信号调节器

仪器信息网信号调节器专题为您提供2024年最新信号调节器价格报价、厂家品牌的相关信息, 包括信号调节器参数、型号等,不管是国产,还是进口品牌的信号调节器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合信号调节器相关的耗材配件、试剂标物,还有信号调节器相关的最新资讯、资料,以及信号调节器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

信号调节器相关的厂商

  • 电动执行器BS-60/F30H处理等领域的各种自动化控制系统。十多年来该产品为国内,外诸多的重点项目工程配套。 目前生产的SD系列产品全部增加了本机操作功能,动态制动,信号隔离,断信号保护及手轮托开灯等诸多功能,整机的防护等级以达IP67以上,从而使产品的质量和可靠性得到了很大的提高。 SR系列电动执行机构的特点是具有首轮电动优先功能。 SM系列是为工作特别繁忙的工况或系统贰设计的产品(工作制100%%) 产品的分类与用途:电动执行机构是工业自动化仪表中的执行单元,它接收来自调节器,PLC,DCS等控制计算机发出的信号,自动地完成调节动作,是自动控制系统不可缺少的主要装置。它广泛地用于电站,冶金,石油,化工,矿工,轻工,制药,燃气热力,建材,交通级城市的地铁,供水,污水处理等行业。 现在企业主要的产品:一是伯纳德技术生产的SD,SR,SM系列调节型和智能型的角行程,直行程,多回转式电动执行机构,以及专门用于空阀门开/关两位式的开关型SL系列电动执行机构二是自主开发的DKJ,DKZ,DY-J普通,防雨,防爆,防火各种类型的电动执行机构及伺服放大器,电动操作器等辅助单元。产品行销除港,澳,台外,全国各省市自治区,并批量出口。 我们开发的性能优良,功能更强大,这样就为用户根据工程实际要求提供了多种选择。 企业十分重视质量管理,建立了完善,持续,有效的质量保证体系。多年来以建立起了完善的销售网络,有着丰富实践经验高素质的专业技术人员组成的销售和技术服务队伍,随时竭诚为广大用户服务;将负责有关产品的技术服务,技术咨询,维修和备品备件的供应;此外还可以根据用户的要求选型,设计,测绘,制造各种特殊的非标准产品,配套各种附件,各种电动调节阀门,自控和程控所需的成套装置等业务。 天津世纪奥博有限公司将秉承“关注顾客,追求卓越”的一贯宗旨,与广大用户携手迈进中国自动化领域的新天地。
    留言咨询
  • 厦门宇电自动化科技有限公司是专业提供高端节能环保解决方案的高新技术企业。厦门宇电自动化科技有限公司总部坐落于福建厦门火炬高新区,拥有自行建设的现代化厂房,绿树环绕,并配备节能变频中央空调。厦门宇电自动化科技有限公司拥有全自动高速贴片机、无铅双波峰焊机、红外回流焊机等先进生产设备,以及电磁兼容、精密基准信号源、温湿度环境等测试设备,具有生产高质量、高精度、高可靠性及低温漂的工业自动化仪表系列产品的能力。http://yudiankeji.diytrade.com/ 厦门宇电自动化科技有限公司专注于高端节能环保解决方案的开发和研究,在工业自动化领域拥有累计超过20年经验。全球领先推出AI人工智能调节算法、仪表模块化和平台化结构、节能环保低温漂“发烧级”元件设计、380VAC电源防护等技术,有力地推动了自动化行业的发展。AIDCS智能分布式控制系统采用AI系列二次仪表,利用RS485或CAN作为通讯总线,结合工控机和组态软件组成,具备集中管理、危险分散、系统开放、性价比高等优点,深受中小企业青睐,目前累计成功运用的项目已达上万个,成为客户的超值选择。http://yudiankeji.diytrade.com/ 厦门宇电自动化科技有限公司产品包括单路及多路测量显示报警仪、流量积算仪、高精度PID调节器、智能温控器、导轨安装仪表、电力测量仪表、手持式精密测温仪、闪光报警器、可控硅调功触发器、SSR固态继电器,分体式无纸记录仪、触摸屏控制系统及AIDCS智能分布式控制系统等等,广泛应用于化工、热电、石化、制药、冶金、机械、电炉、热处理、食品、造纸、塑胶、包装等领域。二次仪表(包含智能温控器)的年销售量已突破50万台,产品远销北美、欧洲、大洋州、印度、中东、东南亚和香港等多个国家和地区,并获得客户好评,厦门宇电自动化科技有限公司已成为国内最大的高端节能环保解决方案的供应商。http://yudiankeji.diytrade.com/
    留言咨询
  • 无锡市新逸德空气调节设备有限公司是一家专业从事各类调节设备设计、生产、销售于一体的大型企业。公司经营范围包括转轮除湿机、冷冻除湿机、全/显热交换器、新风换气机、冷水机、热泵、恒温恒湿机、净化组合式设备、组合式转轮除湿机等设备和换热器、表冷器、加热器、过滤器、冷却塔、水泵、风机等配件。
    留言咨询

