当前位置: 仪器信息网 > 行业主题 > >

电子数显尺

仪器信息网电子数显尺专题为您提供2024年最新电子数显尺价格报价、厂家品牌的相关信息, 包括电子数显尺参数、型号等,不管是国产,还是进口品牌的电子数显尺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子数显尺相关的耗材配件、试剂标物,还有电子数显尺相关的最新资讯、资料,以及电子数显尺相关的解决方案。

电子数显尺相关的论坛

  • 【转帖】电子数显量具的选购、检定与维修

    电子数显量具的三个主要品种——电子数显卡尺、电子数显千分尺和电子数显指示表,由于其精度高、功能多、使用方便,日益受到用户欢迎,特别是近几年产品质量稳定,价格降低,电子数显量具新品种不断问世,市场需求急剧增长。 以数显卡尺为主要代表的电子数显量具,在我国已生产和使用十多年了。目前有十余家工厂生产,2000年全国总产销量近40万件,其中桂林广陆数字测控股份有限公司(原广陆量具厂)占二分之一,在数显量具的质量、销量及品种方面,尤其是数显专用量具生产方面,广陆公司处于国内领先水平。 下面以电子数显卡尺和电子数显指示表为例,就电子数显量具的应用、检定和修理,予以简要说明。 一.电子数显卡尺的选购 目前在市场比较受欢迎的是带电子开关的三按键数显卡尺,三个按键分别是测量制式转换键、开关键和清零键。该电子数显卡尺在任意位置开关电源,测量原点(零点)不变。广陆公司的三按键数显卡尺,其显示窗口不是普通的有机玻璃,而是特殊石英玻璃,抗划伤能力强,用普通民用小刀划不伤。由于采用了模块式结构,维修十分方便。还可根据用户的不同要求,设计有各种选择功能或特殊使用性能的电子数显卡尺。 电路设计方面考虑的特殊功能有: 带记忆保持功能。在不方便读数情况下,按此键可将瞬间测量值记住; 可设置公差带。即可设置被测工件的上、下极限偏差值,可提示测量结果是否合格,如不合格,还指出是超上极限偏差值或超下极限偏差值; 可跟踪最大值。当测内腔尺寸如孔的直径时,用此功能就比较方便; 可跟踪最小值。当测外部尺寸如轴的直径时,用此功能则比较方便; 可预置数值。通常用游标卡尺圆弧内量爪测孔的直径,需将测量结果再加上圆弧内量爪的合并宽度尺寸,如果因疏忽忘记加上该尺寸,可能就造成废品。如果利用预置数值功能将圆弧内量爪的合并宽度尺寸预先设置,便可直接读出孔的直径数值,安全又方便; 从机械设计方面考虑的有: 镶硬质合金电子数显卡尺,该卡尺大大提高了量面的抗磨损性能; 齿厚电子数显卡尺,用于测量齿轮轮齿在固定弦上的厚度,量面亦镶有硬质合金; 螺纹电子数显卡尺,用于测量螺纹中径; 内沟槽数显卡尺,主要用于测物体内腔沟槽直径; 内槽宽数显卡尺,主要用于测量孔内沟槽宽度和沟槽的轴向位置,也可用带钩头的数显深度卡尺完成同样任务; 外沟槽数显卡尺,主要用于测量物体外部凹陷部位的尺寸或用于测不规则形状板状物体的厚度; 板厚数显卡尺,主要用于测量橡胶、海绵等较软物体的厚度,有时带有限制测力的结构; 伸缩爪数显卡尺,由于有一个测量爪可以伸缩,常用于测不等高局部表面在水平方向的距离; 中心距数显卡尺,主要用于测两孔的中心(轴线)距离,有锥形测头和圆柱测头两种。锥测头用于测孔口比较平整的两孔中心距离,圆柱测头的采取步进式读数测量方式,即:先测两孔内侧壁间的最小距离,固定右滑框,松开并移动左滑框使与右滑框接触,固定左滑框,再松开并移动右滑框,测两孔壁间的最大距离,此刻的读数为两次数值的叠加,由于该尺设计成具有的二分之一显示功能,即可直接显示两孔轴线间距离,详细情况请看使用说明书; 万向节数显卡尺,主要用于测万向节内沟槽尺寸及相互位置; 塑料数显卡尺,材质为碳纤维增强塑料或其它工程塑料的数显卡尺。此外还有用铝合金材料制造的数显卡尺等,主要用于要求防止被侧物体划伤及要求特别轻便的场合; 电子数字圆规,该类数显卡尺结束了长期以来生产现场使用盲规划圆的历史。上述种种专用电子数显卡尺,给不同场合的应用带来了许多方便。详细情况请向生产企业索取有关资料。 专用量具的选购或订货,应向厂家提供被测工件相关部位草图,标明被测尺寸及相关尺寸,以利于合理选择现有产品或设计制造比较特殊的专用电子数显量具。例如:选购内沟槽电子数显卡尺时,应标明孔内被测沟槽的直径或沟槽的单边深度、宽度,沟槽距孔口端面的距离及入口处孔口直径,以便于您的选购或厂家准确设计。

