当前位置: 仪器信息网 > 行业主题 > >

表面热电偶

仪器信息网表面热电偶专题为您提供2024年最新表面热电偶价格报价、厂家品牌的相关信息, 包括表面热电偶参数、型号等,不管是国产,还是进口品牌的表面热电偶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面热电偶相关的耗材配件、试剂标物,还有表面热电偶相关的最新资讯、资料,以及表面热电偶相关的解决方案。

表面热电偶相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 赛默飞世尔科技推出全新表面表征工具
    —— 用于表面化学表征的全集成式X射线光电子能谱仪   2009年12月19日,MADISON – 服务科学的世界领导者赛默飞世尔科技近日宣布,全新Thermo Scientific Escalab 250Xi光电子能谱仪(XPS)是一种全集成式表面表征工具,专门设计用于满足从事表面,薄膜和涂层的常规表征工作,乃至前沿表面化学研发的工程师们的要求。   Escalab 250Xi是享誉世界的Thermo Scientific Escalab产品线的最新产品。该全新设备集成了出色的光谱仪性能和Thermo Scientific Avantage XPS采集和处理用户界面。这种仪器与软件的组合不仅具有高样品通量,而且具有市场领先的分析性能,尤其适用于当今表面分析领域中复合材料的表征。另外,高级平行图像监测系统的集成可对图像视场内的微小特征进行定量光谱分析。   Avantage数据系统利用一种优化的工作流程提供优异的分析效率,该流程可以指导分析人员进行数据采集,解析,处理和报告生成。Avantage在进行一系列XPS光谱和图像处理任务时,还具有全数字工具控制。只需点击一下鼠标,即可利用自定义的实验室报告模板轻松将分析报告输出到标准PC应用程序中,例如Microsoft Office。   Escalab 250Xi平台具有非凡的灵活性,因此分析人员可以利用一系列其他表面表征工具配置该系统。仪器配备了离子散射谱(ISS)和反射电子能量损失谱(REELS),同时可选配紫外光电子能谱(UPS)和俄歇电子能谱(AES)。仪器的标准配置还包括了样品制备室。如果需要,可以利用样品制备选项和附加的实验样品室扩展该系统。   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com (英文)或www.thermo.com.cn (中文)。
  • 赛默飞世尔科技成功举办2011表面分析用户会
    2011年7月19日-22日,由赛默飞世尔科技(中国)有限公司和中国科学院大连化学物理研究所携手举办的赛默飞世尔科技2011表面分析用户会在美丽的海滨城市大连胜利召开。有来自各高校、中科院科研院所、企业等单位共50余人参加了此次用户会。 赛默飞世尔表面分析销售经理魏义彬博士主持召开了开幕式。会议首先由赛默飞世尔分子光谱&表面分析中国区商务运营总经理吴秋波先生致欢迎辞,感谢广大用户多年来对赛默飞世尔的支持与信赖,并承诺为用户提供一流的仪器、优质的服务及解决方案。来自大连化物所国家重点实验室分析测试中心余松华主任代表用户发表讲话,感谢赛默飞世尔为用户提供世界顶尖的设备,对公司提供的优质的售后服务表示赞赏,并殷切希望用户会能每年召开一次,为用户提供更多学习、交流的场所。 此次会议邀请了国内知名的XPS专家分别从表面分析的标准化、表面分析在催化领域应用、XPS光电子能谱仪实验室的管理以及XPS光电子能谱仪的实验室开放等方面做了特邀报告。在技术交流中,来自北京师范大学的吴正龙教授、中国科技大学理化中心麻茂生教授、中石化石油化工科学研究院邱丽美博士分别主持了大会报告,国内知名专家大化所盛世善研究员做了题为&ldquo 表面分析与催化&rdquo 的报告,化学所刘芬研究员报告题目为&ldquo 表面化学分析标准化概述&rdquo ,北京化工大学程斌教授报告题目为&ldquo X射线光电子能谱开放探索与实践&rdquo 、中山大学陈建研究员的报告是&ldquo ESCALab 250六年发展历程和相关研究总结&rdquo 。根据国内用户的要求,此次大会还邀请了赛默飞世尔科技表面分析产品英国 East Grinstead 工厂的多个专家做了相应的报告,其中区域销售和市场经理John Wolstenholme博士为大家介绍了 Thermo Scientific XPS仪器的现状及未来的发展;产品经理Tim Nunney 展示了先进的Advntage数据处理系统;商务经理Chris Riley 与大家分享了XPS和ARXPS在现代技术应用中日益提高的重要性。国内外专家的报告,内容丰富新颖,与会者兴趣盎然,受益匪浅,对关注点展开了深入细致的讨论,互动气氛非常热烈。 本次会议利用半天的时间邀请了与会老师参观了中国科学院大连化学物理研究所及已安装的我公司ESCALAB 250Xi系统。该所在催化研究方面处于国内和国际领先地位,自上世纪八十年代采购了我公司一套光电子能谱仪并使用至今,2010年该所又订购了两套我公司最新一代光电子能谱仪ESCALAB 250Xi产品。目前,其中一套系统已经完成安装和系统验收。另一套设备将于今年10月份到货。 关于此次会议,与会老师纷纷表示,借助用户会这个平台,专家和用户、用户和用户、用户和厂家相互间增进了交流和沟通,为更深一步了解、充分利用仪器功能、开拓解决问题的思路起到很好的作用。 XPS指的是X-ray Photon-electron Spectroscopy(光电子能谱仪),是一种基于光电效应,采用X射线激发被测样品表面nm尺度内的原子发射光电子,通过系统探测到所发射光电子的动能等信息,进而分析样品表面的元素种类及化合态的定性和定量分析的一种技术。XPS技术目前已有超过40年的应用历史。目前广泛应用于科研和工业测试领域,包括化工、催化、薄膜、半导体、钢铁、纳米材料以及微器件等。 赛默飞世尔表面分析部门的前身----英国VG科技公司是一家有着超过40年的表面分析和超高真空仪器研发和制造的公司,在定型光电子能谱仪的间断技术研发和产品更新等方面走在市场的前列,目前可提供光电子能谱仪型号超过5种,可满足科研、测试、工业质量控制等各个领域的应用需求。2010年国内同类产品市场占有率超过70%。赛默飞世尔吴秋波先生赛默飞世尔魏义彬博士大化所余松华主任大化所盛世善研究员化学所刘芬研究员北京化工大学程斌教授中山大学陈建研究员用户参观大化所 EscaLab 250Xi 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或www.thermofisher.cn (中文)。
  • 世界顶端的表面表征工具(来自美国赛默飞世尔) —— 用于表面化学表征的全集成式X射线光电子能谱仪
    世界顶端的表面表征工具(来自美国赛默飞世尔)—— 用于表面化学表征的全集成式X射线光电子能谱仪品牌: 赛默飞世尔型号:制造商:美国赛默飞世尔经销商:朗铎投资控股(北京)有限公司免费咨询电话:800-8900-558 全新Thermo Scientific Escalab 250Xi光电子能谱仪(XPS)是一种全集成式表面表征工具,专门设计用于满足从事表面,薄膜和涂层的常规表征工作,乃至前沿表面化学研发的工程师们的要求。 Escalab 250Xi是享誉世界的Thermo Scientific Escalab产品线的最新产品。该全新设备集成了出色的光谱仪性能和Thermo Scientific Avantage XPS采集和处理用户界面。这种仪器与软件的组合不仅具有高样品通量,而且具有市场领先的分析性能,尤其适用于当今表面分析领域中复合材料的表征。另外,高级平行图像监测系统的集成可对图像视场内的微小特征进行定量光谱分析。 Avantage数据系统利用一种优化的工作流程提供优异的分析效率,该流程可以指导分析人员进行数据采集,解析,处理和报告生成。Avantage在进行一系列XPS光谱和图像处理任务时,还具有全数字工具控制。只需点击一下鼠标,即可利用自定义的实验室报告模板轻松将分析报告输出到标准PC应用程序中,例如Microsoft? Office。 Escalab 250Xi平台具有非凡的灵活性,因此分析人员可以利用一系列其他表面表征工具配置该系统。仪器配备了离子散射谱(ISS)和反射电子能量损失谱(REELS),同时可选配紫外光电子能谱(UPS)和俄歇电子能谱(AES)。仪器的标准配置还包括了样品制备室。如果需要,可以利用样品制备选项和附加的实验样品室扩展该系统。
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。br//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院)/ppbr//ppbr//p
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title="微信图片_20170518091903_副本.jpg"//pp style="text-align: center "文章封面以及毛细力构筑单热点结构示意图/p
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp style="text-align: center "img width="250" height="321" title="ea14fe0b8668f5b02fa47ae1ab982279.jpg" style="width: 250px height: 321px " src="http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border="0" vspace="0" hspace="0"//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。/p
  • 合肥研究院疏水界面表面增强拉曼光谱三维热点研究获进展
    近期,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组研究员杨良保等人成功证实了滴于疏水界面的银溶胶在蒸发过程中能产生更多的三维热点,具有超高的表面增强拉曼散射效应。该研究成果对推动表面增强拉曼散射技术在实际检测中应用具有重要的意义。相关成果发表在英国皇家化学会Nanoscale 杂志上(Nanoscale,2015,7,6619-6626)。  近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测被广泛应用于各大基础研究领域。然而传统意义上SERS 基底的热点是以零维点状、一维线状或二维面状的空间分布构型存在的,这与SERS装置中的激光共焦量三维空间不匹配,如何解决这一矛盾以提高SERS检测的灵敏性仍然是一个很大的挑战。  针对以上问题,刘洪林等研究人员发现一滴纳米粒子溶胶随着溶剂的蒸发会形成一种独特的银纳米粒子三维结构。在这种三维结构中,粒子间距均一,且粒子间的作用以及平面上的静电吸附均会减弱,有助于产生大量的三维热点,增强SERS效应。研究人员还发现疏水界面上产生的三维热点比亲水界面拥有更高的灵敏性和更好的稳定性,并通过原位同步辐射小角X射线衍射(SR-SAXS)对这一不同检测结果的内在机理进行探索解释,有助于进一步推动表面增强拉曼散射技术成为一种实用的分析技术手段。  该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持。  文章链接界面三维热点形成原理图
  • 报告视频-史南南(赛默飞)-XPS表面分析联用技术和应用—REELS、UPS、Raman
    p style="text-indent: 2em text-align: justify "5月8日,由国家大型科学仪器中心-北京电子能谱中心、北京理化分析测试学会表面分析专业委员会、中国分析测试协会高校分析测试分会、全国微束分析标准化技术委员会表面化学分析分技术委员会及仪器信息网联合举办,为期一天的a href="https://www.instrument.com.cn/news/20200509/538052.shtml" target="_blank"strongspan style="color: rgb(84, 141, 212) "“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”主题网络会议圆满落幕!/span/strong/a会议为广大网友提供了一个免费学术交流平台,进一步拓展表面科学技术的应用领域。/pp style="text-indent: 2em text-align: justify "会议特别邀请到清华大学李景虹院士、中国科学技术大学朱俊发教授、中国科学院兰州化学物理研究所毕迎普研究员、中国计量科学研究院王海副研究员、中国科学院化学研究所刘芬研究员、北京师范大学吴正龙教授级高工等6位表面分析领域大咖及3家仪器厂家进行了报告分享,国家电子能谱中心副主任姚文清老师主持会议。/pp style="text-indent: 2em text-align: justify "会议受到了5000余人次的关注,同时与蔻享学术共享平台合作实时同步转播,参会人数累计超过4000人次。创历届新高!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/c5b7e69f-27b8-4957-afc0-2c2c84075ac6.jpg" title="史南南小.png" alt="史南南小.png"//pp style="text-align: center "赛默飞世尔科技(中国)有限公司 应用工程师 史南南/pp style="text-align: center "报告题目:XPS表面分析联用技术和应用——REELS、UPS、Raman/pp style="text-indent: 2em text-align: justify "XPS作为一种高效的表面分析手段,因其元素化学态敏感性和表面敏感的特性,可以很好地揭示材料的表面和界面信息。同时,随着表面分析技术拓展性的逐渐增强,结合其他分析技术,如UPS、REELS、ISS和Raman联用等等,可以提供更丰富的样品信息。报告中,史南南主要介绍和分享了XPS与REELS、UPS和Raman等分析技术联用,在聚合物、冰、OLED和石墨烯等材料的表征中的性应用。/pp style="text-indent: 2em text-align: justify "报告视频:/pscript src="https://p.bokecc.com/player?vid=02F17C9034BC90279C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptpbr//p
  • 表面分析技术与新能源研究的结合——2017年全国表面分析方法及新能源与生物功能材料学术研讨会
