当前位置: 仪器信息网 > 行业主题 > >

钨铼热电偶

仪器信息网钨铼热电偶专题为您提供2024年最新钨铼热电偶价格报价、厂家品牌的相关信息, 包括钨铼热电偶参数、型号等,不管是国产,还是进口品牌的钨铼热电偶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钨铼热电偶相关的耗材配件、试剂标物,还有钨铼热电偶相关的最新资讯、资料,以及钨铼热电偶相关的解决方案。

钨铼热电偶相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3近期在新奥集团再次中标
    创元公司代理的日本advance-riko公司热电特性评价装置zem-3近期在新奥集团再次中标创元公司代理的日本advance-riko公司热电特性评价装置zem-3近期在新奥集团再次中标,日本advance-riko公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。所得数据非常可靠。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所,武汉大学等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格 ●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格) ●温度设定范围 测温步数和温度采样测量步数:最大125步 ●测量方法 温差电动势:静态直流法 电阻率:四电极法 ●气氛 低压氦气 ●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大) ●导线间距 4,6,8mm ●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格) ●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕
    陕西师范大学导入日本ADVANCE-RIKO公司热电特性评价装置ZEM-3已验收完毕 陕西师范大学导入创元公司代理的日本ADVANCE-RIKO公司热电特性评价装置ZEM-3,已在该大学安装验收完毕。日本ADVANCE-RIKO公司是世界著名材料物性试验装置生产厂家之一。该公司是世界上首次推出这类设备的公司。数据可靠性能稳定。自进入中国以来深受热电领域广大用户喜爱。清华大学和中国科学院硅酸盐研究所等多次导入该装置。该装置主要原理和技术参数见如下彩页。欢迎来电垂询! 电阻率/温差电动势测试系统 型号:zem-3 描述热力发电是一种通过热电效应材料产生电力的方法,由j.t.seebeck德国物理学家在1821年发现的。面对当前的全球由二氧化碳排放以及化学材料消耗而导致的温室效应,热电转变器件引起了注意,因为可以有效利用余热。为了迎合这种急迫的需求,advance riko公司为这些材料和器件开发了特性评估装置 特点●一台仪器可以用来同步测量温差电动势和电阻率。●仪器允许测量6到22mm长的棱柱或圆柱型试样。●试样支架采用独特的接触式平衡机构,保证测量的高重现性●v-i标绘测量能够用来判断引线是否紧密的接触了试样。●系统能够自动检查两个探针是否和试样达到了欧姆级接触,而且能够发现并找出最佳电流用来测定电阻率而不受热传递的影响。●测量由计算机控制,能够实现在等温差的一组温度值下自动测量,并消除有害电动势和接触电阻。●测量原始数据以text文档格式保存。 测量原理 棱柱形或圆柱形试样以垂直方式放置在加热炉的上下底座上,当试样被加热后,保持在一个指定的温度时,由底座的加热器再来加热以提供一个温度梯度,热电系数的测量是通过由挤压在试样侧面的热电偶测量上下温度t1和t2,随后测量同组两根热电偶丝的热电动势de。电阻率由dc四线法测得,一个恒定的电流i流过试样的两端,通过对两根导线之间热电动势值做减法,以测量和判定在同组热电偶丝之间的电压跌落dv。 参数规格●温度范围 -80℃(到100℃(l规格)50℃(到800℃(m8格)50(到1000℃(m10规格)●温度设定范围 测温步数和温度采样测量步数:最大125步●测量方法 温差电动势:静态直流法 电阻率:四电极法●气氛 低压氦气●样品尺寸 2-4mm正方形或直径2-4mm,长6-22mm(最大)●导线间距 4,6,8mm●电源供应 200vac,单相,40a(m8,m10规格) 100vac,单相,20a(l规格,m8和m10规格)●冷却水需求 自来水,水压大于1.5kgf/cm2流量大于7l/min p规格si80ge20烧结块体测试样例
  • 冻干前沿|TDLAS技术在药物冻干中的应用详解
    本文简要综述了可调谐二极管激光吸收光谱技术 (TDLAS) 及其在监测冷冻干燥过程中的应用。通过结合TDLAS的测量和完善的传热传质模型来描述冷冻干燥,用户可以获得影响*产品质量的关键工艺参数 (KPPs) 的信息。SP Scientific 基于TDLAS的传感器LyoFlux,测量连接冷冻干燥器腔体和冷凝器的箱阱阀中的水蒸气浓度和气体流速。使用近红外光谱技术提供了水的浓度和气体流速的实时测量,用于确定水的质量通量(g/s/cm² )。结合箱阱阀连通轴横截面积,提供了离开产品腔水蒸气的质量流量(g/s) [1]。在产品干燥过程中集成流量测量,以确定总水的含量 (g) 。 传感器控制的电子器件和近红外光源被设计为从传感器远程定位。传感器控制单元 (SCU)与光学测量接口之间的通信通过光纤和电子信号电缆实现。传感器的硬件和软件被设计为可以自动操作传感器通电,以有限的用户交互提供连续的测量。该监测器被设计为24/7操作,使用强大的通讯级光学和定期系统健康监测,以确保准确的流量测量。TDLAS技术原理TDLAS传感器依靠众所周知的光谱原理和灵敏的检测技术来连续测量选定气体的微量浓度。TDLAS传感器是基于激光束通过吸收介质传播时的衰减。相关气体成分的吸收特征由比尔定律方程式(1)描述: 方程式(1) Io,v是初始激光强度 Iv是穿过一个路径长度后记录的强度 L穿过测量体积; S (T)是与温度相关的吸收线强度; g (v - v。)为谱线线性函数 (积分到一个值为1) ; N为目标吸收器的数量密度。谱线强度S的温度依赖性是由被探测的吸收器的量子态的玻尔兹曼热总体统计量引起的。括号中的量被称为光吸光度,它是根据传输强度的分数变化来衡量纯信号强度的一个指标。谱线强度与线性函数的乘积是光吸收截面。方程式(1)可以重新排列和积分,提供一种测定溶剂数密度的方法,N,单位是cm^(-3)或 gcm^(-3),用于确定气体的质量流量。关于质量流量测定 图1:图示在冷冻干燥机阀芯中速度测量的概念(左)产生的多普勒偏移吸收光谱(右)质量流量的测定需要测量在测量体积中的气体流速。速度测量的概念是基于多普勒频移吸收测量, (如图1所示)。速度是由激光传播矢量k和已知角度θ引起的水蒸气的多普勒位移吸收光谱确定的,气体流速矢量u。吸收光谱相对于静态气体样品的吸收波长在波长或频率上移位,其偏移量与气体的速度u和u与探测激光束传播矢量k之间的角度有关。使用横跨连通这轴的两个视线测量,用一个测量路径与阀芯内的第二个路径进行比较来测量频移,并由方程式(2)来描述: 方程式(2) u是速度 (cm/s) ; c是光速 ((310^10cm/s); Δv为峰值吸收位移,从它的零速度频率(或波长) cm^(-1) ; v。为吸收峰值频率cm^(-1) ,(或波长) 在零流速; θ是激光穿过流体和气流矢量之间形成的夹角。关于瞬时质量流量的确定瞬时质量流量(dm/dt,g/s)由方程式(3)确定,dm/dt由测量数密度(N,gcm^(-3))、气体流速(u, cm/s)、通道截面积(A, cm² )和若干单位换算因子的乘积计算而得: 方程式(3)移除的水的总量 (g) 是通过对升华运行时间内的瞬时测量的积分来确定的。Lyostar冷冻干燥机中的TDLAS图2显示了安装在SP Scientific 公司的Lyostar冷冻干燥机中的TDLAS的照片。双视线测量配置提供的速度测量灵敏度优于1 m/s,质量流量测定灵敏度优于1x10^(-4)g/s。 图2:安装在SP Scientific公司的Lyostar冷冻干燥机中的配置双视线测量TDLAS照片示意图TDLAS技术在冻干过程中的应用一次和二次干燥终点判定 图3显示了具有代表性的TDLAS水浓度测量和质量流量测定,是在Lyostar冷冻干燥机中干燥5%乳糖配方的过程中进行测定的。 图3:在Lyostar冷冻干燥机中干燥5%乳糖过程中,TDLAS水蒸气浓度测量和质量流量测定的时间轨迹数据轨迹中的峰值是由于在整个干燥周期中进行的压力上升测量。在一次干燥过程中,产品层板温度对四个不同的设定点进行了调整,从而在红色质量流量数据中观察到阶跃变化。在一次干燥结束前,质量流量的下降是由于随着干燥层厚度的增加,干燥层阻力的增加。水的浓度和质量流量数据轨迹都清楚地表明了一次和二次干燥终点。产品温度确定在制药产品冻干过程中,温度历史数据是药品最重要的特征,但其测量一直存在问题。 标准的实验室方法包括将温度传感器(探头),通常是热电偶,直接放置在一些选定的产品瓶中。将热电偶放置在产品中会导致冻结行为的偏差,这就转化为产品温度和干燥时间的差异。干燥过程中的产品温度直接影响到产品质量,因此,开发一种广泛适用的、稳健的测量解决方案是一个重要的行业目标,在工艺异常过程中的温度测量可以防止产品的损失。压力温度测量 (MTM) 压力上升技术已用于在一次干燥的前三分之二期间提供批次平均产品温度,此时批次中的所有小瓶都在一次干燥中。由于需要快速关闭隔离阀,该技术通常只适用于实验室规模的冻干机,并不能为生产规模的温度监测提供解决方案。相反,基于TDLAS的测量技术可以为所有规模的冻干机提供所需的测量能力。它已经证明,基于TDLAS的质量流量测量 (dm/dt) 可以与稳态传热和传质模型2,3相结合,在实验室级冻干机[4]中连续、实时地测定批次平均产品温度。基于小瓶冻干过程中的传热可以用热障和温度梯度来描述。热量从产品腔的层板通过玻璃瓶的底部传输给冷冻产品,以补偿通过升华去除的热量。从层板到产品的热流由方程式(4)来描述: 方程式(4) dQ/dt为从层板到产品的热流 (cal/s或J/s) ; Av是由小瓶外径计算出的横截面积; Kv为瓶传热系数 (特定压力下的特定瓶类型) ; Ts是层板表面的温度; Tb是位于小瓶底部中心的冷冻产品的温度。 在稳态下,热流 (dQ/dt) 与质量流 (dm/dt) 有关,即ΔHS(如方程式 (5)所示): 方程式(5)其中ΔHS为 (650 cal/g) 。方程式(4)和(5)可以组合并重新排列,以提供在方程式(6)中所示的小瓶底部的产品温度: 方程式(6)在实验室中,小瓶传热系数Kv,可以通过进行升华测试用方程式(7)单独确定,将纯水注入小瓶而不是产品: 方程式(7) 在这里,可以确定平均温差(Ts - Tb)。在实验过程中,在选定的小瓶(底部中心)中使用热电偶以及在货架表面使用胶粘热电偶。请注意,在实验室中,含有热电偶的小瓶和不含热电偶的小瓶之间的温度偏差很小,可能是由于灌装小瓶的产品液中的颗粒污染,而且对Kv的测定也不重要。Av很容易通过测量来确定。质量流量可以根据已知的水的初始质量和在一次干燥 [4]的预定时间间隔后的剩余水的质量来确定,或通过TDLAS传感器进行批量平均测量 [4] [5],腔室压力的增加导致Kv的增大,气体传导对小瓶传热系数的贡献值优于层板传导和辐射传热贡献。在确定小瓶批次平均传热系数之后,将dm/dt测量与基于热电偶的层板温度测量、小瓶横截面积和升华水热结合起来,使用公式(6)[4]确定批次平均产品温度。将TDLAS确定的底部中心温度与基于热电偶的产品温度测量值进行比较,以评估测量技术的准确性。10%甘氨酸一次干燥实验结果如下图5所示。 图5:基于TDLAS的批次平均产品温度测定的可行性证明该图显示了基于中心的小瓶和边缘的小瓶热电偶的温度测量之间的明显差异,边缘的小瓶产品温度高于中心的小瓶,这是由于来自温暖的干燥器壁和门的辐射热负荷。TDLAS确定的批次平均产品温度,最初偏向于在早期的一次干燥中热电偶测量的中心瓶,因为最初有更多的“中心瓶”,相比在一次干燥后期的“边缘瓶”,然后提供一次干燥后期边缘瓶和中心瓶之间的平均测定值。除了TDLAS和热电偶温度测量外,还使用MTM技术测定了批次平均产品温度。MTM和TDLAS技术在一次干燥是一致的。额外的分析可以确定升华界面的产品温度Tp [6]。除了确定干燥终点和产品温度外,LyoFlux TDLAS传感器的其他应用还包括评估冷冻干燥器设备的能力极限(参考之前文章:如何测试冻干机的极限性能——可支持的*升华速率),监控工艺和产品参数,并根据质量设计程序开发干燥周期。 TDLAS 技术在冻干过程中应用总结测量水蒸气浓度和气流速度,使之能够连续运行水蒸气质量流量的测定[1]一次和二次干燥终点的测定[1]设备能力测定:阻塞流测定[7]基于QbD的冷冻干燥工艺开发[7][8]小瓶传热系数的测定[4][5]在一次干燥过程中连续测定批次平均产品温度[4]连续测定产品干燥层厚度连续测定产品耐干燥性[9][10]干燥不均一性评估:预测完成一次干燥的小瓶数[9]实时跟踪二次干燥过程中产品残留水分含量[11]总之,基于LyoFlux TDLAS 技术提供了一种独特的测量能力,在整个冷冻干燥过程中提供自主和 连续的水蒸气质量流测定。水蒸气质量流量的测定可以与冷冻干燥的传热和传质模型相结合,以进一步了解干燥过程和影响*干燥产品质量的关键参数,如产品温度等。LyoFlux 适用于实验室、中试和生产规模的冷冻干燥机,使该PAT工具能够用于冻干过程放大和全过程控制。参考文献:[1] Gieseler, H., Kessler, W. J., Finson, M. F. et al., “Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze-drying,” J. Pharm. Sci. 96(7):1776-93, 2007.[2] Pikal, M. J., “Use of laboratory data in freeze drying process design: Heat and mass transfer coefficients and the computer simulation of freeze drying,” J Parent Sci Technol 39:115-138, 1985.[3] Milton, N., Pikal, M. J., Roy, M.L., Nail, S.L., “Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization,” PDA Jour Pharm Sci Tech 51:7-16, 1997.[4] Schneid, S. C., Gieseler, H., Kessler, W. J., Pikal, M. J.,“Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy,” J. Pharm. Sc. 98(9):3401-3418, 2009.[5] Kuu, W. Y., Nail, S. L., Sacha, G., ‘Rapid determination of vial heat transfer parameters using Tunable Diode Laser Absorption Spectroscopy (TDLAS) in response to step-changes in pressure set-point during freezedrying, ” J. Pharm. Sci. 98 (3):1136–1154, 2009.[6] Tang, X., Nail,, S.L., and Pikal, M.J., “Freeze-Drying Process Design by Manometric Temperture Measurement: Design of a Smart Freeze-Dryer,” Pharm Res 22(4), 2005.[7] Patel, S., Chaudhuri, S., Pikal, M.J., “Choked flow and importance of Mach I in freeze-drying process design”, Chem Eng Sci 65: 5716-5727, 2010.[8] Nail SL, Searles JA, “Elements of quality by design in development and scale-up of freeze-dried parenterals”, Biopharm International 21(1):44-52, 2008[9] Sharma, P., “Non-Invasive In-Line Monitoring of Product Temperature During Lyophilization Using Tunable Diode Laser Absorption pectroscopy (TDLAS)”, 11th Pep Talk Protein Science Week, Jan.12, 2012, San Diego, CA.[10] Kuu, W., O’Bryan, K.R., Hardwick, L.M., Paul, T.W., “Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model”, Pharm Dev Technol, 16(4) 343-57, 2011.[11] Unpublished work.
  • 重磅推出-莱北AE小麻雀系列反应釜新品
    莱北仪器,向科研者致敬!AE小麻雀系列高压反应釜 AE小麻雀系列反应釜是我公司22年研的新品,该设备体积小,性价比高,维护成本低,适用于实验室工作台面,让您不再为实验室没有地方而苦恼,在预算内又多了一个选择!莱北仪器团队表示此次新品,将为您的工作时间带来跨越式的进步。AE小麻雀系列反应釜特点安全:釜内釜壁双温控,电子机械双保险,超温报警,主动切断加热电源,控制回路和安全回路完全独立运行。小巧便捷:机身宽度为215mm,仅为一张A4纸大小。易操作:结构小巧,可整体移动,小仙女也可以自行操作、清洗、安装及拆卸。.高品质:7寸工业级触摸屏,可显示温度、转速、压力等,PID程序升温,加热功率100%可调;原装进口阀门,分离式搅拌电机,双线槽柔性密封,防腐性、耐磨性强。人性化:原位自降温系统,无需漫长等待;数据采集,带有本地实时及曲线显示,可通过U盘导出数据。互换性:不同容积可互换使用,实现一机多用。小麻雀AE系列反应釜安全优势压力表:双刻度压力表,实时监测釜内反应压力(进口)。搅拌器: 机械搅拌,性能稳定。热电偶:用于反应温度的测定(进口探头)放气阀:进样针阀和放气针阀(进口)取样阀:和探底管相连配单向阀,便于反应过程中随时取样并分析反应进程莱北仪器设备使用的所有材料均符合国际标准。莱北仪器通过了ISO 9001企业质量管理体系认证、ISO 14001环境管理体系认证、ISO45001职业健康安全管理体系认证,以及CE认证。莱北仪器所使用的生产材料都遵从RoHS标准,以保证对环境及使用者的健康保护。该仪器反应釜研发团队-来自于国际知名品牌反应釜制造公司,凭借多年进口反应釜的经验,结合国内用户的情况来研发,同时也自主研发设计了多达40余款反应釜,容积范围从25mL到20L,温度范围从-40℃到700℃,压力范围从高真空到40MPa。莱北仪器自助研发设计以反应釜、反应系统集成装置、样品前处理设备为主的具有核心竞争力的仪器设备,广泛应用于石油化工、材料冶金、生物制药、能源环境等科研领域,所有设备为本公司实验仪器自主研发,均可根据客户需求进行定制。如果您对AE小麻雀系列反应釜感兴趣,可以通过仪器信息网https://www.instrument.com.cn/netshow/SH104818/ 直接联系我们!欢迎您的来电!
