当前位置: 仪器信息网 > 行业主题 > >

电子手提秤

仪器信息网电子手提秤专题为您提供2024年最新电子手提秤价格报价、厂家品牌的相关信息, 包括电子手提秤参数、型号等,不管是国产,还是进口品牌的电子手提秤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子手提秤相关的耗材配件、试剂标物,还有电子手提秤相关的最新资讯、资料,以及电子手提秤相关的解决方案。

电子手提秤相关的资讯

  • 手提袋疲劳强度试验机的测试原理与应用
    手提袋疲劳强度试验机的测试原理与应用在当今快节奏的消费社会中,手提袋作为日常购物、物流运输及品牌宣传的重要载体,其耐用性与安全性直接关系到消费者的使用体验与品牌形象。特别是塑料手提袋、背心袋等广泛应用的提袋类型,其承受重量与抗疲劳性能更是成为了衡量产品质量的关键指标。为此,手提袋疲劳强度试验机应运而生,以其独特的测试原理与广泛的应用领域,成为了质检单位及手提袋生产厂家不可或缺的质量检测工具。重要性解析手提袋在使用过程中需承受不同重量物品的提携,若疲劳强度不足,易在多次使用后发生断裂,不仅影响使用便捷性,更可能因突然断裂导致物品散落,造成安全隐患。手提袋疲劳强度试验机通过模拟真实使用场景,提前发现潜在问题,确保产品在市场流通中的安全性。对于生产厂家而言,利用手提袋疲劳强度试验机进行严格的疲劳测试,能够精准评估产品的耐用性,从而指导生产工艺的改进与优化。测试原理与应用三泉中石的手提袋疲劳强度试验机SPL-30,核心在于其独特的测试原理:通过模拟手提袋在实际使用过程中的上下振动疲劳状态,对提袋的承重能力及耐久性进行全面评估。具体操作为,将相当于手提袋标称内装物质量两倍的颗粒混合物(如沙子、小石子等)装入袋中至四分之三容量,随后将手提袋悬挂于试验机上。根据预设的提袋次数或时间,试验机自动进行上下振动,模拟提携过程中的动态负荷变化。试验结束后,通过仔细观察提袋的提手、缝合处等关键部位是否出现破损、撕裂等现象,来判断手提袋的疲劳强度是否符合要求。广泛应用质检单位:作为质量监督的权威机构,质检单位利用手提袋疲劳强度试验机对市场上流通的手提袋产品进行抽检,确保产品符合安全标准,维护消费者权益。手提袋生产厂家:在产品研发、生产及质量控制等各个环节,手提袋生产厂家均需依赖该试验机进行性能测试,以优化产品设计,提升生产效率,确保出厂产品的品质稳定可靠。科研机构与高校:此外,手提袋疲劳强度试验机SPL-30还广泛应用于包装材料、材料力学等科研领域,为科研人员提供精准的实验数据支持,推动相关领域的科技进步与发展。综上所述,手提袋疲劳强度试验机SPL-30以其重要的测试意义与广泛的应用前景,成为了现代质检体系与工业生产中不可或缺的一部分。作为专业从事药品包装玻璃安瓿检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 10秒钟不到,“手提实验室”就能让地沟油现出原形
    “手提实验室”就像一台电脑  近期,在公安部的统一指挥下,浙江、山东、河南等地公安机关首次全环节破获了一起特大利用地沟油制售食用油案件。北京市食品安全监控中心对浙江公安机关送检的油样出具了检测结论,指出格林公司用地沟油生产的食用油含有多环芳烃等多种有毒有害物质。对于这一检测结论,苏州欧普图斯光纳科技公司功不可没。该公司研发的拉曼光谱仪,可让地沟油不足10秒现原形。其实,早在公安部通报特大利用地沟油制售食用油案件前,苏州查处的地沟油制售食用油案件中,拉曼光谱仪已一显身手。  □快报记者 陈泓江 文/摄  [原理]  用激光捕捉分子结构  昨天下午,在欧普图斯光纳科技公司实验室,该公司总经理刘春伟打开一个“手提实验室”,将一小瓶地沟油样品放入一激光照射器盖了起来,然后点击一旁连接的电脑页面显示的“单次采集”键,很快就检测出该油样是“阳性”,并发出报警声。刘春伟又对一合格的食用油油样进行检测,当即显示“阴性”。刘春伟说,此次公安部侦破地沟油大案的检测结果,就是该公司和北京市食品安全监控中心合作进行的。“7月上旬,我带团队前往北京市食品安全监控中心对公安部提供的75个油样进行检测,结果40个呈阳性,被交给实验室进一步检测。我们仪器检测结果准确率达98%以上。”  记者看到,“手提实验室”大小相当于15英寸笔记本电脑包,重约10公斤。打开“手提实验室”,里面有一台电脑和一个与之相连的激光拉曼光谱仪。这一仪器究竟有何奥秘?为何能让地沟油快速现形?刘春伟告诉记者,“手提实验室”主要运用了激光拉曼光谱原理和纳米技术,当光照射被检油品时,形成的拉曼光谱能及时传回电脑,由于不同分子结构的拉曼光谱和人的指纹一样具有唯一性,所以电脑经过拉曼光谱比对,不足10秒就可清晰地显现所测油样是否含有地沟油。纳米技术在“手提实验室”中主要起到了信号放大器的作用,它可以帮助激光捕捉到微量物质极其微弱的信号并将其放大,从而提高检测的灵敏度。  刘春伟介绍,经激光照射后,如植物油样出现动物成分,那一定是有问题的。  [现状]  食用油国标已经滞后  刘春伟说,检测食用油传统的方式是依据多环芳烃(PAHs)、胆固醇、电导率等指标,但有的地沟油是检测不出致癌物质的,而且加工出来后竟然也能达到现有的食用油国标,给查处带来很大难度。  今年7月初,苏州某地一油脂厂被调查发现是用地沟油加工食用油出售,欧普图斯光纳科技公司应邀对油样进行了检测,结果16个呈阳性。“尽管是地沟油加工,也被仪器检测有地沟油成分,却符合现行的国家食用油标准。”刘春伟说,地沟油加工成食用油后,虽然是一桶出来的,加上花生油油精就变成了“花生油”,加上大豆油油精就成了“大豆油”,于是出现真正的地沟油被摆上餐桌,却也难看出好坏来。  刘春伟说,苏州这一黑心油脂厂老板去年在南方生产地沟油就被查处过。“因其加工的地沟油符合现行食用油标准,苏州有关部门此次只好按照假冒商标不法行为处理。”  [呼吁]  完善国标和追溯体系  刘春伟说,利用拉曼光谱原理,欧普图斯研发的快速检测还在检测“三聚氰胺”“苏丹红”等食品添加剂方面有明显优势。比如“三聚氰胺”的快速检测,2008年10月,在科技部、质检总局、农业部、卫生部组织的“生鲜奶中三聚氰胺统一测试”中,采用欧普图斯技术检测结果准确率达100%,含样品前处理总共用时不到5分钟,其真正的检测时间只需几秒钟。2010年12月,欧普图斯拉曼光谱技术检测被列入国家批准的检测奶制品三聚氰胺的技术方法。  “近年来,国内之所以出现‘苏丹红’‘三聚氰胺’等食品安全事件,重要原因就是这些危害健康的食品添加剂很难被快速检测出来。”刘春伟说,事实上,国内近几年出现的食品安全事件,都离不开食品安全标准滞后这个原因。比如当年的苏丹红和三聚氰胺奶粉事件,就是因为这些危险的添加剂不在检测范围之内,无法检测,就意味着监管基本上是空白的。而此次地沟油案件,我国尚未建立一套完整的鉴定地沟油检测技术规范,存在标准缺失、监管不力等问题。  “业内承认我们检测技术,却没有国标可参照。”刘春伟透露,为建立战略合作联盟推进国家地沟油检测国家标准的制定,该公司早已和全国油料及油脂技术工作组等单位展开合作。刘春伟呼吁,国家应尽快制定出台检测地沟油标准,建立可追溯餐厨垃圾等地沟油去向的管理体系。  刘春伟说,将地沟油回收、加工成饲料、肥料等再生资源的企业,花费成本太高 而将地沟油加工成劣质食用油的,支起一口大锅就能干,违法成本太低,还难以被监管。为此,他建议给地沟油加工再利用提高准入门槛,并对相关企业给予政策扶持。
  • 普洛药业—岛津联合实验室启程,携手提升药品研发生产水平
    普洛药业股份有限公司与岛津企业管理(中国)有限公司本着战略需要、优势互补的原则,经友好协商,决定共同组建“普洛药业股份有限公司—岛津企业管理(中国)有限公司合作实验室”,旨在以合作实验室为平台,发挥双方优势力量,在制药行业领域共同开展科研与学术合作,开发前沿技术以及市场热点方面的应用方案,携手提升药品研发生产水平。该合作实验室经过一年时间的积极筹备,于6月5日在普洛药业公司总部研究院隆重签约挂牌,双方的合作事业正式扬帆起航。普洛药业公司采购总监李淑清主持仪式并介绍其公司出席仪式的嘉宾岛津公司分析仪器事业部浙江区经理曾新华介绍其公司出席仪式的嘉宾普洛药业公司行政总监聂文彬介绍其公司概况 聂文彬行政总监全面介绍了普洛药业公司自1989年创立以来至今三十年的发展历史,以及公司的组织架构、产业布局与战略、研发创新体系、生产运营与企业文化等诸多内容。普洛药业公司是一家集研发、生产、经营医药中间体、原料药、生物制品等系列产品为一体的医药化工企业,是国家重点高新技术企业,目前在全国多地都建有生产基地和研发中心,已经跻身全国医药工业50强。公司总部研发中心早在06年就被评为“国家级企业技术中心”,先后自主开发了多个国家级、省级重点高新技术产品,拥有非常强的技术研发能力。岛津公司分析测试仪器市场部华东区经理吴国华介绍其公司概况 吴国华经理介绍了岛津公司自1875年创业以来至今144年的悠久历史,以及以领先时代的科学技术,不断钻研与创新,为广大制药领域用户开发生产出的大量优质产品与完善的售后服务体系,并着重介绍了岛津公司与医药领域领先的大学、研究机构的广泛且深入的合作。普洛药业公司优胜美特研究院院长詹威强发表祝辞祝贺合作实验室的成立 詹威强院长在祝辞中谈到,随着中国医药改革的不断深化以及为满足广大人民群众对高质量药品的需求,无论是医药监管部门还是各医药企业都对药品研发生产过程中的质量提出了更高的要求。普洛药业长期致力于为客户提供优质的产品和服务,为改善人民的健康生活而不断努力着。高质量的医药研发与生产离不开高水平的研发生产设备。日本岛津公司以光技术、Ⅹ射线技术、图像处理技术这三大核心为基础,为全世界的医药企业提供“利器”。他强调普洛药业-岛津联合实验室的正式成立必将极大提升普洛药业医药产品相关的质量与研究能力,我们的研发团队一定会充分利用联合实验室这个平台,不断提升研发水平。岛津公司分析测试仪器市场部医药行业部部长吕冬发表祝辞祝贺合作实验室的成立 吕冬部长在祝辞中谈到,普洛药业公司的原料药业务、合同研发生产服务及制剂业务在国内制药工业界占用举足轻重的地位。岛津公司不仅提供品质优良的软硬件产品,同时还提供各个应用领域的全面应对方案,比如从基因毒性杂质分析鉴定、“注射剂一致性评价”、药物包材相容性检测技术等近期用户最为关心的热点问题入手,结合岛津先进分析技术提供了针对性的解决方案。我们希望通过双方在产品性能研发,应用技术探讨,售后支持体系建设等多方面开展合作,真正达到双方的互赢互惠。 岛津公司分析仪器事业部华东大区经理张淳与普洛药业公司采购总监李淑清在合作实验室协议书上签字岛津公司中国开发中心中心长井上武明与普洛药业公司质量监管部总监兼巨泰药业董事长马巧芳共同为合作实验室揭牌签约揭牌仪式结束后,双方随即展开了热烈的学术交流 岛津公司中国开发中心副中心长兼产品企划部部长国广冲之介绍了刚刚在中国市场发布的岛津首套融合“AI”与“IoT”尖端技术的旗舰级液相色谱新品Nexera LC-40出席合作实验室签约揭牌仪式的嘉宾合影留念
  • 美发布手提式婴儿摇篮安全新规
    日前,美国材料试验协会(ASTM)发布了一项安全规范,即ASTM F 2050-12《手提式婴儿摇篮的消费者安全规范》,旨在监督和解决有关手提式婴儿摇篮的安全问题。其中手提式的婴儿摇篮(Hand-Held Infant Carriers)定义为:可自由站立的,具有硬边的产品,供看护者通过手提或手柄携带婴儿,并可完全支撑该婴儿的身体。  在该标准的修订中,除其他项目外,还涉及到由美国消费品安全委员会CPSC提出的有关手提式婴儿摇篮的安全问题,其中某些是根据已发生的伤害事件提出的。新修订标准中关键的新要求包括对“手提式摇篮”的新定义和两种测试方法的增加,一种为要求手提式婴儿摇篮的手柄必须可自动锁定或移动到制造商所指定的手提的位置,另一种为通过施加动态冲击力,评估手柄锁定机构的强度。  在此,检验检疫部门提醒企业:一方面,密切关注各国关于儿童用品标准规范的制定及更新状况,加强对新标准的研究和理解,提高主动规避风险的能力 另一方面,评估新的ASTM F2050标准对企业手提式婴儿摇篮生产的影响,依据标准要求提升技术水平,使产品符合新标准的要求,加强与权威实验室的合作,做好产品出口前的抽样检测工作。
  • 仪器表征,非富勒烯受体引领有机光伏新纪元!
