当前位置: 仪器信息网 > 行业主题 > >

基恩斯光纤

仪器信息网基恩斯光纤专题为您提供2024年最新基恩斯光纤价格报价、厂家品牌的相关信息, 包括基恩斯光纤参数、型号等,不管是国产,还是进口品牌的基恩斯光纤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基恩斯光纤相关的耗材配件、试剂标物,还有基恩斯光纤相关的最新资讯、资料,以及基恩斯光纤相关的解决方案。

基恩斯光纤相关的资讯

  • 基恩士荣膺福布斯全球创新企业17位排名
    基恩士在《福布斯》最新发布的“全球最具创新能力企业”排行榜位列第17位近日,《福布斯》评出了“全球最具创新能力企业”,在此排行榜中基恩士(KEYENCE)位列第17位。*创新溢价是投资人基于企业未来创新成果(新产品、服务及市场)预期,而在股价上反映出的高于企业现有价值基础的溢价衡量标准。上榜企业必须拥有100亿美元市值、在研发领域的支出至少达到企业资产的1%,且拥有7年公开数据。http://www.forbes.com/special-features/innovative-companies-list.html基恩士(KEYENCE)独特之处直销经营 基恩士独特的经营理念或者运营模式来说,其实就是直销经营。 从短期来看渠道或者代理商的方式扩展可能会比较快,但基恩士知道有这样的劣势,但还是要坚持直销经营,是因为基恩士始终在心里把客户的满足度放在最至上。因为只有跟客户面对面咨询,了解客户的困难和要求,帮客户选择最适合的产品,这样客户对我们的产品和公司才会最满意。 基恩士在全世界范围内聘请大量销售工程师,可以提供现场演示或测试等服务。通过这种直销经营,我们能够在客户业务的每个环节(从设计与研究阶段到生产线等等)满足其生产需要。这些训练有素的工程师能够帮您解决问题点。他们可以使用测试机在客户的现场提供真实解决方案之外还可以提供潜在的更先进的改善方案。优越的技术 基恩士是创新与供应最前沿、最高质量的自动化与制造技术的世界领先者。我们有很多世界首发,最先端的产品,我们拥有这样的技术开发的能力,这一点正是我们最强的优势。基恩士新产品的销售额持续占总销售额的30%,表明我们在开发新产品与快速响应客户需要方面具备出色的能力。基恩士的世界首创史1974年 以Lead Electic Co.Ltd 之名成立公司 1975年 开发高精度接近传感器 1983年 开发光纤光dian3c传感器 1986年 开发第一款光电传感器,将激光二极管用作光源, 改名为KENENCE Corporation,源自KEY of sciENCE(科学之钥匙) 1989年 开发超小型条码读取器 1990年 开发带内置监视器的显微镜 1995年 开发世界上最小的影像系统 1997年 开发世界上第一款 数码光纤光电传感器 1997年 开发世界上第一台自动对焦彩色激光显微镜 2000年 开发世界上第一台有数码聚焦功能的显微镜 2002年 开发高清/高精度机器影像系统 2004年 开发业界最快的应用PLC 2005年 开发新一代可以测量三维真实表面的数码显微镜 2006年 开发世界上第一款三维激光刻印机 2007年 开发世界上第一款CMOS激光传感器 开发具备世界最快的实时景 合成与三维分析功能的5400万像素数码显微镜。 2008年 开发业界第一个具备高速放大动态捕获功能的显微镜。 2009年 新开发的显微系统具有世界首创的实时2D/3D图像连接功能。新开发的高速精度图像尺寸测量系统。 2010年 世界首创拥有最高性能和最简捷操作的新概念光纤传感器 点击进入基恩士官方网站
  • 清华团队:基于多模光纤模式色散和深度学习的高速全光纤化成像技术
    多模光纤成像技术因其超细微型探头和柔性结构带来的灵活性优势,在生物体内成像、工业检测等领域具有广阔的应用前景,获得了业界广泛的关注。目前,多模光纤成像技术主要分为两类,一类通过在光纤远端产生聚焦点进行扫描成像,另一类通过探测光纤近端的散斑场来恢复光纤远端被探测的全场图像。这两种技术途径已有较完善的理论支撑,能得到较清晰的探测图像,但同时也具有一些难以弥补的劣势。例如:受限于空间光调制器、CCD或CMOS器件的刷新速度,成像帧率较低,难以对高速的事件进行成像;结构中包含自由空间光学元件,因此需要精密的光学对准,无法与传像主体集成实现全光纤化,限制了其应用范围;成像波长受限于CCD或CMOS器件的感光光谱范围,限制了其在红外波段的成像能力。上图 高速多模光纤成像系统示意图。a:实验原理图;b:以神经网络进行图像恢复的流程图;c:光纤探头示意图;d:照明光(黄色箭头)侧面注入探测光纤的示意图,信号光(红色箭头)在纤芯中传播;e:探测光纤远端照片,端面通过烧球来更好地聚焦照明光,比例尺500微米。为此,清华大学精密仪器系先进激光技术研究团队基于十多年来在光纤激光器、光纤器件和光纤传感的技术积累,提出了基于多模光纤模式色散和深度学习的高速全光纤化成像技术。该技术采用皮秒脉冲光纤激光照明被测物,利用多模光纤的模间色散特性将被探测图像的空间信息在时域上展开,时域信息通过单像素探测器进行探测,并借助神经网络训练的方法,由一维时域信息恢复出二维图像信息,整体结构和原理如图1所示。图2 被探测图像与其对应的波形和恢复结果该技术通过一个光纤侧面耦合器将皮秒脉冲光纤激光耦合到探测光纤中,然后从光纤的远端出射照到物体上,反射光进入探测光纤后紧接着进入与之连接的一公里长的50/125微米直径多模阶跃光纤中传播。由于模间色散的存在,进入多模光纤的脉冲光会产生分裂形成脉冲串。如图2所示,不同的光纤横模具有不同的群速度,因此在时域上会彼此分离,而这些横模包含了被探测图像的空间信息,通过模式色散便可将被探测物体的空域信息在时域上展开。图3 不同类型图案的成像效果通过超快光电探测器可以获得脉冲串波形,经神经网络模型进行训练后,可以直接从不同的脉冲波形中恢复出被探测图像。图3展示了来自不同数据库中图案的成像效果。该系统的成像帧率主要取决于脉冲光的重频,目前实验中已实现高达15.4Mfps帧率的成像,并实验验证了达到53.5Mfps帧率的可行性。系统在高帧率成像的同时具备连续采集一万帧图像(大帧深)的能力。如果采用重复频率更高的激光照明源,并搭配更快的光电探测器和时域波形采集设备,其帧率可以持续提升。团队所提出的新技术的突出优点是:帧率主要由脉冲光源的重频决定,成像帧率高;全光纤化的系统结构紧凑,细如发丝的探头大大增加了灵活性;单像素成像,探测波段不再受限于可见光,可扩展到近红外、甚至中波红外等其他波段;采集时域信号而非空间分布,抗干扰能力强。该系统在某些高速成像场景中比如体内高速细胞成像,或工业场景下对难以开放系统的内部高速成像检测等领域具有巨大应用潜力。该研究成果近日以“深度学习赋能全光纤高速图像探测”(All-fiber high-speed image detection enabled by deep learning)为题,发表在《自然通讯》(Nature Communications)上。该论文通讯作者为清华大学精密仪器系副教授肖起榕,第一作者为精密仪器系2018级博士生刘洲天。该研究得到了国家自然科学基金资助。 清华大学精密仪器系先进激光技术研究团队学术带头人为系主任、教授柳强,团队以现代化强国建设与国家重大需求为导向,着眼于光电子技术领域的科学与技术发展前沿,围绕固体激光、光纤光学、自适应光学、激光探测等方向,开展基础科学探索、应用基础研究和系统技术研发,全面覆盖高功率激光光源、光束控制、光电探测等技术领域。团队承担国家科技重大专项、国家重点研发计划、“973”计划、“863”计划、重点验证、专项配套型号研究等一系列重大项目,形成了从高功率激光光源到微弱光电信号测控的整套技术链条,具备完整的激光光电和测控技术能力,在相应研究方面取得了重要进展。2018年获批建设光子测控技术教育部重点实验室,2019年入选重点领域科技创新团队。
  • 我国随机光纤激光研究成果入选2014年全球光学重要进展
    电子科技大学饶云江教授(杰出青年基金获得者、OSA/SPIE Fellow)团队、国防科技大学周朴研究员(优秀青年基金获得者)团队在国家自然科学基金重大项目课题(61290312)与青年基金项目(61205048)支持下,在随机光纤激光器领域取得突破性研究进展,相关成果入选由美国光学学会(OSA:Optical Society of America)组织评选的2014年全球光学重要进展。近日,该学会旗舰杂志《Optics & Photonics News》(OPN)2014年12月专刊《Optics in 2014》以&ldquo Random Fiber Laser: Simpler and Brighter&rdquo 为题对该成果进行了亮点报道。  OPN每年年末会出版一期专刊,以亮点形式报导由OSA评选出的该年度全球光学领域最突出的30项研究成果。今年参与竞争的成果数量达到了创纪录的200项(包括为数众多的发表在Nature及其子刊上的成果),竞争十分激烈。随机光纤激光器是今年中国大陆作为第一单位入选的两个成果之一,也是OPN历史上中国大陆第二次入选(上一次在2008年),这次成果入选显著提升了我国在光学和光子学领域的国际影响力,标志着我国光纤随机激光器的研究已经步入国际一流行列。  该研究成果主要来自上述两个科研团队2014年发表在《IEEE Journal of Selected Topics in Quantum Electronics(JSTQE)》和《Laser Physics Letters(LPL)》发表的学术论文。两篇论文的第一作者分别为王子南副教授、博士生张汉伟。JSTQE论文首次提出了实现高功率光纤激光器的新思路,实现了结构更简单、性能更稳定、光转换效率更高的连续随机光纤激光器 LPL论文实验展示了基于标准通信光纤的高功率光纤随机激光器,创造了随机光纤激光器输出功率的世界纪录。  上述工作为实现新一代高功率光纤激光器开辟了一个新的研究方向。  光纤随机激光器相比传统光纤激光器最大的不同之处在于无需腔镜,具有波长可调、结构简单、转换效率高、可靠性高、功率可定标放大等突出优点,有望形成新一代的无纵模高功率光纤激光器,在光纤传感、光纤通信、3D打印、激光手术、激光成像、高能激光等多个领域具有重大应用价值。  注:  Optics in 2014专刊链接:http://www.osa-opn.org/home/articles/volume_25/december_2014/features/optics_in_2014/#.VH6iKHExiV8  IEEE JSTQE论文链接:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6868231&tag=1  IOP LPL论文链接:http://iopscience.iop.org/1612-202X/11/7/075104
  • 我国随机光纤激光研究成果入选2014年全球光学重要进展
