当前位置: 仪器信息网 > 行业主题 > >

焊缝检验尺

仪器信息网焊缝检验尺专题为您提供2024年最新焊缝检验尺价格报价、厂家品牌的相关信息, 包括焊缝检验尺参数、型号等,不管是国产,还是进口品牌的焊缝检验尺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合焊缝检验尺相关的耗材配件、试剂标物,还有焊缝检验尺相关的最新资讯、资料,以及焊缝检验尺相关的解决方案。

焊缝检验尺相关的论坛

  • 【分享】焊缝组织观察及分析

    [color=#DC143C][size=4]目的:[/size][/color]观察焊缝宏观组织,观察焊缝,热影响区及母材金属的显微组织; 了解焊缝金相检验方法。一般把焊缝组织划分宏观组织和微观组织,因此焊缝接头的金相检验一般也分为宏观分析和显微分析两种。焊接接头的宏观组织可分为三个部分:(1)中心焊缝区;(2)靠近焊缝的热影响区(3)母材金属。(一)焊缝区的重复显微组织 在显微镜下观察,焊缝凝固后的组织主要特征之一是形成柱状晶。其生长有明显的方向性,与散热最快的方向一致,即垂直于熔合线向焊缝中心发展。对于常用的焊接结构钢(低碳钢)从液态向固态的一次结晶形成柱状晶奥氏体,然后进一步冷至室温还要经历二次结晶过程,呈柱状晶的奥氏体在冷却过程中分解为铁素体和珠光体。由于含碳较低,由先共析体素体沿奥氏体晶界析出,把原奥氏体的柱状晶轮廓勾画出来,也称为柱状铁素体。柱状铁素体十分粗大,其间隙中为少量珠光体,往往成魏氏组织形态。若为多层焊接,焊缝二次结晶组织变为细小铁素体加少量珠光体。这是由于后一层焊缝相对前一层焊缝进行加热,使其发生相变再结晶,从而柱状晶消失,形成细小的等轴晶。合金钢二次结晶的组织,则受到合金元素和焊接条件的影响而会出现不同的组织一般焊缝中合金元素较多,淬透性较好或冷却速度加快时出现贝氏体-马氏体组织。焊接接头的显微组织

  • 全焊缝金属拉伸的取样问题

    全焊缝金属拉伸的取样问题

    [size=24px]请教:NB/T 47016中适应于锅炉的全焊缝金属拉伸,取样方向是沿焊缝纵向取样还是横向取样?直径的尺寸怎样选取?[/size]

  • 【原创】第五篇 焊接技术条件、质量检验、工艺评定标准集

    第五篇 焊接技术条件、质量检验、工艺评定标准集汇编者:杭州电焊条有限公司 朱俊骅二零零七年七月本篇是《焊接材料资料汇编》第五篇。本篇主要收集了与焊接有关的技术条件、焊接检验、焊接工艺、焊接评定等方面的标准。本标准集含8个支集,132个标准。本篇主要考虑焊接技术、检验人员使用,销售人员应掌握其中主要检验方法的知识。本篇基本包括了焊接材料产品标准中提及的引用标准(除化学试验)部分;产品标准中引用的化学试验标准,将在以后的篇章中予以汇编。本篇包含的标准目录如下:一、焊接术语、工艺代号、焊缝符号、坡口形式:1、GB 324-88 焊缝符号表示法2、GB 985-88 气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸3、GB 986-88 埋弧焊焊缝坡口的基本形式和尺寸4、GB/T 3375-1994 焊接术语5、GB/T 5185-2005 焊接及相关工艺方法代号6、GB/T 19804-2005 焊接结构的一般尺寸公差和形位公差7、GB/T 16672-1996 焊缝 工作位置 倾角和转角的定义8、GB 5185-85 金属焊接及钎焊方法在图样上的表示代号(已被2005版代替)二、硬度试验国家标准集:GB/T230 金属洛氏硬度试验9、GBT230.1-2004 金属洛氏硬度试验 第1部分:试验方法10、GBT230.2-2002 金属洛氏硬度试验 第2部分:硬度计的检验与校准11、GBT230.3-2002 金属洛氏硬度试验 第3部分:标准硬度块的标定GB/T231-2002 金属布氏硬度试验12、GBT231.1-2002 金属布氏硬度试验 第1部分:试验方法13、GBT231.2-2002 金属布氏硬度试验 第2部分:硬度计的检验与校准14、GBT231.3-2002 金属布氏硬度试验 第3部分:标准硬度块的标定GB/T4340-1999 金属维氏硬度试验15、 GB/T 4340.1-1999 金属维氏硬度试验 第1部分:硬度的试验16、GB/T 4340. 2-1999 金属维氏硬度试验 第2部分:硬度计的检验17、 GB/T 4340. 2-1999 金属维氏硬度试验 第2部分:硬度计的检验GB/T18449-2001 金属努氏硬度试验18、GB/T 18449.1-2001 金属努氏硬度试验 第1部分:试验方法19、 GB/T 18449.2-2001 金属努氏硬度试验 第 2部分:硬度计的检验20、 GB/T 18449.3-2001 金属努氏硬度试验 第3部分:标准硬度块的标定21、GB/T 4341- 2001 金属肖氏硬度试验方法22、GB/T 17394-1998 金属里氏硬度试验方法23、YS/T 471-2004 铜及铜合金韦氏硬度试验方法三、力学性能和扩散氢含量试验24、GB/T 228-2002 金属材料 室温拉伸试验25、GB/T 229-1994 金属夏比缺口冲击试验方法26、GB/T 2649-1989 焊接接头机械性能试验取样方法27、GB/T 2650-1989 焊接接头冲击试验方法28、GB/T 2651-1989 焊接接头拉伸试验方法29、GB/T 2652-1989 焊缝及熔敷金属拉伸试验方法30、GB/T 2653-1989 焊接接头弯曲及压扁试验方法31、GB/T 2654-1989 焊接接头及对焊金属硬度试验方法32、GB/T 3965-1995 熔敷金属中扩散氢测定方法33、GB/T 7314-2005 金属材料 室温压缩试验方法34、GB/T 13239-2006 金属材料 低温拉伸试验方法35、GB/T 11363-89 钎焊接头强度试验方法36、GB/T 16957-1997 复合钢板焊接接头力学性能试验方法37、GB/T 19748-2005 钢材 夏比V型缺口摆锤冲击试验仪器化试验方法38、GBT13450-1992 对接焊接头宽板拉伸试验方法(已废止)39、GBT15747-1995 正面角焊缝接头拉伸试验方法(已废止)40、GBT7032-1986 T型角焊接头弯曲试验方法(已废止)四、力学性能和扩散氢含量试验41、GB 17925-1999 气瓶对接焊缝 X 射线实时成像检测42、GB/T 3323-2005 金属熔化焊焊接接头射线照相43、GB/T 9445-2005 无损检测人员资格鉴定与认证44、GB/T 11345-1989 钢焊缝手工超声波探伤方法和探伤结果分级45、GB/T 12604.1-2005 无损检测 术语 超声检测46、GB/T 12604.2-2005 无损检测 术语 射线照相检测47、GB/T 12604.3-2005 无损检测 术语 渗透检测48、GB /T 1260 4. 4-2005 无 损 检测 术语 声发射检测49、GB/T 12604.5-1990 无损检测 术语 磁粉检测50、GB/T 15749-1995 定量金相手工测定方法51、GB/T 15822.1-2005 无损检测 磁粉检测 第1部分:总则52、GB/T 15822.2-2005 无损检测 磁粉检测 无损检测磁粉检测 第2部分:检测介质53、GB/T 15822.3-2005 无损检测 磁粉检测 第3部分:设备54、GB/T 18256-2000 焊接钢管(埋弧焊除外)用于确认水压密实性的超声波检测方法55、GB/T 19500-2004 X射线光电子能谱分析方法通则56、GB/T 19501-2004 电子背散衍射分析方法通则57、GB/T 19799.1-2005 无损检测 超声检测 1号校准试块58、GB/T 19799. 2-2005 无损检测 超声检测 2号校准试块59、GB/T 19937-2005 无损检测渗透探伤装置 通用技术要求60、GB/T 19938-2005 无损检测 焊缝射线照相和底片观察条件 像质计推荐型式的使用61、GB/T 19943-2005 无损检测 金属材料X和伽玛射线照相检测 基本规则62、JB/T 4930.1-2005 承压设备无损检测 第1部分:通用要求63、JB/T4730.2-2005 承压设备无损检测 第2部分 射线检测64、JB/T 4730.3-2005 承压设备无损检测 第3部分 超声检测65、JB/T 4730.4-2005 承压设备无损检测第4部分 磁粉检测66、JB/T 4730.5-2005 承压设备无损检测 第5部分渗透检测67、JB/T 4730.6-2005 承压设备无损检测 第6部分 涡流检测68、JB/T 8931-1999 堆焊层超声波探伤方法

