当前位置: 仪器信息网 > 行业主题 > >

电子秤表头

仪器信息网电子秤表头专题为您提供2024年最新电子秤表头价格报价、厂家品牌的相关信息, 包括电子秤表头参数、型号等,不管是国产,还是进口品牌的电子秤表头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子秤表头相关的耗材配件、试剂标物,还有电子秤表头相关的最新资讯、资料,以及电子秤表头相关的解决方案。

电子秤表头相关的资讯

  • 杭州电子秤实现自动检定效率提高10倍
    从杭州市质检院获悉,由该院负责完成的科技项目《移动式电子秤现场自动检定装置的研制》顺利通过鉴定与验收。该项目填补了国内相应自动检定装置的空白,电子秤检定自动化成果达到国内领先水平。项目获国家发明专利1项、实用新型专利两项,发表论文3篇。   据项目主要完成人厉志飞介绍,该项目系统地解决了应用标准砝码自动检定电子秤的难题,实现了电子秤自动检定,研究了不同称量点标准砝码的加载或卸载等关键技术,满足了国家计量检定规程JJG539-1997《数字指示秤》的要求,电子秤检定效率提高10倍以上,具有很好的应用前景及推广价值。项目采用LabVIEW作为软件开发平台,通过PC机和PLC通讯,控制标准砝码的自动加卸载,利用图像识别技术,实时读取电子秤上的示值,同时自动获取数据,自动生成检定原始记录,自动出具检定结果通知书或计量检定证书。  据了解,项目成果已在法定计量检定机构及衡器制造企业得到初步试用,为电子秤检定(检验)技术水平的提升及产品质量监管提供了有效的技术支撑。
  • 什么?商家10834台电子秤只有4264台是合格的
    你身边的这些电子秤或有猫腻!据市计量测试研究所消息,在今年度“诚信计量惠民工程”现场检定工作中,从2月至11月,该所已经对市区范围商贸流通领域内3861家商家的在用电子秤进行了免费检定。检定共涉及电子秤10834台,其中,检定合格 4264台,合格率仅为39.4%。  本次检定的商家包括个体户、没有统一配秤的农贸市场(茶叶、水果市场等)。市计量所市场检测室主任杜洁告诉小8,被检电子秤的不合格之处主要体现为外观、准度。“在外观方面,贸易结算领域使用的电子秤需要有防作弊铅封,没有的就是不合格。另外,有些电子秤的分度值被人为修改过,没有按照生产标准生产。”杜洁说,在精准度方面,如果误差超过允许范围,这秤也肯定是不合格的。  值得一提的是,市计量所工作人员还鉴别出了具有作弊功能的电子秤42台,并配合行政、稽查部门处理计量投诉案件19起。今年9月,就有市民投诉称寒山寺周边的枫桥大街有商店出现缺斤短两的现象。经查,的确有4家特产纪念品商店的秤有猫腻。“现在大多数的作弊秤都是密码秤。使用者通过输入数字密码,就让秤进入作弊程序,称量出来的数值能扩大10%、20%,有些甚至是100%。”杜洁提醒消费者,如果对斤两没有大概把握,很容易被骗。  今年是市计量所连续第五年实施“诚信计量惠民工程”。除了认真做好计量器具的免费检定工作外,工作人员在工作过程中还向商家发放宣传资料,宣传计量法规,并指导商家正确、规范地操作使用电子秤。据了解,相比商贸流通领域,集贸市场的电子秤合格率就明显高了不少。截至今年8月底,市区126家集贸市场的10444台电子秤,合格率达到了83.6%。
  • 超市电子秤数据管理专家——梅特勒托利多ScaleManager软件