  • 【资料】电子数显量具的选购检定与维修

    电子数显量具的三个主要品种:电子数显卡尺、电子数显千分尺和电子数显指示表,由于其精度高、功能多、使用方便,日益受到用户欢迎,特别是近几年产品质量稳定,价格降低,电子数显量具新品种不断问世,市场需求急剧增长。 下面以电子数显卡尺和电子数显指示表为例,就电子数显量具的应用、检定和修理,予以简要说明。 一.电子数显卡尺的选购 目前在市场比较受欢迎的是带电子开关的三按键数显卡尺,三个按键分别是测量制式转换键、开关键和清零键。该电子数显卡尺在任意位置开关电源,测量原点(零点)不变。广陆公司的三按键数显卡尺,其显示窗口不是普通的有机玻璃,而是特殊石英玻璃,抗划伤能力强,用普通民用小刀划不伤。由于采用了模块式结构,维修十分方便。还可根据用户的不同要求,设计有各种选择功能或特殊使用性能的电子数显卡尺。 电路设计方面考虑的特殊功能有: 带记忆保持功能。在不方便读数情况下,按此键可将瞬间测量值记住; 可设置公差带。即可设置被测工件的上、下极限偏差值,可提示测量结果是否合格,如不合格,还指出是超上极限偏差值或超下极限偏差值; 可跟踪最大值。当测内腔尺寸如孔的直径时,用此功能就比较方便; 可跟踪最小值。当测外部尺寸如轴的直径时,用此功能则比较方便; 可预置数值。通常用游标卡尺圆弧内量爪测孔的直径,需将测量结果再加上圆弧内量爪的合并宽度尺寸,如果因疏忽忘记加上该尺寸,可能就造成废品。如果利用预置数值功能将圆弧内量爪的合并宽度尺寸预先设置,便可直接读出孔的直径数值,安全又方便; 从机械设计方面考虑的有: 镶硬质合金电子数显卡尺,该卡尺大大提高了量面的抗磨损性能; 齿厚电子数显卡尺,用于测量齿轮轮齿在固定弦上的厚度,量面亦镶有硬质合金; 螺纹电子数显卡尺,用于测量螺纹中径; 内沟槽数显卡尺,主要用于测物体内腔沟槽直径; 内槽宽数显卡尺,主要用于测量孔内沟槽宽度和沟槽的轴向位置,也可用带钩头的数显深度卡尺完成同样任务; 外沟槽数显卡尺,主要用于测量物体外部凹陷部位的尺寸或用于测不规则形状板状物体的厚度; 板厚数显卡尺,主要用于测量橡胶、海绵等较软物体的厚度,有时带有限制测力的结构; 伸缩爪数显卡尺,由于有一个测量爪可以伸缩,常用于测不等高局部表面在水平方向的距离; 中心距数显卡尺,主要用于测两孔的中心(轴线)距离,有锥形测头和圆柱测头两种。锥测头用于测孔口比较平整的两孔中心距离,圆柱测头的采取步进式读数测量方式,即:先测两孔内侧壁间的最小距离,固定右滑框,松开并移动左滑框使与右滑框接触,固定左滑框,再松开并移动右滑框,测两孔壁间的最大距离,此刻的读数为两次数值的叠加,由于该尺设计成具有的二分之一显示功能,即可直接显示两孔轴线间距离,详细情况请看使用说明书; 万向节数显卡尺,主要用于测万向节内沟槽尺寸及相互位置; 塑料数显卡尺,材质为碳纤维增强塑料或其它工程塑料的数显卡尺。此外还有用铝合金材料制造的数显卡尺等,主要用于要求防止被侧物体划伤及要求特别轻便的场合; 电子数字圆规,该类数显卡尺结束了长期以来生产现场使用盲规划圆的历史。上述种种专用电子数显卡尺,给不同场合的应用带来了许多方便。详细情况请向生产企业索取有关资料。 专用量具的选购或订货,应向厂家提供被测工件相关部位草图,标明被测尺寸及相关尺寸,以利于合理选择现有产品或设计制造比较特殊的专用电子数显量具。例如:选购内沟槽电子数显卡尺时,应标明孔内被测沟槽的直径或沟槽的单边深度、宽度,沟槽距孔口端面的距离及入口处孔口直径,以便于您的选购或厂家准确设计。

  • 形成菊池线与形成选区电子衍射花样时电子束的不同

    本人菜鸟,求助一个基本的透射电镜问题:我们都知道在样品中把光会聚的时候会在后焦面上形成菊池线,同时把光散开的时候会形成一些衍射斑点。菊池线的形成是由于电子束先受到非弹性散射,再发生弹性散射形成的,那么按理说把光散开的时候也同样会有这样的效应。那么为什么在会聚的时候非弹性散射的效应比较强呢?还望各位大牛多指教啊

