当前位置: 仪器信息网 > 行业主题 > >

数显电压表

仪器信息网数显电压表专题为您提供2024年最新数显电压表价格报价、厂家品牌的相关信息, 包括数显电压表参数、型号等,不管是国产,还是进口品牌的数显电压表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显电压表相关的耗材配件、试剂标物,还有数显电压表相关的最新资讯、资料,以及数显电压表相关的解决方案。

数显电压表相关的资讯

  • 电镜学堂丨电镜操作之如何巧妙选择加速电压?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。 今天主要谈一谈如何根据样品类型以及所关注的问题选择合适的加速电压? 这里是TESCAN电镜学堂第9期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。这一期将为大家介绍加速电压的选择。 §1. 加速电压的选择 任何电镜都是加速电压越高分辨率越高,但并不意味着任何试样都是电压越大越好。电压的选择是电镜中各个工作条件中最重要的一个。有各种因素需要考虑,而各个因素之间也有矛盾相悖的,这个时候还需要适当进行综合考虑或者采取其它办法。 ① 样品损伤和荷电因素 选择的加速电压不能对试样产生明显的辐照损伤或者荷电,否则观察到的图像不是试样的真实形貌。如果有荷电的产生,需要将电压降至到V2以下,这点在前面电荷效应中已经详细阐述,这里不再重复。 对于金属等导电导热均良好的试样,可以用较高的电压进行观察,如10kV及以上;对于一些导电性不是很好但是比较稳定的试样,可以中等加速电压,如5kV左右;对一些容易损伤的样品,比如高分子材料、生物材料等,可能需要较低的电压,如2kV或以下。 ② 电子产额因素 对于单相材料来说,因为成分没有差别,我们选择电子产额最大的区间V1~V2即可,但是对于混合物相材料来说,我们希望在有形貌衬度的同时还能有较好的成分衬度,这样的图片显得衬度更好,信息量也最大,往往我们也会认为这样的图片最清晰。因此我们需要选择二次电子产额相差较大的区域进行拍摄。 如图5-13,左图是碳和金的二次电子产额,中间图片是金颗粒在1kV下的二次电子图像,右图是200V下的二次电子图像。显然,在200V下碳和金的产额一样,所以此时拍摄的图像仅呈现出形貌上的差别,而碳和金的成分差异无论怎么调节明暗对比度也不会出现。而在1kV下,碳和金的电子产额差异达到最大,所以除了形貌衬度外,还表现出极好的成分衬度。 图5-13 金和碳在电子产额(左)及1kV(中)、200V(右)电压下的SE图像 对于一些金属材料来说,往往较高的加速电压下有相对较大的产额差异,而对于一些低原子序数试样,较低的电压往往电子产额差异更大。 如图5-14,试样为碳银混合材料。左图为5kV SE图像,右图为20kV SE图像。5kV下不但能表现出比20kV更好的成分衬度,还有更好的表明细节。 图5-14 碳银混合材料在5kV(左)、20kV(右)电压下的SE图像 如图5-15,试样为铜包铝导线截面,左图为5kV SE图像,右图为20kV SE图像。20kV下能够更好的将外圈的铜层和内部的铝层做更好的区分。 图5-15 铜包铝导线截面在5kV(左)、20kV(右)电压下的SE图像 对于有些本身差别很小的物相,如果能找到二次电子产额差异最大所对应的电压,也可将其区分。当然有的产额没有参考曲线,需要经过诸多尝试才能找到。比如图5-16,试样为掺杂半导体基底上的本征半导体薄膜,其电子产额差异在1kV达到最大,对应1kV的图像能将两层膜就行区分,而其它电压则没有太好的衬度。 图5-16 半导体薄膜在不同电压下的衬度对比 ③ 衬度的平衡 虽然通过上一点提到的加速电压的选择可以将成分衬度达到最大,但有时该条件并不是观察形貌最佳的电压。此时我们需要考虑究竟是注重形貌还是注重成分衬度,使用二次电子来进行观察,还是用背散射电子进行观察,或者用折中的办法进行观察。这都需要操作者根据电镜照片想说明的问题来进行选择。 要获得好的形貌衬度图像和原子序数图像所需的电压条件一般都不一样,也有另外的办法可以适当解决。对最佳形貌衬度和最佳原子序数衬度单独拍摄照片,后期在电镜软件中通过图像叠加的方式,将不同的照片(位置需要完全一样)按照一定的比例进行混合,形成一张兼有两者衬度的图片。 ④ 有效放大率因素 一般电镜在不同的电压下都有着不一样的极限分辨率,其对应的有效放大率也随之而改变。拍摄特定倍数的电镜照片,特别是高倍照片,需要选择电压对应的有效放大率能够达到需求。否则,视为图像出现了虚放大。虚放大后,图像虽然也在放大,但是并没有出现更多的信息,而且虚放大而会有更多环境因素的影响。 所以如果出现虚放大,可以提高加速电压,以增加有效放大率;如果电压不能改变,可以考虑增加图像的采集像素,来获得类似放大的效果。此时受环境因素或者样品损伤因素更小。 ⑤ 穿透深度因素 前面已经详细的讲述了加速电压和电子散射之间的关系。加速电压越高,能量越大,电子的散射区域就越大。那么产生的二次电子或背散射电子中,从更深处发射的比例则更多。因此较大的加速电压虽然有更好的水平方向的分辨率,但是却忽略了试样很多的表面细节;而低电压虽然水平方向分辨率相对较差,但是却对深度方向有着更好的灵敏度,可以反映出表面更多的形貌细节。 如图5-17,试样为表面修饰的二氧化硅球,5kV电压看不出任何表面细节,而2kV下则能观察到明显的颗粒。再如图5-18,纳米颗粒粉末在不同电压下的表现,因为颗粒团聚严重,所以在5kV电压下无法将团聚颗粒很好的区分,显得粒径更大,而1kV下则能观察到相对更细小的颗粒。 图5-17 SiO2球在5kV(左)、1kV(右)电压下的图像 图5-18 纳米颗粒在5kV(左)、1kV(右)电压下的图像 当加速电压降低到200V左右的超低水平后,电子束的作用区域变得很小,常规的边缘效应或者尖端效应基本可以去除,如图5-19。 图5-19 200V左右的电压可以消除边缘效应 更多详情内容请关注“TESCAN公司”微信公众号
  • 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)
    p style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "【作者按】/span/strongspan style="text-indent: 2em "扫描电镜测试条件的选择主要包括以下四个方面:加速电压、束流与工作距离、探头。前两个主要影响样品信息的溢出,后两者影响着信息的接收。测试条件选择的是否合适,决定了您能获得怎样的测试结果。/spanbr//pp style="text-align: justify text-indent: 2em "本人在第一篇32载经验谈《扫描电镜加速电压与分辨力的辩证关系》一文中,就加速电压与图像分辨力的辨证关系进行了深入的探讨。充分分析了改变加速电压会给表面形貌像的分辨力带来怎样的变化;解答了为什么获取高分辨像,钨灯丝扫描电镜要选择较高的加速电压(10KV以上),而场发射扫描电镜需要选择较低的加速电压;阐述了场发射电镜为什么会比钨灯丝电镜有着更高的分辨能力。/pp style="text-align: justify text-indent: 2em " 除了对图像分辨力的影响,加速电压的改变还会在样品的信息特性、荷电的产生及应对等方面对测试结果产生较大的影响。一直以来,许多专业人员对此,普遍存在一种单调的思维模式及处理方法,这将给最终的测试结果带来偏差。/pp style="text-align: justify text-indent: 2em "这种认识上的偏差也存在于束流的选择上,对最终测试结果同样会形成很大的影响。错误的束流选择,你将无法获得完美的测试结果,还会给仪器的调整带来麻烦。/pp style="text-align: justify text-indent: 2em " 本文将通过大量的实际测试事例,为大家充分展示,选择不同的加速电压及束流究竟能给测试结果带来怎样的影响。分析形成这种结果的原因,以及传统观念在加速电压和束流选择上存在怎样的认识偏离。为今后大家在进行扫描电镜测试时,合理的选择加速电压和束流提供一些参考。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px "strong一、 加速电压的选择/strong/span /h1p style="text-align: justify text-indent: 2em "加速电压的选择除了对表面形貌像的细节分辨力存在极大影响,还在以下几个方面影响着测试结果:1. 获取的样品信息在样品中所处的位置,表层还是内层;2. 荷电场形成的位置及强度。而无论在那一方面,改变加速电压所带来的变化都充满了辨证法的规律。下面将以充分的事例来加以展示。/pp style="text-align: justify text-indent: 2em "strong1.1 加速电压与图像分辨力的关系/strong/pp style="text-align: justify text-indent: 2em "加速电压与图像分辨力的辨证关系,前文有充分的探讨,在此将只做简单的描述。本节主要是以充分及清晰的事例来展示,改变加速电压将带来怎样的图像分辨力变化。/pp style="text-align: justify text-indent: 2em "提升加速电压对图像分辨力会产生两种相互对立的影响:/pp style="text-align: justify text-indent: 2em "1. 从信息扩散来说,不利于获取高分辨形貌像。/pp style="text-align: justify text-indent: 2em "2. 对电子束发射亮度的提升,有利于高分辨图像的获取。/pp style="text-align: justify text-indent: 2em "这两方面的共同结果必然是存在一个最佳值或最佳范围。这个值与样品特性和其它测试条件的选择都有关联。/pp style="text-align: justify text-indent: 2em "实际测试中,应先对图像所显示的样品信息特征作出正确研判,然后再做出正确的调整来找到这个最佳值。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/fa2635bd-6b96-4bce-9171-265cc0bb3c82.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "想获取更好的介孔形态必须降低加速电压。改用小工作距离测试,可缩少电子束裙散和透镜球差形成的弥散并增加探头对信号的接收效果,使得对电子束发射亮度的要求降低。此时选择1KV加速电压即可获取更佳的图像效果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/9d154d57-9819-4674-bf25-23c1d0da39ff.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 0em "strong实例二、小工作距离、减速模式的加速电压选择(kit-6介孔)/strong/pp style="text-align: center text-indent: 0em " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/23ccfeb0-85bf-47d4-b1ee-9189f64bb660.jpg" title="3.png" alt="3.png"//pp style="text-indent: 0em "br//pp style="text-align: justify text-indent: 2em "strong1.2 加速电压与样品中的信息分布/strong/pp style="text-align: justify text-indent: 2em "样品中的信息分布:指样品信息所处位置,表层?内部?/pp style="text-align: justify text-indent: 2em "加速电压的提升,电子束在样品表层激发的信息将减少,内部信息的激发会增多。选取不同加速电压对样品进行分析,有助于获取更全面、更充分的样品信息。/pp style="text-align: justify text-indent: 2em "strong实例一、二氧化钛与银的复合膜 /strong/pp style="text-align: justify text-indent: 2em " 该样品是将二氧化钛与银颗粒分层蒸镀在玻璃表面,银颗粒起先分布在极表层。高温烧结后观察薄膜表面形貌的变化及银颗粒存在的位置。先采用XRD与XPS检测银含量的变化,均未检测到银的存在。扫描电镜检测的结果如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/71cf90d7-a4fc-4797-bc79-d5f88a725f06.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "上例我们可以看到,任何测试条件的选择都有其局限性,很难单独给出全面的样品信息。需要不停的改变测试条件,综合分析才能够获取更全面且充分的样品信息。/pp style="text-align: justify text-indent: 2em "strong实例二,含有钴颗粒的核壳结构碳球/strong/pp style="text-align: justify text-indent: 2em "内部为结构紧密的碳球,包裹一个球形的碳壳层,中间有钴纳米量子点存在。以下组图将给我们提供完整信息:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/b149b0cd-9014-4a7f-b45d-0f5e58750392.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "这组照片,合在一起才能提供样品的完整信息:一个核壳结构的碳球,内部是高密度球体,中间为絮状夹层,钴颗粒镶嵌于絮状夹层中,极表层较为平实。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/87b50fb1-9fcb-41ae-9720-81e2eb095201.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "strong实例三、石墨烯的观察/strong/pp style="text-align: justify text-indent: 2em "单层石墨烯厚度仅不到一个纳米,个人观点:较难形成可被扫描电镜观察到的衬度。一般说,十来层左右的碳层被观察到的可能性更高,加速电压较低可观察到的碳层也较薄。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/652f21c2-13d1-45a3-ac00-f2be0b08c4c5.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em "对簿膜样品加速电压选择低一些,效果较好,但有个度。/pp style="text-align: justify text-indent: 2em "strong1.3改变加速电压对样品荷电场强度与位置的影响/strong/pp style="text-align: justify text-indent: 2em "样品的荷电现象:高能电子束轰击足够厚的样品,如有电子驻留在样品中漏电性较差的部位,将形成静电场影响该部位及附近电信号的正常溢出。出现异常亮、异常暗或磨平的现象,这就是样品的荷电现象,该静电场也称“荷电场”。(关于样品的荷电现象,后期将有专文加以深入探讨)。/pp style="text-align: justify text-indent: 2em "影响样品荷电场形成的因素有许多,加速电压正是其中最为重要的一个方面。/pp style="text-align: justify text-indent: 2em "加速电压对样品荷电场的影响主要表现在以下几点:/pp style="text-align: justify text-indent: 2em "1.加速电压的升高,发射亮度增加,使得注入样品的电子数增加,荷电场强度得以加强,将加重样品的荷电现象。/pp style="text-align: justify text-indent: 2em "2.加速电压的升高,电子击入样品的深度增加,形成荷电场的位置下移,达一定值时,对样品电信号溢出的影响将会减弱直至消除。但SE2的增加,会影响表面细节的分辨。/pp style="text-align: justify text-indent: 2em "3.加速电压的升高,使得背散射电子能量增加,背散射电子能量越大,其溢出量受荷电场的影响也就越小。/pp style="text-align: justify text-indent: 2em "strong实例一、介孔材料KIT - 6不同加速电压下的荷电现象 /strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/f1a4138c-34fa-47e0-9b73-51fa3f0e6e15.jpg" title="8.png" alt="8.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/e691f38e-c9b1-4ea9-9cd5-c67cf0df65d4.