  • 如何认识磁粉检测在容器检验中的作用

    如何认识磁粉检测在容器检验中的作用

    1问题的提出在实际工作中,我们常听到用户说:“这台容器已经用X射线做过检查了,没发现缺陷,为什么还要做磁粉检测呢?”用户提出这样的问题,源于用户对X射线检测与磁粉检测的特点不了解,片面地认为X射线检测可以代替一切检验手段,只要X射线检验合格了,其它检验方法都可以不用做了,容器肯定是合格的,不会出现危险,其实这种认识是错误的。2X射线的检测范围及优缺点2.1X射线的检测范围X射线是检测内部缺陷的无损检测方法,它在锅炉、压力容器、船体、管道和其它结构的焊缝和铸件方面应用得十分广泛。2.2优点、缺点X射线检测可以显示缺陷的形状、平面位置、性质和大小,底片可以长期保留。对于如气孔、夹渣、缩孔等体积性缺陷,在X射线透照方向有较明显的厚度差,即使很小的缺陷也较容易检查出来。而对于如裂纹那样的面状缺陷,只有与裂纹方向平行的X射线照射时,才能够检查出来,而同裂纹面几乎垂直的射线照射时,就很难查出。这是因为在照射方向几乎没有厚度差的缘故。JB4730-94标准规定了焊缝的透照厚度比K值的大小,环缝的A级和AB级的K值不大于1.1,B级的K值不大于1.06;纵缝的A级和AB级的K值不大于1.03,B级的K值不大于1.01。焊缝透照厚度比为(见图1):K=T′/T式中T—母材厚度T′—射线束斜向透照最大厚度原因是K值与横向裂纹检出角Q有关,Q=cos-1(1/K)。在裂纹开度、裂纹长度和裂纹深度相同的情况下,K值越小,X射线穿过工件时,由横向裂纹引起的衰减越小,照射到胶片上的强度越强。经暗室处理后,胶片的黑度越黑,发现裂纹的可能性越大。反之K值越大发现裂纹的可能性越小。对怀疑是裂纹而又无法断定的缺陷,可以通过改变透照方向的方法,获得最佳的影像,才容易发现缺陷。例如在图2管道检验中,位置1比位置2更容易发现裂纹。http://ng1.17img.cn/bbsfiles/images/2016/02/201602191726_584690_2962446_3.png提交3磁粉检测的范围及优缺点3.1磁粉的检测范围适用于磁性材料的表面和近表面缺陷检测,不适用于非磁性材料和工件内部缺陷的检测。广泛应用于各个工业领域,在铸、锻件的制造过程中、在焊接件、机械零件的加工过程中,特别是在锅炉、压力容器、管道等的定期维修过程中,磁粉检测都是最重要的常用的无损检测手段。3.2优点、缺点磁粉探伤具有操作简便、检查迅速、灵敏度高的优点,根据磁粉聚集的形状、宽窄和位置可判断缺陷的形状、大小和位置,但不能确定缺陷的深度。4检测实例1999年夏天检验某单位在用液化气储罐,按容规要求“丁”字口部位射线检测,其余焊缝做100%磁粉检测。4.1容器基本条件1)设计压力1.6MPa2)材质为16MnR3)公称壁厚为16mm4)容积为40m35)容器类别为Ⅲ类4.2射线检测4.2.1检测准备使用日本理学X光机2505型,电压为180kV,电流为5mA,焦距为600mm,曝光时间为3min。4.2.2检测结果共拍片6张,全部为丁字口部位,底片经手洗后,灵敏度、黑度达到标准规定要求,经评定未发现缺陷。4.3磁粉检测4.3.1检测准备焊缝及两侧母材打磨良好,表面无油污、铁锈等影响检验结果物质存在。采用CXX—E型旋转磁场探伤仪。经A—15/100试块测试灵敏度达到要求。4.3.2检测结果在封头X射线检查过的丁字口焊缝上方100mm处发现两条横向裂纹,长已到焊缝边缘,经打磨焊缝至与母材平齐,裂纹仍未消除,裂纹深最少有3mm。4.3.3复验对发现缺陷部位进行复验,验证缺陷确实存在,不是伪缺陷。5结论从检测实例可以看出,用X射线检测没有发现缺陷,用磁粉检测却发现了表面裂纹。而裂纹等开口性缺陷是一种危害性最大的缺陷,它除降低焊接接头的强度外,还因裂纹的末端呈尖锐的缺口,焊件承载后,引起应力集中,成为结构断裂的起源,在焊接结构中,决不允许有裂纹存在。所以说,无论是X射线检验还是磁粉探伤都有其各自的特点,同时也存在各自的不足,无论单独使用那一种检测方法都是不行的,为了更全面地检验与评价材料和产品的质量性能、安全等级,必须由多种方法组合使用。从这个角度我们就不难理解为什么做完X射线检验合格后又要做磁粉检验了。

