当前位置: 仪器信息网 > 行业主题 > >

水压变送器

仪器信息网水压变送器专题为您提供2024年最新水压变送器价格报价、厂家品牌的相关信息, 包括水压变送器参数、型号等,不管是国产,还是进口品牌的水压变送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水压变送器相关的耗材配件、试剂标物,还有水压变送器相关的最新资讯、资料,以及水压变送器相关的解决方案。

水压变送器相关的方案

  • 土壤热流变送器(热流计)的校准
    从理论上来说,土壤热流变送器的校准,会受到变送器和校准介质之间导热系数和变送器几何形状的影响。本文对这些影响进行了研究,采用两种具有不同导热系数材质和几何形状的商品化土壤热流变送器,比较了这些参数对校准参数的影响。开发出一种理论校准公式并对此公式进行了评价。对两种类型共14个热流变送器采用稳态防护热板法在实验室内进行试验,所提供的热流密度变化范围为40~200W/m2,校准介质为导热系数变化范围为0.3~3W/mK的干燥饱和沙。其中一种热流变送器的平均校准因子要低于厂商数据12%,而理论预测值则更低于厂商数据26%~36%。其它类型热流变送器的平均校准因子则高于厂商数据7%,而理论预测值高于常数数据1%~11%。计算后的几何因子对圆形变送器为1.07,对正方形变送器为0.89,这些几何因子都小于理论值1.70,但与以往文献中报道的试验值范围1.02~1.31相近。
  • 盐水鸭加工过程中滋味变化及呈味肽分离鉴定的研究
    本论文以不同工业化加工阶段的盐水鸭为原料,研究盐水鸭在加工过程中基本成分和滋味物质的变化,结合电子舌技术分析了不同加工阶段盐水鸭的具体味觉特征差异;并对盐水鸭成品中呈味肽进行了分离纯化和鉴定。
  • 盈盛恒泰-2 种耐压菌对盐水鸭货架期的影响-电子鼻PEN3
    盐水鸭是我国特有的酱卤类肉制品, 古有“六朝风味, 白门佳品” 之誉, 组织细嫩、 口感滑润、 风味独特, 深受消费者喜爱.[1] 但由于蒸煮阶段温度较低, 导致杀菌不彻底, 加之冷却、 包装等工序中的二次污染难以控制, 使得盐水鸭货架期较短, 严重制约了其产业发展。行业中多采用传统的高温杀菌技术延长产品货架期, 但是高温杀菌破坏了盐水鸭原有的感官特性及风味。 [2]消费者可接受性下降。近年来, 超高压杀菌技术作为一种冷杀菌技术成为国内外学者的研究热点, 在肉制品加工业中得到广泛应用, 同时有很多高压食品面市。[3]研究表明, 超高压杀菌技术在延长肉制品货架期的同时, 能 大程度保持产品原有风
  • 应用案例-药品制造过程控制的多参数变送器
    FDA 的过程分析技术 (PAT) 倡议表明,高品质、稳定且安全的产品更有可能是通过“对原材料和中间材料的关键质量和性能属性以及工艺过程的及时测量来得以保障。如果产品设计得以理解、产品制造过程稳定一致、输入变量得以控制,那么关键变量的影响因素就变得已知从而就可以生产制造出符合预期的产品。对工艺过程的了解程度是 PAT (过程分析技术倡议)的关键。要了解工艺过程,测量数据是用于支持过程控制决策的必须条件。上述理念对于水的制备至关重要,因为水是唯一被全世界所有生产商最广为使用的原料。PAT 倡议已经获得全球认可和支持。USP 是美国药品和相应设备的标准设定组织,它已在其 “用于产品控制和其他过程和系统控制的水质电导率”章节中支持采用在线电导率测量仪器,同时警告离线测试纯水电导率所面临的来自取样过程和空气中污染物的风险。同样的有关离线检测警告也存在于 USP的 总有机碳章节中。
  • 医用口罩织物静水压试验仪
    对医用防护fu产品质量控制检测总结的标准要求及解决方案,希望我们山东普创工业科技能够在这特殊的“抗疫"时期为防护服生产企业及质检单位提供有效的后援力量。
  • PA_溶氧测量系统
    工业过程中的溶解氧或者气相氧的测量用于控制氧气浓度、优化过程和产量。医药工业对卫生设计和验证目的追踪性有较高的要求。在食品和啤酒行业中,传感器要耐受多次CIP(原位清洗)或者SIP(蒸汽消毒)过程以便长久使用而且干净卫生。 除了在线测量外,离线或者近线测量系统也经常用配有数据记录、取样装置和接口的小型便携式变送器/传感器系统在不同场地进行控制以便下载存储的测量值。 梅特勒托利多提供各类不同的测量系统用于不同行业特别具体的要求,包括传感器、护套、变送器和服务。
  • 淋雨试验箱适用做哪些功能的试验