    电子科技大学饶云江教授(杰出青年基金获得者、OSA/SPIE Fellow)团队、国防科技大学周朴研究员(优秀青年基金获得者)团队在国家自然科学基金重大项目课题(61290312)与青年基金项目(61205048)支持下,在随机光纤激光器领域取得突破性研究进展,相关成果入选由美国光学学会(OSA:Optical Society of America)组织评选的2014年全球光学重要进展。近日,该学会旗舰杂志《Optics & Photonics News》(OPN)2014年12月专刊《Optics in 2014》以&ldquo Random Fiber Laser: Simpler and Brighter&rdquo 为题对该成果进行了亮点报道。  OPN每年年末会出版一期专刊,以亮点形式报导由OSA评选出的该年度全球光学领域最突出的30项研究成果。今年参与竞争的成果数量达到了创纪录的200项(包括为数众多的发表在Nature及其子刊上的成果),竞争十分激烈。随机光纤激光器是今年中国大陆作为第一单位入选的两个成果之一,也是OPN历史上中国大陆第二次入选(上一次在2008年),这次成果入选显著提升了我国在光学和光子学领域的国际影响力,标志着我国光纤随机激光器的研究已经步入国际一流行列。  该研究成果主要来自上述两个科研团队2014年发表在《IEEE Journal of Selected Topics in Quantum Electronics(JSTQE)》和《Laser Physics Letters(LPL)》发表的学术论文。两篇论文的第一作者分别为王子南副教授、博士生张汉伟。JSTQE论文首次提出了实现高功率光纤激光器的新思路,实现了结构更简单、性能更稳定、光转换效率更高的连续随机光纤激光器 LPL论文实验展示了基于标准通信光纤的高功率光纤随机激光器,创造了随机光纤激光器输出功率的世界纪录。  上述工作为实现新一代高功率光纤激光器开辟了一个新的研究方向。  光纤随机激光器相比传统光纤激光器最大的不同之处在于无需腔镜,具有波长可调、结构简单、转换效率高、可靠性高、功率可定标放大等突出优点,有望形成新一代的无纵模高功率光纤激光器,在光纤传感、光纤通信、3D打印、激光手术、激光成像、高能激光等多个领域具有重大应用价值。  注:  Optics in 2014专刊链接:http://www.osa-opn.org/home/articles/volume_25/december_2014/features/optics_in_2014/#.VH6iKHExiV8  IEEE JSTQE论文链接:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6868231&tag=1  IOP LPL论文链接:http://iopscience.iop.org/1612-202X/11/7/075104
  • 国家级塑料光纤工程实验室在四川崇州建成
    崇州市工业集中开发区内,国内唯一一家国家级塑料光纤工程实验室正式挂牌。据悉,这是由四川汇源塑料光纤有限公司创立的“塑料光纤制备与应用技术”国家地方联合工程实验室。该实验室的创立,标志着中国塑料光纤科研力量正式迈进国际最高端的塑料光纤应用领域,为中国塑料光纤产业技术升级,广泛应用于汽车、飞机、工业设备、传感器、消费电子设备与国防等高端应用领域打下了坚实的研究与产业化基础。  打破高端应用领域技术空白  随着近几年中国通信事业的飞速发展,塑料光纤在装饰照明、消费电子产品、交通工具、工业设备以及国防建设中得到大量应用,并推动着塑料光纤通信系统逐渐成为短距离通信的主流技术。宝马公司已在其最新产品中使用塑料光纤作为车载多媒体通信网络和控制系统的通信媒介。  在国外,塑料光纤的应用开发已取得了重大的成果,且不断在加大新的应用研究投入,但是目前在国内的发展还存在着诸多的技术瓶颈。据中国工程院院士、教授李乐民分析,“经过近10年的努力,国内塑料光纤研发生产单位,特别是四川汇源塑料光纤公司,在低损耗塑料光纤产品的产业化方面,已经取得技术突破,并且赶上了国际先进水平。但是技术研究与国际相比,差距非常巨大。国际上在汽车、飞机、工业设备上应用已经非常广泛,而中国在高端应用领域的产品技术基本为零。研究应用于各种专业领域的塑料光纤通信系统及其配套器件产品,对中国整个科研界与工业界来说,具有非常重要的意义与紧迫性。”  两三年追赶世界先进水平  此次国家级塑料光纤工程实验室的创立,正是为了解决这些具体的应用技术问题。据汇源塑料光纤公司技术总监储九荣介绍,依托四川汇源塑料光纤有限公司自身的塑料光纤产业优势,结合工程实验室数十位权威专家学者的知识力量,我国的塑料光纤产业就像插上了一双隐形的翅膀,在2-3年内就会取得新的技术突破,很快就可以追赶上世界先进水平。  据透露,为下一步的发展,汇源塑料光纤公司将投资3000万元兴建国家工程实验室研发大楼、建设产业化基地。在完成制订通信用塑料光纤和塑料光缆两项国家通信行业标准的基础上,工程实验室正在规划制订应用于汽车、飞机、火车、工业设备、消费电子等各个领域的塑料光纤通信系统相关的国家标准,打造、规范中国塑料光纤短距离通信产业。  同时,四川汇源计划在2013年投资基于塑料光纤的汽车多媒体系统技术与产品,初期目标产能10万套,年销售额可达5亿元。中远期目标实现销售50亿元。
  • 光纤照明系统应用于空间站舱内的分析探讨
    光纤照明系统应用于空间站舱内的分析探讨引言:照明系统是空间站内一个重要的子系统,配套舒适的照明能为航天员的舱内生活、作业提供良好的照明环境,保障航天员的人身安全。同时,照明的功耗控制也对整个航天任务的顺利实施起到重要作用。目前绝大多数空间照明系统的供电来源于太阳能电池阵/蓄电池供电系统。在航天器光照区,通过太阳能电池的光伏效应把太阳能转换为直流电能供给负载,并将部分电能转化为化学能储存于蓄电池组中。当航天器进入地球阴影区时,则由蓄电池通过控制单元中的调节装置向负载供电。太阳能电池主要时基于光电转换实现的,其基本原理是利用电池将收集到的光能根据一定的原理转化成为可以直接使用或者可以储存的电能,目前太阳能电池的转换效率一般在10%-20%之间。当前这种技术的应用范围很广阔,但其局限性是如何提高这种光能向电能转换的效率。近年来,虽然越来越多的飞行器开始采用功率较低、性能更优的LED光源代替传统的荧光灯,但是长时间不间断的照明仍会产生较大的功耗。为了充分利用太阳光以达到节约资源的目的,基于地面上应用的光纤照明系统,提出了一种应用于空间照明的太阳能光纤照明方案,直接利用太阳光进行舱内照明。图1.空间站内的照明系统一、光纤照明可行性分析以位于赤道上空35860 Km的同步轨道为例,卫星绕地球一周的时间为23 h 56 min 4 s,与地球自转周期相同,卫星相对地球来说是静止的,一年中仅在春分和秋分前后45天,而且每天最多只有72 min被地球遮挡,其余时间内,卫星可受到太阳光的连续照射。和地面相比,用同样的面积的太阳能电池板,在同步轨道可获得6-11倍的太阳能。如果卫星处于圆形日心轨道,则不存在地球遮挡时间。如果我们能充分利用这段时间的太阳光直接进行照明,将大大节省飞船的照明用电,因此分析和探讨光纤照明系统在飞船和空间站内的应用是非常有意义的。事实上,早在1995年,美国物理科学公司和道格拉斯宇航公司在NASA的资助下,就曾对太阳光照明系统进行过相关的研究。当时这个系统是作为空间材料处理实验的热源为另一个项目研制的,将其中一部分用于空间植物照明实验。这一系统主要包括了可自主聚光镜、次级聚光镜、光纤、植物照明器和检测仪器,效率约为32%,通过采用高效率部件,系统效率可达到65%,其聚光比为1000-75000。由此可见,太阳光光纤照明系统有望于应用于未来的空间站照明。图2.空间站内的收光系统二、空间光纤照明系统关键技术典型的光纤照明系统主要由聚光装置、光纤束、末端发光装置以及辅助装置等部分组成。其中光纤束及光线跳线作为重要的组成部分,起到了光线传输何承载的重要作用。我们提供各种光纤束,并根据要求为客户定制各种光纤束。可选的标准接口及护套铠甲。40,000小时不间断测试实验表明我们光纤束可以长期保持透过率稳定。 此外,传统的光纤束均采用环氧胶来交合光纤,这一方式使光纤束的传输效率变低,我们PowerLightGuide FUSED-END BUNDLES 抗紫外光纤束(Optran UVNS光纤)则采用输入端熔融工艺从而减小光纤间的空隙,极大的提供光纤束的透过效率。在保持光纤的NA不变的情况下,PowerLightGuide FUSED-END BUNDLES传输效率提高50%。因为不含任何环氧胶,PowerLightGuide FUSED-END BUNDLES在摄氏1500度的情况下依然可以正常工作。PowerLightGuide FUSED-END BUNDLES(光纤束,光纤光导管)相对于传统的液芯光导管(Liquid Light Guide,液芯光纤)有着极大的优势,主要包括以下几点: 1.PowerLightGuide FUSED-END BUNDLES在160~1200nm范围内提供极高的透过率, 2. PowerLightGuide FUSED-END BUNDLES长度不想液芯光纤一样受限制, 3. PowerLightGuide FUSED-END BUNDLES的传导性能不会随时间而退化。 主要应用:工业及科学方面: 替换 UV液芯光纤光谱学 传感器 紫外光刻 激光焊接/锡焊/打标 激光能量传送 核等离子体诊断 分析仪器 激光二极管尾纤 Thomson散射 紫外照明及监测 紫外拉曼光谱 紫外固化 超高温应用医疗方面: 医疗诊断 激光传输 光动力疗法 医学治疗高精度定制型光纤束-昊量光电 (auniontech.com)系统的工作原理:聚光装置将入射的太阳光进行会聚,会聚后的太阳光通过光纤束传输到任何需要照明的场所,再通过合理的配光设计使传输过来的太阳光均匀地散射出去。当无太阳光照射或太阳光不足时,利用辅助照明装置进行补充照明,以保证高质量的照明环境。太阳光光纤照明系统应用于空间照明的关键技术为:聚光装置的设计;聚光装置与光纤的耦合;末端发光装置的设计;辅助照明装置的设计。研究上述应用的技术难点,将对光纤照明系统应用于空间照明并节约照明功耗具有很大作用。同时,对空间站照明的研究,也可以将其技术应用在空间植物的培养方面,未来随着人们对宇宙空间的不停探索,光纤照明将不仅仅 限于空间站的生活照明,同样可以应用在空间站内植物培养照明,为人类能够探索更遥远的宇宙提供可能性。结语:目前,地面上的太阳光光纤照明系统与传统照明技术的有机结合使得太阳能被广泛的应用,大大的节约了照明供电系统的资源和成本,具有较高的学术价值和重要的应用价值。而且,国内外关于太阳光照明与传统照明结合的性能更优的系统和新装置不断被研制出来,各国科研人员对太阳光光纤照明实用系统的开发研究正在进一步深入,各种新方案、新器件不断被运用到系统的设计和制作当中,太阳光光纤照明系统将是未来照明的一个大趋势。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 富科思光纤药物溶出度实时测定仪编入《国家药典》