  • 【原创大赛】SGS解读:焊缝超声波检测中缺陷定性方法研究

    【原创大赛】SGS解读:焊缝超声波检测中缺陷定性方法研究

    [align=center][b]SGS解读:焊缝超声波检测中缺陷定性方法研究[/b][/align][align=center]作者:牟永田 季伟[/align][b]摘要:[/b]在焊缝超声检测中如何准确区分和判定点状缺陷和线型缺陷、如何判定缺陷的性质对于有效控制焊接质量和提升质量管理水平有着有效的帮助。一旦一个信号被认为是缺陷显示,我们可以通过信号形状、尺寸、动态波形、缺陷在焊缝中的位置来预判缺陷的类型和解释缺陷的性质。[b]关键词:[/b]回波信号;波幅;环绕扫查;旋转扫查[b]前言:[/b]在焊缝A型扫描超声检测执行的诸多标准中,只针对缺陷回波信号幅度做了验收的要求,都没有针对指示长度大小对点状缺陷或线型缺陷做出明确的区分说明。以NB/T47013-2015为例,附录H中回波动态波形对点反射体和各种大平面反射体的波形模式做了简单的说明,但由于缺陷对超声波的反射特性不仅与缺陷的走向、几何形状、超声波传播方向上的厚度、缺陷表面的粗糙度、缺陷的种类和性质等有关,而且与检测人员工作经验和产品的制作工艺过程有关。定性结果的准确性往往受检测人员的主观因素影响,不同检测人员对同一缺陷的评定结果可能会产生较大的偏差。因此,利用波形模式的不同区分点状缺陷和线性缺陷并进行定性很难推广应用。如何准确判断检测过程中的缺陷性质一直是一个难点。诸多的国内外标准中多以反射信号的高低和大小来判定其危害的大小,然而实际经验证明某些线型缺陷的回波信号幅度及时没有超出标准规定的验收极限,其危害却远远大于超出验收标准的点状缺陷。因此,在焊缝超声检测中如何准确区分和判定点状缺陷和线型缺陷、如何判定缺陷的性质对于有效控制焊接质量和提升质量管理水平有着有效的帮助。下面我们就简单介绍一下如何根据反射信号对缺陷做出解释和定性。多个信号经常来自多个小面或多个缺陷,如裂纹、气孔、或夹渣处产生。裂纹的反射信号通常比气孔、夹渣高(尺寸、灵敏度、声程都相同),当探头旋转时,信号将增高或降低。如果探头围绕缺陷旋转,裂纹的信号将降低,气孔或夹渣的信号则可能不变,因为气孔或夹渣是体积型缺陷件。先前提到的缺陷信号位置对于决定缺陷类型很重要,以下是焊缝中常见缺陷的定性方法。[b]1根部缺陷1.1未焊透[/b]来自焊缝两侧的高波幅的角反射信号,旋转扫查时信号迅速减小,显示是在根部的深度,宽度和根部间隙宽度一样,且不重叠。如图I所示:[align=center][img=,596,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021603192123_8351_2883703_3.jpg!w596x137.jpg[/img][/align][align=center]图I[/align][b]1.2根部未熔合[/b]焊缝有缺陷的那侧有高波幅的信号,在旋转扫查时迅速降低,位于构件的底部。(有许多来自焊缝根部焊道的信号也是如此,特别是使用小角度斜探头时,如45°探头)如图II所示:[align=center][img=,596,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021603368043_5929_2883703_3.jpg!w596x137.jpg[/img][/align][align=center]图II[/align]在另一边观察来自根部焊道的信号,在移动探头时观察信号幅度的变化,两边是不同的。未熔合声束的声程略大于正常的底波反射路程。由于垂直定向,根部未熔合的尖端不可能从这边观察到。[b]1.3根部裂纹[/b]不规则的裂纹和方向,通常可以在焊缝两侧看见高波幅的多个端角反射。如果裂纹有垂直高度,在用斜探头扫查缺陷深度时,会看见有移动特征的信号。由于裂纹是不规则的,信号会随着探头的转动或高或低。根部焊趾裂纹位于焊根趾部,中心裂纹则位于焊根中心。如图III所示:[align=center][/align][align=center][img=,690,215]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021604096306_1402_2883703_3.jpg!w690x215.jpg[/img][/align][align=center][img=,394,299]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021604235393_1659_2883703_3.jpg!w394x299.jpg[/img][/align][align=center]图III[/align][b]1.4根部咬边[/b]缺陷信号振幅大小取决于咬边的严重程度,即很可能是相对低的信号,也可能是很高的信号。然而,与咬边回波一起出现的还有来自根部焊道的信号(见图IV)。如果咬边仅是像显示在图中的焊缝一侧的那样,从另一面检测根部区域,很可能通常只能观察到正常的根部焊道的反射。[align=center][img=,617,147]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021604484705_7372_2883703_3.jpg!w617x147.jpg[/img][/align][align=center]图IV[/align][b]1.5过熔透[/b]焊缝两侧根部焊道的信号超过正常的声束路程长度且位置交叉,更斜的探头(如35°或45°)有最好的效果。如果焊缝磨平,0°探头应该有最好的效果。如图V所示:[align=center][img=,617,147]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021605115383_9416_2883703_3.jpg!w617x147.jpg[/img][/align][align=center]图V[/align][b]1.6根部凹陷[/b]焊缝两侧的信号幅度低,绘制声束路径,发现其小于板材厚度,信号无交叉,这与过熔透的情况恰好相反。[b]2焊缝区的缺陷2.1坡口未熔合[/b]在全跨距“a”位置和半跨距“c”位置得到高波幅信号,来自“b”位置和“d”位置(当探头声束不垂直于缺陷,更低的波幅信号将从“a”和“c”位置出现)则得到低波幅信号或无信号(取决于缺陷的方向)。横向扫查测量缺陷长度的尺寸是,波幅应保持不变。旋转或者环绕扫查时,波高迅速降低。层间未熔合(位于焊道之间)的反射信号与上述相似,可能在焊缝中的任何地方,当探头声束与缺陷的主平面垂直时,反射波最强。如图VI所示:[align=center][img=,690,228]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021606024193_2555_2883703_3.jpg!w690x228.jpg[/img][/align][align=center]图VI[/align][b]2.2夹渣[/b]由于是体积型缺陷,可以从所有能检查的位置和方向检测到。信号包含多个次波和一个粗糙的波峰。移动探头(当后沿升高时,信号的前沿下降,反之亦然)时信号明显滚动。理论上可以被任何斜探头检测到。如图VII所示:[align=center][/align][align=center][img=,617,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021606360293_7967_2883703_3.jpg!w617x137.jpg[/img][/align][align=center]图VII[/align][b]2.3簇状气孔或大量的小的夹杂[/b]由于也是体积型缺陷,要从所有能检测的位置和方向检测。由于占有较宽的时机线上的多个信号的衰减,所以信号很低。环绕扫查时信号不变。如图VIII所示:[align=center][img=,617,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021607355763_4632_2883703_3.jpg!w617x137.jpg[/img][/align][align=center]图VIII[/align][b]2.4裂纹[/b]裂纹可以出现在焊趾、热影响区或焊缝中心线上,也可能出现在根部。来自这些位置的裂纹信号与根部的一样(见前述根部裂纹的解释)。裂纹的方向对信号的幅度和宽度有影响。如果裂纹的平面垂直于声束,那么会出现一个高而窄的信号,可以看见一组信号。如果裂纹的平面与声束有一个夹角,那么会出现一个低的波幅,也可以看见一组信号(形状与群孔很相似)。旋转扫查时信号会忽高忽低,环绕扫查时信号将消失。虽然许许多多的无损检测前辈们经过不断的努力,总结出了许多有价值的经验,并做了大量的解剖试验来验证,但是在实际检测中超声检测的定性仍然存在相当大的困难。这主要是由于缺陷对超声波的反射取决于缺陷的取向、形状、相对声波传播方向的长度和厚度、缺陷表面粗糙度、缺陷内含物以及缺陷的种类和性质等等。在超声检测时所获取的声波信号是一种综合响应。根据动态波形判定缺陷性质只是一种通用的方法,有时还要具体分析焊缝的工艺流程或是借助其他检测方法辅助判断。[b]参考文献:[/b]【1】:国防科技工业无损检测人员资格鉴定与认证培训教材,编审委员会编。超声检测。北京:机械工业出版社,2005.【2】:NDT全国特种设备无损检测人员资格考核统编教材,中国特种设备检验协会组织编写。超声检测。北京:中国劳动社会保障出版社,2008。【3】:美国无损检测学会。美国无损检测手册(超声卷)。世界图书出版公司,1996。【4】:中华人民共和国能源行业标准,全国锅炉压力容器标准化技术委员会主编。承压设备无损检测。北京:新华出版社,2015。

  • 【第一届网络原创作品】管板焊接宏观金相检验的操作介绍

    【第一届网络原创作品】管板焊接宏观金相检验的操作介绍

    [color=#DC143C][size=4][font=黑体][center]管板焊接宏观金相检验的操作介绍[/center][/font][/size][/color][size=4][font=黑体][center]lylsg555[/center][/font][/size][color=#DC143C][size=4][font=黑体]主题词:管板、试件加工、宏观检验。[/font][/size][/color]1.概述:管板焊主要应用在换热器设备制造中的焊接,它是将换热管的端部与管板焊在一起来进行固定。换热器设备在施焊前,都要做焊接工艺评定试件来对其焊接条件、工艺、焊后焊缝质量进行评定,焊缝的宏观金相检验也作为其中的一个标准项目来进行焊接质量的验收。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092155_123188_1622447_3.jpg[/img] (换热器设备)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092200_123189_1622447_3.jpg[/img](换热管的端部与管板焊接示意图)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092204_123190_1622447_3.jpg[/img](管板焊接试板【部分】)2.宏观金相检验:2.1.1 试件的加工由于换热管的尺寸为Φ19×2、 Φ25×2.5、 Φ38×3等,一般禁止采用热切割加工,应采用锯床,铣床等来进行切割,切割速度不宜过快,尤其对不锈钢管板试件应更为小心,防止“打刀”现象。如果有条件能采用线割的,效果更佳。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092214_123192_1622447_3.jpg[/img](锯床切割试件)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092215_123193_1622447_3.jpg[/img](锯床切下来的试件)管板试件应按照检验的标准进行切割分块其中切割2个不相邻的2个管子,留4块,分别检验8个焊接观察面。图中的标号就是所需检验的观察面。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092244_123195_1622447_3.jpg[/img](试件分布图)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092248_123196_1622447_3.jpg[/img](切割好的试件【部分】)2.1.2 试件的磨制和抛光试件经过粗加工后,要对焊接检验的观察面进行磨制和抛光,首先用180#金相水砂纸进行磨光,要求观察面的粗磨痕必须磨掉。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092253_123197_1622447_3.jpg[/img](180#水砂纸磨制)接下来可以分别用280#和400#金相砂纸进行细磨,磨面仍要求出去上道磨制的磨痕。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092259_123198_1622447_3.jpg[/img](280#磨制)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092300_123199_1622447_3.jpg[/img](400#磨制)磨制好后,用水进行清洗,此时基本上可以进行宏观检验了,但为了保证最佳的观察效果,还可以稍微地下抛光,抛光材料可以用水,三氧化二铬或金刚石研磨膏进行抛光。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092306_123200_1622447_3.jpg[/img](加水抛光)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092307_123201_1622447_3.jpg[/img](加三氧化二铬抛光)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092307_123202_1622447_3.jpg[/img](加金刚石研磨膏抛光)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092308_123203_1622447_3.jpg[/img](抛光过程)由于试件主要是宏观检验,所以抛光时间不用很长,一般看见检验面光亮即可,然后用流水清洗干净,也可以用点脱脂棉进行擦洗。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812100745_123213_1622447_3.jpg[/img](抛光好的试件【部分】)2.1.3 腐蚀抛光好的试件清洗干净后,要进行腐蚀,腐蚀主要是将焊缝部分显露出来,以此来观察焊缝中的缺陷。在管板的宏观分析中,腐蚀剂用4%---6%的硝酸酒精溶液即可,方便、简单、快捷。腐蚀时可用擦拭法和侵蚀法,一般擦拭法在腐蚀过程中看见试件表面显现出焊缝就算可以了;侵蚀法是将试件面侵入腐蚀剂中,时间约为30秒,随后取出即可。这2种方法都操作可行,容易掌握。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812100754_123216_1622447_3.jpg[/img](管板试件的侵蚀法)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812100824_123221_1622447_3.jpg[/img](腐蚀好的试件【部分】)2.1.4 结果评定试件腐蚀好后,进行流水冲洗,然后再用酒精清洗,晾干(或用吹风机吹干)然后进行观察焊缝表面。采用10倍放大镜进行观察,如果缺陷很明显的话,肉眼也级别可以发现。根据标准的技术要求,焊缝处应无裂纹,未焊透等缺陷,如果有此缺陷应判为不合格品,需要重新施焊。如果焊缝处发现气孔,夹渣等现象,应进行重新取样,进行检验。试件属于焊接工艺评定试件,按照规定需进行保存,检验完后,可进行处理(我们是涂薄薄一层清漆)然后写明试件名称,时间等条件后装袋保存。 [size=4][font=黑体][center] 【完】[/center][/font][/size]