    【科学背景】有机光伏(OPV)是利用有机半导体材料将太阳能转化为电能,具有柔性、轻量化、低成本等优点,适用于建筑一体化、物联网设备和可穿戴电子产品等领域。然而,长期以来,OPV的效率受到传统富勒烯受体的固有限制,导致其功率转换效率难以突破。传统富勒烯受体的限制包括其在可见光和近红外区域的吸收能力较弱,以及激子结合能较大等问题,这限制了器件的光电转换效率。为了克服这些限制,科学家们开始寻找替代性的受体材料,并最终将目光投向了非富勒烯受体。非富勒烯受体材料具有较强的可见光和近红外吸收能力,以及更小的激子结合能,这为提高光伏效率提供了潜在的可能性。然而,尽管非富勒烯受体材料具有潜力,但其在光物理和器件物理方面的机制和性能仍然不明确。为此,北京大学占肖卫教授,吴宏滨教授,新西兰MacDiarmid先进材料与纳米技术研究所Justin M. Hodgkiss教授团队携手在Nature Reviews Physics上发表了一篇综述文章。本研究由一群科学家针对非富勒烯受体材料展开了深入研究,旨在揭示其在OPV中的光物理和器件物理特性,并探讨如何利用这些特性来提高光伏效率。研究重点包括激子的产生、扩散、传输和分离过程,以及电荷的产生和复合机制。通过系统的理论分析和实验验证,研究人员成功地揭示了非富勒烯受体材料的优异性质,并提出了一系列解决方案来克服传统富勒烯受体的局限性。具体而言,他们发现非富勒烯受体具有较大的激子扩散系数和更低的能级混乱,从而提高了光电转换效率并降低了电压损失。【科学图文】图1. 给体和受体的分子结构。图2. 非富勒烯受体的激子产生和扩散性质。图3. 基于非富勒烯受体器件中的激子分离。图4. 三态电子振动模型,非辐射电压损失和受体的光致发光量子产额。图5: 非富勒烯受体的特征。 【科学结论】非富勒烯受体在有机光伏领域展现了引人注目的特性,其强大的吸收能力和高光致发光量子产率为光电转换提供了新的途径。通过长程的 Fö rster 谐振能量转移和空穴转移主导的激子分离过程,非富勒烯受体在提高光电转换效率的同时,降低了电压损失。与富勒烯受体相比,非富勒烯受体在激子产生、激子扩散、激子分离和电荷复合等方面呈现出独特的优势。其未来发展方向包括开发新材料以提高光吸收和辐射效率,并探索三元和串联策略以进一步提高光伏效率。这些发现不仅在理论上推动了光伏技术的进步,也为实际应用和商业化奠定了基础,为光伏领域的未来发展指明了方向。文献详情:Wang, J., Xie, Y., Chen, K. et al. Physical insights into non-fullerene organic photovoltaics. Nat Rev Phys (2024). https://doi.org/10.1038/s42254-024-00719-y ,https://www.nature.com/articles/s42254-024-00719-y
  • 国内首个地沟油手提检测仪研制成功
    不同的油显示的拉曼光谱不同  ■运用了拉曼光谱原理、纳米技术  ■大小相当于15寸笔记本电脑包,重10公斤  ■可随时随地进行检测,十分钟内可知检测结果  检测地沟油的实验室不仅可以“提”着走,而且还攻克了以往食用油质量检测时间长的难题,十分钟内即可知道检测结果。7月13日,欧普图斯(苏州)光学纳米科技有限责任公司宣布,该公司已完成国内首个“地沟油检测手提实验室”的实验室研发工作,并将在近期内实现产业化生产。这标志着国内首个地沟油检测手提实验室在苏研制成功。  地沟油对人体的危害广为人知,但记者了解到,对地沟油快速检测存在一定技术难题,比如,检测均需借助实验室进行,而且一般需要2到3天才能知道检测结果,这已成为有关部门监管地沟油流入餐桌的一大难题。该公司成功研制“地沟油检测手提实验室”,在全国率先攻克了食用油快捷检测的技术难题。地沟油检测手提实验室  记者在该公司看到,手提实验室大小相当于15寸笔记本电脑包,重约10公斤。打开手提实验室,里面有一台电脑和一个与之相连的激光拉曼光谱仪,据该公司总经理刘春伟介绍,该手提实验室可随时随地进行地沟油检测,内置电源可连续工作5小时。操作非常简单,只需将激光探头照一下装在透明容器中的油品,手提实验室的电脑就会显示检测结果:绿灯亮,表示油品安全;红灯亮,表示油品中含有地沟油成分。“精炼或者掺兑的地沟油,从外观上可以以假乱真,但手提实验室照样可以让它现出原形。”据刘春伟介绍,地沟油通常指泔水油、劣质猪油、煎炸老油等,经过高温精炼、脱色、去味等“深度”处理后,地沟油和普通食用油在外观上几乎没有区别,但由于制作原料和高温处理的原因,地沟油一般存在“含有动物脂肪”或“氧化物质超标”两大特征,而这恰恰为手提实验室“揪”出真凶提供了确凿依据。  据介绍,手提实验室主要运用了激光拉曼光谱原理和纳米技术,当激光照射被检油品时,形成的拉曼光谱能及时传回电脑,由于不同分子结构的拉曼光谱和人的指纹一样具有唯一性,所以电脑经过拉曼光谱比对,可清晰地显现所测油品是否含有地沟油。纳米技术在手提实验室中主要起到了信号放大器的作用,它可以帮助激光捕捉到微痕量化学物极其微弱的信号并将其放大,从而提高检测的灵敏度。  背景资料:拉曼光谱  每一种物质经光照射散射后,会形成不同的拉曼光谱,这个光谱像人的指纹一样具有唯一性。因此,人们可以根据拉曼光谱对比判定不同的物质。最早发现拉曼光谱的是印度科学家C.V.拉曼,并因此获得1930年的诺贝尔物理学奖。目前,拉曼光谱原理已广泛应用于化学、物理学、生物学和医学等领域。
  • 863项目成果“高精度手提式X荧光仪”通过验收
    图一 高精度手提式X荧光仪图二 高精度伽玛能谱仪  2016年5月25日,863计划资源环境技术领域办公室在北京组织召开了“十二五”863计划资源环境技术领域“放射性矿产探测与开发技术”项目的技术验收会议。  “放射性矿产探测与开发技术”主题项目立足于解决隐伏砂岩铀矿勘查、采冶过程中的关键技术问题,提升我国铀矿勘查技术与装备的研发水平,为保障我国中长期核能产业发展和国防建设对铀资源的需求提供技术支撑。项目针对隐伏砂岩铀矿勘查采冶过程中的关键技术问题,完成了隐伏放射性矿产识别技术、地浸采铀模拟与控制技术、脉冲中子测井与铀定量解释技术研究及高精度能谱探测仪器研发工作。通过项目攻关,研发了砂岩型铀矿成矿环境、砂体识别与定位技术、铀矿化信息探测技术及GIS综合预测评价系统 查明了砂岩铀矿多种矿物的溶蚀规律,创建了砂岩型铀矿酸法和中性浸出体系和络合物形成的理论模型 研制了高精度手提式X射线荧光仪、微束微区野外X荧光矿物探针、高精度伽马能谱仪、高灵敏度野外测氡仪、脉冲中子铀矿测井仪等设备样机,并开发了配套软件。项目取得的技术成果在我国新疆伊犁、内蒙古二连和鄂尔多斯等北方大型砂岩型盆地的铀矿勘查、地浸采铀生产中得到了较大规模的应用,具有良好的社会和经济效益。  会上,验收专家组听取了该项目首席专家关于项目执行情况的汇报,审阅了相关验收材料,并进行了质询。经讨论,验收专家组同意该项目通过技术验收。
  • 手提式气体分析仪的使用需要注意什么?
    气体分析仪是一种用于测量和分析气体成分的仪器。它可以用于检测各种气体,如空气中的污染物、工业废气、燃烧气体等。那么手提式气体分析仪在使用时需要注意什么呢?下面是逸云天小编的分享。  使用手提式气体分析仪时,有以下几点需要注意:  1.阅读说明书:在使用前,仔细阅读分析仪的使用手册,了解其功能、操作方法和安全注意事项。  2.校准和标定:按照厂家的建议,定期对分析仪进行校准和标定,以确保测量结果的准确性。  3.传感器选择:根据需要检测的气体种类,选择合适的传感器,确保分析仪能够准确测量目标气体。  4.检测环境:在使用分析仪时,注意检测环境的温度、湿度和气压等因素,这些因素可能会影响测量结果。  5.操作方法:按照正确的操作步骤进行操作,避免误操作导致仪器损坏或测量误差。  6.气体采样:确保气体采样的方法正确,避免采样过程中引入干扰物质或造成样品失真。  7.安全防护:在使用过程中,要注意安全防护,避免接触有毒、有害气体,必要时佩戴适当的防护装备。  8.数据解读:了解如何正确解读分析仪显示的测量数据,以及如何判断数据的可靠性。  9.维护保养:定期对分析仪进行清洁、检查和维护,确保其性能良好。  10.储存和运输:在储存和运输分析仪时,要注意避免碰撞、振动和潮湿等不利条件。  遵循这些注意事项可以帮助你正确使用手提式气体分析仪,并获得准确可靠的测量结果。
  • PNAS:清华大学王新泉等人解析IL-33与受体作用的结构机制
    PNAS:清华大学王新泉等人解析IL-33与受体作用的结构机制2013-08-27 来源:生物360 作者:koo 196 0 收藏(1) 添加到书签-- IL-33是IL-1家族的一个重要成员,在宿主防御及疾病的先天和适应性免疫反应中发挥着多效活性。IL-33通过它的配体结合主要受体 ST2 和IL-1受体辅助蛋白(IL-1RAcP)来发送信号,这两种受体均为IL-1受体家族成员。为了阐明IL-33与它的受体之间的相互作用,来自清华大学生命科学学院等机构的研究人员确定了分辨率为 3.27 的 IL-33 与 ST2 胞外域构成复合物的晶体结构。采用结构诱变和结合分析,得到的结构分析结果确定了 ST2 特异性识别IL-33的分子机制。研究人员将之与IL-1家族中的其他配体-受体复合物进行结构比较,证实表面电荷互补至关重要地决定了IL-1主要受体的配体结合特异性。结合晶体学和小角度X射线散射研究揭示, ST2 在 D3 结构域和 D1D 2模块之间具有柔性铰链,而 IL-1RacP 在溶液中以一种游离状态显示刚性构象。 ST2 的分子灵活性提供了关于IL-1主要受体与配体结合时结构域层次构象变化的结构认识。IL-1RacP 的刚性则解释了它为何不能直接配体的原因。小角度X射线散射分析溶液中IL-33&ndash ST2 &ndash IL-1RacP复合物的结构,结果与 IL-1&beta &ndash IL-1RII&ndash IL-1RacP 和 IL-1&beta &ndash IL-1RI&ndash IL-1RacP 的晶体结构相似。这些研究结果阐明了IL-33结构与功能的关系,支持并扩展了IL-1家族中配体-受体组装和激活的普遍模型。清华大学生命科学学院的王新泉(Xinquan Wang)教授和台湾国立成功大学的王淑莺(Shuying Wang)助理教授是这篇论文的共同通讯作者。王新泉教授的主要研究方向为结构生物学。利用X-射线晶体学为主要研究手段,结合冷冻电子显微镜学和其他生物化学技术,研究生物大分子的结构与功能关系。研究目标目前集中在细胞因子特异结合并激活其受体分子,以及病原体逃避宿主免疫攻击的结构机理。
  • Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α 2型受体晶体结构解析
    人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突破。2011年,β2肾上腺素受体和G蛋白的复合物结构获得解析,该工作获得了2012年诺贝尔化学奖。这些结构的解析极大地推动了人们对G蛋白偶联受体(特别是β肾上腺素受体)机理的理解。然而,三类肾上腺素受体偶联的G蛋白不同:α1, α2和β类分别偶联Gq、Gi和Gs。通过序列比对,也可以发现三类受体的配体结合口袋也有明显区别。对肾上腺素受体下游信号选择的多样性以及配体的亚型选择性的理解,一直受制于缺乏α类受体的三维精细结构。2019年12月3日,上海科技大学赵素文和钟桂生课题组在Cell Reports上共同发表两篇论文,报道了两个α类受体的三个晶体结构,阐释了肾上腺素受体多样性和配体特异性的机理。在“Structural Basis of the Diversity of Adrenergic Receptors”一文中,作者通过解析α2A受体与部分激动剂和抑制剂的复合物结构,辅助细胞信号实验和计算生物学,分析阐明了在肾上腺素受体家族中序列多样性是如何导致功能多样性的。α2A受体的两个结构整体非常相似,而配体结合口袋的多个残基(包括在肾上腺素受体中不保守的F4127.39)则发生了剧烈的构象变化。通过观察结构和突变实验,研究人员解释了影响配体选择性的重要氨基酸F4127.39的功能:F4127.39是配体结构口袋的“盖子”,它与口袋中的另外三个芳香氨基酸一起形成了一个芳香笼来结合配体中的正电基团,使配体结合时空间和能量效应俱佳。突变F4127.39会使α2A受体的完全激动剂和部分激动剂均丧失效力。α2A受体具有双重药理学效应:激动剂浓度较低时,α2A受体主要和Gi偶联;激动剂浓度较高时,与GS的偶联占据更主导的地位。相应地,在临床中,α2A受体部分激动剂的效果比完全激动剂要好,如用于降压的可乐定(Clonidine)和用于ICU镇静(在我国也广泛用于手术麻醉)的右美托咪定(Dexmedetomidine)都是α2A受体的部分激动剂。为了更好地理解α2A受体的部分激活性(partialagonism),研究人员对多个已知的α2A受体完全激动剂和部分激动剂进行了分子对接,他们发现可以用配体与Y3946.55形成氢键与否,来区分α2A受体的部分激动剂和完全激动剂。作者还发现了三个氨基酸(Y3946.55,I13934.51和K14434.56,第一个位于配体结合口袋,后两个位于G蛋白结合口袋)对α2A受体的G蛋白选择性具有重要作用。精心设计的三个突变体Y3946.55N,I13934.51A和K14434.56A,在细胞信号实验中对部分激动剂的刺激均表现出Gi通路的偏好性,而Gs通路的活性遭到削弱甚至完全被抑制。图1:α2A受体中对配体结合(紫色)和G蛋白通路偏好性(红色)起关键作用的残基而在“Molecular mechanism for ligand recognition and subtype selectivity of α2C adrenergic receptor”文章中,作者展示了α2C受体的三维结构,并通过分子对接、功能实验等手段揭示了α2亚型受体的结构特异性,为相关药物研发提供了分子基础。通过将α2C受体与α2A受体的结构进行对比和巧妙的嵌合体设计,作者发现α2C与α2A的结构主要差异存在于胞外域。在α2C受体口袋边沿,D206ECL2-R409ECL3-Y4056.58形成氢键-盐桥互作网络,特异地影响了α2C受体选择性拮抗剂JP1302和OPC-28326的作用。而在α2A受体口袋上方,由Y98ECL1、R187ECL2、E189ECL2和R4057.32形成的互作网络直接遮盖了部分入口,使得JP1302和OPC-28326这些较大的分子可能被阻挡在外。细胞信号实验结果也显示,破坏Y98ECL1-R187ECL2-E189ECL2-R4057.32互作网络并添加D206ECL2-R409ECL3-Y4056.58相互作用得到的α2A嵌合体对JP1302和OPC-28326有着很好响应。图2:α2CAR-RS79948复合物的结构和决定α2肾上腺素受体亚型选择性的胞外域这两篇文章很好地阐述了肾上腺素受体的多样性和α2受体的配体选择性,为基于精细三维结构的下一代α2受体药物开发奠定了基础。在这两篇论文中,均使用珀金埃尔默的EnVision微孔板检测仪对GPCR的cAMP实验进行定量测定。同时,在α2受体的配体结合实验中,珀金埃尔默提供了从放射性受体拮抗剂、耗材(UniFilter GF/B)到放射性微孔板检测仪MicroBeta的整体解决方案。珀金埃尔默为中国科学家药物研发加油助力。扫描下方二维码,或点击文末“阅读原文”,即可查看论文原文。
  • 欧普图斯光纳科技“高敏度手提实验室”为保障百姓菜篮子安全构筑防线
    (原发布日期:2012/02/24) 为切实规范流通环节食品经营行为,保障百姓菜篮子安全,苏州工业园区工商局构筑防线,提升食品安全监管成效。 苏州工业园区工商局立足职能,提升检测能力,加强技防管控。 全市首次引进欧普图斯光纳科技&ldquo 高敏度手提实验室&rdquo ,增加了对三聚氰胺、罗丹明、地沟油及柠檬黄等色素类品种的检测,使可检测的食品和农产品种类由原来的14大类24个品种增加到20大类51个品种,检测品种单位时间的通量也有了大幅提高,如对瘦肉精的检测由原先的1小时缩短至15分钟; 检测三聚氰胺的整个过程不超过20分钟, 而电脑读取光谱并分析只需30秒左右。 原文链接:http://suzhou.bendibao.com/news/201224/29436.shtm 网页原文: 园区:三道防线确保&ldquo 菜篮子&rdquo 安全http://suzhou.bendibao.com/news/ 本地宝资讯 2012年2月4日 来源:   □宋 莹 为切实规范流通环节食品经营行为,保障园区百姓菜篮子安全,园区工商局立足职能,筑牢三道防线,努力提升食品安全监管成效,营造和谐稳定的消费环境。 第一道防线: 引导主体自律 倡导诚信经营 市场管理者是市场管理的第一责任人。为提高市场主体的守信意识和自律意识,从源头确保园区的农副产品消费安全,园区工商局一是要求市场主办者从主体资格、商品溯源、经营秩序、消防安全、消费维权等方面切实加强日常管理,并编制下发《有形市场巡查管理手册》 明确市场方管理职责,同时解决&ldquo 查什么、怎么查、如何实现监管留痕&rdquo 等问题;二是将园区23家农贸市场全部接入园区市场食品安全网络监控中心实施信息化实时监控,足不出户即可实现对市场的经营秩序和卫生状况的有效监督;三是推行商品交易市场信用分类监管,将园区30家市场、3518家经营户基本信息录入市场信用分类监管软件,每年根据市场的硬件设施和管理水平等指标对所有市场进行A、B、C、D信用分类评级,依次实施不同的监管方式和监管频率, 并将苏州肉食品批发市场等8家市场确定为重点监管主体实施重点监管; 四是深化场内经营户信用分类监管,指导市场主办者对场内经营户实施信用管理,目前已有26家与农副产品相关的市场完成经营户信用等级评定。既提升了市场的诚信度和信誉度,又为构建有形市场的食品安全长效监管机制奠定了基础。 第二道防线: 提升检测能力 加强技防管控 工欲善其事,必先利其器。2009年,园区整合工商局、地方局、社会事业局三部门职能成立了农副产品联合检测中心,并将工作室设在园区工商局,主要开展农副产品和食品的快速检测工作。2011年,该中心进行了软硬件升级,增加了检测人员,添置了检测车辆,规范了检测流程,并在全市首次引进欧普图斯光纳科技&ldquo 高敏度手提实验室&rdquo ,增加了对三聚氰胺、罗丹明、地沟油及柠檬黄等色素类品种的检测,使可检测的食品和农产品种类由原来的14大类24个品种增加到20大类51个品种,检测品种单位时间的通量也有了大幅提高,如对瘦肉精的检测由原先的1小时缩短至15分钟; 检测三聚氰胺的整个过程不超过20分钟,而电脑读取光谱并分析只需30秒左右。2011年,中心共检测农产品1307批次,对260批次不合格问题农产品进行了销毁,编报《简报》12期。目前,中心检测人员每天对全区26个市场和6家大中型超市进行流动抽检,每月检测200个批次产品。