  • 差热分析(DTA)技术在材料研究中的应用
    差热分析(DTA)已成为一种流行的热分析技术,通常用于测量材料的温度,进而用于测量材料的吸热相变和放热相变。这项技术已在制药、有机化工、无机材料、食品、水泥、矿物学和考古学领域得到广泛应用。差热分析(DTA)过程原则上,差热分析是一种类似于差示扫描量热(DSC)的技术,在差热分析中作为研究对象的材料经历了各种热循环(加热和冷却循环),并使用惰性参考材料确定研究材料和参考材料之间的温差。在整个加热循环中,研究材料和参考材料都保持在相同的温度,以确保测试环境一致。差热分析(DTA)中的元件差热分析通常在熔炉中进行,尤其是在现代熔炉中,因为这是在周围环境中获得均匀温度的最有效方法。温度本身是用两个热电偶记录的,这两个热电偶是专门(和通用)类型的温度传感器,传感器使用金属线形成热接点和冷接点。热接点测量材料的温度,而冷接点提供了将分析温度与之比较的参考。这是每个热电偶内部用来确定材料温度的过程。在这种情况下,参考温度不是DTA分析的参考温度,而是每个热电偶装置内的参考温度。因此,需要有两个热电偶,一个热电偶测量样品的温度,另一个测量参考温度。除了热电偶和熔炉外,还使用电压表测量热电偶之间的电压(这是它们确定温度的方式),以及通常用作材料支撑的坩埚(尤其是在分析小的样品时)。在熔炉内部,也使用氩气或氦气等惰性气体,因为它们不会与样品或参考材料发生反应,这确保了测量过程中没有干扰。在大多数情况下,防止污染物影响分析结果是非常重要的。现代DTA方法中使用的大多数熔炉也可以提供-150°C至2400°C的温度环境。此外,可以使用许多不同的坩埚,这两个因素的组合可以对各种材料进行分析,这就是为什么差热分析能够跨越很多不同的工业部门的原因。分析是将样品和参考材料对称放置在熔炉中进行。然后,这两种材料在程序控温下经过加热和冷却的过程,在每个循环中,这两种温度尽可能保持恒定(在合理误差范围内)。由于熔炉加热,数据记录通常会有轻微延迟(延迟的长度通常取决于材料的热容)。差热分析(DTA)图谱在分析过程中,将温差相对时间的曲线绘制在图表上。在某些情况下,也可以绘制温差相对于温度的曲线。从这(以及曲线如何显示)可以确定材料的吸热和放热转变温度,更多的信息还包括材料的玻璃化转变温度、材料的结晶温度、材料的熔化温度和材料的升华温度。这些通常都能推断出来,因为相对于参考材料的温度变化可以确定材料是吸收热量(吸热)还是释放热量(放热)。热电偶的存在也有助于轻松识别是否发生了相变,因为当发生相变时,连接到参考热电偶上的电压表将轻微跳变。这是由于材料相变产生的潜热导致惰性气体温度略微升高(进而影响参考热电偶的电压)。除了传统的温度相变外,当两个惰性样品对热循环的响应不同时,还可以使用差热分析来测量它们。在这些特定情况下,DTA还可用于识别任何不基于焓变的相变。这些通常通过DTA图上曲线的间断来识别。结论虽然差热分析被正式定义为一种确定样品和参考材料之间温差的方法,但在实践中,它可以告诉用户材料在很多不同温度下的相特性。差热分析获得的信息量对很多行业都有很大的好处,因此被广泛使用。本文作者:Liam Critchley,Liam Critchley是一名作家和记者,专攻化学和纳米技术,拥有化学和纳米技术硕士学位和化学工程硕士学位。
  • 垃圾焚烧检测新规公布!5项污染物与二噁英成指标
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "12月2日,生态环境部相继公布《生活垃圾焚烧发电厂自动监测数据应用管理规定》(下简称“管理规定”)和《生活垃圾焚烧发电厂自动监测数据标记规则》(下简称“标记规则”),将首次对全国所有投入运行的垃圾焚烧发电厂(共有394家)使用的实时在线监测数据进行执法监管,法规将自2020年1月1日起施行。/span/pp style="text-align: justify text-indent: 2em "管理规定中明确了将5项常规污染物自动监测日均数据定为考核指标,强调在一个自然日内,垃圾焚烧厂任一焚烧炉排放烟气中strongspan style="color: rgb(0, 176, 240) "颗粒物、氮氧化物、二氧化硫、氯化氢、一氧化碳/span/strong等污染物的自动监测日均值数据,有一项或者一项以上超过《生活垃圾焚烧污染控制标准》(GB18485)或者地方污染物排放标准规定的相应污染物24小时均值限值或者日均值限值,可以认定其污染物排放超标。自动监测日均值数据的计算,按照《污染物在线监控(监测)系统数据传输标准》(HJ212)执行。/pp style="text-align: justify text-indent: 2em "根据标记规则,自动监控系统,由垃圾焚烧厂的自动监测设备和生态环境主管部门的监控设备组成。共分为自动监控系统和监控网络两部分:/pp style="text-align: justify text-indent: 2em "自动监测设备安装在垃圾焚烧厂现场,涉及的仪器设备包括strongspan style="color: rgb(0, 176, 240) "连续监控监测污染物排放的仪器、流量(速)计、采样装置、生产或治理设施运行记录仪、数据采集传输仪(以下简称数采仪)、烟气参数或炉膛温度等运行参数的监测设备、视频监控或污染物排放过程(工况)监控等仪表和传感器设备/span/strong。/pp style="text-align: justify text-indent: 2em "生态环境主管部门的监控设备则通过通信传输线路与现场端自动监测设备联网,包括用于对垃圾焚烧厂实施自动监控的信息管理平台、计算机机房硬件等设备。/pp style="text-align: justify text-indent: 2em "管理规定还指出,对于民众普遍关注的二噁英类等暂不具备自动监测条件的污染物,将以生态环境主管部门执法监测获取的监测数据作为超标判定依据。生态环境部华南环境科学研究所研究员海景在接受央视采访时表示,strongspan style="color: rgb(0, 176, 240) "二噁英/span/strong不能实现在线检测,但可以在850度之下停留两秒之后完全分解,因此,管理规定第七条明确规定,垃圾焚烧厂应当按照国家有关规定,确保正常工况下strongspan style="color: rgb(0, 176, 240) "焚烧炉炉膛内热电偶测量温度的5分钟均值不低于850℃/span/strong,作为与二噁英控制相关联的最直接指标。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "附件:/span/strong/pp style="text-align: justify text-indent: 2em "1.《生活垃圾焚烧发电厂自动监测数据应用管理规定》原文/pp style="text-align: justify text-indent: 2em "2.《生活垃圾焚烧发电厂自动监测数据标记规则》原文/pp style="text-align: center text-indent: 0em "strong1 《生活垃圾焚烧发电厂自动监测数据应用管理规定》/strong/pp style="text-align: justify text-indent: 0em "  第一条 为规范生活垃圾焚烧发电厂自动监测数据使用,推动生活垃圾焚烧发电厂达标排放,依法查处环境违法行为,根据《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》等法律法规,制定本规定。/pp style="text-align: justify text-indent: 0em "  第二条 本规定适用于投入运行的生活垃圾焚烧发电厂(以下简称垃圾焚烧厂)。/pp style="text-align: justify text-indent: 0em "  第三条 设区的市级以上地方生态环境主管部门应当将垃圾焚烧厂列入重点排污单位名录。/pp style="text-align: justify text-indent: 0em "  垃圾焚烧厂应当按照有关法律法规和标准规范安装使用自动监测设备,与生态环境主管部门的监控设备联网。/pp style="text-align: justify text-indent: 0em "  垃圾焚烧厂应当按照《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》(HJ75)等标准规范要求,对自动监测设备开展质量控制和质量保证工作,保证自动监测设备正常运行,保存原始监测记录,并确保自动监测数据的真实、准确、完整、有效。/pp style="text-align: justify text-indent: 0em "  第四条 垃圾焚烧厂应当按照生活垃圾焚烧发电厂自动监测数据标记规则(以下简称标记规则),及时在自动监控系统企业端,如实标记每台焚烧炉工况和自动监测异常情况。/pp style="text-align: justify text-indent: 0em "  自动监测设备发生故障,或者进行检修、校准的,垃圾焚烧厂应当按照标记规则及时标记;未标记的,视为数据有效。/pp style="text-align: justify text-indent: 0em "  第五条 生态环境主管部门可以利用自动监控系统收集环境违法行为证据。自动监测数据可以作为判定垃圾焚烧厂是否存在环境违法行为的证据。/pp style="text-align: justify text-indent: 0em "  第六条 一个自然日内,垃圾焚烧厂任一焚烧炉排放烟气中颗粒物、氮氧化物、二氧化硫、氯化氢、一氧化碳等污染物的自动监测日均值数据,有一项或者一项以上超过《生活垃圾焚烧污染控制标准》(GB18485)或者地方污染物排放标准规定的相应污染物24小时均值限值或者日均值限值,可以认定其污染物排放超标。/pp style="text-align: justify text-indent: 0em "  自动监测日均值数据的计算,按照《污染物在线监控(监测)系统数据传输标准》(HJ212)执行。/pp style="text-align: justify text-indent: 0em "  对二噁英类等暂不具备自动监测条件的污染物,以生态环境主管部门执法监测获取的监测数据作为超标判定依据。/pp style="text-align: justify text-indent: 0em "  第七条 垃圾焚烧厂应当按照国家有关规定,确保正常工况下焚烧炉炉膛内热电偶测量温度的5分钟均值不低于850℃。/pp style="text-align: justify text-indent: 0em "  第八条 生态环境主管部门开展行政执法时,可以按照监测技术规范要求采集一个样品进行执法监测,获取的监测数据可以作为行政执法的证据。/pp style="text-align: justify text-indent: 0em "  生态环境主管部门执法监测获取的监测数据与自动监测数据不一致的,以生态环境主管部门执法监测获取的监测数据作为行政执法的证据。/pp style="text-align: justify text-indent: 0em "  第九条 生态环境主管部门执法人员现场调查取证时,应当提取自动监测数据,制作调查询问笔录或者现场检查(勘察)笔录,并对提取过程进行拍照或者摄像,或者采取其他方式记录执法过程。/pp style="text-align: justify text-indent: 0em "  经现场调查核实垃圾焚烧厂污染物超标排放行为属实的,生态环境主管部门应当当场责令垃圾焚烧厂改正违法行为,并依法下达责令改正违法行为决定书。/pp style="text-align: justify text-indent: 0em "  生态环境主管部门执法人员现场调查时,可以根据垃圾焚烧厂的违法情形,收集下列证据:/pp style="text-align: justify text-indent: 0em "  (一)当事人的身份证明;/pp style="text-align: justify text-indent: 0em "  (二)调查询问笔录或者现场检查(勘察)笔录;/pp style="text-align: justify text-indent: 0em "  (三)提取的热电偶测量温度的五分钟均值数据、自动监测日均值数据或者数据缺失情况;/pp style="text-align: justify text-indent: 0em "  (四)自动监测设备运行参数记录、运行维护记录;/pp style="text-align: justify text-indent: 0em "  (五)相关生产记录、污染防治设施运行管理台账等;/pp style="text-align: justify text-indent: 0em "  (六)自动监控系统企业端焚烧炉工况、自动监测异常情况数据及标记记录;/pp style="text-align: justify text-indent: 0em "  (七)其他需要的证据。/pp style="text-align: justify text-indent: 0em "  生态环境主管部门执法人员现场从自动监测设备提取的数据,应当由垃圾焚烧厂直接负责的主管人员或者其他责任人员签字确认。/pp style="text-align: justify text-indent: 0em "  第十条 根据本规定第六条认定为污染物排放超标的,依照《中华人民共和国大气污染防治法》第九十九条第二项的规定处罚。对一个自然月内累计超标5天以上的,应当依法责令限制生产或者停产整治。/pp style="text-align: justify text-indent: 0em "  垃圾焚烧厂存在下列情形之一,按照标记规则及时在自动监控系统企业端如实标记的,不认定为污染物排放超标:/pp style="text-align: justify text-indent: 0em "  (一)一个自然年内,每台焚烧炉标记为“启炉”“停炉”“故障”“事故”,且颗粒物浓度的小时均值不大于150毫克/立方米的时段,累计不超过60小时的;/pp style="text-align: justify text-indent: 0em "  (二)一个自然年内,每台焚烧炉标记为“烘炉”“停炉降温”的时段,累计不超过700小时的;/pp style="text-align: justify text-indent: 0em "  (三)标记为“停运”的。/pp style="text-align: justify text-indent: 0em "  第十一条 垃圾焚烧厂正常工况下焚烧炉炉膛内热电偶测量温度的五分钟均值低于850℃,一个自然日内累计超过5次的,认定为“未按照国家有关规定采取有利于减少持久性有机污染物排放的技术方法和工艺”,依照《中华人民共和国大气污染防治法》第一百一十七条第七项的规定处罚。/pp style="text-align: justify text-indent: 0em "  下列情形不认定为“未按照国家有关规定采取有利于减少持久性有机污染物排放的技术方法和工艺”:/pp style="text-align: justify text-indent: 0em "  (一)因不可抗力导致焚烧炉炉膛内热电偶测量温度的五分钟均值低于850℃,提前采取了有效措施控制烟气中二噁英类污染物排放,按照标记规则标记为“炉温异常”的;/pp style="text-align: justify text-indent: 0em "  (二)标记为“停运”的。/pp style="text-align: justify text-indent: 0em "  第十二条 垃圾焚烧厂违反本规定第三条第三款,导致自动监测数据缺失或者无效的,认定为“未保证自动监测设备正常运行”,依照《中华人民共和国大气污染防治法》第一百条第三项的规定处罚。/pp style="text-align: justify text-indent: 0em "  下列情形不认定为“未保证自动监测设备正常运行”:/pp style="text-align: justify text-indent: 0em "  (一)在一个季度内,每台焚烧炉标记为“烟气排放连续监测系统(CEMS)维护”的时段,累计不超过30小时的;/pp style="text-align: justify text-indent: 0em "  (二)标记为“停运”的。/pp style="text-align: justify text-indent: 0em "  第十三条 垃圾焚烧厂通过下列行为排放污染物的,认定为“通过逃避监管的方式排放大气污染物”,依照《中华人民共和国大气污染防治法》第九十九条第三项的规定处罚:/pp style="text-align: justify text-indent: 0em "  (一)未按照标记规则虚假标记的;/pp style="text-align: justify text-indent: 0em "  (二)篡改、伪造自动监测数据的。/pp style="text-align: justify text-indent: 0em "  第十四条 垃圾焚烧厂任一焚烧炉出现污染物排放超标,或者未按照国家有关规定采取有利于减少持久性有机污染物排放的技术方法和工艺的情形,持续数日的,按照其违法的日数依法分别处罚;不同焚烧炉分别出现上述违法情形的,依法分别处罚。/pp style="text-align: justify text-indent: 0em "  第十五条 垃圾焚烧厂5日内多次出现污染物超标排放,或者未按照国家有关规定采取有利于减少持久性有机污染物排放的技术方法和工艺的情形的,生态环境主管部门执法人员可以合并开展现场调查,分别收集每个违法行为的证据,分别制作行政处罚决定书或者列入同一行政处罚决定书。