    p  strong仪器信息网讯/strong 2017年5月20日,“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开。此次会议由西南大学、重庆大学、赛默飞主办,170多位来自科研院校、以及企业的专家用户参加了此次会议。/pp style="text-align: center " /pp style="text-align: center "img title="现场1.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/3f44f489-93a2-49c9-b0eb-35c6af40112a.jpg"//pp style="text-align: center "会议现场/pp  就像在a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20170520/220051.shtml" target="_blank"strongspan style="color: rgb(255, 0, 0) "“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开/span/strong/a中,西南大学李长明院士说到的,当今社会的发展离不开新能源的出现和先进能源技术的使用,发展新能源、改善传统能源环境污染状况,是全世界全人类共同关心的问题。/pp  中国科学院长春应用化学研究所杨秀荣院士也提到,全球能源消耗面临着巨大危机,据2013年全球能源消费统计,石油只能再用45年、煤还能用200年,同时石油、煤等传统能源造成的环境污染也日趋严重。因此开发具有应用潜能的清洁能源具有重要意义。/pp  根据国务院印发的《“十三五”国家战略性新兴产业发展规划》纲要,“十三五”期间国家将大力推动新能源汽车、新能源和节能环保产业快速壮大,加快生物产业创新发展步伐,超前布局战略性产业,促进战略性新兴产业集聚发展。而新能源的发展离不开对其相互作用反应机理的研究,这就使得分析技术,如表面分析技术变得非常关键。/pp  此次大会的主题之一即聚焦“新能源”,主办方邀请了业内相关专家介绍了他们洁净能源技术研发的新进展。/pp style="text-align: center " /pp style="text-align: center "img title="盛世善.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/5570ce22-d034-403f-b8dc-abec4f0cbbaf.jpg"//pp style="text-align: center "中国科学院大连化物所盛世善研究员/pp style="text-align: center "报告题目:清洁能源与表面分析/pp  报告中,盛世善教授介绍了洁净能源——煤基合成油的制备工艺、催化剂,及利用XPS等表面分析技术进行表征获得相关信息的情况。采用了新的铁基催化剂的费托合成以煤炭为原料制成的合成气直接制备烯烃,选择性超过了80%,而传统的以钴为催化剂的费托合成低碳烯烃的选择性理论上最高为58%,这一技术突破创造了一条煤基合成气转化制烯烃的新途径。盛世善教授介绍了此工艺过程中采用的新型双功能催化剂,并利用表面分析技术对其进行表征,对于金属或合金、多元催化剂可获得元素的偏析、分凝等信息 在催化剂制备条件选择上,可以获得焙烧气氛与温度等信息 对于半导体催化剂可以获得价带、材料的功函数等信息。/pp style="text-align: center "img title="陈建.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/22990709-8fe5-4e9f-82eb-2c3627a2e218.jpg"//pp style="text-align: center "中山大学陈建教授/pp style="text-align: center "报告题目:表面分析技术在先进能源材料研究中的若干应用/pp  陈建教授在报告中介绍了扫描探针显微、表面增强拉曼光谱、表面等离子体共振、光电子能谱等表面分析技术在先进能源材料研究中的新应用进展。如实现了对半导体材料表面、器件界面的结构与光电性质进行了原位、实时的测量,为界面调控提供了有效的分析手段。发展了基于表面增强拉曼散射技术的纳米局域热点温度检测方法,研究光电催化反应机理的原位光谱学分析方法,和研究聚合物在等温冷却结晶过程中的结构相态变化和结晶动力学过程的原位变温拉曼散射法。最后利用X射线光电子能谱与氩离子刻蚀联合技术明确了聚合物太阳能电池形成界面偶离子的机理和微观过程,揭示了钙钛矿太阳能电池钙钛矿薄膜形成的内在机制。/pp style="text-align: center "img title="谢芳艳.jpg" src="http://img1.17img.cn/17img/images/201705/insimg/468aeafa-5982-4e0c-b14c-247fc585913f.jpg"//pp style="text-align: center "中山大学谢芳艳/pp style="text-align: center "报告题目:光电子能谱在有机太阳电池研究中的应用/pp  陈建教授的同事谢芳艳此次大会也带来了精彩报告,报告内容包括聚合物有机太阳电池、钙钛矿太阳电池的情况,而且,结合光电子能谱所能提供的信息,谢芳艳介绍了其团队在这方面所开展的应用实例。/pp /p
  • 关于召开第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会的通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2022年6月14-15日线上举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。一、组织单位国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会、仪器信息网二、会议主题能源化学与碳中和三、会议形式线上会议,免费报名参会,进入会议官网报名或扫描以下二维码报名会议官网:https://www.instrument.com.cn/webinar/meetings/bmfx2022扫码即刻报名参会四、会议日程(最终议程以活动专题页面发布为准)时间报告题目演讲嘉宾专场1:表面分析技术应用论坛(上)——6月14日09:00-11:45专场主持人朱永法(清华大学/国家电子能谱中心 教授/常务副主任)09:00-09:15致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)09:15-10:00水滑石基纳米光催化材料合成太阳燃料及高附加值化学品张铁锐(中国科学院理化技术研究所 研究员)10:00-10:30场发射俄歇微探针JAMP-9510F在材料表面分析中的应用张元 (日本电子株式会社 应用工程师)10:30-11:00X射线光电子能谱(XPS)技术及应用龚沿东(岛津企业管理(中国)有限公司 研究员)11:00-11:45太阳能驱动人工碳循环熊宇杰 (中国科学技术大学 教授)专场2:表面分析技术应用论坛(下)——6月14日13:30-16:45会议主持人张铁锐(中国科学院理化技术研究所 研究员)13:30-14:15Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles马丁(北京大学 教授)14:15-14:45待定赛默飞世尔科技元素分析14:45-15:30有机分子电催化转化王双印 (湖南大学 教授)15:30-16:00待定北京精微高博仪器有限公司16:00-16:45有机半导体可见光催化产氢、二氧化碳还原及肿瘤治疗研究朱永法(清华大学/国家电子能谱中心 教授/常务副主任)专场3:表面化学分析国家标准宣贯会——6月15日09:00-11:45会议主持人姚文清(清华大学/国家电子能谱中心 正高级工程师/副主任)09:00-09:45辉光放电质谱最新技术进展及其在相关标准方法中的应用卓尚军(中国科学院上海硅酸盐研究所 研究员)09:45-10:15XPS分析技术在空间和深度维度探测中的应用鞠焕鑫(高德英特(北京)科技有限公司 应用科学家)10:15-11:00GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南赵志娟(中科院化学所 高级工程师)11:00-11:45扫描探针显微镜漂移标准化研究黄文浩(中国科学技术大学 教授)五、 嘉宾简介&报告摘要专场1表面分析技术应用论坛(上)(6月14日上午)朱永法清华大学/国家电子能谱中心教授/常务副主任专场主持人:09:00--11:45李景虹清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会院士/主任/主任委员大会致辞:09:00--09:15李景虹,中国科学院院士、第十二、十三届全国政协委员。清华大学化学系教授,化学系学术委员会主任,国家电子能谱中心主任,清华大学分析中心主任。1991年获中国科学技术大学学士学位,1996年获中科院长春应用化学研究所博士学位。近年来致力于电分析化学、生物电化学、单细胞分析化学及纳米电化学领域的教学科研工作。以通讯作者在Nature Nanotech., Nature Protocol, J. Am. Chem. Soc., Angew. Chem.等学术刊物上发表SCI论文400余篇。2015-2021年连续五年入选汤森路透全球高被引科学家。以第一完成人获国家自然科学奖二等奖、教育部自然科学奖一等奖等。任Chem. Soc. Rev., ACS Sensors, Small Methods, Biosensors Bioelectronics, Biosensors, Chemosensors等期刊编委。张铁锐中国科学院理化技术研究所研究员报告题目:水滑石基纳米光催化材料合成太阳燃料及高附加值化学品报告&答疑:09:15--10:00张铁锐,中国科学院理化技术研究所研究员、博士生导师,中国科学院光化学转化与功能材料重点实验室主任。吉林大学化学学士,吉林大学有机化学博士。之后,在德国、加拿大和美国进行博士后研究。2009年底回国受聘于中国科学院理化技术研究所。主要从事能量转换纳米催化材料方面的研究,在Nat. Catal.等期刊上发表SCI论文280余篇,被引用26000多次,H指数89,并入选2018-2021科睿唯安“全球高被引科学家”;申请国家发明专利49项(已授权37项)。曾获皇家学会高级牛顿学者、德国“洪堡”学者基金、国家基金委“杰青”、国家“万人计划”科技创新领军人才等资助、以及中国感光学会青年科技奖等奖项。2017年当选英国皇家化学会会士。兼任Science Bulletin副主编以及Advanced Energy Materials等期刊编委。现任中国材料研究学会青年工作委员会-常委,中国化学会能源化学专业委员会-秘书长,中国感光学会光催化专业委员会-副主任委员等学术职务。报告摘要:水滑石基纳米材料因组成结构易于调控、制备简便等优点在光催化领域而备受关注。近年来,我们研究团队通过在水滑石表面创造缺陷位和构造界面结构的手段,分别实现了对反应物CO2、N2等吸附和活化的增强,以及中间反应物种反应路径的调控,进而提升了光催化CO、CO2和N2加氢反应的催化活性和生成高附加值产物的选择性。张元日本电子株式会社应用工程师报告题目:场发射俄歇微探针JAMP-9510F在材料表面分析中的应用报告&答疑:10:00--10:30张元,日本电子应用工程师。2016年毕业于上海交通大学材料科学与工程专业,获工学学士学位;2019年毕业于京都大学大材料工学研究科,获工学硕士学位。2019年入职日本电子,现担任应用工程师一职,主要负责场发射俄歇微探针与钨灯丝扫描电镜的应用与培训。报告摘要:日本电子的场发射俄歇微探针装置JAMP-9510F能够实现纳米级空间分辨率下试样表层的元素分布、化学组成、化合态分析等材料表征。无论是金属试样还是绝缘材料,JAMP-9510F装载的静电半球形分析器、场发射电子枪的大束流、高精度全对中试样台以及悬浮式离子枪都能提供多种表面分析方法。龚沿东岛津企业管理(中国)有限公司研究员报告题目:X射线光电子能谱(XPS)技术及应用报告&答疑:10:30--11:00龚沿东,研究员,1986年毕业于清华大学现代应用物理系,曾任中国科学院金属研究所分析测试部主任(研究员)。英国国家物理实验室(National Physical Laboratory)访问学者,美国圣母大学(University of Notre Dame)化工系研究助理。现任全国微束分析标准化技术委员会委员,全国微束分析标准化技术委员会表面分技术委员会委员。岛津公司市场部XPS和EPMA首席技术专家。报告摘要: X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在催化材料、电池材料、薄膜材料、电子器件等材料中的应用案例,旨在让科研工作者对XPS表面分析技术在材料领域的应用有所了解。熊宇杰中国科学技术大学教授报告题目:太阳能驱动人工碳循环报告&答疑:11:00--11:45熊宇杰,中国科学技术大学教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队,同年入选首批国家高层次青年人才计划和中国科学院人才计划。2016年获批组建中国科学院“等离激元催化”创新交叉团队,2020年终期评估结果为优秀。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士。2018年获聘长江学者特聘教授,入选国家万人计划科技创新领军人才。2022年入选新加坡国家化学会会士。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。在Science等国际刊物上发表250余篇论文,总引用31,000余次(H指数91),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。报告摘要:人类正在探索实现“碳中和”的有效途径,凸显出建立人工碳循环的重要性。本报告将阐述如何针对太阳能驱动二氧化碳和甲烷转化,在太阳能俘获和电荷分离的基础上,对化学键的形成和断裂进行选择性控制,将其转化为燃料或化学品。另一方面,利用自然界的生物活性基元,开发无机-生物杂化系统,为太阳能驱动固碳提供新的思路。专场2表面分析技术应用论坛(下)(6月14日下午)张铁锐中国科学院理化技术研究所研究员专场主持人:13:30--16:45马丁北京大学教授报告题目:Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles报名占位报告&答疑:13:30--14:15马丁,北京大学化学与分子工程学院教授。针对我国社会能源和资源优化利用过程,主要开展氢能制备与输运,高值碳基化学品/油品合成, 以及催化反应机理研究等方面研究工作。获得2013年度北京大学青年教师教学比赛一等奖,2014年度王选青年学者奖,2017年中国催化青年奖,2017年度中国科学十大进展。2014-2017年担任英国皇家化学会Catalysis Science & Technology副主编 目前担任Chinese Journal of Chemistry、 ACS Catalysis 副主编,Science Bulletin、Journal of Energy Chemistry、 Joule、Journal of Catalysis、Catalysis Science & Technology等刊编委和顾问编委。报告摘要:人类正在探索实现“碳中和”的有效途径,凸显出建立人工碳循环的重要性。本报告将阐述如何针对太阳能驱动二氧化碳和甲烷转化,在太阳能俘获和电荷分离的基础上,对化学键的形成和断裂进行选择性控制,将其转化为燃料或化学品。另一方面,利用自然界的生物活性基元,开发无机-生物杂化系统,为太阳能驱动固碳提供新的思路。待定赛默飞世尔科技元素分析报告题目:待定报告&答疑:14:15--14:45王双印湖南大学教授报告题目:有机分子电催化转化报告&答疑:14:45--15:30王双印, 国家杰出青年基金获得者、科睿唯安全球高被引科学家(化学、材料), 爱思唯尔中国高被引学者(化学),科技部重点研发计划项目负责人。现为湖南大学二级教授,博士生导师。2006年本科毕业于浙江大学化工系,2010年在新加坡南洋理工大学获得博士学位,随后在美国凯斯西储大学, 德克萨斯大学奥斯汀分校、英国曼彻斯特大学(玛丽居里学者)开展研究工作。主要研究方向为电催化剂缺陷化学,有机分子电催化转化,燃料电池。代表性论文发表在国家科学评论,中国科学化学、材料,科学通报, JEC, Nature Chem., Nature Catalysis, JACS, Angew. Chem., Adv. Mater., Chem等期刊,总引用26000余次,H指数89,获教育部青年科学奖、湖南省自然科学奖一等奖(第一完成人)、中国侨届贡献一等奖。报告摘要:有机电催化转化,是利用电催化的手段,通过催化剂与有机分子(包括气体小分子)之间的电子相互作用,降低反应活化能,从而加快有机物转化反应的过程。因为与传统有机反应相比具有高效绿色的优点,近几年来有机电催化转化在能源,环境,医药,化工等领域有着重要发展。我们课题组近期在有机电催化转化方向开展了部分工作,主要集中在“气体小分子耦合的有机电催化合成”、“亲核有机小分子的电催化氧化”及“生物质平台衍生物的转化升级”等几个方面。