    超市电子秤数据管理专家——梅特勒-托利多ScaleManager软件 还在为门店里各种型号电子秤的管理而发愁?还在为每天电子秤的营业额统计而苦恼?我们向大家介绍一款梅特勒托利多自行研发的软件——Scale Manager——一位才华横溢的数据管家。 Scale Manager,顾名思义,即一款电子秤管理工具。只要使用的是梅特勒托利多的电子秤,就可以通过Scale Manager来管理秤上的数据。现在就让我们一起认识一下它吧。 梅特勒托利多Scale Manager功能介绍 1.基础数据下发电子秤上的商品信息/附加文本等基本信息总是更新很频繁,面对这些变化,直接在秤上修改?No~我们有更快捷的方法。进入梅特勒托利多Scale Manager数据管理界面,选中想要下发到电子秤上的数据,点击下发按钮就能将想要的数据下发到门店的秤上啦。 如果想要知道电子秤上数据是否正确,那我们也可以通过梅特勒托利多Scale Manager软件回收秤上的数据,验证一下数据的正确性。 2. 报表统计想知道每台电子秤一天、一个月甚至一年的销售金额?想知道每个商品每天的销量?电子秤上打出的报表太长,看着头昏脑涨没耐心?不怕,梅特勒托利多Scale Manager软件帮你轻松搞定,让你不费吹灰之力就能了解每天的销售量。 只需要在电子秤上设置实时上传流水到梅特勒托利多Scale Manager软件,它就能帮你分析流水数据,你可以在梅特勒托利多Scale Manager软件中看到所有商品的交易流水,精确到每个商品是否打折,折扣金额是多少。同时还能看到门店中每台秤的销售金额以及所有商品的销售量。 3. 计划任务商品源文件每天都有更新?每天都需要将变化的数据更新到电子秤上?让员工每天去做重复的事情,他们是否已经开始抱怨了?如果你有这些困扰,那你可以使用梅特勒托利多Scale Manager软件中的计划任务功能。 可以在Scale Manager中新建一个计划任务,可以选择定时执行/重复执行/文件变更执行,根据你的需求实时更新秤上的商品信息,这样省事省力,员工也不会埋怨,完美。梅特勒-托利多Scale Manager软件安装方便,简单易用,虽然只是一个秤数据管理软件,但是我们可以通过这款软件实现很多意想不到的效果。
  • 电子案秤系列 | 为工业称重保驾护航(三)
    奥豪斯长期钻研前沿的称重技术,有防水型号电子案秤以满足不同使用环境,除此之外,不仅有能满足基本工业应用的电子计重秤,还有能帮助用户将复杂的工业应用简单化的高精度电子秤。奥豪斯工业产品回顾的第三篇,将为大家介绍奥豪斯电子案秤系列产品。Ranger 7000 高精度秤Ranger 7000系列高精度电子秤采用了多种独具特色的设计,让繁琐的现场称重操作变得简单易行:Ranger 7000具备极高的精度,超大及清晰的显示屏,众多的功能模式,丰富的接口选择,以及极强的数据库管理能力。强大卖点 / Ranger 7000高精度秤4.3寸彩色液晶屏,中文显示,最 高达350,000d显示分度全金属外壳和模块化设计,1秒显示稳定速度三级用户管理,支持GLP/GMP数据输出,满足追溯和合规性审核要求支持“红-绿-黄”三色检重/检数显示Ranger 2000 计重秤Ranger 2000拥有众多功能,可以针对不同应用需求,快速提供精确的称量结果。七种应用模式,使Ranger 2000成为可以满足各种工业称量需求的完 美计重秤。便携、标配可充电电池,在工厂的每个角落都可方便的使用,Ranger 2000具备了众多功能和特性,使其在同级别计重秤中卓尔不凡。强大卖点 / Ranger 2000 计重秤显示屏为红色LED (28mm字高),清晰明亮快速稳定,内置铅酸充电电池(110小时)标配RS232通讯接口Ranger Count 2000 计数秤Ranger Count 2000拥有众多功能,可以针对不同应用需求,快速提供精确的称量结果。通过称重,计数,检重/检数及累加功能,使Ranger Count 2000成为可以满足各种工业称量需求的完 美计数秤。