当前位置: 仪器信息网 > 行业主题 > >

系统传感器

仪器信息网系统传感器专题为您提供2024年最新系统传感器价格报价、厂家品牌的相关信息, 包括系统传感器参数、型号等,不管是国产,还是进口品牌的系统传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合系统传感器相关的耗材配件、试剂标物,还有系统传感器相关的最新资讯、资料,以及系统传感器相关的解决方案。

系统传感器相关的论坛

  • 智能检测系统中传感器的分类

    智能检测系统中的传感器比较多,分别简单介绍下! 智能检测系统和所有的计算机系统一样,由硬件、软件两大部分组成。本节侧重从硬件角度讨论智能检测系统的系统配置,然后简单的介绍软件部分。智能检测系统的硬件部分主要包括各种传感器、信号采集系统、处理芯片、输人输出接口与输出隔离驰动电路。其中处理芯片可以是微机,也可以是单片机,DSP等具有较强处理计算能力的芯片传感器是“能把特定的被测量信息(包括物理量、化学量、生物量等)按一定规律转换成某种可用信号输出的器件或装置”,所谓可用信号,是指便于处理与传输的信号。目前,传感器的可用信号主要是电信号,即把外界非电信息转换成电信号输出。随着科学技术的发展,传感器的愉出信号更多的将是光信号,因为光信号更便于快速、高效地处理与传箱。 传感器作为智能检侧系统的主要信息来源,其性能决定了整个检侧系统的性能.传感器的工作原理多种多样,种类繁多,而且还在不断地涌现着新型传感器。这里只简单介绍各种传感器的基本特征,它们的详细基本原理与应用将在后续章节中讨论。一. 常用传感器1) 应变式传感器2) 电感式传感器3) 电容式传感器4) 压电式传感器5) 磁电式传感器6) 光电式传感器7) 热电传感器8) 超声波传感器二、新型传感器 1)光纤传感器 2)红外传感器 3)气敏传感器 4)生物传感器 5)机器人传感器 6)智能传感器三、数字传感器来源——仪器仪表网

  • 请问大家各类气敏传感器出厂前的标定系统是怎样的?

    我是一名大四的学生,最近学院的实验室要做一个氢气传感器,用于检测氢气浓度的。我是负责传感器成型后的标定工作的,这也是我的毕业设计项目。我想请教各位朋友,一般的传感器厂家都是利用什么样的系统进行气敏传感器的出厂前的标定的?或者国家相关机构是怎样对这种传感器进行合格检测的?成都有没有进行这种检测分析这样的相关国家机构?也许我的问题太多太泛了,不好回答,或者各位朋友能否给我指一条解决之路,告诉能到哪些相关网站或者机构查询资料?非常感谢!!!!

  • 波高采集系统中集成式智能传感器工作原理介绍

    波高采集系统有32个传感器通道,可以连接不通型号的传感器。主要应用于水工河工物理模型波浪、港池、水槽等试验,能同时对多种试验仪器进行数据采集分析。那么波高采集系统的集成式智能传感器工作原理有哪些呢?  集成式智能传感器是指将多个功能相同或不同的敏感器件制作在同一个芯片上构成传感器阵列,主要有三个方面的含义:一是将多个功能完全相同的敏感单元集成制造在同一个芯片上,用来测量被测量的空间分布信息,例如压力传感器阵列或我们熟知的CCD器件。  二是指对不同类型的传感器进行集成,例如集成有压力、温度、湿度、流量、加速度、化学等敏感单元的传感器,能同时测到环境中的物理特性或化学参量,用来对环境进行监测。  集成化的第三层含义是指对多个结构相同、功能相近的敏感单元进行集成,例如将不同气敏传感元集成在一起组成“电子鼻”,利用各种敏感元对不同气体的交叉敏感效应,采用神经网络模式识别等先进数据处理技术,可以对混合气体的各种组分同时监测,得到混合气体的组成信息,同时提高气敏传感器的测量精度;这层含义上的集成还有一种情况是将不同量程的传感元集成在一起,可以根据待测量的大小在各个传感元之间切换,在保证测量精度的同时,扩大传感器的测量范围。

  • 基于温度传感器的新型多点测温系统设计

    1、温度传感器DS18B20介绍    DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。    DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。    2、系统硬件结构    系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。    系统各模块分析如下:    2.1DS18B20与单片机的接口电路    DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。    2.2键盘及显示    键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。    2.3报警电路    当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。    3、软件设计及流程    3.1下位机软件    系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。    3.2上位机软件    系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。    4、结论    本系统具有如下特点:    a.结构简单,成本低廉,维护方便。    b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。    c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。    d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。    e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。

  • 试验仪器:波高采集系统压力传感器的10大误差分析

    在分析试验仪器波高采集系统压力传感器的总误差时,首先要考虑试验仪器每一个误差的来源,分析导致这些误差的因素,然后想办法减少这些误差,提高波高采集传感器系统总的性能。那么影响波高采集系统压力传感器性能的误差来源有哪些?  1、当计算波高采集系统压力传感器的总误差时,应使用下列定义的误差。为决定你已选择波高采集系统压力传感器特定误差的程度,参见在这目录中该传感器的规格说明。在特定用户应用中,有些标称的指标可以减少或消除的,例如,如果波高采集系统压力传感器用在规定温度范围的一半内,那么温度误差可以减少一半,如果使用自动调零技术,零点偏置和零飘误差可以消除。  2、零点偏置是同时加在膜片两侧上的相同压力时传感器输出。  3、量程是输出端点之间的代数差。通常二端点是零和满刻度。  4、零点温度偏移是由温度变化引起的压力传感器零点变化。零点偏移不是可预测的误差,因为每一个器件可以向上或向下偏移,温度变化将引起整个输出曲线沿电压轴向上或向下偏移。  5、灵敏度温度偏移是由温度变化引起的压力传感器灵敏度变化,温度变化将引起传感器输出曲线的斜率变化。  6、线性误差是在期望压力范围传感器输出曲线与一标定直线的偏差,计算线性误差的一个方法是最小二乘方,它从数学上提供对数据点的最佳配合直线。另一方法是末端基点线性度(T.B.L.)或端点线性度。T.B.L.由在输出曲线上二端数据点之间画一直线(L1)决定。接着从线L1 作一垂线至输出曲线, 选择相交数据点以达到垂线的最大长度,垂线的长度代表末端基点线性误差。  7、比率变化量是指在其他条件保持恒定情况下传感器输出比例于电源电压,比率变化量误差是在这比率中的变化,通常表达为压力传感器量程的百分值。  8、重复性误差是在其他条件保持恒定情况下连续加上任何给定输入压力在输出读数中的偏差。  9、迟滞误差通常表达为机械迟滞和温度迟滞的组合误差。机械迟滞:指输出在某一个给定输入压力时(上升、下降不同过程)的传感器误差。  10、温度迟滞是在一温度循环以前和以后在确切输入压力下的输出偏离。  以上是试验仪器波高采集系统压力传感器的误差来源总结。