    一个企业,用五年的时间搞研发,在这期间企业没有一分钱的销售收入,却陆续投入了将近一千万元研发资金,最终成为了市场上的赢家,这就是新疆富科思生物技术发展有限公司(简称富科思)创造的神话。  2009年12月29日,记者采访了该公司副总经理吴坚,了解到富科思背后的故事。  联姻:近水楼台先得月  2002年,对于富科思来说是不寻常的一年。  这一年,新疆医科大学专家陈坚、李新霞等科研人员研制出光纤药物溶出度实时测定仪。这个仪器的诞生,成为检验药物的划时代变革。  吴坚介绍,过去检测药物的溶出度和释放度主要依靠手动的检验仪器。质检人员要经过复杂的检测程序,花费大量时间,才能检测出一片药剂的药物溶出度和释放度。  光纤药物溶出度实时测定仪却可以同时测6片药剂,药剂一旦投入检测仪中,检测仪就会自动操作,检测过程中,与测定仪连接计算机会实时显示药物在每一个时段的曲线变化,几秒钟就能打印出数据分析报告。别小看了这份曲线图,药物的工艺是否合格,溶出与释放是否达到要求,质检人员都依靠这份曲线图进行判断。  对于这样好的科研成果,自治区科技厅急于给其找到一个好“婆家”。  自治区科技厅想到了新疆驰达电气发展有限公司(简称驰达),该公司主要致力于电表等仪器制造,它在仪器制造方面颇有实力。  吴坚说,自治区科技厅给光纤药物溶出度实时测定仪找“婆家”时,还有一个小插曲。当时还有上海的一家资质雄厚的企业也看好这个科研成果,也想做这个项目,但是自治区科技厅考虑这是咱们新疆的科研成果,如果在本地生产能促进新疆企业的发展。于是新疆医科大学与驰达结下了“姻缘”。吴坚开玩笑地说,我们占了“近水楼台先得月”的便宜了。  蓄势:资金雄厚保研发  为了专门研制光纤药物溶出度实时测定仪,驰达迅速抽调公司技术和管理骨干,投入资金300万元成立了现在的富科思。同时,企业花费20万元,获得了光纤药物溶出度实时测定仪的专利权。  但有了专利权并不能马上进行工厂化生产,因为它毕竟只是实验室成果,和产业化生产还有很大距离,这也成为专家们的又一新的研究课题。  企业要生存,就必须要见效益。尽管如此,富科思却并不急于冲进市场。吴坚说,“我们头五年没有一分钱的收入,相反,每年公司都投入大量的资金用于研发。”据介绍,五年来该公司相继投入近1000万元,用于光纤药物溶出度实时测定仪的工厂化生产研制。  五年的时间,富科思除了不断投入资金,还承担“十一五”国家科技重点支撑项目、国家科技型中小企业技术创新基金资助项目、自治区科技型中小企业技术创新基金资助项目等多项科技攻关项目。这些项目的实施,不断完善了光纤药物溶出度实时测定仪,将实验成果变成了产品,进一步实现了产业化进程。  吴坚说:“这其中有自治区科技厅、自治区信息产业厅等单位的大力支持,他们的支持是我们的动力。”  五年的日日夜夜,富科思在员工们不断的努力,不断的研发中发展壮大。  现在公司拥有1000余平方米的中试车间,建成年生产能力200台的流水线。  试水:厚积薄发创佳绩  从2007年成功实现产品化到2009年,富科思的销售收入逐年递增。  2007年,该企业生产的光纤药物溶出度实时测定仪销售了20台,实现销售收入424.2万元,利润232.9万元 2008年销售仪器32台,实现销售收入720万元,利润368.2万元。2009年,该公司再次销售30余台仪器。目前,该仪器已被应用于国内多家省市级药品检验所和军队后勤系统药检所。  在销售仪器时,企业动了许多心思。  该企业当年成产了20余台仪器,每台的市场价定在30余万元。昂贵的价格使许多客户望而却步,为了能消除客户的疑虑,富科思总经理刘欢决定,公司生产的20余台仪器提供给北京、江苏、上海、广州等较为发达的省市药检所免费试用,一年后再谈销售。这种销售方式,让90%的客户折服。  吴坚说:“光纤药物溶出度实时测定仪2010年将编入中国《国家药典》,成为药物质量的标准检测仪器,富科思公司生产的产品市场前景更加广阔。全国有上千家制药厂,上百家质检所,这些单位都要有药物检测仪器。有了这样的市场预期,我们注定会成为市场的大赢家。”(新疆科技报) 富科思公司研发的药物溶出度分析仪为国内首创  2006年底,新疆富科思生物技术发展有限公司技术总监陈坚从北京带回好消息:富科思作为西北地区唯一中标“十一五”国家科技支撑计划重大项目课题的单位,获得了科技部210万元资金支持。  2002年,新疆弛达电器发展有限公司同新疆医科大学产学研相结合,成立高科技企业——新疆富科思生物技术发展有限公司。公司成立后,经过技术总监、新疆医科大学博士生导师陈坚教授和科研人员的共同努力,成功研发了具有自主知识产权、光机电一体化的“光纤传感药物溶出度分析仪”。  陈坚告诉记者,“光纤传感药物溶出度分析仪”是一种快速检测药物、食品安全的精密仪器,对含“苏丹红”、“孔雀绿”的问题食品、假冒伪劣药品等都可快速检测。可用于药检、商检、刑侦等机构进行药物制剂的药品标准分析、仲裁检验和现场快速检验,药物品种真伪鉴别,毒物分析等 可用于医药及化学工业,进行药物生产工艺考察,新药研发的生物等小型研究,生产过程中间体、杂质及产品的现场检测,药物稳定性研究等 还可用于药学和临床医学教学和科研机构,进行药物配方筛选和新药研发,化学动力学、光或酶催化动力学等研究。2005年8月15日,国家药典委员会专家检测鉴定认为:该仪器为国内首创,技术性能水平与国际先进同步。专家们惊呼:“没想到新疆能把这样的精密仪器研发出来。”  2006年9月7日,国家药典委员会通过了仪器的国家药检行业准入鉴定,认定为国家药物检测标准仪器。  陈坚教授介绍说,项目实施期内计划产业化生产销售80台,到项目完成的2008年12月,实现销售收入2735万元,利润1084万元,缴税总额656万元。项目完成后2年达到标准生产能力,以每年150台的规模进行生产销售,3年中可累计实现销售收入12991万元,利润5042万元,缴税总额3098万元。经多家单位调研,该仪器国内市场需求近5000台,按市场售价每台40万元、市场占有率50%计算。(中国新闻网)
  • 爱万提斯:2018推出名片大小的微型光纤光谱仪
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/6a0406ca-f6ff-46f5-803d-219f94895bf3.jpg" title="Avantes.jpg"//pp  荷兰Avantes公司是世界上微型光纤光谱仪的领导者之一,Avantes公司在科研、工业和OEM领域有着超过20年的丰富经验,并可以为客户提供定制光谱仪服务。Avantes公司的光谱仪由于其出色的时序控制能力而被广大LIBS客户所采用。/pp  应用领域:煤质分析、矿物分析、土壤分析、宝石鉴定、环境检测等。/pp strong 冶金分析AvaLIBS全配置系统(2017年上市)/strong/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/1529d53e-83b1-4510-ac32-c0f3ec3d6056.jpg" style="width: 200px height: 137px " title="AvaLIBS全配置系统(2017年上市)1.jpg" width="200" height="137" border="0" hspace="0" vspace="0"/img src="http://img1.17img.cn/17img/images/201806/insimg/035f9337-64ee-44df-be68-3714f9632cd9.jpg" title="AvaLIBS全配置系统(2017年上市)2.jpg" width="200" height="147" border="0" hspace="0" vspace="0" style="width: 200px height: 147px "/img src="http://img1.17img.cn/17img/images/201806/insimg/c8ad5002-5b8d-4d37-8ef0-03a50afdf916.jpg" title="AvaLIBS全配置系统(2017年上市)3.jpg" width="200" height="132" border="0" hspace="0" vspace="0" style="width: 200px height: 132px "//pp  AvaLIBS全配置系统包括激光器、光谱仪、样品室、采样及分析软件,客户可以方便地利用LIBS技术进行样品分析工作。br//pp  strongAvaSpec多通道光谱仪——科研用LIBS光谱仪(2016年上市)/strong/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/bbfb6fed-304d-4e76-838a-1af39723215d.jpg" title="AvaSpec多通道光谱仪——科研用LIBS光谱仪(2016年上市).jpg" width="250" height="182" border="0" hspace="0" vspace="0" style="width: 250px height: 182px "//ppbr//pp  AvaSpec多通道光谱仪,由仪器主板上的微处理器控制,使得不同通道间可以实现同步采样,非常适合于既需要宽波长范围又需要高分辨率的LIBS科研工作。/pp  strongAvaSpec-Mini4096CL——OEM用光谱仪(2018年上市)/strong/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/cb9d6933-af19-4470-9231-732e4937d1b0.jpg" title="AvaSpec-Mini4096CL——OEM用光谱仪(2018年上市).jpg"//ppbr//pp  全新一代AvaSpec-Mini微型光纤光谱仪,使用CMOS探测器和全新的电路设计。采用自动化平台生产,产品一致性更加出众,生产效率进一步提升。名片大小的体积,非常适合手持设备开发。/pp  l 优秀的热稳定性/pp  l CMOS技术,更加精准的时序控制/pp  l 4096像素搭配灵敏度增强透镜,兼顾灵敏度与分辨率/pp  l 完善的二次开发支持,适用于手持设备开发/ppbr//p
  • 梅特勒托利多第四代光纤探头全新上市
    梅特勒托利多推出第四代光学界面全新设计的AgX光纤探头DS系列。DS系列性能优异,使用方便,能灵活与ReactIR™ 和MonARC™ 系统连接,在化学反应体系中进行原位测量,提供有价值的信息帮助化学家进行定量和定性分析。  DS系列卤化银 (AgX) 光纤探头有以下优点:  • 无需光路调准,即插即用  • 可选钻石和硅,氧化锆或者硫化锌ATR传感器  • 配合用户需求,提供多种尺寸  • 适用于多种化学反应条件,低温、高压、气相等  • 整合RTD监测器进行原位实时温度测量  更多信息,请登入www.mt.com/autochem  梅特勒托利多中国
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。  径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。  该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。  此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 天津大学新技术提高光纤应变传感器灵敏度
    天津大学精密仪器与光电子技术学院教授李恩邦研究发现一种新技术构成的光纤应变传感器,具有灵敏度高且对温度变化不敏感等特点。  光纤应变传感器是世界上应用广泛的传感器类型,具有许多电传感器不可比拟的优点,对于保障大型设施安全、防止恶性和灾难性事故发生具有非常重要的意义。  李恩邦的研究成果已发表在《应用物理快报》上,英国物理学会官方网站optics.org和美国《激光世界》杂志也对此进行了报道。
  • 西北工大校友研发光纤显微内窥镜,实现最高1微米的分辨率和纳米级三维重建