  • 北京四部门联手提5类纺织服装产品质量
    2013年对5类纺织服装产品进行质量监督抽查,253批次产品中发现有9批次产品质量不合格 对437个样品的服装纺织产品进行对比实验,不符合标准数量的样品达到210个。记者从12月19日北京市质量技术监督局、北京市工商行政管理局、北京市经济和信息化委员会、北京市商务委员会联合召开北京市服装纺织产品质量提升工作会上获悉,今年首都服装纺织产品整体质量不错,但部分产品的性能有待提高。为此,四部门决定联手提升首都的服装纺织产品质量。  据介绍,2013年,北京市质监局委托北京市纺织纤维检验所对儿童服装、纺织服装、床上用品、学生装和羽绒服装5类产品253批次产品进行了监督抽查,重点检测了保障人体健康的甲醛、色牢度、pH值等安全性指标,同时对抽查产品的纤维含量、含绒量、耗氧量等性能指标进行了监测,其中pH值不合格2批次、色牢度不合格6批次、童装绳索和拉带安全要求不合格1批次,未发现可分解芳香胺染料指标不合格的情况。监测中发现的问题有:纤维成分含量不合格42批次、含绒量不合格10批次。北京市纤检所受理企业委托检验的服装纺织样品中发现存在不合格项目的样品共计1655批次,约占总报验量的8.7%,其中,国标《国家纺织产品基本安全技术规范》(GB 18401)安全项目不合格占60%。  同时,2013年,北京市消协对北京市场和网购交易平台销售的服装纺织产品开展了商品比较试验,共涉及品牌235个、检测项目115项,发现的主要问题包括:产品色牢度不达标,纤维含量标注与实测不符,产品功能性宣传言过其实、涉嫌虚假宣传,填充物以次充好,缺斤短两,产品标识、使用说明不符合国家标准要求,执行标准有误,明示标准与实物不符,服装纺织产品在生产过程中使用整理剂给消费者的穿用安全带来风险等。  统计显示,北京市消协服装纺织产品比较试验中,休闲服装的样品数量为41个,不达标的数量为25个 儿童服装的样品数量是82个,不符合标准的数量是31个 蚕丝被的数量为40个,不达标的为19个 床上用品的数量是41个,不符合标准的是26 功能服装的数量是40个,不达标的为22个,总体合格率为52%。  北京市质监局相关负责人表示,今年的质量监督抽查及监测结果表明,北京市生产领域服装纺织产品安全性较好,但部分产品的性能有待提高,安全项目仍然是今后一段时间内纺织服装产品质量控制的重中之重。  据悉,针对北京市的服装纺织产品质量现状,北京市质监局等四部门联合制定了《北京市服装纺织产品质量提升工作方案》,并成立了北京市服装纺织产品质量提升工作办公室,决定在2015年底以前,按照开展基础信息调查,厘清解决重点质量问题、提高企业质量管理水平、规范产品质量检验检测机构建设和检测行为等不同阶段重点任务要求,采取对加强对重点地区、重点产品、重点项目监督、监管,开展质量安全风险预警,质量课堂,品牌体检,标准帮扶等专项工作,以及发布质量报告与质量安全风险白皮书、召开全市服装纺织产品质量分析会等多项措施,逐步实现服装纺织产品质量提升目标。
  • 关注新型受体激动剂,吃肉更放心
    导 语社会各界对“瘦肉精”食品安全问题的关注,促使了β2-受体激动剂的检测技术得到了飞速发展,从而有效遏止了β2-受体激动剂在动物养殖中的非法使用。而α2-受体激动剂作为一种新型的具有促进生长及提高瘦肉率作用的药物也在逐步引起关注,且在饲料行业中已有非法添加使用的趋势。早在2010年,农业部1519号公告已明确把可乐定、赛庚啶等列入了农业部《禁止在饲料和动物饮水中使用的物质》清单。 什么是α2-受体激动剂 α2-受体受体激动剂对α2受体具有特异亲和性,主要用于治疗人类的高血压症。有研究表明,在饲料中添加0.5 mg/kg可乐定,能显著提高猪的瘦肉率,改善猪胴体组成,其它α2-受体激动剂也具有类似的作用。《GB 31650-2019 食品中兽药最大残留限量》规定,仅赛拉嗪可用于非产奶期的牛、马等动物,其他α2-受体激动剂均禁止用于畜禽养殖,且不得检出。《GB 31660.6-2019 动物性食品中5种α2-受体激动剂残留量的测定 液相色谱-串联质谱法》食品安全国家标准,提供了替扎尼定、赛拉嗪、溴莫尼定、安普乐定和可乐定在猪、鸡肌肉及内脏中残留检测方法,该标准已于2020年4月1日正式实施。 岛津解决方案 实验部分 检测仪器本实验使用超高效液相色谱仪LC-40与三重四极杆质谱仪LCMS-8050联用系统。 前处理方法参照《GB 31660.6-2019 动物性食品中5种α2-受体激动剂残留量的测定 液相色谱-串联质谱法》标准,猪肉样品经用碳酸钠缓冲溶液、乙酸乙酯提取,SHIMSEN Styra MCX (岛津实验器材有限公司,P/N:380-00853-01)固相萃取柱净化,液相色谱-串联质谱测定,外标法定量。 主要方法参数色谱柱:Shim-pack Velox C18(100 mm×2.1 mm I.D.., 1.8 μm, Shimadzu SGLC, P/N: 227-32010-04)流动相:A相-0.2%甲酸水溶液,B相-乙腈洗脱方式:梯度洗脱离子化模式:ESI(+) 分析结果 标准品色谱图5种α2-受体激动剂的标准品色谱图如下图所示。0.5 μg/L 标准样品色谱图(1替扎尼定,2赛拉嗪,3溴莫尼定,4安普乐定,5可乐定) 回收率考察在空白猪肉中添加标准溶液,加标浓度为2 μg/kg,平行测定3次,替扎尼定、赛拉嗪、溴莫尼定、安普乐定和可乐定回收率均在69.6%~91.8%之间,回收率完全满足标准要求。 实际样品分析某市售猪肉样品中分析结果如下图所示,未检出α2-受体激动剂残留。猪肉样品色谱图 小结使用岛津超高效液相色谱-三重四极杆质谱仪LCMS-8050联用系统,参考GB 31660.6-2019食品安全国家标准,建立了猪肉中替扎尼定等5种α2-受体激动剂测定方法,该方法灵敏度高,分析时间短,结果准确,可用于猪肉中α2-受体激动剂的快速检测。 岛津超快速三重四极杆液质联用仪
  • 白细胞介素- 1受体分泌及调节介绍
    白细胞介素- 1(interlenkin 1,1L-1)的间接作用,可使内毒素引起机体发热。本篇文章介绍IL-1的受体分泌及调节介绍。IL-1的受体有两种:IL-1RⅠ和IL-1R Ⅱ。三种IL-1都能与受体结合,IL-1Ra与受体结合后不引发信号转导效应,但可抑制IL-1α和IL-1β同受体结合。上述两种受体常常表达在同一细胞中,但不同的细胞仅优势表达某一种受体。IL-1RⅠ是相对分子质量为80000的糖蛋白,人的基因位于2号染色体长臂上。主要表达在内皮细胞、平滑肌细胞、T细胞,肝细胞、成纤维细胞、角质细胞和表皮树突状细胞等。IL-1RⅠ高度糖基化,阻止糖基化会降低其生物学活性。IL-1R Ⅰ的胞质内肽链较长,并参与信号转导,与Toll受体的胞质区显著同源,故称为Toll/白细胞介素同源区域(Toll /in-terleukin-1 homologous region,TIR),缺乏酪氨酸激酶的活性。人IL-1R Ⅰ mRNA约5kb,编码569个氨基酸残基,细胞外320个氨基酸残基构成3个免疫球蛋白样功能域,跨膜区有19个氨基酸残基,其余230个氨基酸残基在胞质内。IL-1受体辅助蛋白(interleukin-1 receptor accessory protein,IL-1RAcP)其胞外和胞质结构域与IL-1RⅠ具有同源性,IL-1与IL-1RⅠ结合亲和力较低,可使构象发生改变,并被IL-1RAcP识别,参与受体复合物的形成,能够增强其亲和力,使之发挥生物学效应。IL-1RⅡ主要表达在B细胞、单核细胞和中性粒细胞中。IL-1R Ⅱ的 mRNA约1803bp,编码386个氨基酸残基,是相对分子质量为68000的糖蛋白。该蛋白质含有5个糖基化位点,经过N-糖苷酶处理使糖链分解后,相对分子质量为55000。IL-1RⅡ细胞外的332个氨基酸残基构成3个免疫球蛋白样功能域,其胞内只有很短的29个氨基酸残基,没有信号转导功能。用抗IL-1RⅡ抗体不能阻止IL-1的信号转导,用抗IL-1RⅡ抗体能够有效地阻止IL-1的信号转导。IL-1RⅡ是一个诱骗分子,可为IL-1的自身负反馈。将IL-1RⅡ的细胞外部分与IL-1RⅠ的胞质内部分嵌合构建的嵌合受体能够与IL-1结合并能转导信、号效应。可溶性IL-1受体:健康人和某些病理组织液中可检查到IL-1R Ⅰ和 IL-1RⅡ的胞外结构部分为可溶的IL-1受体,但其具体的生物学作用不是很清楚。IL-1的信号转导途径用图9-1表示。
  • 突破!西湖大学冷冻电镜成功解析新冠病毒细胞受体空间结构
    p style="text-indent: 2em text-align: left "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2月19日凌晨,西湖大学浙江省结构生物学研究重点实验室(施一公任主任)研究团队的鄢仁鸿(一作)、周强(通讯作者)等在预印版平台bioRxiv上线最新研究成果:利用冷冻电镜技术,成功解析新冠病毒受体血管紧张素转换酶2(ACE2)的全长结构。span style="text-indent: 2em color: rgb(0, 112, 192) "成果对抗疫特效药研发具有重大指导意义,这也是全球首次成功解析ACE2的全长结构。/span/span/pp style="text-indent: 2em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 600px height: 342px " src="https://img1.17img.cn/17img/images/202002/uepic/4b257d5c-8236-478c-93f3-907498318ef9.jpg" title="00.png" alt="00.png" width="600" height="342" border="0" vspace="0"//span/pp style="text-indent: 2em "span style="text-indent: 2em color: rgb(127, 127, 127) "(注:预印本网站bioRxiv的所有论文未经同行评议)/span/pp style="text-indent: 2em "span style="text-indent: 2em color: rgb(127, 127, 127) "几天前,2月15日/spanspan style="text-indent: 2em color: rgb(0, 0, 0) ",/spana href="https://www.instrument.com.cn/news/20200217/522050.shtml" target="_blank" style="color: rgb(84, 141, 212) text-decoration: underline "span style="color: rgb(84, 141, 212) "美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文,报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构。/span/a/pp style="text-indent: 2em "血管紧张素转换酶2(ACE2)是SARS冠状病毒(SARS-CoV)的表面受体,与刺突糖蛋白(S蛋白)直接相互作用。 ACE2也被认为是新冠状病毒(2019-nCoV)的受体,表现为严重的呼吸综合征。 B0AT1(SLC6A19)是中性氨基酸转运蛋白,其在肠道细胞中的表面表达需要ACE2。 发表成果中,西湖大学研究团队成功解析了与B0AT1结合的全长人ACE2的2.9埃分辨率冷冻电镜结构。 该复合物组装成ACE2-B0AT1异二聚体的二聚体,由于ACE2的肽酶结构域(PDs)转移,显示出开放和封闭的构象。 ACE2上新解析的类集合域(CLD)介导了同源二聚化。 结构建模表明ACE2-B0AT1复合物可以同时结合两个S蛋白,为冠状病毒识别和感染的分子基础提供了重要线索。/pp style="text-indent: 2em "strongACE2/strong主要生理作用是促进血管紧张素的成熟,在肺、心脏、肾脏和肠道广泛存在。但当病毒入侵时,ACE2就被病毒“绑架”了。ACE2是SARS冠状病毒和人类冠状病毒NL63的受体,可以说是多数冠状病毒侵入人体的关键。/pp style="text-indent: 2em "strong西湖大学研究团队称/strong:“在SARS病毒和‘新冠病毒’侵入人体的过程中,ACE2就像是‘门把手’,病毒抓住它,从而打开了进入细胞的大门。”/pp style="text-indent: 2em "ACE2全长结构的解析,对于后续疫苗和抗病毒药物的研发,无疑提供了重要的结构生物学数据支撑。/pp style="text-indent: 2em "根据西湖大学公布的资料,ACE2的全貌如下:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/noimg/8d748624-c69c-46dc-8357-e206d6d1b33a.gif" title="bf26资料图.gif" alt="bf26资料图.gif"//pp style="text-indent: 2em "上面的蓝色和灰白色部分,是ACE2的两个结构PD(肽酶结构域)和CLD(样域),但ACE2很难在体外稳定获得,常常是与肠道内的一个氨基酸转运蛋白B0AT1打包一同出现。/pp style="text-indent: 2em "strong西湖大学研究团队给出假设/strong:这个复合物极有可能稳定住ACE2,并通过共表达的方法,能够获得优质稳定的复合物,就构成了上面这种X形状。/pp style="text-indent: 2em "在确定了ACE2的这种特殊存在形态后,就在冷冻电镜下解析了它的三维结构:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 538px " src="https://img1.17img.cn/17img/images/202002/uepic/892b1c38-aa26-4f48-a8a5-9009ef1ddfad.jpg" title="1.png" alt="1.png" width="450" height="538" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "分辨率为2.9埃的ACE2三维结构图/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 315px " src="https://img1.17img.cn/17img/images/202002/uepic/6193d14b-1fc4-455a-8b2e-28927a0b1189.jpg" title="2.png" alt="2.png" width="450" height="315" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 2em "整/spanspan style="color: rgb(0, 176, 240) text-indent: 2em "个ACE2的结构图/span/pp style="text-indent: 2em "研究团队称,这一研究揭示了二聚体组装中全长ACE2的高分辨率结构。 建模分析表明,冠状病毒的两个S蛋白三聚体同时与ACE2二聚体结合。本研究的结构为阐明2019-nCoV感染的机制提供了一个重要的框架,并可能促进潜在疗法的发展。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202002/uepic/5098d370-0dd0-44d9-a878-7b7120e1e300.jpg" title="3.jpg" alt="3.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "第一作者鄢仁鸿(左)与通讯作者周强(右)/span/pp style="text-indent: 2em "这项研究中,西湖大学的冷冻电镜和超级计算机中心分别提供了冷冻电镜和计算支持。