便携、可充电电池,在工厂的每个角落都可方便的使用,Ranger Count 2000具备了众多功能和特性,使其在同类型计数秤中卓尔不凡。强大卖点 / Ranger Count 2000 计数秤显示屏为LCD,可存储30组数据库内置铅酸充电电池(210小时)标配RS232通讯接口Valor 2000 防水秤全新一代Valor 2000产品定义了防水案秤的新标准,具备了优异的防水能力、称重快速精 准抗振和标配可充电电池等特点。全面满足食品加工业应用需要。Valor 2000防水案秤具备了众多特性,性能卓尔不凡,超越同类产品,可以为用户创造更多的价值。强大卖点 / Valor 2000 防水秤红色LED大屏显示,清晰明亮0.5秒内稳定,快速精 准,高效作业全新防水防潮设计,可靠耐用内置铅酸充电电池(50小时) 奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 奥豪斯推出新品RC2000系列电子计数秤
    RC2000系列电子计数秤——同级中最优异的便携式计数秤之一!奥豪斯新近上市的RC2000系列电子计数秤拥有众多功能,可以针对不同应用需求,快速提供精确的称量结果。通过称重,计数,检重/检数及累加功能,使RC2000成为可以满足各种工业称量需求的完美计数秤。便携、可充电电池,在工厂的每个角落都可方便的使用,RC2000具备了众多功能和特性,使其在同类型计数秤中卓尔不凡。计数秤顾名思义就是一种具有计数功能的电子秤。这种电子秤可以测算出待测物品的数量,广泛应用于电子、塑胶、五金、化工、食品、烟草、制药、科研、饲料、石油、纺织、电力、环保、水处理、五金机械及自动化生产线等领域。以下是目前已成功应用的部分案例,以供参考。电子行业电子元器件普遍具有体积小、数量大、一致性好的特点,计数秤已经在电子行业广泛应用了很长时间了。因为其体积小而单价又不是很高,通过人工来清点数量费时费力,而RC2000计数秤可以很好的解决这个问题。食品加工行业糖果、巧克力、袋装食品等重量相对一致的食品生产中也可以使用RC2000计数秤来统计数量。标准件行业标准件是指结构、尺寸、画法、标记等各个方面已经完全标准化,并由专业厂生产的常用的零(部)件,如螺纹件、键、销、滚动轴承等等。这些零件重量一致、批量大,利用RC2000可以很方便的清点个数。塑料/橡胶行业塑料制品与橡胶制品一般都是模具制成,一致性好,计件销售。对于一些难于清点的小零件,非常适合RC2000计数秤应用。服饰行业几乎每件衣服上都会有纽扣或者一些小饰品,这些饰品和纽扣都是由专业的工厂制造加工的。不光是制造工厂,销售纽扣的批发市场与门店都可以利用RC2000计数秤来统计数量。
  • 卓立汉光荣获邀参与第十九届全国激光技术与光电子学学术研讨
    第十九届全国激光技术与光电子学学术会议(LTO2024)将于2024年6月21-24日在上海召开。届时,卓立汉光将应邀参会,期待与您相约在此,共同探讨学术前沿!关于会议全国激光技术与光电子学学术会议(LTO)是由中国激光杂志社发起并主办的激光及相关领域的高水平中文学术会议。会议旨在推进我国激光及相关领域学术的进步和发展,促进激光技术交流,为国内激光学术交流提供专业的平台。本次大会将邀请我国激光与光电子领域知名专家、学术带头人作专题报告,并开辟高水平分会场,大会将共同探讨激光与光电子技术领域最新发展动态,促进激光与光电子领域产学研紧密结合。会议时间 - 2024年6月21日-24日会议地点 - 上海产品推荐光谱与成像产品Omni-iSpecT透射式成像光谱仪HiperS系列全焦面影像校正光谱仪IsCMOS像增强型相机分幅相机工业光电与精密机械光学元件&调整架光学平台电动滑台手动滑台纳米压电位移台*以上为卓立汉光部分产品激光与测量产品激光光束分析仪激光功率计表头*以上为先锋科技部分产品