  • 纳米级尺寸电子束斑测量

    纳米级尺寸电子束斑测量

    [b]1. [font=黑体]电子束尺寸测量的意义[/font][/b][font=宋体]通常电子束光刻([/font]EBL[font=宋体],[/font]Electron BeamLithography[font=宋体])的曝光工艺,需要根据电子束的辐照密度确定曝光时间,准确测量聚焦电子束的尺寸才能得到准确的电子束辐计量。[/font][font=宋体]电子束斑测量可作为扫描电子显微镜([/font]SEM[font=宋体],[/font]Scanning ElectronMicroscope[font=宋体])、透射电子显微镜([/font]TEM[font=宋体],[/font]Transmission Electron Microscope[font=宋体])电子光学参数调校依据,可作为[/font]EBL[font=宋体]关键工艺参数。[/font][img=,364,266]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753391454_3326_5849699_3.gif!w364x266.jpg[/img][font=黑体]电子束光刻[/font][b]2. [font=黑体]电子束尺寸测量的方法[/font][/b][font=宋体]([/font]1[font=宋体])成像法[/font][font=宋体]使用电子轰击荧光屏,通过观察荧光屏判断电子束尺寸,考虑到光学传递误差,通常可观察最小电子束斑约[/font]10um[font=宋体]。[/font][img=,126,191]https://ng1.17img.cn/bbsfiles/images/2023/12/202312271753446949_597_5849699_3.png!w157x239.jpg[/img][font=宋体]([/font]2[font=宋体])扫描法[/font][font=宋体]利用法拉第杯来测量电子束电流,挡板水平运动遮挡电子束流,同时监测法拉第杯中电流变化,根据电流的微分曲线可以直接定量测量电子束的宽度,对于系统的分辨率具有较高要求。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image005.jpg[/img][b]3. [font=黑体]阿米精控测量方案[/font][/b][font=宋体]阿米精控科技(山东)有限公司专注于纳米运动控制及超精密机电系统领域的创新设计及产品研发,是一家集研发设计、制造、销售于一体,拥有全自主知识产权的微纳测控及超精密自动化“系统级硬科技”公司。[/font]AttoMotion[font=宋体]纳米运动平台基于微纳柔性机构和压电执行器实现超高分辨力纳米运动,内置光栅[/font]/[font=宋体]电容微位移传感器,通过高性能纳米伺服系统实现闭环控制,具有亚纳米级运动分辨率、纳米级运动精度和高速、高动态轨迹扫描功能。[/font][img=,137,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image007.jpg[/img][img=,185,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg[/img][img=,133,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg[/img][font=宋体]技术特点:超高定位精度、多轴高动态协同联动、高刚度高负载、紧凑型结构设计、轴间运动学解耦设计、多运动模式(定位[/font]/[font=宋体]扫描)、可实现正置倒置的灵活应用、真空兼容性温度使用范围广、运动行程[/font]50~200[font='Cambria Math',serif]μ[/font]m[font=宋体]。[/font][font=宋体]应用领域:扫描电子显微镜、同步辐射光源、纳米操作、光纤定位和对准。[/font][b]3.1 [font=黑体]测量装置搭建[/font][/b][font=宋体]([/font]1[font=宋体])选用[/font]SEM[font=宋体],测试过程中拔掉偏转线圈控制线或者采用点扫模式,使得电子束位置固定。[/font][img=KYKY-EM8100场发射扫描电子显微镜,383,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg[/img] [table][tr][td=2,1] [align=center][font=宋体]扫描电镜([/font]SEM[font=宋体])详细参数[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]分辨率[/font][/align] [/td][td] [align=center]3.0nm@1KV[font=宋体]([/font]SE[font=宋体])[/font][/align] [align=center]2.5nm@30KV[font=宋体]([/font]BSE[font=宋体])[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]放大倍率[/font][/align] [/td][td] [align=center]6[font=宋体]倍[/font]-1000000[font=宋体]倍[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]电子枪[/font][/align] [/td][td] [align=center][font=宋体]肖特基场发射电子枪[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]加速电压[/font][/align] [/td][td] [align=center]0[font=宋体]~[/font]30kV[/align] [/td][/tr][/table][font=宋体]([/font]2[font=宋体])三轴并联压电扫描平台[/font][img=,202,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg[/img][img=,258,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png[/img] [img=,230,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png[/img][img=,401,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg[/img][font=宋体]([/font]3[font=宋体])弱电流放大器[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png[/img][font=黑体]可变增益弱电流放大器[/font][img=,481,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png[/img][font=宋体]([/font]4[font=宋体])位移台安装[/font][font=宋体]位移台与转台绝缘,与大地相接,法拉第杯与转台相连,接弱电流前放。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image027.jpg[/img][font=宋体]([/font]5[font=宋体])控制采集系统[/font][font=宋体]采用高动态数字微纳运动伺服器,电流和位置信息同步采集,采样率为[/font]10K/S[font=宋体],采集时间[/font]10s[font=宋体],纳米扫描台运动一个往复周期。[/font][img=,303,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image029.jpg[/img] [img=,177,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image031.jpg[/img][font=宋体]([/font]6[font=宋体])数据采集[/font][img=,512,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image033.jpg[/img][font=宋体]([/font]7[font=宋体])测试效果[/font][font=宋体]上方横线为硅片挡板边缘,中部方框为二次电子探测器信号。变亮时,电子被硅片挡住,增加了散射电子信号;变暗时,电子束落入法拉第杯,散射电子减小。[/font][img=,554,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image034.gif[/img][b]3.2 [font=黑体]测量结果[/font][/b][font=宋体]平台拥有极高的运动精度,往复运动电流和位置曲线完美重合。利用电流和位移的微分曲线,进行高斯拟合可以直接得到电子束的测量宽度。如图所示:加速电压[/font]5kV[font=宋体],聚光镜值[/font]850[font=宋体],束斑半高宽[/font]32.4nm[img=,348,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image036.jpg[/img][img=,344,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image038.jpg[/img][font=宋体]此外,由于单次采集时间小于[/font]5[font=宋体]秒,还可以监控电子束的稳定性。如下图所示,来回测量过程中电子束发生漂移情况。[/font][img=,359,]file:///C:/Users/AMI/AppData/Local/Temp/msohtmlclip1/01/clip_image040.jpg[/img]

  • 询问电子天平、千分尺

    我们想购买电子天平(220g,0.001g)、千分尺(0-25mm,0.001mm,数显,10个),各位大侠知道哪个品牌质量优而价格低吗。谢谢提供!