并获得国家自然科学基金(项目31971123,81920108015,span style="text-indent: 2em "31930059)和浙江省重点研发计划(2020C04001)的资助。/span/pp style="text-indent: 2em margin-top: 10px "span style="color: rgb(0, 112, 192) font-size: 18px "strong▊关于浙江省结构生物学研究重点实验室/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 333px " src="https://img1.17img.cn/17img/images/202002/uepic/c1dc0fa7-335f-48e8-9d1a-4addcb741fec.jpg" title="4.jpg" alt="4.jpg" width="450" height="333" border="0" vspace="0"//pp style="text-indent: 2em "浙江省结构生物学研究重点实验室是西湖大学第一批获准成立的浙江省重点实验室之一。/pp style="text-indent: 2em "strong研究内容和方向/strong:旨在建设一个能够引领世界结构生物学研究方法和技术发展的重点实验室。实验室将围绕重要的生物学问题和技术需求,以冷冻电子显微学为核心(包括单颗粒冷冻电子显微镜三维重构、冷冻电子显微镜断层成像、冷冻电子显微镜交叉学科发展三个研究方向),以X-射线晶体学、化学生物学、蛋白质设计、分子动力模拟等相关学科为助力,充分发挥各前沿学科的优势,探索出一套高效的多学科人才合作研究新机制,开发出若干具有我国自主知识产权的革新技术与软件算法,取得一系列具有里程碑意义的结构生物学原创成果,促进浙江省乃至我国在相关领域内基础研究力量和创新能力的提升,以及相关研究成果的转化。/pp style="text-indent: 2em "strong人员构成/strong:国际著名结构生物学家、中国科学院院士、西湖大学校长施一公教授任实验室主任。中科院上海生科院植物生理生态研究所研究员张鹏教授任学术委员会主任。全球范围内遴选的多名优秀青年科学家担任重点实验室骨干。/pp style="text-indent: 2em "strong发展方向/strong:实验室将整合多学科优势,积极推进基础科研应用和后期成果转化,在未来5-10年开发一系列具有深远影响的结构生物学新成果新技术,促进浙江省生物技术、生物制药等相关产业的发展。/pp style="text-indent: 2em " /pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "论文链接/span:a href="https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1" target="_blank" style="color: rgb(127, 127, 127) text-decoration: underline "span style="color: rgb(127, 127, 127) "https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1/span/a/p
  • 结构生物学里程碑:低温电子显微镜技术时代来临
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/noimg/fea33c3e-9d39-4848-8e95-052ebaa33259.jpg" title="1.jpg"//pp  strongX射线晶体衍射技术(X-RAY CRYSTALLOGRAPHY)即将成为历史,低温电子显微技术(CRYO-ELECTRON MICROSCOPY)引起了揭示细胞内隐秘机制的革命。/strong/pp  在剑桥大学一幢建筑的地下室里,一场技术革命正在酝酿。/pp  一个笨重的、大约3米高的金属盒子通过连接细胞的橙色缆线,安安静静地传输着以万亿字节计算的数据。这是世界上最先进的低温电子显微镜之一:低温电子显微镜通过电子束对冷冻的生物分子进行成像,从而得到分子的三维结构。站在这个耗资770万美金的仪器旁,英国医学研究委员会分子生物学实验室(UK Medical Research Council Laboratory of Molecular Biology, LMB)的结构生物学家 Sjors Scheres表示,低温电子显微镜非常敏感,一声喊叫就会带来极大误差,导致实验失败。“英国需要更多低温电子显微镜,因为未来它会成为结构生物学的主流。”/pp  低温电子显微镜震惊了结构生物学。过去30年里,低温电子显微镜揭示了核糖体、膜蛋白和其它关键细胞蛋白的精细结构。这些发现都发表在顶级杂志上。结构生物学家们表示,毫不夸张地说,低温电子显微技术正处于革命之中:低温电子显微镜能够快速生成高分辨率的分子模型,这一点远超X射线晶体衍射等方法。依靠旧方法获得诺奖的实验室也在努力学习这一技术。这种新模型能够准确地揭示细胞运行的必要机制,以及如何靶向针对疾病相关的蛋白。/pp  “低温电子显微镜能够解决很多以前无法解决的谜题。”旧金山加利福利亚大学(University of California)的结构生物学家David Agard这样说道。/pp  几年前Scheres被招进LMB,任务是帮助改进低温电子显微镜,最终他成功了。上个月,他们发表了这个领域最令人振奋的成就:阿兹海默症相关的酶的高清图片,图片包括该酶的1200左右个氨基酸,分辨率达到零点几纳米。/pp  生物学家们如今仍在努力发展该技术,以期用它解决小分子或可变形分子的精微结构——这对低温电子显微镜来说,也是一大挑战。来自加利福利亚大学(University of California)的结构生物学家Eva Nogales表示,叫它革命也好,飞跃也好,低温电子显微镜的确打开了一扇大门。/pp strong 蛋白结晶/strong/pp  结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,研究者们才能了解这个蛋白的功能。例如,核糖体是如何根据mRNA的序列来制造蛋白,分子孔道是如何开和关的。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,接着利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100,000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。很多诺贝尔奖也与这一技术相关,例如1962年揭示DNA双链螺旋结构的诺奖。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201509/noimg/fe5402ce-8a68-46ea-a731-d1b2f037ea42.jpg" title="2.jpg"//pp  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它有较大的限制。科学家们可能需要几年才能找到把蛋白形成大块结晶的方法。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。/pp  当Richard Henderson 1973年到LMB,研究菌视紫红质(一种利用光把质子运进膜内的蛋白)结构时,X射线晶体衍射是首选工具。Henderson和他的同事Nigel Unwin成功地做出了该蛋白的二维结晶,但却不适用于X射线衍射。因此他们决定使用电子显微镜。/pp  当时,电子显微镜主要用于研究用重金属染过色的病毒或组织切片。一束光子打在样本上,新生的电子被检测到,被用于解析样本结构。这种方法成功制作了第一幅病毒的精微图片——一种烟草病毒。但染色导致无法看清各个蛋白,更不要说原子细节了。Agarad表示,样本上要么满是斑点,要么没染上,你只能看到分子的轮廓。/pp  Herderson等人省略了染色的步骤,把菌视紫红质的单层晶体放到金属网格中,然后用电子显微镜进行成像。Agard表示,这个过程里,你看到的是蛋白的原子。这在当时是很大的进步,因为当时人们都认为不可能利用电子显微镜解析蛋白结构。Henderson等人在1975年发表了这一成果。/pp  20世纪80年代和90年代,低温电子显微镜领域发展迅速。一个关键性突破是利用液态乙烷来快速冷冻蛋白溶液。这也是为什么叫低温电子显微镜的原因。但这个技术的分辨率仅为1纳米,远远达不到针对蛋白结构进行药物设计的需求。而当时X射线晶体衍射的分辨率能达到0.4纳米。NIH等资助者投入了数亿美金来支持蛋白晶体领域的发展,但对于低温电子显微镜领域的资助却很少。/pp  1997年,Henderson参加了高登研究会议(Gordon Research Conference )关于3D电子显微镜的年会。一位同事以这样的话做为开幕致词,“低温电子显微镜技术非常有限,不可能超越X射线晶体衍射。” 但Henderson的想法完全不同,在下一场发言中,他做出了反击。Henderson指出,低温电子显微镜会超越其它各种技术,成为全球研究蛋白结构的主流工具。/pp strong 革命由此开始/strong/pp  在此之后,Henderson等人致力于提高电子显微镜的性能——尤其是感知电子的灵敏度。在数码相机席卷全球很多年后,很多电子显微镜学家仍然倾向于使用传统的胶片,因为比起数码感应器,胶片能更有效地记录电子。与显微镜生产商合作时,研究者们发明了一种新的直接电子探测器,这种探测器的灵敏度远高于胶片和数码相机探测器。/pp  大约在2012年,这种探测器能够以一分钟几十帧的高速得到单个分子原子的连续图像。同时,和Scheres一样的研究者们精心编写了将多张2D图片建成3D模型的软件程序。这些3D图像的画质可以媲美X射线晶体衍射获得的图像。/pp  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。/pp  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。/pp  5月,多伦多大学(University of Toronto)结构生物学家John Rubinstein等人使用了100,000张低温电子显微镜图片来生成V-ATPase 的“分子电影”,V-ATPase的作用是消耗ATP,把质子运进运出细胞液泡。”我们发现,这个酶非常灵活,可以弯折、扭曲和变型。” Rubinstein说道。他认为,这是由于这个酶的灵活性,它能够高效地把ATP 释放的能量传递到质子泵。/pp  2013年Nogales的团队拼接了调控DNA转录成RNA的复合体的结构。他们发现,复合体的一个臂上悬挂着紧绕DNA链的10纳米结构,这段结构可能影响基因转录。Nogales表示,这个结构很漂亮,它可以帮助我们分析这个分子起作用的机制。/pp strong 小而漂亮/strong/pp  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。/pp  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。“当我看到TRPV1的结构时,我激动得一晚上睡不着觉。”Rubinstein说道。/pp  研究者们可能面临更多这样无眠的夜晚。Agard表示,会有更多膜蛋白相继被解析出来。/pp  上个月由Scheres和清华大学的结构生物学家施一公合作发表的一篇文章就成功解析了一个膜蛋白。他们建立了& #947 -分泌酶的模型,& #947 -分泌酶负责合成与阿兹海默症相关的& #946 -淀粉斑。0.34纳米分辨率的图谱显示,比较少见的遗传性阿尔茨海默病的& #947 -分泌酶突变后会在图谱上呈现两个“热点”(突变或者重组频率显著增加的位点),并且这种突变最终会合成有毒性的& #946 -淀粉斑。& #947 -分泌酶的结构图帮助研究者发现为什么以往的抑制剂会无效,从而促进新药的研发。程亦凡表示,& #947 -分泌酶的结构非常惊人。/pp  类似的成功吸引了制药公司的注意。他们希望借助低温电子显微镜去解析那些无法结晶的蛋白,从而更好地研发药物。Scheres如今和辉瑞公司合作,攻克离子通道。离子通道包含很多膜蛋白,例如痛感受分子和神经递质受体。“我几乎被每一个人联系过。”Nogales这样说道。/pp  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。/pp  与任何热门领域一样,低温电子显微镜的发展也有烦恼。一些专家担心研究者们盲目追求该仪器会诱发一些问题。2013年HIV表面蛋白的结构图遭到了科学家们的质疑,他们认为用于建模的图片很多都是白噪声。此后,其他团队得到的X射线晶体衍射和低温电子显微镜模型也对原模型提出了质疑。但这些研究者们坚持相信自己的结果。今年6月,在高登研究会议(Gordon Research Conference )上,研究者们希望低温电子显微镜的结构图要有严格的质量控制。并且杂志要求作者们提供详细的建模方法。/pp  成本问题可能会限制低温电子显微镜的推广。Scheres估计,LMB每天用于支持低温电子显微镜的经费就达到近3万人民币,外加近1万的电费——这是由于存储和处理图片的电脑耗电量很大。Scheres表示,每天至少要花费近4万人民币,对于很多地方来说,这个费用太高。为了推广低温电子显微镜,很多基金会建立了对外公开的设备,各地研究者们可以预约使用。霍华德· 休斯医学研究所(Howard Hughes Medical Institute, HHMI)在珍利亚农场研究园区配备了一台。这台设备对所有HHMI资金的研究者公开。在英国,政府和维康信托在牛津大学附近建立了低温电镜公开使用平台。参与该平台搭建的伦敦大学(University of London)的结构生物学家Helen Saibil表示,有很多人想学习使用低温电镜。/pp  洛克菲勒大学(Rockefeller University)的生物物理学家Rod MacKinnon就是这些人之一。他在2003年因解析一些离子通道的结晶结构而获得诺贝尔奖。MacKinnon现在对低温电镜非常着迷。“我现在处于学习曲线的斜坡阶段,非常热切。” MacKinnon这样说道。他打算用低温电镜来研究离子通道是如何开和关的。/pp  1997年时,Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。/pp  原文检索:/pp  Ewen Callaway. (2015) The revolution will not be crystallized. Nature, 525(7568):172-174./p
  • 手提核酸站、光子计数CT......进博会精准医疗领域超“火爆”
    纵观前四届进博会的招展情况,医疗器械及医药保健展区一直是“最火爆”的展区之一。第五届进博会,该展区“火爆”依旧:全球十五大药品巨头将首次齐聚,全球十大医疗器械企业也将集体亮相。一批展区内的全球顶尖展品也早已按捺不住,提前露出。  大批展品聚焦抗疫  连续三届进博会,一大批展品均聚焦抗疫等时下社会关注度最高的领域。  丹纳赫将在中国首次展示的赛沛便携式快速核酸筛查站,大小相当于一只黑色大号手提箱,可以带上交通工具,快速转移到各种突发疫情现场,立即用于核酸检测。这款便携式快速核酸筛查站可以随时随地实现核酸检测流程的自动化,还可以搭载多种检测项目,包括碳青霉烯耐药基因、结核分枝杆菌、HIV、艰难梭菌、金黄色葡萄球菌、乙肝病毒、丙肝病毒等。  来自荷兰的莱慎欧洲有限公司从事微生物病毒病菌防治产品的研发、生产、销售,今年进博会上将展示一批消毒设备。其中一款气溶胶雾化消毒机器人,使用20升的大蒜E素消毒液,最高可有效覆盖2.5万平方米的区域。  罕见疾病找到克星  罕见病是众多患病率极低的疾病的统称,又称“孤儿病”。展区内,世界500强药企将在罕见病、肿瘤、遗传性疾病等领域的药品创新上一较高下。  武田制药此次集中展示消化、肿瘤、罕见病等核心领域的8款全球首创、同类最优的创新产品和突破性疗法。其中,就有目前全球唯一获批的治疗成人器官移植或造血细胞移植后难治性巨细胞病毒感染或疾病的药物——马立巴韦。  百时美施贵宝带来了12款全球创新产品。其中,抗LAG-3免疫复方制剂Opdualag(黑色素瘤)是首次在中国亮相。  赛诺菲将重点展示5款首秀产品,其中有不少“全球唯一”。Nexviazyme是新一代针对庞贝病的酶替代疗法,已在美国、日本和欧洲等地获批。  医疗器械追求精准高效  展区内,医疗器械领域的竞争也相当激烈,轻便、精准、高效等是外资巨头们共同追求的目标。  波士顿科学的VersaCross射频穿刺交换导丝系统今年刚获得盖伦奖提名,就被火速安排送入“四叶草”。VersaCross是目前左心房治疗中唯一无需交换导丝和鞘管的房间隔穿刺设备,不依赖“针尖”和术者的力度,在复杂环境中也能灵活优化穿刺位置并轻松、精准地完成穿刺。  瓦里安将展出全球唯一的可调冷冻消融针CryoCare V-Probe,这根“冰针”采用首创的氩氦适形冷冻消融技术,仅需30秒便能降温至-140℃至-170℃,迅速冻死肿瘤细胞,同时避免损伤邻近的正常组织。  今年进博会上,西门子医疗将主展台面积扩大了近一半,全球首款光子计数CT“NAEOTOM Alpha”将借助进博会平台进行亚洲首展,图像分辨率较以往提高了1到2个数量级,达到了110微米,可对微小肺癌在萌发初期的临床变化做出鉴别。将来,光子计数CT检查甚至能成为评估放置冠状动脉血管支架的前提。