    “我预计今年年底提前博士毕业,虽然我的德国导师希望我继续留下做博后,但我更希望能回到老家江苏做科研。而在最近发表的论文里,我和所在团队首次将定量相位成像技术,用于超细光纤显微内窥镜中,实现了最高 1 微米的分辨率、以及纳米级的三维重建。并通过光纤实现无透镜光场成像,借此制备出一款新型无透镜光纤显微内窥镜。”德累斯顿工业大学生物医学计算激光系统能力中心博士生孙佳伟 表示。▲图 | 孙佳伟(来源:孙佳伟 )此次提出的无透镜光纤显微内窥镜,具备 1000 倍的放大倍率,可通过图像重建让医生“看清”脑部神经元或是组织表面的细胞。(来源:Light: Science & Applications)研究中,他和同事使用无透镜光纤显微内窥镜,对无标记的癌细胞进行高对比度成像,让光纤内窥镜能进一步对体内癌症组织表面进行细胞级的高分辨率成像。这意味着,人们可通过此内窥镜尽早找出病变的癌细胞,实现癌症的早期预警。同时,鉴于光纤内窥镜探针只有头发丝量级,因此可在极大降低创口大小的同时,深入体内的狭小部位,如细微血管、肺泡、耳蜗等进行显微成像。另外,其所搭载的系统基于量产的多芯光纤,可做一次性的内窥镜探头,用完后可以轻松换上新的光纤以作为探头,从而彻底消除交叉感染的风险。据介绍,内窥镜成像(endoscopy)作为临床常用的体内成像方法之一,其常规直径至少在几十毫米以上,且图像放大倍率只有大约 50 倍,只能看清组织大概的形貌。而孙佳伟 的无透镜光纤显微内窥镜的探测端,没有使用任何透镜,探针的直径只有 0.35 毫米,大约在头发丝量级,能大大减轻创口的大小。对于神经外科手术来说,常常需要在大脑或脊柱开非常小的切口,进而通过内窥镜和特殊器械,进行复杂精密的手术。而内窥镜的尺寸越小,手术对患者造成的额外损伤就越小,患者术后恢复得也就越快。▲图 | 新型无透镜光纤显微内窥镜,探针直径仅为 0.35 毫米(来源:孙佳伟 )多年来,荧光显微成像已成为生物医学中广泛使用的成像方法,通过对样品进行荧光标记、激发和检测,可对荧光标记的样品做以选择性成像,从而提升成像的对比度。此前市面上最新的光纤显微内窥镜,是通过共聚焦扫描来实现体内荧光显微成像,但其需要昂贵的光学系统和复杂的校准流程,同时还得预先对体内组织进行特殊荧光染色。然而,某些情况下荧光剂会影响组织正常功能,用后也不易去除。因此,无标记成像技术对内窥镜尤为重要。定量相位成像,是一种无标记显微成像技术。其原理是通过组织中不同成分的微小相位差,来实现生物医学样品的高对比度成像。从技术手段来讲,进一步重建光场的相位信息,还能实现纳米级轴向分辨率的三维成像,这让定量相位成像也常被用于芯片表面检测。但是,此次提出的光纤内窥镜系统,使用量产化的多芯光纤束作为体内成像探针。虽然多芯光纤束只有三根头发丝那样粗,里面却包含着一万根单模的光纤芯,每一根光纤芯都能独立传播光学信号,而把这一万根光纤芯的光学信号组合起来,就相当于有了一万个能成像的像素。但是,光在每一根纤芯中的传播距离有着微小的差别,而光波的相位又非常敏感,即使是 10 纳米以下的光传播距离差,也会引起可观的相位变化。由于光在这一万根光纤芯中的传播距离各不相同,这会带来非常严重的相位失真,就像把样品的光学信息进行了“加密”,故在多芯光纤束中实现定量相位成像,是一个颇具挑战性的难题。(来源:Light: Science & Applications)找到“解码”光场的“钥匙”那么,如何从“加密”光场信息中恢复样品信息呢?孙佳伟 等人提出一种名为远场散斑转换的算法,可从光纤输出端的散斑中,重建出光纤中的固有相位差,这就相当于拿到了“解码”光场的“钥匙”。这样一来,当使用无透镜光纤显微内窥镜去探测样品时,用这把“钥匙”来“解码”样品的光场信息,就能得到样品的相位信息。另外,鉴于可通过光纤显微内窥镜重建完整的光场信息,这时只用一张散斑图像重建出不同深度的图像,即可实现数字重新对焦,并能把无透镜光纤显微内窥镜的工作距离从 10 微米提到 10 毫米。得益于这样的数字对焦,以后医生们再也不用手动调整焦距,通过程序即可实现实时数字对焦,让无透镜光纤显微内窥镜的易用性得到极大提升。近日,相关论文以《通过超薄无透镜光纤内窥镜进行定量相位成像》(Quantitative phase imaging through an ultra-thin lensless fiber endoscope )为题发表在 Light: Science & Applications 上。▲图 | 相关论文(来源:Light: Science & Applications)孙佳伟 担任一作兼通讯,德累斯顿工业大学测量和传感器系统技术实验室于尔根W查斯克(Juergen W. Czarske )教授、以及同一实验室的内克塔里奥斯库库拉基斯(Nektarios Koukourakis )博士担任共同通讯作者。该工作还得到清华大学精密仪器系曹良才 教授和马克思普朗克光科学研究所约亨顾克(Jochen Guck )教授的指导。其中一位审稿人评价称,“论文中的实验结果令人信服,清楚地标明该方法能够对样品进行定量相位成像,并验证了三维成像的可能性。该项新技术开辟了在超细内窥镜进行相位成像的广阔前景。”另一个审稿人表示,“作者使用一种全新的计算重建算法,以便远场强度图像获得相位信息,实现了基于光纤的定量相位成像。”(来源:Light: Science & Applications)据悉,该研究主要由德国科学基金会支持,旨在通过自适应控制多芯光纤的输出光场,精准控制癌细胞的旋转。与此同时,对细胞进行全息成像,最终得到癌细胞完整的三维重建图。为了实现在纳米级精度下,用光精准地去控制癌细胞,孙佳伟 耗时一年搭建出一个非常复杂且昂贵的光学系统,单单研发实验器件的控制程序,他就写了近一万行代码。后来,又泡在实验室几个月,终于通过光纤光场调控,对细胞多轴旋转做以实时控制。这项成果的实现也是世界首次,相关论文在更早之前已发表在 Biomedical Optics Express 上 [1]。▲图 | 利用光纤输出光场,癌细胞进行光学无接触操控,实时控制细胞旋转轴(来源:孙佳伟 )他说:“当时有一个误区,觉得越复杂的系统越高级,固然系统越复杂,需要解决的技术难题也就越多,其中的技术含量也就越高,但是繁杂的系统也就意味着高成本、高投入,难以获得广泛的应用。很多经典的研究,后人看起来其实只是解决了一个很小的问题,但最难的是从零到一的突破过程。”舍弃复杂昂贵的光学器件,只用一根光纤、一个相机和一些基本光学元件,在有限的成本内,通过程序提升成像性能。所以他一直在思考,如何把光学系统化繁为简?于是就有了关于此次论文的初步想法[2]。正好那时,清华大学精密仪器系曹良才 教授课题组的吴佳琛 博士来德国交流,曹教授团队在计算光学领域有着很深的造诣。“在和佳琛沟通了我的想法之后,他也对此特别感兴趣。因为光纤输出端的散斑太过复杂,一开始的算法效果并不理想。后来我们不断改进算法,终于在有天深夜,佳琛激动地跟我说算法成功了。我连忙从床上蹦下来打开电脑,把他的算法和我的代码整合起来,那天晚上兴奋地没怎么睡着。第二天一大早就立马赶去实验室验证算法,结果发现真的能在实验中完美重建出相位图像。”孙佳伟 说。(来源:Light: Science & Applications)计划将光纤显微内窥镜用于临床研究另据悉,因为光学仪器大多都非常精密,外界的微弱干扰都有可能对实验结果产生影响。因此为了减小外部震动,孙佳伟 所在的实验室专门建在地下一层。但是,他的实验室离马路比较近,每次有大型车辆经过的时候,都能在仪器数据上观测到微纳级的抖动。为了得到最佳的实验数据,那几周他每天等到半夜路上没有车的时候,一个人在漆黑的实验室里做实验。功夫不负有心人,最后的实验结果也非常稳定。家庭,也给他提供了软动力支持。他说:“我老婆虽然没有直接参与此次研究,但每次我的实验没有进展、焦头烂额的时候,她总能耐心地安慰我、鼓励我,等我焦躁的心安静下来后,理性地帮我梳理思绪找到问题所在。”据介绍,孙佳伟 是江苏南通人。本科就读于西北工业大学信息对抗技术专业。读研时,他来到德国留学,在波鸿大学读激光与光子学专业。那时,他开始接触到光学实验,并开始从事数字全息成像方面的研究。其说道:“一开始只是单纯觉得激光特别酷,但在实验室待久了之后,我深刻体会到光学实验是一个慢工出细活的过程,慢慢地也喜欢上泡在实验室的感觉。我的硕士论文获得了接近满分的成绩,导师把我推荐到现在的课题组继续攻读博士,我也得以继续从事光学成像的研究。”(来源:Light: Science & Applications)在德国读博更像是工作,他作为一名博士生的同时也是学校雇员,目前其还担任助理研究员一职,要承担一定的教学任务,以及指导本科生和硕士生的毕业论文。为此,孙佳伟 还开设了一门叫做“数字全息技术”的实验课程。疫情期间,他把实验课搬到线上,通过视频给学生呈现光学实验的过程,同时也在线上辅导学生处理数据。当下,他的重心依然是科研。目前的图像重建算法对电脑的硬件要求比较高,后续他计划使用人工智能提升算法效率,让图像重建程序在普通笔记本电脑上也能轻松运行,并能实时重建三维图像。同时,他和导师也申请了与所在大学的附属医院的合作项目,计划进一步将光纤显微内窥镜用于临床研究。参考资料:1.Sun J, Koukourakis N, Guck J, et al. Rapid computational cell-rotation around arbitrary axes in 3D with multi-core fiber[J]. Biomedical Optics Express, 2021, 12(6): 3423-3437.https://doi.org/10.1364/BOE.4230352.Sun J, Wu J, Wu S, et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope[J]. Light: Science & Applications, 2022, 11(1): 1-10.https://doi.org/10.1038/s41377-022-00898-2
  • 美国光纤厂商飞博盖德擢升Devinder Saini博士为技术副总裁
    2016年1月12日,英国豪迈旗下的光纤制造专家飞博盖德(fiberguide.cn)在美国新泽西州的斯特灵市的总部宣布已擢升Devinder Saini博士为公司的技术副总裁,负责开发新产品和新技术,扩大飞博盖德的定制化光纤产品及组件的市场供应,以及飞博盖德的研发、应用工程和专业光纤研发小组的监督检查工作。光纤品牌飞博盖德的新晋技术副总裁Devinder Saini博士。飞博盖德的总裁Patricia Seniw说:“Devinder的加入使团队如虎添翼,他所研发的开创性成果使我们有幸能够在今年2月份举行的美国西部光电展中展示公司新技术。”Saini博士在科研产品研发领域拥有超过30年的丰富经验。在加入飞博盖德并担任技术总监之前,Saini博士曾在OxySense有限责任公司和FCI Environmental有限责任公司(位于内华达州拉斯维加斯市)就职,在那里担任过副总裁和首席科学家。Saini博士在英国伦敦的城市大学获得物理学博士学位,之前则在英国伦敦获得了泰晤士理工大学(今更名为格林威治大学)的材料分子学硕士学位,以及伦敦大学的物理学和天体物理学学士学位。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂和生产基地。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 微型光纤光谱仪可以应用于哪些领域?
