当前位置: 仪器信息网 > 行业主题 > >

必佳放大镜

仪器信息网必佳放大镜专题为您提供2024年最新必佳放大镜价格报价、厂家品牌的相关信息, 包括必佳放大镜参数、型号等,不管是国产,还是进口品牌的必佳放大镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合必佳放大镜相关的耗材配件、试剂标物,还有必佳放大镜相关的最新资讯、资料,以及必佳放大镜相关的解决方案。

必佳放大镜相关的论坛

  • 【原创大赛】排查细管路神器-放大镜篇

    【原创大赛】排查细管路神器-放大镜篇

    相信很多同志们跟我一样,因为仪器一些微小的地方很难自己排查故障原因,今天我给大家带来福音了,放大镜真是好用,尤其是对于我们操作管路较多而且又细的仪器,我们实验室那台skalar连续流动仪管子实在是太多了,而且又很细,一旦出了什么问题,要自己去看看哪里出问题那叫一个难啊,借用步步高的一句广告词“自从有了放大镜,领导再也不用担心我的skalar了,首先来看看我们的skalar,管子多吧。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518015_2913831_3.jpg放大镜也有好多种,放大倍数不一样,价格也不一,我们实验室用的是40倍的,不过也足够了。 http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518014_2913831_3.jpg前段时间仪器老是出问题,感觉管子不干净,但是光凭自己肉眼看又看不见,下面我们来对比一下放大前后的效果图,有了放大镜后明显能看到我们的管路有蓝色的脏东西,然后我们用乙醇给它洗了个澡,最后还真解决了我们的问题。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518011_2913831_3.jpg有时候管路有效破裂也能明显看得到的,下面也是明显的证据。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131014_518022_2913831_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518012_2913831_3.jpg小结这里只是给大家介绍一点经验,我们实验室用的放大器是40倍的,也足够了,如果管路更小可以用100倍的,这东西倒是也不贵,但是真的很好用,很推荐大家使用,而且除了可以用来排查管路,还可以用来排查仪器一些细微的地方,比如ICP-MS的取样锥锥孔是否变形等等。

  • 宏观断口分析用放大镜有么?

    各位行家,不知有没有宏观断口分析用的放大镜系列呢?或者大家在观察宏观断口时都用什么设备呢?呵呵,扫描电镜是买不起滴!大家给点建议吧!

  • ICP-OES放大镜的作用!

    各位前辈/同行,请问ICP的放大镜是如何使用的,而且用它判断谱线的元素可信吗,有时测PB,它显示都不是该元素,而是FE.不知各位同行是否有同样疑问?

  • 【讨论】ICP-MS耗材之截取锥、采样锥,没有放大镜的情况下,如何判断该换了?

    [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]7500CS购买已有两年,使用频次基本是每天都用5小时算起,这样的使用频次,还有清洗频次:一周一次。这样算来清洗很多次了,锥孔大了小了也不清楚,因为没放大镜,那除了用放大镜观察外有没其他的监测手段?目前仪器还正常,担心的是怕锥孔问题,导致连带其他部件调整过度,以致影响其他部件功能。

  • 【这个有趣】智能手机变身350x放大倍率显微镜的方法 只需10美元

    美国科学家找到一种方式,能够将智能手机变成可观察红细胞的高性能显微镜,这种“变身”的费用只有区区10美元。此外,他们还使用日常家庭用品制造分光镜,用于测量光线的不同频率。美国科学家找到一种方式,能够将智能手机变成高性能显微镜,“变身”费用只有区区10美元。按照他们提供的做法,我们只需要一些胶带、一条橡胶带以及一个小玻璃球便能让智能手机变成具有350x放大倍率的显微镜,可以用来观察红细胞。此外,科学家还使用日常家庭用品制造分光镜,用于测量光线的不同频率。研究人员表示,让智能手机变身显微镜不只有趣那么简单,世界上一些偏远地区的患者将极大地受益于这一创造。从理论上说,这种简单的显微镜能够用于拍摄皮肤感染区域的照片,照片可通过邮件方式发送给远在千里之外的医生,帮助他们做出诊断。实验室使用的显微镜通常造价数千美元并且很难带出实验室。从智能手机变身而来的显微镜是迄今为止最为紧凑并且最为低廉的显微镜。这种显微镜由美国加利福尼亚州大学物理学家塞巴斯蒂安·沃什曼-霍格在此前设计的基础上研发。此前的设计更为脆弱并且需要更多零部件。沃什曼-霍格对其进行了简化,他使用橡胶带将一个直径1毫米的玻璃球固定在iPhone摄像头上方。iPhone版放大镜的放大倍率达到350x,由于无法聚焦,所拍摄的照片需要借助电脑软件进行处理。

  • 放大倍数是扫描电子显微镜分析样品的关键吗?