  • 全焊缝拉伸圆形试棒尺寸相关问题

    全焊缝拉伸试验,断后伸长率都不合格,腐蚀后发现试样上留有母材,这样的试样不合格,结果也是无效的对吗?8毫米的板,双面焊,做的直径8的试样,圆形试样最小直径是3毫米,是吗?6毫米的是不是只能做3毫米直径的试样呢

  • 机器视觉焊缝检测方案

    机器视觉焊缝检测方案

    [color=#3e3e3e]对于很多管状产品,产品在生产过程中需要将原材料加工、焊接、拼接以形成管状,工艺上对焊缝、拼接缝的处理至关重要,因此,对产品焊缝、拼接缝规格的检测就必不可少,而这种检测靠人工是无法高效精准完成的。[/color][color=#3e3e3e]通过机器视觉检测管状端面特征,可以精确分析端面焊缝大小情况,进而对产品进行分拣处理:[/color][color=#3e3e3e][img=,645,488]http://ng1.17img.cn/bbsfiles/images/2018/03/201803301825452583_1508_3199866_3.jpg!w645x488.jpg[/img][img=,645,488]http://ng1.17img.cn/bbsfiles/images/2018/03/201803301825441703_4165_3199866_3.jpg!w645x488.jpg[/img][img=,690,363]http://ng1.17img.cn/bbsfiles/images/2018/03/201803301825447483_348_3199866_3.jpg!w690x363.jpg[/img][img=,690,362]http://ng1.17img.cn/bbsfiles/images/2018/03/201803301825455453_5114_3199866_3.jpg!w690x362.jpg[/img][/color][color=#3e3e3e][/color][color=#3e3e3e]系统结构:[/color][color=#3e3e3e][img=,585,574]http://ng1.17img.cn/bbsfiles/images/2018/03/201803301826476143_9848_3199866_3.png!w585x574.jpg[/img][/color][color=#3e3e3e][/color][color=#3e3e3e]设备介绍及案例视频请关注:[/color][color=#3e3e3e][img=,430,430]http://ng1.17img.cn/bbsfiles/images/2018/03/201803301827231643_710_3199866_3.jpg!w430x430.jpg[/img][/color]

  • 【原创大赛】焊接接头力学性能试验焊缝余高的处理方法-中船重工725所

    [align=center][b]焊接接头力学性能试验焊缝余高的处理方法[/b][/align][align=center]中国船舶重工集团公司第七二五研究所 试验测试与计量技术研究中心 张先锋[/align][align=center][b] [/b][/align][align=left] 焊接是金属材料高效率的结合方式,中国船舶重工集团公司第七二五研究所长期从事船舶材料焊接技术研究和焊接产品研发。在焊接工艺评定中对加工的力学性能试样是否要去除焊缝的余高,在不同的技术规范或者试验标准中有着不同的规定,对于检测人员来说,需要对此有一个清晰的认识,了解去除焊缝余高与否对测试结果有着显著的影响。[b](1)拉伸试样是否去除余高[/b] GB/T2651规定“超出试样表面的焊缝金属应通过机加工除去。除非另有要求,对于有熔透焊道的整管试样应保留管内焊缝”,这表明,此标准是倾向于去除焊缝余高的,对于需要进行整管拉伸的焊管来说,由于去除内部焊缝余高的难度较大,可以不对内部焊缝余高进行处理,但表面焊缝余高要通过适当的方式去除。而API 5L中则规定“焊缝余高是否去除由制造厂决定”,这就把问题抛给了制造厂,但在附录C中,针对补焊工艺评定,却又作出了“试样两面的焊缝余高应去除,抗拉强度应至少等于相应钢级钢管规定的最小抗拉强度”的规定,又要求对焊缝余高进行去除。NB/T47014对拉伸试样也做出了“试样的焊缝余高应以机械方法去除,使之与母材齐平”的规定。《中国船级社材料与焊接规范》中对对接接头拉伸试样焊缝余高的规定为“焊缝上下表面应锉平、磨光、或机加工至与母材表面齐平”。对于焊接工艺试验件来说,是否去除余高,对试验结果、断裂位置及评判结果的准确性、统一性是有影响的。若不去除余高,焊缝的断面尺寸势必大于母材,即使焊缝强度低于母材,也增加了试验件断在母材上的几率。还有少数情况,如果试验件断在了焊缝上,由于焊缝的断面尺寸不规则,无法进行准确的计算,是按照母材的截面积进行计算,还是重新取样进行试验?这些问题标准中都没有做出明确的规定,在实际操作中,容易引起纠纷。 针对以上问题,我们在进行焊接工艺评定前应首先明确是对结构强度进行评价,还是要对材料性能进行评价,如果是前者,可以不去除焊缝余高,否则,必须去除余高,减小其对测试结果的干扰与误判。对于结果的评判存在以下几种情况: a)拉伸试样去除了焊缝余高,试样整个平行段的尺寸一致,母材与焊缝的截面尺寸不存在差异,试验结束后,若试样的断裂位置在焊缝上(也包含断在热影响区的情况),则其值为接头的实际抗拉强度值;若断裂位置在母材上,说明焊缝的强度要高于母材,焊接接头的安全性能要优于母材。需要强调的是,无论试样断在焊缝,还是母材上,试验检测人员都有义务在报告中进行对断裂位置进行标注,便于工程技术人员准确、合理的对焊接工艺进行评定。 b)对于不去除焊缝余高的拉伸试样,则存在母材与焊缝截面积不一样的情况,若试样断在了母材上,则按照试样能够承受的最大载荷除以母材的截面积来计算试验件的抗拉强度,需要明白的是,试样虽然断在了母材上,但焊缝的抗拉应力不一定高于母材,焊缝截面尺寸的加大起到了对局部静强度补充的作用,只是其能够抵抗断裂的载荷高于母材,而非应力;而对于断在焊缝上的试样,目前的普遍做法是直接判定为不合格。[b](2)弯曲试样是否去除余高[/b] 对于弯曲试样焊缝余高的要求,GB/T 2651规定“除非相关标准和/或协议另有要求,超出试样表面的焊缝金属一般应通过机加工方法除去”,而NB/T47014则规定“试样的焊缝余高应采用机械方法去除,面弯、背弯试样的拉伸表面应加工齐平,试样受拉伸表面不得有划痕和损伤”,《中国船级社材料与焊接规范》的规定为“焊缝上下表面应锉平、磨光、或机加工至与母材表面齐平”,几个标准均要求对焊缝余高进行去除。需要注意的是,在去除焊缝余高的过程中,可以使用铣床、刨床等机加工手段,但都不应该留下横向刀痕,以免在弯曲的过程中成为试样断裂的起裂源。[/align][align=center]更多信息,可联系我们交流[url=http://www.725tes.com/]点击打开链接[/url][/align]

  • 再次请教一个焊缝组织

    再次请教一个焊缝组织

    焊缝是压力容器钢锻件采用埋弧焊工艺得到,下图为焊缝的打底焊焊缝组织,已热处理。我能区别出来的只有上贝氏体,与焊缝中的组织。主要想知道的是HAZ中的组织。不甚感激http://ng1.17img.cn/bbsfiles/images/2013/06/201306241040_447258_2746239_3.jpg