  • 快速精准,高效之选—奥豪斯Ranger 2000 电子计重秤开启全新称量体验
    随着产品的升级更新,奥豪斯工业产品线也日趋完善,现有台秤、平台秤、计数秤和电子称重仪表等系列家族,台秤家族中的ranger2000 电子计重秤是一款适用于基本工业应用的经济型计重秤,为您带来无与伦比的称量体验。?产品特点?超大led显示屏--使得ranger2000电子计重秤胜任所有应用环境,配合三色led检重指示灯使其能在昏暗潮湿的工业环境下亦可游刃有余。 友好的操作界面--简易的设置方法使其使用更简便,确保不会浪费您宝贵的时间,实现更高的工作效率。 便携,多样的电源解决方案--配备大容量可充电铅酸电池,持续供电长达110小时! 也可通过连接方便的电源线进行供电,不论是使用电源线还是使用充电电池,都能保证长时间不间断的连续作业。 ?精彩视频?让我们通过视频更全面直观地了解这款同时兼具优异性能和美丽价格的ranger2000 电子计重秤吧!点击边框调出视频工具条 欲了解更多产品及相关信息请拨打4008-217-188或登录产品网页http://ohaus.cn/zh-cn/ranger2000-1获取。
  • 梅特勒托利多FAQ:台秤常见问题故障解答
    1、什么是台秤?台秤称量:3-1000Kg,适合小宗货物/物料的称重设备。2、托利多台秤的结构特点?波纹板秤体,抗冲击台面/称量至420x550 /300公斤钢管秤结构:1260传感器较大台面,抗冲击槽钢秤结构:IL 钢质传感器大台面,高强度耐冲击3、型号为KB60.2的托利多高精度台秤,出现称量不准,不成线性的漂移,打印机不进纸,是何原因?请检查秤体是否完好,重新标定。使用的是什么型号的打印机?打印纸是否匹配?4、20公斤的托利多台秤,左上角的传感器,用1000克的砝码矫正时怎么会有1克的误差?台秤标定使用砝码至少大于最大称量的60%,建议满量程标定。5、600公斤的托利多电子秤,称量100斤的物品时仪表显示96斤,有4斤的误差,如何解决?建议重新标定(标定砝码必须大于最大称量的60%,建议满量程标定)。6、500KG托利多平台秤,在称重1-2KG时仪表没有数据显示,称重5-6KG时才会有反映,是何原因?建议重新标定(标定砝码必须大于最大称量的60%,建议满量程标定)。7、60KG托利多台秤,零点漂移,称量数据也漂移,怎么办?请重新标定,如还有类似现象请更换传感器。8、型号为WS-150M的托利多台秤现在出现称量不准,出现1斤左右误差?请检查传感器接线,重新标定。9、托利多tcs-60公斤的台秤,秤量25公斤以上的物品有100克左右的误差?请先检查限位垫片是否没去除。10、一台3kg托利多防爆秤,仪表显示的最后一位数字显示不全?显示屏可能有问题了,请联系技术服务部维修。11、30公斤托利多台秤,型号为AB-1 PLUS,已用十多年,出现称重数据漂移,不能归零怎么办?请重新标定,如还有类似现象请更换传感器。12、托利多Tcs300公斤的台秤,配置Q16的打印机,出现微量变化时打印不出来怎么办?请问您设置的是自动打印还是手动打印?自动打印的话检查仪表说明书,有解释。13、60KG托利多台秤称量不准,用20KG的砝码标定显示正常,55KG砝码放上去后,角部显示30KG或其他数据,数据不稳定。重新标定(标定砝码必须大于最大称量的60%,建议满量程标定),检查限位。14、300KG左右的托利多台秤,精确度较高,需要精确到2g,询问是否可以实现?可以的,选择MMR系列的K系列秤台。15、型号为Panda的托利多油漆秤,可以归零,过段时间后仪表不能显示数据,不知道是什么原因?