  • 如何轻松整合传感器到嵌入式系统

    接触过传感器整合到嵌入式系统的人都知道,连接和获取来自传感器的数据并不总是直线前进或那么容易,以下有5个技巧以协助缓解工程师与传输接口到传感器的第一次战争。[b]方法1:先从总线工具开始[/b]第一步,工程师应当采取首次介接到传感器时,是透过一个总线工具的方式以限制未知。一个总线工具连接一台个人计算机(PC),然后到传感器的I2C、 SPI或其他可让传感器可以“说话”的协议。与总线工具相关的PC应用程序,提供了一个已知与工作来源用以发送和接收数据,且不是未知、未经认证的嵌入式微控制器(MCU)驱动程序。在总线工具的工作环境下,开发人员可以传送和接收讯息以得到该部分如何运作的理解,在试图于嵌入式等级操作之前。[b]方法2:Python编写传输接口码[/b]一旦开发者已尝试使用总线工具的传感器,下一步就是为传感器编写应用程序代码。并非直接跳到微控制器的代码,而是在Python编写应用程序代码。许多总线 工具在编写脚本(writing scripts)配置了插件(plug-in)和范例码,Python通常是随着.NET中可用的语言之一。在Python编写应用程序是快速且容易的, 其并提供一个方法已在应用程序中测试传感器,这个方式并未如同在嵌入式环境测试的复杂。拥有高层级的代码,将使非嵌入式工程师易于挖掘传感器的脚本及测 试,而不需要一个嵌入式软件工程师的照看。[b]方法3:以Micro Python测试传感器[/b]在Python写下第一段应用程序代码的其中一个优势是,透过调用Micro Python,应用程序调用到总线工具应用程序编程接口(API)可易于进行更换。Micro Python运作在实时嵌入式软件内,其中有许多传感器可供工程师来了解其价值,Micro Python运作在一个Cortex-M4处理器,且其是一个很好的环境,以从中为应用程序代码除错。不仅是简单的,这里也不需要去写I2C 或SPI驱动程序,因为它们已被涵盖在Micro Python的函式库中。[b]方法4:利用传感器供货商代码[/b]任何可以从传感器制造商“搜括”到的范例码,工程师需要走一段很长的路才能了解传感器如何工作的原理。不幸的是,许多传感器供货商并非嵌入式软件设计的专家,因此不要期待可以发现一个可投入生产的漂亮架构和优雅的例子。就使用供货商代码,学习这部分如何运作,之后重构的挫折感将出现,直到它可以被干净利索地整合到嵌入式软件。它可能如“意大利面条般(spaghetti)”开始,但利用制造商对其传感器如何运作的理解,在产品推出之前,将有助于减少许多得被毁掉的周末时间。[b]方法5:使用一个传感器融合函式库[/b]机会是,传感器的传输接口并不是太新,且先前没有人这么做过。已知的所有函式库,如由许多芯片制造商提供的“传感器融合函式库”,以协助开发人员快速掌握、 甚至更好,更可避免他们陷入重新开发或大幅修改产品架构的轮回。许多传感器可以被整合至一般类型或类别,而这些类型或类别将使驱动程序顺利被开发,若处理得当,几乎是普遍或是少可重复使用。寻找这些传感器融合函式库,并学习它们的优点和短处。[b]写在最后[/b]感测器被整合至嵌入式系统时,有许多方式可以帮助提高设计时程和易用性。开发者在开始设计时,透过一个高层次抽象概念,以及在把传感器整合进一个较低等级的 系统之前,学习传感器如何运作,就绝对不会“走错路”。今天存在的众多资源将可协助开发人员“旗开得胜”,而无须从头开始。

  • 【转帖】双传感器的航星计程仪测试系统

    在航海系统中,采用计程仪连续测量运动中船舶的速度并计算出船舶的累计航程。本文所设计的计程仪系统采用双传感器组合结构,并结合微处理机技术(选用了MCS-51系列单片机及与之配套的专用接口芯片),组成了计程仪专用计算机系统。仪器结构简单,体积小,精度高,操作调整方便。它能方便地进行数字通讯;根据实际需要,也能发送速度的模拟信息,接口灵活,适应了船舶控制与操作自动化的需求。 1 计程仪硬件设计该计程仪系统由主仪器、电磁传感器、压差式传感器、船底阀、导压杆、可由用户扩充的分显示器和一套开关分配器等部分组成(图1)。本系统的突出特点是采用了双传感器组合结构:分别利用电磁传感器和压差式传感器(利用贝努利方程原理)来测量船舶与水之间的相对运动速度,并由其计算与记录船舶的航程。1.1 技术性能 (1)测速范围:-10节~+40节(量程更改可由程序设定);(2)航速精度(测速场精度):±0.20节;(3)航速发送形式:R S-485;(4)单次航程范围:0~9999.99海里;(5)累计航程范围:0~999999海里;(6)工作时间累计范围:0~99999小时;(7)航程解算精度:±0.1%(负速度不计航程)。1.2 主仪器工作原理 主仪器是一个以MCS-51单片微计算机为核心的专用微机系统,如图2所示。它包括:直流电源装置,键盘输入与显示装置,及由CPU、EPROM、EEPROM及专用接口电路组成的单片机装置。主仪器是计程仪的核心部分,其面板上装有各种操作按钮,用以控制整个仪器的运行,完成测速校正操作。 主仪器采用中断方式实现双传感器的数据采集控制,其中定时器周期性地产生中断信号申请中断,中断服务程序接收电磁传感器和压差传感器输出的电信号,然后A/D转换装置和I/F转换器将它转换成数字量后送至微机系统;按一定的计算公式进行数椐处理,并按调整后的曲线进行修正,以得到船舶的速度,再根据时间间隔的大小进行数值积分来求得航程。计算机将求得的航速信息以适当的形式通过各相应的接口电路送到各用户和分显示器,完成航速航程的显示。计算机系统中的EEPROM可以永久性地保存诸如累计航程、累计工作时间、速度调整参数等结果。1.3 主要芯片及其系统功能简介 本系统中主要采用了AT89C55、ICL7109和AD652等芯片,简介如下:1.3.1 AT89C55 AT89C55芯片是由ATMEL公司推出的51系列8位单片机。片内主要有20KFlash存储器、256字节片内RAM,4个8位的双向可寻址I/O口,1个全双工UART(通用异步接收发送器)的串行接口、3个16位的定时器/计数器、多个优先级的嵌套中断结构,以及一个片内振荡器和时钟电路。本系统中利用了AT89C55丰富的20K闪存资源永久保存测量中累计航程、累计工作时间等关键结果,并利用了其定时器计数器及中断嵌套结构实现双传感器的数据采集。 在本系统中,T0、T1均工作在计数方式,T0产生1s计数中断,T1完成压差传感器转换的频率计数。INT0被用于按键中断处理,TXD串行发送计程仪的速度信息,波特率为4800。X1、X2外接8MHz的石英晶体。P1口各位分别完成发送显示码、测速/航行判断等功能,P2口部分参与地址译码,同时P0口分时输出数据/地址低8位。1.3.2 ICL7109 ICL7109是一种高精度、低噪声、低漂移、价格低廉的双积分式12位模/数变换器。该芯片由模拟电路和数字电路两部分组成,其中模拟电路由模拟信号输入、振荡电路、积分、比较电路和基准电压源组成。数字电路由时钟振荡器、异步通信握手逻辑、转换控制逻辑、计数器、锁存器、三态门组成。 ICL7109工作电压为双电源±5V,GND为公共端,外接6MHz的晶振,基准电压为外部分压输入的2.8V;接口方式为直接输出方式,数据输出为12位二进制数和一位极性,12位A/D转换通过控制高低字节使能端实现,分时读出低8位和高4位。 1.3.3 AD652 AD652是一种高速、高精度、同步I/F转换器;用外接时钟脉冲决定满量程频率,并允许电压或电流输入。本系统中AD652的功能是将压差传感器的4~20mA的电信号转换成频率信号输出给CPU,CPU再根据AD652的工作时钟解算出当前速度值。AD652工作电压为双电源±15V,工作时钟由单片机的晶振输出经54LS393分频获得,AD652输出脉冲由AT89C55的T1计数,计数时间间隔为1s。1.3.4 8155 8155除有三个I/O端口(A口、B口、C口)外,还带有一个256字节的静态随机存贮器和一个14位定时/计数器。具有一块芯片多种功能的特点。另外,8155和单片机的连接十分简单,甚至不需要8D锁存器。本系统利用8155构成键盘显示电路。2计程仪软件设计 在软件设计中,采用了数值逼近及多种滤波算法,并在充分利用CPU功能的前提下,尽量减少硬件数量。除合理选择硬件外,软件上采取抗干扰陷阱与冗余处理,提高了系统的稳定性和可靠性。 计程仪的工作程序用汇编语言编写,采用模块化结构的程序设计方法,便于使用维护与扩展。计程仪软件主要分为自检模块、管理模块、航速航程解算模块和测速校正等模块,各模块主要以中断方式调用。计程仪的基本工作程序框图如图3所示。当电源开关闭合后,仪器的专用计算机系统开始自检,主仪器及分显示器上将显示自检的结果;自检完毕后便开始对计算机系统进行初始化设置;初始化设置完毕后,定时器并未开始计时,而必须等到启动中断后才开始计时工作。此时计算机系统处于一种等待状态,等待定时或按钮所产生的中断发生。中断部分完成航速航程计算和发送。3结束语 本航星计程仪系统采用了双传感器结构实现船舶航速的连续测量并按一定的软件算法计算航程;具有硬件电路简单、可靠性高、工作稳定和性价比较高等特点,适应现代化舰船的需求。由于使用了AT89C55单片机等,使得该系统具有一定的可再开发性。目前该计程仪已批量生产,并安装于多种船舶上。 本贴来源于:www.ic36.com