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "strong实例二、二氧化硅小球,减速模式的加速电压与荷电/strong/pp style="text-align: justify text-indent: 2em "二氧化硅小球。形态松软,容易形成样品的荷电现象。主流观点:减速、低电压是解决样品荷电问题的最佳方案,且加速电压越低,荷电现象越弱。真实情况却未必如此。/pp style="text-align: justify text-indent: 2em "用减速模式500V、1KV,观察得出的是如下结果:/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/764fd804-f00b-4e93-bed6-03b652d70f53.jpg" title="10.png" alt="10.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em " /spanbr//pp style="text-align: justify text-indent: 2em "strong实例三、钼化铬纳米颗粒/strong/pp style="text-align: center text-indent: 0em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/f222ae41-0b71-45ac-9969-ca0e2806ff94.jpg" title="11.png" alt="11.png"//strong/pp style="text-align: justify text-indent: 2em "以上三例可见,无论采用何种模式,加速电压与样品的荷电现象之间都存在一个辩证的关系。/pp style="text-align: justify text-indent: 2em "加速电压升高,会增加注入到样品中的电荷总量,提升样品中的荷电场强度,加重样品的荷电现象。/pp style="text-align: justify text-indent: 2em "提升加速电压,电子注入样品的深度增加,自由电子在样品中形成堆积的位置下移至更深处,荷电场位置也将下沉。荷电场的下沉会逐步减弱其对样品表面电子溢出量的干扰,荷电现象也将逐步减弱,但这是一个量变到质变的过程。当加速电压达到一定值,荷电场接地形成电荷通道,此时样品中多余的自由电子完全消失,样品中也就不存在荷电场。/pp style="text-align: justify text-indent: 2em "加速电压的提升,可以增加背散射电子的能量,达到一定值,背散射电子信息将克服荷电场对其正常溢出的影响,减弱并消除形貌像所显现出的样品荷电现象。/pp style="text-align: justify text-indent: 2em "因此不能简单的认为:低加速电压是不蒸金解决样品荷电的唯一有效途径。以辩证的思维方式来综合评估各方面的影响,合理选择加速电压才是应对样品荷电的有效方式。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px "strong二、束流大小的选择/strong/span/h1p style="text-align: justify text-indent: 2em "目前主流的观点认为:束流越大,电子束斑的直径越大,束斑直径越大,图像的分辨率越差。各电镜厂家的工程师在进行分辨率测试时,都会选用小束流,但观察的都是信号量充足的标准样品(金颗粒)。/pp style="text-align: justify text-indent: 2em "实际测试时,常发现小束流下样品的整体信息量较差 ,很难形成高质量表面形貌像。那么该怎样选择合适的束流?/pp style="text-align: justify text-indent: 2em "依辩证法的观点,降低束流强度将得到以下两个矛盾的结果:/pp style="text-align: justify text-indent: 2em "1. 束斑直径降低,信号溢出区面积减小对图像清晰度有利且能降低荷电场强度,削弱样品荷电的影响。/pp style="text-align: justify text-indent: 2em "2. 减少注入样品的电子量,信号量将减弱,不利图像分辨。/pp style="text-align: justify text-indent: 2em "而现实的操作中,在主流观点的影响下,往往把眼光只放在第一点上,夸大束斑直径的影响,忽视束流强度不足所引起的信号量缺乏,故常常无法获得高质量的高分辨图像。/pp style="text-align: justify text-indent: 2em "特别在面对氧化物、高分子等本身信号较弱的材料时,信号量常常是关键点,小束流的模式很难获得满意的结果。/pp style="text-align: center text-indent: 0em "span style="font-size: 16px "strong style="font-size: 14px text-align: center text-indent: 2em "实例一、钴纳米颗粒和碳材料,不同束流下图像质量的比较/strongstrong style="font-size: 14px text-align: center text-indent: 2em "/strong/span/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/29ecf822-c796-4da0-a394-fa93a248c2d0.jpg" title="12.png" alt="12.png"//pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/858092ec-e7c9-4e0e-a8e3-a1564d3b4800.jpg" title="13.png" alt="13.png"/ /span/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/f8de383e-1046-4e7d-a4d1-540843a72d14.jpg" title="14.png" alt="14.png"/span style="text-indent: 0em " /span/pp style="text-align: center text-indent: 0em " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/34a0c424-2f08-44fe-8f0c-cd31c149f9ab.jpg" title="15.png" alt="15.png"//pp style="text-align: justify text-indent: 2em "以上四例说明:束流的选择同样也遵循辩证法的规律,束流改变带来的往往是正、反两方面影响。如何平衡这些影响获取最佳的结果,还与样品的特性有关,必须全面考虑。/pp style="text-align: justify text-indent: 2em "样品本身信号量充足且漏电能力较差,束流适当选择较低一些,可以减少荷电的影响,提升图像的清晰度,但图像信噪比就是牺牲的对象。反之,束流应当选择稍高一些,可以获得的样品信号量更为充分,图像的质量更佳。/pp style="text-align: justify text-indent: 2em "依据个人的测试经验,起始条件选择的束流大一些,综合效果会更好。选择小束流,常常会使得图像的信息量不足,分辨力减弱过多,很多细节反而分辨不清。欲对仪器做出适当的调整,看清信息是基础,信息太弱会失去调整的方向。/pp style="text-align: justify text-indent: 2em "任何测试条件的选择都应当坚持适度性原则。具体问题、具体分析,摒弃单调的思维模式,才能找到最佳的测试条件,获得满意的测试结果。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "strong三、结束语/strong/span/h1p style="text-align: justify text-indent: 2em " 本文通过大量的实例给大家展示,不同加速电压及束流的选择,究竟能带给我们怎样的测试结果。/pp style="text-align: justify text-indent: 2em "辨证的观点要求我们能够做到具体问题、具体分析。/pp style="text-align: justify text-indent: 2em "摒弃单调的思维模式,有助于我们选择正确的测试条件,获得满意的测试结果。/pp style="text-align: justify text-indent: 2em "同样的样品、不同的测试条件获取的样品信息不同。单一的测试条件往往很难带给我们完整且充分的样品信息。/pp style="text-align: justify text-indent: 2em "要获取充分的样品信息,需要测试者能准确预判出测试条件的改变对测试结果会产生怎样的影响。做到这一点,测试者的经验积累十分重要。希望本文的各种实例,能对大家在加速电压和束流选择方面的经验累积提供一些帮助。/pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日/pp style="text-align: justify text-indent: 2em "华南理工出版社/pp style="text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 2009年1月/pp style="text-align: justify text-indent: 2em "中科大出版社/pp style="text-align: justify text-indent: 2em " 《自然辩证法》 恩格斯 于光远等译 1984年10月/pp style="text-align: justify text-indent: 2em "人民出版社 /pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月/pp style="text-align: justify text-indent: 2em " 清华大学出版社/pp style="text-indent: 2em "strong作者简介:/strong/pp style="text-indent: 2em text-align: justify "img style="max-width: 100% max-height: 100% width: 80px height: 123px float: left " src="https://img1.17img.cn/17img/images/202005/uepic/6dc1a11e-8c90-4ad2-be79-65574928318f.jpg" title="741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" alt="741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" width="80" height="123" border="0" vspace="0"/林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /pp style="text-indent: 2em "strong延伸阅读: /strong/pp style="text-indent: 2em "strong/strong/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200414/536016.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200318/534104.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜的探头新解——安徽大学林中清32载经验谈(6)/span/a/pp style="text-indent: 2em "a href="http://二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)/span/a/pp style="text-indent: 2em "a href="http://二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)/span/a/pp style="text-indent: 2em "a href="http://电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/p
  • 电工仪器仪表23项国标修订计划获批准
    近日,2012年第一批推荐性国家标准计划项目已经过国家质量监督检验检疫总局、国家标准化管理委员会批准下达,由全国电工仪器仪表标准化技术委员会秘书处组织上报的23项国家标准制修订计划全部获得批准。此次获得批准的23个项目覆盖了“AMI标准体系”中的各专项工作组。目前,全国电工仪器仪表标准化技术委员会秘书处已经启动项目工作组的组建工作。  以下是23项国家标准制修订计划的目录:  序号 计划编号 项目名称 标准性质 制修订 代替标准 采用国际标准 完成时间  1 20120803-T-604 单相智能电能表特殊要求 推荐 制定 2014  2 20120804-T-604 三相智能电能表特殊要求 推荐 制定     2014  3 20120805-T-604 社区能源计量抄收系统规范 第5部分:无线中继 推荐 制定   EN 13757-5:2008 2014  4 20120806-T-604 社区能源计量抄收系统规范 第6部分:本地总线 推荐 制定   EN 13757-6:2008 2014  5 20120807-T-604 直接作用模拟指示电测量仪表及其附件 第1部分:定义和通用要求 推荐 修订 GB/T 7676.1-1998   2014  6 20120808-T-604 直接作用模拟指示电测量仪表及其附件 第2部分:电流表和电压表的特殊要求 推荐 修订 GB/T 7676.2-1998   2014  7 20120809-T-604 直接作用模拟指示电测量仪表及其附件 第3部分:功率表和无功功率表的特殊要求 推荐 修订 GB/T 7676.3-1998   2014  8 20120810-T-604 直接作用模拟指示电测量仪表及其附件 第4部分:频率表的特殊要求 推荐 修订 GB/T 7676.4-1998   2014  9 20120811-T-604 直接作用模拟指示电测量仪表及其附件 第5部分:相位表、功率因数表和同步指示器的特殊要求 推荐 修订 GB/T 7676.5-1998   2014  10 20120812-T-604 直接作用模拟指示电测量仪表及其附件 第6部分:电阻表(阻抗表)和电导表的特殊要求 推荐 修订 GB/T 7676.6-1998   2014  11 20120813-T-604 直接作用模拟指示电测量仪表及其附件 第7部分:多功能仪表的特殊要求 推荐 修订 GB/T 7676.7-1998   2014  12 20120814-T-604 直接作用模拟指示电测量仪表及其附件 第8部分:附件的特殊要求 推荐 修订 GB/T 7676.8-1998   2014  13 20120815-T-604 直接作用模拟指示电测量仪表及其附件 第9部分:推荐的试验方法 推荐 修订 GB/T 7676.9-1998   2014  14 20120816-T-604 智能电能表外形和安装尺寸 第11部分:通用要求 推荐 制定     2014  15 20120817-T-604 智能电能表外形和安装尺寸 第21部分:结构A型 推荐 制定     2014  16 20120818-T-604 智能电能表外形和安装尺寸 第22部分:结构B型 推荐 制定     2014  17 20120819-T-604 智能电能表外形和安装尺寸 第23部分:结构C型 推荐 制定     2014  18 20120820-T-604 智能电能表外形和安装尺寸 第31部分:电气接口与结构A型 推荐 制定     2014  19 20120821-T-604 智能电能表外形和安装尺寸 第32部分:电气接口与结构B型 推荐 制定     2014  20 20120822-T-604 智能电能表外形和安装尺寸 第33部分:电气接口与结构C型 推荐 制定     2014  21 20120823-T-604 智能电能表外形和安装尺寸 第41部分:显示规范 推荐 制定     2014  22 20120824-T-604 自动抄表系统 基于窄带的低压电力线载波抄表系统 第216部分:正交频分复用(OFDM)协议 推荐 制定     2014  23 20120825-T-604 自动抄表系统 基于窄带的低压电力线载波抄表系统 第215部分: 频带、发射电平和电磁骚扰 推荐 制定     2014
  • 宁四分讲述仪器设备发展经历