  • 【原创大赛】SGS材料说:超声波对金属焊缝缺陷性质的判定

    【原创大赛】SGS材料说:超声波对金属焊缝缺陷性质的判定

    [align=center][b]SGS材料说:超声波对金属焊缝缺陷性质的判定[/b][/align][align=center]徐顺序[/align][align=left][b]摘要[/b][/align][align=left]20年前,超声波检测仪器主要是以模拟仪器为主,由于当时的技术、个人能力和仪器性能的局限性,超声波检测方法几乎无法判定缺陷性质,时至今日,随着科学技术的发展和人员能力专业水平的不断提高,已越来越重视研究用超声波检测技术判定缺陷性质,完全可以通过缺陷的信号形状、信号的变化、探头的扫查方式、焊接方法和焊接接头的类型等信息综合分析判定缺陷性质,在此与各位共享通过超声波检测如何判定碳钢焊缝中的缺陷性质。[/align][align=left][b]关键字[/b]: 超声检测、焊缝、缺陷性质、判定[/align][align=left][b]1. 引言[/b][/align]焊接质量关系到产品使用寿命、企业信誉和人民的生命财产安全,焊接质量主要取决于焊接过程是否产生缺陷,使焊接金属不连续,从而影响产品使用寿命。根据目前世界无损检测技术的发展,金属焊缝内部的缺陷主要通过射线检测和超声波检测,20年前,超声波检测仪器主要是以模拟仪器为主,由于当时的技术、个人能力和仪器性能的局限性,使用模拟超声波仪器判定金属材料内部缺陷性质,结果及不可靠和准确,受此影响,我国的超声波无损检测标准中规定:超声波无法判定缺陷性质。只能通过射线检测才能正确判定焊缝缺陷性质的种类,由于射线检测对人体的辐射比较大,考虑到人身安全,世界各个国家或地区对射线检测的安全越来越重视,检测时需要设立隔离区,从而影响产品的制造进度和人员健康,而且检测速度相对很慢,人员投入也多,导致射线检测的成本很高,所以国内外相关行业专家通过几十年的研究,超声波仪器的性能发生了非常大的变化,从之前的模拟信号变为了数字信号,从单通道变成了多通道,从不能存储信号和数据变成了具有内存的设备,体积和重量相对而言缩小了好几倍,时至今日,在国外,好多标准都已规定了超声波如何判定缺陷性质,在此通过超声波检测研究如何判定金属焊缝中的缺陷性质,因缺陷性质直接影响到产品质量和使用寿命,缺陷性质是影响产品质量的一个重要因素,比如:国内外标准对规定,裂纹类缺陷不论多长、不论位置在何处都被判为不合格。[b]2.超声波判定缺陷性质条件[/b]首先超声波仪器和探头的性能必须符合相关标准要求,主要包括超声信号的垂直线性、水平线性、探头分辨率、探头声束偏离、脉冲频率、声束宽度等。同时超声波检测人员的个人能力也是一个重要因素,人员必须持有超声波焊缝检测的2级及以上证书,并了解基本的焊接信息,包括母材材质、焊接坡口种类、焊接方法、以及基本的焊接知识和材质的焊接特性。[b]3.金属焊缝中缺陷形成的原因[/b]国内外标准中对焊缝中的缺陷性质分类有如下几种方式:(1)从缺陷的形状分为圆形缺陷和线性缺陷;(2)从缺陷的三维尺寸分为面状缺陷和体积型缺陷;(3)从缺陷产生原因分为气孔、夹渣、未熔合、未焊透、裂纹、过熔透和咬边。通常按照缺陷性质进行分类,各种缺陷的形成原因各不一样,气孔主要是因为焊接材料含有水分和坡口内含有锈蚀或水分造成的;夹渣是由于焊接前坡口清洁不良或焊接过程中的氧化皮未清洁干净,或焊接参数不正确或根部未清理,导致熔池内的夹渣无法流出造成的;未熔合是由于焊接能量过低或母材未预热导致的;未焊透是由于焊接能量过小或钝边过大或坡口间隙过小造成的;裂纹是由于焊接应力过大或未正确消除应力产生的,过熔透是热输入量过高、或根部间隙过大造成的,咬边是热输入量过大导致的。[b]4.缺陷性质的判定[/b]在此主要讨论如何根据从不同缺陷及其不同方向反射回来的信号形状判定缺陷的性质,主要根据缺陷位置、方向、信号形状和扫查方式来判定。[b]气孔[/b]气孔属于体积型缺陷,有时候是单个的,有时候是密集状的,在超声波的显示屏上,该缺陷的信号宽度比较长,斜探头沿着气孔的周围进行环绕扫查,则随着扫查位置的发生变化,此类缺陷信号的高度和位置基本不变,说明信号的高度与扫查的位置是无关的,可以从气孔周围360度方向都可以检测发现此缺陷,由于气孔一般是圆形的,当超声波到达气孔时会产生散射衰减,根据反射原理,只有少量的超声波信号才能返回探头,并被接收探头接收,所以气孔类的缺陷信号高度比较低,如图1所示。[align=center][img=,552,198]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271429158417_9800_2883703_3.jpg!w552x198.jpg[/img][/align][align=left][b]未焊透[/b][/align][align=left]不论是哪种类型的坡口,此类缺陷产生于焊接接头的根部,有一定宽度和高度,从焊缝两侧进行超声波斜探头扫查,在显示屏的同一位置出现高度基本相同的信号,同时底波消失,尽管水平距离基本一致,但此时在两个位置(如图2中的1和2位置)扫查时探头距离焊缝中心线都有一定的距离,信号水平位置不重叠,探头沿着焊缝长度方向进行扫查时信号高度不变(除探头位于缺陷端头部位),如果探头做旋转扫查或环绕扫查,则信号高度会迅速下降,判定此类信号的最大困难在于信号的位置几乎靠近底波位置,通常把缺陷信号误认为底波信号,所以当仪器的水平线性存在误差、探头的角度测量有误差时,会容易发生误判。如果焊接接头形式是T型接头,则从翼板背面用直探头(一般用双晶直探头)扫查,则容易发现此类缺陷。[/align][align=center][img=,593,185]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271432096177_7473_2883703_3.jpg!w593x185.jpg[/img][/align][align=left][b]根部未融合[/b][/align][align=left]不论是单V型还是V型坡口的根部未熔合,从有缺陷一侧的焊缝侧进行斜探头一次波扫查,发现此类缺陷的信号高度比较高,形状比较尖锐,同时此侧的底波信号比较低,探头做旋转扫查时,缺陷信号的高度下降的比较快,探头沿着焊缝长度方向做平行扫查时,缺陷信号的高度几乎无任何变化,从焊缝另一侧扫查,往往无法发现缺陷信号,底波信号的高度比在缺陷侧扫查时高,如图3所示。如果是X型坡口或K型坡口,则可以采用串列式扫查,则更容易发现此类缺陷。[/align][align=center][img=,585,164]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271433237387_8819_2883703_3.jpg!w585x164.jpg[/img][/align][align=left][b]坡口未融合[/b][/align][align=center]坡口面出现的未熔合类缺陷,用斜探头检测时需要考虑坡口的角度,比如60度的V型坡口,根据三角函数关系和反射原理,需要采用60度的斜探头扫查,当从焊缝的缺陷侧进行一次波扫查时,无法发现缺陷信号,二次波扫查时缺陷信号高度比较高,信号的水平位置也正好在坡口位置,如果从焊缝另一侧进行一次波扫查,同样可以发现此类信号,也比较容易发现,从两侧扫超时缺陷信号的水平位置和深度位置都在焊缝的同一位置,如图4所示。沿着焊缝长度方向扫查缺陷时,信号高度基本一致,当斜探头做旋转或者环绕扫查时,波高迅速降低。[/align][align=center][img=,363,159]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271434366787_4268_2883703_3.jpg!w363x159.jpg[/img][/align][align=left][b]层间未熔合[/b][/align][align=left]所谓的层间未熔合是指相邻两层焊道之间形成的焊缝金属之间的未熔合,此类缺陷往往与母材表面平行,根据坡口未熔合类缺陷检测原理分析一样,选择探头时首先必须选择尽可能与缺陷垂直角度的斜探头,所以尽可能选择角度较大的探头,比如70度斜探头,此类缺陷的检测信号基本与其它未熔合类缺陷检测的信号变化一致,但从焊缝两侧扫查时信号高度基本一致。[/align][align=left][b]根部裂纹[/b][/align][align=left]根部裂纹的形状和方向不规则,从焊缝侧进行一次波扫查时缺陷的信号比较高,另一侧的信号相对较低,由于裂纹的形状通常是锯齿状的,所以缺陷信号有多个高度不一的波峰,探头做旋转扫查时信号波峰此起彼伏,沿着焊缝方向扫查也是一样,信号的波峰随着探头的移动不时变化,如图5所示。[/align][align=center][img=,573,176]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271435373257_2654_2883703_3.jpg!w573x176.jpg[/img][/align][align=left][b]坡口裂纹[/b][/align][align=left]坡口裂纹的探头选择和扫查方式与坡口未熔合一致,往往也只能从裂纹侧才能发现此类信号,但是裂纹的形状与根部裂纹的相同。[/align][align=left][b]焊缝中心裂纹[/b][/align][align=left]焊缝中心裂纹可以从焊缝两侧都能发现,通常采用大角度探头比较容易发现,可以用一次波或二次波进行扫查,从两侧扫查的高度基本一致,信号位置和深度也相同,其它特征是裂纹类缺陷的共性,也可以通过串列式方式扫查。[/align][align=left][b]焊址裂纹[/b][/align][align=left]焊址裂纹出现在焊缝焊址处,往往从焊缝表面可以通过肉眼看见,或借助磁粉检测和渗透检测的方式容易发现,如果焊址裂纹有一定深度,也可以通过超声波检测到,通常是由于探头前沿长度原因,妨碍一次波扫查,所以往往用二次波扫查比较容易发现。[/align][align=left][b]根部咬边[/b][/align][align=left]根部咬边通常用外观检测方法容易发现,但有时候单面坡口焊缝,也就是属于单面焊接双面成型的焊缝,此类焊缝的根部由于结构件形状和几何形状的原因,人员无法接近,不能用直接或间接的目视检测方法检测,需要采用超声检测的方法,此类信号往往采用一次波检测就可以发现缺陷,只能从缺陷侧发现此类信号,缺陷信号出现在底波信号前面,缺陷信号振幅大小取决于咬边的严重程度,即很可能是相对低的信号,也可能是高的信号。然而,与咬边回波一起出现的还有来自根部焊道的信号(见图6)。如果咬边仅是想显示在图中的焊缝一侧那样,从另一面检测根部区域,很可能通常只能观察到正常的根部焊道的反射。[/align][align=center][img=,574,160]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271436510448_7727_2883703_3.jpg!w574x160.jpg[/img][/align][align=left][b]过熔透[/b][/align][align=left]过熔透是出现在单面焊缝的根部,是由于间隙过大或热输入量过大造成的,属于外观缺陷,由于受工件或产品的几何形状和结构尺寸限制,无法接近,则可以直接用直探头检测,容易发现缺陷,否则需要借助斜探头扫查,采用较小角度的探头比较好,可以从焊缝两侧发现此类信号,但信号的水平位置出现在扫查面的另一侧,也就是来自两侧的缺陷信号的水平位置不在同一位置,信号深度位置大于母材厚度,同时底波消失,如图7所示。[/align][align=center][img=,578,191]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271437405558_3661_2883703_3.jpg!w578x191.jpg[/img][/align][align=left][b]根部内凹[/b][/align][align=left]扫查方式类似于过熔透的缺陷检测,也可以从焊缝两侧通过一次波扫查到此类缺陷信号,来自两侧的信号高度基本一致,比较低,但深度位置小于母材厚度,同时底波消失,信号的水平位置出现在扫查侧,如图8所示。[/align][align=center][img=,567,172]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271438335168_6202_2883703_3.jpg!w567x172.jpg[/img][/align][align=left][b]夹渣[/b][/align][align=left]夹渣是体积形缺陷,可以从所有能检测的位置和方向都能检测到。信号包含多个波峰,信号形状比较钝,菠萝装,旋转探头时,当信号的后沿升高时,信号的的前沿下降,反之亦然,可以采用一次波或二次波检测,探头做环绕扫查,也可以发现缺陷信号,图9所示。[/align][align=center][img=,440,147]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271439203928_8127_2883703_3.jpg!w440x147.jpg[/img][/align][align=left][b]5.结论[/b][/align][align=left]综上所述,判定缺陷性质的基本原则是:首先需要根据相关标准、程序文件、焊缝特性、产品结构尺寸和个人经验选择好探头的种类,包括探头角度、晶片尺寸、频率,其次,尽可能采用声束方向与缺陷方向基本垂直的方式扫查,缺陷信号必须最高时才能判定缺陷位置和性质,每个缺陷的信号都不一样,需要仔细研究,不断总结经验,超声检测人员通过近一年的研究和实践,完全可以判定各种类型焊缝中的缺陷性质。[/align][align=left][b]参考文献:[/b][/align][align=left]《美国无损检测手册-超声篇》:2010;[/align][align=left] ISO23279:2010-Non-destructive testing of welds —Ultrasonic testing —Characterization of indications in welds[/align][align=left][/align]