  • 关于扫描电子显微镜的放大倍数问题

    关于扫描电子显微镜的放大倍数问题

    在这个问题上,我觉得应该多说一点,因为好多人都没有仔细想过这个问题,尽管十分简单.对于显微镜的放大倍数来讲,最多的定义是:像的尺寸/物的尺寸在SEM中则同样可以这样定义:M=L/l(放大倍数=图片的显示宽度/电子束在样品上的扫描宽度)[img]http://ng1.17img.cn/bbsfiles/images/2006/02/200602051056_13530_1678923_3.jpg[/img]对于其检测方法比较麻烦,现节选一段JJG(教委)010-1996标准:分析型扫描电子显微镜放大倍数误差的测定1 在扫描电镜标称的放大倍数范围内选取常用的5档放大倍数.2 将测定放大倍数的标样安装在样品台上,使其表面垂直于电子光学系统的轴线,并调整到仪器说明书规定的工作距离位置上,将标样上标记线的像移至显像管的中心,聚焦后照相记录.3 用比长仪测量标记线像的间距L(微米),连续测量3次,取算术平均值(微米).4 按公式计算放大倍数M: M=L/l 式中l--标样上标记线的间距.5 按公式计算放大倍数的示值误差P: P=(N-M)/M 式中N--被检扫描电镜放大倍数的标称值其他检测项目还有放大倍数的重复性(在不同加速电压和束斑下) 图像中心与四角边缘处倍率误差测定等等.说明: 标准样品与校正:美国国家标准局(现称国家标准和技术研究院)提供的检定扫描电镜放大倍数的标准样品的最小刻度为一微米,由于视场有限,用这种标样检定5万倍以上的放大倍数有困难,所以,检定5万倍以上的放大倍数需要使用比对性标样.比对性标样可以从具有精细结构的样品中选取,例如:相邻的两条刻线间距小于一微米的物理光栅.将选定的比对性标样和测定扫描电镜放大倍数的标样一起固定在扫描电镜的样品台上.首先将比对性标样调整到标准工作距离的位置上,然后把比对性标样上选定的间距小于一微米的两条标记线平移到显像管荧光屏的中心位置上,将扫描电镜调整到最佳工作状态,细心聚焦后拍摄标记线的照片.用比长仪在照片上测量出比对性标样标记线的放大间距和检定扫描电镜放大倍数标样标记线的放大间距.计算出比对性标样标记线的标定间距,重复10次如果误差不大于百分之三,则表明该样品可以作为比对性标样检定扫描电镜放大倍数.对于现代的SEM来讲,正规的验收标准里面是有放大倍数这一项的,所使用的样品是不同间距的刻线,比如说1/19mm(校低倍用)或是1/2160mm(校高倍用)的标准样品,说一台SEM的放大倍数是不是准确只有通过这些标准样品的校验才能下结论,现代的SEM本身也有利用标样进行自我校准的功能,应该使用标准样品定期校准才能保证其放大倍数是准的,并不是口头说几句就可以弄清的.校验过程本身也是通过标尺量才行,从没有看放大倍数数字的经历.现代的SEM如果软件编得合理的话应该是改变工作距离和图像显示区域大小会引起放大倍数的数字发生变化的(当然有的设备可以做到这点,有的设备目前还无法做到这点),但是图像存好以后则只能是数字的大小发生变化而已,就好象你的照片上显示50000倍,但是你把照片扫描后用更大的纸打印出来以后会发现你得到了一个更大的数字"50000X",正因为如此,电镜行业普遍有一个解决办法,那就是标尺(scale bar),因为尽管数字的数值不会改变而造成原始的图片在离开原来的显示环境以后就没有意义,但是标尺会随着该图片的变大和变小而改变,所以真正需要注意的应该是标尺而不应该是那个放大倍数的数字,不管数字是多少,放大倍数都应该是M=L/l(放大倍数=图片的显示宽度/电子束在样品上的扫描宽度)才对,只有在特定的图片大小(即特定的显示环境)下,放大倍数才能和数字是一致的.离开原始的图片显示环境以后,那个数值应该说是毫无意义的了.

  • 【原创】菜鸟求疑:束流、探针电流、束斑尺寸的区别?

    我是电镜操作的一名菜鸟,用的是日本电子的电镜。最近老是被 束流、探针电流和束斑尺寸 三个概念搞混淆。我有看到文献说:束流是电子束的电子流;探针电流是聚焦电子束中的电流。那在日本电子的电镜里,束流指的是L.C.值吗?拍电镜照片时,调节 束流和束斑 分别对图像会产生什么影响? 但在做能谱时,有人告诉我:日本电子的调 束流就是调束斑(即SS),那是说束流和束斑是一个概念了吗?恳请帮助!谢谢!

  • 电子衍射图谱及菊池线数据解析

    求助各位大神。获取了一个可能的新矿物(化学成分为AgTe3)的电子衍射图谱及菊池线数据,想对比下这个自然矿物是否与人工合成的化合物AgTe3具有一致的晶体结构,如果不一致,能否解析出这个自然矿物的晶体结构。由于是做矿床研究的, 没有这方面的基础,从头学起来实在吃力。有没有哪位老师或专家愿意帮助解析一下数据。由于解析电子衍射数据是一个费事费力的功夫,本人愿意支付一定的劳务费已示谢意。如果您愿意帮助小弟,请您在帖子里给我留言或给我发电子邮件至jianwei@cags.ac.cn,我将具体的数据发予您,小弟在这先谢过了!