  • 一体化微气象传感器气象在线监测系统

    一体化微气象传感器气象在线监测系统

    一体化微气象传感器气象在线监测系统一体化微气象传感器能搜集和提供气象要素信息,如:气温、气压、湿度、风力、风向、雨量等,积累各地区的气象资料,并通过无线电发射机自动地定时发往相距数百公里的中心气象台。中心气象台收到气象信息后可进行实时显示,也可记录和存储下来供以后进行气象分析和气象预报之用。一体化微气象传感器一般是用各种传感器对大气压力、温度、相对湿度、风向、平均风速、大风速、累计雨量和降水现象等要素进行自动测量,并将测量结果变换成无线电信号,再由4G无线通讯发往中心气象台,在一些偏远地区,由于供电不便,一体化微气象传感器可采用太阳能供电系统加蓄电池,满足一体化微气象传感器自身用电。[img=一体化微气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206220922505275_5197_4136176_3.jpg!w690x690.jpg[/img]一体化微气象传感器是按照国际气象WMO组织气象观测标准,研究而开发生产多要素自动观测站。可监测风向、风速、温度、湿度、气压、雨量、土壤温湿度等常规气象要素,具有自动记录、超限报警和数据通讯等功能。一体化微气象传感器使用4个超声波探头来测量风速和风向,没有任何移动部件,仪器更加耐用,数据更加可靠。内置的温度、湿度和气压传感器能预报天气变化。一体化微气象传感器可以满足日益增长的对实时现场天气信息的需要。准确的数据可以帮助相关组织对影响安全和操作的气候条件作出重要决定。传统的气象仪器是由若干个传感器包括风杯组成,这很容易断裂和在低风速下数据精度不好。一体化微气象传感器包含各种气象传感器,没有移动部件,是一个结构紧凑的仪器。[img=一体化微气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206220923067968_4111_4136176_3.jpg!w690x690.jpg[/img]

  • 传感器应用于智能建筑楼宇系统 建筑物也有生命

    一旦无线传感器芯片能够低成本生产,那么将无数此类芯片在设计精良的楼宇基础设施中相连接便具有了一定的可操作性。Ahmed 预测说:“最终,我们将可以利用传感器来模仿自然。”正如我们的感觉和神经系统不断向大脑传送信息从而允许我们做出各种决定一样,楼宇管理系统内的处理器可以接受和处理来自成千上万只传感器的数据,并向各种子系统发出适当的指令。  楼宇管理系统可以通过结合用户信息来执行许多新功能。楼宇用户可以告诉系统一些信息,例如他们什么时候回来,应该使用哪种安全机制,或是哪些房间需要通风等。各类传感器则可以确保管理系统始终了解什么时候抽水马桶需要维修,哪里正在释放腐蚀物质,或者人们聚集在哪里等信息。  安装于楼宇中的众多传感器通常用于向楼宇传达各类信息。目前,西门子的科学家们正致力于研究如何将传感器的诸多功能集合到一张小巧的芯片上。  长期以来,传感器因其昂贵的价格而无法广泛应用于楼宇系统。然而,不断进行的大量研究使得如今传感器的体积更为轻巧,价格更为低廉,使用更为灵活,如西门子研发的二氧化碳传感器  在位于德国慕尼黑的西门子中央研究院内,物理学家 Rainer Strzoda 走入他的工作区,想要检查空调系统是否正常运行。然而要完成这项工作,他只需要观察一下安装在墙上的一个小型装置。今天,这个由西门子科学家们研发出的激光传感器原型检测到了 400 ppm 的 二氧化碳。  “如果我们现在所处的环境中只含有 380ppm 的二氧化碳,那么这将是一个很好的数据。” Strzoda 说道,“因为,这个数据表明当前室内的二氧化碳含量仅略高于室外。”剩下的一天里,随着 Strzoda 和他的同事们继续进行研发及讨论研究结果,室内二氧化碳含量逐渐上升至 600–700 ppm 左右。仅仅由于正在工作的科学家们不断呼吸,室内二氧化碳含量就显著上升。  事实上,Strzoda 和他的同事们所处的环境还是相对较好的。世界上绝大多数办公室和会议室的空气中,二氧化碳含量都超过了 1,000 ppm。在这样的环境里,人们会开始感到疲劳、不舒服且无法集中注意力。目前,大多数楼宇内仍未安装二氧化碳传感器,不过据 Strzoda 研究组的负责人 Maximilian Fleischer 博士预测,这种情况很快将得到改善。他的研究小组研发出许多有关传感器的发明成果,这些发明已被成功地应用到西门子的新产品中。以 Fleischer 的名字申请的专利多达近 160 项,他当之无愧是西门子最富创造力的发明家之一。  当今,用于探测光亮和温度的传感器已经得到了广泛的应用。气体传感器是一种微机电系统(MEMS),这正是目前一项相对新颖的研究。这里的MEMS是由硅芯片和一层氧化层所组成。这些激光传感器仍然处于研发的初级阶段,离上市还有一段时间。来自 维库仪器仪表网hi1718.com