/pp style="text-align: justify text-indent: 0em "  第十六条 篡改、伪造自动监测数据或者干扰自动监测设备排放污染物,涉嫌构成犯罪的,生态环境主管部门应当依法移送司法机关,追究刑事责任。/pp style="text-align: justify text-indent: 0em "  第十七条 垃圾焚烧厂因污染物排放超标等环境违法行为被依法处罚的,应当依照国家有关规定,核减或者暂停拨付其国家可再生能源电价附加补贴资金。/pp style="text-align: justify text-indent: 0em "  第十八条 生活垃圾焚烧发电厂自动监测数据标记规则由生态环境部另行制定。/pp style="text-align: justify text-indent: 0em "  第十九条 本规定由生态环境部负责解释。/pp style="text-align: justify text-indent: 0em "  第二十条 本规定自2020年1月1日起施行。/pp style="text-align: justify text-indent: 0em "br//pp style="text-align: center text-indent: 0em "strong2.《生活垃圾焚烧发电厂自动监测数据标记规则》/strong/pp style="text-align: justify text-indent: 2em "为保障生活垃圾焚烧发电厂自动监测数据的真实、准确、完整、有效,指导生活垃圾焚烧发电厂根据焚烧炉和自动监控系统运行情况,如实标记自动监测数据,制定本规则。/pp style="text-align: justify text-indent: 0em "  1 适用范围/pp style="text-align: justify text-indent: 0em "  本规则规定了生活垃圾焚烧发电厂(以下简称垃圾焚烧厂)根据焚烧炉和自动监控系统运行情况,如实标记自动监测数据的规则。/pp style="text-align: justify text-indent: 0em "  本规则适用于投入运行的垃圾焚烧厂。只焚烧不发电的生活垃圾焚烧厂参照执行。/pp style="text-align: justify text-indent: 0em "  2 规范性引用文件/pp style="text-align: justify text-indent: 0em "  《生活垃圾焚烧污染控制标准》(GB 18485);/pp style="text-align: justify text-indent: 0em "  《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》(HJ 75);/pp style="text-align: justify text-indent: 0em "  《污染物在线监控(监测)系统数据传输标准》(HJ 212);/pp style="text-align: justify text-indent: 0em "  《生活垃圾焚烧厂运行维护与安全技术标准》(CJJ 128)。/pp style="text-align: justify text-indent: 0em "  3 术语及定义/pp style="text-align: justify text-indent: 0em "  下列术语及定义适用于本规则。/pp style="text-align: justify text-indent: 0em "  3.1 自动监控系统/pp style="text-align: justify text-indent: 0em "  自动监控系统,由垃圾焚烧厂的自动监测设备和生态环境主管部门的监控设备组成。/pp style="text-align: justify text-indent: 0em "  自动监测设备安装在垃圾焚烧厂现场,包括用于连续监控监测污染物排放的仪器、流量(速)计、采样装置、生产或治理设施运行记录仪、数据采集传输仪(以下简称数采仪)、烟气参数或炉膛温度等运行参数的监测设备、视频监控或污染物排放过程(工况)监控等仪表和传感器设备。/pp style="text-align: justify text-indent: 0em "  生态环境主管部门的监控设备通过通信传输线路与现场端自动监测设备联网,包括用于对垃圾焚烧厂实施自动监控的信息管理平台、计算机机房硬件等设备。/pp style="text-align: justify text-indent: 0em "  3.2 自动监测数据/pp style="text-align: justify text-indent: 0em "  自动监测设备运行时产生的数据。/pp style="text-align: justify text-indent: 0em "  3.3 数据标记/pp style="text-align: justify text-indent: 0em "  垃圾焚烧厂利用“重点排污单位自动监控系统企业端”(以下简称企业端)等工具,按照本规则对每台焚烧炉工况、自动监测异常进行标记的操作。/pp style="text-align: justify text-indent: 0em "  3.4 炉膛温度/pp style="text-align: justify text-indent: 0em "  以焚烧炉炉膛内热电偶测量温度的5分钟平均值计,即焚烧炉炉膛内中部和上部两个断面各自热电偶测量温度中位数算术平均值的5分钟平均值。/pp style="text-align: justify text-indent: 0em "  4 数据标记内容及要求/pp style="text-align: justify text-indent: 0em "  4.1 焚烧炉工况标记/pp style="text-align: justify text-indent: 0em "  一般情况下,焚烧炉工况呈现为:正常运行—停炉—停炉降温—(停运)—烘炉—启炉—正常运行。启炉、正常运行和停炉时,炉膛温度不应低于850℃。/pp style="text-align: justify text-indent: 0em "  焚烧炉工况标记包括“烘炉”“启炉”“停炉”“停炉降温”“停运”“故障”和“事故”等7种标记。/pp style="text-align: justify text-indent: 0em "  4.1.1 在未投入垃圾的情况下,用辅助燃烧器将炉膛温度升至850℃以上的时段,可标记为“烘炉”。/pp style="text-align: justify text-indent: 0em "  标记为“烘炉”的,一般情况下,炉膛温度起点应低于400℃;当“烘炉”的前序标记为“停炉降温”“故障”或“事故”时,允许炉膛温度起点高于400℃。/pp style="text-align: justify text-indent: 0em "  标记为“烘炉”的,一般情况下,每次时长不应超过12小时;炉内耐火材料修复或改造后,每次时长不应超过168小时。/pp style="text-align: justify text-indent: 0em "  4.1.2 完成烘炉后,投入垃圾至工况稳定,且炉膛温度保持在850℃以上的时段,可标记为“启炉”。/pp style="text-align: justify text-indent: 0em "  标记为“启炉”的,每次时长不应超过4小时。/pp style="text-align: justify text-indent: 0em "  4.1.3 停止向焚烧炉投入垃圾至炉膛内垃圾完全燃尽,且炉膛温度保持在850℃以上的时段,可标记为“停炉”。/pp style="text-align: justify text-indent: 0em "  4.1.4 焚烧炉炉膛内垃圾完全燃尽后,炉膛温度继续降低的时段,可标记为“停炉降温”。/pp style="text-align: justify text-indent: 0em "  标记为“停炉降温”的,一般情况下,炉膛温度应从850℃以上降至400℃以下;当“停炉降温”的后序标记为“烘炉”时,允许该标记时段结束时炉膛温度高于400℃。/pp style="text-align: justify text-indent: 0em "  4.1.5 焚烧炉停止运转的时段,可标记为“停运”。/pp style="text-align: justify text-indent: 0em "  标记为“停运”的,烟气含氧量不应低于当地空气含氧量的2个百分点。/pp style="text-align: justify text-indent: 0em "  4.1.6 焚烧炉发生故障或事故的时段,可标记为“故障”或“事故”。/pp style="text-align: justify text-indent: 0em "  标记为“故障”或“事故”的,每次时长不应超过4小时,并简要描述故障或事故起因。/pp style="text-align: justify text-indent: 0em "  4.1.7 垃圾焚烧厂在企业端未作上述标记的,焚烧炉视为正常运行。/pp style="text-align: justify text-indent: 0em "  4.2 自动监测异常标记/pp style="text-align: justify text-indent: 0em "  自动监测异常标记包括“烟气排放连续监测系统维护(以下简称CEMS维护)”“通讯中断”“炉温异常”和“热电偶故障”等4种标记。/pp style="text-align: justify text-indent: 0em "  4.2.1 CEMS校准、故障、检修以及数采仪故障、检修的时段,可标记为“CEMS维护”。/pp style="text-align: justify text-indent: 0em "  标记为“CEMS维护”的,应同时备注维护的类型,并简要描述维护过程,保存运行维护记录备查。/pp style="text-align: justify text-indent: 0em "  4.2.2 网络故障、通讯设备故障等原因导致数据无法报送至生态环境主管部门的时段,可标记为“通讯中断”。/pp style="text-align: justify text-indent: 0em "  标记为“通讯中断”的,应在通讯恢复后补传自动监测数据。/pp style="text-align: justify text-indent: 0em "  4.2.3 正常运行时,因不可抗力导致焚烧炉炉膛温度低于850℃的时段,可标记为“炉温异常”。/pp style="text-align: justify text-indent: 0em "  标记为“炉温异常”的,应备注炉膛温度异常的原因以及提前采取控制烟气污染物排放的有效措施(如加强垃圾预处理,启动辅助燃烧器、加大活性炭喷入量等),并保存运维记录和台账资料备查。/pp style="text-align: justify text-indent: 0em "  4.2.4 因热电偶结焦、损坏等情况导致热电偶测量温度不能反映实际温度的时段,可标记为“热电偶故障”。/pp style="text-align: justify text-indent: 0em "  标记为“热电偶故障”的,应备注故障测点位置、故障原因、维修或更换过程,保存运行维护记录和台账备查。/pp style="text-align: justify text-indent: 0em "  4.2.5 垃圾焚烧厂在企业端未作上述标记的,自动监测数据视为有效。/pp style="text-align: justify text-indent: 0em "  5 标记操作/pp style="text-align: justify text-indent: 0em "  焚烧炉工况和自动监测异常可分别标记,分别包括事前标记或事后标记。/pp style="text-align: justify text-indent: 0em "  5.1 事前标记。垃圾焚烧厂可根据生产计划、CEMS维护计划等,在企业端提前标记。/pp style="text-align: justify text-indent: 0em "  5.2 事后标记。当出现焚烧炉工况改变,自动监测异常,自动监测数据出现零值、恒值、超量程以及超过污染物限值等情形时,垃圾焚烧厂应当于1小时内核实并标记。/pp style="text-align: justify text-indent: 0em "  未及时标记的,由生态环境部污染源监控平台向垃圾焚烧厂发出电子督办单,并抄送所在地县级以上生态环境主管部门。垃圾焚烧厂在接到电子督办单后,应当及时核实,并在6小时内按操作提示如实进行标记。/pp style="text-align: justify text-indent: 0em "br//pp style="text-align: justify text-indent: 2em "strong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "免费阅读并下载相关标准:/span/strong/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/download/shtml/832479.shtml" target="_self" style="text-decoration: underline "strong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "GB 18485-2014 生活垃圾焚烧污染控制标准/span/strongstrong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "/span/strong/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/download/shtml/927110.shtml" target="_self" style="text-decoration: underline "strong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "HJ 212-2017 污染物在线监控(监测)系统数据传输标准/span/strongstrong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "/span/strong/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/download/shtml/874318.shtml" target="_self" style="text-decoration: underline "strong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "HJ 75-2017 固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范/span/strongstrong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "/span/strong/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/download/shtml/881908.shtml" target="_self" style="text-decoration: underline "strong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "CJJ 128-2017 生活垃圾焚烧厂运行维护与安全技术标准/span/strongstrong style="color: rgb(0, 62, 139) font-family: " microsoft="" font-size:="" text-indent:=""span style="font-size: 16px font-family: 黑体, SimHei "/span/strong/a/p
  • 欧米合作 | 西湖欧米与赛默飞世尔科技签订联合实验室
    西湖欧米与赛默飞世尔科技(以下简称赛默飞)于近期,在杭州签署了联合实验室合作备忘录。双方宣布将在“临床蛋白质组在转化医学中的应用领域”设立联合实验室并开展系列合作。 西湖欧米与赛默飞签署的备忘录共同关注到人类重大疾病(如肿瘤)对人们的健康造成的威胁。在癌症领域,比如甲状腺癌,用传统方法判断其良恶性的准确度有限。西湖欧米联合创始人郭天南博士表示,“这次合作有助于我们共同探索有临床应用潜力的新的诊断方法和治疗靶点。”西湖欧米将AI深度学习与临床医疗大数据整合,助力癌症等人类重大疾病的精确分型、预测和治疗。现阶段,西湖欧米已通过临床队列的临床样本检测生物体内蛋白质表达水平,在甲状腺结节等疾病的诊疗方面已取得较大进展。 对于这次联合实验室的建立,赛默飞也非常期待,并表示这次的合作也是基于赛默飞质谱分析平台和西湖欧米完善的组学分析技术,希望两方能强强联合,加速推动组学技术辅助诊断智能化进程,提供更好、更具特色的辅助诊疗方案,来满足全球临床需求,实现肿瘤等重大疾病准确诊断。 未来,两家公司将在杭州西湖大学科技园进行线下挂牌仪式。 赛默飞致力于以优质的产品与服务帮助客户加速生命科学领域的研究,解决在分析领域所遇到的问题和挑战,促进医疗诊断发展,提高实验室生产力。 西湖欧米作为一家创新型的生物科技公司,致力于不断优化基于质谱的微量生物样本蛋白质组分析技术,开发AI赋能的、基于组学大数据的临床辅助诊断新方法和新药开发,助力医疗。