  • 【求助】求《光电子光谱学》或《x线光电子分光法》等书

    我现在在读量子半导体专业,由于之前的专业和目前的没有联系,所以从头学起。目前遇到关于XPS的分析方面的困扰,因为没什么基础,所以想寻求这方面的书。现求《光电子光谱学》或《x线光电子分光法》等书的下载,请大虾们帮忙,最好是中文版,不过英文版的也可。在此谢过了。

  • 尺都改成电子的了~~~

    尺都改成电子的了~~~

    买了电子游标卡尺,测量试件就是方便,还不用费眼睛细看,现在化的设备就是好哈。不过这电子卡尺是不是也需要计量部门检定下呢?http://ng1.17img.cn/bbsfiles/images/2015/06/201506261659_551943_1622447_3.jpg

  • 【分享】数显卡尺运用及解决问题

    数显卡尺,是一种测量长度、内外径、深度的量具。数显卡尺具有读数直观、使用方便、功能多样的特点。数显卡尺主要由尺体、传感器、控制运算部分和数字显示部分组成。按照传感器的不同形式划分,目前数显卡尺分为磁栅式数显卡尺和容栅式数显卡尺两大类。 数显卡尺不耐用,用不了几天就“坏”了,这里说的“坏”是因为操作者手上的汗水、油污及切削液等液体沾到卡尺表面上,影响了容栅传感器信号的正常传递。其实尺本身没坏,只是暂时失去了功效!如果发生了这一显示混乱现象,可用无水酒精,取2-3小团棉花,用一小团棉花沾湿无水酒精,轻轻拧干,来回擦拭卡尺的刻度膜后丢掉,再取一小团棉花沾湿无水酒精,轻轻拧一小滴(注意不要滴太多,否则液体会进入电子组件造成其他问题!)在卡尺的刻度膜上,来回拉动卡尺(目的是把与刻度膜紧密接触的显示组件线路板所粘的屏蔽物体也去掉),然后轻轻拧干刚才的棉花后,反复擦拭卡尺的刻度膜即可。通过这个方法基本可以解决数显卡尺数乱的问题。

  • 加速电压与电子束能量的关系

    大家好,最近在研究扫描电镜原理方面的知识,有一点不太理解,还请大家帮忙解答!!!Q:通常情况下,选择高的加速电压,电子束能量高,探针电流大,但现在的电压和电流在用户界面上都是可以独立调节的,即选择高电压的同时,也可以选择小的电流,那这个时候的电流是不随电压变化的,那么问题来了,这个时候的电流是靠什么调节的???是光阑吗还是其他什么?问题引申:通常讲的电子束能量高低,指的是束斑尺寸还是电子束的速度,还是指波长短?或者,三者兼而有之???亦或是其他?

  • 电镜不同束斑尺寸下,光阑对中?

    我现在所用的蔡司电镜(型号:evo ma25),工作单位主要拿来做一些能谱检测,对于图像分辨率要求相对较低,束斑尺寸给的基本为给定束流条件下,束斑尺寸的最大值。但现在放大倍率在1.5kX下图像就基本无法获得较高分辨率。我想调整下电子枪设置,但发现一旦缩小束流尺寸,图像噪音增加严重,而且光阑对中发生明显偏斜,继续缩小光斑都会看不到灯丝像。在此请教下各位前辈,为什么调整束斑大小后,光阑对中会发生偏斜。另外,如果新换灯丝后重新调整对中,应当使用怎样的电子枪设置来获得较为理想光阑对中效果呢。小束流,小尺寸光斑么。还是不同束流条件下要重新调整光阑对中。这种情况下用工作站的软件(调整shift tilt)调整,还是用电镜镜筒上的光阑调节杆来进行调节。本人刚接触电镜操作一周,对于很多使用上的问题理解还不够到位,在此恳请有经验的网友前辈能指点一二。

  • 【讨论】PLC结合光栅电子尺使用的自动化控制

    【讨论】PLC结合光栅电子尺使用的自动化控制

    http://ng1.17img.cn/bbsfiles/images/2012/04/201204270907_363661_2523522_3.jpg光栅尺的工作原理光栅尺是通过摩尔条纹原理,通过光电转换,以数字方式表示线性位移量的高精度位移传感器.光栅尺是由读数头、主尺和接口组成。玻璃光栅上均匀地刻有透光和小透光的线条,栅线为50线对/mm,其光栅栅距为0.02mm,采用四细分后便可得到分辩率为5μm的计数脉冲。一般情况卜,线条数按所测精度刻制,为了判别出运动方向,线条被刻成相位上相差90°的两路。当读数头运动时,接口电路的光电接收器分别产生A相和B相两路相位相差90°的脉冲波.输出信号再经过数显系统细分处理,分辨率是光栅周期除以信号细分数,经过电子信号细分处理分辨率可为5um或1um 光栅尺的适用领域:加工用的设备:车床、铣床、镗床、磨床、钻床、电火花机、线切割等 测量用的仪器:投影机、影像测量仪、工具显微镜等 也可对数控机床上刀具运动的误差起补偿作用 配接PLC,用于各类自动化机构的位移测

  • 关于纳米区域电子衍射(NAED)和纳米束电子衍射的区别?