  • 超声波液位传感器在是去排水系统中的应用

    超声波液位传感器在是去排水系统中的应用

    [align=left]伴随着城市人口的增加,城市建设的速度大大快于城市排水管网改造的速度。这为城市遇到特大暴雨等紧急情况下快速排水增加了相当多难度。这也是为什么相当多城市,一到雨季就被淹的原因。市政部门为了改善城市排水,也在尝试相当多办法。比如增加排水泵站,加大排水管道口径等等。[/align] 排水泵站在整个城市排水管网中的效果非常重要。起到加大排水速度,避免城市道路积水的效果。以往在泵站中使用的液位控制器,都是机械式浮球液位控制器。浮球的优点是安装简单,控制方便。缺点是寿命短,会出现触点不吸合的故障。现在各个泵站还在大范围使用。[img=,413,291]https://ng1.17img.cn/bbsfiles/images/2018/11/201811301633538310_805_3422752_3.jpg!w413x291.jpg[/img]最近几年,超声波液位传感器也被广泛使用在城市排水泵站的液位控制中。前些年,一直都是国外品牌占据着这些领域。随着国内一些公司在超声波液位传感器上技术的突破,产品质量的稳定,非常好的售后服务,国产品牌的超声波液位传感器也被各个城市的市政管理部门接受,而广泛应用到城市排水的各个方面。超声波液位传感器的优点是安装非常方便,液位监控一目了然,跟排放液体不接触,不会因为液体酸碱性的改变,而发生腐蚀。不过在安装时应考虑盲区的问题,比如,把安装高度提高,盲区在溢流口之上,这样就能有效避免盲区了。OFweek Mall技术工程师推荐使用MB7589:[b]MaxBotix IP67 防水超声波液位传感器 -MB7589[/b] 特点:MB7589传感器具有一种自清洗功能。它可以轻轻地加热传感器的表面,在传感器的换能器表面上雾化任何水分/冷凝。在遇到冷凝问题的各种应用中,许多这样的应用需要自清洗,MB7589就是这些应用而专门设计的。例如,在油箱中,或者是在水箱中,在晴朗的夜晚或寒冷的夜晚,这使得传感器硬件比周围环境更冷。在暴露的传感器硬件的表面上会形成凝结水或霜。水和霜会阻碍传感器操作,这些目标(在传感器表面)将被检测或引起反射,会降低传感器的灵敏度,使得检测数据不准确。自清洗操作的目的是防止积聚和消除堆积在传感器表面的水分和霜。[img=,319,301]https://ng1.17img.cn/bbsfiles/images/2018/11/201811301636247940_7831_3422752_3.png!w319x301.jpg[/img]IP67防尘防水标准封装体积小低成本方案高分辨率可达1mm多种输出方式,包括脉宽、模拟电压、串口超低功耗适合电池供电系统防结露防结霜可测距离长达5米超声波液位传感器具有非接触测量,安装方便的特点。超声波液位传感器在大池子里的安装,还是比较方便的,使用也没有多少问题。但有的池子仅仅有1米不到的深度,超声波液位传感器的盲区就有0.3米,最后这种小池子不能安装超声波液位传感器,或者在安装之后,被水淹掉,不得不使用投入式液位传感器来替代。在有些池子,超声波液位传感器被要求安装在盖板之下,这些液位传感器都没能逃脱被淹的命运。还有就是有些池子,超声波液位传感器在外边使用正常,安装在池子里后,一直处于搜索状态。因此,在使用超声波液位传感器的时候还是要视情况而定的。相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨温湿度传感器丨酒精传感器丨微量氧传感器丨PID传感器丨湿度传感器丨PM2.5传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器https://mall.ofweek.com/category_136.html丨紫外线传感器丨CO2传感器丨CO传感器丨UV传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨

  • 风速传感器种类_风速传感器原理应用

    [align=center][/align]风速传感器在我们的日常生活中的应用是非常广泛的,根据不同的应用环境,这个风速传感器也是有很多种类的,在不同的环境中需要使用风速传感器的的话一定要选用合适的才行,只有合适的才能够测量出想要的结果。今天OFweek Mall风速传感器商城网就来跟大家说说这个风速传感器的应用原理知识吧!首先风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风向传感器辨别方向。通常有以下三类:一、电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。二、光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。三、电阻式风向传感器:这种风向传感器采用类似滑动变阻器的结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。螺旋桨式风速传感器工作原理,我们知道电扇由电动机带动风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一组三叶或四叶螺旋桨绕水平轴旋转来测量风速,螺旋桨一般装在一个风标的前部,使其旋转平面始终正对风的来向,它的转速正比于风速。示的风速一般是偏高的成为过高效应(产生的平均误差约为10%)1、风向风速传感器在空调及通风设备领域的应用变风量末端装置是变风量空调系统的主要设备之一。风速传感器又是变风量末端装置的关键部件,因此,风速传感器的类型与性能直接影响系统风量的检测和控制质量。目前,我国及欧美各厂家的变风量末端装置均采用皮托管式风速传感器,而日本各厂家多不采用皮托管式风速传感器。 2、风向风速传感器在航空领域的应用飞机上的“空速管”是一种典型的皮托管风速传感器,是飞机上极为重要的测量工具。它的安装位置一定要在飞机外面气流较少受到飞机影响的区域,一般在机头正前方,垂尾或翼尖前方。当飞机向前飞行时,气流便冲进空速管,在管子末端的感应器会感受到气流的冲击力量,即动压。飞机飞得越快,动压就越大。如果将空气静止时的压力即静压和动压相比就可以知道冲进来的空气有多快,也就是飞机飞得有多快。比较两种压力的工具是一个用上下两片很薄的金属片制成的表面带波纹的空心圆形盒子,称为膜盒。这盒子是密封的,但有一根管子与空速管相连。如果飞机速度快,动压便增大,膜盒内压力增加,膜盒会鼓起来。用一个由小杠杆和齿轮等组成的装置可以将膜盒的变形测量出来并用指针显示,这就是最简单的飞机空速表。风速传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333][url=http://mall.ofweek.com/category_44.html]风速传感器[/url]丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 硬度计的力传感器闭环系统是怎么回事呢?

    硬度计的力传感器闭环系统是怎么回事呢?

    [font=arial, helvetica, sans-serif]在工业化初期,测量机械结构的试验力至关重要。大约在1940年,一种应变式称重传感器被发明出来。用于测量试验力并将该力值以电信号形式输出的力传感器,大部分使用应变片来将材料变形/力转换成电信号。[/font][size=14px][back=transparent][font=arial, helvetica, sans-serif]19世纪50年代,力传感器应用于拉伸和压缩试验机。力传感器理想[/font][/back]的安装位置,是在与工件的连接处的前端或尽量靠近的区域。电子系统利用反馈信号来调节加载装置,进而得到设定的试验力。[/size][font=arial, helvetica, sans-serif][size=14px][back=transparent]基于闭环系统的优越性能,如今,所有电子拉伸压缩试验机都只采用闭环控制。闭环系统可以连续测量加载试验力,且闭环系统中使用的组件比砝码式要简单得多。正如上文提到的砝码式系统,为确保运行正常,砝码式系统要求杠杆、轴点和零部件间的摩擦(相互配合)。[/back][/size][/font][size=14px][back=transparent][font=arial, helvetica, sans-serif]对于一台硬度计,压头是测试系统与样品接触的一[/font][/back]部分,它是获得正确硬度值最重要的一个因素。为了消除结构缺陷的影响,机械方面的移动或其他干扰都会影响试验力,因此力传感器需与压头尽可能靠近。[/size][back=transparent][font=arial, helvetica, sans-serif][back=transparent]只有这样,基于力传感器的优势,闭环系统才能获得[/back]较高的[/font][/back][font=arial, helvetica, sans-serif][back=transparent]试验力精度。如将力传感器安装在硬度计其他位置,它相对于传统砝码式系统的优势将不复存在。[/back][/font][img=闭环控制,544,622]https://ng1.17img.cn/bbsfiles/images/2022/02/202202280925498150_4925_3317_3.jpg!w544x622.jpg[/img][font=arial, helvetica, sans-serif][size=14px][back=transparent][b]闭环系统的优势:[/b][/back]高精度试验力力反馈系统确保加载试验力的准确性宽泛的试验力且不受限于机械结构简便的测试流程对比砝码系统,简化机械结构简单的校正程序[/size][/font][font=arial, helvetica, sans-serif][size=14px][back=transparent][b]闭环系统的缺点:[/b][/back]对比砝码系统,价格更贵需要供电系统[/size][/font]

  • 无速度传感器将弥补速度传感器的缺陷

    由于速度传感器的安装给系统带来一些缺陷:系统的成本大大增加;精度越高的码盘价格也越贵;码盘在电机轴上的安装存在同心度的问题,安装不当将影响测速的精度;电机轴上的体积增大,而且给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点;在恶劣的环境下,码盘工作的精度易受环境的影响。因此,越来越多的学者将眼光投向无速度传感器控制系统的研究。 近些年许多国学者致力于无速度传感器控制系统的研究开发,无速度传感器控制技术的发展始于常规带速度传感器的传动控制系统,解决问题的出发点是利用检测的定子电压、电流等容易检测到的物理量进行速度估计以取代速度传感器。重要的方面是如何准确地获取转速的信息,且保持较高的控制精度,满足实时控制的要求。无速度传感器的控制系统无需检测硬件,免去了速度传感器带来的种种麻烦,提高了系统的可靠性,降低了系统的成本;另一方面,使得系统的体积小、重量轻,而且减少了电机与控制器的连线,使得采用无速度传感器的异步电机的调速系统在工程中的应用更加广泛。提高转速估计精度的同时改进系统的控制性能,增强系统的抗干扰,抗参数变化能力的鲁棒性,降低系统的复杂性,使得系统结构简单可靠,这是将来无速度传感器前进的一大方向。

