="W020201123364061206150.jpg" alt="W020201123364061206150.jpg"//pp style="text-align: justify line-height: 1.5em "  深海原位气相色谱仪可原位定量测量深海中单体挥发性有机组分和各类气体成分。本次海试成功的深海原位气相色谱仪验证了其工作原理及工程应用的可行性,获得了不同沸点组分含量的半定量数据,为后续深海地球化学和生物等科学研究,以及能源勘探等工程技术奠定了原位探测技术基础。/pp style="text-align: justify line-height: 1.5em "  有色溶解有机物(chromophoric dissolved organic matter,CDOM)是存在于各类水体中的含有腐殖酸、富里酸、氨基酸和芳烃聚合物等物质的溶解性有机物。开展CDOM分布研究能够更好地确定其来源及组成,对揭示海洋碳循环变化规律和海洋生态系统特征有重要意义。在本航次海试中,深海原位CDOM荧光传感器以及新型超高灵敏度深海原位叶绿素a荧光传感器分别测量到了某海域从海平面到海底整个剖面的CDOM和叶绿素a的浓度,为海洋生物、物理海洋等学科研究提供了重要数据。两类荧光传感器均采用行业认可的标定方法,经比对,测量结果与文献报道的船载光谱仪对该海域的测量数据相吻合,包括剖面浓度变化趋势、拐点深度和绝对浓度,证明了两类荧光传感器的测量及标定准确性。经权威部门第三方测试,CDOM传感器检测下限为8.5ng/L硫酸奎宁,叶绿素传感器检测下限为0.42ng/L叶绿素a,检测灵敏度均比可查询的美国、德国等进口同类产品高数倍。两类深海原位荧光传感器已作为中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”的首批成果,搭载到深海原位实验站上。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/5bbed161-aaa0-416a-b540-8d74e9ac1bdc.jpg" title="W020201123467651928485.jpg" alt="W020201123467651928485.jpg"//pp style="text-indent: 2em "span style="text-align: justify text-indent: 2em "在今年年初,团队研发的三种深海原位荧光传感器工程样机,包/spanspan style="text-align: justify text-indent: 2em "括深海原位叶绿素荧光传感器、深海原位微生物荧光传感器和深海原位多环芳烃荧光传感器已经/spanspan style="text-align: justify text-indent: 2em "在深海勇士号/探索一号TS16南海科考航次中,搭载“深海勇士号”载人潜水器先后11次进行水下试验,最大潜深达3497.6米。分别测量了南海海水中从海平面到海底整个剖面的叶绿素a、微生物和多环芳烃的浓度。原位探测深海中叶绿素a的浓度,反映了深海中浮游植物生物量或现存量,是计算初级生产力的基础。原位探测深海中微生物的浓度,具有很高的科学研究价值和衍生的经济价值。原位探测深海中多环芳烃的浓度,有助于勘探海底原油溢油,具有重要的能源勘探价值。此次勘探所得数据为海洋生物、物理海洋等多学科研究提供了重要的原始数据。该系列仪器均属我国首套该类型的深海原位荧光传感器。其中,深海原位微生物荧光传感器也是国际首套该类型仪器。/span/pp style="text-indent: 2em "span style="text-align: justify text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/215f7a10-5d96-406b-b6db-ed8a4bb1f93a.jpg" title="7F8DFBF6865801A3EFA9B3FCEA2_3B5971E0_46F7B (1).jpg" alt="7F8DFBF6865801A3EFA9B3FCEA2_3B5971E0_46F7B (1).jpg"//pp style="text-align: justify " 关亚风团队自21世纪初开展高灵敏荧光检测器及应用研究,该系列仪器的研发成功是该团队在深海极端条件应用的原位荧光探测技术研究方面的重要进展。该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,关亚风团队负责深海原位有机组分气相色谱—质谱联用仪与荧光传感器的研发,深海负责耐压水密封外壳的研发和海试。/pp style="text-align: justify text-indent: 2em "该工作得到中科院A类先导专项“深海/深渊智能技术及海底原位科学实验站”和中科院大连化物所创新研究基金等项目的资助。/p