    从1992年Mike Morris发明世界上第一个微型光纤光谱仪至今已经24年了,各个行业已经开发了数以千计的应用。广阔的市场前景吸引了越来越多的公司,包括仪器仪表行业的大公司都开始参与到这个领域的竞争。  微型光纤光谱仪可以应用于哪些领域?  第一, 光谱仪可以分析各种光源发出的光,这些光源包括太阳,LED, 激光,平板显示器件,等离子体,气体放电,火焰燃烧,受激发光,化学发光等等基于各种原理的发光体。  第二, 光谱仪可以分析光与各种物质相互作用后的光,相互作用后的光一般都含有与物质微观结构有关的丰富信息。在这里光可以看成是探索物质微观结构的“探针”,因此,微型光谱仪通常被列为光学传感类(optical sensing)。  第三, 由于微型光谱仪的体积小,所以适合于便携,手持,现场,在线,原位,活体,非破坏性应用场合。由于光纤的使用,所以适合在有害环境下(包括化学,生物,放射性)进行远程测量。由于微型光谱仪内无移动部件,可靠性高,因此,适合于工作在环境恶劣的工业现场。由于采用探测器陈列,可一次获得全光谱,测试速度快,因此适合需要高速测量的应用,例如工业在线检测,化学反应动力学监测。  由于微型光谱仪应用领域非常广,在如此短的篇幅内无法详细列举所有的应用。以下,我们就当今社会最关注的领域中比较成功的应用案列进行分析:  环保行业:  -燃煤电厂烟气排放监测系统用于监测电厂在脱硫和脱硝之后对于大气的排放废气中SO2,NOx的含量。  这基于气体紫外吸光度测量的原理,看似简单,但是在解决实际问题时,必须要克服一些具体困难。由于实际应用中的待测气体样品中有颗粒物存在,如何将颗粒物对光的散射引起光的能量损耗扣除掉,以获得准确的浓度值?1970年代德国科学家Ulrich Platt在研究大气紫外吸收时,发现颗粒物散射谱随波长变化慢,气体分子紫外吸收谱随波长变化陡峭,因此对光谱进行微分,再进行数字滤波,将低频分量滤去,就可以将散射的影响扣除,这就是著名的DOAS技术(Differential Optical Absorption Spectroscopy)。由此可见,应用研究的重要性。  -对于地表水的有机物综合指标的监测  有机物综合指标是指化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC),高锰酸盐指数(CODMn),总磷(TP),总氮(TN),多环芳烃(PAHs)。分析地表水的有机物综合指标的困难在于,第一,这不是由单一化学组分决定的,而是由水中大量化学组分的综合效果 第二,水体中除了有机物之外,还有许多其它的干扰因素,譬如泥沙,会影响测量结果的准确度。  不少地方仍然采用化学滴定方法检测,这种方法虽然准确度高,由于需要采用化学试剂会对水体造成二次污染,而且设备复杂,测试所需时间长,运行费用高。  采用紫外吸收光谱技术,通过对大量水样建模和多变量化学计量学分析,可以获得有机物综合指标。但是实际的水样中总会含有泥沙,泥沙含量较高时,这些无机物也会使透光量减少,探测器无法区分透射光强度减少,究竟是被有机物吸收了,还是泥沙的散射引起透光量的减少,从而带来误差。而且,在有机物含量较少时,测量误差较大。浙江大学的吴铁军教授发现如果加用荧光光谱测试,由于无机物是不会产生荧光的,因此,融合荧光光谱和紫外吸收光谱的数据,就可以扣除无机物的影响。这种创新的方法可以用一台仪器同时测量出上述七个水的有机物污染的综合指标。  这个案例告诉我们,在分析复杂体系时,基于多变量化学计量学的算法和建模是极端重要的。  食品安全  -水,土壤和鱼的汞超标  由于环境污染体现在地表水和土壤的汞超标,汞又特别容易在生物组织中积累,譬如鱼类。摄入过量的汞会影响人的神经系统,儿童的发育生长。全球140个国家都对食品中汞的含量有规定。现有的分析方法非常耗时并只能在实验室使用。  美国Jackson州立大学发明了一种基于纳米材料表面能量转移技术NSET(Nanomaterial Surface Energy Transfer)的检测微量汞的便携式仪器。NSET技术原理如下,当罗丹明B(RhB)分子吸附在胶体金纳米颗粒时,胶体金纳米颗粒会使RhB荧光焠灭,当有Hg2+离子存在时,RhB会从纳米金颗粒表面释放,与汞离子结合,并在532nm激光激发下开始发荧光,荧光的强度与Hg2+离子浓度成正比。(见图2)这种方法检测灵敏度很高,汞的检测线0.8ppb,美国环境署水中汞含量的标准为2ppb.并能检测鱼组织中的汞,达到美国环保署0.55ppm的要求。图1 吸附在纳米金颗粒表面的罗丹明RhB,它的荧光强度与待测样品中汞的浓度成正比  这个案例中检测汞的原理就不那么直截了当,待测物汞本身并不能受激发荧光,而当汞离子与罗丹明RhB结合时,RhB充当标记物(marker)的角色,另一方面,利用了纳米金颗粒能使RhB荧光焠灭的特性。  -检测奶粉中的微量三聚氰胺  采用表面增强拉曼光谱技术SERS(Surface Enhanced Raman Spectroscopy),在785nm激光的激发下,待测的三聚氰胺的分子在基于纳米金颗粒的SERS芯片上,在激光强电磁场的作用下,与纳米颗粒表面的等离子激元发生谐振,拉曼光谱的强度被大大增强。(见图2)采用便携式拉曼光谱仪和SERS芯片三聚氰胺的检测限可达到12ppm。图2在打印的SERS芯片表面增强拉曼光谱与三聚氰胺浓度的线性关系  拉曼光谱技术,由于拉曼信号特别微弱,所以只适合应用于分析浓度较高的物质主成分。由于纳米材料科学,表面物理科学,激光技术的发展,才使SERS技术逐步进入应用阶段,用于分析痕量物质。不断提高测量的重复性,稳定性,降低SERS芯片的价格,使更多的应用领域用得起SERS技术。  -鉴别假冒的初榨橄榄油  常用的方法是观察油的颜色,但是在不同光线下显示的颜色是不同的,而且造假者会用叶绿素或b胡萝卜素去调节油的颜色去靠近真品的颜色。用低档橄榄油或者葵瓜子油,菜油稀释初榨橄榄油都可以用便携仪器进行吸光度测量方法鉴别。  正是由于光纤光谱仪的便携性和快速,使其得以应用在仓库,海关现场快速验货。图3 不同比例的低档橄榄油稀释初榨橄榄油对于吸光度的影响  -对食品内黄曲霉素的快速检测  发霉和变质的粮食,花生,坚果含有致癌的黄曲霉素。现用的主流技术有液相色谱仪HPLC,  液相-质谱联用仪LC-MS。这些技术只能在实验室用,并且设备昂贵,分析时间长,还要用大量化学溶剂,污染环境,操作和维护保养麻烦,需专业人员操作。也有用酶联免疫分析技术(ELISA),这种方法测量精度不如HPLC,并经常会报告假阳性。  因此,急需一种可以在现场快速筛检的设备。英国的Ray Coker博士发明了一种基于紫外荧光光谱的技术,先将样品进行预处理,使待测毒素分离,富集,然后用紫外荧光光谱分析,在365nm LED光源激发下,测量其荧光,并采用专利的算法,一次同时测得4种黄曲霉素(B1,B2,G1,G2,M1)和赭曲霉素A,其检测限1ppb,即零点几ppb,满足最严格的欧盟标准,可与HPLC比拟。这种方法其实还可以成为快速检测的平台,包括病原体检测,贝类毒素检测,兽药残留检测,动物饲料中真菌毒素检测,假药甄别检测,农药残留检测,MRSA(Methicillin-resistant Staphylococcus aureus)耐甲氧西林金黄色葡萄球菌检测。  该案例的技术难点在于样品预处理,如何从成分复杂的待测食品样品中将微量待测物萃取,分离,富集,第二,如何挑选出具有高度特异性的抗体,使自身不会发荧光的毒素与标记物(marker)可以用荧光技术来检测 第三,如何从光谱数据提取出有用信息的算法。  -食源性致病菌的快速检测  检测食品中的致病微生物,现行的方法,譬如检测细菌的金标准方法“平板计数法”(Culture Plating),虽然准确,但是分析所需时间太长,需要2-3天。其它的方法,例如酶联免疫吸附测定法ELISA,虽然速度快了,但是灵敏度不高。聚合酶链式反应法PCR方法,虽然速度快了,灵敏度也高一些,但需要复杂的核酸提取过程。总之,需要一种快速,灵敏,准确,特异性强的检测方法。  食品是一个成分复杂的物质,我们需要分析其中微量的细菌,首先要解决的问题是如何从复杂的背景中提取并富集这些待测的细菌 第二,按照国家标准,允许存在的细菌浓度必须很低,因此要求检测方法的灵敏度很高 第三,实际上,食物中很可能同时存在多种细菌,因此检测方法一定能够同时,分别检测出多种目标物。  美国阿肯色大学生物与农业工程系Yanbin Li教授团队近年来利用免疫纳米磁珠与免疫量子点对食源性致病菌进行快速检测。同时检测李斯特菌,沙门氏菌,大肠杆菌,检测下限可达到101 CFU/ml。(见图4) 图4(a)纯细菌样本的荧光光谱 (b)含致病菌的牛肉样本的荧光光谱  其基本原理是利用免疫检测方法,即先用第一抗体去修饰纳米磁珠,形成细菌-免疫磁珠复合体,在与样品均匀混合时,抗体就会与样品中的目标细菌进行免疫反应,在强磁场作用下,这些被免疫磁珠抓住的细菌就会被吸附到磁极,从而实现了细菌从复杂的背景物中分离。但是抓住细菌的磁珠不会受激发射荧光。我们知道量子点是可以受激发光的,如果用被第二抗体修饰的量子点作细菌的标记物,就可以通过测量量子点发出的荧光强度来间接测量细菌的浓度。利用抗体的特异性,即不同的抗体专门去抓不同的细菌。再利用量子点发光的波长取决于量子点的大小的特点。就可以通过对于荧光光谱相应的波峰强度测量,同时测量不同细菌的浓度。  生命科学和医疗诊断  -核酸,蛋白质分析  对核酸和蛋白质进行定量分析是现代生命科学实验中最基本的工具。  紫外吸光度方法是测量核酸浓度最常用的方法之一。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。它的基本组成是核苷酸。核苷酸又是以含氮的碱基,戊糖和磷酸组成。五种碱基包括嘌呤和嘧啶。碱基上苯环的共轭双键在紫外波段有强吸收,最强的吸收峰在260nm。核酸浓度与波长260nm的吸光度成线性关系,这就是用紫外吸光度方法测量核酸浓度的基本原理。核酸样品中如果含有蛋白质,蛋白质的紫外吸收峰在波长280nm,但是蛋白质在280nm的吸光度只有核酸在260nm的吸光度的1/10,利用样品在这两个波长的吸光度比值,可以得到核酸的纯度。  核酸,蛋白质这类生物样品的量常常很小,甚至在mL量级,微量样品的采样在技术上是一个难点。美国热电公司的NanoDrop2000型紫外/可见分光光度计巧妙地利用表面张力的原理,将待测样品液滴置于连接光源的光纤端头和连接微型光谱仪的光纤端头之间,形成待测样品液柱。利用这种采样技术,可以不用稀释样品就可以测量高浓度的DNA样品,对于双链DNA样品,可测的浓度可高达15000ng/ml。  该仪器还可以利用蛋白质在280nm的吸收来测量蛋白质的浓度。这是由于蛋白质分子结构中含有芳香族氨基酸,而芳香族氨基酸(主要是酪氨酸和色氨酸)的紫外吸收的峰值位于280nm。  蛋白质实际测量中遇到的问题是待测样品中常常含有其它化学试剂的残余,而这些杂质对紫外吸光度测量有干扰,影响测量的准确性。因此就在对蛋白质的各种性质研究的基础上,发展了各种其它的测量方法,以摆脱杂质对测量的干扰。例如蛋白质和染料的结合,蛋白质和铜离子的络合反应?  同样这一台工作在紫外/可见波段的分光光度计NanoDrop,基于不同的原理,还可以在不同的波长用于蛋白质定量分析。譬如,Bradford法测蛋白质,这是基于让染料分子(考马斯亮蓝G250)与蛋白质结合成复合体,该复合体在595nm有最大吸收峰,这种方法的好处是待测蛋白质样品中可能含有的K+,Na+,Mg2+,(NH4)2SO4,乙醇等杂质不会干扰蛋白质测定。