  • 【资料】传感器的定义和分类

    一、传感器的定义  信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。  最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。   传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。  德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。   传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。 有源(a)和无源(b)传感器的信号流程  无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。   各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。  常将传感器的功能与人类5大感觉器官相比拟:   光敏传感器——视觉? 声敏传感器——听觉  气敏传感器——嗅觉 ?化学传感器——味觉   压敏、温敏、流体传感器——触觉  与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感觉不到电磁场、无色无味的气体等。  对传感器设定了许多技术要求,有一些是对所有类型传感器都适用的,也有只对特定类型传感器适用的特殊要求。针对传感器的工作原理和结构在不同场合均需要的基本要求是:   高灵敏度  抗干扰的稳定性(对噪声不敏感)   线性  容易调节(校准简易)   高精度  高可*性   无迟滞性  工作寿命长(耐用性)   可重复性  抗老化   高响应速率  抗环境影响(热、振动、酸、碱、空气、水、尘埃)的能力   选择性  安全性(传感器应是无污染的)   互换性  低成本   宽测量范围  小尺寸、重量轻和高强度   宽工作温度范围

  • 色谱仪器常用传感器 气敏传感器

    色谱仪器常用传感器  气敏传感器

    [align=center][font=宋体][font=宋体]色谱仪器常用传感器[/font] [font=宋体]气敏传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]气敏传感器是用来检测气体类别、浓度和成分的传感器,对于环境保护和安全监督方面起着极重要的作用。气敏传感器可鉴别和检测的气体种类繁多,型号和工作原理差异也比较大。气敏传感器的应用主要有:酒后驾驶的现场速测、一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂([/font][font=Times New Roman]R11[/font][font=宋体]、[/font][font=Times New Roman]R12[/font][font=宋体])的检测、人体口腔口臭的检测等。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]简介[/font][/align][font=宋体]气敏传感器又称气体传感器,是将气体成分与浓度变化等信息转变成相对应的电信号,以此达到对气体成分与浓度测量的设备。气敏传感器是传感器领域的非常重要的一个方向,在大气环境、气体监测、航天航空、工业生产、汽车排放监控、食品安全等诸多领域有着广泛的应用。[/font][font=宋体]由传感器的组成及其工作特性,可以将气体传感器分成:半导体型气体传感器、接触燃烧型气体传感器、固体电解质型气体传感器、表面声波型气体传感器、光学型气体传感器、石英型振荡型气体传感器、电化学型气体传感器等。[/font][font=宋体][font=宋体]气敏传感器需要直接接触待测的气体环境,外观特征较为明显,一般情况下带有金属网格外壳以利于气体流通和感知,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,207,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300831065877_198_1604036_3.jpg!w672x363.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]气敏传感器外观[/font][/font][/align][font=宋体][font=宋体]气敏传感器允许温度环境较低,一般不高于[/font][font=Times New Roman]150[/font][font=宋体]℃。色谱工作者或者维修员,可以在某些型号的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]柱温箱中找到此部件。[/font][/font][font=宋体]常规[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]模块的漏液检测,经常采用热敏电阻传感器。当色谱系统泄漏的液体流动相接触传感器表面,由于液体流动相的蒸发,热敏电阻阻值发生变化,色谱系统感知到此电阻变化即确认系统泄漏。对于柱温箱,热敏电阻的检测方式不太适用,如果柱温较高,泄漏的少量流动相可能会较快气化,不能接触热敏电阻表面,而采用气敏传感器可以良好解决这一问题。[/font][font=宋体]对于工作在一定温度下的柱温箱,少量的有机溶剂渗漏和蒸发,都可以迅速被气敏传感器感知到,并发出报警,提醒色谱工作者进行检查和处理。[/font][font=宋体]但是需要注意气敏传感器对于不同化学组成的流动相泄漏,其检测敏感程度不同。一般挥发性较强的有机流动相,气敏传感器的灵敏度较高,水相检测灵敏度相对较低。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明气敏传感器的基本原理。[/font]

  • 金属硬度计的力传感器闭环系统是怎么回事?

    [font=arial, helvetica, sans-serif]在工业化初期,测量机械结构的试验力至关重要。大约在1940年,一种应变式称重传感器被发明出来。用于测量试验力并将该力值以电信号形式输出的力传感器,大部分使用应变片来将材料变形/力转换成电信号。[/font][back=transparent][font=arial, helvetica, sans-serif]19世纪50年代,力传感器应用于拉伸和压缩试验机。力传感器理想[/font][/back]的安装位置,是在与工件的连接处的前端或尽量靠近的区域。电子系统利用反馈信号来调节加载装置,进而得到设定的试验力。[font=arial, helvetica, sans-serif][back=transparent]基于闭环系统的优越性能,如今,所有电子拉伸压缩试验机都只采用闭环控制。闭环系统可以连续测量加载试验力,且闭环系统中使用的组件比砝码式要简单得多。正如上文提到的砝码式系统,为确保运行正常,砝码式系统要求杠杆、轴点和零部件间的摩擦(相互配合)。[/back][/font][back=transparent][font=arial, helvetica, sans-serif]对于一台硬度计,压头是测试系统与样品接触的一[/font][/back]部分,它是获得正确硬度值最重要的一个因素。为了消除结构缺陷的影响,机械方面的移动或其他干扰都会影响试验力,因此力传感器需与压头尽可能靠近。[back=transparent][font=arial, helvetica, sans-serif][back=transparent]只有这样,基于力传感器的优势,闭环系统才能获得[/back]较高的[/font][/back][font=arial, helvetica, sans-serif][back=transparent]试验力精度。如将力传感器安装在硬度计其他位置,它相对于传统砝码式系统的优势将不复存在。[/back][/font][img=闭环控制,544,622]https://ng1.17img.cn/bbsfiles/images/2022/02/202202280925498150_4925_3317_3.jpg!w544x622.jpg[/img][font=arial, helvetica, sans-serif][back=transparent][b]闭环系统的优势:[/b][/back]高精度试验力力反馈系统确保加载试验力的准确性宽泛的试验力且不受限于机械结构简便的测试流程对比砝码系统,简化机械结构简单的校正程序[/font][font=arial, helvetica, sans-serif][back=transparent][b]闭环系统的缺点:[/b][/back]对比砝码系统,价格更贵需要供电系统[/font]

  • 智能传感器特点

    智能传感器(intelligent sensor)是具有信息处理功能的传感器。智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相结合的产物。一般智能机器人的感觉系统由多个传感器集合而成,采集的信息需要计算机进行处理,而使用智能传感器就可将信息分散处理,从而降低成本。与一般传感器相比,智能传感器具有以下三个优点:通过软件技术可实现高精度的信息采集,而且成本低;具有一定的编程自动化能力;功能多样化。智能传感器可对其运行的各个方面进行自监控,包括“摄像头的污浊,超容忍限或不能开关等,”GE Fanuc自动化公司的Black说。Pepperl+Fuchs公司智能系统经理Helge Hornis补充说,“(除此之外),还有线圈监控功能,目标超出范围或太近。”它也可以对工况的变化进行补偿。“‘智能’传感器,”Omron电子有限公司战略创意总监Dan Armentrout表示,“必须首先能监视自身及周围的环境,然后再决定是否对变化进行自动补偿或对相关人员发出警告。”    很多智能传感器都能重装到控制现场,通过提供“可设置参数,使用户能替换一些‘标准’传感器,”Hornis说道,“例如,典型的传感器一般都设置为常开(NO)或常关(NC),而智能传感器则能设置为以上任何一种状态。”    智能传感器拥有很多优势。随着嵌入式计算功能的成本继续减少,“智能”器件将被更多地应用。独立的内部诊断功能可避免代价高昂的宕机,从而迅速收回投资