  • 清道夫受体可防止内毒素血症的出现
    清道夫受体是在研究巨噬细胞转变成泡沫细胞的机制时才发现,其功能还不完全清楚。乙酰化LDL以及其他修饰的LDI可以通过清道夫受体被巨噬细胞摄取,导致巨噬细胞内脂类大量堆积。尽管注射125Ⅰ-乙酰化LDL等可以迅速在巨噬细胞内出现,但没有证据表明体内也存在这些修饰的LDL。细胞外液也没有能使LDL乙酰化的乙酰CoA。血小板以及巨噬细胞在氧化花生四烯酸时释出丙二醛,丙二醛LDL可以与清道夫受体结合。虽然体外修饰所需丙二醛浓度较高,体内可能无足够的丙二醛,但在血管壁局部,尤其有血小板形成血栓时,有可能生成足够的丙二醛以修饰LDL。 近年来,大量实验证明LDL可以被巨噬细胞、血管内皮细胞和平滑肌细胞氧化形成氧化LDL。氧化LDL可以通过清道夫受体被巨噬细胞摄取,形成泡沫细胞。氧化LDL还能够吸引血液单核细胞黏附于血管壁,对内皮细胞产生毒性效应,促使粥样斑块的形成。这些研究无疑阐明了巨噬细胞清道夫受体在粥样斑块形成机制中的重要作用。 另一方面,巨噬细胞通过清道夫受体可清除细胞外液中的修饰LDL,尤其是氧化LDL,是机体的防御功能之一。电镜观察到由血液单核细胞进入血管壁后衍生的巨噬细胞可以重新回到血管内,以清除过量的脂蛋白的过程,这也是清道夫受体的生理功能。当进入血管壁的脂蛋白过多,超过了巨噬细胞的处理能力,或氧化LDL抑制了巨噬细胞再回到血流时,就会形成泡沫细胞。 细菌内毒素为一种脂多糖,也是清道夫受体的配体。肝脏的清道夫受体可以摄取、清除内毒素,防止发生内毒素血症。粉尘工作者吸入的青石棉(crocidolite)也是清道夫受体的配体,可由清道夫受体结合清除,这也是机体的防御措施之一。 目前认为,清道夫受体结合LPS是参与宿主对LPS的清除作用,无激活效应。但具体的过程仍有待进一步阐明。
  • 【Nature】赛多生物分析三剑客助力甲病毒受体快速发现
    甲病毒(Alphavirus)是包膜RNA病毒,可引发皮疹、关节痛、急性发热疾病,甚至致命的脑炎。该病毒属包括东方马脑炎病毒(EEEV)、塞姆利基森林病毒(SFV)、辛德毕斯(SINV)病毒和基孔肯亚病毒(CHIKV)等。病毒包膜蛋白以正二十面体对称排列,E2和E1糖蛋白形成异质二聚体,聚成80个三聚体,介导病毒和细胞膜的受体结合与融合。甲病毒结构示意图研究分享近期发表在Nature期刊的一项研究中[1],哈佛医学院的科学家们发现极低密度脂蛋白受体(VLDLR)是典型的甲病毒SFV的受体,而EEEV和SINV病毒的E2/E1糖蛋白也与VLDLR的配体结合域(LBD)相互作用介导病毒进入细胞,受体是与VLDLR密切相关的载脂蛋白E受体2(ApoER2)。赛多利斯生物分析三剑客——Octet分子互作分析系统,Incucyte实时活细胞分析系统以及iQue高通量流式细胞仪在这篇文章中大放异彩。1. 细胞水平筛选甲病毒受体利用CRISPR和模拟甲病毒的假病毒系统在细胞水平进行甲病毒受体筛选。将甲病毒复制子系统转化为基于DNA的报告病毒颗粒(SFV RVP)系统(或称之为假病毒),GFP为报告基因。当细胞被假病毒感染后,报告基因被整合到细胞基因组中,表达GFP产生绿色荧光。构建针对人类基因组中膜相关蛋白的向导RNA(sgRNAs)文库。使用该文库对感染SFV RVPs的HEK293T细胞进行CRISPR/Cas9筛选。发现使VLDLR(极低密度脂蛋白受体)基因沉默可以抑制SFV RVP的干扰,说明VLDLR是SFV的受体。这篇文章有大量数据检测SFV RVP对细胞的相对感染率,iQue高通量流式细胞仪当仁不让地成了这个测试的主力。左、中、右分别为活细胞群,单细胞群和GFP阳性细胞群。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%左:VLDLR敲除后,SFV的感染能力大大降低右:加入VLDLR的抗体,可以阻断SFV对细胞的感染iQue高通量流式细胞仪的优势在于:- 高通量速度快:5分钟即可完成一块96孔板检测;- 操作简便:“混匀-测定”,免洗流程,确保抗体靶点空间构象免遭破坏;- 节约样品:最少仅需几微升样品,节约靶标抗原和珍贵细胞。iQue 高通量流式细胞仪2. 分子水平研究甲型病毒E2/E1蛋白与受体的结合为了搞清楚甲病毒E2/E1蛋白是否直接与VLDLR和ApoER2的LBD(ligand binding domain)结构域结合,作者生成并纯化了甲病毒的病毒样颗粒(VLP)。使用基于生物层干涉(BLI)的Octet分子互作分析系统进行分析,发现VLDLRLBD-Fc可以直接结合SFV、SINV和EEEV VLP。而RAP(一种VLDLR阻断剂)可以阻断甲病毒和VLDLR的结合。进一步从分子水平验证了VLDLR的LBD结构域是甲病毒的结合位点。Octet Red 96e测试:用AHC(anti-human Fc)传感器固化受体,然后加入100 μg/mL阻断蛋白RAP或者Tf,然后与甲病毒VLP (20 nM) 结合5分钟Octet分子互作分析系统的优势在于:- 非标记Direct binding是趋势,结果更准确;- 快速测定亲和力,更加定量化地表征分子互作;- 无洗涤步骤,可测弱亲和力(解离快);- 写入了美国药典,文章多,认可度广;- 万金油技术,可以用于检测DNA,小分子,蛋白质等各种生物分子,比如这篇文章检测的就是病毒颗粒样品;- 操作简便,耗材及维护成本低。3. 细胞成像研究病毒对细胞的感染皮质神经元是甲病毒感染的细胞种类之一,并引起脑炎。用Incucyte实时活细胞分析仪检测了甲病毒对神经元的感染率。加入VLDLR的LBD结构域或者RAP,可以阻断甲病毒的感染。用Incucyte S3检测iPSC分化的神经元对SFV RVP的感染。GCU阈值5,用Top-hat算法进行背景扣除。经过22小时培养后,计算GFP荧光面积。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%Incucyte实时活细胞分析系统优势在于:1) 贴壁生长的神经细胞相对其他细胞比较脆弱,Incucyte S3放入培养箱中,不需要移动培养板,对拍照的人为干扰最小。而流式等技术需要对细胞消化处理,可能会大大影响其活性和检测的准确性;2) 配备无毒害免干扰的活细胞分析试剂,智能的神经细胞分析软件,以及趋化、迁移、3D肿瘤球和类器官模块;3) 通量高,一次可同时进行多达6块多孔板的实验,灵活选择不同的物镜和荧光通道。天下武功,唯快不破。赛多利斯生物分析三剑客——Octet,iQue和Incucyte相比同类检测工具都具备更高的通量及功能,可以帮助药物研发和科研工作者快速拿到准确的数据,在内卷的环境中迅速占领一席之地!-参考文献-1. Clark, L.E., Clark, S.A., Lin, C. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021. DOI:10.1038/s41586-021-04326-0
  • 广州电子公司自主研制的首台激光快速成型机交付使用
    近日,由广州电子技术有限公司自主研发的第一台CASLA-350型激光固化快速成型机运抵汕头澄海玩具城交付用户使用。该设备具有高精度、软件补偿精确、光学系统更稳定的特点。交付用户使用后受到好评。  激光固化快速成型技术广泛应用于汽车零件、手机、手提电脑、数码相机、家电、轻工、玩具等行业的模具设计及产品研发。我国是目前世界上最大的尚待开发的快速成型应用市场,相关的技术和设备有着巨大的发展空间。目前国内激光快速成型机市场主要被美国Dimension 公司占领。广州电子公司是较早开展激光快速成型设备研制的几家企业之一。广州电子公司借助与汕头市澄海区科技局、澄海玩具礼品城签约共建 “澄海玩具快速成型技术服务公共平台”,使激光固化快速成型机的设计研发与用户实现了无缝对接。CASLA-350型激光固化快速成型机研制成功并顺利交付用户使用标志着广州电子公司在先进设备制造业上迈出了重要的一步。
  • 睿科推出针对β2-受体激动剂检测的整体解决方案
    &beta 2-受体激动剂是指含氮激素中的苯乙胺类药物(phenethylamines,PEAs)苯乙胺类药物具有苯乙醇胺结构母核,苯环上连接有碱性的&beta -羟胺侧链。盐酸克伦特罗为国家按兴奋剂管制的&beta 2-受体激动剂,目前,&beta 2-受体激动剂已有20多种,我国禁止所有&beta 2-受体激动剂用于养殖业。近年来,非法使用盐酸克伦特罗(非法用于养殖时俗称&ldquo 瘦肉精&rdquo )饲养生猪事件屡禁不绝,严重危害食品安全和人民群众身体健康。一些不法养殖户转向购买人用盐酸克伦特罗或其他&beta 2-受体激动剂直接饲喂生猪。本文在已有的方法基础上改进了仪器方法,睿科仪器新推出的全自动固相萃取系统,与串联四极杆液质联用系统可以同时测定九种&beta 2-受体激动剂。实验证明该方法快速、简单,灵敏度高,完全达到了国内,欧盟和日本的要求。试剂 标准品化合物的结构见图1。乙腈购买于Fisher公司,甲酸购买于Merck公司,甲酸铵购买于Acros Organics公司,水为Milli Q。 图1. 被测&beta 2-受体激动剂的结构试样制备与保存 牛、猪肌肉组织:若为冷冻样品,将其放置室温下化冻。从原始样品中取出部分有代表性样品约100g,经组织搅拌机将样品均匀搅碎,用四分法缩分出适量试样,均分成两份,装入无菌采样袋中,加封后作出标记,一份作为试样,一份作为留样(-18℃保存),试样再利用匀质机10000r/min转速下将样品制备均匀。 样品前处理 样品制备 提取 1)称取制备好的样品2.00(± 0.02)g,置于50mL离心管中,加入8mL乙酸钠缓冲液,再加入50&mu L&beta -葡萄糖醛甙酶/芳基硫酸酯酶,匀质机匀质30s(10000 r/min),37℃水浴酶解12h。2)取出后放置室温,加入100&mu L &beta -激动剂内标工作溶液(8.7),100&mu L &beta -激动剂加标溶液,加盖后涡旋振荡, 离心10min(5000 r/min),取4mL上清液加入0.1mol/L高氯酸溶液5mL,混合均匀,用高氯酸调节pH值至1± 0.3。离心10min(5000 r/min),将全部上清液转移至另一50mL离心管中,用10mol/L氢氧化钠调节pH值至11。3)加入10mL氯化钠饱和溶液和10mL异丙醇-乙酸乙酯(6+4)混合溶液,加盖至于水平振动器振荡10min。在5000 r/min下离心10min。 转移全部的有机相,在40℃水浴下氮气将其吹干。4)加入5mL pH=5.2的乙酸钠缓冲溶液,涡旋振荡10s后,进行SPE净化 净化 1)将固相萃取小柱置于固相萃取装置Fotector上,次用5mL 甲醇、3mL水活化小柱;2)将上述待净化的溶液加入萃取小柱,弃取流出液,然后依次用3mL去离子水,3mL 2%甲酸水溶液(v/v),3mL甲醇淋洗小柱,弃取流出液,并采用负压抽干小柱;3)10mL 5%氨水氨化的甲醇溶液洗脱目标物,此时收集洗脱液; 系统自动浓缩定容;4)往管中加入1mL含0.1%甲酸的5%甲醇溶液复溶样品,涡旋震荡后,滤液待测。 分析条件 样品采用串联四极杆液质联用仪进行分析。 液相条件 采用液相色谱仪,配置有脱气机,二元泵,自动进样器。色谱柱: SB-C18, 2.1× 100, 1.8&mu m。流动相组成:A为10mM Ammonium Formate +0.1% Formic Acid水溶液(用乙酸调节pH值4.5),B为乙腈溶剂。流速0.3mL/min,柱温40℃。梯度洗脱。 质谱条件串联四极杆质谱仪。在(+)ESI模式下,采集数据,设定质谱参数如下:Capillary 4000V,Drying Gas 11L/min,Neb Press 35 psi,Gas Temp 350℃,碰撞气为高纯氮气,Q1和Q3的分辨率均为单位质量分辨。MRM模式下的参数如下:保留时间化合物母离子子离子驻留时间(ms)碰撞电压(V)碰撞能量Energy (V)4.95特布它林226152101001517010100304.98齐帕特罗262244101001018510100254.98沙丁胺醇24022210100514810100155.04塞曼特罗220202108051601080155.80莱克多巴胺302284101001016410100156.15妥布特罗228119101003017210100106.18克伦特罗(瘦肉精)27720310100102591010056.37溴布特罗367349101001029310100156.49克仑潘特29120310100152731010056.52马布特罗311237101001529310100106.83马喷特罗32523710100152171010025表2. MRM模式下的质谱参数 结果与讨论 实际样品添加了2ppb的激动剂,经萃取、净化等步骤,其回收率在80-100%之间。其检测灵敏度, 如瘦肉的灵敏度可达10ppt。图2. 0.5ppb的&beta 2-受体激动剂测得的谱图更多信息请联系:厦门总部:地址:厦门火炬高新区创业园伟业楼北楼N206室邮编:361004联系人:游经理电话:0592-5800190传真:0592-5800191服务热线:400-885-1816E-mail: info@reeko.cc 北京分公司:地址:北京市朝阳区东三环南路58号富顿中心C座518邮编:100022联系人:张经理电话:010-58674766传真:010-58674656E-mail:liangku_zhang@reeko.cc 上海办事处:地址:上海市长宁区法华镇路751弄34号404邮编:201103联系人:陈经理电话/传真:021-52300176E-mail:yufei_chen@reeko.cc 关于睿科 睿科仪器(厦门)有限公司是一家专业从事实验室分析仪器研发和生产的高科技企业,是集实验室样品前处理设备研发生产、前处理方法开发、实验室仪器销售为一体的专业厂家。 睿科仪器有限公司拥有专业的销售人员,配备具有研发经验的安装维修工程师和多年应用经验的应用工程师,为实验室分析工作者提供先进、优质的产品和高质量的技术服务。
  • 什么?商家10834台电子秤只有4264台是合格的
    你身边的这些电子秤或有猫腻!据市计量测试研究所消息,在今年度“诚信计量惠民工程”现场检定工作中,从2月至11月,该所已经对市区范围商贸流通领域内3861家商家的在用电子秤进行了免费检定。检定共涉及电子秤10834台,其中,检定合格 4264台,合格率仅为39.4%。  本次检定的商家包括个体户、没有统一配秤的农贸市场(茶叶、水果市场等)。市计量所市场检测室主任杜洁告诉小8,被检电子秤的不合格之处主要体现为外观、准度。“在外观方面,贸易结算领域使用的电子秤需要有防作弊铅封,没有的就是不合格。另外,有些电子秤的分度值被人为修改过,没有按照生产标准生产。”杜洁说,在精准度方面,如果误差超过允许范围,这秤也肯定是不合格的。  值得一提的是,市计量所工作人员还鉴别出了具有作弊功能的电子秤42台,并配合行政、稽查部门处理计量投诉案件19起。今年9月,就有市民投诉称寒山寺周边的枫桥大街有商店出现缺斤短两的现象。经查,的确有4家特产纪念品商店的秤有猫腻。“现在大多数的作弊秤都是密码秤。使用者通过输入数字密码,就让秤进入作弊程序,称量出来的数值能扩大10%、20%,有些甚至是100%。”杜洁提醒消费者,如果对斤两没有大概把握,很容易被骗。  今年是市计量所连续第五年实施“诚信计量惠民工程”。除了认真做好计量器具的免费检定工作外,工作人员在工作过程中还向商家发放宣传资料,宣传计量法规,并指导商家正确、规范地操作使用电子秤。据了解,相比商贸流通领域,集贸市场的电子秤合格率就明显高了不少。截至今年8月底,市区126家集贸市场的10444台电子秤,合格率达到了83.6%。
  • 直播预告!iCEM 2023之电子显微学技术在生命科学领域应用篇