研究工作首次在常温常压条件下将惰性分子耦合转化为有机分子;通过原位同步辐射、原位拉曼等方法探究了亲核有机分子在镍基催化剂上的反应机理, 提出了有机分子电催化转化中的非电化学过程机制;首次利用原位和频共振技术明确了有机物合成过程中的反应路径。这些工作对于进一步扩展有机电催化反应底物,明确催化机理,实现有机物可控精准合成等具有重要的指导意义。待定北京精微高博仪器有限公司报告题目:待定报告&答疑:15:30--16:00朱永法清华大学/国家电子能谱中心教授/常务副主任报告题目:有机半导体可见光催化产氢、二氧化碳还原及肿瘤治疗研究报告&答疑:16:00--16:45朱永法,清华大学化学系教授、博导,国家电子能谱中心常务副主任。分别从南京大学、北京大学和清华大学获得学士、硕士和博士学位以及在日本爱媛大学从事博士后研究工作。1988.7月到现在,一直在清华大学化学系工作,从事能源光催化、环境光催化及光催化健康的研究。承担了国家973项目、863项目、国家自然科学基金重点、国家自然科学基金仪器专项,国际重点合作项目和面上项目等基础研究课题,同时,还承担了企业的有关吸附净化材料、光催化材料及其在空气和水环境净化方面的应用课题。获得教育部跨世纪优秀人才及国家自然科学基金委杰青年基金资助。获得国家自然科学奖二等奖1项, 教育部自然科学奖一等奖2项、二等奖1项,教育部科技进步奖二等奖和三等奖各1次。发表SCI论文447篇,高被引论文41篇;论文总引37800余次,H因子为110。2014-2021年Elsevier高被引学者(化学),2016年Elsevier全球材料科学与工程学科高被引学者,2018-2021科睿唯安“全球高被引科学家”(化学), 2021年度全球顶尖前10万科学家排名第851位。学术兼职有Applied Catalysis B 副主编,中国感光学会副理事长兼光催化专业委员会主任,北京市室内与车内环境净化行业协会会长。中国分析测试协会常务理事,中国化学会环境化学专业委员会委员;环境与能源光催化国家重点实验室学术委员会委员;教育部资源化学重点实验室学术委员会副主任。报告摘要:有机半导体可以通过调控前驱体分子生色基团和助色基团的结构,实现光催化剂的宽光谱响应、消光系数高以及能带结构可调控。在可见光辐照下可以分解水产氢和产氧以及实现CO2的还原。 通过氢键自组装而成的PDINH全有机超分子结构,具有优异的可见光降解苯酚与光解水产氧(无助催化剂)活性。在可见光辐照下,污染物降解性能达到了C3N4的16倍,其产氧性能达到34.6umolg-1h-1。PDINH超分子的强分子偶极和有序结构提升了内建电场,促进光生载流子的分离和迁移,是光催化高活性的本质。成功构筑高度结晶的尿素-苝酰亚胺聚合物光催化剂,其在无助催化剂条件下实现超高效的分解水产氧(3.2mmolg-1h-1),性能较常规PDI超分子光催化剂提高106.5倍。通过咪唑熔盐制备获得的PDI超分子,具有更高的结晶有序度,其产氧性能可以达到40.6 mmolg-1h-1,400nm处的量子效率达到10.4%。利用产氢活性的C3N4光催化剂与产氧性能的尿素-苝酰亚胺聚合物光催化剂耦合,实现化学计量比的全解水产氢产氧,STH达到0.3%。设计构筑基于四羧基苯基卟啉的自组装超分子光催化剂SA-TCPP,该超分子光催化剂实现了全光谱辐照下的双功能分解水产氢和产氧(40.8和36.1μmolg-1h-1),并具有高效降解污染物活性,其性能达到了C3N4光催化剂的10倍以上。并发现共轭结构是调控产氢和产氧性能的关键因素,分子偶极是决定光催化活性的关键因素。当卟啉超分子与锌配位后,可以提升其还原电位从-0.36V到-1.01V,产氢能力提升85倍,达到3.5 mmolg-1h-1。 建立了基于有机超分子光催化快速杀灭癌细胞和实体瘤的新方法。具有生物安全性,无毒无害特性。并可以通过肿瘤细胞对纳米颗粒尺寸的选择性,实现自动靶向给药,对正常器官没有副作用。在红光(650 nm)辐照下,被吞噬到肿瘤细胞内部的光催化剂产生强氧化性光生空穴,从内部快速杀灭癌细胞,可以在10分钟内消除直径10mm的肿瘤块,对肿瘤的治愈率达到了100%,大幅提高了小鼠的成活率。该有机光催化肿瘤治疗方法具有很好的应用前景。专场3表面化学分析国家标准宣贯会(6月15日上午)姚文清清华大学/国家电子能谱中心正高级工程师/副主任专场主持人:09:00--11:45姚文清,清华大学分析中心 正高级工程师,国家电子能谱中心 副主任。国际标准化组织表面化学分析委员会(ISO/TC201)联络员,全国微束分析标准化委员会表面化学分析分技术委员会(SAC/TC38/SC2)副主任委员,北京理化分析测试学会表面分析技术委员会 常务副理事长,中国分析测试协会高校分析测试分会 秘书长。近年来致力于光催化材料表界面化学分析及表面分析仪器研制工作。先后主持科技部创新方法专项、国家基金委面上项目、国标委国家标准制修订专项等项目12项。以第一/通讯作者发表论文43篇,其中ESI高被引论文2篇,入选2018年英国皇家学会Top 1%高被引中国作者。制定国际标准1项、国家标准18项;国家发明专利授权和申请5项;合作论著2部。研究成果获:国家自然科学奖二等奖 1项(排名4);中国分析测试协会科学技术奖一等奖1项(排名1);中国标准创新贡献奖二等奖1项(排名1);中国产学研合作促进会产学研合作创新个人奖1项;教育部自然科学奖一等奖 2项(排名2和4)。卓尚军中国科学院上海硅酸盐研究所研究员报告题目:辉光放电质谱最新技术进展及其在相关标准方法中的应用报告&答疑:09:00--09:45卓尚军 博士,中国科学院上海硅酸盐研究所研究员,主要从事无机材料表征和测试的理论与应用研究、仪器研制和软件开发,曾负责科技基础条件平台工作重点课题、科技部创新方法专项课题、科技部重大仪器专项等科研任务,出版专(译)著6部,发表论文100余篇,参与起草标准7项。现任国家大型科学仪器中心上海无机质谱中心主任、中国科学院上海硅酸盐研究所公共技术中心主任、上海市分析测试协会理事长、亚太经合组织(APEC)材料测试与评价技术组织(ANMET)执委会委员、国际标准化组织ISO/TC201/SC8(辉光放电光谱和质谱)技术委员会专家、全国微束分析标准化技术委员会表面化学分析分技术委员会委员。报告摘要:介绍辉光放电质谱(GD-MS)的最新技术进展、在先进材料检测中的应用及其在国内外的标准化情况,并对标准《多晶硅 痕量元素化学分析 辉光放电质谱法》(GB/T 33236-2016)进行宣贯。鞠焕鑫高德英特(北京)科技有限公司应用科学家报告题目:XPS分析技术在空间和深度维度探测中的应用报告&答疑:09:45--10:15鞠焕鑫博士,PHI (China) Limited 高德英特(北京)科技有限公司应用科学家。2009年-2014年于中国科学技术大学获得学士和博士学位,毕业后在国家同步辐射实验室从事博士后研究。2012-2103年在美国华盛顿大学(西雅图)国家公派联合培养。2016年6月-2018年10月,中国科学技术大学国家同步辐射实验室副研究员,负责中国科学技术大学国家同步辐射实验室催化与表面科学实验站的运行管理,主要从事软X射线谱学方法学研究以及能源材料/器件界面电子性质研究。在学术研究方面与用户合作在Nature Photonics, Nature Chemistry, Nature Energy, J. Am. Chem. Soc., Angew. Chem. Int. Ed, Adv. Mater, Adv Funct Mater等期刊发表学术论文80余篇;主持/参与国家自然科学基金委青年科学基金、大科学装置联合基金培育项目和重点项目、国家重点研发计划等多个国家级科研项目。2018年11月,加入PHI (China) Limited 高德英特(北京)科技有限公司,担任应用专家,负责 PHI CHINA南京表面分析实验室的创建以及运行管理。报告摘要:XPS作为一种重要的表面分析技术,可以提供样品表面的组分和化学态信息,已经广泛应用于科学研究和高科技产业领域。但是新型材料/器件在科学研究和研发创新上的迅速发展,对XPS技术的微区检测和无损深度分析能力提出了迫切需求。本报告将介绍XPS分析技术在空间和深度两个探测维度的最新技术发展及其应用。赵志娟中科院化学所高级工程师报告题目:GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南报告&答疑:10:15--11:00赵志娟,博士,高级工程师,从事电子能谱分析表征及相关分析研究十多年,具有丰富的表面分析研究与测试经验。2011年毕业于中科院化学所,同年入职中科院化学所分析测试中心电子能谱组。现任电子能谱组负责人,主要研究方向为材料表面化学分析&电子能谱分析。承担和参与多项中科院仪器功能开发、国家自然科学基金、国家专项及国际合作等研究项目。授权国家发明专利和实用新型专利4项。发表及合作研究论文十余篇,承担和参与制修订国家标准8项。获得中国分析测试协会科学技术奖二等奖2项,“中国标准创新贡献奖”二等奖。担任全国微束分析标准化技术委员会表面化学分析分技术委员会委员,北京理化分析测试技术学会表面分析分会理事。报告摘要:紫外光电子能谱(UPS)可以在高能量分辨水平上探测物质中价层电子的能量分布,提供材料外壳层轨道结构、能带结构、逸出功、空态分布与表面态等重要信息,在固体材料以及表界面电子结构研究方面具有独特的应用。报告结合相关国家标准,对仪器设备以及关键技术问题进行系统介绍,并提供规范化的实验操作与数据处理指导。黄文浩中国科学技术大学教授报告题目:扫描探针显微镜漂移标准化研究报告&答疑:11:00--11:45黄文浩,教授,1968年毕业于清华大学精密仪器系,1968—1978在企业工作。自1978年起在中国科学技术大学精密机械与精密仪器系工作,其中1989年至1991年在西班牙马德里自治大学STM实验室访问学者。主要研究方向:微纳加工和测量,扫描探针显微术,飞秒激光微纳加工,纳米计量及标准化。2003-2013中日大学群交流项目中方召集人。2014-2019担任科技部制造与工程领域973计划咨询专家,2019年起担任科技部变革性技术专项咨询专家,2006至今担任国际标准化组织ISO/TC201/SC9专家。报告摘要: 报告回顾了十多年来参加国际标准化组织/表面化学分析/扫描探针显微镜(ISO/TC201/SC9)活动的经历,介绍ISO 11039 2012的制订过程及主要内容,展望将来的工作。六、会议联系杨编辑电话:(010)51654077-8032手机:15311451191(微信同号)Email:yanglz@instrument.com.cn
  • 2020年全球表面分析市场将达39.897亿美元
    p  根据Markets and Markets的最新市场调查报告& ldquo Surface Analysis Market by Instrumentation Technology (Microscopy, Spectroscopy, Surface Analyzers, a href="http://www.instrument.com.cn/zc/73.html"X-ray Diffraction/a), Industry (Semiconductor, Polymers, Life Sciences) & End User (Academic Institutes, Industries) - Global Forecast to 2020 & rdquo ,预计到2020年,表面分析市场将达到约39 .897亿美元;2015年到2020年期间,该市场将以6.2%的复合年增长率增长。/pp  表面分析技术是一种揭示材料及其制品的表面形貌、成分、结构或状态的分析手段。该技术可以用于开发新材料或改善现有材料的性能,进而支持相关产业优化、加速新产品开发、评估生产和包装工艺稳定性、快速识别跟踪污染物、评估新制造工艺和质量等。/pp  在这份报告中,表面分析市场根据仪器技术、行业、终端用户和地区进行划分。基于仪器技术,市场划分为显微镜、光谱、表面分析仪和x射线衍射等。显微镜领域包括光学显微镜、电子显微镜、扫描探针显微镜和共聚焦显微镜。基于行业,市场划分为半导体、能源、聚合物、生命科学、冶金金属和食品饮料、纺织品、纸张和包装等其他行业。基于终端用户,市场划分为学术机构、产业和研究机构。这份报告还讨论了市场的主要驱动、限制、机遇和挑战。/pp  半导体行业是表面分析技术最大的终端用户所在领域,该技术显著改善各种应用,如测量薄膜的厚度、密度和组成,掺杂剂剂量和剖面形状等。在解决半导体行业所面临的一些主要挑战时,表面分析技术扮演着至关重要的角色,包括识别和定位跟踪半导体中痕量级别的杂质,认证新的生产工具和量化散装掺杂物等。此外,在过去的几年里,由于利用表面分析技术进行缺陷识别、微量金属污染检测、薄膜或样品的深度分析、失效分析的需求不断上升,使得表面分析技术在能源、医疗保健、聚合物、薄膜、冶金、食品和饮料、纸张和纺织品等行业的应用也增加了。/pp  2014年,北美地区是表面分析最大的区域市场,约占全球市场的37.0%;其次是欧洲、亚太。北美和欧洲的高市场份额主要归因于公共和私人来源对纳米技术研究的高投入、医疗设备公司增加研究支出,以及在这一地区存在的一些大公司,这些因素使得相关用户更多的应用了表面分析解决方案。/pp  亚太地区则是表面分析市场未来增长的推动力,因为该地区的低成本资源、强大客户基础、越来越多的制药研发支出、越来越多的大公司在这个地区建立研发和生产设施等因素,使得亚太地区存在着巨大的投资机会。市场的增长可能会集中在印度、中国、韩国、日本。/pp  全球表面分析市场主要由少数几家仪器公司主导,其中五大公司合计约占50%的全球市场份额。重要的仪器公司包括Danaher Corporation (U.S.)、Olympus Corporation (Japan)、Thermo Fisher Scientific, Inc. (U.S.)、ULVAC-PHI, Inc. (Japan)、Bruker Corporation (U.S.)、HORIBA, Ltd. (Japan)、Nikon Corporation (Japan)、Carl Zeiss AG (Germany)、FEI Company (U.S.)、Shimadzu Corporation (Japan)and JEOL, Ltd. (Japan)。/pp  然而,仪器成本高等因素将限制表面分析市场的增长。/pp style="text-align: right "编译:刘丰秋/p
  • 浅析表面分析与XPS的技术与市场