信号调节器相关的仪器

  • 在有压力条件下运行连续反应可以使得反应能够在更高温度下进行,达到在间歇反应中无法达到的高温,在间歇反应中通常只是在环境压力下进行溶剂回流。为了能在流动化学系统中实时在线控制系统压力,本公司开发了全自动在线背压调节器,可以自动实时调节系统压力,将压力控制模块与工艺分析技术结合,研究人员可通过压力值数据,对流动化学过程工艺条件进行追溯,进而达到反应的可重现性。目前实验室连续化学中压力控制是通过人工手动调节背压阀的方式进行反应体系压力控制。此方式存在压力控制不稳定,调节频繁,且无法做到方法朔源等问题。我们推出的在线全自动背压调节器,内置压力反馈超前控制算法,可在3秒内快速实现压力调节。全自动在线背压调节器产品特点☉3 秒内快速校准,0-1500psi 压力范围自动调压☉316L 不锈钢材质,适用于气体或常规液体☉可拆卸阀芯结构,方便清洗,维护简单,延长阀使用寿命☉可选配 200℃高温背压调节器,适用于高温体系反应 型号 BP –A250 BP –A500 BP –A1500压力控制范围 0.1-250psi 0.2-500psi 0.2-1500psi接触介质材料 316L 不锈钢、哈氏合金控制精度 ±1%压力控制重复性 0.5%阀响应时间 ≤ 3s泄漏率 2×10-8atm.cc/sec He使用温度 -40~70℃、可选配 200℃高温型
    留言咨询
  • 产品介绍SKY2103BT-II汽油辛烷值测定机空气调节器,简称”“冰塔”,是汽油辛烷值测定机的重要配套设备。辛烷值试验过程中,需要连续不断的空气参与燃烧,空气中的含水量会直接影响试验结果。为确保仪器工况的稳定以及试验结果的准确性,对进入发动机的空气湿度有特定的要求。SKY2103BT-II汽油辛烷值测定机空气调节器是利用低温冷却除湿的方法来降低空气中的水份含量,使参与燃烧的空气保持在一定的相对湿度状态下(一般为RH 30%~35%)被送入燃烧系统,从而确保仪器工况达到辛烷值测定方法的相关要求。设备还同时具备通过预留的管路,为易挥发燃油试样提供冷却的功能。产品特点精密智能温控系统,可通过触摸屏进行参数设置,也可由我司高端汽油辛烷值测定机自带的iSKvatorTM技术集成控制5”彩色触摸屏,实时显示温控情况强力高效的冷却除湿功能稳定可靠的制冷保温功能有效过滤空气中的微粒杂质通过预留管路可为易挥发燃油试样提供冷却功能技术参数制冷温度:0℃ ~ 4℃散热器温控范围:1℃~8℃(循环液)进气温度:52℃ ± 1℃ (RON) 38℃ ± 2.8℃(MON)进气湿度:3.56 ~7.12g/kg (水/干空气)冷却液:冷冻液+水制冷方式:全封闭涡旋式压缩机功率: 450W外形尺寸(长×宽×高):420×420×1433 mm仪器净重:90Kg电源:200~240VAC 50/60Hz
    留言咨询
  • 美国coleparmer多气体调节器美国coleparmer多气体调节器美国coleparmer多气体调节器美国coleparmer多气体调节器上海上碧实验仪器有限公司021-51693631
    留言咨询