    放大倍数是一个非常简单的概念,但是由于其自身的定义有时会产生混乱。这个博客的目的是澄清这个话题,并探讨其他可以更好地描述一个对象有多大的参数。第一个放大镜可以追溯到希腊时期,阿里斯托芬首先使用其描述了孩子们试图看到小细节的休闲活动。这是第一次“放大”这个词语出现在我们的语言中。随着时代的发展进步,人们在科学探索中对微观和纳米世界的兴趣呈指数级增长,从而需要量化放大倍数。  现代科学对于放大倍率的定义是两次测量之间的比率,这意味着需要两个对象来正确评估该值。第一个对象显然是样品,第二个是它的图片。事实上,虽然样品尺寸不变,但图片可以以任意大小打印。所以请允许我做一些计算:  这意味着如果我打印苹果照片时第一次打印时选择标准打印机的纸张,再次打印时选择用于覆盖建筑物的海报,则两次放大倍数值将发生显着变化。显微镜观察具有更科学严谨的例子:当存储样品的数字图像时,调整图像大小会导致放大倍数不再准确。因此,放大倍率是相对数量,在科学领域并没有实际用途。  科学家使用的是以下几个参数,描述实际成像区域的大小(视野 - 显微镜成像的区域)以及该图像的清晰度(分辨率)。放大公式也相应地改变:放大倍数=图像尺寸/实际样品尺寸。[align=center][img]http://www.gdkjfw.com/images/image/57181528960215.png[/img][/align]  如上,公式仍然是一个模糊的描述,并且没有考虑分辨率。这意味着将相同的图像缩放到较大的屏幕将导致放大倍数也会改变。视野定义为成像区域的大小,该值通常在几毫米(小飞虫)到几微米(小飞虫的的毛发)和几个纳米(外骨骼的分子宏观结构)之间。使用现代仪器,可以对几百皮米范围内的物体进行成像 - 这是原子的平均尺寸。  但是,我如何知道对样品进行成像需要的视野大小?这又是一个棘手的问题,但可以用一个例子很容易地回答。在与你最好的朋友的照片中,通常一个脸孔占据空间的5-10%。这已经足够让您识别图像中的人物。但是,如果你拍照的脸占据整个照片,你可以观察到脸上细小的细节,如头发,皮肤上的斑点和眼睛的颜色。  这意味着,例如,如果您有平均大小为1微米的颗粒,并且您想要对它们进行计数,则每个图像可以有20个颗粒,而不是一次成像一个颗粒来浪费时间。还考虑到颗粒之间的空白,25-30微米的视野对于这样的样品是足够的。另一方面,如果您的兴趣在于颗粒的结构,则需要特写,观察区域必须更接近2-3微米。  台式扫描电子显微镜正变得越来越受欢迎,因为它具有与高端光学显微镜相当的价格同时提供更多的选择,它的分辨率更高,并且可以与其他分析工具的集成来测量诸如表面粗糙度和元素组成等,这使得其成为最通用的[url=www.gdkjfw.com]成像仪器[/url]。