    p  表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。/pp  由于最近几十年超高真空、高分辨和高灵敏电子测量技术的快速发展,表面分析技术也有了长足进步。目前,全球已经开发了数十种常用的表面分析技术,如a title="" href="http://www.instrument.com.cn/zc/70.html" target="_self"strongX射线光电子能谱(XPS)/strong/astrong、/stronga title="" href="http://www.instrument.com.cn/zc/519.html" target="_self"strong俄歇电子能谱(AES)/strong/a、二次离子质谱(SIMS)、a title="" href="http://www.instrument.com.cn/zc/1526.html" target="_self"strong辉光放电光谱(GDS)/strong/a、扫描探针显微镜(SPM)等。/pp  X射线光电子能谱仪(XPS)与俄歇电子能谱(AES)是重要的表面分析技术手段。XPS在分析材料的表面及界面微观电子结构上早已体现出了强大的作用,它可用于材料表面的元素定性分析、半定量分析、化学状态分析、微区分析以及深度剖析( 200nm)等。俄歇电子能谱(AES)主要检测由表面激发出来的俄歇电子来获取表面信息,它不仅能定性和定量地分析物质表界面的元素组成,而且可以分析某一元素沿着深度方向的含量变化。辉光放电光谱技术是基于惰性气体在低气压下放电轰击样品表面,溅射出的表面原子因激发而发光的原理而发展起来的光谱分析技术。与其他表面分析技术如俄歇电子能谱(AES)、二次离子质谱(SIMS)相比,具有分析速度快,分析成本低等优势。/pp  TOF-SIMS(飞行时间二次离子质谱)采用一次离子轰击固体材料表面,产生二次离子,并根据二次离子的质荷比探测材料的成分和结构。TOF-SIMS是一种非常灵敏的表面分析技术,可以精确确定样品表面元素的构成:通过对分子离子峰和官能团碎片的分析可以方便的确定表面化合物和有机样品的结构,配合样品表面的扫描和剥离,可以得到样品表面甚至三维的成分图。相对于XPS、AES等表面分析方法,TOF-SIMS可以分析包括氢在内的所有元素,可以分析包括有机大分子在内的化合物,具有更高的分辨率。/pp  目前表面分析仪器的主要供应商Thermo Fisher、Shimadzu、Phi、Joel、VG Sceinta、PreVac、SPECS、Omicron等。/pp strong 表面分析技术与市场/strong/pp  表面分析技术已经在生产企业中得到了广泛的应用,如进行半导体失效分析等。国内表面分析技术起步于80年代,广泛应用于基础科研、先进材料研制、高精尖技术、装备制造等领域 目前全国的表面分析仪器有300台左右,其中,北京地区拥有大型表面分析仪器设备20多台,从事专业表面分析相关工作的人员有50多人,大量分布于各大高校、科研院所 国内学者主要是利用XPS、AES等表面分析技术研究材料表面与界面的物理化学反应机理,研究热点主要集中在催化材料、碳纳米管石墨烯等新型材料、聚合物太阳能电池等新型器件等。/pp  Markets and Markets的最新市场调查报告预计,到2020年,表面分析市场将达到约39.897亿美元 2015年到2020年期间,该市场将以6.2%的复合年增长率增长。然而,仪器成本高等因素将限制表面分析市场的增长。/pp  该报告称,半导体行业是表面分析技术最大的终端用户所在领域,该技术显著改善各种应用,如测量薄膜的厚度、密度和组成,掺杂剂量和剖面形状等。在解决半导体行业所面临的一些主要挑战时,表面分析技术扮演着至关重要的角色,包括识别和定位跟踪半导体中痕量级别的杂质,认证新的生产工具和量化散装掺杂物等。此外,在过去的几年里,由于利用表面分析技术进行缺陷识别、微量金属污染检测、薄膜或样品的深度分析、失效分析的需求不断上升,使得表面分析技术在能源、医疗保健、聚合物、薄膜、冶金、食品和饮料、纸张和纺织品等行业的应用也增加了。/pp  2014年,北美地区是表面分析最大的区域市场,约占全球市场的37.0% 其次是欧洲、亚太。北美和欧洲的高市场份额主要归因于公共和私人来源对纳米技术研究的高投入、医疗设备公司增加研究支出,以及在这一地区存在的一些大公司,这些因素使得相关用户更多的应用了表面分析解决方案。亚太地区则是表面分析市场未来增长的推动力,因为该地区的低成本资源、强大客户基础、越来越多的制药研发支出、越来越多的大公司在这个地区建立研发和生产设施等因素,使得亚太地区存在着巨大的投资机会。市场的增长可能会集中在印度、中国、韩国、日本。/pp  截至2013年,国际上已经安装了约280套TOF-SIMS,每年约20-25台的增长量。相比之下,中国的TOF-SIMS研究刚刚起步,仅有约10套系统。世界上TOF-SIMS的用户群半导体工厂和科研院所用户各占半壁江山。/pp strong X射线光电子能谱仪(XPS)技术与市场/strong/pp  Grand View Research公司研究称,到2022年,全球XPS(X射线光电子能谱)市场预计将达到7.124亿美元。XPS在医疗、半导体、航空航天、汽车和电子产品等行业的应用日益增长,以及所有这些行业中研发需求的不断增长,有望推动XPS市场增长。此外,联用技术的日益普以及其他技术的进步,如硬X射线光电子能谱(HAXPES),也将促使XPS市场的增长。/pp  药品安全和医学研究领域对XPS技术的需求日益增长,预计将给该市场带来增长机会。美国FDA的“安全使用倡议”和加拿大卫生部推动的“药品安全信息调查”有可能为XPS制造商提供增长的机会。在2014年北美占40.0%以上的份额,亚太地区被确定为市场增长最快的地区。在中国和印度等新兴经济体地区,存在着巨大的未满足需求、政府推出合适的计划以提高认识水平、改善商业环境等是该地区市场具有高吸引力的主要原因。在预测期间,XPS市场的竞争有望保持中等水平,仪器公司之间也将出现收购、合并等以强化产品组合和区域市场份额。/pp  据业内资深人士介绍,关于X射线光电子能谱,目前的市场主要分两块,一个是标准化、常规的XPS,如Thermo Fisher、Shimadzu(kratos)、Phi、Joel等。目前,该市场每年的销售额大约在1亿美元左右。全球来说,估计Thermo Fisher大约60%、Shimadzu大约25%、Phi大约10%,还有其他公司的5%。还有另外一块细分市场,配有角分辨光电子能谱(ARXPS)等的XPS市场 ARXPS技术改变收集电子的发射角度,可探测到不同深度的电子 仪器公司包括VG Sceinta、PreVac、SPECS、Omicron等,这块不大,应该在2000万美元以内。所以,目前,XPS整体的市场应该在1.2亿美元左右,年增长率应该在10%以内。所以到2022年整体市场应该在2.35亿美元左右。/pp  关于硬X射线光电子能谱(HAXPES),由于其技术仍然不是很成熟,且由于其本身的信噪比等固有缺陷,在找到新的解决方案之前,用于科研仍然需要时间。但可以考虑在同步辐射等方面的研究需求,虽然也不会太大。整体市场可能每年50~100套,但这个源需要和比较特殊的分析器联用,所以应该属于VG Scienta、SPECS、PreVac等公司的领域。市场的容量每年大约会在1000万~2000万美元。对整体市场需求量不会有太大影响。/pp  从国内情况看,2014年表面化学分析领域的XPS应该在20多台;物理类表面分析领域的XPS,10多台。去年全球经济不景气,国内购买表面分析仪器(含化学和物理)不会低于25%的全球销售量。/pp  XPS技术发展至今已有几十年的历史,近年来XPS技术并没有很大的突破。据了解,单台XPS仪器价格一般在百万美元,仪器价格较高;XPS仪器技术复杂,XPS对于操作人员、售后服务人员水平要求较高;XPS技术的用户群,尤其是在中国,目前更多地集中在科研领域,应用市场的用户并不算多,XPS的销售量不太大。以上几种因素可能对XPS快速普及产生影响,需要加以关注。/pp  不过, XPS正从“阳春白雪”向“下里巴人”过渡,如同40年前的电镜。这里并不是贬低XPS技术,因为只有成为“下里巴人”,才能有广泛的市场。(1)全球经济很好的复苏;(2)大量旧仪器更新;(3)新型仪器的出现;(4)找到工业测试的结合点;(5)货币贬值。如果以上这些因素全部开动, XPS市场才有可能快速发展。 /pp style="text-align: right "撰稿:刘丰秋/pp /p
  • 【赛纳斯】表面增强拉曼/红外光谱技术的进展与突破
    01导读拉曼光谱和红外光谱是 最 重 要 的分析化学方法之一,可提供待测体系的化学键等关键结构信息。然而,它们应用于材料和生物体系的表面化学分析时,常面临着灵敏度偏低的瓶颈。四十余年来,人们持续致力于突破该瓶颈,推动相关技术的应用和产业化。近日,厦门大学田中群教授课题组回顾了拉曼和红外光谱技术的发展历程,系统性论述了表面增强拉曼散射光谱和表面增强红外吸收光谱的三种物理机制:等离激元效应、避雷针效应和耦合效应。从拉曼和红外光谱的基本原理和实际案例出发,提出了进一步提高拉曼和红外光谱的表面检测灵敏度的策略,即宏观光学系统与微纳光学衬底之间多尺度耦合,最 后讨论了将宏观光学-微纳衬底间的高效耦合拓展到亚纳米分子尺度的可能性,展望了更多种形式的多尺度光耦合策略。图1 SERS和SEIRA光谱灵敏度提高的策略与实践:从微纳结构衬底设计到光学设计。02研究背景拉曼光谱和红外光谱技术的里程碑式进展如图2所示,时间轴上、下分别为拉曼光谱和红外光谱技术。从发展历程可见:(1)1800-1974年主要集中在基本测试仪器和方法,从无到有地建立拉曼和红外及其衍生光谱技术;(2)1974-2010年则在已有测量仪器基础上,从无到有建立起表面增强拉曼和表面增强红外光谱方法;(3)1997年至今的表面增强拉曼和表面增强红外光谱逐渐提升为单分子水平。由此可见拉曼和红外光谱技术的灵敏度在不断提升,而其蕴含的发展驱动力是由痕量甚至是单分子水平待测样品的实际需求所诱发的。如何提升拉曼和红外光谱的检测灵敏度,是具有 重 大 挑战性的科学问题和技术难题。图2 拉曼光谱、红外光谱、及其衍生技术的的里程碑式进展节点,时间轴上、下部分别为拉曼和红外光谱技术。2.1 SERS和SEIRA的增强机理表面增强拉曼光谱(SERS)和表面增强红外吸收光谱(SEIRA)主要基于电磁场增强机制。SERS和SEIRA电磁场理论的核心在于借助光和金、银等纳米结构的相互作用,增强纳米结构表面狭小区域内的光电场(也称近场)。该狭小区域也称为“热点”。处于热点中的待测分子的光散射和光吸收截面都被增强,如图3所示。图3 SERS和SEIRA的电磁场增强原理。a是分子的Raman散射及拉曼光谱。b是吸附于金属纳米球表面分子的SERS的两步增强机理。c是SERS光谱的数据处理。d是分子的红外吸收及红外光谱。e是吸附于金属纳米棒表面分子的SEIRA的一步增强机理。f是SEIRA谱的数据处理。热点内的局域电场的强度与分子的光吸收/散射效率直接相关。提高SERS和SEIRA增强衬底表面热点内局域电场强度是SERS和SEIRA技术发展的关键难题。SERS和SEIRA增强衬底可划分为非耦合型增强衬底和耦合型增强衬底两大类。非耦合型增强衬底,如单个纳米粒子、金属膜以及非金属表面的金属探针等,通常只支持局域表面等离激元、传播表面等离激元和避雷针效应中的一种机制。非耦合增强衬底的局域场增强因子较小,通常小于5个数量级,是研究局域场耦合的模型结构。耦合型增强衬底,特别是具有纳米间隙或者纳米尖端结构的增强衬底,分子拉曼散射和红外吸收信号会得到显著增强,检测灵敏度可达单分子水平。典型的耦合型增强衬底结构有纳米颗粒-纳米颗粒二聚体(dimer)、寡聚体结构(oligomer)、阵列结构(array)、蝴蝶结(bow-tie)结构,和金(或银)扫描探针-金(或银)衬底耦合结构等,如图4所示。图4 SERS和SEIRA典型结构。a-f为SERS衬底结构,g-i为SEIRA衬底结构。其中a和g为局域表面等离激元纳米结构,c和i为传播型表面等离激元纳米结构,e为支持避雷针效应的针尖纳米结构。b、d、f、h和i为不同形式的等离激元耦合纳米结构衬底。除了提高衬底的局域电场强度,SERS衬底在应用中还存在衬底普适性低和信号重现性不足的难题。壳层隔绝纳米颗粒增强拉曼光谱(SHINERS)是克服这一难题的强有力的创新方法,在材料表面化学分析中已发挥出独特的技术优势和巨大的实际应用效能。SHINERS技术的关键是制备超薄介质壳层包覆的金(或银)核的核壳结构纳米颗粒,其中壳层材质如SiO2、Al2O3等具有绝缘性和化学惰性,既避免了分子吸附于金(或银)核表面产生干扰信号,又减小了纳米颗粒和待测衬底发生烧融的概率,提升了体系稳定性。借助SHINERS中金(或银)核与待测金属材料衬底的耦合作用,金属衬底上吸附分子的拉曼信号得到显著放大,例如,实现了对不同晶面Au、Pt等金属单晶上痕量电催化中间产物的识别,为揭示相关电催化反应的路径和机制提供了关键证据(图5)。图5 用于表面分析的SHINERS技术。a 衬底表面的SHINERS粒子示意图。b 吸附在Au(111)、Au(100)和Au(110)表面的吡啶分子的SHINERS光谱。c SHINERS实验示意图。电磁场强度由颜色代表,红色(强)和蓝色(弱)。d SHINERS粒子的TEM成像和Pt衬底表面的3D-FDTD模拟。e 在氧气饱和的0.1 M HClO4中的ORR过程三个旋转环盘Pt单晶电极上的极化曲线。转速为1600转/分,扫描速率50 mV/s。坐标轴j和E分别代表电流密度和电极势。f 变电位条件下Pt(111)电极表面的ORR测试的EC-SHINERS光谱。类似壳层隔绝技术的核-壳结构构筑策略也适用于SEIRA技术。由金壳层和介质内核构筑的阵列SEIRA增强衬底不仅在近红外区有等离激元响应,在中红外区也显示出宽光谱共振响应。如图6所示,位于近红外区域的等离激元响应源自于单个纳米壳结构的多极等离激元共振,而位于中红外区域的宽谱响应带则源自多粒子结构的偶极共振耦合。耦合纳米结构是提高SERS和SEIRA衬底表面增强性能的有效方式,通过耦合效应可将衬底拓展为SERS和SEIRA同时响应的衬底。图6 多个纳米粒子耦合同时用于SERS和SEIRA虽然基于上述耦合纳米结构的SERS和SEIRA增强衬底可有效提高拉曼和红外光谱的检测灵敏度,要实现超高灵敏的SERS和SEIRA测量尚有一定难度。成功的研究报道往往集中于拉曼散射或红外吸收截面较大的少数分子体系,其增强衬底结构在实际应用中尚面临一些困难。特别是如何使应用面最广的SERS或SEIRA衬底,如单个SHINERS粒子、TERS探针、单根SEIRA棒和nanoIR探针,也具备超高检测灵敏度,即使面对散射或吸收截面较小的分子仍可获得有效的检测信号。这一问题仍充满挑战。因此,进一步针对特定的微纳衬底而优化设计的宏观光学系统的研究成为迈上更高灵敏度这一新台阶的关键。2.2 基于维纳结构衬底的宏观光学设计SERS信号与多重因素有关,其强度具体可用下式表示:我们可以参考SERS的强度公式将SEIRA的强度表示如下:GSERS和GSEIRA分别表示衬底通过等离激元和避雷针效应造成的局域场增强。上述公式清楚表明,SERS和SEIRA的强度不仅与微纳衬底的增强因子有关,也与仪器的参数,如光耦合效率Ω、检测器效率Q、色散系统的通量Tm和光学系统的透过率T0直接相关。虽然在Raman和IR发展的历程中,针对光学系统的研究从未停止,但聚焦在光学系统和微纳衬底之间的耦合效率的研究还很少。耦合效率Ω可进一步展开为其中Ωe表示激发光的空间角集中程度、Sexci表示微纳衬底的定向激发性质、Me-e则表示激发光和衬底之间的匹配程度。Ωc表示收集系统的定向收集能力、Sscat表示微纳衬底的定向辐射属性、Mc-s则表示Ωc和Sscat之间的匹配程度。上述三个公式清晰地描述了宏观光学系统和微纳衬底之间匹配程度对获得超灵敏SERS和SEIRA光谱的重要意义。图7为SERS和SEIRA中传统的耦合光学设计,和考虑衬底与光学系统匹配后的耦合光学设计。与传统方式相比,后者可在微纳衬底表面激发出更强的热点,获得更灵敏的SERS和SEIRA检测效果。图7 SERS和SEIRA中的光学设计。a 传统的激发和收集光锥。b 抛物面反射式聚焦镜。c 折射式物镜。d 反射式物镜。e SERS和SEIRA中精细设计的激发和收集空心光锥。f 基于棱镜和波导结构的激发光学。g 基于棱镜的折射式空心光锥透镜。h 基于棱镜的反射式空心光锥物镜。角度激发。通过ATR棱镜定向激发SERS和SEIRA衬底获得更高检测灵敏度是最常见的设计宏观光学增强微纳光学衬底的例子。如图8中所示,在二氧化硅半球柱面镜上蒸镀一层Ag膜,扫描激发光角度,在很窄的角度范围内可观察到表面等离激元效应。在该角度下收集纳米粒子构成的SERS衬底的拉曼散射信号,其光谱增强性能与金属膜表面相比可提高2-3个数量级。而在SEIRA中, ZnSe半球柱面镜表面的金岛状膜衬底的SEIRA增强性能也强烈依赖激发光的入射角度。70°下激发获得的SEIRA强度比20°时高6倍。更多的基于波导结构激发SERS和SEIRA的研究也证明了将激发光能量集中在某一窄角度范围内,可进一步提高衬底的SERS和SEIRA性能。图8 基于ATR棱镜结构定向激发SERS和SEIRA。a-c 在SERS中通过半球柱面镜激发金属膜表面SPR,进而激发单粒子SERS。d-f 在SEIRA中通过半球柱面镜激发金岛膜SEIRA。定向辐射收集。定向辐射收集主要体现在SERS衬底表面。SERS衬底作为天线,它接收远场光并在近场区域产生电磁场“热点”,从而激发“热点”内的分子。分子辐射的拉曼信号再次激发SERS衬底并辐射至远场。研究表明远场辐射的SERS信号表现出强烈的定向辐射属性。如图9所示,二聚体和三聚体的SERS远场辐射信号集中在很窄的空间角度范围内,而该空间角度甚至超过了显微物镜的收集角度范围,导致大量信号无法被测量。该实验结果证明宏观光学系统设计在提高SERS信号收集效率方面是非常必要的。图9 二聚体和三聚体表面SERS信号的远场辐射特征兼顾角度激发和定向辐射收集的光学设计。角度激发可提高SERS与SEIRA的激发效率,定向辐射收集可提高SERS的收集效率。2017年报道的一种消色差的固体浸没透镜结构做到了两者兼顾。