  • 力传感器_力传感器种类_力传感器用法

    [align=center][/align]力传感器在大家的生活中是无处不在的,力传感器是一种相对比较耐用的机电类产品,在使用力传感器的时候需要注意保证它的测试精度,如果这个没办法把握的话那测量的结果就不准确了,也没有可参考的价值,那么在使用力传感器的时候这个精度要怎么去注意呢?力传感器周围应尽量设置一些“挡板”,甚至用薄金属板把力传感器罩起来。这样可防止杂物玷污力传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。系统有无运动不爽现象,可以用以下方法判别。即在秤台上加或减大约千分之一额定负荷看看显示仪是否有反映,有反映,说明可动部分未受“沾污”。力传感器所有通向显示电路或从电路引出的导线,均应采用屏蔽电缆。屏蔽线的联接及接地点应合理。若未通过机械框架接地,则在外接地,但屏蔽线互相联接后未接地,是浮空的。注意:有3只力传感器是全并联接法,力传感器本身是4线制,但在接线盒内换成6线制接法。力传感器输出信号读出电路不应和能产生强烈干扰的设可”控硅,接触器等)及有可观热量产生的设备放在同一箱体中,若不能保证这一点,则应考虑在它们之间设置障板隔离之,并在箱体内安置风扇。用以测量力传感器输出信号的电子线路,应尽可能配置独立的供电变压器,而不要和接触器等设备共用同一主电源。力传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。力传感器使用中,必须避免强烈的热辐射,尤其是单侧的强烈热辐射。力传感器电气连接方面备(如力传感器的信号电缆,不和强电电源线或控制线并行布置(例如不要把力传感器信号线和强电电源线及控制线置于同一管道内)。若它们必须并行放置,那么,它们之间的距离应保持在50CM以上,并把信号线用金属管套起来。尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在力传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在力传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。要轻拿轻放尤其是由合金铝制作弹性体的小容量力传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的测力传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于力传感器本身的强度和刚度。测力传感器虽然有一定的过载能力,但在测力系统安装过程中,仍应防止力传感器的超载。要注意的是,即使是短时间的超载,也可能会造成力传感器永久损坏。在安装过程中,若确有必要,可先用一个和力传感器等高度的垫块代替力传感器,到最后,再把力传感器换上。在正常工作时,力传感器一般均应设置过载保护的机械结构件。若用螺杆固定力传感器,要求有一定的紧固力矩,而且螺杆应有一定的旋入螺纹深度。一般而言,固定螺杆因采用高强度螺杆。力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨[url=http://mall.ofweek.com/category_54.html]力传感器[/url]丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 称重传感器系统的分类

    说起称重传感器系统的分类可以分为很多种,下面小编逐一的来和大家说说以下几种常见的分类和相应的解决方案。他们分别是:减量法型,失重型,螺旋秤型,微机系统,单一型和多种型。1.减量法型  减量法也叫累减秤。其特点如下:适合流动性不好的物料,按实际排料量计量;秤斗不能太大,否则精度可能 不高;可在原有的储料斗上直接改造;秤斗内先装满物料,配料时,控制器控制 卸料阀门打开,每次排出设定重量的物料;当检测到料斗内剩佘物料达到下限 时,启动输送机结构向料斗内装料,直接到上限值时停止。2.失重型 失重秤可在化工、建材、冶金等行业的多种物料连续 配料场合使用。它采用了基于斗式的结构,通过物料对称 (量)斗瞬间冲击的重量的采集、比较、系统PID调节, 及累计实现用户流水线的工艺控制要求。且该类型能进行 砝码直接标定,因此标定及系统维护的可操作性大大优于 与皮带秤。系统特点适合各种颗粒固定、液体、粉状物体、必须连续给料 的场合。可设定主料、辅料,辅料根据主料的流量自动调 节,维持比例恒定;可在各种连续生产的微量控制场合应 用,如脱硫系统的活性炭添加,塑料造粒的配料等。3.螺旋秤型  若干台螺旋秤按一定的流量比例匀速 向输送皮带机送料,每台秤由一台控制器控制,所有配料 秤与上位机组成一个网络,完成配料控制工作。4.微机系统  这种全自动配料控制系统的设计是采用主从式结构,将多台重量变送与PLC连接,PLC对重量变 送器过来的信号进行配料编程,PLC和计算机上的软件进行通讯,计算机上可实现更 多功能。该系统可应用于大型混凝土配料站,同时配料的物料可以多达5~12种甚至更多。5.单一型  一台计量秤只配一种,若干个计量秤组成称量多种物料的配料系统。系统特点:每个计量秤可以同时进行配料工作,配料速度快 可以按量程要求灵活配置,量程大的使用大秤,量程 小的使用小秤,配料更准确。6.多种型  若干种物料依次按照预先设定的顺序放 入一个计量斗内进行配料。系统特点:配料秤斗由一台配料控制器完成; 制作成本低,结构紧凑。

  • 测量水位的液位传感器-管道液位传感器

    测量水位的液位传感器-管道液位传感器

    [font=宋体][color=#212121]管道液位传感器是一种常用的液位传感器,它主要用于测量管道内部的液位高度。该传感器采用了先进的液位探测技术,能够准确地检测液位高度,并将检测结果传输给控制系统。下面我们来详细介绍一下管道液位传感器的工作原理和应用场景。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]工作原理:[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]管道液位传感器主要由探头和控制器两部分组成。探头通过安装在管道内部,通过液位变化来检测液位高度。控制器则负责处理和传输检测结果。探头和控制器之间通过电缆连接,控制器可以将检测结果传输给液位显示器或其他控制系统。[/color][/font][align=center][img=,577,435]https://ng1.17img.cn/bbsfiles/images/2023/06/202306261436500450_8175_4008598_3.jpg!w577x435.jpg[/img][/align][font=宋体][color=#212121]应用场景:[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]管道液位传感器适用于各种管道液位检测场景,如水处理、化工、石油、食品等行业。它可以用于检测各种液体,如水、油、酸、碱等。管道液位传感器具有结构简单、安装方便、精度高、稳定性好等优点,被广泛应用于各种工业自动化控制系统中。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]总之,管道液位传感器是一种常用的[url=https://www.eptsz.com]液位传感器[/url],它能够准确地检测管道内部的液位高度,为工业自动化控制系统提供了重要的数据支持。在实际应用中,用户可以根据不同的需求和场景选择合适的管道液位传感器,以便更好地实现液位检测和控制。[/color][/font][font=宋体][color=#212121][/color][/font]