    这个纠结我很久了!哪位高手给点指点文献中提到的NAED是通过用很小的C2光阑来减小束斑(比如10um),同时保持电子束平行入射,因此可以得到几十纳米区域的锐利的衍射斑。但是我们的FEI电镜C2的最小尺寸都是50um,没法实现那种情形。于是我尝试用纳米束衍射来做。我在Spot Size7, Gun lens3的情形下做纳米衍射,我通过调整C2(Intensity),可以改变衍射斑的直径大小,并且在一定的束斑大小下也可以得到衍射斑而不是衍射盘。我想问的是:这两种情形下得到的锐利的衍射斑有什么区别,因为感觉第一种肯定是平行束入射,第二种却是在会聚束情形下得到的(但也有可能改变C2的过程中能得到近平行的电子束)。

  • 电子束汇聚角

    请教一下大家,透射电镜的会聚角α一般都会有几个档,那么这每一个档都对应一个确定的会聚角值还是对应一定的范围?通过brightness聚光散光会不会改变电子束的会聚角?都觉得α-1到3对应的都只是一个范围,聚光散光也会对会聚角产生影响?不然怎么叫做会聚电子束打菊池花样,平行电子束获得衍射花样呢?

  • 电子数粒仪 自动数粒仪-郑州中谷机械设备有限公司

    电子数粒仪 自动数粒仪-郑州中谷机械设备有限公司

    http://ng1.17img.cn/bbsfiles/images/2016/06/201606280930_598417_1941670_3.jpg 产品简介:电子自动数粒仪(PME型适用于大小粒种子,PME-1型仅适用于小粒种子)详细说明: 一 用途PME型数粒仪可对各种主要粮食作物,如稻、麦、高粱玉米等颗粒进行自动计数,在农科院(所)农业大专院校、种子系统,粮食部门中、考察种子指标,测量千粒重有广泛应用。主要技术性能1、 计数品种:PME型:(1) 尺寸长×宽小于12×4毫米(小颗粒);(2) 尺寸长×宽小于12×10毫米(大颗粒)PME-1型1、 尺寸长×宽小于12×4毫米(小颗粒)2、 计数精度:±4/1000以速度而定。(标准偏差)3、 计数速度:小颗粒大于1000粒/3分钟;大颗粒500粒/3分钟4、 计数容量:1~9999由四位LED数码管直接读数。5、 自校频率:f=1~2HZ f=10~20HZ.6、 预置自停:1~9999当中任意数值,置0000不计数。7、 外接电源220~±20V~50HZ功率小于20瓦,接地良好。8、 仪器尺寸:304×234×180毫米。9、 工作环境:大气压力:750±30毫米汞柱。环境温度0℃~40℃相对湿度:20℃时小于80%连续使用时间:大于四小时。10、仪器功能:电路自校,任意计数,预置自停,抽门与送料自锁。二 仪器外形、结构1、送料旋钮 2、自校旋钮3、数码管 4、电源开关5、复零计数开关 6、预置拔盘7、卸料盘旋钮 8、料盘9、保险丝 10、盛料抽门11、大颗粒出粒口三 仪器工作原理 电磁振动盒使种子逐粒排队送料,落入光电转换槽后形成光电脉动,经放大整形倒相后送入计数电路,以LED数码管显示读数。预置用拔盘开关,当计数到预置数后,停止送料,停止记数。仪器设有自校频率,便于检查计数电路及预置的正确性(1) 电磁振动送料装置:种子放在料盘上,料槽成螺旋形。(2) 在螺旋槽上升的种子,到达落料口落下,通过光电转换区投影到硅光电池上产生电流变化,经脉动放大整形后得到光电计数脉动,送入计数电路计数显示。(3) 计数显示电路采用CC4518(菲利蒲公司HEF4518)双BCD加计数器,并以CC4511(“HEF4511)BCD-7段锁存/译码/驱动器,译码后驱动共负极LED发光数码管显示,四位数的LED输入端串入限流电阻,使笔划亮度均匀。CC4518计数输入端有时钟端(CL),时钟允许端(EN)和复位端“R”,个位数时EN=“1”(高压平)计数脉动由“CL”输入,正跳变触发,后面三位均是CL=“0”(低电平)由EN输入,负跳变触发。(4) 预置自停电路的控制信号由开关二极管,指轮拔盘开关与四输入端的与非门联接,当拔盘预置数与计数数字相符时,继电器吸合,从而切断计数输入,使计数输入端接地,停止送料,LED显示出预置数字自动数粒仪☆电子数粒仪☆自动数粒仪价格是多少自动数粒仪☆电子数粒仪☆自动数粒仪厂家哪个好电话:0371-55862289 传真:0371-61175791 网址:http://www.zzzhonggu.com手机:13513890822 18037122128信箱:zhonggu668@163.com详细资料,敬请登录中谷机械设备公司以下网站: http://www.zzzhonggu.com 郑州中谷机械设备有限公司更多推荐产品自动数粒仪http://www.zzzhonggu.com/1017-1.html谷物选筛http://www.zzzhonggu.com/1014-6.html害虫选筛http://www.zzzhonggu.com/1014-16.html容重器http://www.zzzhonggu.com/1014-2.html电子容重器http://www.zzzhonggu.com/1014-19.html钟鼎式分样器http://www.zzzhonggu.com/1014-11.html不锈钢分样器http://www.zzzhonggu.com/1014-14.html小麦硬度测定仪http://www.zzzhonggu.com/1014-18.html碎米分离器http://www.zzzhonggu.com/1014-20.html精米机http://www.zzzhonggu.com/1014-3.html检验砻谷机http://www.zzzhonggu.com/1014-8.html单管通风机http://www.zzzhonggu.com/1001-2.html多管通风机http://www.zzzhonggu.com/1001-3.html谷物水分测定仪http://www.zzzhonggu.com/1005-2.html快速水分测定仪http://www.zzzhonggu.com/1005-3.html电脑快速水分仪http://www.zzzhonggu.com/1005-6.html粮食水分测定仪http://www.zzzhonggu.com/1005-11.html不锈钢粮食取样器http://www.zzzhonggu.com/1010-1.html粮食扦样器http://www.zzzhonggu.com/1010-5.html散粮车取样器http://www.zzzhonggu.com/1010-7.html油脂酸价测定仪http://www.zzzhonggu.com/1019-16.html罗维朋比色计http://www.zzzhonggu.com/1019-14.html