  • 最详细!测温仪器大盘点
    温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。在工业领域、在日常生活中,温度与我们息息相关。在医药、食品、电气、化工、航空、航天等领域中,温度都是一个重要参数。温度测量以及对这些温度传感器和测温仪的准确性的检定校准显得尤为重要。随着科学技术的发展和现代工业技术的需要,温度测量技术也在不断完善提高。随着温度测量范围越来越广,根据不同的要求生产出有所不同需求的温度测量仪器。小编特对测温技术与仪器进行盘点,以供读者参考。膨胀式温度计膨胀式温度计是利用物体受热膨胀原理制成的温度计,主要有液体膨胀式、固体膨胀式和压力式温度计三种。液体膨胀式温度计中最常见的液体膨胀式温度计是玻璃管式温度计。压力式温度计是利用密闭容积内工作介质的压力随温度变化的性质,通过测量工作介质的压力来判断温度值的一种机械式仪表。最常见的液体膨胀式温度计是玻璃管式温度计,主要由液体储存器、毛细管和标尺组成。根据所充填的液体介质不同能够测量-200~750℃范围的温度。玻璃管液体温度计由于其直观、测量准确、结构简单、造价低廉等优点,被广泛应用于工业、实验室和医院等各个领域及日常生活中。但其不能自动记录、不能远传、易碎,且测温有一定延迟。压力式温度计压力式温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值。这种温度计具有温包体积小,反应速度快、灵敏度高、读数直观等特点,几乎集合了玻璃棒温度计、双金属温度计、气体压力温度计的所有优点,它可以制造成防震、防腐型,并且可以实现远传触点信号、热电阻信号、0-10mA或4-20mA信号。是目前使用范围最广、性能最全面的一种机械式测温仪表。压力式温度计适用于工业场合测量各种对铜无腐蚀作用的介质温度,若介质有腐蚀作用应选用防腐型。压力式温度计广泛应用于机械、轻纺、化工、制药、食品行业对生产过程中的温度测量和控制。防腐型压力式温度计采用全不锈钢材料,适用于中性腐蚀的液体和气体介质的温度测量。电阻温度计电阻温度计,也称为电阻温度探测器(RTDs),其是一种根据导体电阻随温度而变化的规律来测量温度的温度计。最常用的电阻温度计都采用金属丝绕制成的感温元件,主要有铂电阻温度计和铜电阻温度计,在低温下还有碳、锗和铑铁电阻温度计。铂是一种贵金属,在最大温度范围内具有最稳定的电阻—温度关系。镍元素的温度范围有限,因为在温度超过300°C时,每个温度变化的电阻变化量变得非常非线性。铜具有非常线性的电阻—温度关系 然而,铜在中等温度下会氧化,不能在低于150°C的温度下使用。因此,电阻温度计几乎无一例外地由铂制造而成,电阻温度计也常被称为铂电阻温度计。精密的铂电阻温度计是最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计。我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计。如今,在许多低于600℃的工业应用场合,铂电阻温度计正逐渐地取代热电偶。热敏电阻温度计热敏电阻温度计是一种可量度体温和室温的温度计,它有一个安培计/电流计和电源。当温度升高时,电热调节器(温度计的探测器)所探测到的电流会增加,电阻会减少。电流增加表明温度在升高;而电阻增加则表示温度在降低。不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物。两者也有不同的温度响应性质,电阻温度计适用于较大的温度范围;而热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90~130℃。铂电阻温度计的优点是线性好,其分度表很容易计算出来。但是其温度系数较小。热敏电阻器温度系数大,但曲线是非线性的,需要拟合。热敏电阻的材料决定了其一致性差,但是温度灵敏度高,可对微小的温度变化产生灵敏的反应,可以小型化,加工性强,测量一般热电偶和RTD无法测量的位置,如生物医药应用。热电偶温度计热电偶温度计是以热电效应为基础的测温仪表。由于其结构简单、测量范围宽、使用方便、测温准确可靠,信号便于远传、自动记录和集中控制,因而在工业生产中应用极为普遍。热电偶温度计由三部分组成:热电偶(感温元件);测量仪表(动圈仪表或电位差计);连接热电偶和测量仪表的导线(补偿导线)。热电偶是工业上最常用的一种测温元件,它是由两种不同材料的导体焊接而成。两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。液晶温度计液晶是一类有机化合物,在一定的温度范围内,它呈现出介于液体和晶体之间的状态,它既具有液体的流动性,又具有晶体的各向异性,其光学上的特异性能尤其引人注目。可利用液晶材料的温一色效应,根据液晶颜色变化来测定物体表面的温度分布。这种方法已成功地用于医学上的肿瘤部位诊断、末梢血管的功能检查和体温测量工业中的无损探伤、微波场及超声波场的测试,生化、微生物实验研究等众多领域。对于某些特殊的应用场合,例如,对只产生微量热效应的生化、微生物反应的观察和测定,对于不允许测温元件对被测对象的温度场造成干扰和希望测温元件的热容量降至最小的场合,以及只允许测温元件与其表面接触的生物体温度的测量等,液晶测温有其明显的优点。液晶温度计可用于多种应用,从读取患者的体温到化学实验室或啤酒厂中精确测量液体和空气温度范围。液晶温度计的低成本以及精确测量各种温度范围的能力,使该温度计成为许多制造和医疗过程不可或缺的一部分。随着环境温度的升高和降低,基于类胆固醇的胆甾醇型液体的颜色会沿着试纸条变化。要读取液晶温度计,用户只需注意温度计的颜色变化即可。在某些情况下,温度计还会在温度上标出数字标记,以提高读数的准确性。当今使用的一种最常见的液晶温度计类型是一条胶粘带,该胶粘带附着在瓶子或实验室设备的外表面上,可以准确地读取容器的温度。对于啤酒的微酿造等操作,液晶温度计可精确测量酿造容器中的温度范围。虽然测量的精度不如浸入液体中的激光温度计或传统温度计,但液晶温度计产生的结果对于必须保持在特定温度范围内而不是特定目标的反应具有足够的精度温度。饲养热带鱼或外来宠物(如爬行动物和两栖动物)的爱好者也将液晶温度计安装在水族箱的外表面,以准确测量内部水或空气的温度范围。这些温度计易于更换且成本低廉,与传统的水银温度计可能会对水箱中的动物或鱼类造成伤害不同,液晶式温度计不易破裂和释放有害化学物质。在实验室中,液晶温度计可用于测量温度变化和传输模式。液晶温度计的基于类胆固醇的液体可用于通过对流,辐射和传导有效地跟踪热量的传递。通过加热温度计,然后跟踪液体通过蒸发或浸入降低温度计温度的速度,也可以使用相同的原理来显示液体的冷却特性。辐射温度计辐射温度计属非接触式测温仪表,是基于物体的热辐射特性与温度之间的对应关系设计而成,主要涉及到的理论定律是黑体辐射定律,更为具体一点说则是运用了普朗克定律。其特点为:测温范围广,原理结构复杂;测量时,感温元件不与被测对象直接接触,不破坏被测对象的温度场;通常用来测定1000℃以上的移动、旋转或反应迅速的高温物体的温度或表面温度;但不能直接测被测对象的真实温度,且所测温度受物体发射率、中间介质和测量距离等因素影响。辐射温度计主要包括三个种类:光学高温计、辐射高温计、色比温度计。这三种温度计都能够做到不直接接触被测物体,弥补因高温而造成的人工测温的局限性,是我国目前最广泛应用的温度计种类。在传统的观念中,对于物体温度的概念就是其热辐射的情况,然而实际上对于一定量的热辐射来说,其温度并不是固定值,所以依据热辐射来判断物体温度是极为不准确的。在辐射测温学说当中,为弥补热辐射测温的漏洞,就有了表观温度的概念,其主要包括亮度温度、辐射温度和颜色温度,三种辐射温度计也是依据这一概念产生的。(1)光学高温计,也称光学高温计,是根据物体单色辐射亮度跟随温度变化原理而制成的非接触式温度测量仪表。光学高温计运用的主要原理是普朗克公式。一般情况下,对于亮度的测量会使用平衡法来完成,就是用人的肉眼来比较被测主体的在一定温度下的灯泡亮度来判定被测主体当前的温度,灯丝的电流即是测量结果的主要参数,再将电流与温度上的刻度表进行对应比较,就是光学高温计的传统工作方式。这种传统的光学高温计的优势在于其结构简单、便于使用,可测量的范围较为宽泛,精度也较为准确,但是其缺点在于仅靠人的肉眼来进行比较,就容易造成测量数据的误差,所以新型的光学高温计采用光电敏感元件来代替人眼,数据准确性大大提高。(2)辐射高温计是根据物体在整个波长范围内的辐射能量与其温度之间的函数关系设计制造的。辐射高温计属于透镜聚焦式的感温器,运用热辐射效应的原理,聚焦在热敏元件上,继而转变成电参数,它可以依据测温的实际需要进行拆卸,并可形成被测物体的影像。辐射高温计属于相对简易的非接触性测温仪表,由于其运用热辐射原理工作,被广泛运用于冶金、机械、化学工业等领域,主要用于显示和自动调节被测温度。(3)色比温度计是一种非接触式的红外温度计,主要根据被测物体发射出的颜色温度的红外辐射来进行测量。色比温度计测温的主要依据是被测主体发射的红外能量之比来实现温度测量的,其是将红外能量通过滤波器送到探头,再由探头转换成电信号,最后由温度计刻度显出。其常用的测温环境为 600-3000 摄氏度,常搭配观测管使用,有效减少周遭环境的干扰而获得较为精准的数据。我国的工业生产水平越来越高,发展脚步也越来越快,这对工业生产的各个环节提出的要求也就随之越来越高,尤其是在对生产设备的温度控制上,将温度控制在一个合理的范围之内,对于生产的产品质量和提高生产效率来说都是十分重要的,测温仪器的重要性正日益凸显。
  • 赛默飞世尔:通过并购来增加股东价值
    赛默飞世尔科技(Thermo Fisher Scientific)是全球科学服务领域的领导者,主要致力于能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案,年销售额超过100亿美金。公司总裁兼首席执行官Marc Casper先生在2011年1月12日摩根大通医疗卫生年表示,通过并购来增加股东价值也将还是公司战略的一部分。  赛默飞世尔科技欲以21亿美元收购美国戴安公司  2010年12月13日,全球科学服务领域的领导者——赛默飞世尔科技欲以21亿美元收购世界离子色谱技术的先驱——美国戴安公司(DIONEX)。据报道,每股交易价为118.50美元,价格高于上周五戴安公司收盘价21%,高于过去60个交易日戴安公司的平均收盘价32%。双方董事会通过协定一致通过该交易。该交易将于今年第一季度完成。  赛默飞世尔收购实验室化学品供应商Lomb Scientific  2010年11月30日,科学服务领域的世界领先者赛默飞世尔科技宣布,公司已经签了一项最终协议,收购Lomb Scientific。Lomb Scientific是立足于澳大利亚和新西兰的实验室化学品、消耗品和仪器的知名供应商,其客户包括医院、大学、研究和分析实验室,地区涉及澳大利亚、新西兰,以及亚洲和中东地区。LombScientific拥有约100名员工,2009年的全年收入3400万澳元。  赛默飞世尔2.6亿美元收购试剂制造商Fermentas  2010年5月27日,赛默飞世尔科技宣布已达成决定性协议,将以2.6亿美元现金收购试剂制造商Fermentas公司。赛默飞世尔科技相关人员表示,这项交易预计今年第三季度将完成,预计该交易不会对其今年的财务业绩产生重大影响。  Fermentas公司是一家酶、试剂及分子和细胞生物学研究工具的制造商和分销商,总部位于安大略省,而其主要业务在立陶宛。公司拥有大约500名员工,其2009年的收入约为5400万美元。  赛默飞世尔科技收购蛋白质组学工作流程解决方案供应商Proxeon  2010年4月,服务科学、世界领先的赛默飞世尔科技收购了ProxeonA/S—一家总部位于丹麦欧登塞的创新蛋型白质组学分析产品的供应商。该公司被公认可提供简化蛋白质组学工作流程,包括纳升液相色谱系统、色谱柱、离子源和生物信息学软件等,以满足复杂的蛋白质组学应用中对耐用型高灵敏液相色谱/质谱仪(LC/MS)的分析要求。2009年,Proxeon年收入约1千万美元,并拥有近40名员工。  赛默飞世尔科技收购德国实验室水纯化系统供应商TKA  2010年12月21日,赛默飞世尔科技公司宣布,它已经完成了对欧洲实验室水纯化系统供应商TKA的收购。TKA总部在德国Niederelbert,现有近60名员工,2009年全年收入约1000万欧元。  “TKA提供全面的实验室水纯化系统,通过本次收购,赛默飞世尔科技将他们的产品添加到我们实验室设备与消耗品系列产品中,使我们能满足客户的需求。”赛默飞世尔科技实验室设备总裁Thomas Loewald说到,“特别是在生命科学领域,相关研究对分析仪器灵敏度的要求不断提高,这推动了各实验室对超纯水的需求。 ”  TKA实验室水纯化系统包括电去离子水纯化设备(EDI)、反渗透水纯化设备(RO)与超滤技术。由于TKA提供一系列范围宽广的实验室水纯化选择,顾客能将水纯净度与他们的特定需求相匹配,通过组合应用和提高实验室效率来提升实验结果的可靠性。  TKA在德国Niederelbert的工厂将成为实验室水纯化系统的研发与制造中心,并将并入赛默飞世尔实验室产品与服务部门。  赛默飞世尔科技正在考虑收购实验室设备生产商贝克曼库尔特  2010年12月20日(Bloomberg)--据知情人士透露,赛默飞世尔科技正在考虑出价收购实验室设备制造商美国贝克曼库尔特公司。  贝克曼库尔特公司的最大业务即为科研和医院提供实验室设备。今年九月份,贝克曼库尔特公司首席执行官Scott Garrett先生已经辞职,随后任命 J. Robert Hurley先生为临时总裁和CEO,并同时继续寻找继任者。  在过去的5年里,美国诊断设备制造商共有102次收购发生。据Bloomberg统计数据显示,平均收购价格达4.73亿美元,平均溢价率为52%。  据纽约证券交易所收盘显示,Beckman Coulter股价由每股3.29美元飙升至75.36美元,这也是该公司自2008年8月22日以来的最高收盘价格。总部位于华盛顿的丹纳赫公司每股为46.78美元。赛默飞世尔科技每股为55.54美元。  从赛默飞世尔2010年的并购案中发现,并购确实给公司带来了财力和人力的巨幅增长,大大巩固了赛默飞世尔科技在仪器仪表及科学服务领域中的龙头地位。
  • 梅特勒托利多DSC823e(HSS7)荣获2006年R&D100大奖!
    美国俄亥俄州哥伦布市(2006年7月12日) – 梅特勒托利多配置新的高灵敏度传感器(HSS7)的差示扫描量热仪(DSC823e)获得了热分析仪器类的“R&D 100大奖”。DSC823e在2005年上市,如今已是梅特勒托利多DSC家族中最重要的一员。 获奖产品: 梅特勒托利多DSC823e的几个新功能为热分析提供了强大的性能。DSC823e现在使用达到最新技术发展水平的高灵敏度DSC传感器(HSS7),它测量样品及其四周的热流,参比(空坩埚)侧也是如此。这是DSC823e作为量热仪的特点。传感器将样品热流减去参比热流生成差示量热响应。HSS7采用独特的120对热电偶的星形结构,极大地提高了传感器对样品的灵敏度,而同时又降低了传感器对局部温度波动的灵敏度(即噪音)。这是该类以三层排列的星形热电偶传感器的第一个。三层排列进一步改进了传感器的信噪比。 由于从传感器得到的信号如此之大,使得梅特勒托利多能够降低模数转换器上的增益,从而减少了电子噪音。HSS7传感器不仅仅是120对热电偶信号的总和。传感器上热电偶的独特设计消除了噪音,使得信噪比超出了的120对热电偶的简单加和。 现有产品的改进: 所有其他的DSC都采用两个热电偶的设计来制造。这需要较大的放大器增益和时间常数平滑来降低噪音。DSC823e不需要太多的放大,因为HSS7 DSC传感器会生成大的样品信号。DSC823e的灵敏度比现有市场上别的最好的DSC高五倍,从而大大地提高了研究人员观察小转变的能力。如此佳的灵敏度使得该DSC将可代替许多微量热仪的应用,并保持DSC的快速加热速率(高达300K/min)。这种只在一代技术中对测量灵敏度作出如此改进在如今是少见的。这的确是一个将会屹立几十年的里程碑式的改进。上一次在分析化学中如此规模的改进是超越色散IR仪器的傅立叶转换红外(FTIR)的出现。 此外,如今市场上,梅特勒托利多的DSC823e是唯一的用户只需在一种条件下校准,而将校准结果外推至其他实验条件的DSC。该功能节省了用户在改变加热速率、坩埚类型或吹扫气体时的校准时间。“带有新高灵敏度传感器的DSC823e对使用差示扫描量热仪的实验室意味着意义重大的改进,”热分析技术经理Steve Sauerbrunn说,“用户现在能够去测试比过去更小的转变或分析更小的样品了。” 评奖过程: 所有的“R&D 100大奖”入围产品最初都由独立专家评审。独立专家选自专业顾问、大学教授和工业研究人员,他们在其评审领域具有出色的专业技术和经验。他们必须公正,对评审的入围产品没有利益关系。每年有50多位独立评审参加。 “R&D 100大奖”每年颁发给当年在技术领域代表着最伟大改进的新产品的开发者。每年会颁发16个种类的奖项,今年是第44届大奖。在R&D看来,“赢得R&D 100大奖会让你的产品闻名于工业、政府、学术界,并证明产品是当年最具创意的。”除了能够自我宣传外,获奖者还会出现在2006年九月版的R&D杂志中被特别表扬,并被邀请参加得奖庆祝宴会以庆祝获奖。 梅特勒托利多是全球最主要的精密仪器供应商,也是世界上最大的实验室用、工业用及食品零售应用的称量仪器的制造商和销售商。梅特勒托利多的成功会不断驱使其为客户提供增值服务。这种增值通过提供创新的解决方案来改进客户的工艺来体现。 (有关梅特勒托利多的其他信息请浏览公司网页www.mt.com或者www.mtchina.com。)