BCA法则是利用蛋白质的化学性质,即在碱性条件下蛋白质可以与Cu2+发生络合反应,并将Cu2+还原为Cu+,而BCA (bicinchoninic acid)则会与Cu+反应形成稳定的复合物,它的吸收峰在562nm。这就是BCA法测量蛋白质的原理。  -紫外荧光光谱是研究蛋白质组分,构象的强大工具。  实验发现大部分蛋白质中有三种氨基酸残基具有内源性荧光的特性,它们分别是:色氨酸tryptophan (Trp), 酪氨酸tyrosine (Tyr) and 苯丙氨酸phenylalanine (Phe)。但是,实验中常用的是Trp和Tyr的内源性荧光,主要是因为这两种氨基酸的残基的荧光的量子效率比较高,所发出的荧光信号较强。Phe受激荧光的量子效率较低,激发波长在257nm。如果采用波长为280nm的激发光,由于Trp和Tyr的激发波长比较接近(分别为280nm,274nm),因此Trp和Tyr会同时有荧光信号。如果想选择性地只激发Trp,则可以采用295nm激发光源。  实验进一步发现,氨基酸残基的內源荧光的强度,峰位对于氨基酸的组分和构象状态十分敏感。这是因为在蛋白质分子处于自然折叠状态时,Trp和Tyr被包裹在蛋白质的中心位置。而当采用升高温度,采用尿素,盐酸胍,或者调解pH值等方法,使得蛋白质展开(图6A)。原先在折叠状态下埋在里面的疏水核心就暴露在溶剂中。Trp和Tyr就暴露在周围的环境中,它的荧光发光特性发生变化(图5B)  图5 用Trp的荧光来监测蛋白质的构象状态。图6A中Trp是用红点和红色字母w表示,在蛋白质处于自然折叠的状态下Trp被埋藏在疏水的环境中,展开后则暴露在溶剂的环境中。图5B,在自然折叠状态下Trp处于疏水状态下,荧光强 反之,在展开状态下,Trp暴露在溶剂中,荧光强度下降。  实验还发现Trp残基的荧光峰值的波长与周围的溶剂有关,发生Stoke位移。  研究蛋白质的分子折叠和展开有什么应用价值?有些疾病与人体内蛋白质分子的构象状态有关. 譬如, 有些退行性神经病变,就与蛋白质分子的展开有关,因此蛋白质的荧光光谱有时可用于退行性神经病变的诊断。  -医学诊断  一般而论, 采用光纤光谱仪作为医学诊断的手段有两个优点. 一个优点是非侵入性, 第二个优点是体积小, 仪器方便携带, 因此, 可以部署在病床边上, 县以下的基层诊所, 战地,出诊.  以下举一些例子.  基于吸光度和荧光技术的血样,尿样在生化分析仪器在医院的分析实验室几乎处处可见,现在可以做得更小,更便宜.  对于皮肤癌,乳腺癌可以对人体组织活体(in vivo)用拉曼光谱或反射光谱技术进行诊断.  黄疸病对于新生儿是常见的,而且无害,但是,对于早产婴儿则有造成大脑损伤的危险。因此,需要密切监测血液中胆红素的浓度。现行的方法是针刺婴儿的脚跟取血样,然后送实验室进行生化分析,大约需要一个小时,每日三次。如果对新生儿脚底皮肤用光学方法,通过反射谱测量,立即可以分析得到血液中胆红素的浓度,可以比现行的方法更快地诊断黄疸病,并使婴儿免受脚跟针刺之苦,这就是非侵入性带来的好处。  脉搏血氧仪是用红光和近红外透射测量技术连续监测血氧饱和度。慢性阻塞性肺病,哮喘等呼吸性疾病,病人的血氧饱和度是表征病的严重程度的非常重要的指标。  在线检测:  -为了得到辛烷值(RON)合乎标准的92号,95号汽油,石油炼化厂需要将重整催化工艺所得到的高辛烷值油与低辛烷值的催化裂化汽油按适当比例进行调和,以最终获得辛烷值符合国家标准,而且产率足够高的汽油。生产工艺需要在线测量汽油的辛烷值,并根据测量值去控制重整反应器的温度。  浙江大学戴连奎教授采用在线拉曼光谱系统测量重整汽油的辛烷值。其辛烷值主要取决于待测油品中直链烷烃、侧链烷烃、环烷烃与芳烃含量。拉曼光谱可以很好地显示直链烷烃、侧链烷烃、环烷烃与芳烃等物质的特征峰,因此可以很好的计算各种芳烃和其它烷烃等物质的含量。由于不同的烃类物质对辛烷值的影响不同,需要综合考虑每类物质对辛烷值的影响。通过含量高低建立相应的预测模型可以很好地测量汽油样品的辛烷值。相比于红外光谱,拉曼光谱特征峰明显,建立模型所需的样品数量也大为减少。相比色谱,拉曼光谱测量速度较快,使用和维护成本较低。图6 重整汽油的拉曼光谱(经过数据的预处理)  在此应用案例中,待测的汽油辛烷值并不是由单一物质的分子的光谱所决定的,而是由多种烃类的分子的综合作用所决定。因此,有了光谱之后,如何得到辛烷值,建模就是关键。
  • 电子探针丨带您走进光纤的微观世界-低损耗光纤
    导语信息关乎一切,为满足信息化数字化支撑新质生产力的创新发展目标和要求,国家层面在算力枢纽、大数据和云计算集群、“东数西算”等工程作了资源调配和长远的规划。用户层面对高质量视频和数据传输需求、对低时延的更苛刻要求、5G技术使用的接入,以及千兆光纤入户规划,对超高速互联网接入的追求似乎永无止境。低损耗光纤的研究正是为了满足高质量的数据接入需求。岛津电子探针通过搭配52.5°高取出角和全聚焦晶体波谱仪,具有高分辨率和高灵敏度的特征,可以为光通信企业及研究院的产品生产、研发、技术突破等方面,如未来的多芯或空芯的研究提供坚实的数据支持。光纤损耗小科普光纤损耗是指每单位长度上的信号衰减,单位为dB/km。光纤损耗的高低直接影响了传输距离或中继站间隔距离的远近,对光纤通信有着重要的现实意义。光纤之父高锟博士提出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。之后,科研人员和光通信企业开始致力于光纤损耗降低的课题研究。根据光纤损耗,把光纤大致分为普通光纤、低损耗光纤、超低损耗光纤三类,其中,&bull 普通光纤衰减为0.20dB/km左右,&bull 低损耗光纤衰减小于0.185dB/km、&bull 超低损耗光纤的衰减小于0.170dB/km。长久以来,国外厂商在低损耗和超低损耗光纤的研究中保持领先地位。现在国内新建主干网络以及骨干网的升级改造中已有大规模低损耗光纤的部署。岛津电子探针的特点岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。【注:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。】【注:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。】在远距离传输中,由于光纤材料的吸收(材料本征的紫外和红外吸收以及金属阳离子和OH-等杂质离子吸收)和散射、光纤连接以及耦合等方面造成的衰减问题难以避免,低损耗光纤的推出则为解决这一难题提供了新的思路。在骨干网改造、超高速宽带网络的建设过程中,低损耗(Low-loss optical fiber, LL)、超低损耗(Ultra-low-loss optical fiber, ULL)光纤已有大规模部署。我们使用岛津电子探针EPMA-1720测试了两种低损耗光纤。&bull 第一种光纤为单模光纤,纤芯直径10μm,掺杂Ge+F。低损耗光纤元素分布情况测试结果如下:&bull 第二种光纤纤芯为比较高纯度的SiO2,在包层区掺氟降低折射率,未掺杂常规元素Ge。定量元素线、面分布特征分析见以下系列图。超低损耗光纤元素分布情况测试结果如下:结语信息通信是重要的国家级基础设施,通信光纤建设也是重要的民生工程,对高质量数据通信要求都在不断提高。目前骨干超高速400G、800G乃至1T的工程规划都给光通信企业带来机遇和挑战,研发和生产亦是永无止境。岛津电子探针有着高灵敏度和高元素特征X射线分辨率的特性,能够为光通信企业及研究院的产品开发、技术突破等方面提供可靠的检测和分析手段。本文内容非商业广告,仅供专业人士参考。
  • 中国计量大学严德贤课题组《Results in Physics》:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述: (1)根据公式1,在图2中给出了和在0.5THz的线性叠加过程以及相位分布图。图2.和在0.5THz的线性叠加过程以及相位分布如图2所示,和在模式合成后环芯区域有效产生OAM模式的模场分布,并获得[-ℼ-ℼ]的相位分布效果,满足在光纤中产生OAM模式的合成规则。图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势 文章链接:https://doi.org/10.1016/j.rinp.2021.104766
  • 定制光纤品牌“飞博盖德”为双子南座望远镜设计顶级光纤阵列
    飞博盖德为双子南座天文望远镜制造光纤阵列。2016年2月18日,美国新泽西州的斯特灵市传来消息,英国豪迈的定制光纤品牌“飞博盖德”(www.fiberguide.com.cn)已经在新双子南座天文望远镜(GHOST)中制造光纤阵列。澳洲天文台(AAO)是该项目的建造商和领导机构。飞博盖德的光纤阵列采用了最先进的制造技术,此次项目中的光纤阵列采用的就是这项技术。由飞博盖德生产的高质量、高性能的光纤阵列成为该项目成功的关键。届时,双子南座天文望远镜将配备双目标大面积全波长光谱望远镜,其覆盖范围介于363~950 nm,分辨率介于50000~75000。新的双子南座天文望远镜由澳洲天文台建造。每根飞博盖德的光纤均携带一部分来自星体的光束,从而尽量减少了因大气模糊造成的损失。通过采用飞博盖德专有的制造技术,以及其在天文学、安全和数据通信类型光纤阵列的丰富经验,可以减少传统光纤的指向误差和插入损耗等问题。新的天文观测仪器可使观察者更高效地观测夜空。双子南座天文望远镜的项目负责人安德鲁?舍伊尼斯说:“双子南座望远镜是世界上最大也是最成功的世界级双子望远镜仪器,而飞博盖德的光纤一直是澳洲天文台在望远镜科技发展中不可或缺的组成部分。一旦该项目交付,双子南座望远镜将为我们提供更多了解宇宙的机会,例如发现与研究太阳系外行星”。双子南座天文望远镜能够为了解双子南座天空提供无与伦比的便利,并进一步加强认识宇宙的机会。欲详细了解飞博盖德的应用于天文的产品,或光纤阵列和光纤束建设的专门知识,请访问飞博盖德的中文官方网站。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂。欲了解更多公司信息,请关注英国豪迈官方微博(www.weibo.com/halma)和官方微信(HALMACHINA)。业务合作联系人:谈理(Teddy Tan)飞博盖德大中华区销售经理电话:021 - 60167698邮箱:ttan@fiberguide.com媒体联络联系人:陆瑶 (Lucas Lu)英国豪迈中国区公关经理电话:021 - 60167667电邮:lucas.lu@halma.cn
  • 台湾一大学团队用蜘蛛丝开发光纤传感器 万分之一秒测血糖
    据台湾“中央社”报道,台湾阳明交通大学团队运用人面蜘蛛吐出的蜘蛛丝,开发出一款光纤糖度传感器,能在万分之一秒(0.1ms)内有效测量糖度,并应用在测量人体血液中的糖浓度,帮助糖尿病管理。据报道,台湾阳明交大23日发出新闻稿,生物医学工程学系教授刘承扬及硕士鄂暄蓓等人组成的团队,以蜘蛛丝为材料开发光纤糖度传感器,研究成果登上9月份的国际生物医学光学期刊Biomedical Optics Express,并获选为编辑精选。报道称,刘承扬等人看重的是蜘蛛丝有良好的延展性、光波传输等物理性质,且有别于用玻璃、塑料制成的光纤,蜘蛛丝还有高度的生物兼容性,相当适合用于人体。研发团队尝试不同品种的蜘蛛,甚至在校内捕捉蜘蛛做实验,可惜蜘蛛丝质量都不甚稳定,经过多方尝试,才选定人面蜘蛛为主要取丝对象。团队从活蜘蛛取得天然的蜘蛛丝后,先是利用光固化树脂稳定结构,再用斜向薄膜溅镀技术,在固化的蜘蛛丝表面溅镀一层薄薄的纳米金薄壳,以增加蜘蛛丝光纤对糖浓度的灵敏度,最后做成了一根直径约略为头发,肉眼可视的光纤传感器。据报道,通过“表面电浆子共振(SPR)”的光学物理原理,科学家可计算出不同糖类在金属上的折射率,借以得知浓度变化。刘承扬团队研发的光纤传感器经实验证实,感测功能在一年内都能保持相同灵敏度,且在室温与人体温度下都能正常运作。刘承扬表示,糖尿病患者需要餐前餐后监测血糖,一款可以长期适用于人体内,且实时精准测量血糖的传感器,不仅解决病患的难题,也能达到精准医学的目标,造福更多的慢性病患。