信号调节器相关的资讯

  • Bioactive Materials:血管生成的重大突破——基质硬度通过 p-PXN-Rac1-YAP 信号轴调节尖端细胞形成
    【研究背景】血管生成是指从现有血管中内皮细胞生长而生成新的血管,一旦血管开始生成,被称为细胞的特殊内皮细胞就会开始发芽过程。由此,血管芽内皮细胞的长出标志着血管生成的开始,这一过程在生理学和病理生理学过程中至关重要。然而,细胞外基质(ECM)的机械特性如何调节细胞的形成在一定程度上被忽视了。细胞的特性是血管生成和组织工程的关键,它可以定向迁移到无血管区域,对终形成的血管形态起决定作用。迄今为止,各种生化信号分子因素如 MST1-FOXO1等多见报道,然而功能血管的建立需要生化和生物力学信号线索的结合,后者取决于组织工程和再生医学中使用的生物材料的特性。近期,北京大学口腔医学院的郭亚茹博士以作者在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章。文章报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。邓旭亮教授为本文通讯作者。【研究概述】在这项研究中,作者研究了基质硬度对细胞形成的影响,并探索了基础机制。在肝癌细胞的外层发现CD31表达更高,组织硬度也更高。基质的硬度增加可以显著增加血管的生成和细胞富集基因的表达。硬度较大的基质增加了FAK和p-PXN的局灶黏附,提高了活性Rac1的水平,进而导致细胞骨架组织和细胞刚度增加。随后,YAP作为下游的力效应因子被激活并易位入核,上调靶基因的表达,终促进细胞的形成。p-PXN还可以减少细胞间的连接,从而促进细胞的形成。由此表明:基质硬度可通过p-PXN-Rac1-YAP信号轴调节细胞的形成。 【研究结果】硬度的增加还可以促进血管的生成(图1D),从三维(3D)EC球体(图1E)的芽入侵距离增加可证明这一点。与GM60和GM30凝胶(图1F)相比,硬凝胶(GM90)中球体的芽数量增加了2倍。qPCR分析表明,细胞富集基因,包括CD34、VEGFR2、DLL4、CXCR4、EFNB2和IGF2,在GM90基质(图1G)中显著上升。同时,更硬的凝胶中芽的宽度更厚,矩阵中含有更多和长的纤维状体(图1H和I)。由此数据表明,基质硬度增加可以促进血管生成和细胞的形成。图1. 基质硬度增强血管生成和细胞在体外和体内的形成。 在EC球形发芽模型中,从球体中产生的外层细胞和以下细胞分别被定义为细胞和茎细胞。未爬出球体的细胞被定义为密集细胞(图2A)。通过原子力显微镜(AFM),我们检测到每个细胞的16个位置,并制作了典型的力学热图(图2B)。细胞的刚度在数量上是茎细胞的两倍,是咽细胞的四倍(图2C)。此外,免疫荧光染色表明,细胞显示长应力纤维的增强组装,而在茎和密集细胞作用捆绑是相对较短的,并限制在细胞外围(图2D)。研究人员发现细胞中的YAT显示出明显的核定位,而YAT在咽细胞(图2D和E)中成为细胞质。通过免疫荧光、多功能单细胞显微操作系统FluidFM技术和原子力显微镜AFM,发现细胞扩散区域增加(图3A),粘附力(图3B和C)和细胞硬度(图3D),这表明 EC-ECM 连接增加,并通过 ECM 硬化提升细胞机械特性。另外,VP(YEP抑制剂)治疗显著降低了EC球体的延伸次数和芽入侵距离(图2F和G)。细胞富集基因也被VP(图2H)抑制。因此,可以推断基质硬度调节了ECs的细胞机械感知和机械传输,促进了YAC活化,终增强了细胞的形成。图2. 细胞、茎细胞和密集细胞的机械特性差异。图3. FluidFM粘附力检测过程示意图。 在确定了血管生成和细胞形成中EC亚型之间的机械差异后,作者探讨了ECM刚度通过PXN磷化调节细胞的形成,验证了 p-PXN 在硬 ECM 诱导细胞规范中的参与程度,进而推断,通过基质硬化强加的细胞形成需要PXN磷酸化。随后,作者验证了p-PXN-Rac1-YAP激活在ECM僵硬诱导细胞形成和血管生成体内的作用,研究人员通过在裸鼠体内皮下注射 HepG2 细胞创建肿瘤模型,并从 8 天起每天使用 VP 治疗一次(图4F)。4周后,在肿瘤胶囊(图4G)上发现发芽较少的血管,CD31、CD34和VEGF强度(图4H,图4I )。VP治疗减少肿瘤体积(图4J)。这些数据表明p-PXN-Rac1-YAP信号轴与ECM硬化促进的细胞形成和血管生成有很大关系。图4. p-PXN-Rac1 通过激活 YAP 促进细胞的形成和血管生成。 图5. 发芽血管生成受ECM硬度影响的潜在机制的示意图。 综上,基质的硬度增加可以显著增加血管的生长、发芽和细胞富集基因的表达。硬度较大的基质增加了FAK和p-PXN在局灶黏附,提高了活性Rac1的水平,进而导致细胞骨架组织和细胞刚度增加。随后,YAP作为下游的力效应因子被激活并易位入核,上调靶基因的表达,终促进细胞的形成。 【研究意义】本研究加深了我们对细胞形成和血管生成机理的理解,有助于优化组织工程和再生医学的生物材料设计,为一些病理情况提供新的治疗策略。无论是组织工程还是血管再生,都应考虑机械特性,如针对细胞形成的刚度,以设计佳功能生物材料。此外,ECM可以在许多病理状态下变硬,如癌症的发展过程,随着变硬癌周围细胞数量的增加,迫切需要靶向p-PXN、Rac1或YAP的药物来有效防止肿瘤的生长和转移。 【研究利器】——FluidFM技术在生物活性材料领域的创新应用本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。瑞士Cytosurge公司多功能单细胞显微操作系统——FluidFM,是集原子力系统、微流控系统、细胞培养系统为一体的单细胞操作系统。主要功能包括单细胞注射、单细胞提取、单细胞分离、单细胞粘附力的测定、生物3D打印等。实验中FluidFM探针以3 μm/s靠近细胞,设定力为100 nN。当探针连接到到达设定点的细胞时,在探针中施加-650 mbar 的力,并保持5 s,以确保细胞被探针完全抓取。然后,在保持-650 mbar的压力,以1 μm/s的速度将探针抬高至100 μm的高度,从而将细胞从基板上完全分离。FluidFM系统完全记录了每个单细胞的Z轴高度和力距离曲线,并分析其粘附强度。每个条件下至少测量并获得20个力距离曲线。所有细胞粘附测量实验过程都是在 37 °C在5% CO2细胞培养环境下进行。图6. FluidFM进行单细胞分离示意图。 图7. FluidFM进行单细胞力谱测定示意图。 【文末小视频】 本研究实际DEMO视频【联系方式】为了更好的服务客户,Quantum Design中国子公司也为大家提供样品测试、样机体验机会,还在等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作!【参考文献】[1] Y. Guo, F. Mei, Y. Huang, S. Ma, Y. Wei, X. Zhang, M. Xu, Y. He, B.C. Heng, L. Chen & X. Deng. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. (2021) Bioactive Materials.