请先检查电源插头是否松动了。16、150kg托利多台秤数据漂移,且经常需要校准,何原因?根据你的描述,应该是传感器故障,建议更换。17、托利多WS-60的台秤,现在出现称量有0.03公斤误差,通过校正后还是出现这样的问题?建议校准砝码大于最大称量的60%,如还有故障,更换传感器。18、型号为TSC-100的托利多电子秤,目前称量70KG物体误差有40KG,如何解决?重新标定,如还有类似现象更换传感器。19、最大称量7100g的托利多油漆秤显示&ldquo E226&rdquo 无法归零怎么办?重新标定(7kg砝码标定),不行送技服更换主板。20、托利多K3130台秤,现在去皮和清除键按了无反应?将SW1-1拨到ON。如果仍进不了设定,把仪表返回公司检测、修理。21、托利多TCS-60台秤,配的IND221仪表,现出现没有数据显示?新秤:称量无反映。打开不锈钢上盖,抽去四角的红色塑料插片即可。22、托利多电子秤称量100kg有10kg的误差,配的是XK3123仪表。4个传感器,FS=2t,XK3123。1t校正:校正后显示准确,但取下砝码后重新加载又不对了。建议:1、检查称量重复性是否好?2、使用600kg载荷测试四角误差是否一致。若有问题,检查处理。23、托利多PK系列台秤,配的是金鸟仪表,咨询如何导出数据?配置PQ16微打可以打印称重数据。24、托利多WS3X-RS-226台秤,了解此台秤是否有将分辨率扩大10倍的功能?扩展显示(X10):参数设定F2.1=Mul 10;按F键显示细分10倍,20秒后自动返回;重量显示更精确,但禁止打印。25、托利多XK3130仪表配的是台秤,在通电2小时后显示&ldquo 8888&rdquo ?1、脱开仪表上除电源以外的所有连接线,通电观察是否仍有以上问题;2、将仪表单独拿到办公室去通电观察,若仍有问题则返回公司修理。否则,检查车间电源电压是否正常,检查电源插头插座连接是否可靠?26、梅特勒托利多有哪些计数秤系列?高端:VIPER中端:T-Count 加外接秤台低端:TC计数秤;TCII计数秤27、梅特勒托利多TC计数秤性能参数?容量:2,5,10,20kg型号:VFD,LCD,双秤台检定分度:1/4000,1/5000默认出厂显示分度:1/10000最大显示分度:1/20000RS232接口,连接PC或打印机
  • 梅特勒托利多条码秤惊艳现身TVB
    近期,TVB剧《潜行狙击》网络热播,大受潮人追捧。作为都市剧情发生的重要场所之一,剧中时尚靓丽的超级市场令人向往。有一幕场景就发生在香港华润大厦的华润万家OLE店,梅特勒托利多(METTLER TOLEDO,简称MT)作为华润的电子秤首选供应商,其条码秤(又名标签打印秤)也被TVB收纳镜头之中,引发&ldquo 多粉&rdquo 转载。 如图:香港华润大厦的华润万家OLE店 此次,在TVB中出现的这款型号为bPro-T2-B15D-E00-0041的中文全点阵屏条码秤,是由欧洲名师打造、中国本地生产、面向全球发售的一款b系列新型标签打印秤,在亚洲、欧洲各国销量已超万台。其造型优雅,设计独特,与高端超市的环境和管理模式相得益彰,受到零售商家的青睐。 如图:bPro系列标签打印电子计价秤 事实上,MT条码秤通过大众媒体见诸公众也并非偶然。作为称重领域这一隐形行业的领跑者,MT拥有极高的市场份额,产品易见度极高。在人们常去的超市、休闲食品店,亦或民航机场、高速公路、港口码头,有心者都可以发觉MT的身影,一直低调呈现,默默奉献。 更多产品请查看梅特勒-托利多网站如有任何疑问,欢迎 点击这里反馈 梅特勒托利多2011年9月
  • 查询机成摆设 食品追溯查询青岛歇菜?