压差传感器相关的方案

压差传感器相关的资料

压差传感器相关的试剂

压差传感器相关的论坛

  • 微差压传感器的特点及应用

    微差压传感器又可称为风压差传感器、气压差传感器、管道风压差传感器、室内气风压差传感器等。其中微差压传感器的核心部件是一个电容式压力敏感元件,由不锈钢膜片与固定电极构成一个电容,其值随压力变化而变。微压差传感器具有零点、满度可调、精度高、温漂小、抗干扰能力强、稳定可靠、价廉物美等特点。 微差压传感器采用进口差压集成感差芯片,电路部分的关键元器件选用国际著名品牌的元器件,全封闭式电路,具有防潮、防结露、防渗漏、防雷功能。微差压传感器外壳为铝合金或有锈钢两种结构,两个压力接口为螺纹或旋塞结构,可直接安装在测量管道上或通过引压管连接。非常狭窄的微流体通路降低了流进气体的流速,极低的气体流速保证了微压差传感器连接管路和滤器后不必重新校正。 微差压传感器可用于测量炉内压等微小差压,然后转变成4~20mA DC信号输出,以及有气压要求的实验室、消防工程用的室内气压力控制领域。微差压传感器广泛应用于锅炉送风、井下通风、中央空调、风管风力、楼宇自控等电力、煤炭行业压力过程等领域。

  • 差压变送器和压力传感器的区别在哪里

    差压变送器和压力传感器的区别在哪里 经常看到很多朋友这样提问,“变送器和传感器到底有什么不同?”还有就是他们之间有什么联系?下面就阐述一下大家关心的概念问题,还有压力变送器与压力传感器之间的区别联系之处。  定义区别:传感器,是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成。变送器,是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其他信号也有了。一次仪表指现场测量仪表或基地控制表,二次仪表指利用一次表信号完成其他功能:诸如控制,显示等功能的仪表。  联系之处:传感器和变送器本是热工仪表的概念。当传感器的输出为规定的标准信号时,则称为变送器。传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。变送器则是把传感器采集到的微弱的电信号放大以便转送或启动控制元件。或将传感器输入的非电量转换成电信号同时放大以便供远方测量和控制的信号源。根据需要还可将模拟量变换为数字量。  压力传感器和压力变送器一同构成自动控制的监测信号源。不同的物理量需要不同的传感器和相应的变送器。还有一种变送器不是将物理量变换成电信号,如一种锅炉水位计的差压变送器,是将液位传感器里的下部的水和上部蒸汽的冷凝水通过仪表管送到变送器的波纹管两侧,以波纹管两侧的差压带动机械放大装置用指针指示水位的一种远方仪表。当然还有把电气模拟量变换成数字量的也可以叫变送器。

  • 压差表、温度传感器、温度变送器校准问题请教

    1.目前企业有很多温度变送器、传感器(A级),想建立内校能力,考虑效率问题,不想用油槽。一般干井炉连接标准铂电阻温度计,准确度能达到0.05度,请问用这种方法是否可行?据说这种方法是没法建标的。2.压差表(2000Pa以下)大家都用什么校准,听说普通的手动微压泵很不稳定,有用过的没有,帮忙介绍下,谢谢!