  • 【分享】JB/T 6062-2007 无损检测 焊缝渗透检测

    JB/T 6062-2007 无损检测 焊缝渗透检测2007-08-01发布,2008-01-01实施。实施之日起代替JB/T 6062-1992。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=88778]JB/T 6062-2007 无损检测 焊缝渗透检测[/url]

  • 国内金相检验标准目录

    一.钢材 (1) 低倍检验 1 GB/T 226-1991 钢的低倍组织及缺陷酸蚀检验法 2 GB/T 1979-2001 结构钢低倍组织缺陷评级图 3 GB/T 4236-1984 钢的硫印检验方法 4 GB/T 1814-1979 钢材断口检验法 5 GB/T 2971-1982 碳素钢和低合金钢断口检验方法 6 YB/T 731-19870 塔型车削发纹检验法 7 YB/T 4002-1992 连铸钢方坯低倍组织缺陷评级图 8 YB/T 4003-1991 连铸钢板坯缺陷硫印评级图 9 YB/T 4061-1991 铁路机车、车轴用车轴(含硫印缺陷评级图) 10 CB/T 3380-1991 船用钢材焊接接头宏观组织缺陷酸蚀试验法 (2) 基础标准 1 GB/T/T13298-91 金属显微组织检验方法 2 GB/T224-1987 钢的脱碳层深度测定法 3 GB/T10561-1988 钢中非金属夹杂物显微评定方法 4 GB/T 6394-2002 金属平均晶粒度测定方法 5 GB/T/T13299-1991 钢的显微组织(游离渗碳体、带状组织及魏氏组织)评定方法 6 GB/T/T13302-1991 钢中石黑碳显微评定方法 7 GB/T4335-1984 低碳钢冷轧薄板铁素体晶粒度测定法 8 JB/T/T5074-1991 低、中碳钢球化体评级 9 ZBJ36016-1990 中碳钢与中碳合金结构钢马氏体等级 10 DL/T 652-1998 金相复型技术工艺导则 (3) 不锈钢 1 GB/T6401-86 铁素体奥氏体型双相不锈钢α-相面积含量金相测定法 2 GB/T1223-75 不锈耐酸钢晶间腐蚀倾向试验方法 3 GB/T1954-80 铬镍奥氏体不锈钢焊缝铁素体含量测量方法 4 GB/T/T13305-91 奥氏体不锈钢中α-相面积含量金相测定法 (4) 铸钢 1 GB/T8493-87 一般工程用铸造碳钢金相 2 TB/T/T2451-93 铸钢中非金属夹杂物金相检验 3 TB/T/T2450-93 ZG230-450铸钢金相检验 4 GB/T/T13925-92 高锰钢铸件金相 5 GB/T5680-85 高锰钢铸件技术条件(含金相组织检验) 6 YB/T/T036.4-92 冶金设备制造通用技术条件高锰钢铸件(高锰钢金相组织检验) 7 JB/T/GQ0614-88 熔模铸钢ZG310-570正火组织金相检验 (5) 化学热处理及感应淬火 1 GB/T11354-89 钢铁零件 渗氮层深度测定和金相组织检验 2 GB/T9450-88 钢件渗碳淬火有效硬化层深度的测定和校核 3 QCn29018-91 汽车碳氮共渗齿轮金相检验 4 JB/T4154-85 25MnTiBXt钢碳氮共渗齿轮金相检验标准 5 NJ251-81 20MnTiBRe钢渗碳齿轮金相组织检验 6 ZB/T04001-88 汽车渗碳齿轮金相检验 7 TB/T/T2254-91 机车牵引用渗碳淬硬齿轮金相检验 8 JB/T/T6141.1-92 重载齿轮渗碳层球化处理后金相检验 9 JB/T/T6141.3-92 重载齿轮渗碳金相检验 10 JB/T/T6141.4-92 重载齿轮渗碳表面碳含量金相判别法 11 GB/T5617-85 钢的感应淬火或火焰淬火有效硬化层深度的测定 12 GB/T9451-88 钢件薄表面总硬化层深度或有效硬化层深度的测定 13 ZB/J36009-88 钢件感应淬火金相检验 14 ZB/J36010-88 珠光体球墨铸铁零件感应淬火金相检验 15 NJ304-83 渗碳齿轮感应加热淬火金相检验 16 JB/T2641-79 汽车感应淬火零件金相检验 17 CB/T3385-91 钢铁零件渗氮层深度测定方法 (6) 轴承钢 1.YJZ84[font=

  • 【原创大赛】镁焊接焊缝区的物相分析

    【原创大赛】镁焊接焊缝区的物相分析

    对焊缝区进行X射线衍射分析,其结果如图3.4所示。可见焊缝区存在α-Mg和β-Mg17Al12两种衍射峰,其中后者衍射峰较弱,只出现了一个衍射峰。这是因为AZ31B镁合金中铝元素含量较少,相应生成的Mg17Al12化合物较少,导致Mg17Al12衍射峰不明显。从由Mg-Al二元相图分析可知,当铝含量小于1.5%时不会结晶出化合物相Mg17Al12。但在焊接过程中,Mg元素蒸发烧损,Al元素含量相对增多,再加上冷却速度快,呈现非平衡凝固,即使有少量的铝元素也会结晶出Mg17Al12。http://ng1.17img.cn/bbsfiles/images/2012/11/201211070903_401972_2105598_3.jpg 从中可以看出,AZ31B/LY12对接焊焊缝断口的主要成分为Mg固溶体、Al固溶体和金属间化合物Al3Mg2。Mg固溶体含量较多,Al固溶体和金属间化合物Al3Mg2含量相对较少。镁铝异种金属焊接的最大难点就是控制金属间化合物的产生,可通过引入合适的中间层来阻止镁铝的直接接触。