如图10所示,通过该物镜结构,激发光能量可集中在很窄的角度范围内,有效提高激发光与SPR效应之间的能量耦合效率,因此在SPR角度附近SERS信号才最强。同时该物镜的数值孔径高达1.65,可有效收集远场辐射的SERS信号。该物镜不仅支持Kretschmann结构,也支持Otto结构,数值分析结果表明在不同衬底材料表面散射的SERS信号均具有定向辐射特征,与一般的线性偏振相比,热点的局域场增强更高。图10 基于消色差固体浸没透镜光学设计兼顾角度激发和定向辐射。a-d KR-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。e-j Otto-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。光纤高效激发和收集耦合TERS。另一种兼顾激发和收集效率的设计是光纤耦合结构的TERS装置。在该装置结构中,银纳米线TERS探针组装在锥状光纤表面。线偏振激发光在光纤中传播的波导模式会在不同的空间位置与银纳米线探针的两个SPP模式TM0和HE1耦合。通过光纤角度和长度的优化设计,提高远场光与TM0模式的能量耦合效率,优化后的远、近场的耦合效率可达70%。考虑到TERS的两步耦合过程,总体的远、近场光耦合效率可达50%,即使在最简单的TERS装置上也可实现碳纳米管表面1 nm空间分辨率的化学光谱采集。图11 a 波导模式LP01和银纳米线探针的TM0和HE1模式之间的耦合示意图。b 通过TM0模式的近场和远场耦合。c TERS探针和光纤的SEM图。d 碳纳米管样品的形貌。e 沿着d中白色虚线的TERS强度分布。f d中虚线上A、B和C位置处的TERS光谱。光学设计拓展nanoIR和TERS的适用环境。近几年先后报道的液体环境纳米红外光谱技术均通过底部ATR光学结构激发实现。电化学TERS技术的一大难题是TERS的激发和收集光路路径上光传播介质发生了变化,造成常规TERS测量技术的不直接适用。如何在有限的空间内实现TERS光路与电化学池的有效光学耦合是一个关键的技术问题。如图12所示,在该设计中,电化学池被改造成由透明窗片、倾斜样品区以及电化学功能模块构成的结构。这一结构有效抑制了光路畸变对TERS测量的影响,由此成功获得了电化学反应前后的少量反应物和产物的TERS光谱。图12 电化学TERS技术。a 在电化学池中增加光学窗片,并减小与激发和收集物镜的距离实现的电化学TERS装置结构。b-c 溶液中TERS探针的局域电场分布。d 电化学反应过程中不同位置的TERS光谱。e 反应物和产物的空间分布。f 不同样品偏压下的产物。03总结与展望SERS和SEIRA分别显著提升了拉曼光谱和红外光谱的检测灵敏度,近二十年来,随着微纳光学技术的逐步发展,高性能的增强衬底不断问世。尽管目前对宏观光学系统与微纳衬底之间多尺度耦合效率的研究还较少,在可预见的将来,该问题终将被解决,这将使得应用面最广的球形纳米颗粒的光谱增强性能也有机会进一步实现数量级的提升。除了兼顾宏观和微纳光学的耦合设计,近年来基于原子尺度的避雷针效应与等离激元结合也实现了一系列的突破,如利用TERS技术实现了单分子、甚至单个化学键的成像。然而,可检测的分子体系仍限制于少量的分子种类。这就要求在提高宏观光学到微纳光学的耦合效率的同时,也要提高从微纳光学到原子尺度光学的能量耦合效率。这一问题的解决将不仅对TERS,对Nano IR的发展也不至关重要。在实际应用中,SERS和SEIRA的环境普适性也是一个重要的指标。特别是在TERS和NanoIR技术中,发展适配如能源化学中的多相界面体系或生命科学中的液相环境体系等具体应用场景的光学结构设计将具有重大应用意义。文章信息:该研究成果以"Advances of surface-enhanced Raman and IR spectroscopies: from nano/micro-structures to macro-optical design"为题在线发表在Light: Science & Applications。本文 第 一 作者为厦门大学的王海龙博士,共同通讯作者为田中群教授和王海龙博士。合作者包括尤恩铭博士、丁松园教授和印度SRM University- AP的Rajapandiyan Panneerselvam博士。
  • 赛黙飞世尔将参加第八届全国表面工程学术会议暨第三届青年表面工程学术论坛
    由中国机械工程学会表面工程分会主办、装甲兵工程学院装备再制造技术国防科技重点实验室承办的第八届全国表面工程学术会议暨第三届青年表面工程学术论坛将于2010年4月25~27日在北京的国家会议中心举行, 赛黙飞世尔科技做为业界的领导者,表面分析产品将参加此次会议。我们的国外专家受邀将在大会报告中介绍XPS光电子能谱仪在表面工程的应用,届时我们还会有展台展示。热忱欢迎广大表面分析工作者莅临指导! 赛默飞世尔科技表面分析产品部源于英国VG科技公司,具有超过40年的超高真空和表面分析设备的研发和制造经验,主要产品包括XPS能谱仪、场发射俄歇能谱仪以及紫外光电子能谱仪,在能量分辨率、灵敏度以及信噪比方面在同类产品中长期以来具有优势。产品目前广泛应用于科研和工业领域,包括化工、催化、薄膜、半导体、钢铁、纳米材料以及微器件等。 自上个世纪八十年代进入中国以来,表面分析产品部门在提供不断更新的产品同时,更是已建立成熟完善的国内售后服务团队。目前国内已有用户总数超过70位,自2004年以来,国内新增用户超过30位,2009年市场占有率更是超过了65%,在技术和售后服务方面,已获得了国内表面分析领域的高度认可。 目前表面分析产品部可提供用户多种表面分析的专业解决方案。产品型号包括全球首款数字化多功能光电子能谱仪ESCALAB 250Xi、智能化XPS能谱仪K-Alpha、平行角分辨XPS能谱仪Theta Probe、工业用大尺寸样品平行角分辨XPS能谱仪Theta 300、高性能场发射俄歇能谱仪Microlab 350以及实验室基本型XPS能谱仪 Multilab 2000等。其中最新型号的ESCALAB 250Xi 在2009年10月份正式推出,2009年12月份在国内已有两位新用户,其中包括国家级材料科研单位国家纳米科学中心。 如想了解更多信息, 可联系赛默飞世尔科技表面分析产品销售部:电话 010-84193588转3657,手机 13811077655,邮箱 yibin.wei@thermofisher.com,或浏览我们的网站 www.thermo.com.cn/Category483.html。关于Thermo Fisher Scientific(赛默飞世尔科技) 赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com(英文) 或www.thermo.com.cn(中文)。
  • 瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务
    瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务2016-06-29 瑞典百欧林瑞典百欧林科技有限公司与专注于亚洲地区的市场拓展服务领导者大昌华嘉签订合作协议,为瑞典百欧林的先进仪器表面张力仪开拓中国市场。大昌华嘉科技事业部为瑞典百欧林提供全方位的市场拓展服务,以确保充分开拓表面张力仪产品在中国的业务。大昌华嘉在中国庞大、完善的售前和售后网络,与高校、科研及各类政府、企业客户的良好合作关系是瑞典百欧林选择大昌华嘉作为在中国地区的合作伙伴的原因。 “我们很高兴能与大昌华嘉在中国建立合作关系。他们的专业知识,以及长期以来的成熟的客户关系,使我们相信大昌华嘉是支持我们业务增长的绝佳合作伙伴,从而使更多的客户能够从我们的创新解决方案中获益。”瑞典百欧林分析仪器副总裁Johan Westman说道。大昌华嘉中国区科技事业部总经理Oliver Hammel进一步谈道“百欧林选择与我们建立了充满前景的合作关系,我们感到非常自豪,因为我们拥有系统化的市场发展策略以及我们的行业和服务专家。此次战略合作配合了百欧林的尖端技术以及大昌华嘉的市场准入和应用专业知识,这将会促使双方的持续盈利增长。“ 关于大昌华嘉大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。正如“市场拓展服务”一词所述,大昌华嘉致力于帮助其他公司和品牌拓展当前市场及新兴市场业务。总部位于瑞士苏黎世的大昌华嘉是一家全球性企业,自2012年3月在瑞士证券交易所上市。大昌华嘉在全球36个国家设有770个营运地点 --其中740个分布于亚洲地区,拥有28,300名专业员工。2015年,大昌华嘉的销售净额为101亿瑞士法郎。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉科技事业部是领先的市场拓展服务提供商,提供基建投资产品和分析仪器的技术解决方案。大昌华嘉科技事业部的强势业务领域涵盖制造和生产、能源、研究、分析仪器、食品和饮料、重金属和基建设施,其服务组合包括市场准入研究与咨询、市场营销、销售、应用工程、售后服务以及项目融资。科技事业部在18个国家设有75个分支机构,拥有约1370名员工- 其中包括500名服务工程师。2015年,大昌华嘉科技事业部的净销售额为3.722亿瑞士法郎。 关于瑞典百欧林瑞典百欧林科技有限公司是一家先进科研仪器生产商,在北欧的瑞典,丹麦和芬兰都有主要产品的研发和生产基地。我们为用户提供高科技、高精度的科研设备,可用于表界面、材料科学、生物科学、药物开发与诊断等研究领域。我们同时专注于用户的技术和应用支持,以及科技的发展与进步。我们的产品均基于最先进的测量技术,而这些技术,或为我们专利,或为我们特有,或在长期科研与发展中占主导地位。我们的核心战略是,通过寻找具有广阔商业前景的科研领域,来应用我们的产品与技术。目前,百欧林的用户已遍布全球70多个国家和地区。 我们的产品:Attension: 界面科学与材料技术的表面张力测试Q-Sense: 纳米尺度分子界面以及相互作用研究 KSV NIMA: 单分子层薄膜的构建与表征工具Sophion: 基于细胞离子通道功能检测的高通量全自动膜片钳
  • 新型傅立叶型表面等离子共振监测仪会议邀请(第一轮通知)
    表面等离子体共振技术(简称“SPR”,Surface Plasmon Resonance)是利用了金属薄膜的光学耦合产生的一种物理光学现象。自从1982年 Nylander 等首次将SPR 技术用于免疫传感器领域以来,表面等离子体光学生物传感器得到了深入研究和广泛的应用,已经成为研究生物分子相互作用(Biomolecular Interaction Analysis,简称“BIA”)的主要手段。仅在近 3、4 年间,有关这方面的文章多达几千篇,其研究内容涉及蛋白质-蛋白质、蛋白质-DNA、DNA-DNA、抗原-抗体及受体-配体等的相互作用。商品化的光学生物传感器可在无标记的情况下实时地进行生物分子间相互作用的研究,有力地推动了分子识别这一学科的发展,已经成为生命科学和医药研究中的一种重要手段。目前市场上的商品化SPR检测仪几乎都是通过角度测量实现对生物体系的测定。而在多年的实践中,其测量方式(依靠角度表征)的局限使其在灵敏度、动态范围、测试速度及稳定性等方面都出现了不可逾越的阻碍。有鉴于此,热电科技仪器有限公司(Thermo Electron Corporation)分子光谱部(既原来的美国尼高力仪器公司)以其近四十年傅立叶变换红外(FTIR)技术结晶结合最新的 SPR 专利技术(U.S. Patent No. 6330062)推出了崭新的傅立叶变换型表面等离子共振检测仪,突破了传统角度表征型SPR检测仪理论设计极限。为了更好的将FT-SPR介绍给中国的生命科学专家学者,我们邀请了美国的 Eric Y. Jiang 博士准备在长春、上海和北京等地举办系列FT-SPR专题技术讲座。时间大约在2006年7月。请感兴趣的专家填写回执,我们将根据回执发送第二轮通知,谢谢!回执请寄:热电(上海)科技仪器有限公司 分子光谱部 北京市金融街23号 平安大厦1018室 邮编:10003电话: +86 10 5850 3588-3238 传真: +86 10 6621 0845 Email: ming.xin@thermo.com idealsky@sohu.com 联系人:辛 明
  • 聚焦表面分析与新能源新材料——“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开
    p  strong仪器信息网讯/strong 2017年5月20日,“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开。此次会议由西南大学、重庆大学、赛默飞主办,170多位来自科研院校、以及企业的专家用户参加了此次会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/12b30bf7-a060-4205-9d34-a5d5caceaec8.jpg" style="" title="现场1.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/0390c36c-c9b0-41e3-b0cb-ee7138a40ade.jpg" style="" title="现场2.jpg"//pp style="text-align: center "会议现场/pp  随着我国材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业、生物医药及环境领域等高新技术的迅猛发展,表面分析技术在过去的几十年中有了长足进步,在科学研究领域作用日益增长。“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”正是在这一背景下召开的一个多学科交叉的学术交流会议。/pp  李长明院士首先代表主办方热情欢迎与会者的到来。在致辞中,李长明院士指出,当今社会的发展离不开新能源的出现和先进能源技术的使用,发展新能源、改善环境污染状况,也是全世界全人类共同关心的问题。此次大会的主题“新能源”即利用新技术新材料进而开发利用的替代性能源,我们期待先进洁净能源技术的持续发展。/pp  根据国务院印发的《“十三五”国家战略性新兴产业发展规划》纲要,“十三五”期间国家将大力推动新能源汽车、新能源和节能环保产业快速壮大,加快生物产业创新发展步伐,超前布局战略性产业,促进战略性新兴产业集聚发展。而新能源、新材料的发展离不开对其相互作用反应机理的研究,这就使得表面分析技术变得非常关键。此次会议的召开促进了新能源、功能材料利用表面分析技术进行表征以及表面分析技术的最新研究进展及应用的交流与探讨。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/2eac8953-362b-4a2a-8b73-975e8fc3bca3.jpg" title="Kevin Fairfax.jpg"//pp style="text-align: center "赛默飞表面分析业务总监Kevin Fairfax先生致辞/pp  Kevin Fairfax先生致辞中介绍了赛默飞以及其材料科学部门的发展情况。2016年赛默飞共收入182.7亿美元,研发支出为7.548亿美元,在全球用于55000多名员工,旗下有thermo scientific、applied biosystem、Invitrogen、Fisher scientific、unity labservices五大品牌。/pp  而2016年赛默飞收购FEI,为公司带来了业界领先的电子显微技术,让赛默飞在材料科学和结构生物学领域“如虎添翼”,使得赛默飞的材料科学部门能够提供多模式、多尺度的工作流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/3df60b65-7978-4426-b75c-1f8839e42b0c.jpg" title="李长明.jpg"//pp style="text-align: center "西南大学李长明院士致辞后做大会报告/pp style="text-align: center "报告题目:材料功能化及在高效能源转换中的应用/pp  能源是人类下个100年面临的十大问题之首,李长明院士指出:能源是人类社会存在与发展的基石、是经济发展与人类文明进步的基本约束条件,而如何提高能源转换效率是绿色新能源研究的一个重要课题。