  • 你需要了解的放大电路知识

    放大电路又被称为放大器,是构成其它电子电路的基础电路,是为了能够把微弱的信号放大所形成电路。放大电路按频率可分为低频、中频和调频 按输出信号强弱也可为分电压放大、功率放大等。它是电路中最为复杂多变的电路,因此初学者应该了解和掌握以下知识。  (1)放大电路是一种能量转换器,它不可能创造能量。晶体三极管是用基极电流的微小变化控制集电极电流发生较大的变化,电子管与场效应管是用栅极电压的微小变化控制屏极电流发生较大的变化,因此,场效应管与电子管是电压控制器件,而晶体管是电流控制器件。放大电路不像放大镜一样,直接放大被观看的文字或物体。放大电路将交流信号叠加在直流信号之上,由交流信号的变化,引起直流信号的变化,再通过负载电阻,将直流信号的变化转化为交流信号的变化。放大电路中的晶体三极管就是起这种转换作用,由基极电流微小的变化控制集电极电流较大的变化,相当于放大了基极电流。  元坤智造工场是一家专注于印制线路板/PCB快速打样、双面、多层板大中小批量生产,同时提供BOM报价、SMT焊接和元器件一站式服务的综合性高新技术企业。  (2)在放大器中既有直流成分,又有交流成分,为了分析电路方便,常将直流成分所通过的路径称为直流通路,而将交流信号所通过的路径称为交流通路。因电容具有隔直流通交流的作用,在画直流等效电路时,应将电容器视为开路,其他不变。在分析直流通路时,一定要从电源的正极回到电源的负极,形成一个闭合通路 在画交流等效电路时,电容器应视为短路,直流电源因其两端电压不会变化,无交流压降产生,也视为短路,其他不变。在分析交流通路时,不必每一级重复分析,而是要掌握整个信号从何外来,经过哪些元器件,发生了哪些变化,最终到达何处。  (3)放大电路通常具有静态和动态两种工作状态。静态是指输入信号为零时,直流电源给三极管的各个电极提供一个合适的直流工作电压,使三极管工作在放大区,也就是说三极管放大的外部条件是发射结正偏,集电结反偏。动态是指在放大电路的输入端加上输入信号后,主要分析放大电路对信号的放大能力。  因此在分析放大电路时,先静态后动态,即先分析静态直流通路,看晶体管、电子管、场效应管的工作电压是否正常,在静态工作点正常后,再分析动态交流通路。而交流通路与直流通路是共存于同一电路之中,它们既互相联系,又互相区别。交流信号电压是叠加在直流工作电压之上,而且电路的交流性能又受到 直流工作点的影响和制约。如果直流偏置电压不稳定,或有故障,则交流通路会受到影响而出现故障。  (4)在负反馈电路中出现输出信号幅度增大,失真故障现象的主要原因是,放大电路中负反馈元件损坏,负反馈作用消失,使放大器的增益变大,导致输出信号幅度增大。此时应重点检查电路中的负反馈元件是否出现开路、虚焊、电阻变值等现象。如果输出信号出现失真,说明放大器已工作在非线性区(饱和或截 止状态),应重点测量放大器的工作点电压,査找电路中的电阻是否正常、放大管的参数是否发生变化。

  • 扫描电镜的显示器

    扫描电镜的显示器

    一般的显示器由于需要显示彩色图像,他的屏幕结构是由三色组成的。用放大镜就可以看到,如图。http://ng1.17img.cn/bbsfiles/images/2012/01/201201151913_345839_1609375_3.jpg扫描电镜所显示的图像是黑白图像,他的屏幕结构是怎样的呢?是三色的还是别的什么结构?请大家用放大镜看一看。书上介绍扫描电镜屏幕分辨率就是荧光粉的颗粒度0.1mm,那应该不是三色的。请大家证实一下。

  • 【转帖】光学显微镜原理应用及维修

    一、 光学显微镜的发展历史  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展做出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。  目前全世界最主要的显微镜厂家主要有:蔡司、徕卡、奥林巴斯、尼康。国内厂家主要有:麦克奥迪、江南、重庆光电、奥特光电等。二、 显微镜的基本光学原理(一) 折射和折射率  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二) 透镜的性能  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称”焦点”,通过交点并垂直光轴的平面,称”焦平面”。焦点有两个,在物方空间的焦点,称”物方焦点”,该处的焦平面,称”物方焦平面”;反之,在像方空间的焦点,称”像方焦点”,该处的焦平面,称”像方焦平面”。  光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三) 凸透镜的五种成像规律1. 当物体位于透镜物方二倍焦距以外时,则在像方二倍焦距以内、焦点以外形成缩小的倒立实像;2. 当物体位于透镜物方二倍焦距上时,则在像方二倍焦距上形成同样大小的倒立实像;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在像方二倍焦距以外形成放大的倒立实像;4. 当物体位于透镜物方焦点上时,则像方不能成像;5. 当物体位于透镜物方焦点以内时,则像方也无像的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚像。三、 光学显微镜的成像(几何成像)原理  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’。为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率。  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率 ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节。  在观测视角小于1’的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。(一)放大镜的成像原理  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y’的虚像A’B’。放大镜的放大率Γ=250/f’式中250--明视距离,单位为mmf’—放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 。。。。。。。。。。。。。。 [URL=http://www.microscopeline.com/art.asp?id=252&did=56]...........[/URL]资料来源[URL=http://www.microscopeline.com]显微在线[/URL]