  • 电子捕获检测器池结构详解

    电子捕获检测器池结构详解

    [align=left][color=black]电子捕获检测器池结构[/color][/align][align=left][color=black]电子捕获检测器池结构要有利于收集电子,而不收集负离子,这是一大原则。如果两者不能明显区分,将出现非线性响应。[/color][/align][align=left][color=black]通常,电子捕获检测器池结构按照放射源、电极位置及形状(电场分布)、气体流路和池的几何形状,可分为三种主要类型:平行板型、同轴圆筒型和位移同轴圆筒型三种,见图(a)、(b)、(c)。[/color][/align][align=left][color=black][img=,426,320]https://ng1.17img.cn/bbsfiles/images/2018/09/201809070854229879_7658_2384346_3.png!w426x320.jpg[/img][img=,420,194]https://ng1.17img.cn/bbsfiles/images/2018/09/201809070854237330_1037_2384346_3.png!w420x194.jpg[/img][img=,515,197]https://ng1.17img.cn/bbsfiles/images/2018/09/201809070854243950_3062_2384346_3.png!w515x197.jpg[/img][/color][/align][align=left][color=black]图 1 三种电子捕获检测器池结构示意图[/color][/align][color=black]1[/color][color=black].平行版型[/color][color=black]为早期使用的一种结构,因池体积太大等弊端,已经基本被淘汰。[/color][color=black]2[/color][color=black].同轴圆筒型[/color][color=black]这是普遍采用的一种结构。与平行板型相比,相同面积的放射源箔,要求从放射源至阳极的距离,应大于β粒子的射程。将其电离,β粒子本身亦变成热电子,产生最大基流。同时又可防止高速的β粒子碰撞至阳阳极时,造成表面侵蚀。但此距离又不能太大。若距离太大,当窄的(约1μs)低压(50V)脉冲加至极阳时,可能池中的电子不能完全被收集,特别是用[sup]63[/sup]Ni源,N[sub]2[/sub]作载气时,很容易出现此问题。而小直径的[sup]3[/sup]H[sub]2[/sub]源,用Ar-CH[sub]4[/sub]作载气时,则不易出现。因[sup]63[/sup]Ni源与[sup]3[/sup]H[sub]2[/sub]源相比,前者的β粒子能量大于后者;N[sub]2[/sub]与Ar-CH[sub]4[/sub]相比,前者使高能电子降低能量变成热电子的能力不如后者。文献已表明:对10mCi的[sup]63[/sup]Ni源,如用Ar-CH[sub]4[/sub]作载气,40V脉冲高度时,<4μs的脉冲宽度还能安全收集池中的所有电子,而用N[sub]2[/sub]载气,脉冲宽度必须大于20μs才能完全收集。通常,接填充柱的同轴型电子捕获检测器,其池体积为2-4mL。[/color][color=black]3[/color][color=black].这是近年发展的一种较新结构。与同轴圆筒型相比,相同面积的放射源箔,池体积可更小。因阳极已从射线的发射区内移出,β射线不大可能与阳极相撞,故其池腔直径可更小。但还要考虑到以下两种情况:①如何尽量减小粒子和放射晾本身相撞;②调整阳极移出的距离,保证在脉冲宽度小时,电子捕获检测器池中的电子亦能完全被收集。7.5mCi[sup]63[/sup]Ni源、池体积为0.3mL的电子捕获检测器,在N[sub]2[/sub]作载气时,-50V脉冲高度、0.64μs的脉冲宽度即可完全收集池中的电子。近年毛细管柱的电子捕获检测器,均是此结构。图(a)、(b)为两种微电子捕获检测器示意图,池腔体积分别为150μL和100μL。[/color][color=black]另外,按负空间电荷理论,岛津GC-17A的“洁净”电子捕获检测器,使柱后流出组分不直接与放射源接触,这样,既可正常响应,又可防止样品对箔的污染。特别是在分析一些粉“脏”的样品,如变压器油或动物组织中的农药时,更为理想,见图(c)。[/color][color=black] [/color]