    2023年6月27-30日,仪器信息网(www.instrument.com.cn) 与中国物理学会电子显微镜分会(对外:中国电子显微镜学会/www.china-em.cn)将联合主办“第九届电子显微学网络会议(iCEM 2023)”。iCEM 2023会议围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家、重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,中国电子显微镜学会参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2023或扫描二维码报名“电子显微学技术在生命科学领域应用”专场预告(注:最终日程以会议官网为准)专场七:电子显微学技术在生命科学领域应用(上)(6月30日上午)生命科学专场主持暨召集人:沈庆涛 南方科技大学 副教授报告题目演讲嘉宾电子显微镜助力新型基因编辑工具开发刘俊杰(清华大学 研究员)日本电子冷冻电镜技术及应用——生命科学与电催化张滢(捷欧路(北京)科贸有限公司 应用工程师)适用于组织样品的原位结构研究方法探索郭强(北京大学 研究员)徕卡电镜制样与光电关联相关技术介绍王仁姚(徕卡显微系统(上海)贸易有限公司 产品经理)白斑综合症病毒环状堆叠的衣壳复合物结构和压力驱动的基因组注射刘明栋(南方科技大学 博士后)Structural Basis of nucleosome deacetylation by Sin3 HDAC complex何俊(中国科学院广州生物医药与健康研究院 研究员)专场八:电子显微学技术在生命科学领域应用(下)(6月30日下午)双链RNA病毒的转录过程及调控机制研究朱平(中国科学院生物物理研究所 研究员)冷冻电镜在生命科学中的技术进展及应用分享黄子惠(赛默飞世尔科技 市场拓展经理)Mitochondrial Vacuolization: Long COVID-induced Damage to Cardiomyocytes?刘铮(南方科技大学冷冻电镜中心 教授)电镜技术与呼吸道病毒研究熊晓犁(中科院广州生物医药与健康研究院 研究员)内源性甘氨酸受体的结构和组装过程朱洪涛(中国科学院物理研究所 特聘研究员)嘉宾简介及报告摘要(按分享顺序)生命科学专场主持暨召集人:沈庆涛 南方科技大学 副教授【个人简介】沈庆涛2009年博士毕业于清华大学隋森芳院士课题组;随后在美国耶鲁大学,威斯康辛大学麦迪逊分校和加州大学伯克利分校从事博士后研究工作。2016年沈庆涛加入上海科技大学,担任研究员、博士生导师;2022年全职转入南方科技大学,担任长聘副教授,博士生导师。长期以来,沈庆涛课题组聚焦生理温度下的4D冷冻电镜方法学开发,并将这些新技术应用到胞内运输的研究中。刘俊杰 清华大学 研究员【个人简介】刘俊杰(Jun-Jie Gogo Liu)为清华大学生命科学学院助理教授、生命科学联合中心研究员、生物结构前沿中心研究员,其实验室综合运用生物信息学,生物化学,生物物理学以及细胞生物学等手段从事新型基因编辑工具的设计和开发,以及与RNA相关联的核酸酶机器的工作机理研究。近年来,刘俊杰及其团队解析了逆转座子的基因转座分子机理 (Cell, 2023), 开发了小型CRISPR-CasX、CasPi等核酸酶系统(Nature, 2019 Mol Cell 2022 Cell Res 2023),揭示CRISPR-Cas整合酶的外源DNA整合机制(Science 2017),解析了一系列的由病毒编码的CRISPR-Cas开关蛋白的工作机理,并证明开关蛋白可稳定调控CRISPR-Cas基因编辑,同时降低脱靶效应 (Science Advance, 2017 Mol Cell, 2019)。刘俊杰于2018年获得美国生命科学研究基金奖,2020年获得加州大学突出博士后奖,2021年获得中国国家自然科学基金委原创项目支持,2022年获得优秀青年基金(海外)支持。Lab主页:https://www.liulab-biology.org报告题目:电子显微镜助力新型基因编辑工具开发【摘要】核酸酶是具有核酸切割活性的生物大分子,可被开发为核酸操纵工具,用于DNA和RNA的编辑、示踪、调控等科学研究。相关技术亦被逐步用于农业育种、人类疾病治疗及生物能源生产等,是生物科技发展的重要领域。本报告中,将介绍如何利用冷冻电镜等手段,探究核酸酶CRISPR-Cas、逆转座子的工作机制,并基于其结构工作机理,开发新型基因编辑工具。张滢 捷欧路(北京)科贸有限公司 应用工程师【个人简介】张滢,日本电子冷冻电镜应用工程师。2018年博士毕业于美国Oregon Health and Science University,主要研究方向为基于超高分辨成像技术的结构生物学研究,曾从事超高分辨荧光显微镜、冷冻电镜以及光电联用等方法学研究,相关成果发表在Nature Communications, European Journal of Cell Biology, PLoS One等杂志上。目前负责日本电子冷冻电镜在生命科学等方向上的应用支持。报告题目:日本电子冷冻电镜技术及应用——生命科学与电催化【摘要】日本电子冷冻电镜CRYO ARM 可用于观察对电子束辐射敏感的样品,如生物大分子、高分子材料等。它支持单颗粒结构分析(SPA)、电子断层扫描成像(Cryo-ET)、微晶电子衍射分析(MicroED)等多种方法。CRYO ARM配置了新型冷场发射枪(cold FEG) 、镜筒Omega能量过滤器和科勒照明模式,在获得高分辨及高衬度图像的同时,极大地提升了采集速率。本次报告将为您详细阐述CRYO ARM技术亮点,以及它在生命科学和电催化等交叉领域的应用案例。郭强 北京大学 研究员【个人简介】2009年本科毕业于兰州大学生命科学学院,2014年获得清华大学生物学博士学位。2014年至2020年在德国马普生化所从事博士后研究。2020年任北京大学生命科学学院研究员,同时加入蛋白质与植物基因研究国家重点实验室和北大清华生命科学联合中心。郭强实验室主要以电子光学为研究手段,在细胞内对亚细胞结构进行原位观察解析。在此基础上研究“细胞建筑学”:各个亚细胞结构是如何搭建成一个具有完整生物学功能的细胞,以及“生物大分子社会学”:细胞内的细胞器、生物大分子之间的相互关系。我们主要研究方向包括:1. 在纳米、亚纳米尺度对细胞骨架、蛋白稳态等基础细胞生物学问题的研究。2. 对包括神经退行性疾病在内的老龄化疾病致病机制的研究。3. 适用于组织样品的高分辨原位结构生物学方法优化。报告题目:适用于组织样品的原位结构研究方法探索【摘要】冷冻电子断层扫描技术(Cryo-electron tomography, Cryo-ET)是冷冻电镜的一个重要分支,避免了传统电镜技术由于染色、包埋等操作造成的细胞膜结构改变和蛋白质变性,可以在分子分辨率解析生物大分子及细胞器等亚细胞结构并获得其与微环境中其他组分的关系。但受限于加工速度和聚焦精度,该方法目前主要适用于单个细胞样品。尽管通过目前的单细胞系统已经可以对许多重要的生物学事件进行解析,包括组织、类器官在内的多细胞系统对于理解一些关键的生理现象特别是复杂的病理机制依然至关重要。为此我们建立了一套可以广泛适用于组织样品的原位结构解析技术。通过对全流程的优化,提高了成功率和加工效率。应用此技术,我们对小鼠胰岛进行了原位结构分析,首次完成了胰岛素晶体的原位晶胞参数确定。王仁姚 徕卡显微系统(上海)贸易有限公司 产品经理【个人简介】徕卡显微系统负责电镜制样产品的管理与市场推广工作。在分析仪器行业有超过十年的工作经验,对电镜技术,X射线以及工业材料CT三维分析技术等从理论到应用层面均有一定了解,客户接触面较广,如高校研究所,电子半导体,新能源企业,汽车航空航天等各不同领域。加入徕卡后负责生命科学与材料行业的制样设备包括:高压冷冻,超薄切片机,离子束研磨,离子溅射镀膜仪,冷冻光电联用与活细胞光电联用等产品。报告题目:徕卡电镜制样与光电关联相关技术介绍【摘要】徕卡为电镜用户制样提供丰富的产品与技术路线:如利用高压冷冻后上冷冻替代回树脂包埋样品到常温切片路线,也可直接在玻璃化冷冻状态下上冷冻切片路线。且徕卡把电镜制样与深厚的光学技术融合开发了光电关联技术方案,如从活细胞培养开始时间尺度上去筛选样品状态的活细胞光电联用。还有冷冻状态下进行细胞三维坐标定位后转冷冻FIB与冷冻透射的冷冻光电联用路线。从不同的样品类型出发,旨在为用户提供特定荧光标记定位与坐标导航功能,助力生命科学研究。刘明栋 南方科技大学 博士后【个人简介】本人于2016年在兰州大学生命科学学院取得学士学位,之后在中国科学院分子细胞科学卓越创新中心与上海科技大学的联合培养下,于2022年取得博士学位;目前,在南方科技大学生命科学学院沈庆涛老师课题组从事博士后研究工作。我们以冷冻电镜为主要技术,结合生物化学以及细胞功能等实验,研究ESCRT-III介导膜分裂的分子机制和对虾白斑综合症病毒侵染宿主细胞的结构生物学基础,同时也在探索解析原位生物大分子高分辨率结构的新技术与新方法。目前以共同第一作者身份在Science Advances、PNAS、Communications Biology上发表论文。报告题目:白斑综合症病毒环状堆叠的衣壳复合物结构和压力驱动的基因组注射【摘要】白斑综合症病毒(WSSV)是目前发现的最大的DNA病毒之一,它可以侵染虾等上百种海洋甲壳类生物。在病毒的生命周期中,具有杆状和卵形两种几何特征的WSSV衣壳复合物对于病毒基因组的包装、保护和运输等至关重要,然而衣壳复合物的组装形式以及结构转变的分子机制还未被阐明。本研究中,我们利用冷冻电镜单颗粒技术解析了WSSV杆状衣壳复合物环状堆叠而成的三维模型,并且结合生化、细胞功能等实验,提出WSSV依靠卵形衣壳内部的高压驱动基因组DNA向外注射的工作模型。何俊 中国科学院广州生物医药与健康研究院 研究员【个人简介】何俊博士在2006年获得清华大学学士学位,2012年获得伦敦Institute of Cancer Research博士学位。之后分别在伦敦Francis Crick Institute和UCB Pharma担任博士后和资深科学家。2019年初入职中国科学院广州生物医药与健康研究院建立课题组。任研究员,博士生导师,获得中科院高层次人才项目,并兼任中国生物物理协会冷冻电子显微学分会理事和中国电子显微镜学会广东省分会理事。课题组主要致力于研究染色质动态调控的功能及机制,重点关注与肿瘤发展密切相关的重要大分子机器复合物,通过在多尺度上对这些复合物的高分辨率结构解析和功能机制研究,探索其在细胞命运调控网络中的功能和相互作用规律,在分子水平上理解其参与肿瘤发生发展的致病机理。相关论文以通讯或第一作者(共同)发表在Molecular Cell,Nature Microbiology和 Nature Communication等期刊上。承担国家自然科学基金专项等多个科研任务。报告题目:Structural Basis of nucleosome deacetylation by Sin3 HDAC complex【摘要】In Saccharomyces cerevisiae, cryptic transcription is prevented by the activity of Sin3 histone deacetylase (HDAC) complex Rpd3S in coding regions. Rpd3S is carried by the transcribing RNA polymerase II (RNAPII) to deacetylate and stabilize chromatin. Despite its fundamental importance, the mechanisms of Rpd3S deacetylating nucleosomes and regulating chromatin dynamics remain elusive. Here, we determined several cryo-EM structures of Rpd3S in complex with nucleosome core particles (NCP). These states demonstrate that Rpd3S utilizes a conserved Sin3 basic surface to progress through the nucleosomal DNA in a left-handed superhelical manner.朱平 中国科学院生物物理研究所 研究员【个人简介】朱平,中国科学院生物物理研究所,生物大分子国家重点实验室,研究员,国家“杰出青年科学基金”获得者。1990年本科毕业于浙江大学,1993年于西安交通大学获硕士学位,1997年于清华大学获博士学位。1999年赴美国佛罗里达州立大学生物系从事博士后研究,2008年回国任中科院生物物理研究所研究组长、博士生导师。以冷冻电镜(Cryo-EM)和电子断层成像(Electron Tomography)技术为主要手段进行病毒、染色质等生物大分子及其复合物的结构和功能研究。现任中国电子显微镜学会理事;中国生物物理学会理事。报告题目:双链RNA病毒的转录过程及调控机制研究【摘要】RNA病毒是唯一以RNA为遗传物质的生物体,其中的双链RNA(dsRNA)病毒既是许多重要传染性疾病的病原体,也是研究病毒组装与复制机制的良好模型。本报告介绍我们利用冷冻电镜技术获得的CPV、MRV等不同双链RNA病毒及其转录机器在病毒复制过程不同阶段的高分辨率结构,以及双链RNA病毒转录过程的分子调控机制研究。黄子惠 赛默飞世尔科技 市场拓展经理【个人简介】黄子惠 博士,赛默飞世尔科技生命科学电镜市场拓展经理。2021年博士毕业于浙江大学,期间曾赴美国加州大学伯克利分校访学交流。主要研究方向为基于冷冻电镜的结构生物学研究,在PNAS、Nature Communications等期刊杂志上发表高水平学术研究成果数篇。报告题目:冷冻电镜在生命科学中的技术进展及应用分享【摘要】近年来,冷冻电镜技术一直在不断的发展前行。目前,冷冻电镜技术越来越多地被应用在生命科学的各个领域的研究中,尤其是在阐释参与体内重要生理代谢过程或疾病发生发展紧密相关的蛋白和复合体的结构和功能方面发挥了重要的作用,很多研究成果亦被写进教科书。本次报告将汇报冷冻电镜技术的最新进展及相关结果。刘铮 南方科技大学冷冻电镜中心 教授【个人简介】刘铮,南方科技大学冷冻电镜中心教授,博士生导师。美国生物物理学会会员、美国心脏学会会员、美国华裔心脏学会终身会员。中华医学会心血管病学分会基础研究学组委员、中国生物物理学会冷冻电镜分会理事、广东省电子显微镜专业委员会理事、中国电子显微镜学会常务理事兼低温电镜专业委员会副主委。主要研究领域1.组织与细胞原位结构三位冷冻电子断层扫描与三位重构2.蛋白质、生物大分子复合物、病毒的三维结构解析3.心血管疾病的结构生物学致病机制。主持国家自然科学基金面上项目4项。在Cell Discovery、Signal Transduction and Targeted Therapy、PNAS等期刊共发表SCI论文50余篇。报告题目:Mitochondrial Vacuolization: Long COVID-induced Damage to Cardiomyocytes?【摘要】A significant number of individuals who have contracted SARS-CoV-2 have encountered persistent symptoms, referred to as “Long COVID”, have impacted millions of lives worldwide. Our report describes a patient who suffered a sudden cardiac death during exercise one month after COVID-19 infection. A diagnosis of myocarditis is made through endomyocardial biopsy and histochemical staining which confirmed the presence of inflammatory cells. Electron microscopic examination detects a significant number of mitochondria vacuolations and lipofuscin granules in the cardiomyocytes. In addition, mice infected with SARS-CoV-2 also exhibit similar mitochondria vacuolations, indicating a potential cellular mechanism for the cardiac consequences of Long COVID.熊晓犁 中科院广州生物医药与健康研究院 研究员【个人简介】熊晓犁,博士生导师,中科院广州生物医药与健康研究院感染与免疫中心研究员,呼吸疾病国家重点实验室研究员。国家海外高层次人才引进计划青年项目入选者,广东省珠江人才计划入选者。熊晓犁博士运用生物化学与结构生物学方法长期从事病原微生物的感染,传播,及致病机制的研究。在流感病毒装配机制领域解析了甲流M1蛋白的全长结构,揭示了M1聚合的结构基础为流感病毒的装配机制提供了信息。在流感病毒的受体研究领域,解析了H5N1,H7N9,H10N8,H3N2等流感病毒的凝血素与受体形成的复合物的结构特征,揭示了多种流感病毒因受体结合变化导致跨种传播的机制,归纳总结了流感病毒受体结合变化与跨种传播关系的理论。自2016年来对系列冠状病毒,包括SARS病毒,猪冠状病毒,及新型冠状病毒等的入侵及免疫识别机制进行了研究。共计在病原体研究领域发表论文30余篇,其中作为第一或通讯作者(含共同)在Nature,Cell,Nature Microbiology,Nature Structural & Molecular Biology,PNAS,NAR等杂志发表有影响力文章16篇,累计被引4000余次。熊晓犁研究团队旨在运用结构生物学,生物化学,细胞生物学等方法探明病原微生物感染致病,与宿主细胞的相互作用的机理,旨在为病原微生物的防控提供科学基础理论与技术支持。报告:电镜技术与呼吸道病毒研究报名占位【摘要】 上一个100年来多种呼吸道病毒,包括流感病毒和冠状病毒导致了多次全球范围内的大爆发,造成了巨大的生命财产损失。该报告将以流感病毒,冠状病毒为例,简介透射电镜(TEM)、冷冻电镜(cryo-EM)及冷冻电镜断层成像技术(cryo-ET)在流感病毒和冠状病毒受体结合,免疫识别和病毒颗粒装配等方面的应用与研究,展示多种电镜技术在理解病毒致病机制等方面重要的作用。朱洪涛 中国科学院物理研究所 特聘研究员【个人简介】朱洪涛,中科院物理研究所特聘研究员,博士生导师。2009年本科毕业于中国海洋大学。2009年本科毕业后加入中国科学院生物物理研究所朱平研究组攻读博士学位,在攻读博士学位期间,朱洪涛博士主要利用冷冻电镜单颗粒分析技术研究手足口病毒和软体动物血蓝蛋白的结构研究,具体研究成果发表在Journal of Virology、PLoS One、Science China Life Sciences等杂志上。2015年加入美国俄勒冈健康与科学大学Vollum研究所Eric Gouaux(HHMI)研究组开展抑制性受体,包括甘氨酸受体和氨基丁酸受体的功能和结构研究。在博士后期间,朱洪涛博以第一作者(包括共一)在Nature、 Cell、 eLife等国际著名刊物上发表多篇研究论文。2022年加入中国科学院物理研究所软物质实验室,目前实验室的研究方向集中在内源性甘氨酸受体和有重要生物学意义的大分子复合物的结构和功能研究。报告题目:内源性甘氨酸受体的结构和组装过程【摘要】异聚甘氨酸受体是由α亚基和β亚基共同组成的五聚体,是成年个体中的主要存在形式。科研界对异聚甘氨酸受体的化学计量和其亚基的空间排布一直不明确。在本研究中,我们解析了分辨率在2.7Å的内源性异聚甘氨酸受体的结构,不仅解决了化学计量和亚基空间排布的问题,而且首次发现并解析了处于组装中间态的甘氨酸受体的结构。会议联系会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会汪老师:13637966635,1437849457@qq.com会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 2018年上海药物所吴蓓丽连发3篇高水平文章(总影响因子90多)为靶向NPY受体的药物发现提供新思路