  • 显微镜的保养

    保持光学元件的清洁对于保证好的光学性能来说非常重要,当显微镜不用时,显微镜应当用仪器提供的防尘罩盖住。若光学表面及仪器有灰尘和污物,在擦清表面前应当先用吹气球吹去灰尘或用柔软毛刷去污物。光学表面应当用无绒棉布,镜头纸或用专用的镜头清洁液沾湿的棉花签来清洁。请避免使用过多的溶剂,擦镜纸或棉花签应恰当沾湿溶剂但不要因为使用太多溶剂而渗透到物镜内,造成物镜清晰度下降及物镜损坏。显微镜中目镜物镜的表面镜头最容易受到灰尘和污物及油的粘污,当发现衬度,清晰度降低,雾状发生时,则需要用放大镜仔细检查目镜,物镜前面镜头的状况。低倍物镜有相当大的前组镜片,能用缠在手指上的棉布或棉签及擦镜纸上用乙醇沾湿来擦拭。40X、100X需多加小心地用放大镜仔细检查。高倍镜中为了达到高的平坦度,应用了一个有小曲率半径凹面的前组镜头,在擦拭这组镜头时用带有棉球的牙签或棉花签清洁。擦拭镜头表面要轻。不要过度用力和有刮擦动作,并确信棉签触到镜头的凹面。在清理后用放大镜检查物镜是否损伤,如果必须要去开观察镜筒,小心不要接触到镜筒下面的外露镜头,镜头表面如有手指印会降低成像的清晰度,用清洁物目镜的方法进行擦拭。当显微镜使用100X油镜使用完时,请及时将油镜表面擦拭清楚并检查40X物镜是否沾上油,如有请及时擦清。使显微镜始终保持成像清晰。

  • 关于扫描电镜放大倍数的计算,那个说法对,大家帮忙看看!

    各位大侠,目前计算一个公式,需要用到扫描电镜的放大倍数,我的两个同事有两种说法,大家看看那个对阿:(1)看照片下方的标尺,打印出图片,量出标尺的实际长度,再除以标尺,就是放大倍数;(2)一般来说,标尺的长度是1cm,所以用1cm除以标尺,即是放大倍数。那个对啊?谢谢帮助!

  • 【求助】(已应住)选购显微镜

    单位想买一台显微镜,但自己对这个不懂,主要用于菌落总数检测,问了几个厂家,都推荐倒置显微镜,并且有的说用得上,有的说不需要,我糊涂了[em09511],国标上说需要放大镜或菌落计数器,后者太贵了,不想买,大家推荐一下,比较急。

  • SEM扫描电镜的方法

    SEM扫描电镜的方法要确定的是客户需要做多少个位置,一般一个小时可探测2~3个位置,还有就是样品的尺寸大概有多少,电镜扫描尺寸最好在5cm*5cm之间,样品制备时须适当控制厚度,最好切成薄片。图象的放大范围广,分辨率也比较高。可放大至几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。