  • Nanoscribe微纳3D打印技术应用于光子集成芯片到光纤的3D对接耦合器研发
    光子集成电路 (Photonic Integrated Circuit,PIC) 与电子集成电路类似,但不同的是电子集成电路集成的是晶体管、电容器、电阻器等电子器件,而光子集成电路集成的是各种不同的光学器件或光电器件,比如激光器、电光调制器、光电探测器、光衰减器、光复用/解复用器以及光放大器等。集成光子学可广泛应用于各种领域,例如数据通讯,激光雷达系统的自动驾驶技术和医疗领域中的移动感应设备等。而光子集成电路这项关键技术,尤其是微型光子组件应用,可以大大缩小复杂光学系统的尺寸并降低成本。光子集成电路的关键技术还在于连接接口,例如光纤到芯片的连接,可以有效提高集成度和功能性。类似于这种接口的制造非常具有挑战性,需要权衡对准、效率和宽带方面的种种要求。针对这些困难,科学家们提出了宽带光纤耦合概念,并通过Nanoscribe的双光子微纳3D打印设备而制造的3D耦合器得以实现。该3D自由曲面耦合器利用全内反射,结合Nanoscribe的3D微加工技术可直接在光子芯片上进行3D打印制作。该新型技术可应用于例如光通信技术,计算机传感器等领域,并且科学家们已经在微型光谱仪上验证了光纤到芯片的键合技术,用于便携式传感技术和芯片实验室(微流控芯片技术)。连接芯片到光纤的3D对接耦合器 来自德国明斯特大学物理研究所,CeNTech纳米技术中心,马克思伯恩研究所和柏林洪堡大学的多学科研究团队提出了这个全新概念并共同研发了连接芯片到光纤的3D聚合物耦合器。该3D耦合器基于全内反射的原理直接在光子集成电路上进行3D打印。这种新颖的方法旨在于可见光波长范围内实现低损耗和宽带光纤到芯片的耦合。该设计由模式转换器,全反射平面和一个充当将光速聚集到光纤端面上的透镜球体所组成。这项研究的成果证明耦合可扩展性的概念可通过3D微纳加工技术得以实现。 LEFT:SEM of a freeform 3D fiber-to-chip coupler printed by means of Nanoscribe’s Photonic Professional GT system and connected to a silicon nitride waveguide.RIGHT: Close-up view of the 3D-printed coupler on total internal reflection for fiber-to-chip coup领.Image: H. Gehring, W. Hartmann, W. Pernice et al., University of Münster3D微纳加工实现光子封装 通常,在一个微纳芯片上组装各种光子和光学组件需要多个步骤来完成操作,例如组装、对准、拾取和放置或固定等一系列操作步骤。而利用3D微纳加工技术则可以轻松地在光子集成电路上直接打印高精度自由曲面的微纳组件。因此,3D打印可以大大节省光子封装过程中的设备成本和时间成本。SEM of a photonic chip with several devices illustrating scalable fabrication of hybrid 3D-planar photonic circuits.Image: W. Hartmann, H. Gehring, W. Pernice et al., University of Münste近年来,随着光学、光电子、纳米光子和仿生等领域中各种微纳器件的广泛开发,与之相应的3D微纳加工技术逐渐成为加工技术中的重要一环。 凭借着独有的3D微纳加工技术,Nanoscribe参与了各种研究项目,以开发基于集成光子学新技术。例如,在MiLiQuant研究项目中,Nanoscribe与科学以及工业领域的合作伙伴一起开发了具有微型化,稳定频率和功率的二极管激光器。该项目旨在为医疗诊断产业应用,自动驾驶传感器和基于量子的成像方法制造合适的辐射源。 此外,Nanoscribe还在今年年初加入了欧盟资助的研究项目Handheld OCT。这是由来自不同大学、研究机构和科技公司的科学家和工程师们所组成的研究团队,旨在开发用于眼科检查的便携式成像设备。该新型设备可以拓展基于光学相干断层扫描技术(OCT)的应用,实现从现在的固定眼科临床使用扩展到即时眼科移动护理中。更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 灰度光刻微纳打印设备
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p  超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。/pp  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。/pp  最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。/pp  该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。/pp  相关论文:/pp  [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997./pp  [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959./pp  [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031./pp  [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114./pp  [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811./pp style="text-align: center "img width="300" height="395" title="W020170616579709764036.png" style="width: 300px height: 395px " src="http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出/pp/pp/p
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 全球光纤市场 中国市场占据49%份额
    光纤权威研究机构CRU表示,今年以来西欧、美国、巴西和俄罗斯等主要光纤市场增长疲软,而中国市场继续强劲增长,从2011年占全球份额的46%增长到2012年前三季度的49%,而且预计2012年第四季度仍将保持这个态势。  换言之,中国光纤市场份额2012年预计将占全球市场的49%。  2012年前三季度全球光缆销量1.77亿芯公里,相比去年同期的1.59亿芯公里,增长了11%。裸光纤的产量是1.92亿芯公里,这意味着,今年全球光纤总产量将超过2.5亿芯公里。  今年美国在“刺激法案”的带动下,电信开支增长有令人鼓舞的迹象。美国AT&T、中国三大运营商和欧盟运营商将在11月下旬批准90亿欧元(115亿美元)的电信开支。  从中国光纤厂商今年上半年的财报来看,上半年中国光纤一直处于供应紧张的状态,这种状态将一直延续到下半年。同时,自2010年中国光纤厂商掀起扩产风潮以来,光纤产能已经逐步释放。
  • 光纤光谱仪中标信息
    一、采购项目名称 : 光纤光谱仪( 070323w0801 ) 二、采购代理机构 :浙江大学后勤集团技术物资服务中心 三、确定成交日期 : 2007 年 4 月 9 日 四、本项目公告日期 : 2007 年 4 月 9 日 五、项目成交单位 :   标项一(光纤光谱仪):必达泰克光电科技有限公司 相关链接:http://www.zupc.zju.edu.cn/wwwroot/Notice/noticeJ0135.htm
  • 将光纤分光技术应用到水质检测领域,使测量结果更准确——CISILE2019系列采访之华美沃特
    p  strong仪器信息网讯/strong 3月27日,经中华人民共和国商务部批准,由中国仪器仪表行业协会主办,北京朗普展览有限公司承办的“a href="https://www.instrument.com.cn/news/20190327/482440.shtml" target="_blank" style="color: rgb(31, 73, 125) text-decoration: underline "span style="color: rgb(31, 73, 125) "第十七届中国国际科学仪器及实验室装备展览会”(CISILE 2019)/span/a在北京国家会议中心开幕。/pp  紧随科学仪器市场动向,反馈广大仪器生产商的声音,了解科学仪器行业最新动态。仪器信息网特在CISILE2019召开期间,选取40余家仪器生产商代表,进行系列展位现场视频采访,分别请其就近一年的业绩具体表现、参展新产品新技术、近来对科学仪器市场的感受和看法等进行现场分享。/pp  本次来到北京华美沃特分析仪器科技有限公司展位,该公司产品经理包玉才接受了仪器信息网现场采访,具体内容请点击以下视频观看:/ppscript src="https://p.bokecc.com/player?vid=1F25E13FBBF2658E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptbr//pp  视频内容摘要:/pp  包玉才经理向我们介绍了北京华美沃特分析仪器科技有限公司目前主营COD快速检测仪,多参数水质检测仪,氨氮快速检测仪,总磷快速检测仪,自动红外测油仪,重金属测定仪,水质污染物测定仪等仪器设备。公司产品具有较高的性价比,并且绝大多数仪器带固定自动参比通道,方便用户便捷实用的同时,还可以一次检测多个水样,减轻客户的工作量。在产品创新方面,华美沃特将光纤分光技术应用到水质检测领域,使测量结果更加准确,并从结构上实现产品仪器的自动化。随后,包玉才经理向我们介绍了此次参展的多参数水质综合检测仪、重金属多参数检测仪、管式多参数检测仪、便携式多参数检测仪、多参数水质综合检测仪等产品的优势和特点。/pp  更多相关报道内容点击:a href="https://www.instrument.com.cn/zt/cisile2019" target="_blank" style="text-decoration: underline color: rgb(79, 129, 189) "span style="color: rgb(79, 129, 189) "strong【CISILE2019专题报道】/strongstrong/strong/span/a/ppbr//p