    淋雨试验箱适用于多种功能的试验,包括防雨、耐水压、防尘、耐腐蚀和综合环境适应性测试。通过模拟各种环境条件,可以帮助企业提高产品质量和可靠性,确保产品在实际使用中能够经受住各种环境条件的考验。
  • 哈希应用案例-表面盐分仪
    钢材在涂覆涂料前必须做表面处理,对表面进行清洗。表面处理的主要目的在于清除钢材表面的有害物质,并使底漆具有良好的附着力;并且有助于减少导致腐蚀的污染物含量,防止盐分对金属的腐蚀。因此涂装前的清洁度是一项非常重要的指标。 尤其是对于造船,船舶工业来说,钢材表面盐分浓度的测量是强制性的。由于专用海水压载舱的腐蚀状况,严重威胁船舶的航行安全和结构安全,国际海事组织对压载舱涂层的性能越来越重视。并于2006年12月正式通过了《船舶专用海水压载舱和散货船双舷侧处所保护涂层性能标准》,简称PSPC。该标准适用于所有类型不小于500总吨的船舶,规定了强制执行日期为:2008年7月1日以后签订合同的船舶,若没有建造合同,适用于2009年1月1日以后铺设龙骨的船舶,或2012年7月1日以后交工的船舶。PSPC其中一项强制规定即为:必须保证海水压载舱处钢材在涂装前其表面的可溶性盐分浓度不大于50mg/m2。 Hach(DKK)的便携式表面盐分仪SSM-21P是最新的改进型号,依据NACE Std. SP0508-2010试验和ISO-8502-9。可应用于造船、桥梁、船舶、铁塔等工程计划中在涂漆前表面盐分的浓度分析和即时测量。该仪器可通过4种方式直接读取表面盐分浓度,其测量范围分别是:水溶性盐分或氯化钠:0~199.9mg/m2及0~1999mg/m2 ;电导度0~199.9μ S/cm及0~1999μ S/cm。更多精彩内容,请您下载后查看。
  • 关于原油含水测试仪使用情况报告
    1)无须采样,即插即用,减少化验员投入2)量程检测动态范围大,能应用于0.01 到100%的范围3)物料检测应用范围广,能应用于极性到非极性物质浓度测试4)仪器响应速度快,信号反应时间15s,智能变送器处理间隔5)可靠的防爆设计,防爆等级为Ex d iaⅡC T5 本安设计6)合理的传感器结构设计,坚固耐用,不易结垢、粘附、堵塞7)灵活实用的安装结构设计,安装连接方式多样(管螺纹式、法兰式、卡盘式)8)传感器材料设计兼容选择性大,适用于不同物料的检测要求(聚四氟、304不锈钢、316不锈钢)
  • 牙本质片液压通透性测量方案
    1.牙本质通透性检测装置,其特征在于:包括压力瓶、压力转换容器、微量管、注射气泡装置和样本固定装置,压力转换容器上端设有安全阀、排气口 压力瓶与压力转换容器之间设有进气管并互相连通,进气管上设有进气压力表阀门 微量管水平设置,微量管的一端与压力转换容器之间设有第一出水管并互相连通,第一出水管上设有出水压力表阀门 微量管的另一端与样本固定装置之间设有第二出水管,注射气泡装置设于第二出水管的下方且相连通,注射气泡装置上设有夹紧注气管的夹紧装置 样本固定装置设有样品槽,样品槽与第二出水管连通
  • 老化时间对南京水煮板鸭风味成分的影响
    采用顶空-气相色谱-离子迁移谱(HS-GC-IMS)分析了不同陈化时间(0、12、24、48和72 h)对南京水煮盐水鸭风味的影响。HS-GC-IMS与电子舌结合的结果表明,陈化时间为24 h更有利于风味的形成和实际加工。这些结果为合理控制陈化过程、提供风味信息和禽业的实际应用提供了理论依据。
  • PA白皮书-ISM技术在发电厂分析中的应用
    对电厂用水进行分析测量可提供最基本的信息用于补给水纯化处理、最大限度降低循环系统的腐蚀、积盐,以及满足烟气和废水排放方面的环保要求。数十年来,对于电导率、pH、ORP 和溶解氧测量而言,由于传感器和仪表之间存在一定距离,从而造成对测量性能和可靠性的影响。传感器信号弱、电缆必须穿过嘈杂的电气环境以及传感器和仪表之间的各种不匹配因素都将导致测量可靠性和精确性降低。智能传感器技术采用相对全新的理念将测量回路、校准数据记忆存储、模拟至数字转换和预判式诊断数学模型集成至传感器本体里,从而极大地缓解了上述问题对分析测量的影响。测量回路对于仅仅只有几个毫米的传感器元件模拟信号传输距离,可以更好地加以控制。这极大地改善了测量条件。传感器的校准数据储存于传感器本体里的存储器中,因此杜绝了和变送器之间的错误匹配现象。稳定的数字信号可以在绝对不影响精度的条件下进行长距离传输。内置的存储记忆装置还可以提供传感器温度和测量范围随时间变化的实时记录,因此可以真实预测传感器的维护和更换需求。
  • 固态电池,最新Science!