    宁四分讲述仪器设备发展经历仪器设备的发展经历了哪些阶段?我们都知道仪器仪表是信息的源头,是人类获取有关自然界知识,认识世界的重要工具,是信息社会的基础结构,奠定了它在人与自然的逻辑关系中的桥梁和纽带的地位。而测试仪器位于信息高速公路与自然之间的环域,是信息高速公路中信息的重要来源。所以,纵观仪器技术的发展,其历经了的主要阶段有:模拟仪器、数字仪器、智能仪器和虚拟仪器。下面宁四分公司详细为您介绍一下:第一、模拟仪器设备 20世纪50年代以前,电测量技术主要是模拟测量,此类仪器的基本结构是电磁机械式,主要是借助指针来显示测量结果。 第二、数字仪器设备 20世纪50年代,数字技术的引入和集成电路的出现,使电测仪器由模拟式逐渐演化为数字式。其特点是将模拟信号测量转化为数字信号测量,并以数字方式输出最终结果,适用于快速响应和较高准确度的测量。这类仪器目前相当普及,如数字电压表、数字频率计等。 第三、智能仪器设备 出现于20世纪70年代,是现代测试技术与计算机技术相结合的产物。它是含有微计算机或微处理器的测试仪器,测量结果具有存储、运算、逻辑判断及自动操作、自动控制等功能,即具有一定智能作用,故将其称之为“智能仪器”。智能仪器将传统数字仪器中控制环节、数据采集与处理、自调零、自校准、自动调节量程等功能改由微处理器完成,从而提高测量精度和速度。 第四、虚拟仪器设备 这一概念早在20世纪70年代就已提出,但真正得以实现则是在PCI、GPIB、VXI、PXI等总线标准出现之后才变为可能,并随着卡式仪器、VXI总线仪器、PXI总线仪器等的推出而得到迅速发展。虚拟仪器是在计算机基础上通过增加相关硬件和软件构建而成的、具有可视化界面的仪器。虚拟仪器是现代计算机技术与仪器技术完美结合的产物,软件在仪器的开发和使用的全过程中起着至关重要的作用,可以说没有了软件就没有虚拟仪器。它基于“软件就是仪器”的思想,利用最新的计算机技术来实现和扩展传统仪器的功能,真正实现由用户自己设计和定义满足自己特殊要求的仪器。 至今,仪器仪表的应用范围已经非常广泛,并正从化学成分分析、物理量检测、机械量测量、天文地理观测、工业生产过程自动控制、产品质量测控等传统应用领域,进一步向生物医学、生物工程、生态环境等非传统应用领域扩大。同时,随着新世纪高分子化学、分子生物学、生命科学、临床医学、药学、材料学、环境监测与控制等高新科技与产业的发展,仪器仪表的应用领域还将获得更为迅速的的拓展。现代科技的进步,使仪器仪表的应用领域越来越广阔,越来越深入。这一切,无疑为仪器仪表的进一步发展提供了强大动力,并展示了光明的前景。
  • 我国调整部分商品进口关税 涉及这些仪器仪表
    仪器信息网讯为贯彻落实党的十九届五中全会精神,坚持新发展理念,支持构建以国内大循环为主体、国内国际双循环相互促进的新发展格局,经国务院批准,国务院关税税则委员会近日印发通知,2021年将调整部分进口商品的最惠国税率、协定税率和暂定税率。  自2021年1月1日起,我国将对第二批抗癌药和罕见病药品原料等883项商品实施低于最惠国税率的进口暂定税率。2021年7月1日起,我国还将对176项信息技术产品的最惠国税率实施第六步降税。为适应产业发展和科技进步需要,便利贸易管理和统计,同时规范执行《商品名称及编码协调制度》,2021年还调整了部分税则税目。调整后税则税目总数为8580个。  上述调整措施有利于更好吸引全球资源要素,既满足国内需求,又提升我国产业技术发展水平,促进形成宏大顺畅的国内经济循环 有利于发挥我国超大规模市场优势,为世界各国提供更加广阔的市场机会,打造我国新的国际合作和竞争优势 有利于构建面向全球的高标准自由贸易区网络,更好联通国内市场和国际市场,更好促进中国经济与世界经济共同发展,推动合作共赢。  进口商品暂定税率表、部分信息技术产品最惠国税率表、进一步降税的相关协定进口商品协定税率表中涉及到立体显微镜、质谱联用仪、电子万能试验机、硬度计、坐标测量仪等百余项科学仪器、仪表及关键零部件。仪器信息网整理如下,供广大网友参考。  附件-2021年关税调整方案.pdf进口商品暂定税率表涉及的仪器仪表税则号列商品名称2021年最惠国税率(%)2021年暂定税率(%)84141000真空泵(专门或主要用于半导体晶圆或平板显示屏制造的除外)8584149011用于制冷设备的压缩机进、排气阀片8584149019其他用于制冷设备的压缩机零件8584224000半导体检测分选编带机8585094090食品研磨机及搅拌器7690229090射线发生器的零部件5190229090数字化X射线摄影系统平板探测器5390318090音频生命探测仪、音视频生命探测仪3#21-6月:2%90318090集成电路测试分选设备3#21-6月:2%90328990三坐标测量机用自动控制柜7390330000用于90章下列环境产品,包括太阳能定日镜、其他测量海洋、水文、气象或地球物理用仪器及设备,测量,检验液体流量或液位的仪器,测量、检验压力的仪器及装置,90.26其他税号未列名的液体或气体测量仪器及装置,气体或烟雾分析仪,色谱仪和电泳仪,使用光学射线(紫外线,可见光,红外线)的分光仪、分光光度计及摄谱仪以及其他理化分析仪器及装置,用于测量、记录、分析和评估环境样品或对环境的影响的理化分析仪器及装置,检镜切片机,轮廓投影仪,光栅测量装置,其他光学测量或检验仪器和器具,测振仪,手振动仪,具有可再生能源和智能电网应用的自动电压和电流调节器,自动调控流量、液位和湿度的仪器,且在其他税目未列名的零附件65部分信息技术产品最惠国税率表涉及的仪器仪表税则号列信息技术产品名称2021年11月11日至6月30日最惠国税率(%)2021年7月1日至12月31日最惠国税率(%)84798999用于从电子显微样品或样品基板上去除有机污染物的等离子清洗机器0.00.084861010利用温度变化处理单晶硅的机器及装置0.00.084861020制作单晶硅或晶圆的研磨设备0.00.084861030制作单晶硅或晶圆的切割设备0.00.084861040制作单晶硅或晶圆的化学机械抛光设备0.00.084861090制作单晶硅或晶圆的其他设备0.00.084862010制造半导体器件或集成电路用的热处理设备0.00.084862021制造半导体器件或集成电路用的化学气相沉积装置0.00.084862022制造半导体器件或集成电路用的物理气相沉积装置0.00.084862029制造半导体器件或集成电路用的其他薄膜沉积设备0.00.084862031制造半导体器件或集成电路用的分步重复光刻机0.00.084862039制造半导体器件或集成电路用的其他光刻设备0.00.084862041制造半导体器件或集成电路用的等离子体干法刻蚀机0.00.084862049制造半导体器件或集成电路用的其他刻蚀及剥离设备0.00.084862050制造半导体器件或集成电路用的离子注入机0.00.084862090制造半导体器件或集成电路用的其他机器及装置0.00.084863010制造平板显示器用的热处理设备0.00.084863021制造平板显示器用的化学气相沉积装置0.00.084863022制造平板显示器用的物理气相沉积装置0.00.084863029制造平板显示器用的其他薄膜沉积设备0.00.084863031制造平板显示器用的分步重复光刻机0.00.084863039制造平板显示器用的其他光刻设备0.00.084863041制造平板显示器用的超声波清洗装置1.70.084863049制造平板显示器用的其他湿法蚀刻、显影、剥离、清洗装置0.00.090022090其他光学仪器或装置滤光镜5.63.890029090其他光学仪器用未列名光学元件5.63.890111000立体显微镜0.00.090118000其他显微镜1.20.090119000复式光学显微镜的零附件0.00.090121000其他非光学显微镜及衍射设备0.00.090129000非光学显微镜及衍射设备的零件0.00.090131000设计用为本章或第十六类的机器、设备、仪器或器具部件的望远镜0.00.090132000激光器1.00.090151000测距仪1.50.090152000经纬仪及视距仪1.50.090154000摄影测量用仪器及装置1.50.090158000其他大地测量仪器及装置0.80.090159000大地测量仪器及装置的零附件0.80.090181100心电图记录仪0.00.090181210B型超声波诊断仪2.61.890181291彩色超声波诊断仪1.91.390181299其他超声扫描装置1.91.390181310核磁共振成像成套装置2.41.690181390其他核磁共振成象装置2.41.690221920X射线无损探伤检测仪0.70.090221990其他非医疗用X射线设备0.70.090222910γ射线无损探伤检测仪1.00.090222990其他非医疗用α、β、γ射线设备1.00.090223000X射线管0.30.090229010X射线影像增强器0.00.090241010电子万能试验机1.20.090241020硬度计1.20.090241090其他金属材料的试验用机器及器具1.20.090248000非金属材料的试验用机器及器具1.91.390249000各种材料的试验用机器零附件1.00.090251910非液体的工业用温度计及高温计1.40.090251990非液体的其他温度计、高温计1.40.090259000比重计、温度计等类似仪器的零件1.30.090271000气体或烟雾分析仪2.61.890278011集成电路生产用氦质谱捡漏台0.00.090278012质谱联用仪0.00.090278019其他质谱仪0.00.090278091曝光表2.30.090278099其他理化分析仪器及装置0.00.090279000检镜切片机;理化分析仪器零件0.00.090283011单相感应式电度表0.00.090283012三相感应式电度表0.00.090283013单相电子式(静止式)电度表0.00.090283014三相电子式(静止式)电度表0.00.090283019其他电度表0.00.090283090其他电量计0.00.090289010工业用计量仪表零附件0.00.090289090非工业用计量仪表零附件0.00.090301000离子射线的测量或检验仪器及装置0.80.090302010测试频率<300兆赫的通用示波器0.00.090302090其他阴极射线示波器0.00.090303110量程≤五位半的数字万用表,不带记录装置0.00.090303190其他不带记录装置的万用表0.00.090303200带记录装置的万用表1.30.090303310量程≤五位半的数字电流表、电压表,不带记录装置5.63.890303390检测电压、电流及功率的其他仪器,不带记录装置3.42.390303900检测电压、电流、电阻或功率的其他仪器,带记录装置1.30.090308410电感及电容测试仪1.70.090308490其他电量的测量或检验仪器及装置1.30.090308910其他电感及电容测试仪2.30.090308990其他电量的测量或检验仪器及装置1.30.090309000用于检测半导体晶片及器件的仪器的零件和附件 ITA产品用的印刷电路组件,包括外接组件,如符合PCMCIA标准的卡0.00.090309000税号90.30所属货品的其他零件及附件1.20.090311000机械零件平衡试验机1.20.090314910轮廓投影仪1.70.090314920光栅测量装置0.00.090314990其他光学测量或检验仪器和器具0.00.090318010光纤通信及光纤性能测试仪3.02.090318020坐标测量仪3.02.090318031超声波探伤检测仪3.02.090318032磁粉探伤检测仪3.02.090318033涡流探伤检测仪3.02.090318039其他无损探伤检测仪器(射线探伤仪除外)3.02.090318090未列名测量、检验仪器器具及机器3.02.090319000税号90.31的仪器及器具的零件0.00.090322000恒压器1.20.090328100液压或气压的其他仪器及装置1.20.0进一步降税的相关协定进口商品协定税率表涉及的仪器仪表
  • 24类仪器仪表项目入选新版《外商投资产业指导目录》
    p  2017年6月28日,经党中央、国务院同意,《外商投资产业指导目录(2017年修订)》正式发布,并自2017年7月28日起施行。2015年3月10日国家发展和改革委员会、商务部发布的《外商投资产业指导目录(2015年修订)》同时废止。/pp  专业设备制造业、仪器仪表制造业下的24类仪器仪表项目入选《外商投资产业指导目录(2017年修订)》,相比2015年修订版,2017年的目录中新增了水文监测传感器制造、高分辨率显微镜(分辨率小于200nm)开发与制造两类仪器项目。/pp  仪器信息网编辑摘录内容如下:/pp  span style="color: rgb(255, 0, 0) "strong(十八)专用设备制造业/strong/span/pp  126. 物探(不含重力、磁力测量)、测井设备制造:MEME 地震检波器,数字遥测地震仪,数字成像、数控测井系统,水平井、定向井、钻机装置及器具,MWD随钻测井仪/pp  158. 农产品加工及储藏新设备开发与制造:粮食、油料、蔬菜、干鲜果品、肉食品、水产品等产品的加工储藏、保鲜、分级、包装、干燥等新设备,农产品品质检测仪器设备,农产品品质无损伤检测仪器设备,流变仪,粉质仪,超微粉碎设备,高效脱水设备,五效以上高效果汁浓缩设备,粉体食品物料杀菌设备,固态及半固态食品无菌包装设备,碟片式分离离心机/pp  159. 农业机械制造:农业设施设备(温室自动灌溉设备、营养液自动配置与施肥设备、高效蔬菜育苗设备、土壤养分分析仪器),配套发动机功率200 千瓦以上拖拉机及配套农具,低油耗低噪音低排放柴油机,大型拖拉机配套的带有残余雾粒回收装置的喷雾机,高性能水稻插秧机,棉花采摘机及棉花采摘台,适应多种行距的自走式玉米联合收割机(液压驱动或机械驱动),花生收获机,油菜籽收获机,甘蔗收割机,甜菜收割机/pp  167. 医用成像设备(高场强超导型磁共振成像设备、X 线计算机断层成像设备、数字化彩色超声诊断设备等) 关键部件的制造/pp  172. 全自动生化监测设备、五分类血液细胞分析仪、全自动化学发光免疫分析仪、高通量基因测序系统制造/pp  173. 药品质量控制新技术、新设备制造/pp  174. 天然药物有效物质分析的新技术、提取的新工艺、新设备开发与制造/pp  190. 非常规水处理、重复利用设备与水质监测仪器/pp  191. 工业水管网和设备(器具)的检漏设备和仪器/pp  193. 特种气象观测及分析设备制造/pp  194. 地震台站、台网和流动地震观测技术系统开发及仪器设备制造/pp  strong205. 水文监测传感器制造/strong/pp strong span style="color: rgb(255, 0, 0) "(二十二)计算机、通信和其他电子设备制造业/span/strong/pp  254. 电子专用设备、测试仪器、工模具制造/pp span style="color: rgb(255, 0, 0) " strong(二十三)仪器仪表制造业/strong/span/pp  272. 工业过程自动控制系统与装置制造:现场总线控制系统,大型可编程控制器(PLC),两相流量计,固体流量计,新型传感器及现场测量仪表/pp  273. 大型精密仪器、strong高分辨率显微镜(分辨率小于200nm)开发与制造/strong/pp  274. 高精度数字电压表、电流表制造(显示量程七位半以上)/pp  275. 无功功率自动补偿装置制造/pp  276. 安全生产新仪器设备制造/pp  277. VXI 总线式自动测试系统(符合IEEE1155 国际规范)制造/pp  278. 煤矿井下监测及灾害预报系统、煤炭安全检测综合管理系统开发与制造/pp  279. 工程测量和地球物理观测设备制造/pp  280. 环境监测仪器制造/pp  281. 水文数据采集、处理与传输和防洪预警仪器及设备制造/pp  282. 海洋勘探监测仪器和设备制造/pp style="line-height: 16px "a href="http://img1.17img.cn/17img/files/201707/ueattachment/59b4469f-79e1-4b71-bc3e-2e58c9a657a8.pdf" style="text-decoration: none "  span style="text-decoration: none color: rgb(0, 176, 240) "《外商投资产业指导目录(2017年修订)》.pdf/span/a/p