    p  2018年5月28日,strongspan style="color: rgb(31, 73, 125) "中科院上海药物研究所吴蓓丽课题组与中科院生物物理研究所的研究人员合作在Nature Structural & Molecular Biology上在线发表了题为“Structural basis for signal recognition and transduction by platelet-activating-factor receptor”的研究论文。/span/strong这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构和2018年4月19日在Nature发表题为“Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文,strongspan style="color: rgb(31, 73, 125) "报告了2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构/span/strong。并且首次,确定其N端与受体相互作用。对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现的又一重磅研究成果。/pp  strongspan style="color: rgb(31, 73, 125) "1Nature子刊:血小板活化因子受体识别和转导信号的结构基础/span/strong/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/bf8ea427-658e-4ba7-a8be-0ce3466f51d9.jpg"//pp  血小板活化因子受体(PAFR)对血小板活化因子(PAF)有反应,PAF是细胞间通讯的磷脂介质,表现出不同的生理效应。 PAFR被认为是治疗哮喘,炎症和心血管疾病的重要药物靶标。在这里,研究人员报告了分别与拮抗剂SR 27417和反向活化剂ABT-491在2.8Å 和2.9Å 分辨率下复合的人PAFR的晶体结构。由PAF的分子对接支持的结构提供对PAFR的信号识别机制的见解。 PAFR-SR 27417结构揭示了一种不寻常的构象,显示螺旋II和IV的细胞内尖端分别向外移动13Å 和4Å ,螺旋VIII采用向内构象。 PAFR结构与单分子FRET和基于细胞的功能测定相结合,表明螺旋束中的构象变化是配体依赖性的,并且在PAFR激活中起关键作用,因此极大地扩展了G蛋白偶联信号的知识受体。/pp  原文链接:https://www.nature.com/articles/s41594-018-0068-y/pp  strongspan style="color: rgb(31, 73, 125) "2Nature:2018年第一弹,中科院药物所吴蓓丽等研究组揭示GPCR复合物结构(糖原受体)/span/strong/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/89bf1c1d-b8bb-4254-8306-136cbe73dc94.jpg"//pp  strongspan style="color: rgb(31, 73, 125) "吴蓓丽研究组报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构。/span/strong该结构提供了GCGR与肽配体之间相互作用的分子细节。吴蓓丽研究组进一步提出了GCGR激活的双结合位点触发模型,其需要茎,第一细胞外环和TMD的构象变化,这扩展了我们对先前建立的B类GPCR的双结构域肽结合模型的理解。/pp  近日,中国科学院上海药物研究所在B型G蛋白偶联受体(G protein-coupled receptor, GPCR)结构与功能研究方面取得又一项重要进展:strongspan style="color: rgb(31, 73, 125) "首次测定了胰高血糖素受体(Glucagon receptor, GCGR)全长蛋白与多肽配体复合物的三维结构,揭示了该受体对细胞信号分子的特异性识别及其活化调控机制。/span/strong这项成果有助于深入理解B型GPCR发挥生理效应的结构生物学基础,加快2型糖尿病治疗新药的开发。相关研究论文于北京时间2018年1月4日在国际顶级学术期刊《自然》(Nature)上发表,通讯作者为吴蓓丽研究员和赵强研究员。/pp  GPCR是人体内最大的膜受体蛋白家族,在细胞信号转导中发挥重要作用。GPCR与人体疾病关系密切,目前有40%以上的上市药物以GPCR为靶点。根据其相似性,GPCR可分为A、B、C和F等四种类型。B型GPCR包括GCGR等多种重要的受体蛋白,识别并结合多肽类激素,对于维持体内激素平衡至关重要。这类受体包含胞外结构域和跨膜结构域,两者共同参与识别细胞信号。由于获得稳定和完整的B型GPCR蛋白(尤其是B型GPCR与多肽配体结合的复合物)难度极大,其结构研究极具挑战性。/pp  GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点,其结构信息的缺失不仅严重制约了对该受体信号识别和转导机制的认识,也极大地影响了靶向GCGR的药物研发?目前尚无上市药物。2017年,由中国科学院上海药物研究所吴蓓丽、王明伟和蒋华良分别领衔的三个研究组合作解析了全长GCGR蛋白同时与一种小分子变构调节剂(NNC0640)和拮抗性抗体(mAb1)抗原结合片段结合的复合物晶体结构,首次在较高分辨率水平为人们呈现了全长B型GPCR蛋白的三维结构,并揭示该受体不同结构域对其活化的协作调控机制,迈出了阐明B型GPCR信号转导机制的关键一步。/pp  尔后,strongspan style="color: rgb(31, 73, 125) "中国科学院上海药物研究所的相关科研团队再次联合攻关,成功解析了全长GCGR与胰高血糖素类似物NNC1702结合的复合物晶体结构,从而揭示了B型GPCR与多肽配体结合的精细模式。/span/strong该项目负责人吴蓓丽研究员表示:“这项成果是我们针对B型GPCR开展结构与功能研究的又一重要进展。GCGR与多肽配体相互作用模式的阐明不仅有助于深入理解B型GPCR对细胞信号分子的识别机制,并且为靶向GCGR的药物设计提供了迄今为止精度最高的结构模版,将在很大程度上促进治疗2型糖尿病的新药的研发”。/pp  该团队成员在以往的研究中发现,GCGR连接胞外结构域和跨膜结构域的肽段通过与受体蛋白其他区域的相互作用在受体活化调控中扮演关键角色。分析GCGR与多肽配体NNC1702结合的复合物结构,并与以往解析的全长GCGR结构进行比较,他们进一步发现该连接肽段在受体结合多肽配体时发生了显著的构象变化,其二级结构由β折叠转变为α螺旋,并伴随结构的迁移,使受体的两个结构域之间的相对取向发生了巨大变化,从而促进受体与多肽配体的紧密结合,导致受体激活。此外,该连接肽通过与多肽配体中段区域的相互作用对受体跨膜结构域的构象进行精细调节,进而调控受体活化。该论文的共同通讯作者赵强研究员说:“这一发现着实令人惊叹,虽然只含12个氨基酸,但这个连接肽却发挥着如此重要的作用,这在过去的GPCR结构研究中从未被发现过,使我们对B型GPCR的信号调控机制有了更为深入的认识”。/pp  基于GCGR与NNC1702结合的复合物结构,该团队还运用受体?配体竞争结合、计算机模拟和双电子共振等多种技术手段开展了一系列功能性研究,阐明了GCGR在不同功能状态下构象的动态变化,并对受体活化的调控机制进行了深入的探究。这项研究得到上海药物研究所、复旦大学和上海科技大学等多个研究组的大力支持。项目的主要合作者之一、上海药物研究所所长蒋华良院士强调:“这不仅是上海药物所GPCR研究团队取得的又一项重大研究成果,也标志着一个GPCR研究高地已在上海科创中心建设的核心区——张江高科技园区崛起”。/pp  研究论文的第一作者是研究生张浩楠,该项目的主要合作者还有中国科学院上海药物研究所王明伟研究员、杨德华研究员,上海科技大学iHuman研究所Raymond Stevens教授,丹麦诺和诺德公司Steffen Reedtz-Runge博士,加拿大多伦多大学Oliver Ernst教授,美国GPCR研究联盟Michael Hanson博士,郑州大学杨琳琳博士以及华东师范大学阳怀宇教授等。中国科学院、国家自然科学基金委员会、上海市科学与技术发展基金和上海市教育委员会等部门资助了这项研究。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/666c231c-94ff-404e-b55a-21bdda1b803e.jpg"//pp style="text-align: center "strongspan style="color: rgb(31, 73, 125) "全长GCGR结构示意图/span/strong:GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点。/pp style="text-align: center "左图为全长GCGR蛋白与小分子变构调节剂NNC0640以及拮抗性抗体mAb1结合的复合物晶体结构 /pp style="text-align: center "右图为全长GCGR蛋白与多肽配体NNC1702结合的复合物晶体结构。/pp style="text-align: center "两个结构以飘带图和表面图表示,GCGR的跨膜结构域为蓝色,胞外结构域为橙色,连接肽为绿色,第一个胞外环区为紫红色,NNC1702为红色(右图),NNC0640为黄色(左图),抗体mAb1为蓝绿色(左图)。细胞膜以灰色区域表示/pp  strongspan style="color: rgb(31, 73, 125) "3Nature:厉害了,2018年上海药物所吴蓓丽研究组再次发表重磅研究成果/span/strong/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/b7ee28c2-3ed2-44b5-baa2-ac490b0f1a3f.jpg"//pp  2018年4月19日,上海药物所吴蓓丽研究组,德国雷根斯堡大学Keller研究组,莱比锡大学Beck-Sickinger研究组合作在Nature发表题为strongspan style="color: rgb(31, 73, 125) "“Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文/span/strong,该论文报告span style="color: rgb(31, 73, 125) "strong分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构/strong/span。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。strongspan style="color: rgb(31, 73, 125) "对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。/span/strong这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构的又一重磅研究成果。/pp  神经肽Y(NPY)受体属于G蛋白偶联受体超家族,在食物摄入,焦虑和癌症生物学中具有重要作用。 NPY-Y受体系统已经成为具有三种肽配体(NPY,肽YY和胰多肽)与大多数哺乳动物中的四种受体结合的最复杂网络之一,即具有不同亲和力的Y1,Y2,Y4和Y5受体和选择性。 NPY是最强大的食物摄入兴奋剂,这种作用主要由Y1受体(Y1R)介导。许多肽和小分子化合物已被定性为Y1R拮抗剂,并且在治疗肥胖,肿瘤和骨丢失方面显示出临床潜力。然而,它们的临床使用受低效力和选择性,脑穿透能力差或口服生物利用度不足妨碍。/pp  在这里,上海药物所吴蓓丽等研究组报告分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。strongspan style="color: rgb(31, 73, 125) "对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。/span/strong/p
  • 杭州电子秤实现自动检定效率提高10倍
    从杭州市质检院获悉,由该院负责完成的科技项目《移动式电子秤现场自动检定装置的研制》顺利通过鉴定与验收。该项目填补了国内相应自动检定装置的空白,电子秤检定自动化成果达到国内领先水平。项目获国家发明专利1项、实用新型专利两项,发表论文3篇。   据项目主要完成人厉志飞介绍,该项目系统地解决了应用标准砝码自动检定电子秤的难题,实现了电子秤自动检定,研究了不同称量点标准砝码的加载或卸载等关键技术,满足了国家计量检定规程JJG539-1997《数字指示秤》的要求,电子秤检定效率提高10倍以上,具有很好的应用前景及推广价值。项目采用LabVIEW作为软件开发平台,通过PC机和PLC通讯,控制标准砝码的自动加卸载,利用图像识别技术,实时读取电子秤上的示值,同时自动获取数据,自动生成检定原始记录,自动出具检定结果通知书或计量检定证书。  据了解,项目成果已在法定计量检定机构及衡器制造企业得到初步试用,为电子秤检定(检验)技术水平的提升及产品质量监管提供了有效的技术支撑。
  • 电子案秤系列 | 为工业称重保驾护航(三)
    奥豪斯长期钻研前沿的称重技术,有防水型号电子案秤以满足不同使用环境,除此之外,不仅有能满足基本工业应用的电子计重秤,还有能帮助用户将复杂的工业应用简单化的高精度电子秤。奥豪斯工业产品回顾的第三篇,将为大家介绍奥豪斯电子案秤系列产品。Ranger 7000 高精度秤Ranger 7000系列高精度电子秤采用了多种独具特色的设计,让繁琐的现场称重操作变得简单易行:Ranger 7000具备极高的精度,超大及清晰的显示屏,众多的功能模式,丰富的接口选择,以及极强的数据库管理能力。强大卖点 / Ranger 7000高精度秤4.3寸彩色液晶屏,中文显示,最 高达350,000d显示分度全金属外壳和模块化设计,1秒显示稳定速度三级用户管理,支持GLP/GMP数据输出,满足追溯和合规性审核要求支持“红-绿-黄”三色检重/检数显示Ranger 2000 计重秤Ranger 2000拥有众多功能,可以针对不同应用需求,快速提供精确的称量结果。七种应用模式,使Ranger 2000成为可以满足各种工业称量需求的完 美计重秤。便携、标配可充电电池,在工厂的每个角落都可方便的使用,Ranger 2000具备了众多功能和特性,使其在同级别计重秤中卓尔不凡。强大卖点 / Ranger 2000 计重秤显示屏为红色LED (28mm字高),清晰明亮快速稳定,内置铅酸充电电池(110小时)标配RS232通讯接口Ranger Count 2000 计数秤Ranger Count 2000拥有众多功能,可以针对不同应用需求,快速提供精确的称量结果。通过称重,计数,检重/检数及累加功能,使Ranger Count 2000成为可以满足各种工业称量需求的完 美计数秤。便携、可充电电池,在工厂的每个角落都可方便的使用,Ranger Count 2000具备了众多功能和特性,使其在同类型计数秤中卓尔不凡。强大卖点 / Ranger Count 2000 计数秤显示屏为LCD,可存储30组数据库内置铅酸充电电池(210小时)标配RS232通讯接口Valor 2000 防水秤全新一代Valor 2000产品定义了防水案秤的新标准,具备了优异的防水能力、称重快速精 准抗振和标配可充电电池等特点。全面满足食品加工业应用需要。Valor 2000防水案秤具备了众多特性,性能卓尔不凡,超越同类产品,可以为用户创造更多的价值。强大卖点 / Valor 2000 防水秤红色LED大屏显示,清晰明亮0.5秒内稳定,快速精 准,高效作业全新防水防潮设计,可靠耐用内置铅酸充电电池(50小时) 奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 2023年全国电子显微学学术年会-生命科学与电镜平台专场集锦(下)