    近日,湖北暂未追查到源头的三聚氰胺超标奶事件,将食品安全问题再度推到公众眼前,不少市民疑惑,食品源头到底在哪里?21日,记者就岛城食品溯源的现状调查发现,多数商场的查询机早已歇菜,就算顾客想知道也无处可查,而猪肉追溯实行几个月了,由于需要上网或者去管理处才能查到,因嫌麻烦也鲜有人去查询。  商家维修不积极  超市追溯查询机多“罢工”  “可追溯查询机?没听说过?”21日上午,在台东一路某大型超市内,记者拿着蔬菜以要查询为名,连问了五名超市销售人员,对方均表示不清楚是什么机器。而在沃尔玛超市内,记者转了半天才在一个高高的展台后面,找到了一台由青岛食品安全委员会、市质监局和青岛经贸委联合设置的食品追溯查询机,但这台机器却处于断电的状态。“没见它通过电啊,一直是这样子。”旁边销售饮料的工作人员说。  在香港中路家乐福,查询机的条码扫描处虽亮着,但却一直黑屏。而佳世客的查询机虽然看上去很正常,但当记者按照操作要求打算进入页面查询条形码和生产许可证时,屏幕却没有任何反应。  据了解,为了从源头上确保食品安全,青岛市于2007年10月份在香港中路家乐福安装了第一台自助查询机。此后,在佳世客、沃尔玛、利群、麦德龙等也陆续安装了十多台。通过这些机器,消费者可查询自己从市场购买的蔬菜的出处、种植过程中受过哪些病虫害等。然而时隔3年多,这些机器彻底沦为了摆设。  就超市这些食品追溯查询机多损坏的情况,设置方之一青岛市食品安全委员会相关工作人员表示,项目试点后查询的市民不多,机器长久不用才发生损坏。此外,商家也不愿自己被监督,因此对机器的检查和保养不是很积极。  查询程序太麻烦  猪肉来源可查却无人查  21日,记者走访了南京路农贸市场、生活家农贸市场多处市场,记者看到,销售猪肉的商贩都使用统一的电子秤,称重的同时就可以立即打出一张交易凭证。  在南京路农贸市场,记者看到2号摊位的肖女士正在给顾客称肉。连着三个市民称完肉后,都是直接走,没有人要交易凭证。记者采访前来买肉的徐小姐,问她是否知道猪肉质量可以追溯?徐小姐表示,自己从报纸上看到过,不过她从来没有要过追溯条码。  摊主肖女士表示,自己这里可以进行猪肉质量追溯已经好几个月了,不过从来没有人要过。她给记者拿出徐小姐购买猪肉时所打印的交易凭证。记者看到,上面除了市场名称、交易时间、摊位号、产品名称、重量、单价和金额外,还有一个追溯码。  记者登录青岛市商务局网站,在肉品流通安全信息追溯系统里,输入了该交易凭证上的追溯码“1AOBKO2234”后,经过搜索显示出“猪肉追溯信息”,上面标注着生猪产地为临沂,养殖场为临沂新程金锣肉制品有限公司养殖场,货主、屠宰场、分销商的信息也都很详细。系统中还显示,该产品查验点为华中蔬菜批发市场入市查验点,零售点的编号为2420,销售地点则为金锣南京路农贸市场(市南)。另外,徐小姐购买的这块肉,是从重45公斤的半头猪分割下来的。  肉类信息如此齐全,为何市民都不要这个交易凭证呢?在南京路农贸市场,看到记者拿着交易凭证拍照,不少买肉的顾客都觉得很新鲜,问拿到这个凭证去哪里查询?摊主肖女士表示,自己不是很清楚去哪里查,好像管理市场的地方就可以,而徐小姐则表示,是不是应该去超市的食品追溯系统机器上去查?当市民得知可在农贸市场的管理处查询,或登录青岛市商务局网站查询时,不少市民都连连摇头表示太麻烦,“我也不会上网,自己挑挑就行,上网查太费劲了。”市民胡先生说。“每天买肉的数量也不多,每买次肉,还要专门上网查询,好像不太现实。”另一位买完肉的市民说。  费用高且查询少  蔬菜企业退出追溯系统  记者了解到,向家乐福、沃尔玛、大润发等大型超市供应绿色蔬菜的寿光市燎原无公害果菜生产基地,建立了一套自己的可追溯查询系统。每份蔬菜都带有“身份证”,包括蔬菜从土地、水质的取样化验,到用药、灌溉等几乎所有信息。消费者通过短信、电话、网站等方式可查询。此外,有着36年种植历史的夏庄杠六九西红柿和黄瓜,也均在产品包装上设置了可追溯的二维码,在特定电子秤上即可查询。  然而在采访过程中记者却发现,超市里的燎原蔬菜只剩下一个绿色食品的标志,没有了可追溯条形码,而夏庄杠六九目前因生产季节的原因未上市。工作人员告诉记者,虽然夏庄杠六九有二维码,但从未在超市里设置能够查询的电子秤。“那种秤很贵,至少上千,即使在超市里设了也没有人去查。”某品牌肉制品销售人员如是说。  而寿光燎原无公害果菜生产基地方面负责青岛果菜总经销的马经理则表示,公司在今年已经从青岛市场全面撤出了可追溯查询系统。“现在只有我们公司里还有这种可以查询蔬菜生产过程的机器,超市里面已经不做了。”马经理表示,可追溯查询系统上马以后,查询相关信息的消费者并不多,考虑到费用成本的原因,公司才做此决定。记者 苑菲菲 孟艳