  • 大规模设备更新:中等职业学校太阳能与沼气技术利用专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校太阳能与沼气技术利用专业(太阳能技术利用专业方向)仪器设备装备规范:表 2 基础实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范电 工 电 子 实 验 室1.掌握电 工、电子电 路的基本 原理;2.掌握万 用表等常 用仪器、仪 表的使用 方法及基 本电量参 数的测量 方法;3. 学 会 常 用电子元 器件的识 别和测量。1通用电 工、电 子综合 实验装 置1.具有电工、电子学基本定理的验证功能;2.具有常用电工、电子仪表的使用及基本电参数的测 量功能;3.具备完成 R、L、C 等电路元件的特性分析及电路 实验的功能;4.具备完成与教学要求相关的单相、三相交流电路 应用实验的功能;5.具有基本放大器电路、稳压电源电路实验功能; 6.具有基本逻辑门电路的逻辑功能;7.具有常用电子元器件识别及测量的实验功能; 8.具有漏电保护功能。台1020GB 21746、GB 217482万用 表1.直流电压:(0~25)V;20000Ω/V;(0~500)V; 5000Ω/V; ±2.5%;2.交流电压:(0~500)V;5000Ω/V; ±5.0%;3.电阻:量程:0~4kΩ~40kΩ~400k Ω~4M Ω~ 40MΩ 25Ω中心; ±2.5%。只10203双踪示波器1.频宽: 20MHz;2.偏转因数:5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式:CH1、CH2、ALT、CHOP、ADD; 5.扫描时间因数:0.5s/div~0.2 μs/div ;6.触发方式: 自动、常态、TV-H、TV-V。台5104数字 式交 流毫 伏表1.测量范围:0.2mV~600V; 2.频率范围:10Hz~600kHz; 3.电压测试不确定度:±1%; 4.输入阻抗:1MΩ 5.显示位数:3-1/2 以上。只5105信号发 生器1.频率范围:0.1Hz~1MHz;2.输出波形:正弦波、方波、三角波、脉冲波; 3.输出信号类型:单频、调频、调幅、扫频;4.外测频灵敏度:100mV;5.外测频范围:1Hz~10MHz; 6.输出阻抗:600Ω 7.输出电压:≥20Vp-p(1MΩ),≥10Vp-p(50Ω); 8.数字显示、TL/CMOS 输出;9.输出端口具有短路保护。台520表 3 专业实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备配备要求序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 原 理 及 应 用 实 验 室1.能通过 实验装置 了解光伏 技术的基 本原理;和 光伏发电 系统各个 组成单元 的作用;2.学会测 量发电输 出电压、发 电 输 出 电 流及湿度、 照度、温度 等物理量 的方法,并 理解相关 物理量的 含义;3.能对离 网光伏发 电系统装 置进行装 配和线路 连接;。4.能了解 各组成单 元的作用。1离网光 伏发电 教学装 置应包括实训工作台、监测仪表单元、交直流稳压 单元、充放电控制单元、可调负载单元、模拟光 源单元、光伏组件单元、离网逆变单元、电池组 单元等部件构成。各单元应达到如下主要要求: 1.光伏组件单元:开路电压 15V;输出功率:≥ 20W;2.交直流稳压单元:输入电压 220V;输出交直流 电压 0~18V 可调、,输出电流:≥1A;3.监测仪表单元:直流数字电压表:0~20V,精 度 0.5 级: ±(0.5%+3);直流数字电流表:0~ 10A,精度: ±(0.5%+3);精度 0.5 级;交流数 字电压表:0~500V,精度 0.5 级;交流数字电 流表:0~5A,精度 0.5 级;监测仪表应具备温 度、湿度、照度等参量的计量测量功能;4.可实现恒流、恒压和涓流模式下的充电,充放 电时间及充放电过程可控,具有防过充、防过放、 过载保护、短路保护、防反接等功能;5.模拟光源单元:能模拟 AM1.5 光谱;光源亮度 具备无级调节功能;具备光源到光伏组件距离可 调和可计测量功能;6.离网逆变单元:额定输出功率≥20W;逆变输 出电压 220V;输出波形:正弦波,失真度≤3%; 具有输出短路、过温、过载、欠压保护功能;7.电池组单元:采用太阳能专用胶体电池,电池 额定电压 12V,电池总容量≥18Ah;8.配备功率大于 50W 的 1 Ω~2K2k Ω 连续可调的 阻性负载;9.配备容性负载、感性负载;10.实训工作台采用整体框架式结构。台10202附件配套电缆、配套连接线等套1020表 3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备 注合 格示 范光 伏 材 料 检 测 实 验 室1.能理解IS© VOC 、FF、IMAX 、 VMAX、PMAX、电阻率等 物理量的含 义;2.学会电池 片和硅片常 用参数的测 量;3.能通过测 量,简单分析 和辨别材料 的性能优劣。1游标卡尺3-1/2 位数显把2040GB/T 213892数字多用表3-1/2 位台2040GB/T 139783四探针电阻 率测试仪具备双数字表头显示方式;电压表量程:0mV~199.9mV;电阻率测量范围:1.0³ 10-3 Ω² cm~200³ 103 Ω² cm;可测硅片大小:Φ15mm~Φ200mm。台484EL 缺陷测试 仪应具备测试显裂、隐裂、暗裂、微裂纹、结晶 缺陷、焊接缺陷等功能;有效测试面积:≥1200mm³ 2000mm; 分辨率:≥140 万像素;测试方式采用无接触式;配套专业测试分析软件及计算机系统。台135电池片 I-V 特性分析系 统可精确测量和计算包括 ISC、VOC、FF、IMAX 、 VMAX、 PMAX 在内的各种参数,能生成可打印的测试报 告,并保存测试数据台016电子金相显 微镜目镜倍数:≥10X;物镜倍数: ≥100X; 配套计算机系统;配套图像分析系统台8167P/N 测试仪具备判别半导体硅材料导电类型功能; 具备准确判定电阻率为 0.1Ω² cm 和 0.5 Ω² cm 以下的重掺硅料功能。台128测量用硅片多晶硅片、单晶硅片各 50 片套129测量用电池 片多晶硅电池片、单晶硅电池片各 50 片套1210测量用组件1W~185W 各类型多晶硅组件,共 50 块; 1W~185W 各类型单晶硅组件,共 50 块; 配备一定数量的薄膜组件。套1211存储柜用于存储配套工具及硅片等材料套2040表 4 专业实训仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 组 件 加 工 实 训 室1.学会使 用划片机、 层压机等 常用 的组 件加工设 备;2.学会单 晶硅及多 晶硅 组件 加工各工 序的操作 方法;能按 规范的工 艺要求封 装层压组 件和滴胶 组件。3. 能按规 范完成光 伏应用类 电子产品 的组装与 调试。1焊接台1.配备防静电皮层及吸烟装置; 2.焊台功率: ≥60W;3.焊台控温范围:200℃~480℃ 4.焊台温度稳定度为:±1℃ 5.配备烙铁头:5 种。工位20402激光划 片机激光波长:1064nm;激光输出最大功率:≥50W;划片速度:≥100mm/s;划片精度:≤10 μm;最大划片厚度:≥1.2 mm;工作台幅面:≥350mm³ 350mm;冷却方式采用恒温循环水冷方式; 工作台采用双气仓负压方式吸附。台243半 自 动 层压机有效层压面积:≥350mm³ 550mm;温控方式:采用 PID 智能温度控制;温控精度:≤±1.5℃ 温控范围:室温~180℃ 抽气速率:30L/s~70L/s;层压时间:≤14min(含固化时间);加热方式:采用电加热或油加热。台114组件周 转车可一次性放置 10 套待压 185W 组件,下部安装 万向滚轮台125裁剪台采用铝合金框架,不锈钢滚轴; 板面上镶嵌双边不锈钢刻度尺; 采用钢化玻璃工作台面。台126电池片 周转车采用整体框架结构,工作面贴橡胶皮。辆127敷设检 测台采用铝合金框架,射灯数:≥12 盏,可测量组 件输出电压和输出电流。台12表 4 专业实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示范光 伏 组 件 加 工 实 训 室同上8装框机1.采用组框铆角一体方式;2.最大组框长度:≥2100mm; 3.最大组框宽度:≥1200mm;4.最大铆接力: ≥25kN;5.驱动电机功率: ≥1.5kW。台119焊带裁剪 机全自动控制方式,数显;带打折弯装置和动力放料架.台1110烘干箱1.容积:≥100L;2.最高工作温度:≥80℃ 3.采用无氧化电热管加热; 4.温度控制精度:±1℃ 5.加热时间在 24h 内可调。台1211真空箱1.容积:≥100L;2.真空度:≤0.1MPa;3.抽真空时间:≤5min。台1212滴胶台整体框架结构; 配备滴胶托盘。台2413滴胶机自动定时分档并可调; 滴胶精度: ≥0.5%;最小滴胶量:≤0.01ml。台2414配胶台整体框架结构、工作面贴橡胶皮; 含计量工具。台1115配套工作 台包括:工作台、电池片分选台、组件修边台、 电池串暂放架等组1116万用表3-1/2 位数显台204017配套工具含焊接辅助工具、安装工具等套204018其它单晶硅、多晶硅硅片及电池片生产视频或仿 真软件。套11表 4 专业实训仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范光 伏 发 电 技 术 实 训 室1.能按规 范要求安 装光伏发 电设备, 并能对设 备进行简 单的调试 操作;2.会测量 光伏发电 技术实训 中基本的 物理量;3.会进行 简单的设 备维护和 数 据 分 析。1光伏组件 及支架组件总功率:≥2kW,组件效率:≥15%; 支架采用模块化、可重复拆解式结构;支架倾角可调,采用螺栓固定方式。组8162并网逆变 器1.额定功率:≥2kW;2.输出波形:正弦波,谐波失真:≤3%; 3.隔离方式:变压器方式;4.具备电网故障检测和断电保护(防孤岛) 功能;5.具备最大功率点跟踪(MPPT)功能。只816GB/T 199393光伏直流 汇流箱1.防护等级:≥IP65,满足室外安装的使用 要求;2.配备直流高压防雷器;3.配备耐高压的直流熔断器和断路器两级 安全保护装置,直流耐压值:≥1000V。套8164交流配电 柜含功率表、电压表、电流表、组合开关等套8165配套软件光伏发电监测分析软件及配套系统控制软 件套8166配套工具安装拆解用组合工具套8167配套电缆 和附件与上述序号 1~6 设备配套套8168户外光伏 发电跟踪 演示系统1.采用双轴自动跟踪、倾角调节方式;2.采用PLC 或其它嵌入式系统控制方式; 3.跟踪精度:≤1° 4.发电输出功率:≥2kW。台14
  • 扫描电镜 | 低电压下如何获取高分辨图像
    随着纳米材料在各个工业领域的应用,推动了超高分辨率的扫描电镜的发展,但这些材料导电性不佳,因此,对低电压下仍具有高分辨率的扫描电镜提出迫切需求。 低电压扫描电镜的主要特点之一是能直接对不导电样品进行观察,同时保持高的分辨率。但是其面临的问题是束流电压降低,信号量会显著下降,同时低电压下扫描电镜像差导致分辨率降低。随着扫描电镜技术的蓬勃发展,这些问题目前都得已大大改善。 为了弥补低电压下信噪比低的问题,赛默飞Apreo 2系列电镜配备了YAG材质背散射探测器(T1)(图1)。YAG(Y3Al5O12:Ce3+)是一种具有高发光效率的闪烁体材料,用掺铈的YAG材料制成的背散射探测器,发光效率更高,亮度更高,更耐离子和电子的轰击,因此几乎不存在随使用时间的累积而导致发光效率下降的问题。Apreo 2系列电镜的T1背散射探测器置于镜筒内靠近极靴下部,这样不仅可以获取大量的信号,而且不会有误操作导致的撞毁风险。同时T1接收的是背散射电子,因此,可以大大改善导电性不佳的样品带来的荷电问题。 图1 Apreo 2 扫描电镜的T1探测器位置示意图 为了减小低电压下像差增加的问题,赛默飞Apreo 2系列电镜发展出了样品台减速模式(图2),以减小透镜色差和提高低电压图像分辨率。减速模式中引入的“着陆电压”的概念,即实际到达样品表面的电压,其计算非常简单,入射电压减去减速电压即为着陆电压。例如,电子束初始加速电压5kV,在样品台上加4kV的减速电压,在样品表面的着陆电压为1kV,采用减速模式后入射到样品上的电压是1kV,在样品内的电子束扩展范围和对样品荷电的减缓同初始加速电压为1kV的情形一致,但其电子束的亮度接近加速电压为5kV的状态。因此,采用减速模式,一方面保持了高加速电压下的亮度和足够的信噪比,以及高分辨率,同时又真正实现了样品表面荷电的有效缓解。减速模式下,还有一个优点,使电子束与样品相互作用产生的信号电子在减速电压的作用下加速,这些信号电子在被探测器探测到时能量更高,从而提高了二次电子或者背散射电子收集效率,增加了信噪比。图2 样品台减速模式工作原理示意图 在实际应用中,我们会将样品台减速模式和T1探测器联合使用,以获取高分辨图像。比如,锂电池隔膜是一种PP或者PE材质的高分子薄膜,其导电性极差,常规的电镜无法解决荷电问题,而使用T1探测器不仅可以解决荷电问题,而且搭配减速模式仪器使用还可以获取高信噪比图像(图3)。稀土氧化物Y2O3粉体是制造微波用磁性材料及军事通讯工程用的重要材料,综合导电性较差,高加速电压容易使表面积累荷电,而且会掩盖颗粒表面细节,因此,我们采用低加速电压搭配减速模式进行高分辨成像(图4)。 图3 锂电池隔膜(加速电压:500V,放大倍数:30000,探测器:T1,减速电压:1kV) 图4 Y2O3粉末颗粒(加速电压:500V,放大倍数:100000,探测器:T1)
  • 质检总局公布17个国家计量技术法规
    2013年2月25日,国家质检总局网站公布了17个国家计量技术法规的公告,此次为2013年继2013年第7号公告后第二次公布新的计量技术法规。详情如下:质检总局关于发布JJG308-2013《射频电压表检定规程》等17个国家计量技术法规的公告2013年第28号  根据《中华人民共和国计量法》有关规定,现批准JJG308-2013《射频电压表检定规程》等17个国家计量技术法规发布实施。编 号名 称批准日期实施日期备 注JJG308-2013射频电压表检定规程2013-02-162013-08-16代替JJG279-1981JJG308-1983JJG319-1983JJG773-2013医用γ射线后装近距离治疗辐射源检定规程2013-02-162013-08-16代替JJG773-1992JJG1083-2013锚固试验机检定规程2013-02-162013-05-16 JJF1261.7-2013平板电视能源效率标识计量检测规则2013-02-162013-05-16 JJF1261.8-2013电动洗衣机能源效率标识计量检测规则2013-02-162013-05-16 JJF1388-2013数字脑电图机及脑电地形图仪型式评价大纲2013-02-162013-05-16 JJF1389-2013数字心电图机型式评价大纲2013-02-162013-05-16 JJF1390-2013脑电图机型式评价大纲2013-02-162013-05-16 JJF1391-2013心电图机型式评价大纲2013-02-162013-05-16 JJF1392-2013动态(可移动)心电图机型式评价大纲2013-02-162013-05-16 JJF1393-2013心电监护仪型式评价大纲2013-02-162013-05-16 JJF1394-2013无线路测仪校准规范2013-02-162013-05-16 JJF1395-2013音频分析仪校准规范2013-02-162013-05-16 JJF1396-2013频谱分析仪校准规范2013-02-162013-08-16代替JJG501-2000JJF1397-2013静电放电模拟器校准规范2013-02-162013-05-16 JJF1398-2013燃油加油机制造计量器具许可考核必备条件2013-02-162013-08-16代替JJF1061-1999JJF1399-2013膜式燃气表制造计量器具许可考核必备条件2013-02-162013-08-16代替“煤气表制造计量器具许可证考核必备条件”  特此公告。  质检总局  2013年2月21日
  • 19类!两部委发布2022年版鼓励外商投资仪器仪表制造业目录
    国家发改委网站10月26日消息,经国务院同意,国家发展改革委、商务部于2022年10月28日公开发布第52号令,全文发布《鼓励外商投资产业目录(2022年版)》(以下简称《鼓励目录》),自2023年1月1日起施行。新版《鼓励目录》总条目1474条,与2020年版相比净增加239条、修改167条。其中,全国目录共519条,增加39条、修改85条;中西部目录共955条,增加200条、修改82条。主要变化有:一是持续鼓励外资投向制造业。全国目录继续将制造业作为鼓励外商投资的重点方向,提升产业链供应链水平,新增或扩展元器件、零部件、装备制造等有关条目。二是持续引导外资投向生产性服务业。全国目录将促进服务业和制造业融合发展作为修订重点,新增或扩展专业设计、技术服务与开发等条目。三是持续优化利用外资区域布局。结合各地劳动力、特色资源等比较优势扩大中西部目录鼓励范围。新版《鼓励目录》的第二十三项为仪器仪表制造业,涉及土壤墒情监测设备、工业过程自动控制系统与装置、无损检测设备、核仪器、辉光放电质谱仪、透射电子显微镜等19类。其中,辉光放电质谱仪、透射电子显微镜两类为新增项。相关目录如下:《鼓励外商投资产业目录(2022年版)》(部分)(二十三)仪器仪表制造业372. 土壤墒情监测设备制造373. 工业过程自动控制系统与装置制造:现场总线控制系统,大型可编程控制器(PLC),两相流量计,固体流量计,新型传感器及现场测量仪表374. 自动化、智能化、多功能材料力学性能测试仪器,工业CT、三维超声波探伤仪等无损检测设备制造375. 大型精密仪器、高分辨率显微镜(分辨率小于200nm)开发、制造376. 高精度数字电压表、电流表制造(显示量程七位半以上)377. 无功功率自动补偿装置制造378. 安全生产新仪器设备制造379. VXI 总线式自动测试系统(符合IEEE1155 国际规范)制造380. 煤矿井下监测及灾害预报系统、煤炭安全检测综合管理系统开发、制造381. 工程测量和地球物理观测设备制造382. 环境监测仪器制造383. 无线远传智能水表制造384. 水库大坝安全智能监控仪器制造385. 水文数据采集、处理与传输和防洪预警仪器及设备制造386. 海洋勘探监测仪器和设备制造387. 市政管网和输水管道渗漏监测仪器制造388. 核仪器、仪表研发和制造389. 辉光放电质谱仪390. 透射电子显微镜据悉,《鼓励目录》是我国重要的外商投资促进政策,也是重要的外资产业和区域政策。符合《鼓励目录》的外商投资项目,可以依照法律、行政法规或者国务院的规定享受税收、用地等优惠待遇。附件:《鼓励外商投资产业目录(2022年版)》.pd
  • 中科院物理所团队发现小分子药物调控人源电压门控钠离子通道蛋白的结构学基础