  • 显微镜放大倍数的计算方法

    对于我们这些刚刚入行的检测人员来说,操作水平提高得动手练,数据处理就得多动脑子总结,所以今天分享一个常常困扰我们的问题—显微镜的倍数,到底总放大倍数是怎么计算的,所得到的拍摄的照片又是放大了多少倍。===============================================================总放大倍数有两种概念,一种是光学放大倍数,一种是数码放大倍数(只有连接成像设备时才会涉及到数码放大倍数)。 1.光学放大倍数。是指我们从显微镜目镜中观测到物体被放大后的倍数。光学放大倍数的计算方式比较简单,即物镜倍数*目镜倍数。例如:体视显微镜的放大倍数计算,连续变倍体视显微镜的物镜通常是0.7-4.5倍,那在10倍目镜的情况下,这台显微镜的总放大倍数为7-45倍;生物显微镜、金相显微镜的计算则更为简单,一般的物镜配置是4倍、10倍、40倍、100倍,目镜常规配置是10倍,另外还有16倍、20倍等,只要将目镜和物镜的倍数分别相乘就可得到总放大倍数。 2.数码放大倍数。数码放大是指外接设备后,显示到图像上的放大倍数,目前市场上较多的是用三目显微镜,通过CCD设备连接至电脑、监视器或者电视机上进行成像观察,以减轻眼睛的疲劳,同时也便于与他人分享。但是显示到图像上的物体到底是放大了多少倍呢?现向大家推荐两种计算数码放大的方法。 (1)直接对图像进行测量。将测微尺放到显微镜下,然后拿直尺直接测量显示器上测微尺的长度,将显示器上一格的测量结果 /测微尺每格的实际长度(一般在测微尺上都会直接标有每格的长度)=物体被放大的倍数。物体被放大的倍数/当前物镜的倍数=数码放大倍数。通常情况下,会在图像中加比例尺来表示改物体被放大的倍数。 注:如果没有测微尺,可以用直尺代替,同时在计算时可以多测量几格,以减少误差。 (2)通过公式计算实际的放大倍数。 数码放大倍数=物镜倍数**适配器的放大倍数,如果系统放大倍数,还需要乘以系统放大倍数。 注: 1:物镜倍数指的是您现在使用的显微镜的物镜镜头的倍数,如20倍; 2:适配器的放大倍数:指的显微镜与成像设备连接部分的放大倍数,通常为1倍,也有0.35、0.5、0.63倍的; 3:25.4*屏幕尺寸(英寸):这里是把屏幕尺寸换算成毫米计算,1英寸=25.4mm; 4:CCD对角线的长度:指的是CCD的芯片尺寸,常有的是1/3英寸、1/2英寸、2/3英寸的,相对应的长度分别为6mm;8mm;11mm,这个是行业内统一规范的。

  • 【求助】显微镜放大倍数与分辨率

    有两个问题不清楚:1。如果我用10倍目镜和10倍物镜,放大倍数应该是10*10=100倍。那么分辨率是多少呢?2。物镜仍是10倍,接数码相机拍照,那么放大倍数是多少?分辨率又是多少?这问题一直搞不清楚,希望大家能指点迷津,谢谢!