压差传感器相关的耗材

  • TSI 8475系列 风速传感器
    TSI 8475系列 风速传感器,产品详情,说明书,代售点,操作规格销售热线:15300030867,13718811058,张经理风速传感器 8475(全向)非常适于研发实验室、生产流程和其他应用领域中的临时性和永久性风速检测。此款内置电子装置和校准曲线,提供线性信号输出。线性信号作为电流 (mA) 或电压 (V) 信号发出,能够输出到多种数据记录器或数据采集系统中。最重要的是,用户可在五分钟内轻松更改电流和电压输出范围。TSI 8475系列 风速传感器,特点和优势,操作说明书,代理,特价,现货全向探头可选 3、6、9 或 12 英寸探头10 至 100 ft/min(0.05 至 0.5 m/s)低速范围时检测精确适于流向不明或流向变化的探查TSI 8475系列 风速传感器,所含项探头使用 16.4-ft (5-m) 连接线连接至控制模块保护套压合接头,用于管道安装工作双保持夹,用于将探头安装至平行面操作和维护手册NIST 检定证书
  • 汽车传感器模拟测试仪 传感器 型号:ZRX-24250
    传感器产品介绍:ZRX-24250是套专门为汽车维修师而设计的具有越性能的汽车故障诊断具,主要用来对汽车电控系统的各种传感器行测试和模拟。准确判断传感器的好坏,减少盲目更换配件,保证维修在购买配件之前,可以准确判断该配件的好坏。 ZRX-24250传感器模拟测试仪具有四大能:用表,氧传感器信号模拟 传感器信号模拟,传感器信号测试.术标模拟能: 电阻信号,电压信号,频率信号 测试能: 电阻,电压,电流,频率,占空比, 电容,二级管,通断应用: 1、测试汽车传感器信号 2、模拟汽车传感器信号 3、检查汽车电脑故障 4、减少盲目更换汽车传感器术标: 1、模拟电阻:0-5K 0-200K2、模拟电压:0-1V 0-5V 0-12V3、模拟频率信号:电压:0-5V /频率:0-4000HZ 占空比:0-99% 电压:0-12V /频率:0-4000HZ 占空比:0-99% 主要应用:测试汽车传感器信号:1.美的手持诊断具可以测试检查传感器,线路,电子接头,电脑控制系统,电压信号, lambda信号,频率信号,脉冲信号。数字显示模拟输出信号:频率 0- 4000 Hz, 电压:0-1V / 0-5V / 0-12v, 电阻0-5K / 0-200K.2.测量:直流电压DC:400mV,4V,40V,400V,1000V 交流电压AC:400mV,4V,40V,400V,750V直流电流DC:0mA ,400mA ,10A   交流电流AC:40mA,400mA,10A 电阻(Ω):00.4K,40K,400k,4M,40M 电容:40nF,400nF,4uF,40uF,100uF频率:10Hz-10MHz;占空比:0.1% -99.9% 二管和连续测试模拟汽车传感器:1.模拟温度传感器,节气门位置传感器,开关,空气流量计,lambda/氧传感器 2.模拟车速传感器(VSS), 曲轴位置传感器(CAM), 凸轮轴位置传感器 3.不需要拆下何传感器模拟传感器实际的作条件:A.B.S车速,曲轴位置,凸轮轴位置,冷却液温度,氧传感器,气温度气压力,气流量等.检查ECU的作情况:通过模拟传感器信号,可以在解码器(scan tool)上观察相关参数的变化 检查ECU的反映和运行情况,可以判断汽车故障位是在ECU 本身,还是ECU与传感器之间的线路
  • 共焦传感器配件
    共焦传感器配件用于钻孔内壁检查和产品凹陷表面,收缩和凹口表面检查,可以深入小孔对小孔表面进行螺旋检查。共焦传感器配件特点精确装入传感器枪sensor lance由一伺服电机旋转,采用线性单元深入孔内。在这样做时,可逐渐或螺旋状地进行测量。直径仅为3.5mm,可以应用于直径为4.5mm的内孔。与线性标准系统一样,共焦技术适用于各种表面。因为在测量过程中,该传感器系统不需要任何参考点,可以完全测量边缘和平台。共焦传感器配件规格测量范围:4.5 - 10mm (更大的测量范围不在要求之内)最大线性0.15%。 最高分辨率0.01% 适用的孔从4mm 采样率高达30kHz 最大浸入深度90mm 检测直径、圆度、同心度、锥度、直线度、间隙或步 角的定位和角位置的移动 检测平台
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制