    电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为治疗癫痫药物的靶点。  3月11日,中国科学院物理研究所团队在nature communications杂志上发表了题为“Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist”的文章,解析了Nav1.3/β1/β2分别与小分子药物乌头碱A和选择性拮抗剂ICA121431结合的冷冻电镜三维结构,揭示了乌头碱A和ICA121431调节Nav1.3的不同机制。  研究表明,Nav1.3蛋白的整体结构与已报道的其他哺乳动物Nav蛋白结构高度相似。调控Nav1.3蛋白功能的β1亚基通过其N端结构域和Nav1.3蛋白相互作用,同时其C端跨模域的螺旋稳定在Nav1.3蛋白第三个结构域上。调控Nav1.3蛋白功能的β2亚基柔性大,整体分辨率较低,但仍能看到其第55位的半胱氨酸与Nav1.3蛋白第911位的半胱氨酸形成了二硫键。小分子药物乌头碱A结合位点位于Nav1.3蛋白第一个结构域与第二个结构域之间,部分阻挡了离子通道。选择性拮抗剂ICA121431结合位点位于Nav1.3蛋白第四个结构域,增强了“异亮氨酸-苯丙氨酸-甲硫氨酸”模体与该模体的受体的结合,将离子通道稳定在失活状态。  该研究解析了不同小分子调节剂与Nav1.3蛋白结合位点的结构,阐明了这些小分子在Nav1.3蛋白上的作用机制,为后续基于结构开发特异性更高的药物提供支撑。  论文链接:https://www.nature.com/articles/s41467-022-28808-5
  • 颜宁组《细胞》报道电压门控钠离子通道研究进展
    p  7月20日,生命中心颜宁研究组在《细胞》(Cell)期刊在线发表题为《来自电鳗的电压门控钠离子通道Nav1.4-β1复合物结构》(Structure of the Nav1.4-β1 complex from electric eel)的研究论文,首次报道了带有辅助性亚基的真核生物电压门控钠离子通道复合物可能处于激活态的冷冻电镜结构。该成果是电压门控离子通道(voltage-gated ion channel)的结构与机理研究领域的一个重要突破。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201708/noimg/006bf0f0-14f4-4b4b-9249-e21d7cbe96f4.jpg" title="1.jpg" width="460" height="329" style="width: 460px height: 329px "//pp style="text-align: center "图1. 电压门控钠离子通道Nav1.4-β1复合物结构示意图/pp  电压门控钠离子通道(以下简称“钠通道”)位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。顾名思义,钠通道感受膜电势的变化而激活或失活。对于可激发的细胞,细胞膜两侧由于钠离子、钾离子、钙离子、氯离子等离子的不对称分布,产生跨膜电势差。在静息状态下,细胞膜内电势低,膜外电势高,3-5纳米厚的细胞膜两侧电势差大概为-70毫伏左右。通常情况下,钠通道在细胞膜去极化状态,也就是细胞内相对电势升高时激活(即钠通道中心通透孔道打开,钠离子由高浓度的胞外侧流向胞内),从而引发动作电位的起始 而其又具备特殊的结构特征,使之在激活的几毫秒内迅速失活,从而保证通过与钾离子通道的协同作用结束动作电位,以及由钠钾泵介导的静息电势的重建,为下一轮的动作电位产生做好准备。/pp  真核生物的钠通道主要由负责感受膜电势控制孔道开闭进而选择性通透钠离子的α亚基和参与调控的β亚基组成。在人体中共有9种钠通道α亚型(分别命名为Nav1.1-1.9)和4种β (β1-4)亚基,特异分布于神经和肌肉组织中。由于其重要的基本生理功能,钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。至今为止,已经发现了1000多种与疾病相关的钠通道突变体。另一方面,很多已知的包括蝎毒、蛇毒、河鲀毒素在内的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。钠通道是诸多国际大制药公司研究的重要靶点,其结构为学术界和制药界共同关注。/pp  颜宁研究组十年来一直致力于电压门控离子通道的结构生物学研究,取得了一系列重要成果,包括来自细菌中的钠通道NavRh的晶体结构 (Zhang et al., 2012)。而近两年更是相继报道了与钠离子通道有同源性的世界上首个真核电压门控钙离子通道复合物Cav1.1 (Wu et al., 2016 Wu et al., 2015)以及首个真核钠通道NavPaS (Shen et al., 2017)的高分辨率冷冻电镜结构,为理解真核电压门控离子通道的结构与功能提供了重要基础。/pp  在该最新研究中,颜宁研究组首次报道了真核钠通道复合物Nav1.4-β1的冷冻电镜结构,整体分辨率达到4.0 ,中心区域分辨率在3.5 左右,大部分区域氨基酸侧链清晰可见。该蛋白来自于电鳗(Electrophorus electricus),它具有一个特化的肌肉组织称为电板(electroplax),在受到刺激或捕猎时能够放出很强的电流 电流产生的基础即为钠通道的瞬时激活。因而该器官富集钠通道,其序列与人源九个亚型中的Nav1.4最为接近,因此命名为EeNav1.4。值得一提的是,电鳗中的钠通道正是历史上首个被纯化并被克隆的钠通道,已经具有半个世纪的研究历史,是钠通道功能和机理研究的重要模型,因此该蛋白一直以来也是结构生物学的研究热点。/pp  在本研究中,研究组成员利用特异性的抗体从电鳗的电板组织中提纯出Nav1.4-β1复合物,通过对纯化条件和制样条件的不断摸索和优化,获得了性质稳定且均一的蛋白样品,并进一步制备出优质的冷冻电镜样品,最终利用冷冻电镜技术解析出其高分辨三维结构。与此前解析的钠通道NavPaS相比,该结构展示了三大新的结构特征:/pp  1)该结构中带有辅助性亚基β1,首次揭示了辅助性亚基与α亚基的相互作用方式,有助于更好的理解β亚基对钠通道功能的调控机制 /pp  2)与钠通道快速失活相关的III-IV 连接片段的位置与之前在Cav1.1和NavPaS结构相比有一个十分显著的位移,特别是与快速失活直接相关的IFM元件插入到了中间孔道结构域的内外两层之间。这一新的结构刷新了我们之前对钠通道失活机制的理解,却与历史上大量基于电生理的突变体分析十分吻合。本论文就此提出了一个解释钠通道快速失活的新的变构阻滞机制(allosteric blocking mechanism) /pp  3)该结构特征与预测的激活态基本吻合,极有可能揭示了首个处于开放状态的真核钠通道的结构,实属意外之喜。由于钠通道蛋白在提纯后会很快失活,理论上处于开放状态的结构是极难甚至不可能捕捉到的。进一步分析电子密度发现,有一团疑似去垢剂分子的密度堵在胞内门控区域,帮助稳定了钠通道的开放状态。因此该结构整体呈现的极有可能是完全没有预料到的激活态。这一难得的构象有助于更好地理解电压门控离子通道最基本的机电耦合机理问题(electromechanical coupling mechanism)。除此之外,该结构还为基于结构的药物设计和功能研究提供了全新的模板。/pp  颜宁教授为本文的通讯作者。清华大学医学院博士后闫浈、医学院副研究员周强、生命学院博士生王琳、生命学院博士毕业生吴建平为本文的共同第一作者 清华大学冷冻电镜平台雷建林博士指导数据收集。本研究获得了清华大学冷冻电镜平台工作人员李小梅和李晓敏的大力支持。国家蛋白质科学中心(北京)清华大学冷冻电镜平台和清华大学高性能计算平台分别为本研究的数据收集和数据处理提供了支持。生命科学联合中心、北京市结构生物学高精尖创新中心、膜生物学国家重点实验室、科技部、基金委为本研究提供了经费支持。(来源:生命科学联合中心)/pp  原文链接:http://www.cell.com/cell/fulltext/S0092-8674(17)30758-4/ppbr//p
  • 强大的生物成像新工具!5kV低电压设计、无需染色的低电压台式透射电子显微镜
    在透射电子显微镜成像实验中,生物样品的成像操作为复杂,成像难度大。这主要是因为传统透射电子显微镜过高的加速电压引起的。上图为各种元素在传统透射电子显微镜的不同照射电压的反冲能量统计图。可以发现电子束加速电压在20kv就已经到达了碳碳单键的临界反冲能量,超过就很有可能使碳碳单键发生断裂,即使强的碳碳三键的临界反冲能量也仅仅在80 kV,这也是为何大多数生物样品在电镜观察的时候使用了透射电子显微镜的低电压80 kV。因此,传统透射电子显微镜在对由C/H/O/N等元素组成的生物样品进行成像时就需要使用重金属盐离子进行负染。负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,负染的处理手段会带来诸多的问题。负染会导致生物样品制样复杂,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变,重金属盐离子本身会对生物样品的形貌造成不可逆的损害,且负染液在电镜观察时容易产生“假象”。负染的操作对于制样者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度、染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在负染制样条件的摸索中了。Delong公司推出的LVEM5生物型透射电子显微镜,地解决了以上的问题。LVEM5生物型透射电镜采用的5kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对生物样品成像条件温和,摆脱了染液与负染过程本身可能对生物结构造成的损害,所得图像为“正像”,更加真实地展现生物样品的结构特征。 上图分布为传统电镜和LVEM5生物型透射电镜对未染色的小鼠心肌切片(上)和有机纳米颗粒(下)的成像实例。可以看到,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,未染色的生物样品和大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM5生物型透射电镜采用的5kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。LVEM5生物型透射电镜可以对外泌体、脂质体、噬菌体、病毒、细胞切片等生物样品进行无负染成像,所得的图像衬度更高。如下图所示。 LVEM5技术特点:高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.5 nm的图像分辨率。多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。
  • 中国人民解放军某部队106.50万元采购运动粘度仪
    详细信息 测试接收机主机等5项采购招标公告 北京市-海淀区 状态:公告 更新时间: 2022-07-14 招标文件: 附件1 测试接收机主机等5项采购招标公告 公告类型:公开招标发布单位:海军发布时间: 2022-07-14 16:14:13 截止时间:2022-07-22 统一信息编码:HLJDGG20220714127 预算经费:0万元 专业领域:制导与控制技术,电子元器件,探测与识别,计算机与软件,体系建模仿真与评估,电子信息,网络通信,卫星应用,动力与传动,先进材料与制造,可靠性/测试性/维修性,其他 主要内容 受中国人民解放军某部队的委托,中科高盛咨询集团有限公司对测试接收机主机等5项采购进行国内公开招标,欢迎符合资格条件的投标人参与。 一、主要内容 (一)项目名称及编号 1.项目名称:测试接收机主机等5项采购 2.项目编号:MSJCG220241 (二)项目概况 招标范围: 序号 器材(设备)名称 计量单位 数量 分项最高投标限价 (万元,含税) 1 测试接收机主机 台 1 106.5 2 内置预放设备 台 1 20.5 3 运动粘度检定设备 套 1 30 4 18GHz传递标准功率座 台 1 27.5 5 低频电压表检定装置 套 1 44 最高投标限价总价(万元,含税) 228.5 进度要求:自合同签订后4个月内交付。 交货地点:招标人指定地点。 功能描述: 1.测试接收机主机、内置预放设备:升级现有信号发生器检定装置; 2.运动粘度检定设备:用于粘度测试、粘度测试设备检定; 3.18GHz传递标准功率座:建立小功率标准装置; 4.低频电压表检定装置:升级现有低频电压表检定装置。 二、投标人资格要求 1.在中华人民共和国境内注册,具有独立承担民事责任能力的企事业单位(不包括港澳台和外商投资企业); 2.具备武器装备科研生产保密资格证书(三级及以上),且证书处于有效期内; 3.具有装备承制单位资格证书且证书处于有效期内,或具有装备承制单位注册证书和武器装备质量管理体系认证证书且证书处于有效期内; 注:以上第2、3条资格审查,(指通过现场审查并完成问题整改,相关审查及整改情况的结论已取得发证机关认可、具备发证条件)尚未颁布证书的单位,必须提交相关主管部门出具的通过相应资格审查结论的相关证明材料。 4.具有与承担任务相适应的专业技术能力,装备承制单位资格证书或装备承制单位注册证书的副本中涵盖本项目同类产品; 5.不在军委或军兵种装备部装备采购主管部门禁止采购期内,不得因招投标领域失信行为处于政府禁止采购期内; 6.本项目不接受联合体参与竞争; 7.单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一项目竞争。 三、报名和报名文件递交时间、地点、方式及提交要求 1.报名文件集中递交时间:2022年7月15日至2022年7月22日,每日9:00-12:00,14:00-17:00(北京时间,公休日及节假日除外,以下同)。 2.地点:北京市海淀区华宝大厦12A-1309室。 3.报名方式:现场报名,不接受其它方式。 4.报名文件的构成 (1)报名登记表(格式见附件1); (2)授权委托书原件(格式见附件2); (3)保密承诺书原件(格式见附件3); (4)三级或以上武器装备科研生产单位保密资格证书复印件。证书有效,证书若处于换版期间,须出具主管部门证明材料; (5)装备承制单位资格证书或装备承制单位注册证书正本及副本复印件。证书有效,证书若处于换版期间,须出具主管部门证明材料; (6)武器装备质量管理体系认证证书复印件(装备承制单位资格证书已包含的,可以不提供)。证书有效,证书若处于换版期间,须出具主管部门证明材料; (7)装备承制单位资格证书或装备承制单位注册证书副本中,如承制范围若不覆盖采购项目,须提供同类项目合同等证明材料; (8)未处于军委或军兵种装备部装备采购主管部门禁止采购期内、未处于政府禁止采购期内的书面声明(格式见附件4); (9)中国政府采购网(www.ccgp.gov.cn)严重违法失信行为记录名单企业网页查询截图复印件;(查询时间不得早于公告发布之日); (10)信用中国(www.creditchina.gov.cn)网站下载信用信息报告(查询时间不得早于公告发布之日); (11)单位负责人为同一人或者存在控股、管理关系的不同单位不存在参加同一项目竞争的书面声明及主要股东或出资人信息表,并加盖公章(格式见附件5); (12)非联合体参与竞争的书面声明(格式见附件6); (13)其它与资格条件证明有关的资料、文件。 5.文件提交要求 (1)报名文件附有目录依序整理并加盖公章, 胶装 成1册,封面(格式见附件7)。 (2)文件交接单(报名文件)须填写完整且不得胶装进册,同报名文件一并提交招标代理机构(格式见附件8)。 (3)报名文件须提交电子文档1份格式为PDF,另提供1份可编辑word版“报名登记表”,电子文档须用光盘刻录,光盘封面有标识,如设密码须在光盘封面标识密码。 (4)报名文件须在报名时间内提交,否则将拒绝接收。 四、招标文件发售时间、地点、方式及售价 1.报名文件通过现场审查的报名单位具备招标文件购买资格。 2.发售时间:2022年7月15日至2022年7月22日,每日9:00-12:00,14:00-17:00。 3.发售方式:现场领取,不接受邮购。 4.发售地点:北京市海淀区华宝大厦12A-1309室。 5.招标文件每份售价人民币伍佰元整(¥500元),仅接受现金购买,文件售后不退。 6.投标人在购买招标文件时需提供授权委托书原件、营业执照复印件、法定代表人及授权代表身份证复印件,文件交接单(招标文件),格式见附件2和附件9。 五、投标开始和截止时间及地点和方式 1.投标开始和截止时间及地点:具体时间及地点见招标文件。 2.投标方式:指定专人递交投标文件,不接受邮寄等其他方式。 六、开标时间和地点 开标时间和地点:具体时间和地点见招标文件。 七、信息发布 仅在全军武器装备采购信息网(www.weain.mil.cn)上发布。 八、联系方式 招标人:中国人民解放军某部队 联系人:汤先生 电话:0574-87558270 招标代理机构联系人:衣女士 邮箱:zbcgzxzx3@163.com 电话及传真:010-63966862 地址:北京市海淀区莲花苑5号楼华宝大厦1309室 九、其他 1.报名文件通过现场审查的报名单位具备招标文件购买资格,凡领取招标文件的投标人,其具体投标资格符合情况以评标委员会判定为准; 2.凡对本次招标提出询问,请与招标代理机构联系。 