  • 集贸市场计量器具检测 45台秤11台不合格
    按洛阳市政府要求,该市质量技术监督局在2010年5月15日至10月31日将对洛阳市62家大型集贸市场内的近6000个摊位近8000台(件)各式计量器具进行检测校准活动。目前,活动已进行了一个多月,集贸市场上的计量器有多少不合格的?  检查发现超过1/10的秤有问题  洛阳市质量技术监督检验测试中心衡器室检定员何鸣辉介绍,12日至13日,他们首先对洛阳市区的九都路九都春天农贸市场、行署路农贸市场、武汉路重辉农贸市场、南昌路兴隆菜市场4个集贸市场内各商户正在使用的计量器进行了检测,检测结果不容乐观。  九都路九都春天农贸市场:检测72台,发现8台不合格 行署路农贸市场:检测162台,发现17台不合格 武汉路重辉农贸市场:检测123台,发现6台不合格 南昌路兴隆菜市场:检测45台,发现11台不合格。  “行署路农贸市场一卖猪肉的商户,把其台秤游砣的螺丝拧掉,市民买1000克猪肉至少要少40克。”何鸣辉说。一台计量器刻度值都是由若干个分度值组成,根据国家度量器的使用标准,如果用该计量器度量最大值时上下差3个分度值,这个计量器就是不合格的。举例说,一台最多能度量10公斤的计量器的每个分度值一般为5克,用它度量10公斤的重物时,如果上下误差超过15克,这台计量器即为不合格。  计量器上做手脚,方式五花八门  何鸣辉介绍,商贩在计量器具上做手脚主要有以下几种方式:  一、“不去皮”法:把托盘和商品一起放在电子秤上称量时,盘子的重量被加到商品的重量里。  二、不清零法:故意不清除之前称量过商品的重量数据。  三、不按真实单价输入法:报的是低价格,输入的是高价。  四、惯性冲击力法:将商品重重丢上秤盘,借助惯性冲击力使电子数值显示瞬间加大。  五、障眼法:故意把杂物挡住电子秤显示屏一个角,让市民看不到物品的实际重量。  六、“有利地形”法:首先将电子秤稍微倾斜,将商品放在托盘某个固定的位置——商品在这个位置称出的重量最大。  七、“真假李逵”法:准备两台秤,“特殊”情况下用正规秤,平时用做过手脚的秤。  通过检测后,秤会被贴上合格证  何鸣辉表示,在检测校准活动中,有关部门将对不合格的计量器采取当场没收的措施 检测合格的计量器具,会被贴上洛阳市质量技术监督检验测试中心颁发的合格证。市民在农贸市场购物时,要留心商户电子秤上有没有计量部门贴上的合格标志以及标志是否在有效期内。
  • 奥豪斯工业台秤与平台秤的维护之清洁篇(二)
    在本系列第一篇中,我们介绍了产品的IP防护等级及材质与清洁方式之间的关系,这次我们来详细聊聊IP防护等级的那些事儿。通常,我们讲的IP防护等级是指外壳防护等级(IP代码),英文是Degress of Protection Provided by Enclosure (IP Code);其国家标准号为GB/T 4208-2007 / IEC 60529: 2013。IP代码IP代码的定义及含义如下,通常有两位特征数字及附加字母(可选择)组成。本篇仅就两位特征数字的定义作一下详解。第1位特征数字表示的是防止接近危险部件和防止固体异物进入的防护等级。- 外壳通过防止人体的一部分或人手持物体接近危险部件,对人提供防护;- 外壳通过防止固体异物进入设备,对设备提供防护。第2位特征数字表示的是防止水进入的防护等级。即表示外壳防止由于进水而对设备造成有害影响的防护等级。那么,带有不同IP防护等级的工业衡器适用于哪些应用场景呢?下面,我们用一张图谱,分别从两个维度来介绍下奥豪斯工业衡器的使用建议。