  • 简述电子点天平的组成部分
    电子天平构造原理基本构造是相同的。主要由以下几个部分组成:    (1)秤盘    秤盘多为金属材料制成,安装在天平的传感器上,是天平进行称量的承受装置。它具有一定的几何形状和厚度,以圆形和方形的居多。使用中应注意卫生清洁,更不要随意掉换秤盘。    (2)传感器    传感器是的关键部件之一,由外壳、磁钢、极靴和线圈等组成,装在秤盘的下方。它的精度很高也很灵敏。应保持天平称量室的清洁,切忌称样时撒落物品而影响传感器的正常工作。    (3)位置检测器位置检测器是由高灵敏度的远红外发光管和对称式光敏电池组成的。它的作用是将秤盘上的载荷转变成电信号输出。    (4)PID调节器    PID(比例、积分、微分)调节器的作用,就是保证传感器快速而稳定地工作。    (5)功率放大器    其作用是将微弱的信号进行放大,以保证天平的精度和工作要求。    (6)低通滤波器    它的作用是排除外界和某些电器元件产生的高频信号的干扰,以保证传感器的输出为一恒定的直流电压。    (7)模数(A/D)转换器    它的优点在于转换精度高,易于自动调零能有效地排除干扰,将输入信号转换成数字信号。    (8)微计算机    此部件可说是电子天平的关键部件了o它是电子天平的数据处理部件,它具有记忆、计算和查表等功能    (9)显示器    现在的显示器基本上有两种:一种是数码管的显示器 另一种是液晶显示器。它们的作用是将输出的数字信号显示在显示屏幕上。    (10)机壳    其作用是保护电子天平免受到灰尘等物质的侵害,同时也是电子元件的基座等。    (11)底脚    电子天平的支撑部件,同时也是电子天平水平的调节部件,一般均靠后面两个调整脚来调节天平的水平。下面为欧洲瑞德威电子天平的图片:
  • 【瑞士步琦】使用SFC分离手性反式-1,2-二苯乙烯氧化物
    使用SFC分离手性反式-1,2-二苯乙烯氧化物SFC 应用”本应用描述了以反式二苯乙烯氧化物为手性分子的手性柱筛选和连续的制备方法,并用叠层进样方法进行制备分离。1简介手性分子是一种有机化合物,它具有一种独特的性质,即互为不可重叠的镜像。这意味着它们以两种形式存在,称为对映体,除了原子的三维排列外,它们在各方面都是相同的。虽然这些对映体具有相同的化学性质,但它们可能具有不同的生物活性和药理作用[1,2]。因此,手性分子在制药工业中变得越来越重要,它们被用于开发药物和其他治疗方法,因此分离对映体十分重要。超临界流体色谱法(SFC)在手性分子的分离纯化中,具有其他分离技术无法比拟的优点。SFC 使用超临界二氧化碳作为流动相,这是一种清洁和绿色的溶剂,很容易从最终产品中去除。此外,SFC 提供了高分辨率和快速的分离。预测哪种固定相能够有效分离 SFC 中特定的一组对映异构体,即使在现在看来也是十分困难,这使得我们需要选择合适的手性固定相来不断试错[2]。手性 SFC 多采用与手性高效液相色谱(HPLC)相同的色谱柱,其中最常用的是多糖手性固定相(CSPs),由于可以选择不同改性的多糖,因此具有很强的通用性[3]。多糖 CSPs 具有高负载能力,这使得它们在制备规模应用中非常有用。许多商业多糖手性固定相是可用的,主要是基于直链淀粉或纤维素和改性的卤化或非卤化芳香基团。改性后的多糖可以包被或固定在二氧化硅载体上,以增强其对强溶剂的抵抗力[3]。还有其他 CSPs 通常用于手性 SFC 应用,例如,Pirkle 型手性固定相[3]。本文介绍了使用 Sepmatix 8x SFC 对反式二苯乙烯氧化物(TSO)进行平行柱筛选,随后通过方法优化转移到制备的 Sepiatec SFC-50。▲反式 - 二苯乙烯氧化物 两种手性结构2设备Sepiatec SFC-50Sepmatix 8x SFCPrepPure cCDMPC, 5um, 250 x 4.6mmPrepPure cADMPC, 5um, 250 x 4.6mmPrepPure iADMPC, 5um, 250 x 4.6mmPrepPure iCDMPC, 5um, 250 x 4.6mmPrepPure iCDCPC, 5um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 10mm3试剂和耗材二氧化碳(99.9%)甲醇(≥99%)乙醇(99%)异丙醇(99%)乙腈(99%)反式二苯乙烯氧化物(99%)(为了安全操作,请注意所有相应的MSDS)4实验过程样品制备:在筛选和方法优化时,将 0.075g 反式二苯乙烯氧化物溶解在 5.0mL 甲醇中;在堆叠注射时,将 0.1909g 反式二苯乙烯氧化物溶解于 6.0mL 甲醇中。使用 Sepmatix 8x SFC 进行筛选:流动相A = 二氧化碳;B = 甲醇流速3 mL/min (每根色谱柱)流动相条件0 - 0.5min5% B0.5 - 8.0min5 - 50% B8.0 - 9.4min50% B9.4 - 9.5min50 - 5% B9.5 - 10min5% B检测200nm – 600nm 紫外扫描筛选完全是全自动运行,采用流量控制单元,将每通道内的流量设置为 3mL/min,并将流量平衡。样品自动进样(每根色谱柱 5μL),启动平行筛选(运行时长=10分钟)。背压调节器设置为 150bar,柱温箱设置为32℃。使用 Sepiatec SFC-50 进行制备:流动相A = 二氧化碳;B = 甲醇流动相条件等度运行检测229nm 紫外检测PrepPure iBT 色谱柱在设定的流速下预热 4 分钟,样品通过定量环自动进样并运行。背压调节器设置为 150bar,柱温箱设置为 40℃。5实验结果色谱柱筛选:为了确定手性化合物 TSO 的最佳分离条件,进行了不同手性色谱柱的筛选,使用 Sepmatix 8x SFC 允许同时进行 8 根不同色谱柱的平行筛选。