  • 我科学家构建漏声表面波生物传感器检测系统

    为临床标本病原微生物直接检测开拓新方法 中国科技网讯 近日,记者从第三军医大学大坪医院野战外科研究所获悉,该院所检验科主任陈鸣教授带领科研团队通过8年攻关,成功构建了用于大分子检测的漏声表面波生物传感器检测系统。该检测技术具有高度特异性、敏感性和低成本的特点,并已应用于单核苷酸多态性的检测,对临床诊断和指导疾病治疗有重要意义。日前,相关论文发表在国际传感器领域权威期刊《生物传感器与生物电子学》杂志上。 单核苷酸多态性(SNP)作为第三代遗传标记,目前广泛应用于病原微生物分型、临床耐药分析等领域。用于检测SNP的DNA测序、单链构象多态性等传统非均相分析方法,操作复杂且通量不高,导致数据可靠性降低。虽然基因芯片、变性高效液相色谱仪等技术能快速、高效、大批量检测基因组中的SNP,但设备价格昂贵,且技术上需要放射性或荧光标记等,还存在重复性差、结果难以标准化判定等缺陷。 生物传感器这种方法可以解决检测中存在的不足。随着声光、微电子技术的发展,一种新型传感器——漏声表面波传感器逐渐发展起来。与其他类型的生物传感器相比,漏声表面波传感器的检测基频更高,同时更适用于液相分析。 在长达8年的实验研究中,课题组与其他单位合作,共同设计制作了双通道LSAW传感器和数据分析采集软件,成功地构建了漏声表面波传感器检测系统。该系统建立了基于“DNA酶连接反应和生物酶放大”的新型漏声表面波生物传感器SNP检测技术。实验证明,该检测方法具有较高的灵敏度。 据介绍,该课题组构建的新型漏声表面波生物传感器SNP检测技术,与传统的SNP检测方法完全不同,将为临床标本病原微生物的直接检测开拓全新的方法。(邹争春 记者陈磊) 《科技日报》(2012-04-27 一版)

  • 汽车传感器在信息传输的使用

    (1)信息的显示与报警    电子信息中心可以监控发动机的工况及其他信息,当出现不正常情况时,可随时报警。报警系统传感器有机油压力传感器、液量传感器、温度传感器等,这些传感器向电脑提供信息,必要时启动报警电路进行报警。    (2)语音提示    语音提示包括语音警告和语音控制。语音警告通过开关型传感器监测车内部件的工作情况,一旦出现故障,开关闭合,控制器被触发,语音电路被启动,同时发出报警声音讯号。    语音控制是指驾驶员可用声音指挥、控制汽车的某个部件的工作,进行指令性动作。    (3)车辆定位和导航    车辆定位和导航技术已经应用在汽车上,它将全球定位系统(GPS)接收机安装在车辆上,并使用推算技术,即利用各种传感器,如相对传感器、绝对传感器、转向角传感器、车轮转速传感器(测距)、地磁传感器、陀螺盘(测方向)、罗盘等精确测定汽车目前所在的位置。    使用车辆定位和导航系统,可以完成下列各项任务:    ①数字地图显示;    ②利用城市街区地址、各交叉路口确定要到达的目的地;    ③计算行驶路径;    ④沿着预先计算出的行驶路线为驾驶员导航;    ⑤各种传感器检测到的车辆行驶轨迹和已知道路网进行匹配,以便更准确地确定车辆的实际位置;    ⑥为驾驶员提供旅游信息,如旅游指南、路标、旅馆和饭店等信息。

  • 燃料电池汽车氢系统氢气泄漏检测传感器

    根据《中国氢能源及燃料电池产业白皮书》,氢能将成为中国能源体系重要组成部分,2050年能源体系中占比约10%,氢气需求量达6000万吨,加氢站10000座以上,氢燃料汽车产量达500万辆/年,行业发展前景广阔。截至2020年底,全球氢燃料电池汽车保有量为32535辆,同比增长38%,韩国保有量达10906辆,位居全球第一,美国为8931辆,我国氢燃料电池汽车保有量为7352辆排第三。[url=http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340.png][img=QQ图片20220907092340,447,300]http://news.isweek.cn/wp-content/uploads/2022/09/QQ图片20220907092340-447x300.png[/img][/url]氢燃料电池汽车是利用氢气和氧气的电化学反应产生电能驱动汽车,产物只有水,具有无污染、动力性能高、充气时间短和续驶里程长等优点。基于这些优点,氢燃料电池汽车正在成为各国政府和企业重点布局和探索的未来绿色产业,也是发展新能源汽车的重要技术路线之一。氢燃料电池汽车的核心为燃料电池发动机系统,关系着整车运行的安全性,对燃料电池汽车是否具备成熟、可靠的性能表现具有重要影响。燃料电池发动机主要部件包括电堆、发动机控制器、氢气供给系统、空气供给系统等。燃料电池系统是氢燃料电池汽车的核心单元,存在结构复杂、性能要求高、运行环境恶劣和动态响应能力差等,难免出现各种故障和失效。而氢气具有无色无味、极易燃烧等特性,需要重点关注对于氢气泄漏故障的准确诊断,以免发生严重安全事故。工采网推出了一款专门针对燃料电池系统氢气泄漏检测的传感器TGS6812,该传感器性可靠性好、性价比高,是氢燃料电池H2泄漏检测的好帮手。[img=日本figaro 催化燃烧式可燃气体传感器,300,300]https://www.isweek.cn/Thumbs/300/0161206/58466d62d3342.JPG[/img][b]一、催化燃烧式可燃气体传感器TGS6812描述:[/b]TGS6812-D00是催化燃烧式的可燃气体传感器,可以检测100%LEL水平的氢气,此传感器具有精度高,耐久性与稳定性好,快速响应、线性输出的特点,不仅可监测氢气,还可以用于检测甲烷与LP气体。这对于固定式燃料电池将氢气作为可燃气体时的泄漏检测是个非常优秀的方案。TGS6812-D00的盖帽内有吸附剂,对有机蒸汽的交叉灵敏度很低。此外,此传感器对硅化合物的耐受性更佳,更适应恶劣环境。[b]二、催化燃烧式可燃气体传感器TGS6812特点:[/b]* 线性输出* 使用寿命长* 对酒精灵敏度低* 对氢气、甲烷与LP等物质有较高灵敏度[b]三、催化燃烧式可燃气体传感器TGS6812应用:[/b]* 用于监测燃料电池的氢气与可燃气体泄漏* 工业、商用上的可燃气体泄漏检测

  • 【原创】传感器的选用

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量?环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1)根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标2)灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械?系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便5)稳定性 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。?在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响 传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。?在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验6)精度 精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器 对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求http://www.yb3721.com

  • 【分享】传感器选用原则

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1)根据测量对象与测量环境确定传感器的类型要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。2)灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。5)稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6)精度精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求

  • 光电传感器与红外传感器的区别

    光电传感器与红外传感器的区别

    [font=宋体][color=#1E1F24]光电传感器与红外传感器的主要区别在于它们的工作原理和用途。[/color][/font][font=宋体][color=#1E1F24]光电传感器通常使用光敏元件(如光敏电阻、光电池等)来检测光线或可见光的强度。当光线照射到光敏元件上时,光敏元件会根据光线强度产生相应的电信号。因此,光电传感器主要用于检测可见光的存在、测量光的强度和辨别颜色等。[/color][/font][font=宋体][color=#1E1F24]红外传感器则使用红外线来探测目标物体。红外线是一种波长在红色光和微波之间的电磁波,具有穿云透雾的能力。红外传感器通常使用热敏元件来探测目标物体发出的红外辐射,并根据目标物体的温度差异来判断是否存在目标物体。因此,红外传感器主要用于热成像、夜视、监控、消防等领域。[/color][/font][align=center][img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/11/202311091558166644_7199_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][color=#1E1F24]光电传感器和红外传感器在结构、性能和应用方面也存在差异。光电传感器的结构相对简单,通常由一个光敏元件和一些电子元件组成。而红外传感器的结构较为复杂,通常需要使用光学系统、热敏元件和信号处理电路等。光电传感器的响应速度较快,适用于高速检测和自动化控制等领域,而红外传感器的响应速度较慢,但具有较高的灵敏度和分辨率,适用于远距离探测和热成像等领域。[/color][/font][font=宋体][color=#1E1F24][url=https://www.eptsz.com]光电传感器[/url]和红外传感器是两种不同的传感器类型,它们的工作原理、结构、性能和应用等方面存在明显的差异。在选择使用时,需要根据实际需求和应用场景来选择合适的传感器类型。[/color][/font]