  • 热分析仪核心部件原理简介
    p  常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。/pp  热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong电子天平/strong/span/pp  电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。/pp  电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title="电压式微量热天平.png"//pp style="text-align: center "strong电压式微量热天平/strong/pp  天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示:/pp style="text-align: center "F=KBLI/pp  其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。/pp  无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热电偶传感器/strong/span/pp  热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。/pp  热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。/pp  热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。/pp  热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong位移传感器/strong/span/pp  位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。/pp  LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/p
  • 天氏欧森新品亮相
    2022年5月3日至6日,第34届质量保证控制国际交易会(The 34th Control international trade fair)取得了巨大成功。在因疫情中断两年后,600多家参展商终于在德国斯图加特再次体验QA创新的技术,包括视觉技术、图像处理和传感器技术,以及测量和测试技术等。创新的解决方案和高效、尖端的质量保证技术让来宾们大开眼界。Tinus Olsen(天氏欧森)携其明星产品万能材料试验机ST系列及熔融指数仪MP1200亮相会场,除此之外,多项尖端科技对质量控制领域的补充也让来宾叹为观止。 亮点一 Vector引伸计 (单长度及多长度测量) Vector引伸计能够 辅助进行拉伸、压缩、剪切、以及弯曲试验中的应变试验,其具有非接触式的数字化设计,支持自动化过程的标距标记。根据材料不同,有多种标记选择:点、环、线、斑,包括材料表面跟踪。可提供模拟和或串行数字格式的输出数据。 与其他光学引伸计相比,它的反应更快,开机即可测量,并可与测试软件集成。适合于金属、合金、复合材料、低应变塑料等。多长度测量型Vector Multiple 200:横向1.5-120mm标距范围,基于140mm FOV纵向10-150mm标距范围,基于200mm FOV0.5µm分辨率(1.9685039e-5in),ISO 9513 Class 0.5和ASTM E83 Class B1单长度测量Vector Single 500:纵向10-500mm标距范围,基于500mm FOV 1µm分辨率(3.93701e-5in),ISO 9513 Class 0.5和ASTM E83 Class B1单长度测量Vector Single 200:纵向10-150mm标距范围,基于200mm FOV 0.5µm分辨率(1.9685039e-5in),ISO 9513级0.5和ASTM E83 Class B1更多机型将陆续面世。亮点二350°C环境箱Tinius Olsen的环境箱适合大部分双立柱或四立柱的材料试验机。新款在-100-350℃的温度范围内进行物性测试。4kW高功率配备Horizon软件确保全温度范围的控制及分析。●可移动的顶部和底部箱室壁组件,在箱体进出测试区域时,不会影响试样的夹具配置和拉杆。 ●可选配增强箱体温度控制,采用双热电偶测量和反馈系统。 ●兼容接触式和非接触式的引伸计。 ●可编程控制器,使用Horizon软件自动管理。 ●内部照明另有更多温度范围的环境箱:室温至350摄氏度室温至600摄氏度-150至350摄氏度-150至600摄氏度亮点三配合环境箱使用的30KN楔形夹具及50KN楔形夹具绞盘手动自锁紧楔形夹具。楔形作用在整个拉伸测试过程中提供持续的夹持压力。 同一时期,Tinius Olsen的仪器也出现在巴黎JEC World展。JEC World是国际性复合材料及应用的专业展会,聚集了全球各地与复合材料有关的制造研发、应用扩展等相关展商,致力于促进复合材料行业及其应用市场的发展。
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 智能恒温电热套现货促销
    智能恒温电热套现货促销,ZNHW-Ⅱ型智能恒温电热套该电热套采用PID智能操作控制,热电偶感温,可控硅控制输出,单键快速升降温度设定模式,设定、控制双排数字显示,并设有断偶保护功能。ZNHW-Ⅱ型智能恒温电热套当设定好所需温度后,微电脑将根据温度差自动调整升温速度,通过间断供电,比例调节,快速达到最佳升温效果,使之无温冲,400℃内± 1℃平衡加温,该电热套还设有内外热电偶转换器件,可精确显示控制电热套温度,转换后又可精确显示控制瓶内溶液温度。ZNHW-Ⅱ型智能恒温电热套,ZNHW-II 10000该电热套除具有ZNHW型功能外,又增加了自整定功能,当启动自整定功能后,将使控温在同一条件下升温速度最快,精度更加准确。但当改变被加热介质时需重新自整定.ZNHW-II 20000,ZNHW-II 30000,ZNHW-II 50000PTHW型普通恒温电热套该系列型电热套根据联合国教科文组织&ldquo 环境与人类&rdquo 赠于我国的英国产品改进而成,它用无碱玻璃纤维作绝缘材料,将镊铬合金丝簧状置于其中为加热源,用轻质保温棉高压定形的半球形保温体保温,外壳用一次性高温塑料制成,上盖采用静电喷塑工艺,用大功率可控硅控温,具有外形美观、重量轻、恒温控制,形状标准,经久耐用的特点。TYHW型调压恒温电热套ZNHW-II 250该电热套除具有PTHW型的加热性能外,更具有热利用率高的特点,它是用大功率可控硅调压,继电器控制线路,与接点式温度计相配可达到调温恒温效果。BXHW型表显恒温电热套 ZNHW-II 500该电热套采用集成电路控制,热电偶感温,指针表式显示温度,可先设定所需温度,电热套在达到所需温度时即保持恒温加热,该产品可交替显示控制电热套内温度、瓶内溶液温度,具有控温精确,温度显示直观的特点。ZNHW型智能恒温电热套ZNHW-II 1000该电热套采用PID智能操作控制,热电偶感温,可控硅控制输出,单键快速升降温度设定模式,设定、控制双排数字显示,并设有断偶保护功能。当设定好所需温度后,微电脑将根据温度差自动调整升温速度,通过间断供电,比例调节,快速达到最佳升温效果,使之无温冲,400℃内± 1℃平衡加温,该电热套还设有内外热电偶转换器件,可精确显示控制电热套温度,转换后又可精确显示控制瓶内溶液温度。ZNHW-Ⅱ型智能恒温电热套ZNHW-II 2000该电热套除具有ZNHW型功能外,又增加了自整定功能,当启动自整定功能后,将使控温在同一条件下升温速度最快,精度更加准确。但当改变被加热介质时需重新自整定。ZHQ型电热套ZNHW-II 3000该电热套是专供实验室在磁力搅拌器上做加热搅拌用的电热套。多孔电热套ZNHW-II 5000可生产两孔、四孔、六孔、调温、表显、数显型电热套,加热板及来图加工异形产品。公司名称:上海昨非实验室设备有限公司电 话:021-51872183传 真:021-61249232
  • 工艺优化:ControLyo®控制成核技术对散装材料冻干研究
    冻干过程中,冻结阶段冰核形成是一个随机过程,会导致产品冻结不均匀。样品通常在很宽的温度范围内成核,产生不同大小的冰晶,和不同的冰晶结构,导致干燥速度不同,*导致外观不同。高质量的冻干产品取决于层板温度、腔室压力和时间等明确可控的关键工艺参数(CPP)。随着工艺转移到大规模生产,这些参数可能需要优化,特别是产品容器发生变化时。 批量冻干通常使用金属托盘,其传热与普通西林瓶不同,具有较高的污染风险,多次重复使用以及灭菌在金属内的应力会导致托盘翘曲,传热效果发生改变。此外,散装托盘边缘样品可能与中心样品冻结的时间和温度不同,导致散装盘内出现不同尺寸的冰晶结构。CONTROLYO按需成核技术(NODT),是一项创新技术,在冻干机内冷冻期间,使用惰性气体对腔室进行加压和减压,以促进均匀成核。装载完成之后加压,待产品在设定的层板温度下稳定后减压,以产生瞬时的、均匀的冰核。在减压之后,通常在-5°C的温度下长时间保持,使冰晶缓慢生长,因此允许较大的冰晶尺寸产生。ControLyo VS 常规冷冻方法研究散装托盘中不同材料的冻干过程,将ControLyo与常规冷冻方法进行比较。对晶体材料和和无定型配方进行了研究。晶体材料由甘露醇、USP(浓度为40 mg/mL)组成,无定型态由蔗糖、NF(浓度为40 mg/mL)组成。具体实验在100级(A级)环境中用0.22微米过滤器过滤溶液。将溶液分配到四个不锈钢托盘中,每个托盘的体积为2L。在4层层板(30×60cm)中试冻干机(SP Hull Model 8FS15C)中进行冷冻干燥。在不锈钢散装盘内不同位置以及托盘外部均放置热电偶测量产品温度。采用Controlyo工艺和常规冷冻工艺分别进行。这两个工艺,装载关闭腔门后,均在5°C搁板温度和大气条件下平衡。采用Controlyo工艺,在5°C下使产品达到平衡后,进行惰性气体吹扫。将系统加压至27.2psia并减压至17.2psia,同样进行二次吹扫。在第二次吹扫后,将腔室加压至33.2psia,并将搁板冷却至-3℃平衡4小时。由于溶液中测得的产品温度高于-3℃,因此将目标搁板温度调节至-5℃,以使产品温度在-3℃或更低的温度下达到平衡。保持1小时后,从33.2psia瞬间减压至16.2psia,促进成核,搁板温度在-5℃保持7小时促使冰晶生长。01 初次研究在最初的研究中,使用保守的一次干燥参数,以便直接比较结晶溶质甘露醇与无定型态溶质蔗糖的干燥。两种不同的冷冻技术在完成甘露醇一次干燥的时间上几乎没有差异。然而,不同的冷冻技术对蔗糖制剂的干燥结果有显著影响。02 第二项研究在第二项研究中,采用不同的一次干燥参数对甘露醇和蔗糖制剂进行试验。此一次干燥条件比*项研究的条件明显更激进,对不同组分的样品进行相同关键工艺参数CPP的研究,研究组分的影响。 图1:常规冷冻成核(不同温度下的随机成核) 图2:Controlyo成核(同时发生成核)热电偶迹线描述了常规冻结中成核的随机性质和ControLyo过程中的瞬时成核(如图1和图2所示)。成核事件是一个放热过程,释放的热量导致热电偶传感器读数瞬时增加,*接近层板温度。在常规冷冻过程中,成核随机发生,热电偶显示成核发生在不同的温度和时间下。控制成核技术中,当系统减压时,热电偶立即记录到同时成核的过程。需要认识到传感器只测量托盘的某些区域,可能不能代表托盘全部。 图3:蔗糖-常规冷冻(约72小时完成一次干燥) 图4:蔗糖–Controlyo(约59小时完成一次干燥)在一次干燥阶段,使用热电偶传感器记录产品温度,以帮助确定一次干燥的终点。当使用控制成核技术时,蔗糖制剂一次干燥提前13小时结束(如图3和图4所示)。甘露醇制剂,无论使用何种冷冻技术和CPP,一次干燥时间仅有轻微的变化。在这些研究中,皮拉尼/电容压力计的数据判断初级干燥结束。ControLyo 技术优势对两种配方的成核均匀性、冷冻干燥行为和成品属性进行了观察和比较。01 缩短一次干燥时间对蔗糖配方进行不同干燥条件的研究,采用Controlyo工艺,由于升华速率增加,缩短了一次干燥时间。在Controlyo技术允许形成较大的冰晶,可能是由于过冷减少,成核温度较高,允许冰晶缓慢生长。过冷被定义为平衡凝固点与溶液中冰晶首次形成时的温度之间的差值。当冰升华时,较大的晶体产生较大的孔,导致更大的路径,因此水蒸气穿过升华前沿上方的干燥层的阻力较小。这导致蔗糖干燥速率的显著差异。Controlyo技术将升华干燥的时间从67小时缩短到50小时。尽管发现蔗糖基配方在一次干燥时间上存在显著差异,但甘露醇基配方的表现并不相同。在使用保守CPP进行的初步研究中,传统冷冻和ControLyo冷冻的升华速率几乎没有差异。在使用激进性CPP的后续研究中,完成一次干燥的时间从20小时减少到16小时。02 蛋糕外观通过蔗糖和甘露醇冷冻干燥生产的冻干饼的物理外观在常规和控制成核策略之间有所不同。ControLyo产生了一致的蛋糕结构和外观。两种处理方法在甘露醇的外观上差异不大。然而,蔗糖蛋糕的外观有显著差异:未经控制的冷冻蛋糕上的裂缝更少,从托盘的一侧延伸到另一侧(图5)。当使用ControLyo时,蛋糕上的裂缝更宽,更均匀(如图6所示)。 图5:蔗糖非受控冷冻 图6:Sucrose Controlyo03 水分含量用库仑卡尔费休滴定法测定残余水分。结果显示,与标准方法相比,通过ControLyo处理的甘露醇的水分含量分别从0.5%到0.1% w/w。有趣的是,蔗糖的结果正好相反。不受控冷冻方案的蔗糖平均结果为2.41% w/w, ControLyo材料的平均结果为2.89% w/w。较高的蔗糖残留水分含量可能是由于表面面积减少,因此在二次干燥过程中解吸率降低。不太激进的二次干燥条件也会影响*的残留水分含量。*结论很明显,ControLyo影响散装材料的干燥行为和成品属性。这些影响包括缩短一次干燥时间,改变蛋糕外观,以及创造更一致和均匀产品的可能性。传统冷冻和ControLyo之间的差异程度也受到代表不同类型产品(结晶和无定型)的配方特性的影响。此外,配方特定成分的CPP对使用ControLyo进行控制成核的成功至关重要。需对每种特定配方进行对比研究,以量化ControLyo技术应用的相对效益。Controlyo控制成核技术SP Scientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合冻干PAT技术使漫长复杂的工艺摸索变得简单快捷有效。 PAT技术——Smart 全自动工艺开发技术,Controlyo控制成核技术,TDLAS实时水蒸汽测量技术。Controlyo控制成核技术在相同的温度下,以瞬间减压的方式在同一时间让所有小瓶瞬间成核,在较高的温度下成核,产生更大、更均匀的晶体尺寸,使干燥更加一致。● 提高批次均匀性;● 无引入污染或外来物质的风险;● 增加冻干产品的蒸汽通道尺寸,进而减少干燥层的阻力;● 加快主干燥过程;● 减少产品复水时间;● 改善冻干产品的外观。LYO INNOVATION莱奥德创冻干科技,赋能创新Lyo technology enables innovation 关于莱奥德创:上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多肽、脂质体、IVD、食品等领域。依托与合作伙伴美国SP Scientific和英国Biopharma Group的紧密合作,掌握先进的冻干理念与技术,使用*的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission :莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision :做冻干工艺的创新者,为生物医药开发提供*制剂产品解决方案。
  • 重磅:赛默飞104亿欧元收购QIAGEN