本实验一共使用了 6 根不同色谱柱:Chiral iADMPC, Chiral iCDMPC, Chiral iCDCPC, Chiral iBT, Chiral cADMPC 和 Chiral cCDMPC。图1 为色谱柱筛选结果,其中 Chiral iADMPC 色谱柱不能很好地分离对应异构体 TSO(可见表1),而 Chiral iCDMPC,Chiral iCDCPC,Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC 色谱柱可以分离 TSO。▲ 图1. Sepmatix 8x SFC 筛选结果。从左上至右下依次是Chiral iADMPC,Chiral iCDMPC和Chiral iCDCPC;Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC。运行时长 =10min,紫外检测波段 =229nm在处理复杂的混合物时,分辨率 R 是一个特别重要的参数,因为它衡量了每一次分离的程度,并且可以被准确识别和量化。例如分辨率 R=1 表明了不理想的分离效果,两个峰本质上并没有分离,更高的分辨率数值代表了更好的分离效果。在实际运行过程中,分辨率 R 至少达到 1.5 才会被认为是分离的。表1 显示了不同色谱柱分离 TSO 时的分辨率 R。在转移至 SFC-50 制备时,选择 iBT 色谱柱,因为它有最佳的分离效果,最容易实现转移,进样量可大大提高。表1. 使用 Sepmatix 8x SFC 筛选时不同色谱柱的分辨率色谱柱RiADMPC1.23iCDMPC1.74iCDCPC4.68iBT14.47cADMPC6.20cCDMPC4.22使用 SFC-50 进行结果优化为了确定改性剂对 TSO 的影响,下列每一种改性剂都在等度条件下使用:PrepPure iBT, 8um, 250 x 10mm 色谱柱;甲醇,乙醇,异丙醇,乙腈 (见图2)。▲ 图2. 左上-甲醇,右上-乙醇,左下-异丙醇,右下-乙腈。流速 =20mL/min,改性剂含量 =25%,温度 =40℃,背压调节器 =150bar,进样量 =150μL甲醇(偶极矩参数= 5[4])在对映体有足够的峰距的情况下,仅在 3 分钟内分离 TSO。乙醇(偶极矩参数= 4[4])作为极性稍小的改性剂,分离所需时间略大于 3 min。异丙醇(偶极矩参数= 2.5[4])在不到 3.5 分钟的时间内分离 TSO,这是由于异丙醇的极性较小。乙腈(偶极矩参数= 8[4])在 2.25 分钟内最有效地分离 TSO。然而,甲醇被用作进一步实验的改性剂,因为它的窄峰宽和对称峰有望带来高进样量。此外,它比乙腈毒性更小,价格也更便宜。由于流动相中改性剂的含量会因极性变化而对分离产生影响,所以采用了不同的甲醇含量(见图3)。▲ 图3. 左上 20% 甲醇,右上 25% 甲醇,左下 30% 甲醇,右下 35% 甲醇。流速 = 20mL/min,,温度 =40℃,背压调节器 =150bar,进样量 =150μL流动相甲醇含量由 20% 连续增加到 35%,运行时间逐渐缩短。当改性剂含量为 35% 时,运行时间可以从大约 3.5 分钟缩短至约 2.5 分钟。不过分辨率有所降低,对映体的峰宽也降低了。因此,在进一步的实验中,改性剂的浓度被设定为 35%。每根色谱柱都有可达到最大效率或理论塔板数的固有最佳流速。如果流量减小或增大,则用非最佳分离塔板数进行分离。与液相色谱法相比,SFC 可以使用更高的流速,而分离塔板数不会大幅减少[5]。因此,图4显示了流速对分离效率的影响。▲ 图4. 左 20mL/min,右 30mL/min,改性剂 % = 35%,温度 = 40℃,背压调节器 =150bar,进样量 =150μL随着流量的增加,运行时间和峰宽进一步减小。运行时间从大约 2.5 分钟缩短至 2 分钟以内。根据样品的不同,温度和压力对组分的分离和保留的选择性有影响。因此,在 100 bar 和 150 bar 以及 40℃ 和 50℃ 范围内进行了 4 次实验(见图5)。可以看出,温度和压力的变化对各自的分离没有明显的影响。因此,叠层进样时,温度控制在 40℃,背压调节器控制在 150 bar。▲ 图5.左上 100bar 和 40℃,右上 150bar 和 40℃,左下100bar 和 50℃,右下 150bar 和 50℃。流速 = 30 mL/min,改进剂 %=35%,进样量 =150μL为了提高分离效率,增加 TSO 的浓度和进样量(150μL ~ 250 μL)(见图6左上)。在这些条件下,基线分离仍然是可行的。图6(右上和下)显示了在与单次进样图 6 左上相同的实验条件下,叠层进样时间为 0.97min,即每 0.97 分钟进样一次。在这种情况下,每次额外注入都节省了平衡时间,提高了产能。最终采用基于时间的方法收集馏分。每次进样的紫外信号都表明了该方法具有良好的再现性(图6右上)。垂直线表示收集相应馏分的时间窗口。▲ 图6. 左上 250μL (0.1909 g TSO 的 6mL 甲醇溶液),右上叠层进样 TSO 的紫外信号,下最后的色谱图。流速 = 30 mL/min,改进剂 %=35%,温度 =40℃,背压调节器=150bar,进样量 = 250μL,进样次数 = 10次6结论在文中,使用 Sepmatix 8x SFC 仪器进行以 TSO 为分析物的手性柱筛选,将最合适的手性色谱柱,转移到 Sepiatec SFC-50 仪器进行制备。每根手性柱对手性物质的反应都不同,这就是为什么在纯化过程之前必须进行筛选的原因,作为标准物质的 TSO 可以在许多不同的手性柱上分离。随后在 SFC-50 上放大,并利用制备柱对等度纯化的方法进行优化。结果表明,改性剂的选择、改性剂在流动相中的比例和流量对分离效果有较大影响。在这些特定条件下,温度和压力的变化对分离效果的影响不大。在一般情况下,这两个参数也可以改变以优化分离条件。7参考文献https://doi.org/10.1038/s41570-023-00476-zSUPERCRITICAL FLUID CHROMATOGRAPHY, Terry A. Berger, Agilent Technologies, Inc., 2015PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Laboratory Chromatography Guide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)http://dx.doi.org/10.1016/j.chroma.2012.10.005