  • 【转帖】有关传感器的知识

    信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。  [~109133~][~109135~]

  • 电容式水位传感器与光电水位传感器的差异

    电容式水位传感器与光电水位传感器的差异

    [size=24px][font=宋体]不同的水位传感器其应用也是不同的,比如电容式水位传感器常应用在洗手液机、宠物饮水机等,而光电水位传感器适用在洗地机、咖啡机等设备上。[/font][font=宋体]电容式水位传感器采用的是电容感应原理,当被测介质测量高度发生变化,引起电容变化,传感器则会发出信号给到控制系统。因其原理,[url=https://www.eptsz.cn/News_Details1/1597832355802980352.html][b]电容式水位传感器[/b][/url]对于水箱容器的材质有要求,不能使用金属材质的水箱。电容式水位传感器的安装非常方便,只需将传感器紧贴于水箱外壁,即可精准检测到内部液体的变化,从而做出准确判断。[/font][img=,690,431]https://ng1.17img.cn/bbsfiles/images/2022/12/202212071120077212_4575_4008598_3.png!w690x431.jpg[/img][font=宋体]光电水位传感器是利用的光学反射原理,通过内部的红外发光二极管和光敏接收器进行检测。传感器头部是棱镜结构,内部无机械部件、体积小、精度高、应用广泛、可靠性高。此类原理的传感器需避免在阳光直射下使用,以免造成干扰,解决方案是采用遮光罩进行规避。对于水珠、水雾、气泡等问题,可以提前通过软件调试。[img=,690,255]https://ng1.17img.cn/bbsfiles/images/2022/12/202212071120275339_9549_4008598_3.png!w690x255.jpg[/img][/font][/size]

  • 压力传感器的运用

    传感器技术是现代测量和自动化系统的重要技术之一,从太空开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如国把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器)之一。在各类传感器中压力传感器具有体积孝重量轻、活络度高、稳定可靠、成本低、易于集成化的优点,可广泛用于压力、高度、增速度、液体的流量、流速、液位、压强的测量与控制。 除此以外,还广泛应用于水利工程、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又易于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比无上的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国表里压力传感器的研究现状和发展趋势。

  • 压力传感器的工作原理应用及分类

    压力传感器的工作原理应用及分类

    [color=#333333]随着科技的发展自动化技术的进步,在工业设备中我们常见的[/color]压力传感器[color=#333333]除了液柱式压力计、弹性式压力表外,目前更多的是采用可将压力转换成电信号的[/color]压力变送器[color=#333333]和传感器。压力传感器是将压力转换为电信号输出的传感器。通常传感器由两部分组成,即分别是敏感元件和转换元件。其中敏感元件是指传感器中能够直接感受或响应被测量的部分;转换元件是指传感器中将敏感元件感受或响应的被测量的应变转换成适于传输或测量的电信号部分。由于传感器的输出信号一般很微弱,需要将其调制与放大。集成技术的发展,促使人们又将这部分电路及电源等电路也一起装在传感器内部。这样,[/color]传感器[color=#333333]就可以输出便于处理,传输的可用信号了。在技术相对落后的阶段,所谓的传感器是指上文中的敏感元件,而变送器就是上文中的转换元件。压力传感器一般是指将变化的压力信号转换成对应变化的电阻信号或电容信号的敏感元件,如:压阻元件,压容元件等。同时压力传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器等。目前应用较为广泛的压力传感器有:陶瓷压阻压力传感器、溅射薄膜压力传感器、电容压力传感器、耐高温特性的蓝宝石压力传感器。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们具体了解一下压力传感器的工作原理及应用领域。[/color][color=#333333][img=,374,235]http://ng1.17img.cn/bbsfiles/images/2017/12/201712121625_01_3332482_3.jpg!w374x235.jpg[/img][/color][color=#333333]压阻式力传感器:电阻应变片是压阻式应变传感器的主要组成部分之一。金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。陶瓷压力传感器:陶瓷压力传感器基于压阻效应,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0/3.0/3.3mV/V等,可以和应变式传感器相兼容。扩散硅压力传感器:扩散硅压力传感器工作原理也是基于压阻效应,利用压阻效应原理,被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,利用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。[/color][color=#333333][img=,448,301]http://ng1.17img.cn/bbsfiles/images/2017/12/201712121626_01_3332482_3.jpg!w448x301.jpg[/img][/color][color=#333333]电容式压力传感器:电容式压力传感器是一种利用电容作为敏感元件,将被测压力转换成电容值改变的压力传感器。这种压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。蓝宝石压力传感器:利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅-蓝宝石半导体敏感元件,无p-n漂移。压力传感器主要应用于:增压缸、增压器、气液增压缸、气液增压器、压力机,压缩机,空调制冷设备等领域。[b]压力传感器在液压系统中主要是来完成力的闭环控制[/b]压力传感器在液压系统中主要是来完成力的闭环控制。当控制阀芯突然移动时,在极短的时间内会形成几倍于系统工作压力的尖峰压力。在典型的行走机械和工业液压中,如果设计时没有考虑到这样的极端工况,任何压力传感器很快就会被破坏。需要使用抗冲击的压力传感器,压力传感器实现抗冲击主要有2种方法,一种是换应变式芯片,另一种方法是外接盘管,一般在液压系统中采用第一种方法,主要是因为安装方便。此外还有一个原因是压力传感器还要承受来自液压泵不间断的压力脉动。[b]压力传感器在安全控制系统中经常应用[/b]压力传感器在安全控制系统中经常应用,主要针对的领域是空压机自身的安全管理系统。在安全控制领域有很多传感器应用,压力传感器作为一种非常常见的传感器,在安全控制系统中应用也不足为奇。在安全控制领域应用一般从性能方面来考虑,从价格上的考虑,还有从实际操作的安全性方便性来考虑,实际证明选择压力传感器的效果非常好。压力传感器利用机械设备的加工技术将一些元件以及信号调节器等装置安装在一块很小的芯片上面。所以体积小也是它的优点之一,除此之外,价格便宜也是它的另一大优点。在一定程度上它能够提高系统测试的准确度。在安全控制系统中,通过在出气口的管道设备中安装压力传感器来在一定程度上控制压缩机带来的压力,这算是一定的保护措施,也是非常有效的控制系统。当压缩机正常启动后,如果压力值未达到上限,那么控制器就会打开进气口通过调整来使得设备达到最大功率。关于压力传感器在工业中的测量与应用工釆网小编推荐:工业级压力传感器 - M7100[/color][color=#333333][img=,448,301]http://ng1.17img.cn/bbsfiles/images/2017/12/201712121626_01_3332482_3.jpg!w448x301.jpg[/img][/color][color=#333333]工业级压力传感器M7100产品采用MEAS专利的微熔技术,适合液体和气体压力测量,甚至包括污水,蒸汽和腐蚀性液体等介质。 M7100的压力腔由17-4PH不锈钢单件一体式结构加工而成,标准产品带有1/4 NPT压力接口,全金属密封,无泄漏。由于无O型圈、无焊缝、并且不直接接触测量介质,传感器的稳定性和耐用性非常好。汽车级的压力变送器集成密封压力端口和电气接头,最大量程可达43,000psi(3000bar)。传感器符合最新的重工业CE标准,包括浪涌保护,和16Vdc的正向和反向过电压保护。此外M7100还可以应用于HVAC/R控制,工程机械,发动机控制,压缩机,液压系统,能源和水资源控制等方面。由于其性能特点工业级压力传感器M7100为要求严格的发动机和机动车辆应用树立了新的性能价格比典范。转载本站文章请注明出处:仪器仪表应用_传感器应用_智能硬件产品 - 工采资讯[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制