本项目采取线下对接报名方式 附件 招标公告附件(1)除第三类.docx × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:运动粘度仪 开标时间:null 预算金额:106.50万元 采购单位:中国人民解放军某部队 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中科高盛咨询集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 测试接收机主机等5项采购招标公告 北京市-海淀区 状态:公告 更新时间: 2022-07-14 招标文件: 附件1 测试接收机主机等5项采购招标公告 公告类型:公开招标发布单位:海军发布时间: 2022-07-14 16:14:13 截止时间:2022-07-22 统一信息编码:HLJDGG20220714127 预算经费:0万元 专业领域:制导与控制技术,电子元器件,探测与识别,计算机与软件,体系建模仿真与评估,电子信息,网络通信,卫星应用,动力与传动,先进材料与制造,可靠性/测试性/维修性,其他 主要内容 受中国人民解放军某部队的委托,中科高盛咨询集团有限公司对测试接收机主机等5项采购进行国内公开招标,欢迎符合资格条件的投标人参与。 一、主要内容 (一)项目名称及编号 1.项目名称:测试接收机主机等5项采购 2.项目编号:MSJCG220241 (二)项目概况 招标范围: 序号 器材(设备)名称 计量单位 数量 分项最高投标限价 (万元,含税) 1 测试接收机主机 台 1 106.5 2 内置预放设备 台 1 20.5 3 运动粘度检定设备 套 1 30 4 18GHz传递标准功率座 台 1 27.5 5 低频电压表检定装置 套 1 44 最高投标限价总价(万元,含税) 228.5 进度要求:自合同签订后4个月内交付。 交货地点:招标人指定地点。 功能描述: 1.测试接收机主机、内置预放设备:升级现有信号发生器检定装置; 2.运动粘度检定设备:用于粘度测试、粘度测试设备检定; 3.18GHz传递标准功率座:建立小功率标准装置; 4.低频电压表检定装置:升级现有低频电压表检定装置。 二、投标人资格要求 1.在中华人民共和国境内注册,具有独立承担民事责任能力的企事业单位(不包括港澳台和外商投资企业); 2.具备武器装备科研生产保密资格证书(三级及以上),且证书处于有效期内; 3.具有装备承制单位资格证书且证书处于有效期内,或具有装备承制单位注册证书和武器装备质量管理体系认证证书且证书处于有效期内; 注:以上第2、3条资格审查,(指通过现场审查并完成问题整改,相关审查及整改情况的结论已取得发证机关认可、具备发证条件)尚未颁布证书的单位,必须提交相关主管部门出具的通过相应资格审查结论的相关证明材料。 4.具有与承担任务相适应的专业技术能力,装备承制单位资格证书或装备承制单位注册证书的副本中涵盖本项目同类产品; 5.不在军委或军兵种装备部装备采购主管部门禁止采购期内,不得因招投标领域失信行为处于政府禁止采购期内; 6.本项目不接受联合体参与竞争; 7.单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一项目竞争。 三、报名和报名文件递交时间、地点、方式及提交要求 1.报名文件集中递交时间:2022年7月15日至2022年7月22日,每日9:00-12:00,14:00-17:00(北京时间,公休日及节假日除外,以下同)。 2.地点:北京市海淀区华宝大厦12A-1309室。 3.报名方式:现场报名,不接受其它方式。 4.报名文件的构成 (1)报名登记表(格式见附件1); (2)授权委托书原件(格式见附件2); (3)保密承诺书原件(格式见附件3); (4)三级或以上武器装备科研生产单位保密资格证书复印件。证书有效,证书若处于换版期间,须出具主管部门证明材料; (5)装备承制单位资格证书或装备承制单位注册证书正本及副本复印件。证书有效,证书若处于换版期间,须出具主管部门证明材料; (6)武器装备质量管理体系认证证书复印件(装备承制单位资格证书已包含的,可以不提供)。证书有效,证书若处于换版期间,须出具主管部门证明材料; (7)装备承制单位资格证书或装备承制单位注册证书副本中,如承制范围若不覆盖采购项目,须提供同类项目合同等证明材料; (8)未处于军委或军兵种装备部装备采购主管部门禁止采购期内、未处于政府禁止采购期内的书面声明(格式见附件4); (9)中国政府采购网(www.ccgp.gov.cn)严重违法失信行为记录名单企业网页查询截图复印件;(查询时间不得早于公告发布之日); (10)信用中国(www.creditchina.gov.cn)网站下载信用信息报告(查询时间不得早于公告发布之日); (11)单位负责人为同一人或者存在控股、管理关系的不同单位不存在参加同一项目竞争的书面声明及主要股东或出资人信息表,并加盖公章(格式见附件5); (12)非联合体参与竞争的书面声明(格式见附件6); (13)其它与资格条件证明有关的资料、文件。 5.文件提交要求 (1)报名文件附有目录依序整理并加盖公章, 胶装 成1册,封面(格式见附件7)。 (2)文件交接单(报名文件)须填写完整且不得胶装进册,同报名文件一并提交招标代理机构(格式见附件8)。 (3)报名文件须提交电子文档1份格式为PDF,另提供1份可编辑word版“报名登记表”,电子文档须用光盘刻录,光盘封面有标识,如设密码须在光盘封面标识密码。 (4)报名文件须在报名时间内提交,否则将拒绝接收。 四、招标文件发售时间、地点、方式及售价 1.报名文件通过现场审查的报名单位具备招标文件购买资格。 2.发售时间:2022年7月15日至2022年7月22日,每日9:00-12:00,14:00-17:00。 3.发售方式:现场领取,不接受邮购。 4.发售地点:北京市海淀区华宝大厦12A-1309室。 5.招标文件每份售价人民币伍佰元整(¥500元),仅接受现金购买,文件售后不退。 6.投标人在购买招标文件时需提供授权委托书原件、营业执照复印件、法定代表人及授权代表身份证复印件,文件交接单(招标文件),格式见附件2和附件9。 五、投标开始和截止时间及地点和方式 1.投标开始和截止时间及地点:具体时间及地点见招标文件。 2.投标方式:指定专人递交投标文件,不接受邮寄等其他方式。 六、开标时间和地点 开标时间和地点:具体时间和地点见招标文件。 七、信息发布 仅在全军武器装备采购信息网(www.weain.mil.cn)上发布。 八、联系方式 招标人:中国人民解放军某部队 联系人:汤先生 电话:0574-87558270 招标代理机构联系人:衣女士 邮箱:zbcgzxzx3@163.com 电话及传真:010-63966862 地址:北京市海淀区莲花苑5号楼华宝大厦1309室 九、其他 1.报名文件通过现场审查的报名单位具备招标文件购买资格,凡领取招标文件的投标人,其具体投标资格符合情况以评标委员会判定为准; 2.凡对本次招标提出询问,请与招标代理机构联系。 本项目采取线下对接报名方式 附件 招标公告附件(1)除第三类.docx
  • 分析仪器电源的核心技术指标及测试方法
    摘要:电源是各类分析仪器最重要的、最常用的关键部件之一;本文重点讨论了分析仪器中使用最多的空心阴极灯、氘灯、钨灯等的直流电源、交流电源、脉冲电源等及其核心技术指标的测试方法和有关问题;这些问题对有关仪器的研发者、制造者、维修者、使用者都有非常重要的参考意义。0、前言目前,国内外许多科技工作者对分析仪器中最重要的的电光系统(包括电源和灯泡)普遍重视不够;大家认为只要灯泡好就行。其实不然,如果电源不好,仪器灯泡再好对仪器整机是没有用的[1];当然如果灯泡不好,电源再好也同样是不行的。本文只讨论有关电源;例如:原子吸收分光光度计(AAS)、原子荧光光度计(AFP)、紫外可见分光光度计(UVS)、旋光分光光度计(ORD)、高效液相色谱(HPLC)等仪器中使用最多的空心阴极灯、氘灯、钨灯等电源;如果这些仪器中的电光系统(灯泡和电源)中有一个元件不稳定或出现故障,整个仪器就不可能稳定。特别是电光源系统中,所有灯泡都依赖于电源,没有电源,灯泡就不能发光;即使有了电源,如果电源的核心性能指标不好,整个分析仪器就不可能稳定可靠。例如:各类空心阴极灯、氘灯的电源的触发电压、工作电压、工作电流、预热时间、电源的纹波、电流调整率等核心指标中,只要某一个指标出现问题,灯泡就不能发出稳定可靠的光。所以,AAS、AFP、UVS、ORD、HPLC等所有光谱仪器和色谱仪器的研发者、制造者、维修者、使用者,都必须高度重视分析仪器的电光源系统中的电源。本文将对各类光谱、色谱仪器中使用最多的空心阴极灯、氘灯、钨灯等的电源组成及其核心性能技术指标的测试方法和有关问题进行讨论。一、空心阴极灯电源1、直流电源空心阴极灯系统发光的稳定性,既依赖于灯泡的质量,又依赖于电源的稳定性。空心阴极灯必须要求电源有足够高的起辉(又称触发)电压(250~500V)才能点亮,同时必须要有足够高的工作电压(150~300V)和工作电流(4~20mA)才能维持正常工作。 空心阴极灯的电源分直流电源和交流(脉冲)电源两类。目前,空心阴极灯在大多数情况下,都是使用脉冲电源。但是也有人使用直流电源;如果使用直流电源,对其稳定性要求很高。通常采用如下图所示的空心阴极灯恒流电源,并要求电流稳定性(电流调整率)达到(或优于)0.05%以上。 空心阴极灯的恒流电源组成图2、交流电源或脉冲电源一般来讲,空心阴极灯的电源如果是采用直流电源,其发光效率低,并且电流大到一定程度时,会产生自吸现象,同时还容易受到干扰。因此。为了提高空心阴极灯的输出效率,减少自吸现象、谱线变宽和减少干扰,目前,国内外的大多数的AAS都普遍采用脉冲电源供电。脉冲电源的脉冲调制频率和占空比根据不同仪器各异;一般都是采用400Hz以上的调制频率,例如作者使用过的TAS-986/990仪器的空心阴极灯电源的调制频率就是400Hz、其占空比为 4:1。一般空心阴极灯的脉冲供电电流波形如下图所示。 空心阴极灯的脉冲供电电流波形图 脉冲供电方式可使用很大的峰值电流,但是平均电流很小。这样,可以延长空心阴极灯的寿命。例如:作者的实践表明:假设采用400Hz的脉冲供电,脉冲宽度为15µ s,峰值电流300mA,则可得到比直流供电时大150倍的输出光强度;但是,自吸现象和谱线宽度并无明显增加。这足已说明脉冲供电的优越性。二、 氘灯恒流电源及其性能技术指标的测试方法1、电路组成氘灯及其电源是UVS的电光系统的关键部件(对AAS仪器而言,氘灯主要用来扣背景,也非常重要)。氘灯的好坏直接影响UVS整机质量和AAS扣背景的能力,影响仪器整机的灵敏度和质量。所以,对氘灯电源要认真测试;特别是用直流恒流电源的氘灯,更加要注意重视对有关核心性能指标的测试。众所周知,氘灯属于气体放电的光源,它需要一个稳定的氘灯恒流电源,其输出电流一般为100-500mA。而氘灯工作时,其工作额定电流一般恒定为300mA,所以称为氘灯恒流电源。氘灯恒流电源是UVS和AAS(一般5mA)的关键部件之一。下图为作者研制的一种非常适用于高精度氘灯恒流电源的电路组成图。氘灯恒流电源的原理图目前,我国的许多计量部门,经常在有关的光谱仪器检定标准中规定:电源波动对测试结果影响的技术指标;如:1990年9月1日开始实施的中华人民共和国国家计量检定规程-JJG682-90中,明确提出“电源电压变化的影响:外电电源电压在220±22V范围内改变,仪器100%透射比的最大变化应小于0.5%”。又如:1997年6月1日开始实施的中华人民共和国国家计量技术规范,JJG375-96中,提出“电源电压的影响:电源电压(220±22)V变化时对仪器的影响应符合具体规定的要求”。而该要求示值变化只允许±0.5%(对A级光栅式的仪器要求示值变化±0.3%;B级要求±0.5%)。这样规定的技术指标一是太低,二是不大科学。因为外电电源就产生±0.5%的分析误差,如果再加样品前处理、噪声、光谱带宽、环境干扰等引起的误差,仪器的分析测试结果总误差就会大得惊人,连一般分析工作的最低要求也达不到。这种技术指标的仪器根本不能满足使用要求。我们说这种技术指标不科学,主要是指它是一个电子学的技术指标,应该用电子学的指标(电流调整率、纹波系数、漂移等)来衡量,而不应该用“示值变化±0.3%”等来表示。当然也可以归一到吸光度(Abs)来表示。作者在实践中,计算了自己研发的AAS和UVS在紫外区工作时微光信号的大小,发现AAS、UVS的光信号在紫外区一般为毫微流明(nLm)级;所以,AAS、UVS属于微光测试范畴。为了保证AAS、UVS仪器的稳定性,一般高质量的AAS和UVS,其氘灯恒流电源的电流调整率要求达到0.05%,纹波系数要求在0.5% 以内。作者曾研究过一种高性能的氘灯恒流电源(DLPS-3型氘灯恒流电源),其电流调整率达到0.0006%,获得了上海市的科技进步奖。为了延长氘灯的寿命,在点燃氘灯以前,氘灯的灯丝一定要事先经过预热;预热时间可以从10秒到30秒均可,使用者可以自选。但一般科技工作者大都取10秒左右的预热时间。否则,如果氘灯不经过预热而直接点亮,氘灯的寿命肯定会缩短。作者在实践中发现,一般国产氘灯的氘灯触发电压为200到400伏,最低170伏也能点亮;一般进口氘灯的触发电压为350伏到650伏。如果一开机,氘灯不经过预热,氘灯的触发电压一下就直接加到阳极上,就会严重缩短氘灯寿命。氘灯电源向氘灯提供的灯丝电压和灯丝电流,一定要与氘灯灯泡的要求相一致。目前国际上一般都是两种类型;一种是2.5V(伏),4A(安培);一种是10V,0.8A。从氘灯电源的制作来讲,因为电流小,10V,0.8A比较好作。而2.5V(伏),4A(安培)的灯丝供电,因电流很大,氘灯的电源比较难制作,同时,因为电流大,容易因为发热而产生漂移。所以,作者认为在AAS中,最好不要选用2.5V(伏),4A(安培)的灯丝供电的氘灯。为了延长氘灯的寿命,还可将氘灯用在半功率点上;即将氘灯恒流电源的工作电流调节到180mA左右。作者的实践证明,最好使用在150到200mA范围内。这样作可大大延长氘灯寿命。有时可使氘灯的寿命延长好几倍。本人研制的优质氘灯电源,在中国科学院组织的专家鉴定会上,用户使用“坏了”的废弃氘灯带到现场当场测试,都可以点亮,并且很稳定!使用者可以对氘灯恒流电源的稳定性作简单的测试,以便判断氘灯电源的稳定性是否合格。最重要的是测试三个指标;其一是电流调整率。其二是漂移,其三是纹波系数目前国际上几种高水平的氘灯电源及其主要技术指标2、氘灯恒流电源的电流调整率的测试方法氘灯是分析仪器中使用最多的光源之一,氘灯也是对电源要求最高的光源之一。因此,对氘灯电源的指标测试也要求非常严格。特别是对电流调整率的测试更是如此;其测试方法如下:通过一只0.5KV的调压变压器,将交流电源引入恒流电源;通过恒流电源点亮氘灯,在氘灯电源的输出端用分压器取采样电压约取1.8V左右(直流信号电压),用数字电压表监控。氘灯电源预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的1.8V直流电压的变化(即记录交流供电电压220V变化±10%时,所对应的输出直流电压的变化值)。例如:作者在研制DLPS-3型氘灯恒流电源时,实际测量数据的结果如下表所示:DLPS-3型氘灯恒流电源时的实际测量数据 VS V0 V0 V0 V0 V01981.74801.74781.74791.74781.74792201.74791.74791.74791.74791.74792421.74791.74791.74791.74791.7480由上表可计算出,作者研制的氘灯恒流电源的电流调整率为:SI=ΔV0/ V0=0.0001/1.7479=0.0000572=5.72×10-5式中:ΔV0=V0242-V0198差值中的最大者;即1.7479-1.7478=0.0001V0为220V对应的直流输出电压根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05% (即 5.0×10-4)。3、氘灯恒流电源漂移的测试方法首先点亮氘灯,电源预热半小时后,在上述电流调整率测试的条件下,固定输入电压为220V左右,用高精度的数字电压表记录1.8V左右的直流输出电压在一小时内的变化值V0,即是氘灯电源的漂移。目前国际上氘灯电源的漂移一般为1×10-3~5×10-4。4、氘灯恒流电源的纹波系数(或纹波电压)的测试方法在点亮氘灯或假负载的情况下,用交流毫伏表或示波器直接测量。作者采用的氘灯恒流电源的纹波系数的简单测试方法有两种:第一,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,直接在氘灯的阴极和阳极之间测试。例如:作者[2]在研制DLSP-3型氘灯恒流电源时,曾采用这种方法测得纹波电压15mV,测得氘灯两端的直流工作电压为69.11V;由此计算出纹波系数SR=15mV/69.11V=2.17×10-4。第二,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,在采样电阻上测得纹波电压3mV,测得采样电阻上的直流工作电压为1.7675V;由此计算出纹波系数SR=3mV/1.7675V=1.7×10-3;但是,这是一个假数据;如果采样电压变为为69.11V(增大39倍),则纹波电压也增大到117mV。纹波系数还是一样的。作者的实践表明,在一般情况下,第一种方法较接近实际,比较可靠。一般要求氘灯电源的纹波系数在0.5%以内。三、开关电源的核心技术指标及其测试方法目前,很多企业采用开关电源做氘灯供电电源;其测试方法如下:目前很多科技工作者们,经常使用开关电源。但是,不注重对开关电源的性能技术指标的测试,这是很不妥当的;因为开关电源的组成主要包括:输入电网滤波器、输入整流滤波器、电压变换器、输出整流滤波器、控制电路、保护电路等。开关电源的工作原理是将220V的市电(交流电)先变成直流,而后通过变换器将直流变成交流,再将交流变成直流。它有体积小、重量轻(只有线性电源的25%左右)、功耗小、转化效率高(一般为60-79%;而线性电源一般只有30-40%)等优点。