    与用于日常手机和电动汽车的传统锂离子电池相比,固态电池(SSBs)具有重要的潜在优势。在这些潜在优势中,有更高的能量密度和更快的充电速度。由于没有易燃有机溶剂,固体电解质分离器还可以提供更长的寿命、更宽的工作温度和更高的安全性。SSBs的一个关键方面是其微观结构对质量传输驱动的尺寸变化(应变)的应力响应。在液体电解质电池中,正极颗粒中也存在成分应变,但在SSBs中,这些应变导致膨胀或收缩的电极颗粒与固体电解质之间的接触力学问题。在阳极侧,锂金属的电镀在与固体电解质的界面上产生了自己的复杂应力状态。SSBs的一个关键特征是,这种电镀不仅可以发生在电极-电解质界面上,而且可以发生在固体电解质本身、气孔内或沿晶界。这种受限的锂沉积形成了具有高静水压应力的区域,能够在电解质中引发破裂。尽管SSBs中的大多数故障是由机械驱动的,但大多数研究都致力于改善电解质的离子传输和电化学稳定性。为了弥补这一差距,在这篇综述中,美国橡树岭国家实验室Sergiy Kalnaus提出了SSB的力学框架,并审查了该领域的前端研究,重点是压力产生、预防和缓解的机制。相关论文以“Solid-state batteries: The critical role of mechanics"为题,发表在Science。图片具有高电化学稳定性的固体电解质与锂金属和离子电导率高于任何液体电解质的硫化物固体电解质的发现,促使研究界转向SSBs。尽管这些发现已经播下了SSBs可以实现快速充电和能量密度加倍的愿景,但只有充分了解电池材料的机械行为并且将多尺度力学集成到SSBs的开发中,才能实现这一承诺。图片固态电池的前景开发下一代固态电池(SSBs)需要我们思考和设计材料挑战解决方案的方式发生范式转变,包括概念化电池及其接口运行的方式(图1)。采用锂金属阳极和层状氧化物或转化阴极的固态锂金属电池有可能使当今的使用液体电解质的锂离子电池的比能量几乎增加一倍。然而,存储和释放这种能量会伴随着电极的尺寸变化:阴极的晶格拉伸和扭曲以及阳极的金属锂沉积。液体电解质可以立即适应电极的体积变化,而不会在电解质中积聚应力或失去与阴极颗粒的接触。然而,当改用SSBs时,这些成分应变、它们引起的应力以及如何缓解这些应力对于电池性能至关重要。SSBs中的大多数故障首先是机械故障。SSBs的成功设计将与材料如何有效地管理这些电池中的应力和应变的演变密切相关。要在SSBs中实现高能量,最重要的是使用锂金属阳极。从以往来看,锂金属阳极一直被认为是不安全的,因为锂沉积物有可能生长,锂沉积物会穿透电池,导致短路和随后的热失控。解决锂生长问题最有希望的解决方案是使用固态电解质(SSE)代替液体电解质,因为它具有机械抑制锂枝晶渗透的潜力。然而,原型固态锂金属电池的实际经验表明,即使是强的电解质材料,锂也具有不同寻常的渗透和破裂倾向。解决阴极-电解质界面和锂-电解质界面挑战的关键是清楚地了解涉及电池相关长度尺度、温度和应变率的所有材料的力学原理。图片图 1.锂金属SSBs及其相应的力学和传递现象的示意图【SSBs中运行的压力释放机制】由于锂传输和沉积不可避免地会产生局部应力,因此考虑锂金属和SSE中可能的应力消除机制至关重要。目标是激活非弹性或粘弹性应变以降低应力大小。这种激活机制在不同类别的固体电解质和金属锂中是不同的。固态电解质是否能够管理由氧化还原反应施加的应变引起的应力将取决于在所施加的电流密度(应变率)和工作温度下操作应力消除机制的可用性。当非弹性流无法在特定的长度和时间尺度下激活时,应力通过断裂进行释放。图片图 2.锂金属的长度尺度和速率依赖性力学【陶瓷的塑性变形】SSBs中的主要应力来源包括(i)Li镀入固体电解质中的缺陷,(ii)由于固体电解质约束的阴极颗粒膨胀而产生的应力,以及(iii)外部施加到电池上的应力(典型的应力)。SSBs工程的目标是采用能够在SSBs中可逆变形并限制应力而不产生断裂的电池材料组合。虽然通过扩散流或位错滑移来限制应力累积是金属锂的合适机制,但陶瓷电解质在室温下不会激活滑移系统,而是会断裂。