  • 简述电子天平的分类及选购原理

    天平是称量物体质量的衡器。电子天平具有结构简单、方便实用、称量速度快等特点,目前广泛应用于企业和实验室,用来测定物体的质量电子天平一般按精度分类,可分为以下几类:  (1)1mg以下级别称为电子精密天平  (2)0.1mg称为电子分析天平  (3)0.01mg称为准微量天平  (4)1ug称为微量天平  (5)0.1ug及以上级别称为超微量电子天平具体换算比例如下: 100mg=0.1g= 十分之一 10mg=0.01g= 百分之一 1mg=0.001g= 千分之一 0.1mg=0.0001g= 万分之一 0.01mg=0.00001g= 十万分之一 1μg=0.001mg =0.000001g= 百万分之一 0.1μg=0.0001mg=0.0000001g = 千万分之一  购买天平时,用户需了解几项主要的技术参数:  1.全称量:天平所能称量的最大质量值(满载值),常以“克”(g)为单位表示。  2.感量:使天平指针从平衡位置转到刻度盘一分度所需的最大质量。因此,感量也叫做“分度值”,常以“毫克”(mg)为单位表示。这一数值愈小,天平就愈灵敏。  3.不等臂性:指因横梁两臂(中刀口到左、右刀口的距离)不等所引起的称量误差最大值,常以“毫克”或“分度”为单位。有时,也叫做“偏差量”。  4.变动性:指平衡后的天平,因横梁系统数次起落,而引起指针平衡位置前后不一的最大偏差,常以“毫克”或“分度”为单位。这是一个标志天平稳定性的参数。  5.天平的级别:按我国现行标准,根据天平标称感量与天平全称量的比值,分为10级。  6.游码标尺误差:指游码拨到标尺每一刻线位置所测得的质量,与相应标准砝码的最大质量误差。也叫做“骑码标尺误差”或“骑码误差”。  7.标称值与检定值:各种天平所带的说明书对以上六项技术参数均有标注。这六项技术参数是全面衡量天平计量性能的指标,但不反映天平计量性能的实际情况。因此,称之为“标称值”或“名义值”。激光管工作人员表示,天平计量性能的实际情况要按规定程序检定后,计算出检定值才能得知。新购天平或修理后的天平,其检定值应以不大于标称值为合格(确切地说,应为“达到标称级别”);使用中的天平某些指标(如不等臂性)可稍稍放宽些。电子天平的操作方法简单,初次购买的用户可以参照说明书进行操作,一般不需要专业人员安装调试。

  • 电子束中Boersch效应

    前段时间在考虑电子束束斑大小的问题,看到了Boersch效应,作为电子粒子的一个物理效应,和大家分享一篇中文文献。我个人简单的理解是扫描电镜束流提高会增加束斑的大小,尤其是加速电压比较低的情况下,束斑增大更显著。1954年,Boersch从实验中发现, 电子束中电子的能量分布宽度随电子束电流加大而反常地增宽, 达到几个电子伏, 大大超过了阴极温度对应的麦克斯韦分布的能量分布宽度。这一效应不能用传统的空间电荷理论来解释。继后的理论与实验研究均倾向于认为这与电子束中电荷的离散性有关, 这就是所谓的Boersch效应。

  • 为何突然没有电子束

    今天操作电镜的时候,突然没有像。关闭线圈电源后,荧光屏上没有出现电子束亮点,关闭高压后重新加高压,电子枪显示有束流,但是屏上依然没有出现亮点,也试过调整电子枪偏转,没有效果,请高人指点可能是什么原因。

  • 【讨论】请教关于电子束流大小的测量

    最近有人谈到电子束辐照,我想问一下电子束束流大小是怎样测量的,JEOL的电镜有小屏可以测大小,我是把小屏上测到的值折算到实际电子束辐照的面积上的束流密度,如屏上显示10 pA/cm2,实际辐照面积是100 nm2,那么实际束流密度是1A/cm2,不知道这样算对不对 还有一个奇怪现象是当你会聚电子束时,小屏上显示的束流值先增大,但是当电子束很小并接近到可会聚的最小束斑时,小屏上显示的束流值达到一个最大值后反而减小了,是不是当电子束很小时,小屏测量就不准,或者说用小屏测束流密度本身就不准. 不知大家是怎么测的. 还有在STEM下小束斑的束流密度怎么测.另外飞利普的电镜是怎么测的,我用的CM200没有找到类似于JEOL的显示值,不知是否有人知道

  • 【求助】电子束焊接

    请问有谁做过电子束焊接纳米线?怎么焊接?通入什么样的气氛或者有什么高招,请赐教一下,特别感谢![em0801]

  • 【求助】关于运用EDS的“点”分析时,轰击表面的电子束束斑大小问题

    各位大哥大姐,小弟在做扫描电镜过程中遇到一些问题:1、使用JEOL JSM-6380LA型电镜做EDS,加速电压15 kV,光阑2,spotsize50,WD=10,放大倍数为5000X,利用“点”分析,我想知道电子束刚刚轰击到样品表面时的束斑大小到底有多大?(并不是指电子束轰击到样品表面后,在样品内部散射扩展后形成的斑点大小)。有的人认为轰击以后扩展的范围可能到微米量级,我认为“点”分析时电子束轰击到样品表面的时候束斑大小不可能在微米量级的,应该在100 nm一下吧。2、电子束在EDS“点”分析下这个“点”的束斑大小和SEM正常逐点扫描时的“点”是否是一个概念?3、因为目前纳米材料中会有一些微纳结构形貌,在用EDS分析这些结构过程中(尺寸在300-400 nm左右),若采用“点”分析,那么能否准确轰击到这些结构表面而不发生偏离?虽然EDS分析结果可能会有含有电子束扩展后其它区域的元素特征(学校分析测试中心人员是这样认为的)。实际上上述3个问题归根结底只是一个问题,小弟做论文过程中遇到的这个问题,非常重要,在电镜操作手册(FEI和JEOL)里也找不到任何这方面的解决之道,希望那位高手能够解决一下,小弟在此谢过了!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制