  • 【第二届网络原创作品大奖赛】铬镍奥氏体不锈钢焊缝铁素体含量测量的三种方法之比较

    【第二届网络原创作品大奖赛】铬镍奥氏体不锈钢焊缝铁素体含量测量的三种方法之比较

    [color=#DC143C][size=4][center]铬镍奥氏体不锈钢焊缝铁素体含量测量的三种方法之比较[/center][/size][/color] [center]Lylsg555[/center]一.简述:在石油化工方面所使用的压力容器及容器配件,多是不锈钢焊接或不锈钢复层、堆焊制成。这样焊接裂纹,耐腐蚀性和熔敷金属的脆化性就影响着产品使用性能和寿命。通常情况下,装载不同介质的不锈钢容器的焊接要求控制不同的铁素体含量。如从焊接性的来说,一般要求铁素体大于5%,从抗腐蚀性能来说,一般介质中铁素体含量在8%为适宜,另外从机械性能的角度来说,特别在高温下工作的焊缝,以小于5%为宜,否则将产生不锈钢内部组织的脆化,致使产品的出现焊缝开裂等问题。由此可见,在不锈钢焊接生产和科研中,均需准确地控制和测量焊缝或熔敷金属的铁素体含量,以保证产品的合格。现有的测量方法有三种形式,即金相、仪器和查图法。二.测量铁素体的三种方法及比较: 1.金相测量法: 金相测量法是将焊接部位通过取样,磨制、抛光、腐蚀后在显微镜下进行观察。根据GB/T1954-2008的规定,焊缝金属必须是从产品所带供检验用的试板至少取6个金相试样,取样的尺寸、部位见图1[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907312341_162643_1622447_3.jpg[/img]试样观测面按常规金相进行研磨和抛光,机械抛光要求不存在金属表面紊乱层的光洁镜面为合格,电解抛光则以得到无任何磨痕和不破坏铁素体的完整性为准。抛光完成后,用化学法或电解侵蚀法来显示其铁素体,最后在显微镜下进行测量测量的方法有2种:割线法和图谱比较法见图2。一般以割线测量法为准,图谱比较法属半定量分析,只能给出铁素体含量的大概范围。[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907312342_162644_1622447_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907312343_162645_1622447_3.jpg[/img]金相法可通过显微镜直观地观察到铁素体的分布,其含量。但在制样方面要求严格,尤其是在试样的抛制过程,要花费很长的时间,反复操作,才可以达到良好的观测效果,在试样的电解、侵蚀过程要把握好时间,温度和电流的影响,否则观测效果不好。

  • 国内金相检验标准

    国内金相检验标准一.钢材 **************** (1) 低倍检验 GB/T 226-1991 钢的低倍组织及缺陷酸蚀检验法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 4236-1984 钢的硫印检验方法 GB/T 1814-1979 钢材断口检验法 YB/T 153-1999 优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图 TB/T 3031-2002 铁路用辗钢整体车轮径向全截面低倍组织缺陷的评定 CB/T 3380-1991 船用钢材焊接接头宏观组织缺陷酸蚀试验法 **************** (2) 基础标准 GB/T 224-2008 钢的脱碳层深度测定法 GB/T 6394-2002 金属平均晶粒度测定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定 标准评级图显微检验法 GB/T 13298-1991 金属显微组织检验方法 GB/T 13299-1991 钢的显微组织评定方法 GB/T 13302-1991 钢中石黑碳显微评定方法 GB/T 4335-1984 低碳钢冷轧薄板铁素体晶粒度测定法 JB/T 5074-2007 低、中碳钢球化体评级 JB-T 9211-2008 中碳钢与中碳合金结构钢马氏体等级 DL/T 652-1998 金相复型技术工艺导则 GB/T 15749-2008 定量金相测定方法 GB/T 18876.1-2002 应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法 第1部分:钢和其他金属中夹杂物或第二相组织含量的图像分析与体视学测定 GB/T 18876.2-2006 应用自动图像分析测定钢和其它金属中金相组织、夹杂物含量和级别的标准试验方法 第2部分:钢中夹杂物级别的图像分析与体视学测定 GB/T 18876.3-2008 应用自动图像分析测定钢和其它金属中金相组织、夹杂物含量和级别的标准试验方法 第3部分 钢中碳化物级别的图像分析与体视学测定 **************** (3) 不锈钢 1 GB/T 6401-1986 铁素体奥氏体型双相不锈钢α-相面积含量金相测定法 2 GB/T 1954-1980 铬镍奥氏体不锈钢焊缝铁素体含量测量方法 3 GB/T 13305-1991 奥氏体不锈钢中α-相面积含量金相测定法 4 CB/T 1209-1992 0Cr17Ni4Cu4Nb(17-4PH)+马氏体沉淀硬化不锈钢金相检验 **************** (4) 铸钢 1 GB/T 8493-1987 一般工程用铸造碳钢金相 2 TB/T 2451-1993 铸钢中非金属夹杂物金相检验 3 TB/T 2450-1993 ZG230-450铸钢金相检验 4 GB/T 13925-1992 高锰钢铸件金相 5 YB/T 036.4-1992 冶金设备制造通用技术条件高锰钢铸件(高锰钢金相组织检验) 6 JB/T/GQ0614-1988 熔模铸钢ZG310-570正火组织金相检验 **************** (5) 化学热处理及感应淬火 1 GB/T 11354-2005 钢铁零件 渗氮层深度测定和金相组织检验 2 GB/T 9450-2005 钢件渗碳淬火硬化层深度的测定和校核 3 JB/T 7710-1995 薄层碳氮共渗或薄层渗碳钢件显微组织检测 4 QCn 29018-1991 汽车碳氮共渗齿轮金相检验 5 QC-T 262-1999 汽车渗碳齿轮金相检验 6 TB/T 2254-1991 机车牵引用渗碳淬硬齿轮金相检验 7 JB/T 6141.1-1992 重载齿轮 渗碳层球化处理后金相检验 8 JB/T 6141.2-1992 重载齿轮 渗碳质量检验 9 JB/T 6141.3-1992 重载齿轮 渗碳金相检验 10 JB/T 6141.4-1992 重载齿轮 渗碳表面碳含量金相判别法 11 GB/T 5617-2005 钢的感应淬火或火焰淬火有效硬化层深度的测定 12 GB/T 9451-2005 钢件薄表面总硬化层深度或有效硬化层深度的测定 13 JB/T 9204-1999 钢件感应淬火金相检验 14 JB/T 9205-1999 珠光体球墨铸铁零件感应淬火金相检验 15 NJ 305-1983 渗碳齿轮感应加热淬火金相检验 16 QC/T 502-1999 汽车感应淬火零件金相检验 17 CB/T3385-1991 钢铁零件渗氮层深度测定方法 **************** (6) 轴承钢 1. GB/T 18254-2002 高碳铬轴承钢 2. GB/T 3086-1982 高碳铬不锈轴承钢技术条件 3 JB/T 1255-2001 高碳铬轴承钢滚动轴承零件热处理技术条件 4 JB/T 1460-1992 高碳铬不锈钢滚动轴承零件热处理技术条件 5 JB/T 2850-1992 Cr4Mo4V高温轴承钢滚动轴承零件热处理技术条件 6 JB/T 6366-1992 55SiMoVA钢滚动轴承零件热处理技术条件 7 ZB/J 36001-1986 滚动轴承零件渗碳热处理质量标准 **************** (7) 工具钢 1 GB/T 1298-1986 碳素工具钢 2 GB/T 1299-2000 合金工具钢 3 GB/T 14979-1994 钢的共晶碳化物不均匀度评定法 4 GB/T 4462-1984 高速工具钢大块碳化物评级图 5 GB/T 9943-1988 高速工具钢棒技术条件 6 ZB/J 36003-1987 工具热处理金相检验标准 **************** (8) 零部件专用标准 1 GB/T13320-1991 钢质模锻件金相组织评级图及评定方法 2 ZB/J18004-1989 传动用精密滚子链和套筒链零件金相检验 3 ZB/J26001-1988 60Si2Mn钢螺旋弹簧金相检验 4 ZB/J94007-1988 柴油机喷嘴偶件、喷油泵柱塞偶件、喷油泵出油阀偶件金相检验 5 JB/T 3782-1984 汽车钢板弹簧金相检验标准 6 JB/T 8837-2000 内燃机连杆螺栓金相检验 7 NJ326-1984 内燃机活塞销金相检验标准 8 JB/T6720-1993 内燃机排气门金相检验标准 9 JB/T/NQ180-1988 内燃机气门座金相检验 10 JB/T/GQ1050-1984 45、40Cr钢淬火马氏体金相检验 11 JB/T/GQ1148-1989 机床用40Cr钢调质组织金相检验 12

  • 【求助】焊缝断口上的空洞,是气孔吗?

    【求助】焊缝断口上的空洞,是气孔吗?

    [img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701131817_38909_1854957_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701131817_38910_1854957_3.jpg[/img]如题,在观察沿焊缝开裂的断口时,发现的空洞,不知道是气孔还是其它什么缺陷,请高手指教!!!