在报告中李长明院士介绍了其团队在微纳尺度功能化材料、锂/纳高功率电池、生物燃料电池、锂/纳离子电池、新型太阳能电池、细菌燃料电池等多个研究方向的研究成果。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/51c36be8-1dac-4659-a592-53ab972c9daa.jpg" title="杨秀荣.jpg"//pp style="text-align: center "中国科学院长春应用化学研究所杨秀荣院士做大会报告/pp style="text-align: center "报告题目:基于生物质与非贵金属的新能源材料研究/pp  全球能源消耗面临着巨大危机,据2013年全球能源消费统计,石油只能再用45年、煤还能用200年,同时石油、煤等传统能源造成的环境污染也日趋严重。因此开发具有应用潜能的清洁能源具有重要意义。杨秀荣院士及其团队一直在进行基于生物质与非贵金属的新能源材料研究。在此次报告中,杨秀荣院士介绍了其团队将木耳等不同菌类植物衍生碳用做超级电容器材料、微生物衍生杂原子掺杂碳用于电催化氧还原和超级电容器等研究方面的工作进展。/pp  span style="color: rgb(31, 73, 125) "更多精彩报告内容见后续报道。/span/pp  据赛默飞表面分析及常量元素分析中国区商务经理汪霆先生介绍,赛默飞一直坚持每年举行表面分析技术交流会,而此次的会议更加用心,为仪器分析方法研究人员与科研人员搭建了交流平台。科研人员在此更加了解了表征方法的最新进展,为未来在科研工作中获得更好的研究成果打下基础 而仪器分析方法研究人员在此开拓了眼界,为未来可能的科研工作埋下伏笔。今年的会议聚焦的是新能源与生物功能材料领域,明年将会聚焦其他热门领域。此次会议的举办也是赛默飞承担作为一家大型企业的社会责任、促进了相关技术的交流。  /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/ea917f84-96f6-47e5-9964-3150260b6eac.jpg" title="赛默飞展示.jpg"//pp  在会场一角,赛默飞展出了台式X射线衍射仪、手持XRF分析仪等仪器以及相关解决方案,引起了与会者的关注。br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/dd6796c2-4319-46f5-bdf3-23d734110336.jpg" title="合影.jpg"//pp style="text-align: center "与会者合影/ppbr//p
  • 近7万人次!第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会圆满落幕
    仪器信息网讯 2022年6月14-15日,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”在线上成功举办。会议采取多平台直播形式,仪器信息网、科学邦、科研云、寇享学术、邃瞳科学云等平台同步转播,观众69457人次,现场气氛热烈,专家答疑环节提问踊跃。第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会本届会议由中国科学院院士、清华大学李景虹教授领衔,5位国家杰出青年基金获得者、3位表面化学分析分技术委员会委员以及表面分析领域的五家国内外知名仪器厂商代表分别作了相关报告。中国科学院院士、清华大学李景虹教授致辞中国科学院院士、清华大学李景虹教授发表致辞并对到场的嘉宾并表示欢迎。李景虹教授首先介绍了国家大型科学仪器中心——北京电子能谱中心的基本情况、人员情况、科研成果、主导标准等。北京电子能谱中心是2005年由科技部、教育部、北京市科委联合规划投资建设的国家级平台中心,依托清华大学分析中心建立。中心通过表面分析仪器与学科建设的结合,以方法学和分析仪器研制为导向,服务和支撑科技前沿和国家重大需求为目标,推进表面科学研究和表面分析技术的发展,促进仪器在我国表面科学研究领域充分发挥作用,也通过学科的研究促进新的分析方法的建立,发展成为国内表面研究的基地,建设成为一流的分析研究型国家仪器中心。中心为表面科学标准化工作提供了重要支撑。参与制定国际标准ISO/TR 22335:2007是中国首次参与制定的表面化学分析国际标准;主导表面化学分析标准项目18项,其中GB/T 26533-2011(《俄歇电子能谱分析方法通则》)具有标准总领地位纲要性国家标准文件。GB/T 36504-2018(《印刷线路板表面污染物分析 俄歇电子能谱》)成功解决了神州、北斗系列星船中关键型号元器件失效的重大质量问题。GB/T 36533-2018(《硅酸盐中微颗粒铁的化学态测定 俄歇电子能谱法》)建立了硅酸盐矿物俄歇线形的检测方法及数据库,对我国探月计划深入解析地外物质演化过程起到重要支撑作用。李景虹院士随后介绍了中国分析测试协会高校分析测试分会的发展情况、学术交流、实验室认证、标准化工作和未来规划。高校分会的宗旨是推动全国高等学校科技资源更好地服务于国家科技事业、教育事业、经济建设和社会发展。为全国高校分析测试中心为代表的科技资源开放共享服务的单位和部门搭建更好的交流和沟通的平台,推动高校科研实验室建设与管理的规范化,促进高校科技资源的开放共享,从实验室管理、信息化建设、资质认定、仪器功能与分析方法开发、标准制订、科普培训、技术咨询等方面开展活动,提升我国高校仪器设备研发和使用水平、实验室管理能力、人员实验技术能力与服务能力,促进实验室能力全面提升、扩大服务范围和增强影响力,不断推动高校分析测试事业的发展。专场主持人中国科学院理化技术研究所研究员 张铁锐水滑石(LDH)是一种层状双金属氢氧化物,作为光催化材料具有广阔的应用前景。水滑石基纳米光催化材料能够合成太阳燃料及高附加值化学品,且具有不含贵金属,制备简便,能实现千吨级产业化生产等优点。然而其存在活性低、选择性差的问题,传统增大比表面积和改变元素组成的方法,改性效果并不理想。张铁锐研究员通过优化调控水滑石基催化材料的表界面结构,引入表面缺陷结构提高催化活性,并优化设计界面结构提高了催化的选择性,最终实现了产物的高效生产。中国科学技术大学教授 熊宇杰能源结构与二氧化碳排放是备受全球关注的重要问题,我国未来40年能源的消耗量将增长50%,预计2030年二氧化碳的排放量将达到峰值。自然界本身存在碳循环系统,但人类活动带来的二氧化碳排放仍需构筑人工的碳循环系统加速实现碳循环过程,而人工实现碳循环的关键问题就是如何高效实现将二氧化碳、甲烷等碳基小分子转化成多碳燃料或化学品。熊宇杰研究员以电荷动力学研究为基础,通过对催化位点进行精准设计,高效实现了对二氧化碳、甲烷等碳基小分子的催化转化和化学转化过程的精准控制;此外,熊宇杰研究员还介绍了如何构建排硫硫杆菌/CdS生物/无机杂化材料体系高效实现二氧化碳的固定。北京大学教授 马丁现代催化研究主要是探究催化机理,设计新型催化剂。多相催化反应过程有30%以上使用了金属催化,随着金属尺寸的缩小,从块体、发展到纳米尺寸,再到单原子尺寸,催化剂中贵金属的载量在降低,贵金属的利用率得到了提高。马丁教授利用纳米金刚石衍生制备了富缺陷石墨烯载体(碳缺陷可与金属作用形成金属-C键),获得了结构均一可控、表面碳缺陷丰富的催化剂载体,可以实现限域原子级分散金属催化剂。马丁教授还提出了一种全暴露金属团簇催化剂(Fully Exposed Cluster Catalysts, FECCs)。全暴露金属团簇催化剂与金属纳米颗粒及单原子催化剂相比,在催化反应中具能够在保持金属原子接近100%利用率的同时,还能为催化反应提供丰富的表面活性位点,以N-乙基咔唑脱氢和环己烷脱氢为例介绍了通过对团簇催化剂的研究。马丁教授认为,团簇易于描述的结构使其成为研究催化反应的理想模型催化剂。湖南大学教授 王双印王双印教授主要介绍了其在有机分子电催化转化方面的部分工作,包括实现了常温常压下惰性气体分子的电催化偶联,揭示了亲核试剂电催化氧化的氢缺陷循环机制,探究了有机分子电催化氧化反应路径,明确了生物质电催化吸附行为及催化剂几何位点效应。清华大学教授 朱永法有机半导体可见光催化在环境、能源、精细合成及肿瘤去除方面均有广泛的应用。能源光催化需要解决光利用率低、反应能力低、反应速率低等问题。朱永法教授通过对能带间隙、带边位置、表面活性中心的调控,实现了对苝亚酰胺基超分子光催化、PDI-尿素结晶聚物光催化产氧、锌卟啉超产氢、TPPS/C60超分子产氢、TPPS/PDI界面产氢、双卟啉异质结产氢、四羧酸苝超分子产氢、氢键有机框架产氢、双功能C3N4产氢、C3N4/rGO/PDIP全解水产氢产氧、NDI-尿素聚合物全解水产氢产氧等体系催化性能的提升。此外,朱永法教授利用催化还原二氧化碳合成燃料和精细化学品,通过构建了钙钛矿、Er掺杂NiO、双铜离子位点MOF、晶格拉伸体系,从而实现二氧化碳的还原。最后,朱永法教授介绍了有机超分子可见光催化快速、彻底、靶向消除实体肿瘤方面的工作。研究使用无细胞毒性的全有机超分子材料,利用正常细胞吞噬小颗粒,癌症细胞吞噬大颗粒的特性,实现癌细胞对光催化剂的靶向吞噬,再利用可以穿透皮肤和血液20mm的900-650nm红光激发细胞内的光催化剂产生强氧化性空穴,达到快速杀灭癌症细胞和彻底消除实体肿瘤的目的。中国科学院上海硅酸盐研究所研究员 卓尚军质谱技术自1906年J.J.Thomson获诺贝尔物理学奖以来发展迅速,陆陆续续已经有十三个诺贝奖和质谱技术密切相关。辉光放电质谱(GD-MS)可以对固体样品直接分析,具有分析元素范围广、检测限极低、相对灵敏度因子一致、线性动态范围宽、基体效应小、稳定性及重现性好等特点。目前市面上商品化的高分辨辉光放电质谱主要源自美国赛默飞世尔科技公司、英国质谱公司和Nu仪器公司。卓尚军研究员在报告中介绍了辉光放电质谱的基本原理、辉光放电质谱定量与半定量分析、最新分析非导电材料的第二阴极技术及磁场增强离子源技术、以及国际标准ISO/TS 15338:2020、国家标准GB/T 26017-2010(《高纯铜》)、国家标准GC/T 33236-2016(《多晶硅 痕量元素化学分析 辉光放电质谱法》)等方法标准及宣贯。中科院化学所高级工程师 赵志娟紫外光电子能谱技术(UPS)是研究固体材料表面电子结构的重要方法,在量子力学、固体物理、表面科学与材料科学等领域有重要应用。UPS测试能得到材料逸出功、价带结构、价带顶/HOMO能级位置、费米能级位置等信息。对于不同的能谱仪,不同实验室及不同操作者而言,UPS测量结果的一致性极为重要,是表面分析结果的质量保证。中科院化学所高级工程师赵志娟宣贯了国家标准GB/T41072-2021(《表面化学分析 电子能谱 紫外光电子能谱分析指南》,该标准提供了仪器操作者对固体材料表面进行紫外光电子能谱分析的指导,包括样品处理、谱仪校准和设定、谱图采集以及最终报告,此标准适用于配备有真空紫外光源的X射线光电子能谱仪操作者分析典型样品。中国科学技术大学教授 黄文浩我国在纳米科技领域起步并不晚,然而在纳米标准的建立上落后于世界先进水平,与我国科技强国的目标并不相称,尤其随着纳米科技产业发展及国际商贸活动的需求,建立纳米标准,争取更多话语权,显得十分必要和紧迫。SPM是纳米科技的主要工具之一,黄文浩教授基于SPM纳米测量技术的研究基础,认为SPM仪器分辨力的标定和SPM仪器漂移的测量亟待标准的建立。黄文浩教授首次在2006年的ISO/TC201国际会议上提出了这一观点,并牵头完成了首个SPM漂移测量的国际标准ISO 11039(Surface chemical analysis —— Scanning probe microscopy —— Measurement of drift rate)以及国内首个SPM漂移测量的国家标准GB/T 29190-2012(《扫描探针显微镜漂移速率测量方法》)。黄文浩教授在报告中介绍了图像相关分析法、特征点法、非周期光栅法、原子光栅法等几种SPM漂移速率的测量方法,还介绍了温度对原子力显微镜纳米尺寸测量的影响。最后,黄文浩教授希望更多的科研工作者能够积极参加标准化活动,为我国早日成为标准化强国努力奋斗。来自日本电子、岛津、赛默飞世尔科技、精微高博、高德英特的知名表面分析科学仪器厂商代表也分别作了相关报告。日本电子株式会社应用工程师 张元俄歇电子能谱(AES)的表面检测区域范围为10-20nm,检测深度为0-6nm,是对固体块状材料进行表面微区分析的最佳工具。日本电子株式会社应用工程师张元从俄歇电子的产生机理和检测范围出发,介绍了日本电子JAMP-9510F场发射俄歇微探针的新功能——利用元素面分布图与对应能谱灵活分析,并以MOS电容器元素面分布分析、pnp晶体管功函数分析和(R)EELS测定IR薄膜带隙举例说明新功能能够实现不同价态硅的高能量分辨率和高空间分辨率面分布分析、利用功函数的差能获取半导体材料中的p、n区分布、利用带隙能力差异能获取二氧化钛和二氧化硅的REELS面分布。岛津企业管理(中国)有限公司研究员 龚沿东X射线光电子能谱(XPS)是一种灵敏的表面分析技术,信息深度来自试样表面10nm范围内,能够获取元素成分、化学价态、定性/定量分析等信息。岛津企业管理(中国)有限公司研究员龚沿东表示,XPS分析技术除了常规的采谱,还可进行成像、角分辨和深度剖析等。角分辨XPS(ARXPS)可以利用光电子在材料中穿行时的衰减效应进行无损深度剖析,适用于表面粗糙度很低的均质薄膜群定元素或其化学态组分随深度变化的关系。XPS中常规的X射线源靶材有Mg、Al、Ag、Ti、Zr、Cr等,通过靶材的选择能改变光电子的动能,从而得到更深的深度信息,而损伤性深度剖析更是能够获取100nm-10μm的深度信息。报告中介绍了如何选择离子源进行金属、有机物、无机物的深度剖析。赛默飞世尔科技(中国)有限公司资深应用专家 葛青亲赛默飞世尔科技(中国)有限公司资深应用专家葛青亲分别用几个案例介绍了Nexsa G2表面分析平台多技术联用技术。XPS用于等离子体表面样品的评估分析中,常规XPS可以评估等离子体表面改性聚合物涂层的效果及其机理,无损变角XPS可以研究等离子改性结果及表面改性深度;XPS分析钠离子电池正极材料中异物及杂质成分中,常规XPS及小束斑XPS可以聚焦到异物或杂质上,快速分析其元素及其化学态信息,特色SnapMap快照成像可获取元素及其化学态在电池材料中的分布信息;联用原位综合表征石墨烯材料时,常规XPS可快速分析样品表面元素及其化学态信息,UPS可快速得到样品价电子结构及功函数信息,REELS可快速得到样品带隙、导带、氢元素定量等信息,ISS测试可快速分析样品极表面(约1nm)元素信息,Raman可快速得到样品分子结构、晶型、缺陷等信息。此外,还介绍了如何用XPS-Raman分析氮化硼,以及利用Maps软件实现XPS和SEM、TEM、PFIB跨设备原位联用。北京精微高博仪器有限公司市场部经理 牛宇鑫北京精微高博仪器有限公司市场部经理牛宇鑫对吸附等温线进行了解读,包括I-VI型等温线和滞后环的分类包括H1-H5类回线,介绍了比表面积和孔结构的分析方法,对错误BET报告、脱附孔径假峰、S回线、吸脱附曲线交叉、吸脱附曲线不重合等异常数据进行了解读。高德英特(北京)科技有限公司应用科学家 鞠焕鑫表面分析技术应用在生活的方方面面,随着能源技术的发展,XPS、AES、TOF-SIMS越来越多的应用于电池研究中。不同的是XPS技术检测到的光电子带来的表面6nm以内的信息,可用于定量分析和化学态分析;TOF-SIMS检测到二次离子带来的表面1nm以内的信息,具有最高的表面灵敏度,能够获取分子信息;AES检测到的是俄歇电子带来的表面6nm以内的信息,能进行半定量分析,具有最好的空间分辨率。报告中主要介绍了使用XPS分析锂硫电池的SEI层和质子交换膜信息、锂离子和电解液界面的动态演变,使用TOF-SIMS分析OLED、锂电等。更多内容关注后续回放视频:https://www.instrument.com.cn/webinar/meetings/bmfx2022