信号调节器相关的方案

  • 工业PID调节器相比于可编程逻辑控制器PLC的几大优点
    针对控制领域内广泛使用的PID控制器和可编程逻辑控制器PLC,本文分析了具体应用中PID控制器的几大优点。PID调节器的优点主要体现在测控精度高、更强的控制功能、使用门槛低和操作简单、具有明了的可视化界面和节省成本。
  • 人凋亡信号调节激酶I(ASK-1)检测试剂盒
    人凋亡信号调节激酶I(ASK-1)检测试剂盒人凋亡信号调节激酶I(ASK-1)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人凋亡信号调节激酶I(ASK-1)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人凋亡信号调节激酶I(ASK-1)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人凋亡信号调节激酶I(ASK-1)抗原、生物素化的人凋亡信号调节激酶I(ASK-1)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人凋亡信号调节激酶I(ASK-1)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 次氯酸生产中的耐腐蚀流量调节阀和混合型PID控制器解决方案
    次氯酸作为是一种新型消毒剂,近年来广泛应用于医疗卫生机构、公共卫生场所和家庭的一般物体表面、医疗器械、医疗废物等。由于次氯酸的酸性和强氧化性,使得次氯酸生产制备过程中会给流量调节阀门带来腐蚀并影响寿命和控制精度,而且生产过程中的pH值及有效氯浓度较难准确控制。本文提出的解决方案一是采用强耐腐蚀的高速电动阀门来调节混合液体流量,二是采用具有混合控制功能的专用PID调节器,可实现直接根据测量的pH值或氯浓度来调节液体混合比例。

信号调节器相关的资料

信号调节器相关的试剂

信号调节器相关的论坛

  • 什么是荧光强度调节器?

    最近在给仪器做期间核查,下载了一个原子荧光计量的文件(JJG939-2009),里面提到一个静态信号模拟,需要将初始荧光值先调整到500左右,这个调整需要用到“荧光强度调节器”,话说是一个金属制品,可是我从来没有见到过,之前计量所来帮我们仪器计量时也没有用到这个玩意,我以前期间核查时,静态模拟,初始信号值是什么样就什么样(通常也就100左右),反正也操作得好好的(现在就不知道合不合适啦),所以就来向各位老师取取经啦,有用过或见过或听过的老师帮忙解决解决哈,先谢了!!