但是,它的输入电压调整率、纹波电压、电流调整率、漂移等指标也很重要,如果不经过测试,不知道这些性能技术指标的情况,就会影响正确使用 ,或者说不能将开关电源用在最佳状态;特别是输入电压调整率、纹波电压、电流调整率和漂移这四项核心性能技术指标,会影响开关电源的使用质量。直至影响仪器的整机的稳定性、噪声和漂移,影响整台仪器的质量。开关电源的输入电压调整率、电流调整率(负载调整率)、纹波电压、漂移和噪声的测试方法简述如下:1、电压调整率测试方法:输入电压调整率是指的输入交流电压变化时,输出电压相应变化的情况(或变化率)。其测试方法如下式所述: LRV=(V242-V198)/V220;式中:LRV为输入电压调整率;V242为输入电压为交流242V时的输出电压(直流);V198为输入电压为交流198V时的输出电压(直流);V220为输入电压为交流220V时的输出电压(直流);只要测出相应的交流电压、直流电压,代入式中,就可算得输入电压调整率。具体操作方法如下:开关电源的输入交流电压通过一只0.5KV(或1 KV)的调压变压器;采用假负载,在电源的输出端用分压器取采样电压约取1.5V-1.8V的直流信号电压,用4位半以上的数字电压表监控。冷态开机预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的直流电压(即记录交流供电电压220V变化±10%时,所对应的输出直流电压),代入上式即可得到电压调整率。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电压调整率SV达到0.05% (即5.0×10-4)。2、电流调整率(负载调整率)的测试方法氘灯的电流调整率(负载调整率)是指输出电流在额定范围变化时(一般在测试时采用假负载,取工作电流为50mA-350mA变化),输出电压的变化率。其测试方法如下式所述: LRI=(V50-V359)/VH;×100%;式中:LRI为电流调整率(负载调整率);V50为最小负载时(50mA时)的输出电压(直流);V350为最大负载时(350mA时)的输出电压(直流);VH为半载时(200 mA时)的输出电压(直流)。只要测出V50、V359和VH等相应的直流电压,代入式中,就可算得电流调整率LRI。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05%(即5.0 × 10-4)。3、纹波电压的测试方法 所谓纹波电压,就是指直流电压上叠加的50-100Hz的交流电压的最大值(P-P值或有效值);因此,可以用交流毫伏表直接测量。一般用LR表示。是指的在负载电流为350mA时,叠加在负载上的直流电压上的交流电压值。纹波电压还可以用示波器直接测量。纹波指标也可以用纹波系数表示;其测量方法如下式所述:SR=LR/V直;式中:SR为纹波系数;LR为直流电压上叠加的交流电压的最大值,即纹波电压值;V直(又有人叫V0)为最大负载时的直流电压值(也可以采用额定电压75V)。根据作者的实践经验,一般光学类分析仪器的纹波系数要求得到1.0*10-3左右。4、漂移、噪声的测试方法:漂移和噪声是开关电源最重要的关键核心性能技术指标之一,它直接影响开关电源的质量。目前国内外的科技工作者,对各类分析仪器的漂移和噪声的定义、测试方法的理解尚未完全统一。尤其对开关电源的测试,很多科技工作者都较陌生。作者在总结目前国内外科技工作者对各类电子仪器的漂移、噪声测试方法的基础上,提出了对开关电源的漂移、噪声的测试方法如下: 冷态开启开关电源,预热2小时后,在开关电源的输出端采用假负载(电阻),从分压电阻上采取取样电压约1.8V(直流信号电压)左右,用4位半以上的数字电压表监控。连续测试1小时;取这一小时里的最大值与最小值之差,即是漂移。在这一小时内任取10分钟(哪里最差取哪里;或者说哪里的峰-峰值最大取哪里;总共有无数个10分钟),在这10分钟里的峰-峰值(最大值减最小值),前面加“”符合,即是噪声。我们还必须记住:噪声不同于纹波。纹波是出现在输出端子之间的一种与输入频率和开关频率同步的成分,一般指50周或50周的倍频,用峰-峰(P-P)值表示。而噪声是出现在输出端子之间的纹波以外的一种高频成分;也用峰-峰(P-P)值表示。但是,二者的数值不会相同,肯定是噪声大于纹波。也有很多科技工作者采用脉冲电源给氘灯供电,因篇幅所限,此不赘述。主要参考文献[1] 李昌厚,略论光谱色谱仪器五大系统的创新切入点,仪器信息网,2024-4-25.[2] 李昌厚,DLPS-2型多功能氘灯恒流电源,《电子科学技术》,1987,第5期.[3] 李昌厚,仪器学理论与实践,北京:科学出版社,2008.[4] 李昌厚,紫外可见分光光度计仪器及其应用,北京:化学工业出版社,2010. [5] 李昌厚,原子吸收分光光度计仪器及其应用,北京:科学出版社,2006.[6] 李昌厚,高效液相色谱仪器及其应用,北京:科学出版社,2014.[7] 李昌厚,分析仪器应用中常见的12个有关技术问题的探讨,仪器信息网,2023-05-31作者简介李昌厚,男,1963年毕业于天津大学精密仪器系光学仪器专业;中国科学院上海营养与健康研究所原仪器分析室主任、生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授、天津大学兼职教授;国务院政府特殊津贴终身享受者。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等方面有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家发明奖和省部级(中国科学院、上海市、科技部)科技成果奖5项;发表论文280篇,出版《仪器学理论与实践》、光谱和色谱仪器及其应用等专著5本。曾任中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届、第六届副理事长兼光谱仪器、高速分析等多个专业委员会的副主任;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组组长、上海市科学仪器专家组成员、《生命科学仪器》副主编、《光学仪器》副主编、《光谱仪器与分析》副主编、上海化工研究院院士专家工作站成员等数十个学术团体和专家委员会成员,和北京瑞利、北京普析、上海科哲、美国ISCO等十多家公司的技术顾问或专家组组长等职务。
  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 低电压下纳米颗粒的能谱EDS元素分析方案
    低电压下纳米颗粒的能谱EDS元素分析方案传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。
  • 低电压下纳米颗粒的能谱EDS元素分析方案
    传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。
  • 上海乔枫光化学反应仪最新研究成果
    上海乔枫实业有限公司经过我公司研发部最新研究,已在6月中旬将新品光化学反应仪研发成功,在六月二十二日已全面上市。乔枫第三代光化学反应仪具体信息如下:新品光化学反应仪产品说明:光化学反应仪主要用于研究气态物质(如氮氧化物、硫氧化物、烃类和其它有机物等)和固相表面的光化学变化,也可用于研究浓度较高的水油混合物的光化学变化。 新品光化学反应仪主要特征:●微电脑控制器,光功率连续可调。●控制器置有电流表和电压表,便于观察电流和电压变化。●微电脑定时器,可分步定时。●气体反应器可通入特殊气体。●调节升降台高度调节光照强度。●反光罩可使样品充分接受光照 新品光化学反应仪配置:★ 主体部分包括反应暗箱。★ 光源控制器。★ 汞灯:1000W、500W、300W、100W可选。★ 氙灯:1000W、500W、300W可选。★ 金卤灯:400W、250W可选。★ 石英气体反应器、石英固体反应器、石英冷阱。★ 升降调节台、反光罩。上海乔枫实业有限公司光化学反应仪可按客户指定要求进行配置。更多有关上海乔枫实业有限 公司新品光化学信息可关注:www.qfnmall.com
  • 上海比朗新型升降式光化学反应仪已经上市 欢迎用户选购
    上海比朗仪器有限公司在多名技术工程师的共同努力下,4月22日已经成功完成升降式光化学反应仪技术升级计划,新型升降式光化学反应仪主要用于研究气态物质(如氮氧化物、硫氧化物、烃类和其它有机物等)和固相表面的光化学变化,也可用于研究浓度较高的水油混合物的光化学变化。   升降式光化学反应仪主要特征:  ●微电脑控制器,光功率连续可调(国内领先)。  ●控制器置有电流表和电压表,便于观察电流和电压变化。  ●微电脑定时器,可分步定时。  ●气体反应器可通入特殊气体。  ●调节升降台高度调节光照强度。  ●反光罩可使样品充分接受光照  升降式光化学反应仪配置:  ★ 主体部分包括反应暗箱。  ★ 光源控制器。  ★ 汞灯:1000W、500W、300W、100W可选。  ★ 氙灯:1000W、500W、300W可选。  ★ 金卤灯:400W、250W可选。  ★ 石英气体反应器、石英固体反应器、石英冷阱。  ★ 升降调节台、反光罩。  上海比朗品牌新型光化学反应仪已经上市,欢迎用户选购。您可以登录我们的商城(www.bilon.cc)或者拨打我们的销售热线电话:021-52965776,我们将竭诚为您服务。  文章链接:上海比朗仪器有限公司 更多光化学反应仪信息http://www.blghx.com
  • 差热分析(DTA)技术在材料研究中的应用
    差热分析(DTA)已成为一种流行的热分析技术,通常用于测量材料的温度,进而用于测量材料的吸热相变和放热相变。这项技术已在制药、有机化工、无机材料、食品、水泥、矿物学和考古学领域得到广泛应用。差热分析(DTA)过程原则上,差热分析是一种类似于差示扫描量热(DSC)的技术,在差热分析中作为研究对象的材料经历了各种热循环(加热和冷却循环),并使用惰性参考材料确定研究材料和参考材料之间的温差。在整个加热循环中,研究材料和参考材料都保持在相同的温度,以确保测试环境一致。差热分析(DTA)中的元件差热分析通常在熔炉中进行,尤其是在现代熔炉中,因为这是在周围环境中获得均匀温度的最有效方法。温度本身是用两个热电偶记录的,这两个热电偶是专门(和通用)类型的温度传感器,传感器使用金属线形成热接点和冷接点。热接点测量材料的温度,而冷接点提供了将分析温度与之比较的参考。这是每个热电偶内部用来确定材料温度的过程。在这种情况下,参考温度不是DTA分析的参考温度,而是每个热电偶装置内的参考温度。因此,需要有两个热电偶,一个热电偶测量样品的温度,另一个测量参考温度。除了热电偶和熔炉外,还使用电压表测量热电偶之间的电压(这是它们确定温度的方式),以及通常用作材料支撑的坩埚(尤其是在分析小的样品时)。在熔炉内部,也使用氩气或氦气等惰性气体,因为它们不会与样品或参考材料发生反应,这确保了测量过程中没有干扰。在大多数情况下,防止污染物影响分析结果是非常重要的。现代DTA方法中使用的大多数熔炉也可以提供-150°C至2400°C的温度环境。此外,可以使用许多不同的坩埚,这两个因素的组合可以对各种材料进行分析,这就是为什么差热分析能够跨越很多不同的工业部门的原因。分析是将样品和参考材料对称放置在熔炉中进行。然后,这两种材料在程序控温下经过加热和冷却的过程,在每个循环中,这两种温度尽可能保持恒定(在合理误差范围内)。由于熔炉加热,数据记录通常会有轻微延迟(延迟的长度通常取决于材料的热容)。差热分析(DTA)图谱在分析过程中,将温差相对时间的曲线绘制在图表上。在某些情况下,也可以绘制温差相对于温度的曲线。从这(以及曲线如何显示)可以确定材料的吸热和放热转变温度,更多的信息还包括材料的玻璃化转变温度、材料的结晶温度、材料的熔化温度和材料的升华温度。这些通常都能推断出来,因为相对于参考材料的温度变化可以确定材料是吸收热量(吸热)还是释放热量(放热)。热电偶的存在也有助于轻松识别是否发生了相变,因为当发生相变时,连接到参考热电偶上的电压表将轻微跳变。这是由于材料相变产生的潜热导致惰性气体温度略微升高(进而影响参考热电偶的电压)。除了传统的温度相变外,当两个惰性样品对热循环的响应不同时,还可以使用差热分析来测量它们。在这些特定情况下,DTA还可用于识别任何不基于焓变的相变。这些通常通过DTA图上曲线的间断来识别。结论虽然差热分析被正式定义为一种确定样品和参考材料之间温差的方法,但在实践中,它可以告诉用户材料在很多不同温度下的相特性。差热分析获得的信息量对很多行业都有很大的好处,因此被广泛使用。本文作者:Liam Critchley,Liam Critchley是一名作家和记者,专攻化学和纳米技术,拥有化学和纳米技术硕士学位和化学工程硕士学位。
  • iCEM 2016特邀报告:低电压扫描电镜技术在材料研究中的应用
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong低电压扫描电镜技术在材料研究中的应用/strong/pp style="TEXT-ALIGN: center"img title="曾毅照片.jpg" style="HEIGHT: 267px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201609/insimg/9ce6406d-a081-4594-9325-2a9b39ad3e16.jpg" width="200" height="267"//pp style="TEXT-ALIGN: center"strong曾 毅 研究员/strong/pp style="TEXT-ALIGN: center"strong中国科学院上海硅酸盐研究所/strong/ppstrong报告摘要:/strong/pp  基于曾毅老师长期的扫描电镜工作经验,本次报告将从理论和实际操作两方面探讨低电压扫描电镜在材料领域的应用,主要涉及以下几个方面的内容:/pp  1、 低电压扫描电镜的特点是什么?为什么要采用低电压进行扫描电镜观察?/pp  2、 为什么现有场发射扫描电镜都具有较好的低电压分辨率(通常优于1.5nm),但是很多扫描电镜工作者却不愿意或者不敢使用低电压进行观察?/pp  3、 如何在低电压下获得高清晰度图像?采用低加速电压进行扫描电镜观察时需要注意什么?影响低电压扫描电镜图像质量的主要因素有哪些?/pp  4、 如何利用低加速电压进行介孔材料观察和分析?/pp  5、 如何利用低加速电压获得材料真实的显微结构信息?/pp  6、 低电压STEM在材料分析中的应用/pp  ....../ppstrong报告人简介:/strong/pp  曾毅,中国科学院上海硅酸盐所分析测试中心副主任,研究员,博士生导师。主要从事材料显微结构-性能-工艺关系研究,实验室拥有FEI Magellan400, Hitachi SU8220, Hitachi SU4800, JEOL 8100以及JEOL 6700等多台扫描电镜。/pp  近年来作为项目负责人承担了863、科技部国际合作专项、中科院重点部署项目、上海市民口科技支撑项目等多项材料表征技术相关研究项目,在国内外学术刊物发表显微结构表征技术论文近90篇。出版《低电压扫描电镜应用技术研究》和《扫描电镜和电子探针的基础及应用》学术专著两部,起草扫描电镜相关国家标准5个。/ppstrong报告时间:/strong2016年10月25日上午/ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"span style="TEXT-DECORATION: underline COLOR: rgb(255,0,0)"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//span/aspan style="TEXT-DECORATION: underline COLOR: rgb(255,0,0)"/span/p
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 安捷伦加大在中国电子测量计量方面投资
    安捷伦科技日前宣布,将加大投资北京、上海和深圳电子测量仪器服务中心计量能力,从而更加贴近广大客户,让更多的客户享受到高质量的原厂校准服务。此举也再次表明安捷伦在中国地区校准业务的不断增长,以及在华北、华中和华南地区加大投资力度的信心。  自1981年进入中国以来,安捷伦电子测量仪器服务中心已遍布北京、上海和深圳三个一线城市,并在多个二线城市建立服务分支机构。计量能力覆盖安捷伦98%的电子测量仪器产品。在2003年,北京计量实验室就已取得国家认可委员会的标准实验室认可证书,校准满足ISO/IEC17025要求,在全球48个国家和地区得到互认。  作为电子测量仪器校准行业领导者,安捷伦推出了多种适合于中国市场的校准服务供客户灵活选择。除了标准的原厂校准服务外,安捷伦还推出了带测量不确定度数据及保护频带的校准服务,同时认证校准以及标准实验室校准也可满足对校准要求十分严格的客户需求。快速预约及现场校准服务可以使客户停机时间减至最小。  “此次加大中国校准能力的投资无疑将使我们更有能力服务于广大客户。三个计量中心将覆盖数字电压表、示波器、电源、无线综测仪、网络分析仪、频谱分析仪、矢量与微波信号源、微波功率探头、噪声源、光电示波器、误码抖动分析仪、光功率探头、光器件分析仪等产品的校准。”安捷伦科技电子测量仪器中国区校准经理徐建军说:“此次投资将使3个计量中心校准能力提高50%。安捷伦将始终如一的以客户需求为导向,校准能力的增强将推动我们更好地为客户服务。”  “不断的深入了解客户需求和本地市场的特点,是我们客户服务的重中之重,也是我们业务持续增长的基础。”安捷伦科技电子测量售后服务部中国区总经理金越山说:“安捷伦中国售后服务的迅猛发展是客户对我们的极大认可,我们今后将不断增加投入,拉近我们和客户的距离,从而提供更高质量的服务。”
  • 怎样避免静电压半衰期超标的问题?