  • 第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会第一轮通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2023年6月19日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。主办单位:国家大型科学仪器中心-北京电子能谱中心;全国微束分析标准化技术委员会表面化学分析分技术委员会;中国分析测试协会高校分析测试分会;北京理化分析测试学会表面分析专业委员会;仪器信息网承办单位:仪器信息网扫码报名会议日程报告时间报告题目报告嘉宾9:00-12:00主持人姚文清(清华大学/国家电子能谱中心副主任)9:00-9:20致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)9:20-10:00待定韩晓东(南方科技大学 教授)10:00-10:40原位红外技术研究光催化界面机制陈春城(中科院化学所 研究员)10:40-11:20基于XPS-SEM的表面分析联用技术和应用葛青亲(赛默飞世尔科技(中国)有限公司 资深应用专家)11:20-12:00重新认识月球表面过程:嫦娥五号月壤的制约李阳(中国科学院地球化学研究所 副主任/研究员)12:00-14:00午休全体观众14:00-17:10主持人刘芬(中科院化学所/表面化学分析分技术委员会秘书长)14:00-14:40待定赵丽霞(天津工业大学 教授)14:40-15:20二次离子质谱(SIMS)质量分辨的测量李展平(清华大学分析中心 高级工程师)15:20-15:50待定北京艾飞拓科技有限公司15:50-16:30国际标准ISO 24417:2022《表面化学分析 辉光放电光谱法分析铁基表面的金属纳米膜》的制定张毅(宝山钢铁股份有限公司中央研究院 教授级高级工程师)16:30-17:10待定孙洁林(上海交通大学 研究员)报名链接:https://www.instrument.com.cn/webinar/meetings/bmfx2023/会议联系会议内容:管编辑,17862992005,guancg@instrument.com.cn会议赞助:刘经理,15718850776,liuyw@instrument.com.cn
  • 第九届全国表面分析科学与技术应用学术会议在福州顺利召开
    2023年11月17日-20日,“第九届全国表面分析科学与技术应用学术会议”在福州福建大会堂顺利召开。会议由国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会、全国微束分析标准化技术委员会表面分析分技术委员会、北京理化分析测试技术学会表面分析专业委员会主办,新加坡国立大学、天津大学、福州大学、闽都创新实验室 (中国福建光电信息科学与技术创新实验室)、天津大学先进陶瓷与加工技术教育部重点实验室、天津市先进碳与电化学储能重点实验室和福州昆仑商务会展服务有限公司承办,天津大学-新加坡国立大学福州联合学院、苏州工业园区新国大研究院、南昌大学、上海师范大学、深圳大学、中国真空学会显示专业委员会协办。会议旨在促进表面分析技术与其他学科的融合,加强同行之间的交流与合作,建立表面分析的交流平台,促进表面分析研究队伍的壮大,进一步拓展表面分析科学技术的应用领域。会议吸引了包括来自美国、新加坡、澳大利亚等国内外110余所著名高校和院所的近500名专家学者以及32家知名企业参与。大会开幕式由新加坡国立大学陈伟教授主持并致辞,中国科学院院士、清华大学李景虹教授致辞。新加坡国立大学陈伟教授主持开幕式并致辞 中国科学院院士、清华大学李景虹教授致辞大会邀请到中国科学院院士、发展中国家科学院院士、中科院化学所/复旦大学刘云圻教授,中国科学院院士、厦门大学孙世刚教授,赛马会量子材料与物理STEM实验室主任、香港理工大学以及新加坡国立大学Loh Kianping教授,分别作大会报告。福州大学副校长王心晨教授,天津大学理学院院长耿延候教授,俄罗斯自然科学院外籍院士、福州大学郭太良教授,分别主持大会报告。中国科学院院士、发展中国家科学院院士、中科院化学所/复旦大学刘云圻教授大会报告中国科学院院士、厦门大学孙世刚教授大会报告赛马会量子材料与物理STEM实验室主任、香港理工大学以及新加坡国立大学Loh Kianping教授大会报告福州大学副校长王心晨教授主持大会报告天津大学理学院院长耿延候教授主持大会报告俄罗斯自然科学院外籍院士、福州大学郭太良教授主持大会报告会议设置十个分会场,涵盖表界面分析与能源催化、表界面与二维材料、表界面与有机半导体、表界面与储能技术、表界面与热催化、表界面与光电催化、表界面与同步辐射技术等领域。邀请到了新加坡国立大学、清华大学、北京大学、中国科学技术大学、中国科学院化学研究所等国内外顶尖大学和院所的知名学者作主题报告,共有200余个邀请报告,80个墙报展示。为表彰在表面分析研究领域作出相关科研贡献的学者,会议特设10个青年科学家奖。其中,“SmartMat青年科学家奖”2个,获奖者分别为清华大学李远教授和杭州师范大学钟建强教授;“InfoMat青年科学家奖”2个,获奖者分别为复旦大学光电研究院刘陶研究员和中国科学院苏州纳米技术与纳米仿生研究所詹高磊研究员;“Nano-Micro Letters青年科学家奖”2个,获奖者分别为中国科学技术大学国家同步辐射实验室叶逸凡研究员和南京大学胡泽华教授;“IJMS青年科学家奖”1个,获奖者为中国科学院物理研究所陆雅翔研究员;“Nano Materials Science青年科学家奖”1个,获奖者为湖南大学邹雨芹教授;“半导体学报青年科学家奖”1个,获奖者为天津大学纪德洋教授;“物理化学青年科学家奖”1个,获奖者为天津大学赵志坚教授。该奖项分别由SmartMat,InfoMat,Nano-Micro Letters,The International Journal of Molecular Sciences,Nano Materials Science,半导体学报,物理化学学报七家期刊杂志资助。福州大学副校长王心晨教授和香港理工大学/新加坡国立大学Loh Kianping教授分别为获奖者颁奖。青年科学家奖获奖者名单及简介同时,大会还评出17个最佳墙报奖,由天津大学理学院院长耿延候教授,俄罗斯自然科学院外籍院士、福州大学郭太良教授,清华大学分析中心、国家大型科学仪器中心-北京电子能谱中心副主任姚文清研究员,南京大学胡征教授颁奖。(获奖名单参见文末)最佳墙报奖获奖者及颁奖者合影最佳墙报奖获奖名单如下:姓名单位陈淦文天津大学-新加坡国立大学福州联合学院丁怡水天津大学-新加坡国立大学福州联合学院高莹天津大学刘渊中国科学院物理研究所孟蓉炜天津大学-新加坡国立大学福州联合学院苏艳慧苏州大学孙首港天津大学王成天津大学王萌天津大学-新加坡国立大学福州联合学院王一贺天津大学-新加坡国立大学福州联合学院夏小勇苏州大学肖昱坤天津大学-新加坡国立大学福州联合学院徐吉龙中国科学技术大学国家同步辐射实验室杨露厦门大学张丹丰清华大学郑钦锋上海交通大学朱晓婷天津大学大会赞助商:期刊赞助:SmartMat, InfoMat,Nano-Micro Letters,The International Journal of Molecular Sciences,Nano Materials Science,半导体学报,物理化学学报大学赞助:福州大学、上海师范大学、深圳大学、闽都创新实验室(中国福建光电信息科学与技术创新实验室)、天津大学先进陶瓷与加工技术教育部重点实验室和天津市先进碳与电化学储能重点实验室企业赞助:钻石赞助商:Thermo Fisher (赛默飞)铂金赞助商:北京圣嘉宸科贸,费勉仪器金牌赞助商:威格科技,ULVAC-PHI,岛津,荷兰艾维银牌赞助商:捷欧路(北京)科贸有限公司(日本电子),SPECS-贝克斯帝尔科技(北京有限公司),Quantum Design,迈纳德微纳技术有限公司,Edwards-埃地沃兹,CREATEC-成都聚仁达科技有限公司,泊菲莱,Horiba Scientific铜牌赞助商:Scienta-Omicron-盛达欧科;恩普莱真空-安徽卓凌机电技术,KJ-Lesker-科特莱思科,Agilent-安捷伦-中航嘉信(北京)旅游有限公司,中科艾科米,常州国成新材料(GC-Nano),上海谱幂,北京玉研,普发,超展-上海荆谱若科技,尤谱光电,贝意克,Witec (牛津仪器),深圳市新威尔电子有限公司,托托科技,热安(上海)展台赞助商:北京阳光凯特科技有限公司-SUNCAT
  • 2013全国表面分析科学会议上的仪器厂商
    仪器信息网讯 2013 年8 月20,“2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班”在北京举行。100余名从事表面分析技术研究与应用的研究人员参加了此次会议。  本次会议由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、北京师范大学分析测试中心和北京大学分析测试中心共同承办。  表面分析仪器的主要供应商均参加了此次会议。赛黙飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、高德英特(北京)科技有限公司(代理日本ULVAC-PHI产品)、北京艾飞拓科技有限公司(代理德国ION TOF公司产品)、北京精微高博科学技术有限公司等分别在会议中就本公司的最新产品和技术作了主题报告。报告人:赛黙飞世尔科技(中国)有限公司Richard G.White报告题目:Recent advances in XPS instrumentation from Thermo Fisher Scientific 报告人:岛津企业管理(中国)有限公司龚沿东报告题目:高灵敏XPS—Axis Ultra DLD 检测器在采谱和成像方面的应用 报告人:高德英特(北京)科技有限公司陈文徵报告题目:PHI 公司在表面分析技术中的新进展报告人:北京艾飞拓科技有限公司高聚宁报告题目:飞行时间二次离子质谱最新进展和应用 报告人:北京精微高博科学技术有限公司钟家湘报告题目:多孔粉体材料表面特性的表证与测试  另外,此次会议中赛默飞还特别设置了展位,并赞助了本次大会的欢迎晚宴。赛默飞展位赛默飞化学分析部运营总监兼表面分析部门经理胡翔宇在晚宴中致辞欢迎晚宴现场  有关本次会议的主题报告及最新产品和技术进展,敬请关注仪器信息网后续报道。
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew. Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 2013全国表面分析科学会议——标准宣贯
    仪器信息网讯 2013 年8月20-21日,&ldquo 2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班&rdquo 召开期间,北京师范大学吴正龙和清华大学姚文清对《GB/T 25185 表面化学分析 X射线光电子能谱 荷电控制和荷电校正方法的报告》、《GB/T 28894-2012/ISO 18117:2009 表面化学分析 分析前样品的处理》及《20110883-T-469/ISO 18116:2005(E) 表面化学分析-分析样品的制备和安装指南》进行了宣贯。北京师范大学吴正龙  《GB/T 25185 表面化学分析 X射线光电子能谱 荷电控制和荷电校正方法的报告》于2010年发布。吴正龙介绍说:&ldquo 该标准主要阐述了XPS分析非导电样品时,荷电的产生(积累)、分布变化等,提供了荷电控制和校正方法。为XPS准确表征非导电样品中元素价态提供了技术指导。标准的资料性附录中列举了各种荷电控制和校准具体方法。&rdquo 清华大学姚文清  姚文清介绍了《GB/T 28894-2012/ISO 18117:2009 表面化学分析 分析前样品的处理》及《20110883-T-469/ISO 18116:2005(E) 表面化学分析-分析样品的制备和安装指南》。这两项标准当中对不同类型样品的制样方法和存放容器选择,以及样品安装方式等内容进行了规定,以降低样品处理过程中的表面污染,获得准确的表面化学分析结果。  这三项标准均由全国微束分析标准化技术委员会表面分析分技术委员会主导制定。姚文清介绍说:&ldquo 全国微束分析标准化技术委员会表面分析分技术委员会(SAC/TC38/SC2)成立于1997年9月15日,是国际标准化组织表面化学技术委员会(ISO/TC201)的国内对口单位。主要负责参与表面化学分析国际标准和国家标准的制定和审定、国际标准的转化工作。设有X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(SIMS)、辉光放电光谱(GDS)等工作组。&rdquo   &ldquo 表面分析分技术委员会共有委员23人,主任委员由中国科技大学丁泽军担任,副主任委员为国家纳米科学中心沈电洪、北京师范大学吴正龙、清华大学姚文清,中科院化学所刘芬担任副秘书长。另外还包括了3家单位委员:高德英特(北京)科技有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司。&rdquo   &ldquo 截至2013年7月底,已由表面分析分技术委员会主导制定发布了1项ISO国际标准,22项国家标准,10项标准获得国家标准立项计划。参与制定发布ISO国际标准1项。&rdquo 姚文清说。  另外,会议中吴正龙对国际表面化学分析技术委员会(ISO/TC 201)做了介绍,目前ISO/TC 201建立有9个分技术委员会和1个工作组,包括:术语(SC1)、总则(SC2)、数据管理和处理(SC3)、深度剖析(SC4)、俄歇电子能谱(SC5)、二次离子质谱(SC6)、X射线光电子能谱(SC7)、辉光放电谱(SC8)、扫描探针显微术(SC9)、全反射X射线荧光光谱(WG2)。会议现场
  • 一轮通知 | 第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2024年8月5-6日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。1. 主办单位国家大型科学仪器中心-北京电子能谱中心全国微束分析标准化技术委员会表面化学分析分技术委员会中国分析测试协会高校分析测试分会北京理化分析测试学会表面分析专业委员会仪器信息网2. 会议时间2024年8月5日-6日3. 会议形式仪器信息网“3i讲堂”平台4. 会议日程报告时间报告题目报告嘉宾表面分析技术与应用专场主持人:朱永法 教授9:00-9:50表面等离子体电化学显微成像清华大学李景虹 院士9:50-10:30Hydrogen Evolution via Interface Engineered Nanocatalysis新加坡国立大学陈伟 教授10:30-11:00基于原位XPS-Raman的表面分析联用技术和应用赛默飞11:00-11:30待定岛津11:30-12:10待定重庆大学周小元 教授午休表面分析技术与应用专场主持人:姚文清 研究员14:00-14:40有机共轭半导体可见光催化光水解产氢研究清华大学朱永法 教授14:40-15:10待定艾飞拓15:10-15:50气-液微界面化学成像表征及理化特性复旦大学张立武 教授15:50-16:20待定厂商报告16:20-17:00光电子能谱与能源半导体界面华东师范大学保秦烨 教授17:00-17:40待定电子科技大学董帆 教授表面化学分析国家标准宣贯专场主持人:刘芬 秘书长09:00-09:40GB/T 42518-2023 锗酸铋(BGO)晶体 痕量元素化学分析 辉光放电质谱法中科院上海硅酸盐所卓尚军 研究员09:40-10:10待定厂商报告10:10-10:50GB/T 42360-2023 表面化学分析 水的全反射X射线荧光光谱分析中石化石油化工科学研究院有限公司邱丽美 研究员10:50-11:20待定厂商报告11:20-12:00GB/T 43661-2024表面化学分析 扫描探针显微术 用于二维掺杂物成像等用途的电扫描探针显微镜(ESPM,如SSRM和SCM)空间分辨的定义和校准中山大学陈建 教授5. 参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/bmfx2024/ (内容更新中)报名二维码6. 会议联系会议内容:张编辑 15683038170(同微信) zhangxir@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 2014全国表面分析科学与技术应用学术会议举行