    p  strong仪器信息网讯 /strong2020年3月3日-全球科学服务领域的领军企业赛默飞世尔(纽约证券交易所:TMO)与全球分子诊断和样品制备技术提供商QIAGEN NV(纽约证券交易所:QGEN 法兰克福证券交易所:QIA)宣布,双方董事会已一致通过了赛默飞世尔以每股39欧元现金收购QIAGEN的提议。/pp  QIAGEN的要约价格比交易宣布前的最后一个交易日(2020年3月2日)收盘价溢价约23%。赛默飞世尔将要约收购QIAGEN的所有普通股。/pp  以当前汇率计算,这笔交易对QIAGEN的估值约为115亿美元,其中包括承担约14亿美元净债务的假设。/pp  赛默飞世尔科技董事长,总裁兼首席执行官Marc N. Casper表示:“我们很高兴能够补充产品组合,以推进客户从发现到诊断的重要工作。此次收购为我们提供了利用我们行业领先的能力和研发专业知识的机会,来加速创新并满足新兴医疗需求。对于股东而言,我们希望交易能够立即带来效果,并产生巨大的成本和收入协同效应。”/pp  QIAGEN是生命科学和分子诊断解决方案的领先提供商,在25个国家/地区的35个地点拥有约5100名员工。该公司2019年的收入为15.3亿美元。它的样品制备技术用于从多种生物样品中提取、分离和纯化DNA、RNA和蛋白质。该公司的检测技术被用于扩增和富集这些生物分子,以使其易于进行分析。此外,QIAGEN仪器可用于自动化工作流程,而其生物信息学系统可为客户提供高可行性的解决方案。/pp  QIAGEN N.V.临时首席执行官兼分子诊断业务领域主管高级副总裁Thierry Bernard说:“我们在QIAGEN的愿景一直是通过我们独特的Sample to Insight分子测试解决方案来改善生活。与赛默飞世尔的战略合作将使我们进入一个充满希望的新时代,并为我们的员工提供机会,发挥更大的影响。合并的目的是为股东带来可观的现金价值,同时使我们能够加快解决方案的扩展,为全球客户提供突破性的突破,从而增强我们对生命科学的认识并改善健康状况。”/pp  Casper总结说:“我们期待欢迎QIAGEN的员工加入赛默飞世尔,我们为通过新的分子诊断技术和改进的生命科学工作流程而推动精密医学发展所带来的新机遇感到非常兴奋。”/pp strong 交易的好处/strong/pp  通过具有吸引力的分子诊断功能(包括传染病测试)来扩展专业诊断产品组合。/pp  赛默飞世尔已经建立了领先的专业诊断能力,包括过敏和自身免疫,移植诊断和临床肿瘤学检测。 QIAGEN在分子诊断领域拥有强大的实力,其产品组合专注于传染病和其他增长机会。合并后的公司将加快开发更高特异性、更快、更全面的服务,从而可能改善患者的治疗效果并降低护理成本。/pp  对于生命科学研究者而言,QIAGEN的创新样品制备,测定和生物信息学技术是赛默飞世尔基因分析和生物科学能力的补充。例如,通过扩展产品组合,赛默飞世尔将能够为研究客户提供更广泛的功能,以加速发现并实现科学突破。/pp  strong扩大客户访问权限/strong/pp  赛默飞世尔将能够利用其广泛的商业影响力,包括赛默飞世尔的客户渠道和全面的电子商务平台,来扩大客户对QIAGEN产品组合的访问权限。此外,鉴于赛默飞世尔在高增长和新兴市场中的领先地位,QIAGEN将能够进一步渗透这些地区。/pp  strong提供可观的财务收益/strong/pp  交易完成后,预计该交易将立即使赛默飞世尔调整后的每股收益增加。赛默飞世尔预计在交易完成后的第三年将实现2亿美元的总协同效应,其中包括1.5亿美元的成本协同效应和5,000万美元的收益协同效应带来的经调整营业收入。/pp  strong融资与审批/strong/pp  这项交易预计将在2021年上半年完成,但要满足惯例成交条件,包括获得适用的监管批准,在QIAGEN的临时股东大会上通过与该交易有关的某些决议股东,并完成要约收购。/pp  赛默飞世尔已获得承诺的过渡性融资。预计永久性资金将来自手头现金和新债务的发行。该交易没有任何融资条件。/pp  strong顾问/strong/pp  J.P. Morgan Securities LLC和Morgan Stanley& Co. LLC担任Thermo Fisher的财务顾问,Wachtell,Lipton,Rosen& Katz担任法律顾问。对于QIAGEN,高盛国际(Goldman Sachs International)担任首席财务顾问,巴克莱银行(Barclays Bank PLC)担任财务顾问,而De Brauw Blackstone Westbroek NV,Linklaters LLP和Mintz,Levin,Cohn,Ferris,Glovsky和PopeoP.C.正在担任法律顾问。/p
  • 用拉曼光谱对烧焦物进行考古研究(上)
    法国科学家利用拉曼光谱对考古遗址中的烧焦物质进行了研究。研究表明,利用拉曼光谱可以确定烧焦的是什么物质,以及烧焦温度有多高。2019年法国巴黎圣母院大教堂大火后,研究人员采用这项技术确定了屋顶结构燃烧时达到的最高温度。使用拉曼光谱对烧焦物进行考古研究法国巴黎高等师范学院地质实验室 (Laboratoire de Géologie de l'Ecole Normale Supérieure de Paris) 的D. Deldicque和J.-N. Rouzaud一直致力于研究烧焦物,以测量最高碳化温度。在高温和无氧条件下,有机材料将碳化形成含有多环芳烃层的烧焦物。这些层的生长是不可逆的,并且取决于碳化温度。拉曼光谱对碳化程度非常灵敏。研究人员将这种方法称为拉曼古温度测定法。巴黎高等师范学院地质实验室的D. Deldicque使用inVia&trade 共焦显微拉曼光谱仪研究烧焦物他们使用一台高灵敏度inVia 共焦显微拉曼光谱仪采集了多种烧焦物的拉曼光谱。碳的光谱中包含两个主要谱带,即D谱带和G谱带,分别位于大约1,350 cm&minus 1处和1,590 cm&minus 1处。G谱带与芳香环中sp2杂化碳的振动模式相关,D谱带与芳香环边缘的振动模式相关。拉曼光谱对烧焦物中多环芳烃层的生长非常灵敏。温度越高,碳光谱在1,350 cm-1处的D谱带强度就越高。HD/HG高度比随热处理温度升高而单调增加,温度最高可达1,300&ring C。使用校准曲线,这种方法可以确定碳化温度,精确度为±20 &ring C。因此,HD/HG比率是一种合适的古温度计或“化石热电偶”。聚焦巴黎圣母院火灾中最高燃烧温度巴黎圣母院中殿的碳化横梁(感谢Damien Deldicque和Jean-Noë l Rouzaud提供图片)巴黎圣母院大教堂是始建于中世纪的历史性地标建筑。2019年4月15日的一场大火烧毁了建于12世纪的大部分橡木框架结构。巴黎圣母院的标志性新哥特式尖塔倒塌了。然而,石灰石结构大部分得以保存。为了帮助圣母院的后续重建工作,必须确定火灾期间达到的最高温度。高温可能会导致大教堂屋顶上的铅气化,从而对周边地区的公共健康造成影响。此外,大火还可能损坏了剩余的石灰石砖石结构。拉曼古温度测定法是唯一一种可估算圣母院的框架结构和拱顶所达到的最高燃烧温度的方法。 Deldicque和Rouzaud对火灾后收集的烧焦物进行了拉曼古温度测定。他们首先对大教堂中未燃烧的橡木碎片进行了碳化处理,以获得500&ring C至1,300&ring C的校准曲线。然后使用配备热电偶的实验火焰验证了校准曲线。通过拉曼古温度测定法得出的温度与直接测量的温度一致。研究人员分析了大教堂耳堂、中殿和交叉口的烧焦物样本。在巴黎圣母院大教堂的烧焦物中,交叉口的烧焦物燃烧温度最高,达到1,200&ring C;中殿和北耳堂的最高燃烧温度分别为1,088&ring C和1,105&ring C。根据交叉口(绿点)、北耳堂(蓝点)和中殿(卡其色点)的HD/HG比率得出的古温度测定结果火灾对圣母院结构完整性的影响准确确定最高燃烧温度对于安全高效地完成重建工作非常重要。拉曼古温度测定法的结果表明,最高燃烧温度约为1,200&ring C。1,200°C的高温足以烧融大教堂屋顶上的铅。大教堂墙壁上的液态铅溶解流证实了这一点。不过,这些温度均低于1,740&ring C,不足以发生铅气化。圣母院大教堂周边地区的任何铅污染都不可能归因于屋顶上的铅在火灾中发生直接气化,进而导致气溶胶污染。高温还可能损坏石灰石砖石结构的机械强度。由于热应力的作用,石灰石内部在超过300&ring C的温度下可能会出现微裂缝。这会导致孔隙率增加,而密度和强度降低。超过900&ring C之后,固体石灰石 (CaCO3) 则会脱碳,产生粉状石灰 (CaO)。而圣母院大火的温度持续超过了1,000&ring C。因此,这些热变质作用可能会对圣母院的石灰石框架结构产生长期影响。 拉曼光谱是研究高度碳化物质的结构和化学成分的理想方法。不仅能提供有关物质本身的线索,还能探知其前身和最高碳化温度。
  • 热分析仪器的基本结构单元
    p  热分析技术根据被测物理量的物理性质来分共有九大类、17种方法。所组成的热分析仪器就更多了。通常热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其框图如图所示。/pp/pp style="text-align: center "img width="400" height="370" title="热分析仪器框图.jpg" alt="热分析仪器框图.jpg" src="https://img1.17img.cn/17img/images/201808/uepic/50c889b4-1faf-48a2-a5d8-4f834ac222d1.jpg"//pp style="text-align: center "strong热分析仪器框图/strong/ppstrong一、程序温度控制器/strong/pp  它是使试样在一定温度范围内进行等速升温、降温和恒温。通常使用的升温速率为10℃/min或20℃/min。而程序温度速率可为0.01~999℃/min。近代程序温控仪大多由微机完成程序温度的编制、热电偶的线性化、PID调节以及超温报警等功能。/ppstrong二、炉体部分/strong/pp  它是使试样在加热或冷却时得到支撑。炉体部分包括加热元件、耐热瓷管、试样支架、热电偶以及炉体可移动的机械部分等。炉体的温度范围最低为-269℃(液氦制冷),最高可达2800℃(在高真空下用石墨管或钨管加热,用光学高温计测温)。炉体内的均温区要大,试样放在均温区中。因为试样各部分的温度是否均匀对热分析的结果有一定的影响。/ppstrong三、物理量检测放大单元/strong/pp  热分析仪器必须能随试样温度的变化及时而准确地检测试样的某些物理性质。span style="color: rgb(255, 0, 0) "由于绝大多数被测物理量是非电量,它们的变化往往又是很微小的,为了及时而准确地检测它们,需要把这些非电量转换成电量,加以放大,再通过定标计算出被测参数。/span差示测量方法可以提高测量的span style="color: rgb(0, 176, 240) "灵敏度/span和span style="color: rgb(0, 176, 240) "准确度/span,因此应用得很普遍。span style="color: rgb(255, 0, 0) "非电量转变为电量可以通过各种传感器来完成。/span例如span style="color: rgb(0, 176, 240) "称重传感器、位移传感器、光电传感器、热电偶传感器、声电传感器/span等。物理量的检测系统是各种热分析仪器的span style="color: rgb(255, 0, 0) "核心/span,也是区分各种热分析仪器的本质部分,它的性能是衡量热分析仪器水平的一个重要标志。/ppstrong四、微分器/strong/pp  它是把非电量传感器的放大信号经过一次微分(导数),从微分(对时间)曲线中可以更明显地看出放大信号的拐点、最大斜率等。/ppstrong五、气氛控制器/strong/pp  热分析仪器对试样所处的气氛条件有各种要求,因此,大多热分析仪器备有气氛控制系统。热分析对气氛条件的要求有如下原因。/pp  高温下试样可能在空气中被氧化而完全改变原来的特性,故要求在真空或惰性气氛下升温,或在某种反应气氛下升温。/pp  热分析与其他分析技术联用时,要求把热分析过程中所产生的气相产物利用流动载气送出。/pp  要求有适当的气路把热分析过程中所产生的腐蚀性气体或有毒气体排出。/pp  相当的热分析课题是研究气氛的种类、压力、流动速率以及活性程度等对热分析结果的影响。热分析仪器按气氛条件可分为高真空型、低真空型、常压型、高压型、静态型和流动型等。/ppstrong六、计算机数据处理系统/strong/pp  近年来,由于计算机的快速发展、软件的不断完善,大大推动了数据处理系统。首先把采集来的数据进行各种方法的滤波平滑 然后,应用软件对标准物质进行温度校正和焓变校正、长度校正、质量校正以及基线背景线的扣除等。应用软件求取试样的焓变值、熔点、晶相转变温度、玻璃化转变温度、试样成分的组成、膨胀系数等。还有一些软件需要对数学公式进行分析、简化,适合于热分析应用。例如动力学参数的求取、药品纯度的求取。/ppstrong七、显示和打印/strong/pp  它是把热分析曲线及其处理结果在显示屏上显示出来,并用彩色喷墨机或激光打印机打印出来。同时在显示屏上用鼠标进行各种操作。/p
  • Line of Sight:应对生物制品从冻干研发到商业生产的挑战
    生物药在治疗许多疾病方面显示出巨大的前景,包括许多曾经以为的“不治之症”。然而,由于生物材料的敏感性,需要专门的研发和制造过程。 冷冻干燥有助于保持产品的生物活性、结构完整性和同质质量,对产品的成功至关重要。但生物制品冷冻干燥从早期研发到商业生产过程中面临诸多挑战。生物制品公司该如何应对这些这些挑战呢? 美国食品药品监督管理局(FDA)和其他监管机构强烈建议采用质量源于设计(QbD)方法来生产药物。从事生物制品的公司需要有可靠数据和稳健流程来提供成功的产品。 LoS—冻干放大化的有效工具意识到冻干放大化的内在挑战,为了在生物药的开发和生产中实现最优结果,SP Scientific创建了Line of Sight(LoS)工具。 LoS是一套工具,包含技术和设备,可用于研发和生产的各个阶段,以提高冷冻干燥过程的可控性、高效性、和质量一致性。这套PAT技术内置于从小型到大型商用冷冻干燥机中,为冻干专业人员提供了一种清晰的、实时数据支持的方法。 LoS工具包括一系列冻干设备,SP Hull LyoStar™ 4.0冷冻干燥机,是冻干工艺开发优化的“首选工具”。LyoConstellation™ 系列大型冷冻干燥机,既满足工艺开发 ,又符合商业生产及无菌操作要求。 所有冻干机均配备先进的PAT工具,例如——# ControLyo用于晶核控制;# SMART™ 用于初级干燥优化;# LyoFlux TDLAS蒸汽质量流量传感器,非侵入式检测关键产品和过程参数;# 无线Tempris传感器用于产品温度测量。 围绕这套工具,接下来我们详细聊聊这套工具如何解决冷冻干燥从早期研发到商业生产过程中的一些问题。 PAT—提高冻干工艺效率如前文FDA也提到的,LoS同样遵循QbD原则,利用过程分析技术(PAT),改进冷冻干燥过程,监测关键的工艺参数,并监测其对产品质量的影响。创造一个*的设计空间,LoS可扩展设计空间,提高冻干工艺效率。 图1:冻干过程的设计空间 SMART™ 冻干技术初级干燥优化工具SMART™ 冻干技术,使用压力测温(MTM)技术来计算蛋糕的阻力和冰层表面温度。AutoMTM允许研究人员运行自己的冻干循环,报告关键过程和产品参数。 ►通常在一次实验后即可得出符合要求的冻干循环,节省时间进行进一步的实验,以测试工艺极限。 通过压力升高测试数据,根据传热和传质方程式,可以计算:• 冰层表面温度• 干燥层阻力• 冰层厚度• 热量流/质量传输 根据检测到的数据自动调整隔板温度和真空度,使样品始终处于目标温度以下。 最科学的冻干周期优化,不是尝试法。替代T型热电偶的测试方法,减少/消除了对热电偶测试温度法的依赖和误差影响。 MTM 温度压力测试法 — 主动智能测试法,大大缩短了用户摸索冻干工艺的时间。 Tempris传感器实时准确的产品温度测量LoS还提供了另一种产品温度测量工具——Tempris传感器可以在冻干产品的开发、技术转移和生产过程中准确、实时地测定温度。 传统使用热电偶测量产品温度,但热电偶难以在小瓶中定位,数据不可靠,并产生无菌问题。Tempris传感器可实现无线实时温度测量。可清洁,可灭菌,可加载到RABs或完全隔离保护的系统中。Tempris传感器具有更高的成本效率和可重复性,在整个生产过程的各个阶段都很实用。 图2:Tempris传感器 LyoFlux传感器精确测量蒸汽质量流量LyoFlux传感器使用可调谐二极管激光吸收光谱(TDLAS)技术测量水蒸气浓度和流速,得出冰层界面温度。LyoFlux只需三次实验,就可计算产品的工艺设计空间参数,而传统上至少需要5次或6次。一次运行即可测定*升华速率,确定设备性能。确定设备性能后,可确定小瓶的传热系数Kv。LyoFlux通过改变腔室压力和监测各压力设定点的升华率,可以在一次测试中执行多个实验。 图3:TDLAS安装在Lyostar 3冻干机中的示意图 LyoFlux还可以测定小瓶冷冻干燥期间的产品阻力。*限度地减少进行多组实验所需的停机时间,获得产品属性和设备性能数据,用于进一步分析设计空间。 TDLAS技术适用于实验室、中试和生产冻干机。通过非接触式的测定:可判断主干燥和二次干燥终点,平均产品温度,平均产品阻力,传热系数Kv及对冻干机性能进行鉴定。 ControLyo技术冰点的精确控制成核是一个随机过程,小瓶在不同时间随机成核,导致批次一致性差。SP Scientific ControLyo技术利用惰性气体加压减压步骤控制产品腔内所有小瓶在较高温度下瞬时成核。使过冷度最小化,产生大的冰晶体。当冰升华时,大晶体会产生更大的升华通道,减少干燥阻力,缩短干燥时间。 研究表明,成核温度每升高1℃,初级干燥时间减少3%。For every 1 degree increase in nucleation temperature, drying times are reduced by 3%. [1] Los—实现从早期开发到商业化的平稳过渡无论是在早期开发阶段、临床阶段、中试批次还是商业化生产,影响产品的关键参数都是相同的。然而,由于每个阶段的设备不同,工艺转移往往需要反复优化。 LoS技术包括用于产品开发每个阶段的冷冻干燥机(LyoStar™ , LyoConstellation™ ),旨在通过可扩展的技术(SMART™ , LyoFlux TDLAS, Tempris和ControLyo),最小化这些差异。在产品研发到生产的各个过程中使用相同的技术,可以提供对产品更全面的理解,大大增加成功的可能性。 参考文献:[1] Searls JA, Carpenter T, Randolph, TW., 2001. The Ice Nucleation Temperature Determines the Primary Drying Rate of Lyophilization for Samples Frozen on a Temperature Controlled Shelf. JpharmSci 90: 860-871.