  • 【求助】视度调节器

    目镜上的视度调节器的作用是什么呢?应该是调节视度用的,视度是指观察范围么?前辈帮我扫盲啊,谢谢啦

信号调节器相关的耗材

  • 美国珀金埃尔默线路调节器N0777690
    用于电感耦合等离子体-发光光谱仪的线路调节器 美国PerkinElmer N9307519 线路调节器和UPS系统 珀金埃尔默/Powervar电能质量解决方案采用特定技术,确保敏感分析设备能够在日常和长期运行中实现最佳运行。电源干扰可能导致 质量问题,从而破坏仪器性能,损害用户信心。部件受损或性能下降、进程中断、缺乏可靠性——这些综合起来导致运行受阻、工作 计划中断并出现损失严重的停机。该问题是由反复出现的电源干扰——有些可以看见但更多情况下是看不见的——而引起的,并且年 复一年不停地威胁着你的设备运行。电源“干扰”就是你日复一日所用电源在质量方面出现的或大或小偏差。有些偏差来自于当地的 电力公司,但绝大多数偏差是你所在机构内的配电和使用情况而引起的。这些偏差包括高能量电压瞬变、骤升和骤降,电气噪音,共模电压以及熄灯时出现的电源断电。 线路调节器特点和优点 • 调节器提供120、208或240V的交流清洁电源,负荷可高达 62安培 • 双路输出信号能够以比安装两台调节器更少的成本和精力 保护高压系统负荷和低压外围设备 • 防止:高压浪涌,共模电压,电气噪声,电压骤升和电压 骤降,断电,交流频率不稳定,接地回路仪器型号原子吸收 说明 输入电压 频率(HZ) 部件编号 AAnalyst 100/200/300/400 520 VA 120 V 60 N9307504 PinAAcle 500/900 F 840 VA 120 V 60 N9307517 AAnalyst 100/200/300/400,PinAAcle 500/900 F 750 VA 220/230 V 50 N9307521 AAnalyst 600/800 5.8 kVA 208/240V 60 N9307511 AAnalyst 600/800 6.0 kVA 220/230 V 50 N9307523 AAnalyst 700 3.8 kVA 208/240 V 60 N9307509 AAnalyst 700 3.6 kVA 220/230 V 50 N9307522 PinAAcle 900 H/T/Z 5.8 kVA 208/240 V 60 N9307760 PinAAcle 900 H/T/Z 6.0 kVA 220/230 V 50 N9307523 PinAAcle 500/900 F 1440 VA 120 V 60 N9307503 PinAAcle 500/900 F 1500 VA 220/230 V 50 N9306752电感耦合等离子体-发光光谱仪Optima™ 2x00/4x00/5x00/7x00/8x00,Avio 200/500 3.8 kVA 208/240 V 60 N9307512 Optima 2x00/4x00/5x00/7x00/8x00,Avio 200/500 3.6 kVA 220/230 V 50 N9307522电感耦合等离子体-质谱仪 ELAN® 6x00/9000控制器一侧 3.8 kVA 208/240 V 60 N9307519 ELAN® 6x00/9000控制器一侧 3.6 kVA 220/230 V 50 N9307522 ELAN 6x00/9000射频发生器一侧 5.8 kVA 208/240 V 60 N9307511 ELAN 6x00/9000,NexION® 射频发生器一侧 6.0 kVA 220/230 V 50 N9307523 NexION 300/350/1000/2000 5.0 kVA 208/240 V 60 N0777690Titan MPS™ TITAN MPS 2.0 kVA 208/240 V 60 N9306758 TITAN MPS 2.0 kVA 220/230 V 50 N9306755
  • 美国PerkinElmer线路调节器N9307760
    美国PerkinElmer线路调节器N9307760 线路调节器和UPS系统 珀金埃尔默/Powervar电能质量解决方案采用特定技术,确保敏感分析设备能够在日常和长期运行中实现最佳运行。电源干扰可能导致 质量问题,从而破坏仪器性能,损害用户信心。部件受损或性能下降、进程中断、缺乏可靠性——这些综合起来导致运行受阻、工作 计划中断并出现损失严重的停机。该问题是由反复出现的电源干扰——有些可以看见但更多情况下是看不见的——而引起的,并且年 复一年不停地威胁着你的设备运行。电源“干扰”就是你日复一日所用电源在质量方面出现的或大或小偏差。有些偏差来自于当地的 电力公司,但绝大多数偏差是你所在机构内的配电和使用情况而引起的。这些偏差包括高能量电压瞬变、骤升和骤降,电气噪音,共模电压以及熄灯时出现的电源断电。 线路调节器特点和优点 • 调节器提供120、208或240V的交流清洁电源,负荷可高达 62安培 • 双路输出信号能够以比安装两台调节器更少的成本和精力 保护高压系统负荷和低压外围设备 • 防止:高压浪涌,共模电压,电气噪声,电压骤升和电压 骤降,断电,交流频率不稳定,接地回路仪器型号原子吸收 说明 输入电压 频率(HZ) 部件编号 AAnalyst 100/200/300/400 520 VA 120 V 60 N9307504 PinAAcle 500/900 F 840 VA 120 V 60 N9307517 AAnalyst 100/200/300/400,PinAAcle 500/900 F 750 VA 220/230 V 50 N9307521 AAnalyst 600/800 5.8 kVA 208/240V 60 N9307511 AAnalyst 600/800 6.0 kVA 