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。  近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。  该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。  该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。   千瓦级掺镱-拉曼集成的光纤放大器结构示意图  输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 光纤光谱仪吸光度测量解决方案
    吸光度测量使用设备简单、操作便捷。大部分无机物和有机物都可以直接地或间接地用吸光光度法测量。吸光度测量主要用于液体或气体的定量分析,广泛应用于环境监测、化学分析、检验检测等领域。吸光度定义用单色光照射某一吸光物质或溶液,测量单色光照射前的强度(即入射光强度I0)以及透过吸光物质后的强度(即透射光强度I),定义透光度(transmittance)T 为定义吸光度(absorbance)A为光的吸收定律朗伯-比尔(Lambert-Bear)定律,也称光的吸收定律,是吸光度定量分析的基本关系式。其数学表达式为: ε. 为摩尔吸光系数,与溶液的性质、温度和入射光波长有关 为溶液光程长度,即为比色皿的尺寸,单位为cm 为溶液浓度,单位为mol/L。公式表明当溶液入射光波长和光程长度固定不变时,吸光度与溶液浓度成正比关系。在测试未知样品的浓度的实验中,可以测量数组已知确定样品浓度和吸光度的数据,构建吸光度与样品浓度的正比关系式,通过测量未知样品的吸光度来求解未知样品的浓度。吸光度测量整套仪器搭建方案整套仪器由微型光纤光谱仪(含软件)、光源、比色皿支架和光纤跳线组成,见下图。具体配置清单:产品名称数量微型光纤光谱仪(含免费配套软件)1光源1比色皿支架1光纤跳线2仪器介绍微型光谱仪RGB-ER-CL微型光谱仪 采用交叉非对称C-T光路结构,配置先进的CMOS探测器,是一款结构紧凑、携带方便的通用型微型光纤光谱仪,适用于科研及工业生产的光谱测量应用,具有高灵敏度、高分辨率、高量子效率和高动态范围的特点。RGB-ER-CL微型光谱仪响应范围为200~1000nm,狭缝为25μm,分辨率为1.5nm。RGB-VIS-NIR-CL的波长范围为400~1100nm,狭缝为25μm,分辨率为1.0nm。用户也可以选择不同的光栅配置,得到不同的光学分辨率和光谱响应范围,以满足不同的应用需求。另外针对其它波段如200~900nm/200~1000nm/300~1100nm/700~1100nm等可以提供定制。该款微型光谱仪免费提供配套光谱测量软件KewSpec。软件包含查看、保存、读取光谱图和数据,以及积分时间、Boxcar平滑和信号平均等信号处理等基本功能,还包含光谱测量、吸光度、透过率、反射率等应用测量模式。操作界面简洁明了,易于上手。光源吸光度测量常见于紫外-可见波段,根据待测样品的特征波长范围选择合适的光源。HLS-1卤钨灯光源 波长范围360~2500nm,可直接出光或也可由SMA905端口连接光纤耦合输出。输出光强度可调,光源前端设有支架,可根据需要安装滤光片或衰减片。DLS-1氘-卤钨灯 是一款可提供190~2500nm的紫外-可见-近红外波段连续输出光谱的一体化复合光源。采用SMA905端口连接光纤输出,输出光功率稳定。氘灯和卤钨灯可分别开启,卤钨灯输出光功率可调,用以搭配氘灯输出光强。光源前端设有支架,可根据需要安装滤光片或衰减片。比色皿支架CH-4四向比色皿支架 是常用的光谱测量附件,光程长度1cm,支架的四面均连接一个CL-UV准直透镜。用于吸光度测量时,光纤接在两个相对的准直透镜。光纤跳线KEWLAB提供各种波长范围、光纤芯径和长度的光纤跳线,广泛应用于光谱分析领域。该光纤跳线具有坚实耐用、稳定性高、传输损耗小等特点。连接光源、微型光谱仪,起到传输光谱信号的作用。根据客户的实际应用需求,可选择不同型号的光纤跳线。光纤跳线覆盖光谱范围:190-2200nm光纤芯径可选范围:200、400、600、1000μm等标准长度:0.5m、1m、2m,其它长度可定制外壳材料:金属或塑料实测案例以HLS-1卤钨灯为光源,使用RGB-VIS-NIR-CL微型光谱仪(400-1100nm)搭配整套设备测试不同浓度胭脂红色素的吸光度光谱曲线。
  • 西安光机所等在表面功能化光纤传感器研究中获进展
    近日,中国科学院西安光学精密机械研究所与西北大学合作,在表面功能化光纤传感器研究方面取得重要进展。研究基于通信单模光纤开发出一种免标记、高灵敏度、高选择性的法布里-泊罗(Fabry-Perot)型干涉探针。该探针具有测试便捷、成本低、温度稳定性高等特点,在生物大分子光谱检测方面具备广泛应用前景。   胆固醇是细胞膜、脂蛋白、神经细胞和脑细胞中的重要脂质大分子,其浓度与心脏病、高血压、动脉硬化、中风等疾病密切相关。因此,胆固醇水平检测备受关注。与目前常用的电化学法、酶分析、液相色谱、质谱等检测方法相比,光纤光谱检测方法具有体积小、抗电磁干扰、成本极低、免标记等突出特点,在生物化学检测领域备受关注。   传统的光纤光谱检测器件(如长周期光栅、倾斜光栅、表面刻蚀布拉格光栅等)受到制备仪器要求严格、温度及形变交叉敏感等困扰,在实用性上有较大局限。   该团队从光纤干涉理论及光与物质的相互作用理论出发,采用单模光纤和光纤插芯制备光纤光谱检测器件,通过范德瓦耳斯力在光纤插芯端面依次贴覆环氧树脂-氧化石墨烯(GO)-β环状糊精多层功能膜,基于最外层β环状糊精的疏水型空心分子结构与胆固醇的靶向性吸附结合原理,实现对胆固醇分子的高灵敏度光谱浓度检测,并在尿素、葡萄糖、抗坏血酸、人体血红蛋白等生化分析领域常见干扰物作用下可以呈现出强选择性,具备可重复制备和可重复检测特性,检出限达到3.5M, 灵敏度为3.92 nm/mM。该成果为表面功能化光纤器件在生化光谱分析领域的应用提供了新的思路和手段。   此外,研究通过X射线光电子能谱(XPS)探究EDC/NHS活化GO羧基对分子间键合相互作用影响以及β环状糊精和胆固醇分子的成键作用特性,对检测机制进行了验证分析。   相关研究成果发表在Analytica Chimica ACTA上。西安光机所为第一完成单位及通讯单位。图1.(a)为实验装置,(b)(c)为干涉结构。图2.(a)胆固醇检测光谱;(b)参杂/未参杂样本检测波长的Langmuir拟合;(c)选择性;(d)器件制备重复性测试。图3.XPS结果。(a) EDC/NHS未活化/活化羧基传感器的XPS光谱;(b)活化羧基传感器的N 1s光谱;(c)(d)分别为经过/未经过EDC/NHS活化羧基传感器的C1s光谱,(e)(f)分别为其O1s光谱EDC/NHS处理的传感器 (g)EDC/NHS活性羧基示意图。
  • 黄正宇:用“实业报国”的心领跑全球光纤传感技术
    有一段时间,缺钱购买黑体设备,黄正宇和他的伙伴们用太阳作为黑体源,每天坐等阳光,下午3点到5点,阳光斜射办公室,一帮人抄起工具抓紧做实验。  黄正宇本可以不用如此“窘迫”。如果4年前他不选择回国创业,而是留在美国,他所需的设备只需打个报告,就能随时送到。  但是,黄正宇放弃了在美国的优厚生活,归国创业。那年,他31岁。  在清华科技园的一个小办公室,他和文进创立北京蔚蓝仕科技有限公司,从事光纤传感器及光纤传感系统的研发、生产和销售。4年的时间,公司业务蓬勃发展,注册资本从50万元发展到1710万元,当初的6人团队也发展成现在的73人。公司已拥有多项光纤传感的自主核心技术,其中4项具有世界领先性。  回首4年的创业史,黄正宇丝毫没感到艰辛,支撑他一路走来的,是一颗家族传承的“实业报国”心。  想好的事情,就不给自己留后路  1999年,黄正宇毕业于清华大学精密仪器系,2000年8月,赴美国弗吉尼亚理工大学留学,2005年12月,获得电子工程系光博士学位。  毕业后,他进入美国某知名光学公司,成为首席光学专家。一上任,他就有惊人之举:在4个月的时间里,帮助公司完成了花5年时间、耗费4000万美元没有解决的难题。  谈及此事,黄正宇轻描淡写。他说,“我发现公司的基础技术方案出了问题,我到了公司之后,在技术方案上进行了一些调整,帮公司攻克了一些封装、材料、工艺、算法层面的问题。节省了大笔费用。”  在美国的生活无忧无虑,他完全可以拿着高薪,舒舒服服地过一生,但是创业的愿望始终在心中涌动。“如果我想留在美国,或者给自己留后路,我会申请绿卡,但是我一直没那么做。”黄正宇说。  谈到创业,黄正宇提到一个重要的缘由:家族的传承。  黄正宇出生在上海。从他记事起,姥爷就是自己的偶像。他听姥爷讲过很多故事,印象最深的就是实业报国。  家人常说,在抗战时期,姥爷在上海经营一家很大的棉纺厂,家境殷实,曾有人提出让姥爷为日军做军服,老人家断然拒绝,因此还吃了不少苦头。建国前,老人曾有机会携全家去台湾,但是为了工厂和员工,他选择留在上海。  老人家重视教育,四个孩子,两个上了清华,两个上了北大。临终前,老人家对子女说了两个遗愿,一是希望未来子孙能继续办实业,二是希望后代能出钱办教育。  黄正宇铭记在心:“他老人家一辈子都在实业报国,这也在我心中种下了一颗创业的种子。”  在美工作一年后,黄正宇找到了必须马上归国的理由。  “美国的光纤传感技术,在世界上是最先进的。我慢慢地发现,公司研发的一半产品,是以军事用途为直接目标的,而其产品的目标可能就有中国。”黄正宇说,“作为一个中国人,我怎么能帮他们做这样的研究呢?”  2007年8月,他果断放弃高薪,回到了北京,没有丝毫的犹豫,“我做事情的风格就是果断,想好的事情,从不给自己留后路。”黄正宇说。  艰苦的环境一样能搞研发  在清华东门的一个小办公室,黄正宇和文进拿出了全部积蓄50万元,开创了北京蔚蓝仕公司,第一批员工只有6人,公司的目标是光纤传感器及光纤传感系统的研发、生产和销售。当时,国内也有开展相同业务的公司,但是在技术上与美国和欧洲的公司相差10年以上。  缺少研发资金是黄正宇当时面临的最大问题。  弗吉尼亚理工大学拥有世界上最大的光纤传感实验中心。黄正宇介绍,从1997年到2010年,该中心的实验经费就高达3000万美金。在读博士的时候,如果黄正宇想买一台实验仪器,只需打个报告,就能很快批复下来。可是回到北京之后,这样的条件就完全不存在了。  讲创业的艰难故事,黄正宇面带微笑,没有丝毫的抱怨。他说,艰苦的环境一样能搞研发。  黄正宇张开两只手,并在一起,上下搓动,“当初,我们没有钱,为了做一些光学实验,连手都用上了。这样搓动,为的是用指缝的交错对光源进行斩波调制。我们甚至还用电风扇的叶片旋转来做光学斩波器,来做光学实验”。  就是在如此艰难的环境下,黄正宇带领团队,完成了一些看似不可能完成的任务。2008年,黄正宇获得国家级留学人员择优资助;2008年公司承担国家十一五科技重大科技专项子课题“智能完井关键技术研究”;2009年,黄正宇入选“千人计划”,并当选中关村高端领军科技创新创业人才和北京“海聚工程”首批海外高层次人才。  蔚蓝仕公司已拥有多项光纤传感的自主核心技术,其中4项具有世界领先性,在国内光纤传感器领域具有巨大的技术优势。公司已申请专利11项,其中发明专利7项、实用新型两项、外观设计两项,软件著作权登记6项,另有60多项国内外专利正在申请中。  “如果我的教授知道我在这样的条件下,取得现在的成绩,他会感到非常惊讶的。”黄正宇说。  展望未来,黄正宇充满希望,公司目前已经研发出六条产品线,第七、八条产品线预计在明年下半年完成。黄正宇说,“我们基本上已经把光纤传感过去40年内验证过的有市场潜力的东西都做出来了”。  蔚蓝仕的目标是什么?  黄正宇说,“要成为全球光纤传感技术的领先者”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制