  • 简介差热分析基本原理
    p style="text-align: center "strong原创: 王昉【南师大】 江苏热分析/strong/pp style="text-align: center "img title="简介差热分析基本原理.jpg" alt="简介差热分析基本原理.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg"//pp style="text-align: center "strong简介差热分析基本原理/strong/ppspan style="color: rgb(255, 0, 0) "strong· 热分析/strong/span/pp  热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系:/pp style="text-align: center "ΔG=ΔH-TΔS/pp  其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变/pp  由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。/pp  当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。/ppspan style="color: rgb(255, 0, 0) "strong· 差热分析/strong/span/pp  早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。/pp  实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Alsub2/subOsub3/sub,或者空坩埚。/pp style="text-align: center "img title="图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt="图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src="https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg"//pp style="text-align: center "strong图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶)/strong/pp style="text-align: center "img title="图2: 差热曲线.jpg" alt="图2: 差热曲线.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg"//pp style="text-align: center "strong图2: 差热曲线/strong/pp  在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。/pp /ppa href="https://www.instrument.com.cn/zt/TAT" target="_blank"更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》/a/p
  • 赛默飞发布测定面粉中偶氮甲酰胺含量的解决方案
    2014年4月10日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布HPLC 法测定面粉中偶氮甲酰胺含量的解决方案。该方法与其他方法相比,操作简便易行,重现性与线性均能达到要求。 偶氮甲酰胺(ADA)作为食品添加剂在面粉及其制品中广泛使用,其主要目的是用来增加面筋,改善面团流变学特性和机械加工性能、借以增加面粉质量。ADA在180℃~ 220℃温度下,半小时左右即可生成氨基脲,一种与硝基呋喃类代谢产物一致的化合物。因此,建立一种测定面粉中ADA 含量的方法,从源头控制ADA 加入量,对加强卫生监督,保障人们的身体健康具有重要的现实意义。 赛默飞使用Thermo Scientific Dionex UltiMate 3000 DGLC 双三元液相色谱系统,第一时间建立了面粉中偶氮甲酰胺含量的检测方案,采用氨基柱分离,紫外检测器分析,取得了较好的分析结果,适用于该类样品的快速检测。 下载应用文章请点击:http://www.thermo.com.cn/Resources/201404/913551843.pdf 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 快速退火炉RTP设备的介绍
    简介:快速退火炉是利用卤素红外灯做为热源,通过极快的升温速率,将晶圆或者材料在极短的时间内加热到300℃-1200℃,从而消除晶圆或者材料内部的一些缺陷,改善产品性能。快速退火炉采用先进的微电脑控制系统,采用PID闭环控制温度,可以达到极高的控温精度和温度均匀性,并且可配置真空腔体,也可根据用户工艺需求配置多路气体。行业背景:快速退火炉是现代大规模集成电路生产工艺过程中的关键设备。随着集成电路技术飞速发展,开展快速退火炉系统的创新研发对国内开发和研究具有自主知识产权的快速退火炉设备具有十分重大的战略意义和应用价值。目前快速退火炉的供应商主要集中在欧、美和台湾地区,大陆地区还没有可替代产品,市场都由进口设备主导,设备国产化亟待新的创新和突破。随着近两年中美贸易战的影响,国家越来越重视科技的创新发展与内需增长,政府出台了很多相关的产业政策,对于国产快速退火炉设备在相关行业产线上的占比提出了一定要求,给国内的半导体设备厂商带来了巨大机遇,预测未来几年时间国内退火炉设备市场会有快速的内需增长需求。技术特点:快速退火炉(芯片热处理设备)广泛应用在IC晶圆、LED晶圆、MEMS、化合物半导体和功率器件等多种芯片产品的生产。和欧姆接触快速合金、离子注入退火、氧化物生长、消除应力和致密化等工艺当中,通过快速热处理以改善晶体结构和光电性能,具有技术指标高、工艺复杂、专用性强的特点。一般参数:名称数值最高温度1200摄氏度升温速率150摄氏度/秒降温速率200摄氏度/分钟(1000摄氏度→300摄氏度)温度精度±0.5摄氏度温控均匀性≤0.5%设定温度加热方式红外卤素灯,顶部加热真空度10mTorr以下工艺应用:快速热处理(RTP),快速退火(RTA),快速热氧化(RTO),快速热氮化(RTN);离子注入/接触退火;金属合金;热氧化处理;高温退火;高温扩散。应用领域:化合物合金(砷化镓、氮化物,碳化硅等);多晶硅退火;太阳能电池片退火;IC晶圆;功率器件;MEMS;LED晶圆。设备说明:快速退火炉主要由真空腔室、加热室、进气系统、真空系统、温度控制系统、气冷系统、水冷系统等几部分组成。真空腔室:真空腔室是快速退火炉的工作空间,晶圆在这里进行快速热处理。加热室:加热室以多个红外灯管为加热元件,以耐高温合金为框架、高纯石英为主体。进气系统:真空腔室尾部有进气孔,精确控制的进气量用来满足一些特殊工艺的气体需求。真空系统:在真空泵和真空腔室之间装有高真空电磁阀,可以有效确保腔室真空度,同时避免气体倒灌污染腔室内的被处理工件。温度控制系统:温度控制系统由温度传感器、温度控制器、电力调整器、可编程控制器、PC及各种传感器等组成。气冷系统:真空腔室的冷却是通过进气系统向腔室内充入惰性气体,来加速冷却被热处理的工件,满足工艺使用要求。水冷系统:水冷系统主要包括真空腔室、加热室、各部位密封圈的冷却用水。硬件更换:1.加热灯管更换:加热灯管超过使用寿命或无法点亮时需进行更换。加热灯管的使用寿命为3000小时,高温状态下会降低其使用寿命。2.真空泵油更换:在使用过程中,请每季度固定观察1次真空油表,当油表显示油量低于1/3时请添加真空泵润滑油到油表一半以上。3.热电偶更换:当热电偶测温不正常或者损坏时需进行更换。热电偶的正常使用寿命为3个月,随环境因素降低其寿命。4.O型圈的更换:O型圈表面有明显破损或者无法气密时需进行更换,其寿命受外力以及温度因素影响。保养周期:项目检查周期零件或耗材加热灯管周IR灯管托盘表面擦拭周碳化硅材质热电偶固定状态周石英板清理季度O型圈检查更换季度真空泵油季度MR100M导向轴承季度使用润滑油产品推荐:全自动12英寸多腔体快速退火炉RTP设备规格:全自动操作模式,机械手臂自动上片取片;多腔体生产模式,单个腔体适应于 2英寸-12英寸 晶圆或者最大支持 300mmx300mm 样品;退火温度范围 300℃-1300℃;升温速率 ≦100℃/sec(裸片);温度均匀性 ≦±1%;真空腔体(可选配常压腔体或正压腔体);冷却方式包括水冷和氮气吹扫;MFC控制,3-5路制程气体。半自动12英寸快速退火炉RTP设备规格:适应于 2英寸-12英寸 晶圆或者最大支持 300mmx300mm 样品;退火温度范围 300℃-1300℃;升温速率 ≦100℃/sec(裸片);温度均匀性 ≦±1%;真空腔体(可选配常压腔体或正压腔体);冷却方式包括水冷和氮气吹扫;MFC控制,3-5路制程气体。桌上型4英寸快速退火炉RTP设备规格:桌上型小型快速退火炉;适应于 2英寸-4英寸 晶圆或者最大支持 100mmx100mm 样品;退火温度范围 300℃-1200℃;升温速率 ≦100℃/sec(裸片);温度均匀性 ≦±1%;常压腔体(可选配真空腔体);冷却方式包括水冷和氮气吹扫;MFC控制,1-4路制程气体。快速退火炉,RTA,RTP,合金炉,RTO,快速退火炉RTP,国产快速退火炉,自主研发,快速退火工艺,半导体设备,芯片退火设备
  • 请给我菲力尔的“TG三少”@微信官方
    热门新闻相信大家这两天都被一条朋友圈刷屏了:请给我一面国旗@微信官方。可能是盼着国庆的到来,大家也是一天比一天的激动。不过,紧接着,各位有才的网友搞笑本质就透露出来了,从一开始的“@微信官方要国旗”体,演变成五花八门的“需求”。那么小菲也来凑个热闹,请给我菲力尔的“TG三少”@微信官方。这时候,很多菲粉们该有疑问了,这个“TG三少”是何方神圣,为何独受小菲的青睐呢?下面,今天小菲就给大家隆重介绍下菲力尔TG家族的三位新成员,电气、机械等故障的“天敌”——TG297、TG267和TG275。TG三少FLIR TG系列大升级新推出的“TG三少”,不仅延续了清晰显示发热问题、准确定位热点、快速排除故障、经久耐用等特点,还在很多方面都升级了,今天小菲就给大家细数下它们解锁的“新姿势”:01画面更精准红外图像分辨率已达到160 × 120(19,200 像素),拍的更清楚了;MSX 红外图像增强技术,通过在全红外图像上添加可见光图像细节来提高图像清晰度;显示屏分辨率提高至320 × 240(76800 像素),屏幕显示的更明晰了;02定位准,视野广圆心激光指示器,用高精度、高能效的激光瞄准目标区域,确保组件/表面区域测量准确无误;LED 手电,借助明亮的LED手电功能,轻松看清黑暗、难以触及的地方;屏幕扩大到2.4寸,视场(FOV) 提升到57° × 44°,让热像仪的测试范围更广阔。共发展也能各领风骚TG267、TG297和TG275作为TG家族的新成员,不仅在很多方面得到了共同提升,而且各自也有“过人之处”,比如:FLIR TG297是测温范围中的“扛把子”,测温最高可至1030℃,基本可以“藐视”同等价位的大部分红外热像仪的测温。从熔炉到铸造炉,检查快而准,非常适合工业领域的高温用途,例如对玻璃炉、窑炉和熔炉或者是制造流程进行温度测量;烧制玻璃FLIR TG267含有一个热电偶探头连接器和通用Type-K热电偶探头,为您带来接触式测量度数(260℃),可快速发现存在严重潜在问题的热点和冷点!非常适合商业电气、设施维护和暖通空调等应用哦~近距离观测电路设备FLIR TG275相较于其他两位小伙伴,它还很受汽车维修技师的喜爱,发动机过热?找它!电路过载、座椅加热器线圈故障、车窗除霜元件、卡住的继电器或开关导致寄生效应?找它!不仅如此,新型混合动力电动汽车电池出现问题,找它也没错!福利时间现在开始,只要你在购物软件首页搜索“菲力尔”,购买任意一款产品,均可获得自拍杆一个!数量有限,先到先得哦~菲力尔不仅发布了新产品还在线上送福利这样的优惠力度可不多见呀所以菲粉们心动不如行动吧!
  • 核电审批重启 仪器行业受益几何?
    10月24日,国务院总理温家宝主持召开国务院常务会议,再次讨论并通过《核电安全规划(2011-2020年)》和《核电中长期发展规划(2011-2020年)》。国务院常务会议称,在建设节奏上要“合理把握”、“稳步推进”,“稳妥恢复正常建设” 在准入门槛上按照全球最高安全要求新建核电项目”。这些信号释放表明,日本福岛核电事故之后,冻结近20个月的中国核电审批闸门再度开启。  核电审核开闸  中国是目前全球第一大核电在建国,在建核电占到了全球的40%左右。但在2011年3月16日,即日本福岛核事故发生后的第五天,国务院总理温家宝主持召开国务院常务会议时要求,调整完善核电发展中长期规划,核安全规划批准前,暂停审批核电项目包括开展前期工作的项目。此次政策松动,无疑给核电行业发展打了一阵强心剂。作为与核电行业密切相关的仪器仪表行业,又有哪些受益?  核电与仪器行业密切相关  从上世纪50年代第一座商用核电站问世以来,核电站的仪表和控制系统就是核电站的重要组成部分,核电站机组的安全、可靠,经济运行很大程度上取决于I&C(仪表与控制)系统的性能水平。在《国家中长期科学与技术发展规划纲要(2006-2020年)》和《“十一五”国家经济发展规划纲要》制定过程中,核仪器仪表行业都被列入重点领域的优先主题。  核电站最常规测量使用的仪表有温度、流量、压力、液体等四大仪表。比如核电使用的标准热电偶温度计是镍铬-镍铝(镍铬-镍硅)EU-2K以及镍铬-考铜(EA-2)(XK),同时,铠装热电偶、薄膜热电偶等也被广泛使用。压力作为一个物理量描述,能掌控限定核电场地设备的工况,液柱式、应变式等压力表和差压计都是其中常用的。此外,液位仪表中的浮子式液位计、差压式液位计、液体静力液位计、雷达液位计,流量仪表中的差压式流量计、转子流量计、电磁流量计都被广泛应用。  常规测量的四大仪表以外,核电站还需要振动测量、位移测量等机械量参数测量仪表,氧计、密度测量传感器、PH值测量传感器等分析测量仪表,硼浓度的测量与硼表。此外,为了监控和保护核电站的运行,大型的仪表控制系统更是必不可少。由此可见,核电的建设与仪表仪表行业密不可分。  福岛核泄漏事故前的核电仪器市场  截止2010年,中国有14台在建机组,装机容量达到14.28GW,另外还有35个项目将要开工,两部分合计达到了51.72GW,约为目前装机容量的6倍。这些在建项目都给仪器仪表行业带来巨大的商机。 随着国家对核电设备国产化率要求的目标越来越高,国内很多民营仪器仪表企业也逐渐投入到这个领域中去,尤其是一些核电辅助设备。  从市场趋势分析,仪器仪表各分行业的订货和需求状况逐年上升。一些企业在核电建设中为核电站生产研制了数万台(套)的仪器仪表和设备,初步形成了综合研发能力,建立了较完整的制造体系和质量保证体系。  比如2006年通过验收的秦山二期,300多个系统、20多万台设备、上百万张设计图纸,科技人员和建设者们反复验证、反复剖析、反复实践,最终使秦山二期取得了反应堆堆芯设计、反应堆厂房及安全壳设计、延长压力容器寿命等300多项核心技术创新和改进 两台机组的设备国产化率达到55%,55项关键设备中有47项实现了国产化,其中包括高技术含量的压力容器、蒸汽发生器等,这些都极大带动了国产仪器仪表的研发应用。  但是,我国核电站用很多原材料还需要依赖进口,如果关键材料都依赖进口,将受制于国外。中国核电仪器仪表的自主创新能力仍世界三流水平,70%的行业利润被进口的零部件吃掉,对外技术依存度达到了50%。  核电用仪器市场发展仍任重道远  作为工业生产的“倍增器”、科学研究的“先行官”、国防建设的“战斗力”,核仪器仪表行业是体现国家科技、经济发展水平的高精尖行业。要想在信息化时代实现产业结构快速、有序、高效地合理化发展,仪器仪表行业担负着艰巨的历史使命。  核电仪器仪表被广泛用于核电、核工业中,核电的加快发展和提高核电设备国产化率的要求为设备制造企业创造了良好的外部环境。据悉,在核电建设中,设备费用占工程总费用的50%左右。因而,把握机遇、拓展能力、适应新的核电建设模式、使核仪器仪表设备制造形成产业化成为重要的内容。  我国核仪器仪表生产行业还处于成长阶段,其表现特征也与成长期行业的市场变现相同。起步初期行业一般仅限于几家企业,产品市场集中度高竞争程度低,成熟行业则表现出集中度中等偏下,竞争十分激烈的特点。核用仪器仪表生产行业显然处于低集中度、低竞争程度的成长阶段。  另一方面,新核电审核开闸,核电在安全标准升级至三代,这将会导致国产率降低,仪器仪表本土厂商分食蛋糕缩小。而且核电项目建设进程严重依赖外企供货进度,为项目进程带来巨大不确定性,同时本土企业能够参与的核电设备市场份额也会有所减少,可谓双重打击。
  • 小菲课堂|如何挑选高性价比的钳形表?
    在电工师傅的日常工作中,钳形表算是一款“出场率”非常高的电气测试工具了。其是检测运行中交流电路电流最常用的一种仪表,因为在测量时不用断开被测量电路,所以使用起来很方便。那么,你知道如何挑选最适合自己的钳形表吗?钳形表的优势和用途大多数钳形表都具有数字万用表(DMM)的一线电气诊断测试功能,也可以连接到电路,使用测试引线测量电压、电流、频率、电容、温度和电阻(以及连续的测试电路中以查看电路中是否有故障或缺失等)。它还多一套专用的各种尺寸的弹簧式钳口,可以夹在电线或母线周围,以进行非侵入式电流测量。钳形表通常测量常见的交流和直流电流。测量交流电的钳形表主要用于公共用电,测量直流电的钳形表主要用于测量工业的交直流转换电动机,还有测量电池直流供电源,以及测量电动汽车系统使用的直流电源和测量太阳能阵列直流电池。虽然万用表可以使用测试引线获得高达10A的接触式安培读数,但钳形表可以在高达3000A的范围内提供更安全、无损的电流读数。有一些钳形表是单一用途的纯电流表,用其他功能换取更小的钳口、更高分辨率的读数、更高的灵敏度和整体紧凑的袖珍型设计。其他的钳形表还会有一个“柔性夹”柔性环代替钳口。长而柔韧的环可以手动缠绕在机柜中拥挤的电缆周围,而使用刚性钳口可能很难接近。柔性钳形表可轻松缠绕电线或母线还有一些高质量的钳形表,可为更具挑战性的工作提供更好的精度,“真等效有效值”(均方根)钳位可以在电流波形为正弦波或非正弦波的情况下测得更为精确的等效直流有效值。当导线捆绑在一起时,导线间的由于电流的感应耦合会导致杂散(或“重影”)电压,导致读数不准确,使用“LoZ”模式可以消除误差。工业现场如果使用变频器驱动的设备(VFDs),可以使用低通滤波模式“Lo-Pass”来改善测量精度。部分型号的钳形表还使用内置的指向式非接触式红外测温仪测量温度(点温枪)。也有些使用双热电偶输入来计算温差(“Δ-T”),这对于暖通空调/制冷工程的工作是必不可少的。双热电偶探头输入提供对Δ-T的一键访问带蓝牙或METERLiNK的高级钳形表甚至可以通过远程查看应用程序,将读数流式传输到移动设备,以实现更安全的远程监控。钳形表的应用场景首先,检查钳形表的过电压类别标称(简称“CAT”),看看它可以在哪里使用。CAT II 仪表可用于插入式设备和电器,而CAT III 仪表可用于建筑物内的固定布线。最稳固的类别,CAT IV,用于公用事业公司的服务面板和低压户外布线。为了安全起见,应始终考虑潜在的工作需求,并选择最佳CAT标称评级。钳形表可以测量电路布线和设备上的电流负载,包括电机、泵、照明、传感器和开关等。从DIY工具箱到工业维护工具车,它们随处可见。内置工作灯照亮黑暗的作业现场在日常生活,钳形表的应用非常普遍,比如一般人会用它来检测汽车电气、家用电器、照明和房屋周围的电线;电气承包商将它用于新的安装和维修;暖通空调和制冷技术人员使用它来测试系统中的电气组件;在工业厂房中,预测性维护技术人员使用它特殊的钳口来确保设备继续工作。你还能想到哪些应用场景呢?欢迎来补充~如何挑选合适的钳形表?如何选择功能最符合您工作需求的钳形表?首先要明确您的第一需求,不同钳形表可满足的不一样的工作需求。比如真有效值600 A光伏钳形表——FLIR CM65,其能快速连接MC4测试引线,使测量太阳能电板组和逆变器上的直流电压更安全、更准确、更容易执行;FLIR CM57-2柔性钳形表,是一款专门针对复杂的电流测量而设计,是成束导线测量和满足双绕要求导线的理想选择。菲力尔还有多款高品质钳形表,你最需要哪一款呢?FLIR CM65FLIR CM57-2菲力尔的各款钳形表功能强大,能搞定绝大部分测量非接触式测量安全可靠除了一些基本功能不同型号的产品还有不一样的侧重点