220/230 V 50 N9307523 AAnalyst 700 3.8 kVA 208/240 V 60 N9307509 AAnalyst 700 3.6 kVA 220/230 V 50 N9307522 PinAAcle 900 H/T/Z 5.8 kVA 208/240 V 60 N9307760 PinAAcle 900 H/T/Z 6.0 kVA 220/230 V 50 N9307523 PinAAcle 500/900 F 1440 VA 120 V 60 N9307503 PinAAcle 500/900 F 1500 VA 220/230 V 50 N9306752电感耦合等离子体-发光光谱仪Optima™ 2x00/4x00/5x00/7x00/8x00,Avio 200/500 3.8 kVA 208/240 V 60 N9307512 Optima 2x00/4x00/5x00/7x00/8x00,Avio 200/500 3.6 kVA 220/230 V 50 N9307522电感耦合等离子体-质谱仪 ELAN® 6x00/9000控制器一侧 3.8 kVA 208/240 V 60 N9307519 ELAN® 6x00/9000控制器一侧 3.6 kVA 220/230 V 50 N9307522 ELAN 6x00/9000射频发生器一侧 5.8 kVA 208/240 V 60 N9307511 ELAN 6x00/9000,NexION® 射频发生器一侧 6.0 kVA 220/230 V 50 N9307523 NexION 300/350/1000/2000 5.0 kVA 208/240 V 60 N0777690Titan MPS™ TITAN MPS 2.0 kVA 208/240 V 60 N9306758 TITAN MPS 2.0 kVA 220/230 V 50 N9306755
  • 美国PerkinElmer线路调节器N9307760
    美国PerkinElmer线路调节器N9307760 线路调节器和UPS系统 珀金埃尔默/Powervar电能质量解决方案采用特定技术,确保敏感分析设备能够在日常和长期运行中实现最佳运行。电源干扰可能导致 质量问题,从而破坏仪器性能,损害用户信心。部件受损或性能下降、进程中断、缺乏可靠性——这些综合起来导致运行受阻、工作 计划中断并出现损失严重的停机。该问题是由反复出现的电源干扰——有些可以看见但更多情况下是看不见的——而引起的,并且年 复一年不停地威胁着你的设备运行。电源“干扰”就是你日复一日所用电源在质量方面出现的或大或小偏差。有些偏差来自于当地的 电力公司,但绝大多数偏差是你所在机构内的配电和使用情况而引起的。这些偏差包括高能量电压瞬变、骤升和骤降,电气噪音,共模电压以及熄灯时出现的电源断电。 线路调节器特点和优点 • 调节器提供120、208或240V的交流清洁电源,负荷可高达 62安培 • 双路输出信号能够以比安装两台调节器更少的成本和精力 保护高压系统负荷和低压外围设备 • 防止:高压浪涌,共模电压,电气噪声,电压骤升和电压 骤降,断电,交流频率不稳定,接地回路仪器型号原子吸收 说明 输入电压 频率(HZ) 部件编号 AAnalyst 100/200/300/400 520 VA 120 V 60 N9307504 PinAAcle 500/900 F 840 VA 120 V 60 N9307517 AAnalyst 100/200/300/400,PinAAcle 500/900 F 750 VA 220/230 V 50 N9307521 AAnalyst 600/800 5.8 kVA 208/240V 60 N9307511 AAnalyst 600/800 6.0 kVA 220/230 V 50 N9307523 AAnalyst 700 3.8 kVA 208/240 V 60 N9307509 AAnalyst 700 3.6 kVA 220/230 V 50 N9307522 PinAAcle 900 H/T/Z 5.8 kVA 208/240 V 60 N9307760 PinAAcle 900 H/T/Z 6.0 kVA 220/230 V 50 N9307523 PinAAcle 500/900 F 1440 VA 120 V 60 N9307503 PinAAcle 500/900 F 1500 VA 220/230 V 50 N9306752电感耦合等离子体-发光光谱仪Optima™ 2x00/4x00/5x00/7x00/8x00,Avio 200/500 3.8 kVA 208/240 V 60 N9307512 Optima 2x00/4x00/5x00/7x00/8x00,Avio 200/500 3.6 kVA 220/230 V 50 N9307522电感耦合等离子体-质谱仪 ELAN® 6x00/9000控制器一侧 3.8 kVA 208/240 V 60 N9307519 ELAN® 6x00/9000控制器一侧 3.6 kVA 220/230 V 50 N9307522 ELAN 6x00/9000射频发生器一侧 5.8 kVA 208/240 V 60 N9307511 ELAN 6x00/9000,NexION® 射频发生器一侧 6.0 kVA 220/230 V 50 N9307523 NexION 300/350/1000/2000 5.0 kVA 208/240 V 60 N0777690Titan MPS™ TITAN MPS 2.0 kVA 208/240 V 60 N9306758 TITAN MPS 2.0 kVA 220/230 V 50 N9306755
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制