在这种情况下,材料的增韧不是通过位错的产生而是通过移动现有位错来实现的。因此,关键是有意在材料中引入高位错密度,以便有可能在裂纹端周围的小体积中找到足够的位错(图 3)。具有高抗断裂性的非晶固体电解质的一个例子是锂磷氮氧化物(Lipon)。使用这种非晶薄膜固体电解质构建的电池已成功循环超过10,000次,容量保持率为 95%,并且没有锂渗透 (6。此外,已证明电流密度高达10 mA/cm2。对无定形Lipon力学的研究有限,但表明制备成薄膜时材料坚固。Lipon具有一定程度的延展性。这种延性行为在中得到了进一步揭示,表明Lipon可以在剪切中致密和变形以降低应力强度。图片图 3.通过非晶材料中的致密化和剪切流动触发塑性,并通过在结晶陶瓷中引入位错来增韧,从而避免断裂对离子传导非晶材料和玻璃的变形行为和断裂的研究相当有限。然而,在Lipon中,室温下观察到与LPS玻璃类似的部分恢复。根据分子动力学(MD)模拟,有人提出Lipon中的致密化是通过P-O-P键角的变化而发生的。这种结构变化可能是可逆粘弹性应变背后的原因。然而,由于MD方法无法实现时间尺度,模拟致密化恢复是不可行的。在不需要外部能量输入的情况下至少部分恢复致密体积的能力值得进一步研究。在循环负载下,这种部分恢复会产生类似磁滞的循环行为(图 4)。图片图 4. 在循环加载纳米压痕时,Lipon的形变恢复会导致类似滞后的行为【电化学疲劳】尽管已经在应力消除的背景下讨论了断裂,但断裂的起源通常要复杂得多。在传统结构材料中,循环应力和应变会导致损伤累积,最终导致断裂失效。活性电极材料对由主体结构中锂的重复插入和脱除引起的循环电化学负载做出响应,其方式类似于对外部机械力的循环施加的结构响应。对于阴极,由此产生的变化导致在两个不同长度和时间尺度上不可逆的损伤累积,并由不同的机制驱动:(i)多晶阴极颗粒中的晶间断裂,以及(ii)单阴极颗粒中锂化引起的位错动力学和穿晶断裂。电极颗粒的循环电化学应变导致尺寸变化,足以扩展固体电解质和阴极活性材料之间的界面裂纹。固体电解质内可以产生额外的裂纹,作为界面裂纹的延伸或作为新的断裂表面,作为减少SSBs中大而复杂的应力的方法(图 5)。现有的实验证据表明,大多数此类界面破裂发生在第一个循环内,并导致初始容量损失。然而,这种裂纹的演变可能是一个循环过程,让人想起疲劳裂纹的扩展;目前,还没有足够的实验信息来自信地支持或拒绝这一假设。图片图 5.复合固态阴极的疲劳损伤【固体电解质中的锂增长】根据目前对固体电解质失效的理解,裂纹的形成对锂通过陶瓷电解质隔膜的扩展起着重要的作用。大多数锂诱导失效的理论处理都认为锂丝是从金属-电解质界面向电解质主体传播的(模式I降解)。然而,锂的还原和随后的锂沉积很容易发生在电解质内,远离与锂的界面(模式II降解)。最后,可以想象这样一种情况,即锂沿着多晶陶瓷电解质的晶界均匀地沉积,从而穿过电解质而不需要裂纹扩展。当电池内施加高电流密度时,这种情况可能会在泄漏电流非常高的情况下发生(图6)。图片图 6.锂通过固体电解质传播的示意图【小结】最近的研究对应变的起源以及SSBs各组成部分的应力消除机制提供了洞察力。最重要的经验之一或许是,在较小的长度范围内,锂的强度是块状锂的100多倍,因此无法放松在锂电镀过程中在界面上积累的应力。这就需要通过固体电解质释放应力,通常会导致失效。电池因锂离子扩散导致电解质破裂而失效,这是最关键的失效类型,也是最常研究的导致短路的失效类型。与突然短路相比,充放电循环下电池容量的降低虽然不那么明显,但仍具有很大的危害性,这与阴极/固体电解质界面裂纹的形成有关。这两种失效模式都与锂、固体电解质和正极活性材料的长度尺度和额定力学以及它们在不断裂的情况下耗散应变能的能力直接相关。尽管在了解这些关键材料的应力释放方面取得了很大进展,但我们的认识仍然存在很大差距。该研究对SSBs力学进行了综述,并为构思和设计机械稳健的SSBs搭建了一个总体框架,即:(i)识别和理解局部应变的来源;(ii)理解应变产生的应力,尤其是电池界面上的应力,以及电池材料如何应对应变。