    中国电子显微镜学会、仪器信息网联合报道 2023年10月26日-30日,2023年全国电子显微学学术年会在东莞市会展国际大酒店龙泉厅盛大召开。大会由电镜学会电子显微学报编辑部主办,南方科技大学、松山湖材料实验室、大湾区显微科学与技术研究中心共同承办,仪器信息网作为独家合作媒体参会报道。大会共设置13个分会场:显微学理论、技术与仪器发展;原位电子显微学表征;功能材料的微结构表征;结构材料及缺陷、界面、表面、相变与扩散;先进显微分析技术在工业材料中的应用;扫描探针显微学(STM/AFM等);扫描电子显微学表征(含EBSD);聚焦离子束(FIB)在材料科学中的应用;低温电子显微学表征;生物显微学研究;生物医学和生物电镜技术;全国电子显微镜运行管理开放共享实验平台经验交流;先进材料。27日和28日下午、29日全天,第九分会场(低温电子显微学表征)、第十分会场(生物显微学研究)、第十一分会场(生物医学和生物电镜技术)和第十二分会场(全国电子显微镜运行管理开放共享实验平台经验交流)分别围绕电镜在生命科学、生物学和医学等领域的应用,以及仪器平台管理和人才培养等热点议题邀请领域内知名专家分享经验。以下是各分会场部分专家的精彩报告内容报告人:上海大学分析测试中心 主任/教授 李强报告题目:分析测试中心运行探索与实践上海大学分析测试中心创建于2003年,以建设国际一流的高端分析测试中心为目标,围绕学校优势学科和”五五战略“重点布局,整合优化全校现有技术资源,为提高0-1原始创新能力、强化科技创新策源功能,满足全校理工科为主的科研大型仪器设备需要,提供高水平及标准化分析测试服务、应用培训和创新人才培养,服务国家及上海市科技发展。迄今已投入2.5亿元仪器设备购置经费,包括三维原子探针、球差矫正透射电子显微镜等69台大型先进仪器设备。目前中心现有专职工作人员22名,其中高级职称10人,博士学位16人,硕士学位4人。报告人:南京航空航天大学 主任/教授 王毅报告题目:优化资源配置,聚焦技术开发,构建服务科研高质量发展的分析测试平台分析测试中心于2020年成立,是集教学、科研、社会服务于一体的大型分析类测试仪器资源共享、跨学科交叉研究的科研服务平台,是学科建设与发展、开展高水平科学研究、培养高水平创新人才的重要实践基地。目前已达成第一阶段目标,即设备较为完善、技术较为先进、师生较为满意的测试平台。未来要进一步聚焦于实验室建设、人才培养,立足测试服务于科学研究“双型”中心的建设定位,开展分析测试技术开发和仪器二次功能开发等研究,致力于以开发的独特技术助力学校相关学科的基础研究能力提升,形成南航大分析测试中心的独特优势。报告人:宁波大学 教授 毛倩卓报告题目:叶蝉微小体的分布、合成和释放观察通过电子显微镜,可以清晰地观察到叶蝉体表的微小体呈现网粒状排列。这些微小体是由叶蝉马氏管的特定腺段所合成的。其中,马氏管中段被证实是微小体合成的关键部位。一旦叶蝉分泌出这些微小体,它们会被涂抹在身体表面,从而帮助叶蝉维持其疏水性并躲避天敌。研究发现,如果微小体的合成受到阻碍,叶蝉的死亡率将会上升,同时其疏水性也会降低。这进一步证实了微小体在叶蝉生存和逃避天敌过程中的重要作用。报告人:安徽大学 教授 葛炳辉报告题目:扫描摩尔条纹带来的几点思考安徽大学电镜中心目前是安徽省最齐全的电镜表征测试平台,经费总投入超过7000万元,其中包括球差校正电镜、双束电镜、场发射电镜、相关TEM制样设备等,实现了从TEM手磨制样、FIB制样、FIB加工等一整套的测试功能。然而,当前中心面临的主要问题是测试人员数量的不足,这使得科研考核任务繁重,服务积极性降低。针对这一问题,葛炳辉教授深感设备日益复杂、新设备不断涌现,而培训周期也随之加长。在这样的背景下,葛教授提出一个值得深思的问题:在不断发展的科研环境中,谁能长期积累经验,掌握并运用这些复杂的设备和技能呢?葛教授呼吁广大科研工作者应保持学习的持续性,努力掌握更多仪器使用知识。报告人:北京脑科学与类脑研究所 研究员 殷杰报告题目:Cryo-EM study of a D2, dopamine receptor-G-protein complex in a lipid membrane帕金森综合症是一种慢性的神经退行性疾病,主要的治疗方法是补充多巴胺神经递质(前体)或使用多巴胺受体激动剂来缓解临床症状。因此,理解多巴胺受体信号的分子机制是至关重要的,也是改善现有疗法的有效途径。在这方面,殷杰研究员进行了一系列突破性的研究。他的团队成功解析了多巴胺受体的第一个活性结构,这是磷脂环境中首个被解析的活性GPCR(G蛋白偶联受体)结构。这一发现揭示了配体结合和活化的机制,为设计具有选择性或变构功能的配体提供了重要的结构基础。报告人:福建农林大学 教授 魏太云报告题目:电镜下的水稻病毒与媒介昆虫互作魏太云教授在演讲中深入探讨了电镜视野下水稻病毒侵染媒介昆虫的详细过程。他首先概述了主要的水稻病毒种类及其传播方式,主要是通过媒介昆虫,以持久增殖型方式传播。随后,魏教授以具体的例子为参会者讲解了他如何利用电镜观察水稻病毒在介体昆虫细胞中的侵染过程。如RGDV侵染诱导电光叶蝉,培养细胞发生凋亡,有利于病毒释放;RDV利用Pns10小管释放到唾液中;SRBSDV利用P7-1管状结构跨过中肠基底膜等。这些研究不仅揭示了水稻病毒侵染媒介昆虫的微观过程,也为我们提供了深入理解病毒传播机制的新视角。报告人:新乡医学院 教授 孔二艳报告题目:蛋白棕榈酰化修饰在神经系统中的功能和潜在病理机制早发性神经退行性疾病INCL是隐形遗传的人类疾病,其病理特征是神经细胞大量死亡导致大脑退行性病变。INCL的致病原因是去棕榈酰化酶PPT1发生自然突变导致该蛋白的功能性缺失。孔二艳教授发现GFAP棕榈酰化修饰是调控星型胶质细胞增殖的分子开关,GFAP-C291是特异的棕榈酰化修饰位点,能有效抑制星型胶质细胞的增殖和活化。当PPT1缺失后,会导致GFAP超棕榈酰化和星胶过度增殖;阻断GFAP超棕榈酰化修饰改善INCL疾病进程。该研究结果可能为相关神经退行性疾病的诊疗提供新的突破方向。报告人:兰州大学 教授 雷东升报告题目:冷冻电镜在有机材料结构研究中的应用在报告中,雷东升教授首先提到了利用冷冻电镜技术可以观察到Zn-MOF在水环境中的反应过程,并得到了四种不同的结构,这一发现为深入了解该反应的机理提供了有力的支持。其次雷教授详细介绍了一种名为IPET的技术,该技术可以从显微镜图像中获得第一个DNA折纸Bennett连接的三维重建。通过这一技术,观察到单个DNA折纸的三维形状显示为四边形。通过将DNA折纸模型灵活地对接到每个重建中,构象确定了每一张折纸的重量。最后,雷教授强调了冷冻电镜技术在口蹄疫病毒及疫苗开发中的重要作用。报告人:牛津大学/英国“钻石”同步辐射光源/英国康惠基金会 教授/主任/研究员 章佩君报告题目:Visualizing Macromolecular Structures In Situ by CryoET章佩君教授运用了原位冷冻电子断层扫描技术(Cryo ET),成功实现了对大分子结构的可视化研究。她深入探讨了α-羧体对二氧化碳的固定作用、甲烷营养细菌对甲烷的固定作用以及在完整T细胞中天然染色质纤维的构造。然而,我们仍面临诸多挑战。其中最主要的挑战之一是大多数蛋白质在细胞中都是以丰富蛋白质的形式存在,这使得低丰度靶标的检测和可视化变得异常困难。为了解决这个问题,我们需要发展出更精确的标记方法,能够在分子水平上对目标物质进行标记,以便在后续的实验中识别它们的身份。此外,对于那些没有对称性的物质,我们还需要找到新的方法来与它们进行结合。未来需要运用更先进的技术来更深入地研究这些难以捉摸的物质结构和行为。
  • 用“电子鼻” 远程监控排放
    p  治理挥发性有机物和环境隐患,是“263”专项行动中的一个重点和难点。日前从武进绿建区获悉,该园区企业宁和(常州)环境科技发展有限公司研制成功一种新型“电子鼻”,通过远程监控及时掌握挥发性恶臭有机物排放动态,为环境监管和执法提供科学依据。/pp “电子鼻”,即模仿动物嗅觉功能的仿生气体传感电子仪器,将被检气体转化为一定的信号,统计处理后形成恶臭指纹图谱,进行被检挥发性气体分析、检测和识别。该产品是宁和公司与法国阿默思公司的最新合作成果,并根据国情进行了技术化再设计,“嗅觉”灵敏度比警犬高出百倍。  /pp 记者看到,这套“电子鼻”设备有手提箱大小,安装在户外,可对同风向直径1公里范围的大气环境恶臭实行网格化在线监测、溯源分析和预警预报,构建起区域性综合环境质量联防联控机制。“过去,辨别恶臭都靠人来闻,虽然能大概摸清偷排范围,但很难确定哪家企业偷排。”宁和公司总经理周俊杰表示,“电子鼻”可在几小时、几天甚至数月内,连续实时监测特定位置的气味状况,污染物排放浓度超标时会自动报警,精确锁定排放源。  /pp 目前,该“电子鼻”已被用于上海老港垃圾填埋场、上海汽车城污水厂、常州第四制药厂等,今年下半年将在绿建区实现批量组装和调试。  /pp 武进绿建区党工委书记徐宁表示,以绿色新产品、新技术、新应用来增强示范性,是园区的首要任务。经过4年多探索实践,绿建区已形成绿色社区、绿色工厂、绿色办公、绿色公园、绿色基础设施全方位展示格局,集聚了200余家绿建生产企业和科研机构,覆盖全产业链。今年将重点引进一批科技含量高、资源消耗低、竞争力强、辐射作用大的绿色项目,加速打造“产业特、形态美、效益好、制度活”的一流科技园区。/p
  • LC-MS/MS法测定火腿肠中的3种β-受体激动剂
    LC-MS/MS法测定火腿肠中的3种&beta -受体激动剂(沙丁胺醇、克伦特罗、莱克多巴胺) 仪器:液相色谱-串联质谱仪(配电喷雾离子源);色谱条件:色谱柱:Agela Venusil MP C18 (2.1mm× 100mm, 5&mu m);柱温:35℃;流速:0.3mL;进样量:10&mu L;流动相:A相:甲醇;B相:0.1%甲酸水溶液;洗脱程序: 时间(min) A(%) B(%) 0 5 95 5 80 20 5.5 5 95 7 5 95 质谱条件:离子源:电喷雾离子源 扫描方式:正离子模式检测方式:多反应监测(MRM) 电离电压:3.0kv离子源:110° C 雾化温度:350° C锥孔气流速:50L/h 雾化气流速:650L/h 样品前处理:按照农业部1025号公告-18-2008方法执行;SPE柱:Agela Cleanert PCX(60mg, 3mL)货号:CX0603 试验结果: 图1 3种&beta -受体激动剂(沙丁胺醇、克伦特罗、莱克多巴胺,浓度为10&mu g/L)混合标准溶液特征离子质量色谱图(LC-MS/MS)注:沙丁胺醇(定量离子对m/z=240.1221.97, 保留时间t=2.08min)、莱克多巴胺(定量离子对m/z=202.2164, 保留时间t=3.14min)、克伦特罗(定量离子对m/z=277.11202.78, 保留时间t=3.21min) 图2-1 空白火腿肠添加3种&beta -受体激动剂(沙丁胺醇、克伦特罗、莱克多巴胺添加浓度为1&mu g/kg)特征离子质量色谱图(LC-MS/MS)[平行样1] 实验数据分析:准确度和精密度:本方法采用两个添加浓度(1&mu g/kg和10&mu g/kg),用空白添加标准校正,其回收率范围为70%-110%。三个平行样的相对标准偏差小于20%。总结: Agela Cleanert PCX以及Agela Venusil MP C18 在前处理及液相色谱-串联质谱仪法测定沙丁胺醇、克伦特罗、莱克多巴胺等3种&beta -受体激动剂试验中性能表现优异,可用于问题猪肉及其制品中的瘦肉精的检测。
  • 南开张新星团队JACS Au封面:质谱表征微液滴表面自发单电子氧化还原反应
    近日,南开大学张新星研究员团队针对微液滴化学的独特性质,受邀总结了40余个单电子介导的水微液滴表面自发的氧化还原反应,并通过动力学研究,证明了电子的提供和捕获——而非化学键的直接断裂——是介导水微滴界面上氧化还原反应的关键决速步骤。该工作发表在了近期的JACS Au 杂志上,并被遴选为封面文章。  近几年与微液滴相关的纳微界面反应机制的研究吸引了大量的研究目光。在技术上,质谱作为微液滴反应的主要表征手段,一方面是由于其在分析化学反应中具有捕获短寿命自由基中间体、揭示化学反应机理等方面的天然优势,另一方面更是由于微液滴是一种可以直接喷雾进入质谱仪中进行检测的物质形式,导致质谱技术成为了近年来微液滴化学发展最简单、最重要、最主要的表征方法。因此作者们在本文中列举了使用质谱方法学研究微液滴化学的优势和注意事项。此外,作者也在合成化学和大气化学的大背景下讨论了微液滴自发氧化还原能力的潜在影响。首先,微液滴对反应的加速能力在有机合成中已经得到了广泛的认可,现有的部分微液滴化学研究已经实现了克级的合成。微液滴反应由于只需要将底物的水溶液喷洒成小水滴,无需催化剂、额外的能量输入、复杂的反应装置,完全符合绿色化学的特征,因此有望在合成化学中展现更多的潜力。其次,微液滴化学在大气化学方面也具有重要启示。大气的总体氧化还原能力决定了污染的生成、天气甚至气候的形成和变化。大气水,如云、雾和海洋飞沫,都是微米大小的微液滴。由于微液滴可以促进自发的氧化还原反应,文章建议在未来的大气研究中,也许可以将微液滴效应考虑进来。在科学上,水对许多化学反应来说是一种惰性环境。然而,通过简单地将水喷洒成为微米尺寸的微液滴,就可以展现大量独特的性质,这些性质包括异常的pH值、反应物的统一取向和部分溶剂化、极高的反应速率以及极高的气液界面电场等。在微液滴的这些独特性质中,其强大的自发氧化还原能力尤其引人关注。现有大量理论和实验研究表明,或由于界面双电层的形成,或由于大量水分子的自发统一取向,或由于水分子之间的部分电荷转移(H2O+---H2O-),在微液滴的气-液界面浅层可以自发产生极高的电场(约109 V/m)。该电场大到足以可以触发氢氧根或其他底物分子的单电子氧化过程,生成相应的自由基和一个电子(图1)。生成的电子还可以继而触发其他底物分子的单电子还原过程。  图1. 微液滴化学气-液界面处的氧化还原机制和质谱分析方法示意图  图1展示了典型的微液滴化学质谱实验,并阐述了发生在微液滴表面的单电子介导的氧化还原机制。含有某种溶质的水溶液由注射泵强制推入极细的毛细管,高压氮气鞘气可将毛细管推出的液体分散成微液滴,由此产生的微液滴被喷向质谱仪的入口。以这种方式产生的微液滴的大小取决于鞘气的压力,范围在几到几十微米之间。在其表面上即可以自发发生大量的单电子的氧化还原过程。  本文总结了40余个在水微液滴表面上发生的电子介导的氧化还原反应(表1、2),认为在水微液滴表面上电子的产生和捕获——而非化学键的直接断裂——是微液滴大多数氧化还原反应的关键决速步骤。  表1. 微液滴表面呈现单电子氧化过程的物种(电子供体)  表2. 微液滴表面呈现单电子还原过程的物种(电子受体)  在单电子是微液滴表面氧化还原反应的载流子的前提下,OH-在微液滴上可以作为电子供体,如果在溶液中加入上述电子供体(表1中的分子),那么水微液滴上应该有更多的电子,在动力学上就应该可以加速电子受体的还原反应,进一步巩固电子确实是介导水微液滴上氧化还原反应的载流子的观点。  为了验证这一假设,本文作者从表1中选择了三种电子供体:四硫富瓦烯(TTF)、羟甲基二茂铁(FM)、N,N,N’,N’-四甲基-1,4-苯二胺(TMPA),并将这三者分别和电子受体EV2+(乙基紫精二价阳离子)的水溶液喷洒成微液滴。其中图2a为喷洒纯EV2+溶液的质谱图,OH-是唯一的电子供体,EV2+转化为EV•+ (m/z = 214),m/z 150~200的峰是不稳定EV•+的降解产物。图2b−2d分别为喷撒TTF与EV2+、FM与EV2+、TMPA与EV2+的混合溶液的质谱图。在这些混合体系中,还原产物EV•+的强度明显增加,表明电子供体的加入加速了EV2+的还原。图2e展示了4个系统中EV•+/EV2+的相对强度的比较,清楚地显示了添加电子供体后还原产物增加了2到7倍。图2f−2h还显示了混合体系中氧化过程的加速动力学,TTF、FM和TMPA的氧化过程也应该随着EV2+的加入而加速。TTF•+、FM•+和TMPA•+自身的绝对质谱强度随着EV2+的加入增加了2倍左右。这些结果清楚地表明电子确实是介导水微滴上氧化还原反应的载流子,且简单的动力学研究证明了电子提供和电子捕获是两个相互加速的过程。而后续的进一步化学反应(如化学键的断裂和生成)在微液滴中成为了超快的非决速步骤。    图2. 微液滴单电子氧化还原过程的动力学研究  南开大学研究生金水慧、陈欢、苑旭为本文并列第一作者 南开大学张新星研究员为本文通讯作者。本文被遴选为JACS Au杂志本期封面论文。  原文:https://pubs.acs.org/doi/10.1021/jacsau.3c00191  The Spontaneous Electron-Mediated Redox Processes on Sprayed Water Microdroplets Shuihui Jin,# Huan Chen,# Xu Yuan,# Dong Xing, Ruijing Wang, Lingling Zhao, Dongmei Zhang, Chu Gong, Chenghui Zhu, Xufeng Gao, Yeye Chen, and Xinxing Zhang*JACS Au, 2023, DOI: 10.1021/jacsau.3c00191  张新星课题组网站:http://www.zxx-lab.com/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制