    抗静电面料通常要考核电荷面密度和静电压半衰期。采用有机导电纤维生产抗静电面料时,会出现电荷面密度达标、而静电压半衰期超标的问题。企业往往会面临这个问题,其采用增加有机导电纤维用量的方法试图解决问题,但实际效果不理想。  这是由于我们在织物上采用了有机导电纤维后,织物的静电压已经下降,即电荷的逃逸势能下降,静电压可能从原来的上万伏见到几百伏,电荷在几百伏的势能下要比原来几万伏势能逃逸得更慢,即衰减到一半电压时所花的时间将更长,导致静电压半衰期变长。这时,若再增加有机导电纤维的用量只能起反作用,且增加成本。在这样的情况下,应该在染整定型前适度加一点抗静电剂,增加面料在各个地方的电荷逸散的便利程度,就可以很好地解决这个问题了。  资料转载自:http://www.kangjingdianshebei.com/jslist/list-3-1.html  标准集团(香港)有限公司
  • 低电压、无负染,LNP成像新突破——生物型透射电镜LVEM
    在近期的新冠疫情中,各类mRNA疫苗纷纷采用了LNP作为递送载体,有效避免了核酸被降解,提高了mRNA进入细胞的效率。在LNP的应用研究中,质量控制往往为重要也为困难的一环。LNP的质量(如其包封率、载药量与稳定性)很大程度上取决于其囊泡的结构是否均匀、稳定,这就需要研究人员对LNP进行透射电镜成像,来直接观测LNP的囊泡结构、粒径等形态信息。 随着科研的进步,人们对成像仪器的要求与日俱增。但是即便在高分辨成像设备多如牛毛的今天,生物样品的透射电镜成像却一直是一个难题。所谓“电镜易得,样品难求”,如何制得一个无损的电镜样品从而拍摄到清晰、高反差的生物样品图片,一直是生物样品透射电镜成像中的大的难题。这个难题很大程度上是由透射电镜的高电压与制样中的染色/负染步骤导致的。 负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,但是负染的处理手段也会带来显著的问题: 、就是生物样品制样复杂,在制样染色过程中,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变; 二、重金属盐离子本身会对生物样品的形貌造成不可逆的损害,这种损害在传统制样过程很难避免; 三、负染所得的“负像”并不能真实地反映生物样品的形貌特征,尤其对于LNP等囊泡结构,囊泡表面局部凹陷,可能会有少量染液遗留在凹陷处,或者载网表面有负染液残留的痕迹等,这些负染液在电镜观察时就会产生“假象”; 四、对于制样操作者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度,染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在染色制样条件的摸索中了; 五、传统透射电镜操作复杂,维护困难,而实验平台的透射电镜往往一“时”难求,生物样品的佳观测时间往往较短,经常会出现获得好的生物样品,却发现电镜早要在一周后才能预约的尴尬局面; 后,即便已经采用了负染等手段,LNP类的囊泡生物样品还是非常脆弱的,在成像过程中经常会出现囊泡被长时间电子流照射给“轰碎”的状况,这就迫使操作者加快操作速度,更加手忙脚乱。摆脱传统电镜桎梏的生物型透射电镜 Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25)采用了5kV与25kV的低加速电压设计,一次性地摆脱了上述所有的生物电镜成像难题,为生物样品的电镜成像提供为便捷高效的解决方案。 高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.5 nm的图像分辨率。多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。生物样品友好 LVEM生物型透射电镜采用的5kV与25kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对于LNP等囊泡结构成像条件温和,摆脱了染液与负染过程本身可能对囊泡结构造成的损害,所得图像为“正像”,更加真实地展现囊泡的结构特征。 生物样品细节损失少 如下图所示,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM生物型透射电镜采用的5kV与25kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。小型化设计,操作更加方便 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM电镜从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。操作界面智能化,更加方便。 LVEM生物型电镜案例 LVEM生物型透射电镜对生物样品成像友好,除了LNP之外,对于病毒颗粒、外泌体、噬菌体、DNA、细胞切片等生物样品的成像效果也非常,可以满足研究人员多样化的成像需求,且其操作简便,制样简单,是使生物科研工作者研究更加游刃有余的“科研利器”。 部分用户单位:
  • 市场监管总局关于发布《谐波电流互感器检定规程》等17项国家计量技术规范的公告
    市场监管总局关于发布《谐波电流互感器检定规程》等17项国家计量技术规范的公告根据《中华人民共和国计量法》有关规定,现批准《谐波电流互感器检定规程》等17个国家计量技术规范发布实施。序号 编号 名称 批准日期 实施日期 备注 1 JJG1176-2021 谐波电流互感器检定规程 2021-10-18 2022-04-18 2 JJG1177-2021 谐波电压互感器检定规程 2021-10-18 2022-04-18 3 JJG1178-2021 人体振动计检定规程 2021-10-18 2022-04-18 4 JJG1179-2021 医用诊断螺旋计算机断层摄影装置(CT)放射治疗模拟定位X射线辐射源检定规程 2021-10-18 2022-04-18 5 JJG1180-2021 大型接地网工频接地阻抗 测试仪检定规程 2021-10-18 2022-04-18 6 JJF1070.3 -2021 定量包装商品净含量 计量检验规则 大米 2021-10-18 2022-04-18 7 JJF1921-2021 GNSS行驶记录仪校准规范 2021-10-18 2022-04-18 8 JJF1922-2021 GNSS导航信号采集回放仪 校准规范 2021-10-18 2022-04-18 9 JJF1923-2021 电测量仪表校验装置校准规范 2021-10-18 2022-04-18 10 JJF1924-2021 数字电视测试信号发射机 校准规范 2021-10-18 2022-04-18 11 JJF1925-2021 低频电压表校准规范 2021-10-18 2022-04-18 代替 JJG782-1992 12 JJF1926-2021 热电偶钯点熔丝法校准规范 2021-10-18 2022-04-18 13 JJF1927-2021 医用CD/DR性能模体校准规范 2021-10-18 2022-04-18 14 JJF1928-2021 放射治疗射束质量检查仪 校准规范 2021-10-18 2022-04-18 15 JJF1929-2021 旋转圆盘电极发射光谱仪 校准规范 2021-10-18 2022-04-18 16 JJF1930-2021 有机高分辨扇形磁场质谱仪 校准规范 2021-10-18 2022-04-18 17 JJF1931-2021 信号发生器校准规范 2021-10-18 2022-04-18 代替 JJG173-2003特此公告。 市场监管总局2021年10月21日
  • ​斯坦福大学Nature,电压成像技术揭示多巴胺如何重塑记忆!
    【科学背景】感官线索的固有效价和学习效价是动物在不断变化环境中评估和决策的关键。固有效价代表了对威胁或食物等生存相关预测的内在反应,而学习效价则是基于经验对这些预测的更新。许多物种通过不同的神经通路处理这些效价,这有助于提高行为的可靠性和灵活性。然而,固有效价如何影响学习效价信息的获取,以及这种相互作用可能带来的功能性益处,仍然不清楚。多巴胺被认为在调节学习和记忆过程中起着关键作用,尤其是在处理固有和学习效价信息方面。哺乳动物的多巴胺神经元(DANs)能编码奖励预测、预测误差以及动机价值,并对不熟悉的刺激做出反应。果蝇的DANs也参与了固有和学习效价的处理。PPL1和前脑前内侧(PAM)群体的DANs向果蝇的蘑菇体(MB)提供正向和负向的强化信号,从而驱动突触可塑性和学习。然而,尽管DANs对气味的固有反应是已知的,但其如何整合固有效价和学习效价信息,以及这种整合如何影响记忆动态,尚未得到全面理解。为了探索这些问题,斯坦福大学、华盛顿大学医学院Cheng Huang(清华大学校友)、斯坦福大学Mark J. Schnitzer教授团队、耶鲁大学Madhuvanthi Kannan,以及Ganesh Vasan在“Nature”期刊上发表了题为“Dopamine-mediated interactions between short- and long-term memory dynamics”的最新论文。作者进行了大规模的电压成像研究,涉及超过500只果蝇,揭示了PPL1-DANs和MBONs在调节短期和长期记忆形成中的复杂作用。研究表明,多巴胺基的效价整合调节了蘑菇体的记忆动态,能够保留能量消耗较大的持久记忆,特别是对于频繁遇到的关联。通过将脉冲率数据和连接组数据结合,作者的模型预测了这一过程,并验证了这些预测的有效性。【科学亮点】(1)实验首次揭示了果蝇大脑中固有效价和学习效价的多巴胺信号如何共同调控记忆动态。通过对500多只果蝇进行长期电压成像研究,作者获得了关键数据,说明多巴胺信号在调节短期和长期记忆之间的交互作用中起到了重要作用。(2)实验通过电压成像技术观察到PPL1-DANs在嗅觉联想条件反射中异质性和双向地编码了惩罚、奖励和气味线索的固有与学习效价。结果显示,PPL1-DANs的信号调节了蘑菇体(MB)输出神经元(MBONs)的记忆存储和消退。在初步条件反射阶段,PPL1-γ1pedc和PPL1-γ2α’1神经元控制了短期记忆的形成,并减弱了来自MBON-γ1pedcα/β对PPL1-α’2α2和PPL1-α3的抑制反馈。(3进一步的条件反射过程中,这种减弱的反馈使PPL1-DANs能够编码条件气味线索的固有加学习效价,从而调节长期记忆的形成。此外,基于果蝇连接组和电活动数据的计算模型解释了多巴胺信号如何介导短期和长期记忆痕迹之间的电路交互,并且实验验证了这一模型的预测。【科学图文】图1 | PPL1-DANs 和 MBONs 的电压成像。图2 | PPL1-DANs 异质性和双向地编码惩罚、奖励和气味效价。图3 | 学习引起 PPL1-DANs 和 MBONs 中分布性、双向的可塑性。图4 | 固有和学习效价都影响持久的可塑性和行为。图5 | 计算模型捕捉了蘑菇体学习单元之间的相互作用,并产生了可测试的预测。【科学启迪】本文揭示了多巴胺在果蝇蘑菇体(MB)中的作用,如何通过整合固有和学习效价来调节记忆动态。首先,研究表明,多巴胺不仅参与编码奖励和惩罚,还通过编码感官线索的固有效价和学习效价来调节记忆。这种基于多巴胺的效价整合机制,使得短期记忆和长期记忆能够在神经电路中进行复杂的交互和调整。这种机制的实现,可能在能量消耗方面具有优势,因为它有助于更高效地处理频繁遇到的关联,避免了不必要的资源浪费。其次,电压成像技术的应用提供了高时间分辨率的神经脉冲数据,克服了钙离子成像在捕捉神经活动细节方面的局限。这种技术使作者能够更准确地观察到多巴胺信号在调节记忆中的具体作用,从而为记忆和学习的研究提供了新的视角。最后,基于果蝇的电压成像数据建立的计算模型,结合了脉冲率数据和连接组数据,验证了多巴胺信号在记忆存储和调节中的关键作用。这种模型不仅解释了神经回路中的互动机制,还为未来的实验提供了可测试的预测,有助于进一步探讨类似机制在其他物种和脑结构中的普遍性。文献详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5
  • 国务院公布2019进出口税改方案 69项涉及进口仪器设备
    近日,国务院关税税则委员会向海关总署下达,并公布了《2019年进出口暂定税率等调整方案》,调整最惠国税率、关税配额税率、协定税率、特惠税率等四项进口关税税率,自2019年1月1日起对706项商品实施进口暂定税率,其中公布了6项与仪器相关的进口商品暂定税率,包含红外线人体测温仪、涡流探伤检测仪、跑道摩擦系数测试仪等。另外,方案还对《中华人民共和国加入世界贸易组织关税减让表修正案》附表所列信息技术产品最惠国税率从2019年7月1日开始,实施第四次降税。其中63项与仪器设备及相关零部件有关,包含试验机、显微镜、硬度计、质谱仪、质谱联用仪等。仪器信息网小编将与仪器相关的进口商品暂定税率表和部分信息技术产品最惠国税率表汇总如下:仪器相关进口商品暂定税率表:序号EX税则号列商品名称最惠国税率(%)2019年暂定税率(%)685ex90251990红外线人体测温仪4.2#2.81-6月:4%686ex90259000红外线测温仪传感器元件4#2.71-6月:3%68790318033涡流探伤检测仪5#43688ex90318090音频生命探测仪、音视频生命探测仪5#42689ex90318090集成电路测试分选设备5#42690ex90318090跑道摩擦系数测试仪5#43“仪器设备及相关零部件”信息技术产品最惠国税率表序号税则号列EX信息技术产品名称2019年1月1日至6月30日最惠国税率(%)2019年7月1日至12月31日最惠国税率(%)36990111000立体显微镜0037090118000其他显微镜3.52.337190119000复式光学显微镜的零附件37290121000其他非光学显微镜及衍射设备0037390129000非光学显微镜及衍射设备的零件0038590151000测距仪4.53.038690152000经纬仪及视距仪4.53.038790154000摄影测量用仪器及装置4.53.038890158000其他大地测量仪器及装置2.51.738990159000大地测量仪器及装置的零附件2.51.739090181100心电图记录仪1.3039190181210B型超声波诊断仪4.43.539290181291彩色超声波诊断仪3.12.539390181299其他超声扫描装置3.12.539490181310核磁共振成像成套装置4.03.239590181390其他核磁共振成象装置4.03.239691081930病员监护仪2.01.341390221200X射线断层检查仪3.32.741790221920X射线无损探伤检测仪2.01.342090222910γ射线无损探伤检测仪3.02.042690241010电子万能试验机3.52.342790241020硬度计3.52.343190251910非液体的工业用温度计及高温计4.22.843290251990非液体的其他温度计、高温计4.22.843390259000比重计、温度计等类似仪器的零件4.02.743490271000气体或烟雾分析仪4.43.543690278012质谱联用仪0043790278019其他质谱仪0043990278099其他理化分析仪器及装置0044190283011单相感应式电度表2.5044290283012三相感应式电度表2.5044390283013单相电子式(静止式)电度表2.5044490283014三相电子式(静止式)电度表2.5044590283019其他电度表2.5044690283090其他电量计2.5044790289010工业用计量仪表零附件2.1044890289090非工业用计量仪表零附件2.1044990301000离子射线的测量或检验仪器及装置2.51.745090302010测试频率<300兆赫的通用示波器2.0045190302090其他阴极射线示波器1.3045290303110量程≤五位半的数字万用表,不带记录装置3.8045390303190其他不带记录装置的万用表1.3045490303200带记录装置的万用表4.02.745590303310量程≤五位半的数字电流表、电压表,不带记录装置9.47.545690303390检测电压、电流及功率的其他仪器,不带记录装置5.64.545790303900检测电压、电流、电阻或功率的其他仪器,带记录装置4.02.745890308410电感及电容测试仪5.03.345990308490其他电量的测量或检验仪器及装置4.02.746090308910其他电感及电容测试仪7.04.746190308990其他电量的测量或检验仪器及装置4.02.746490311000机械零件平衡试验机3.52.346590314910轮廓投影仪5.03.346690314920光栅测量装置0046790314990其他光学测量或检验仪器和器具0046890318010光纤通信及光纤性能测试仪5.04.046990318020坐标测量仪5.04.047090318031超声波探伤检测仪5.04.047190318032磁粉探伤检测仪5.04.047290318033涡流探伤检测仪5.04.047390318039其他无损探伤检测仪器(射线探伤仪除外)5.04.047490318090未列名测量、检验仪器器具及机器5.04.047590319000税号90.31的仪器及器具的零件0047790328100液压或气压的其他仪器及装置3.52.3方案还对出口关税税率进行了规定,其中108项出口商品关税维持不变,另有94项出口暂定关税被取消。方案整体详情见附件:附:1.进口商品暂定税率表  2.部分信息技术产品最惠国税率表  3.关税配额商品税目税率表  4.出口商品税率表  5.进一步降税的进口商品协定税率表(另附)
  • 10000V!氮化镓功率器件击穿电压新纪录
    近日,美国弗吉尼亚理工大学电力电子技术中心(CPES)和苏州晶湛半导体团队合作攻关,通过采用苏州晶湛新型多沟道AlGaN/GaN异质结构外延片,以及运用pGaN降低表面场技术(p- GaN reduced surface field (RESURF)制备的肖特基势垒二极管(SBD),成功实现了超过10kV的超高击穿电压。这是迄今为止氮化镓功率器件报道实现的最高击穿电压值。相关研究成果已于2021年6月发表于IEEE Electron Device Letters期刊。图1:多沟道AlGaN/GaN SBD器件结构图(引用自IEEE ELECTRON DEVICE LETTERS, VOL. 42, NO. 6, JUNE 2021)实现这一新型器件所采用的氮化镓外延材料结构包括20nm p+GaN/350nm p-GaN 帽层以及23nm Al0.25Ga0.75N/100nm GaN本征层的5个沟道。该外延结构由苏州晶湛团队通过MOCVD方法在4吋蓝宝石衬底上单次连续外延实现,无需二次外延。基于此外延结构开发的氮化镓器件结构如图1所示,在刻蚀工艺中,通过仅保留2微米的p-GaN场板结构(或称为降低表面场(RESURF)结构),能够显著降低峰值电场。在此基础上制备的多沟道氮化镓肖特基势垒二极管(SBD),在实现10kV的超高击穿电压的同时,巴利加优值(Baliga’s figure of merit, FOM)高达2.8 ,而39 的低导通电阻率,也远低于同样10kV耐压的 SiC 结型肖特基势垒二极管。多沟道氮化镓器件由于采用廉价的蓝宝石衬底以及水平器件结构,其制备成本也远低于采用昂贵SiC衬底制备的SiC二极管。创新性的多沟道设计可以突破单沟道氮化镓器件的理论极限,进一步降低开态电阻和系统损耗,并能实现超高击穿电压,大大拓展GaN器件在高压电力电子应用中的前景。在“碳达峰+碳中和”的历史性能源变革背景下,氮化镓电力电子器件在电动汽车、充电桩,可再生能源发电,工业电机驱动器,电网和轨道交通等高压应用领域具有广阔的潜力。苏州晶湛半导体有限公司已于近日发布了面向中高压电力电子和射频应用的硅基,碳化硅基以及蓝宝石基的新型多沟道AlGaN/GaN异质结构外延片全系列产品,欢迎海内外新老客户与我们洽商合作,共同推动氮化镓电力电子技术和应用的新发展!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制