  • 关于扫描电子显微镜的放大倍数问题

    关于扫描电子显微镜的放大倍数问题

    在这个问题上,我觉得应该多说一点,因为好多人都没有仔细想过这个问题,尽管十分简单.对于显微镜的放大倍数来讲,最多的定义是:像的尺寸/物的尺寸在SEM中则同样可以这样定义:M=L/l(放大倍数=图片的显示宽度/电子束在样品上的扫描宽度)[img]http://ng1.17img.cn/bbsfiles/images/2006/02/200602051056_13530_1678923_3.jpg[/img]对于其检测方法比较麻烦,现节选一段JJG(教委)010-1996标准:分析型扫描电子显微镜放大倍数误差的测定1 在扫描电镜标称的放大倍数范围内选取常用的5档放大倍数.2 将测定放大倍数的标样安装在样品台上,使其表面垂直于电子光学系统的轴线,并调整到仪器说明书规定的工作距离位置上,将标样上标记线的像移至显像管的中心,聚焦后照相记录.3 用比长仪测量标记线像的间距L(微米),连续测量3次,取算术平均值(微米).4 按公式计算放大倍数M: M=L/l 式中l--标样上标记线的间距.5 按公式计算放大倍数的示值误差P: P=(N-M)/M 式中N--被检扫描电镜放大倍数的标称值其他检测项目还有放大倍数的重复性(在不同加速电压和束斑下) 图像中心与四角边缘处倍率误差测定等等.说明: 标准样品与校正:美国国家标准局(现称国家标准和技术研究院)提供的检定扫描电镜放大倍数的标准样品的最小刻度为一微米,由于视场有限,用这种标样检定5万倍以上的放大倍数有困难,所以,检定5万倍以上的放大倍数需要使用比对性标样.比对性标样可以从具有精细结构的样品中选取,例如:相邻的两条刻线间距小于一微米的物理光栅.将选定的比对性标样和测定扫描电镜放大倍数的标样一起固定在扫描电镜的样品台上.首先将比对性标样调整到标准工作距离的位置上,然后把比对性标样上选定的间距小于一微米的两条标记线平移到显像管荧光屏的中心位置上,将扫描电镜调整到最佳工作状态,细心聚焦后拍摄标记线的照片.用比长仪在照片上测量出比对性标样标记线的放大间距和检定扫描电镜放大倍数标样标记线的放大间距.计算出比对性标样标记线的标定间距,重复10次如果误差不大于百分之三,则表明该样品可以作为比对性标样检定扫描电镜放大倍数.对于现代的SEM来讲,正规的验收标准里面是有放大倍数这一项的,所使用的样品是不同间距的刻线,比如说1/19mm(校低倍用)或是1/2160mm(校高倍用)的标准样品,说一台SEM的放大倍数是不是准确只有通过这些标准样品的校验才能下结论,现代的SEM本身也有利用标样进行自我校准的功能,应该使用标准样品定期校准才能保证其放大倍数是准的,并不是口头说几句就可以弄清的.校验过程本身也是通过标尺量才行,从没有看放大倍数数字的经历.现代的SEM如果软件编得合理的话应该是改变工作距离和图像显示区域大小会引起放大倍数的数字发生变化的(当然有的设备可以做到这点,有的设备目前还无法做到这点),但是图像存好以后则只能是数字的大小发生变化而已,就好象你的照片上显示50000倍,但是你把照片扫描后用更大的纸打印出来以后会发现你得到了一个更大的数字"50000X",正因为如此,电镜行业普遍有一个解决办法,那就是标尺(scale bar),因为尽管数字的数值不会改变而造成原始的图片在离开原来的显示环境以后就没有意义,但是标尺会随着该图片的变大和变小而改变,所以真正需要注意的应该是标尺而不应该是那个放大倍数的数字,不管数字是多少,放大倍数都应该是M=L/l(放大倍数=图片的显示宽度/电子束在样品上的扫描宽度)才对,只有在特定的图片大小(即特定的显示环境)下,放大倍数才能和数字是一致的.离开原始的图片显示环境以后,那个数值应该说是毫无意义的了.