  • 【分享】JB/T10559-2006起重机械无损检测 钢焊缝超声检测

    [em0903]我在网上找了半天,给需要的朋友吧 JB/T10559-2006 起重机械无损检测 钢焊缝超声检测 单行本完整清晰扫描版 起重机械方面的专门标准[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=128942]JB/T10559-2006起重机械无损检测 钢焊缝超声检测[/url]

  • 求助Q460D的焊缝组织

    求助Q460D的焊缝组织

    Q460D,板厚120mm多道次焊,在焊缝中有如图组织,不知是马氏体还是魏氏组织,打显微硬度为260HV0.5,别的焊缝处也是250左右。100Xhttp://ng1.17img.cn/bbsfiles/images/2011/12/201112191526_339425_2023037_3.jpg500Xhttp://ng1.17img.cn/bbsfiles/images/2011/12/201112191527_339426_2023037_3.jpg

  • 【资料】金相检验总标准目录

    金相检验总标准目录一.钢铁(1) 低倍检验 1 GB/T226-1991 钢的低倍组织及缺陷酸蚀检验法 2 GB/T1979-2001 结构钢低倍组织缺陷评级图 3 GB/T 4236-1984 钢的硫印检验方法 4 GB/T 1814-1979 钢材断口检验法 5 GB/T 2971-1982 碳素钢和低合金钢断口检验方法 6 YB/T 731-19870 塔型车削发纹检验法 7 YB/T 4002-1992 连铸钢方坯低倍组织缺陷评级图 8 YB/T 4003-1991 连铸钢板坯缺陷硫印评级图 9 YB/T 4061-1991 铁路机车、车轴用车轴(含硫印缺陷评级图) 10 YB/T 153-1999 优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图11 TB/T 3031-2002 铁路用辗钢整体车轮径向全截面低倍组织缺陷的评定12 CB/T 3380-1991 船用钢材焊接接头宏观组织缺陷酸蚀试验法13 HB/Z 210-1991 涡喷型发动机涡轮内、外轴锻件低倍组织标准14 QJ 2541-1993 不锈钢棒低倍锭型偏析检验方法(2) 基础标准 1 GB/T13298-1991 金属显微组织检验方法 2 GB/T224-1987 钢的脱碳层深度测定法 3 GB/T10561-2005 钢中非金属夹杂物显微评定方法 4 GB/T 6394-2002 金属平均晶粒度测定方法 5 GB/T/T13299-1991 钢的显微组织(游离渗碳体、带状组织及魏氏组织)评定方法 6 GB/T/T13302-1991 钢中石黑碳显微评定方法 7 GB/T4335-1984 低碳钢冷轧薄板铁素体晶粒度测定法 8 JB/T/T5074-1991 低、中碳钢球化体评级 9 ZBJ36016-1990 中碳钢与中碳合金结构钢马氏体等级10 DL/T 652-1998 金相复型技术工艺导则 (3) 不锈钢 1 GB/T6401-1986 铁素体奥氏体型双相不锈钢α-相面积含量金相测定法 2 GB/T1223-1975 不锈耐酸钢晶间腐蚀倾向试验方法 3 GB/T1954-1980 铬镍奥氏体不锈钢焊缝铁素体含量测量方法 4 GB/T/T13305-1991 奥氏体不锈钢中α-相面积含量金相测定法 (4) 铸钢 1 GB/T8493-1987 一般工程用铸造碳钢金相 2 TB/T/T2451-1993 铸钢中非金属夹杂物金相检验 3 TB/T/T2450-1993 ZG230-450铸钢金相检验 4 GB/T/T13925-1992 高锰钢铸件金相 5 GB/T5680-1985 高锰钢铸件技术条件(含金相组织检验) 6 YB/T/T036.4-1992 冶金设备制造通用技术条件高锰钢铸件(高锰钢金相组织检验) 7 JB/T/GQ0614-1988 熔模铸钢ZG310-570正火组织金相检验 (5) 化学热处理及感应淬火 1 GB/T11354-2005 钢铁零件 渗氮层深度测定和金相组织检验 2 GB/T9450-1988 钢件渗碳淬火有效硬化层深度的测定和校核 3 QCn29018-1991 汽车碳氮共渗齿轮金相检验 4 JB/T4154-1985 25MnTiBXt钢碳氮共渗齿轮金相检验标准 5 NJ251-1981 20MnTiBRe钢渗碳齿轮金相组织检验 6 ZB/T04001-1988 汽车渗碳齿轮金相检验 7 TB/T/T2254-1991 机车牵引用渗碳淬硬齿轮金相检验 8 JB/T/T6141.1-1992 重载齿轮渗碳层球化处理后金相检验 9 JB/T/T6141.3-1992 重载齿轮渗碳金相检验 10 JB/T/T6141.4-1992 重载齿轮渗碳表面碳含量金相判别法 11 GB/T5617-1985 钢的感应淬火或火焰淬火有效硬化层深度的测定 12 GB/T9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定 13 ZB/J36009-1988 钢件感应淬火金相检验 14 ZB/J36010-1988 珠光体球墨铸铁零件感应淬火金相检验 15 NJ304-1983 渗碳齿轮感应加热淬火金相检验 16 JB/T2641-1979 汽车感应淬火零件金相检验 17 CB/T3385-1991 钢铁零件渗氮层深度测定方法 (6) 轴承钢 1. YJZ84 高碳铬轴承钢(含酸浸低倍组织、非金属夹杂物、显微孔隙、退火组织、碳化物不均匀性、碳化物带状、碳化物液析评级图) 2. GB/T9-68 铬轴承钢技术条件(含低倍缺陷、非金属夹杂物、退火组织、碳化物网状、碳化物液析评级图) 3 GB/T3086-82 高碳铬不锈轴承钢技术条件(含酸浸低倍组织、火组织、共晶碳化物不均匀度、非金属夹杂物、微孔隙评级图) 4 YB/T688-76 高温轴承钢Cr4Mo4V技术条件(含碳化物不均匀度评级图) 5 JB/T1255-91 高碳铬轴承钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、碳化物网状、断口评级图) 6 ZB/J36001-86 滚动轴承零件渗碳热处理质量标准(含粗大碳化物、渗碳表面层淬 回火组织、心部组织、网状碳化物评级图) 7 JB/T1460-92 高碳铬不锈钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、断口评级图) 8 JB/T2850-92 Cr4Mo4V高温轴承钢滚动轴承零件热处理技术条件(含淬火组织、淬回火组织评级图) 9 JB/T/T6366-92 55SiMoVA钢滚动轴承零件热处理技术条件(含退火组织、淬回火组织、渗碳淬回火组织评级图) (7) 工具钢 1 GB/T1298-77 碳素工具钢技术条件(含珠光体组织、网状碳化物评级图) 2 GB/T1299-85 合金工具钢技术条件(含珠光体组织、网状碳化物、共晶碳化物不均匀) 3 YB/T12-77 高速工具钢技术条件(含低倍碳化物剥落、共晶碳化物不均匀度评级图) 4 ZB/J36003-87 工具热处理金相检验标准 5 GB/T4462-84 高速工具钢大块碳化物评级图 (8) 零部件专用标准 1 GB/T/T13320-91 钢质模锻件金相组织评级图及评定方法 2 ZB/J18004-89 传动用精密滚子链和套筒链零件金相检验 3 ZB/J26001-88 60Si2Mn钢螺旋弹簧金相检验 4 ZB/J94007-88 柴油机喷嘴偶件、喷油泵柱塞偶件、喷油泵出油阀偶件金相检验 5 JB/T3782-84 汽车钢板弹簧金相检验标准 6 NJ309-83 内燃机连杆螺柱金相检验标准 7 NJ326-84 内燃机活塞销金相检验标准 8 JB/T/T6720-93 内燃机排气门金相检验标准 9 JB/T/NQ180-88 内燃机气门座金相检验 10 JB/T/GQ1050-84 45、40Cr钢淬火马氏体金相检验 11 JB/T/GQ1148-89 机床用40Cr钢调质组织金相检验 12 JB/T/GQ• T1150-89 机床用38CrMoAl钢验收技术条件及调质后金相检验 13 JB/T/GQ• T1151-89 机床用45钢调质组织金相检验 14 NJ396-86 低淬透性含钛优质碳素结构钢齿轮金相检验 15 JB/T/T5664-91 重载齿轮失效判据 16 CJ/T 31-1999 液化石油气钢瓶金相组织评定

  • 【分享】焊缝及熔敷金属的拉伸

    【分享】焊缝及熔敷金属的拉伸

    试样应从试件的焊缝及熔敷金属上纵向截取:http://ng1.17img.cn/bbsfiles/images/2011/06/201106211103_300710_1622447_3.jpg试样的平行长度全部由焊缝组成http://ng1.17img.cn/bbsfiles/images/2011/06/201106211105_300711_1622447_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制