  • 英国Our Future Health项目获Illumina、罗氏、赛默飞1亿英镑资助
    近日,英国“Our Future Health”项目宣布获得了来自多个行业合作伙伴的1亿英镑资助,包括Alnylam、Amgen、阿斯利康、葛兰素史克(GSK)、Illumina、Janssen research & Development以及强生、默沙东(MSD)、Regeneron遗传学中心、罗氏(Roche)和赛默飞(Thermo Fisher Scientific)。Our Future Health项目试图纳入500万名参与者,希望对国家人口的健康状况有一个广泛的认识,同时开发新的预防和治疗疾病和健康状况的方法,包括癌症、老年痴呆症、心脏病、关节炎、糖尿病和中风等。目前,该项目已经启动了其试验阶段,通过与英国国家医疗服务体系(NHS)血液、移植以及英国国立卫生研究院(NIHR)生物资源的合作招募了3000名志愿者。Our Future Health项目主席John Bell教授在表示:“慢性疾病的社会、医疗和经济负担日益加重,解决这一问题需要生命科学部门和卫生系统之间的强有力合作。在COVID-19大流行期间,随着疫苗、诊断工具和治疗方法以前所未有的速度和规模迅速开发和部署到NHS,我们已经看到了通力合作的威力。”英国政府资助的投资部门,UK Research and Innovation提供了最初的7900万英镑来资助该项目,并获得了NHSX AI实验室的资金,专门用于支持多基因风险评分的生成,并向参与的志愿者提供反馈。“Our Future Health计划旨在利用合作的力量。来自行业、慈善机构的支持,以及政府的资助,意味着我们正在将“Our Future Health”建设成一个世界领先的健康研究项目。希望这将为NHS的一种大胆的新方法奠定基础,该方法专注于疾病的早期发现和预防。期待更多参与者参加这个令人兴奋的项目。”Bell教授表示。该项目的一个主要重点是开发在症状出现之前识别癌症和心脏病等疾病的新方法。根据Our Future Health项目介绍,在英国只有55%的癌症被诊断为第一阶段或第二阶段,有超过550万人患有未确诊的高血压。“在世界各地,数百万人在晚年生活中健康状况不佳。Our Future Health项目旨在解决这个问题,并通过创建英国有史以来最大的健康研究项目来预防、检测和治疗疾病,帮助人们过上更健康、更长寿的生活,”Our Future Health项目首席执行官Andrew Roddam博士提道。“通过建立一个真正反映英国人口状况的世界领先的健康研究资源,可以更详细地了解是什么让一些人更容易出现某些健康问题,从而在未来开发出更有效的检测和治疗方法。”在试验研究阶段,Our Future Health项目计划在3000名志愿者中测试其操作和程序,以确保整体系统运行良好。如果一切顺利,该项目将于2022年第一季度向公众开放。目前,通过NHS献血中心招募的志愿者已经完成了在线健康调查问卷,并在知情的情况下同意将他们的医疗记录信息以及捐赠的血液样本与Our Future Health项目联系起来。同时,该项目还询问志愿者,未来是否可以联系他们进行额外的研究,或者给他们机会接受个性化的健康反馈。
  • 【瑞士步琦】冻干工艺精准操控,Lyovapor™ L-300实现全自动终点判定
    冻干工艺精准操控Lyovapor&trade L-300实现全自动终点判定冻干应用”1简介冷冻干燥是一个独立的过程,在这个过程中实时分析样品是比较困难的,特别是检测其残余水分含量。工艺优化,特别是获得干燥和稳定产品所需的工艺时间,通常依赖于反复试验的方法。在本文中,使用了不同过程分析技术的组合来确定实验室冷冻干燥机(Lyovapor&trade L-300)中甘露醇溶液一次和二次干燥的终点。在加热隔板上使用西林瓶,通过对样品参数的原位测量间接跟踪干燥过程,可以在运行的冷冻干燥循环中即时调整过程时间。它有助于根据产品所需的残余水分含量更快地优化参数。此外,这些分析技术为监测过程的再现性提供了必要的工具。2实验设备Lyovapor&trade L-300 Pro, BÜ CHI Labortechnik AG电容和皮拉尼压力计,Pt 1000 热电偶冷冻干燥瓶,标称体积 10.0 mL, Schott AGLyo 三角橡胶塞,Wheaton陶瓷板磁力搅拌器硼硅玻璃烧杯和量筒分析天平(精度±0.1 mg)实验室 -50°C 冷冻柜3试剂和耗材甘露醇 97,0 - 102,0 Ph. Eur. , USP, VWR Chemicals (25311.366) 去离子水4实验流程4.1 实验部分制备 100mg /mL 甘露醇去离子水溶液。使用容量分配移液管将甘露醇溶液装入120个冷冻干燥瓶(每瓶 5.0 mL)。在每个小瓶上放置一个三脚橡胶塞,以便在冷冻干燥过程中去除水蒸气。一个 Pt 1000 热电偶被放置在两个制备的冷冻干燥小瓶的“中心底部”。在室温下,将这些小瓶放在两个铝制框架的冷冻干燥隔板上(每个架子 60 个小瓶)。在每个隔板上,一个装有热电偶的小瓶被直接放置在隔板的中心。热电偶连接到各自的隔板上。隔板插入到 Lyovapor&trade L-300 的金属支架上。一个空的冷冻干燥隔板被放置在上层,西林瓶包括隔板,以确保两个样品隔板接收到同样的热量。将包含隔板和样品瓶的支架转移到 -50°C 的冷冻室预冻 24 小时。4.2 方法编程冷冻干燥按照表1设定的隔板温度、真空度和时间运行。表1. 详细的 Lyovapor&trade L-300 冷冻干燥工艺用于 50 mg/mL 甘露醇溶液的西林瓶冷冻干燥步骤_1234阶段加载初级干燥次级干燥持续时间_4h12h1h20min6h隔板温度℃-4020204040加热梯度℃/min_0.2500.250压力 mbar_0.10.10.10.1初级干燥采用温差试验、压差试验(比较压力测量)和升压试验三种自动终点试验。表2.初级干燥阶段终点确定的设置温差试验压差试验升压试验极限:1.0℃极限:0.05mbar极限:0.06mbar试验时长:30min试验时长:30min试验时长:30s*开始时间:12h*开始时间:12h**开始时间:11h55min__重复时长:60min**是否继续:是**是否继续:是**是否继续:是是否通知:是是否通知:是是否通知:是* 开始时间的值表示在初级干燥的程序阶段结束之前的测试开始。** 如果所有测试都成功,将自动启动第二阶段,并继续进行干燥过程。其中,温度和压差测试直接从初级干燥阶段的第 2 步开始(见表2)。升压测试的压力极限设置为 0.060 mbar,测试时间为 30 秒。第一次升压试验在初级干燥第 2 步进行 5 分钟后进行,每 60 分钟重复一次。表3. 次级干燥阶段终点确定设置温差试验压差试验极限:1.5℃极限:0.05mbar试验时长:30min试验时长:30min*开始时间:6h*开始时间:6h**是否继续:是**是否继续:是是否通知:是是否通知:是*时间,从干燥阶段结束开始。**如果所有测试都成功,将自动启动下一阶段(封塞、保持),并进行干燥过程。其中,在温差和压差测试中,测试时间设置为 30 分钟,从步骤 4 开始直接开始测试。5实验结果5.1 温差试验图1 和 图2 为小瓶甘露醇样品冷冻干燥的温度和压力曲线。在图1中显示了两个隔板上样品温度。热电偶测得初级干燥主要部分的产物温度在 -7℃ 左右。随着水分含量和升华速率的降低,产品温度升高,在初级干燥结束时达到隔板温度。经过16.0小时的干燥时间,达到了温差试验的标准。▲ 图1. 隔板(红色),样品 Pt 1000(蓝色,蓝绿色)和 Lyovapor&trade L-300 冰冷凝器(粉红色)的温度测量。相应的,在设定冷凝器压力为 0.100 mbar 时,电容式压力计测得的干燥室内实际压力平均值为 0.150 mbar,如 图2 所示。在冰升华过程中,由依赖气体的皮拉尼压力计获得的压力值比电容压力计测量的压力值大约1.6倍。随着冰含量和升华速率的降低,皮拉尼压力计的压力值接近电容压力计的测量值。▲ 图2. 外部电容(绿色)压力计和皮拉尼(红色)压力表以及内部压力计(黄色)测量的压力。▲ 图3. 电容式(绿色)压力计与皮拉尼式(红色)压力计的计算压差如 图2 所示。图3 显示了从两个外部压力表(皮拉尼压力计减去电容压力计)的值计算得出的数值差异。在大约15.5小时的干燥时间后,达到了压差测试的标准。升压试验结果如图1和图2所示。在皮拉尼和电容式压力计的曲线(图2)中可以看出,尽管中间阀关闭,干燥室内的压力上升是由于水蒸气的持续升华造成的。在冰升华过程中,最初的高压上升值在初级干燥结束时大幅下降(棕色尖峰)。初级干燥 16.3 小时后达到升压试验标准。相应的,从设定的隔板温度曲线可以看出图1中升压试验的时间点。每次进行升压试验时,架子的加热在试验期间自动暂停。由于最后一次初级干燥终点测试在 16.3 小时后成功,因此与最初设定的初级干燥时间相比,样品干燥状态的自动检测将初级干燥阶段延长了 0.3 小时(见 表1)。随着升压试验的完成,所有设定终点试验均顺利完成,冻干循环自动进入次级干燥阶段。这种原位跟踪防止了在所有冰升华之前过早过渡到二次干燥阶段。所有三种测试对终点的估计时间大致相似,约为 15.5 至 16.3 小时。在次级干燥阶段,从产品中去除未冻水导致皮拉尼计记录的压力值在干燥时间约 18 小时(红色曲线)增加,如 图2 所示。除水后,总干燥时间 22.5 小时,压力曲线接近电容式压力计测量值,满足压差试验标准。23.1 小时后,隔板温度曲线与样品温度曲线符合,温差试验也成功完成(见 图1)。最后,在冷冻干燥过程结束时,干燥循环自动进入保持阶段。在应用西林瓶冷冻干燥工艺中获得了具有可接受视觉外观的干粉。▲ 图4. 装有甘露醇的最终冻干瓶6实验结论本申请说明探讨了过程分析技术(PAT)在冷冻干燥过程中的适用性,重点是监测干燥室压力和样品温度,以评估样品的干燥状态。研究表明,这些过程分析技术与压差、压升和温度测试的自动端点确定设置相结合,可以在不中断样品水分含量分析过程的情况下估计实际干燥时间。通过防止过早过渡到下一个干燥阶段,如次级干燥或保持,提出的方法提高了工艺效率。这些端点测试的集成有助于干燥过程的精确控制和可靠性,从而获得所需的产品属性,如最佳干燥度和视觉外观。研究结果确定了在Lyovapor&trade L-300冷冻干燥机中使用单独或联合终点测试来准确确定终点的有效性。7参考文献本文档是与 TH Kö ln 的 Heiko Schiffter 教授合作创建。
  • 进口食品再陷安全风波,赛默飞TSQ Fortis来守卫!
    日前,中方海关部门在加拿大输华猪肉中检出莱克多巴胺残留,中国海关总署发布进出口食品安全风险预警表,并将加大对加拿大输华猪肉莱克多巴胺的抽检力度。食品安全警钟再次敲响!为保障进出口食品安全执法有效性、应对国外技术性贸易壁垒,高通量、高灵敏度、高定量性能的三重四极杆液质联用仪将作为把守“国门”的重要技术支撑,发挥关键性作用。 什么是“莱克多巴胺”?莱克多巴胺是人工合成的β-肾上腺受体激动剂,属于第二代瘦肉精。服用这种药物能显著提高胴体的瘦肉率和饲料转化率,因此常被用作畜禽促生长剂、饲料添加剂。但人类食用含有β-受体激动剂残留的动物源性食品后,会对人体健康造成极大危害,严重时甚至导致休克造成死亡。 各国对莱克多巴胺在养殖业适用范围规定不尽相同:在美国、加拿大,莱克多巴胺可作为瘦肉精被允许用于畜禽养殖,而欧盟、中国对该类药物全面禁止。国际食品法典委员会(CAC)通过的莱克多巴胺残留标准中,猪与牛的肌肉及脂肪均为10ppb、肝脏为40ppb、肾脏为90ppb。但在中国——2002年,农业部176号公告禁止使用莱克多巴胺;2011年,工信部等六部委发布联合公告,即日起中国境内禁止生产和销售莱克多巴胺;国务院食品安全委员会办公室《“瘦肉精”专项整治方案》规定“瘦肉精”品种目录包含莱克多巴胺。如何才能把好国门守护食品安全?进口的食品应当符合我国食品安全国家标准。但肉类食品基质非常复杂,莱克多巴胺检测时容易出现假阳性假阴性结果。根据β-受体激动剂检测标准GB/T 22286-2008和SN/T 1924-2011,目标物检出限非常低,均为0.5μg/kg,对仪器灵敏度、定量能力提出挑战。TSQ Fortis 三重四极杆质谱仪1.采用新型基质分离离子导引(MSIG),在维持高效离子束传输的同时确保仪器无与伦比的耐用性和稳定性;2.集优异定量性能、超高定量生产力、超快分析速度及易用性为一体。 Thermo Scientific™ TSQ Fortis三重四极杆液质联用仪针对国标莱克多巴胺分析需求,建立了高灵敏度高稳定的检测方法。在线性范围内线性相关系数r2均大于0.993,线性关系良好。对18种β-受体激动剂类化合物进行稳定性测试,RSD均小于6%,实验结果证明仪器具有良好的稳定性。线性范围 猪肉基质经提取,浓缩,复溶后过微滤膜,加入一定量混标进样分析。测得包括莱克多巴胺在内的β-受体激动剂类化合物检出限均满足国标要求。莱克多巴胺的提取离子流图 方法包简化分析流程上期“都9102年了,还没用上TSQ Fortis兽残检测方法包?”中提到,赛默飞中国应用团队针对国内兽残分析现状,以国家标准为依据,利用TSQ Fortis三重四极杆质谱仪建立了包括β-受体激动剂类在内的近200种兽残方法包,不再需要繁琐的方法优化,直接进样上机分析即可得到满意的结果。 实验结论TSQ Fortis三重四极杆液质联用仪应用于莱克多巴胺分析检测,不仅快速高效,通用性强,而且定量定性准确,重现性好,可为以莱克多巴胺为代表的β-受体激动剂类化合物检测提供强有力的保障,帮助筑牢口岸食品安全“防火墙”。 扫描二维码填写表单,立即免费下载TSQ Fortis针对18种β-受体激动剂的检测方法。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 打击“瘦肉精”,赛默飞完整解决方案来帮您!
    打击“瘦肉精”,赛默飞完整解决方案来帮您!原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼郑国帅 郭藤315 瘦肉精近日,3.15晚会曝光瘦肉精重现江湖,河北青县羊在郑州农产品市场的出现引起广泛关注。瘦肉精是一类药物的统称,任何能够抑制动物脂肪 生成,促进瘦肉生长的物质都可以称为“瘦肉精”。能够实现此类功能的物质主要是一类叫做β-受体激动剂(也称β-兴奋剂)的药物,其中较常见的有盐酸克仑特罗、沙丁胺醇、莱克多巴胺 、硫酸沙丁胺醇、盐酸多巴胺、西马特罗和硫酸特布他林等。但是,此类物质会在动物组织中残留,尤以肝脏等内脏器官残留较高,人类消费后可出现肌肉振颤、心慌、颤栗、头疼、恶心、呕吐等症状,尤其对高血压、心脏病、青光眼、糖尿病、甲状腺机能亢进和前列腺肥大等疾病患者危害更大,严重的可导致死亡。因此,我国禁止在食用动物的饲养中使用瘦肉精等兽残。并且GB31650-2019规定了267种(类)兽药在畜禽产品、水产品、蜂产品中2191项残留限量及使用要求,将替代农业部公告第235号《动物性食品中兽药zui高残留限量》的相应部分,并于2020年4月1日正式实施。相比农业部公告第235号,新标准在兽药数量增加76种、残留限量增加643项,为兽药残留检测工作提供了更完善的判定依据处理。赛默飞全新TSQ系列三重四极杆多兽残全流程方法包及高分辨兽药多残留完整解决方案均轻松满足GB31650-2019,全方位无死角检测食品中的瘦肉精类及其他兽药多残留,为食品安全保驾护航。 样品前处理:准确称取5g样品至50mL离心管中,先加入3mL水混匀,再加入5mL乙腈,涡旋5min,分散混匀, 4℃12000r/min离心5min,上清液转移至50mL离心管中,剩余部分再加入5mL ACN重复提取一次,合并2次上清液,再加入4g Na2SO4,1gNaCl,充分漩涡混合震荡,6000r/min离心4min,移取3mL上清液,待净化。运用HyperSep Retain-PEP SPE小柱(60mg/3ml, 60107-203), 3 mL甲醇活化,3 mL水平衡,取1mL上清液过柱,弃去,取2mL上清液过柱,收集滤液,氮吹至近干,用水/甲醇=9:1溶液准确定容至1mL,15000r/min离心5min,取上清液,质谱分析。 全新TSQ系列三重四极杆多兽残全流程方法包 液相条件: 181种兽残叠加图及筛查结果图(点击查看大图)瘦肉精在肉基质中的回收率在75%-120%以内(点击查看大图)方法包包含常见的兽药: 硝基呋喃代谢物、瘦肉精类、喹诺酮类、磺胺类、氯霉素类、孔雀石绿类、林可胺类等共计181种常见的兽残,且标准品均按照GB31650-2019采购获得。方法包灵敏度、稳定性及回收率良好,包含各化合物的SRM信息、数据库、上机所需的仪器方法、定量数据处理方法、使用指南等,可直接加载使用,方便政府质检机构、第三方检测机构等客户的日常检测使用。 高分辨兽药多残留完整解决方案根据农业部公告第312号文件指导原则,赛默飞推出高分辨兽药多残留完整解决方案, 本方案采用和TSQ系列方法包相同的色谱条件和样品处理方法,在严格按照GB31650-2019的前提上获得标准品,借助高分辨质谱建立了297种兽残的高分辨数据库。每个化合物均有准确的一级MS图,准确的保留时间,有3~6个碎片离子,共计1485个碎片离子,且每个化合物的一级、二级碎片质荷比、保留时间均经过检验,保证数据库准确可靠。数据库中瘦肉精类兽药数据界面 (点击查看大图) Thermo Scientific™ Orbitrap Exploris™ 120 Mass Spectrometer Thermo Scientific™ Orbitrap Exploris™ 240 Mass Spectrometer 数据库中仪器方法中的包含列表(点击查看大图)数据库仪器方法采用数据依赖的扫描模式,一针即可获得297种兽药的精确一级、二级图谱信息,可同时达到定性和定量。且碰撞能均采用NCE模式,对化合物均能获得丰富的子离子信息。数据库中一针数据中部分瘦肉精的一级、二级谱图信息(点击查看大图)数据库中兽药种类及占比 (点击查看大图)数据库采用的液相方法稳定,峰型保留时间俱佳能够实现一针快速、准确筛查出靶标物质,同时对筛查出的兽药进行定量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制