  • 以太是存在的,一个简单的证实以太存在的实验及理论分析

    以太是存在的,一个简单的证实以太存在的实验及理论分析

    各位:一个简单的实验就可以证实以太的存在。这个实验是如此的简单,每个人都可以做一做。希望大家能验证这个实验,欢迎大家讨论及提出意见。我为此写了一篇论文,题为《关于本人在地表空间做的光线光斑移动实验及理论分析报告(定稿版 2015.3.14)》,已放在预印本系统及网络上,欢迎大家下载查看。我希望大家去下载看看我的论文,论文的理论分析更加精彩,我认为我的理论分析及逻辑推理非常的严谨,无懈可击。大家都知道Sagnac效应,其实迈克尔逊干涉仪和Sagnac是类似的,可以做到Sagnac一样的效果。大家一直在用迈克尔逊干涉仪做实验,讨论迈克尔逊的零结果,但是,如果将迈克尔逊干涉仪放在旋转的转盘边上,就可以观察到像Sagnac一样的干涉条纹。迈克尔逊没有迈出这一步,所以他得不到干涉条纹。这是为什么,请看我的论文。我在论文中提出一个证伪Sagnac效应的方法,用以证伪相对论解释,以及证伪其他解释。本论文投了几家期刊,都无一例外的退稿了。现在还在投稿中,希望能够发表吧。主流已经抛弃了以太,本论文能不能发表还是个未知数。言归正传。我的实验器材:一个激光笔,一个手机充电器,一个真空石英管(长1.5米,真空度0.00045pa,在网上请别人封装的,注意,真空石英管的两端必须要平整,不能有螺纹圈,光线透过不能发散),一个放大镜(放大倍数30倍,如果空间够大,任何倍数都可以),一个空圹空间(我是在家里,客厅到房间长10米),用磁砖做实验器材的底座,用割成三角形的木块托住磁砖(三角形的木块可以调整实验器材的高度),一堵墙。实验如图所示:请注意:V是假设的地球在以太中的运动方向垂直于光线传播方向上的分量。所有装置都是固定不动的。实验过程如下:用手机充电器连接激光笔(将激光笔电路板从外壳拿出来,这是很容易做到的,充电器连接激光笔的电源),使激光笔不断电发光。激光笔放在东边,激光向西穿过真空石英管,穿过放大镜,到达西面的墙上显示光斑。激光笔、真空石英管、放大镜各放在独立的平台上。用胶水粘住各个部件。实验时间为2014年3月10日。在某一个时刻,在墙上画出光斑的位置,经过一段时间之后,发现光斑往南方偏移,偏移非常明显。实验2天后(2014年3月12日),光斑偏移出了墙上,测得到墙边的偏移量为0.41米,实际上应该是0.41+0.15=0.56米。现场图如下:http://ng1.17img.cn/bbsfiles/images/2015/05/201505041419_544648_1916297_3.png经过我的推算,偏移出墙上的光斑最大偏移量为1.022米。光斑的偏移计算公式,请看我的论文,里面有详细的推导过程。我原先怀疑真空石英管的两端封装不平,造成了光线的折率方向有偏移。但不管怎么样,在实验仪器都粘贴固定的情况下,在几个小时内就看到光斑明显的偏移,也决然不是折射问题了。真空石英管对光线的偏移有没有影响呢?我对此又做了一个实验。实验时间在2015年3月14日。我为什么要将激光笔、真空石英管、放大镜各放在独立的平台上?目的就在于此。1、 不放真空管,记录光斑在墙上的位置。2、 放真空管,让光线穿过真空石英管,记录光斑的位置,发现光斑住南偏移了0.23米,这是非常明显的。3、 慢慢移动真空石英管,观察光斑的变化,发现光斑的位置没有改变,说明真空石英管是平的,真空石英管的两端折射对光线没有影响。真空石英管的平台是独立的,安装、拆除、移动真空石英管,对激光笔、放大镜没有任何影响。4、 在2015年3月15日19时20分,光斑往南偏移了0.73米。5、 在2015年3月15日19时24分,拆除真空石英管,光斑往北回缩0.15米。就是说放和不放真空石英管,光斑偏移了0.15米。6、 再次将真空石英管放回原位,1天后,光斑偏移出了墙边。如图所示:在不放真空石英管的情况下,经过几天的观察,同样发现光斑出现明显的偏移。这是因为激光光斑有漂移的结果。激光光斑漂移的原因,我想是不是因为激光笔里面也是真空的?激光笔的长度约0.006米,但我查不到激光笔的封装参数,不知道里面是不是真空,或者是真空度很低。激光光斑漂移的原因也许和真空度有关。用普通光源可以验证这个实验。普通光源没有光斑漂移,在任何时候,光斑就不会移动。我找不到这样的光线又强又小的光源,无法进行验证,希望有条件的人士去做一做。

  • 显微镜该如何选?

    对于中药,特别是饮片的鉴别,很多情况下,需要进行表面的显微观察,例如,观察有没有掺杂加重粉、有没有染色等等。普通的生物显微镜需要进行粉碎或者切片、制片才能进行观察,而粉碎或者切片后又观察不到这些特征;普通的放大镜放大倍数又达不到。该如何选择显微镜进行药材表面的特征的观察呢?金相显微镜如何?还有别的方法么?

  • 关于显微镜的放大倍数及选择方法推荐

    显微镜包括两组透镜——物镜和目镜。显微镜的的放大倍数主要通过物镜来保证,物镜的最高放大倍数可达100倍,目镜的放大倍数可达25倍。物镜的放大倍数可由下式得出:M物=L/F1式中:L——显微镜的光学筒长度(即物镜后焦点与目镜前焦点的距离);F1——物镜焦距。而A′B′再经目镜放大后的放大倍数则可由以下公式计算:M目=D/F2式中:D——人眼明视距离(250mm); F2——目镜焦距。显微镜的总放大倍数应为物镜与目镜放大倍数的乘积,即:M总=M物×M目=250L/F1*F2在使用中如选用另一台显微镜的物镜时,其机械镜筒长度必须相同,这时倍数才有效。否则,显微镜的放大倍数应予以修正,应为:M=M物×M目×C式中:C——为修正系数。修正系数可用物镜测微尺和目镜测微尺度量出来。放大倍数用符号“×”表示,例如物镜的放大倍数为25×,目镜的放大倍数为10×,则显微镜的放大倍数为25×10=250×。放大倍数均分别标注在物镜与目镜的镜筒上。在使用显微镜观察物体时,应根据其组织的粗细情况,选择适当的放大倍数。以细节部分观察得清晰为准,盲目追求过高的放大倍数,会带来许多缺陷。因为放大倍数与透镜的焦距有关,放大倍数越大,焦距必须越小,同时所看到物体的区域也越小。