    表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。由于最近几十年超高真空、高分辨和高灵敏电子测量技术的快速发展,表面分析技术也有了长足进步。目前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(TSIMS)、辉光放电光谱(GD)、扫描探针显微镜(STM)等。  为了深入了解表面分析技术最新动态、最新仪器性能特点,促进同行之间的技术交流,2014年8月29~30日,2014 全国表面分析科学与技术应用学术会议在成都.四川大学举行。60余名从事表面分析技术研究与应用的研究人员参加了此次会议。因为本次会议是由高校分析测试中心研究会主办,所以会议内容不只有新方法新技术研究,还有关于如何用好仪器、如何解决工作中困难方面的交流。  实验数据&ldquo 去伪存真&rdquo   此次会议交流的内容更多的围绕着XPS展开。XPS是重要的表面分析技术手段,在分析材料的表面及界面微观电子结构上早已体现出了强大的作用,它可用于材料表面的元素定性分析、半定量分析、化学状态分析,微区分析以及深度剖析(1-2nm)等。  对于复杂的材料体系或单一体系中复杂的化学状态,XPS的谱图一般多为数个化学状态的合成峰,且有可能因为轨道杂化的不同而造成峰型的变化。实验者要从众多的复杂的XPS谱图数据中得到有价值的实验结果,需要掌握数据处理基本原则和相关技巧。清华大学朱永法教授认为数据处理是&ldquo 去伪存真&rdquo 的过程。  北京大学谢景林教授分享了其在重叠谱图拟合方面的经验技巧 赛默飞葛青亲对谢景林教授的报告进行了展开,具体介绍了非线性最小二乘拟合方法的基本思想,并且分享和探讨了如何使用实际采集谱图、参考谱图,配合非线性最小二乘拟合方法对XPS数据进行处理 岛津龚沿东从XPS谱图的本底扣除、线型选择以及其他特殊处理方法介绍了XPS数据处理的一般原则。  北京师范大学吴正龙教授介绍了通过能量去卷积的数据处理方法提高了XPS谱图质量。目前常规的XPS最佳分辨水平(FWHM)约为0.5eV(Ag3d5/2),仍不能满足多数元素价态分析的需求。而XPS分析中对谱峰展宽的贡献主要来源于仪器能量响应、X射线的线宽、样品等。而通过对表观谱进行能量去卷积处理,可以消除仪器和样品对展宽的贡献,进而提高XPS谱峰的分辨率。  应用研究热点  在国外,XPS等表面分析技术已经在生产企业中得到了广泛的应用,如进行半导体失效分析等。而在国内,表面分析技术还局限于科研单位,主要是利用XPS、AES等表面分析技术进行材料表面或界面发生的物理化学反应机理研究。研究热点主要集中在催化材料、碳纳米管石墨烯等新型材料、聚合物太阳能电池等新型器件等。  清华大学朱永法教授介绍了AES化学位移的产生、特点、影响因素等情况,以及AES化学位移在石墨、金刚石的表面吸附、固体表面的离子注入、薄膜制备、界面扩散等研究这个的应用。  铀在国民经济和国防事业中均有重要,但是金属铀的化学活性高,在环境中极易氧化腐蚀,导致其部件性能的劣化或失效,并且这种腐蚀还会带来环境的核污染。中国工程物理研究院刘柯钊研究员使用XPS等分析技术作为表征手段,研究了金属铀腐蚀行为与防腐蚀表面改性技术。  聚合物太阳能电池最有希望成为下一代太阳能电池之一。中山大学陈建教授以紫外光电子能谱(UPS)和XPS、AFS等技术,研究了醇/水溶性共轭聚合物阴极修饰层对不同电极材料功函数的影响,通过降低阴极功函数达到了提高器件能量转换效率的目的。  清华大学姚文清教授的研究对象是航空用电子元器件,这些器件长期在宇宙环境中工作不可避免的受到影响,可能引起器件的密封破坏等而最终失效。姚文清教授通过在超高真空系统中对器件进行紫外辐照、温度变化、电场变化等试验,在此环境下对航空用电子元器件进行原位模拟腐蚀,并采用AES等表面分析技术对器件腐蚀进行微观评价,建立器件腐蚀和失效的早期判断新方法。  南京大学高飞教授通过外置原位电池的应用,利用实验室现有常规XPS获得催化剂材料在真空条件下的准原位 (Ex-situ)信息。结合相关表征手段,准原位XPS成为了探究催化剂在反应条件下反应过程的有利工具。与会人员合影  2012年,清华大学分析中心、国家大型科学仪器中心-北京电子能谱中心组织召开了第一届全国表面分析科学与技术应用学术会议,此后该会议每年举行一次。今年是该会议第三次举办,会议由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、四川大学分析测试中心共同承办。2015年全国表面分析科学与技术应用学术会议将由宁波新材料所承办。
  • 2014全国表面分析应用技术学术交流会圆满成功
    2014全国表面分析应用技术学术交流会及赛默飞世尔科技XPS应用与设备维护技术培训班圆满成功 随着我国材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,表面分析技术在过去的几十年中有了长足进步,在科学研究领域作用日益增长。为了有效推动表面分析应用技术的发展,深入了解光电子能谱技术的最新动态,最新仪器性能特点,充分发挥已购仪器在教学科研生产工作中的作用,提高广大表面分析用户的分析测试水平,充分发挥仪器的功效,同时搭建一个用户与表面技术专家之间,用户与厂家之间技术深入交流的平台,共同探讨测试技术,解决实际使用中的难题,由赛默飞世尔科技及全国微束分析标准化技术委员会表面分析分技术委员会,中科院化学研究所,北京师范大学,北京化工大学等单位共同举办的“2014全国表面分析应用技术学术交流会及赛默飞世尔科技XPS应用与设备维护技术培训班”在美丽的西子湖畔浙江宾馆胜利召开,来自高校、研究所、企业的XPS技术专家及分析工作者近100人出席了本届会议。 会议由赛默飞化学分析部总监胡翔宇先生致开幕词,胡翔宇先生说,我们希望给大家创造一个持续、有效、健康的平台,帮助表面分析领域的客户交流、分享表面分析方面的应用及创新,Thermo公司会持续投入把这样的交流会办下去,每年提供给大家一个面对面分享的机会,缩短彼此的距离,提高相互的信任。同时希望在这个平台上得到大家的反馈,聆听来自用户群体的声音,改进我们的服务,及提升我们的用户体验。这是一个创新和创造的平台,创新包括公司和客户双方面,创造指创造新的市场,并永远处于领先地位。最后胡先生说,我想在这里播放一个特制的精彩视频,回放公司和客户的发展历程,让大家看到我们公司和客户是一个完整的家庭,One Family! 随后,来自赛默飞英国工厂的4位产品、软件、应用专家和赛默飞的用户及全国表面分析标委会的专家们做了精彩的报告。赛默飞技术服务团队在仪器的维护、保养方面做了交流。台上、台下积极互动,代表对专家的报告提出了很多关心的问题并得到完美的答复。大会日程安排紧张、内容充实。会后,与会老师对此次会议给予高度评价,认为参加此次会议开拓了眼界、加强了沟通、交流和学习,收获颇丰,希望今后年年举办这样的会议。 赛默飞化学分析部总监 胡翔宇先生 会 场
  • 2015全国表面分析应用技术学术交流会胜利召开
    2015年5月13日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日与中科院化学研究所、全国微束分析标准化技术委员会表面分析分技术委员会、北京师范大学和北京化工大学联合在武汉举办 “2015全国表面分析应用技术学术交流会”。会议盛邀来自全国各高校、研究所的专家和专业人员等100余位嘉宾出席,赛默飞分子光谱全球副总裁Susan Ottmann女士、全球市场总监Martin Long先生,XPS产品全球市场经理Richard White先生也专程来华参加此次会议。在会上,Susan Ottmann女士和Richard White先生首先致辞,欢迎全国从事表面分析研究与分析的新老朋友共聚一堂,探讨XPS的前沿发展、分享最新应用、使用仪器的心得。随后,围绕表面分析技术的最新动态、表面分析技术的专家级经验以及XPS的最新应用等领域,来自高校和研究所的多位专家和专业研究人员展开了热情洋溢的报告。来自北京师范大学的吴正龙教授和大连化物所的盛世善老师分别在XPS分析测试领域均拥有几十年的丰富经验,他们为大家详细介绍了过渡金属化合物材料的复杂图谱状态以及产生的原因,讲解了如何从众多复杂的XPS图谱中得到有价值的实验结果,盛老师还结合其在文献上找到的错误给大家上了一堂有趣生动的复习课。清华大学姜鹤老师和武汉大学的刘英老师,详细介绍了XPS深度剖析的最新应用以及团簇离子枪发展历史和背景,使用赛默飞MAGCIS复合型离子枪很好的解决了XPS一个世纪发展以来无法进行的聚合物材料深度剖析的问题,并提供了很好的无机、有机材料的表面无损清洁和溅射方案,丰富的应用实例使大家深刻感受到XPS技术发展的迅猛。为说明仪器的工作原理,促进同行之间的技术交流,北师大吴正龙教授,北京化工大学程斌教授以及华东理工的蒋栋博士就仪器各参数对XPS数据分析的影响进行了介绍,让大家更深入的了解到如何得到高质量的XPS数据,如何得到更高精度的XPS定量数据等等。这些简单的参数的分享解决了很多平时困扰大家的疑难,赢得了大家热烈的掌声。上海计量院徐建教授在会议上宣贯了《表面化学分析 俄歇电子能谱和X射线光电子能谱 横向分辨率测定GB/T 28632-2012》,介绍了多种仪器横向分辨率的测定方法,进一步为大家普及了表面分析的一些标准技术。随着XPS表面分析技术的发展,在各行各业的应用领域也越来越广泛。中山大学徐建教授和谢方艳博士分别就样品表面3D成像技术得到纳米级分辨率的深度剖析信息以及反光电子能谱技术进行了形象的介绍,丰富而新颖的技术和想法大大吸引了与会研究者的目光。会议中诸位老师还对XPS在新型能源Li电池行业、与人们生活息息相关的大气颗粒物检测、热电材料、腐蚀科学、激光薄膜等行业和领域的应用进行了分享和交流讨论。本届会议新增了讨论环节,大家就目前关心的几个话题做了热烈、充分的讨论,大家详细讨论钢铁行业的深度剖析的一些难题,XPS图谱分析技术的瓶颈, UPS和XPS检测技术的性能对比等等话题,并以此向赛默飞提出了更多期望,希望赛默飞与众位XPS研究者共同进步.期间,赛默飞隆重发布了新产品Thermo Scientific? K-Alpha+ X射线光电子能谱仪,其性能、指标大大优于上一代K-Alpha,媲美世界一流的XPS系统,其高度集成和自动化,并发展开拓了更多XPS兼容附件,使得XPS的分析样品范围、应用领域更广泛,是一款同时满足XPS科学研究和工业领域高通量测试研究的专业XPS利器。会议现场新品发布关于Thermo Scientific K-Alpha+ X射线光电子能谱仪的更多信息,请登陆:www.thermoscientific.cn/product/k-alpha-x-ray-photoelectron-spectrometer-xps-system.html--------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 北大彭海琳团队:通过梯度表面能调制集成晶圆级超平面石墨烯
    石墨烯等二维材料的载流子迁移率高、光-物质相互作用强、物性调控能力优,在高带宽光电子器件领域具有重要的科学价值和广阔的应用前景。当前,发展与主流半导体硅工艺兼容的二维材料集成技术受到业内广泛关注,其中首要的挑战是将二维材料从其生长基底高效转移到目标晶圆衬底上。然而,传统的高分子辅助转移技术通常会在二维材料表面引入破损、皱褶、污染及掺杂,严重影响了二维材料的光电性质和器件性能。因此,实现晶圆级二维材料的无损、平整、洁净、少掺杂转移是二维材料面向集成光电子器件应用亟待解决的关键问题。  针对这一难题,北京大学化学与分子工程学院彭海琳课题组与国防科技大学秦石乔、朱梦剑课题组合作,设计了一种梯度表面能调控(gradient surface energy modulation)的复合型转移媒介,可控调节转移过程中的表界面能,保证了晶圆级超平整石墨烯向目标衬底(SiO2/Si、蓝宝石)的干法贴合与无损释放,得到了晶圆级无损、洁净、少掺杂均匀的超平整石墨烯薄膜,展示了均匀的高迁移率器件输运性质,观测到室温量子霍尔效应及分数量子霍尔效应,并构筑了4英寸晶圆级石墨烯热电子发光阵列器件,在近红外波段表现出显著的辐射热效应。该转移方法具有普适性,也适用于其它晶圆级二维材料(如氮化硼)的转移。研究成果以“Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation”为题,于9月15日在线发表在《自然-通讯》(Nature Communications 2022, 13, 5410)。  文章指出,二维薄膜材料从一表面到另一表面的转移行为主要由不同表界面间的能量差异决定。衬底的表面能越大,对二维薄膜有更好的浸润性及更强的附着能,更适合作为薄膜转移时的“接受体”;反之,衬底的表面能越小,其更适合作为薄膜转移时的“释放体”。因此,作者设计制备了表面能梯度分布的转移媒介【如图1,聚二甲基硅氧烷(PDMS)/PMMA/冰片】,其中冰片小分子层吸附在石墨烯表面,有效降低了石墨烯的表面能,保证石墨烯向目标衬底贴合过程中,衬底的表面能远大于石墨烯的表面能,进而实现良好的干法贴合;另一方面,转移媒介上层的PDMS高分子膜具备最小的表面能,能够实现石墨烯的无损释放。此外,该转移方法还有以下特点:PDMS作为支撑层可以实现石墨烯向目标衬底的干法贴合,减少界面水氧掺杂;容易挥发的冰片作为小分子缓冲层能有效避免上层PMMA高分子膜对石墨烯的直接接触和残留物污染,得到洁净的石墨烯表面;高分子PMMA层的刚性使得石墨烯转移后依旧保持超平整的特性。图1 晶圆级二维材料的梯度表面能调控转移方法  基于梯度表面能调控转移的石墨烯薄膜具备无损、洁净、少掺杂、超平整等特性,展现出非常优异的物理化学性质(如图2)。转移后4英寸石墨烯晶圆的完整度高达99.8%,电学均匀性较好,4英寸范围内面电阻的标准偏差仅为6%(655 ± 39 Ω/sq)。转移到SiO2/Si衬底上石墨烯的室温载流子迁移率能够达到10000 cm2/Vs,并且能够观测到室温量子霍尔效应以及分数量子霍尔效应(经氮化硼封装,1.7K)。基于SiO2/Si衬底上4英寸石墨烯晶圆,成功构筑了热电子发光阵列器件,在较低的电功率密度下(P = 7.7 kW/cm2)能够达到较高的石墨烯晶格温度(750K),并在近红外波段表现出显著的辐射热效应(如图3)。  图2 梯度表面能调控转移的石墨烯晶圆。(a)无损转移到SiO2/Si衬底上高完整度4英寸石墨烯晶圆;(b)超平整石墨烯与粗糙石墨烯褶皱数目的对比(5×5 μm2范围内)及典型的原子力显微镜图片对比(内嵌图);(c)转移后4英寸石墨烯晶圆的面电阻;(d)梯度表面能调控与传统湿法转移的石墨烯的电学转移曲线对比;(e)转移到SiO2/Si上的石墨烯在不同温度下的霍尔曲线及室温量子霍尔效应;(f)转移后石墨烯(氮化硼封装,1.7 K)的朗道扇形图,表现出分数量子霍尔效应。  图3 晶圆级石墨烯热电子发光阵列器件。(a)石墨烯热电子发光示意图;(b)基于4英寸晶圆石墨烯的热电子发光阵列;(c)石墨烯热电子发光阵列的光学显微镜照片;(d)器件在电功率密度为3.0 kW/cm2时的红外照片;(e)器件在不同电功率密度下的辐射光谱;(f)石墨烯晶格温度随电功率密度的变化。  此外,梯度表面能调控转移方法可作为晶圆级二维材料(石墨烯、氮化硼、二硫化钼等)向工业晶圆转移的通用方法,有望为高性能光电子器件的集成奠定技术基础。  该论文的共同通讯作者为北京大学彭海琳教授和国防科技大学秦石乔教授、朱梦剑副研究员。共同第一作者是北京大学前沿交叉学科研究院博士研究生高欣、北京大学化学学院博士毕业生郑黎明、国防科技大学前沿交叉学科学院罗芳博士、北京大学化学学院博雅博士后钱君。其他主要合作者还包括北京大学化学学院刘忠范教授、北京大学材料学院林立特聘研究员、北京石墨烯研究院尹建波研究员和孙禄钊研究员、及长春工业大学高光辉教授等。  该研究工作得到了国家自然科学基金委、科技部、北京分子科学国家研究中心、腾讯基金会等项目资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台的支持。  原文链接:https://doi.org/10.1038/s41467-022-33135-w
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制