  • 显微镜放大倍数如何计算

    显微镜放大倍数如何计算

    蔡司NEOPHOT30,哪位老师告知一下放大倍数计算方法,目镜10X,常用物镜12.5,25,关键是显微镜右侧有旋钮链接金相分析软件的部分也有放大的倍数,分别为8,10,12.5,16,20.如果不用目镜用电脑看的话,可以算出放大倍数。可是用目镜看的该怎样计算?比如要500Xhttp://ng1.17img.cn/bbsfiles/images/2016/06/201606301700_598695_3121259_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606301700_598696_3121259_3.jpg

  • 【讨论】这样理解显微镜的放大倍率对吗?

    对于体视显微镜来说,其光学的物镜最多也就是5x,目镜为10x;则人眼通过目镜看到的——总放大倍率=物镜放大×目镜放大=50x然后如果物镜再添个辅助物镜2x,则最大放大100x。对于电脑总的放大倍率来讲,和目镜没有关系,只和物镜和ccd的放大有关:总放大倍数 = 物镜放大倍数 * 数字放大倍数 如果常用的1/2''ccd镜头,其对角线长度为8mm则通过计算机(14''显示器)看到的——总放大倍率=物镜的放大倍数*(电脑屏幕的对角线/ccd或者cmos的靶面尺寸)=5×(14×24.5÷8)=210倍【【【请问大侠:这样计算对吗?也就是说,按照目前的体视显微镜来物镜最大五倍的前提来说,经过摄像头的放大,一般也就是200多倍!囧的是市场上的体视显微镜四五百倍、甚至上千倍是咋计算的呢?谢谢指教】】】】ps 1英寸—靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。   2/3英寸—靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。   1/2英寸—靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。   1/3英寸—靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。   1/4英寸—靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。

  • 显微镜的历史

    随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。

  • LC-MS 要避免那些雷区(一)

    雷区一酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。推荐使用的流动相和添加剂:有机溶剂: 反相:乙腈/甲醇/乙醇/异丙醇/二氯甲烷正相:吐仑/己烷/苯/环己烷/四氯化碳缓冲液: 乙酸铵/甲酸铵酸: 甲酸/乙酸/三氟乙酸(正离子)碱: 氨水不推荐使用/尽量不用的:有机溶剂: 四氢呋喃缓冲液: 磷酸盐/柠檬酸盐/碳酸盐酸: 硫酸/磷酸/盐酸/高氯酸/磺酸碱: 季胺/强碱/三乙胺其他: 清洁剂/表面活性剂/离子对试剂/不挥发的盐雷区二糖苷类的物质在做FAB和esi(+)时,峰往往比峰要强,此为经验,原因只是推测可能和天然产物的提取过程有关;盐类化合物如盐酸盐、硫酸盐在质谱中酸的部分一般不会出现;二羧酸盐(esi负离子模式)除了分子离子峰外,会出现连续掉44的两个峰,为失去羧酸根的离子,这三个峰非常特征,但是会受锥孔电压的影响,调低电压谱图会更漂亮。雷区三胺类物质做esi质谱时要注意进样量要少,因为很容易离子化,不易冲洗干净,会影响后面样品的测定。像三乙胺在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]时不能用于调节流动相pH值。若不慎引入三乙胺,在正离子检测时总会出现很强的102峰(三乙胺的)。雷区四质谱用水一般用娃哈哈纯净水之类的就很好;质谱用甲醇和乙腈,换用了很多品牌,发现Merck的还是稍微好一些;Finnigan用的氮气不一定要用到液氮瓶,用普通的钢瓶气就可以了,可能还省钱些;建议大家买一个好一点的手电筒和一个放大镜,手电筒用来看离子源里面,放大镜看你割的毛细管平整。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制