横轴为使用环境的情况,从左到右即为从短时潮湿到长期潮湿;纵轴为清洁程度,由下到上为从轻度冲洗到重度冲洗。从图谱中,可以看到,带有IP69K、IP68防护等级的产品适用于在长期潮湿与重度冲洗的场合,所谓的重度冲洗即使用高温、高压的水对电子秤进行冲洗。比较典型的应用是在食品加工厂的车间,地面湿滑,空气相对潮湿,由于卫生需要,电子秤每天要清洁多次,属高频次清洁(通过重度冲洗既可以在保证清洁效果的同时,提高清洁的效率)。如奥豪斯的Defender 6000系列超级防水台秤,仪表、秤体(传感器)均采用了IP69K / IP68的防护设计,非常适合在潮湿、恶劣与卫生环境中使用。Valor 2000防水秤,带有IPX8的防护设计,同样适合在长期潮湿、恶劣的环境中使用。高防护等级需要特殊的加强设计,特殊的设计需要额外的成本去支撑,产品设计要达到IP69K、IP68的防护等级需付出更多的成本。在市场上我们经常会看到产品带有IP67或IP66的防护等级。在此防护等级的产品,价格层面的优势大,虽然,产品无法做重度清洁,但维护得当,仍然可以在潮湿环境下使用。如奥豪斯的Defender 5000系列中精度不锈钢台秤,Defender 3000系列不锈钢台秤,均可满足客户对潮湿工业环境中的各种称重需求。这里您可能会问,图谱中带有IP65防护等级的产品不是也可以使用在潮湿的环境中吗?回答是肯定的:带有IP65防护等级的产品可以“短时间内”使用在潮湿的环境中。我们需要注意是,在短期潮湿、长期相对干燥的环境下,带有IP65的产品是可以使用的。如果将带有IP65防护等级的产品放在潮湿的环境中使用,很可能在短短的几个月内,甚至几周内产品就会出现问题。所以,为了生产线不宕机,一定要选择正确的产品应用在正确的场合。下面附赠给大家:奥豪斯工业衡器产品的IP防护等级一览表奥豪斯集团成立于1907年,拥有遍布世界各地的营销、研发和生产基地。通过不断为世界各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 产品介绍 | 工业秤选型,您应该知道的那些事儿
    电子秤作为一种常见称重计量器具,广泛用于各种工业应用场景。正确的选型,不仅可以满足您基本的称重需求,而且可以大大提高您的工作效率、提升操作体验。下面,小编就工业秤中的台秤选型简单做下介绍。通常讲,电子台秤的选型从以下几个维度入手:台秤选型的三个维度1 首先,选择量程和精度‒确认您所需要的精度‒精度必须和量程匹配,同一级别的秤,量程越大精度越低‒量程根据实际需要称量的最重物体选择(符合精度要求)奥豪斯可提供3kg ~ 600kg量程;显示精度从0.2g ~ 20g,检定分度从1g ~ 100g的全系列台秤2 其次,选择台面尺寸-台秤:最 大尺寸600 x 800 mm-平台秤:800 x 800 mm … … 2000 x 2000 mm … .3 最 后,根据使用环境、材质等进行选择‒钢结构材质• 碳钢、不锈钢(304、316)‒使用环境• 干式、防水(IP65… … IP68,IP69K)、防爆等作为拥有百年历史的全 球称重专家,奥豪斯全系列产品可满足不同材质、不同台面尺寸以主不同防水等级的需求。而在实际的生产生活中,工业台秤的选型除考虑以上内容外,您还需要进一步考虑以下需求点:1 方便操作,易用‒显示界面是否为全中文显示,可以按仪表指引,轻松实现对秤的常规操作‒称量精度辅助放大显示,以实现对物料的细微重量变化进行监控Defender 5000中精度电子台秤采用中文显示,带有字母-数字键及功能键,支持 x 10显示,操作简便2 是否需要常规打印或标签打印‒是否需要连接针式打印机‒是否需要连接标签打印机,如斑马打印机Defender 5000称重数据可以轻松连接SF40A针式打印机,或斑马标签打印机打印至针式打印机打印至标签打印机3 是否需要与用户系统做对接‒要求仪表有丰富的通讯接口,如RS232、RS485、以太网、模拟量、离散I/O接口等等Defender 5000带有丰富的应用模式及接口,可方便实现系统对接4 是否需要有多级用户管理‒满足不同级别用户对电子秤实现不同类型的操作,防篡改等Defender 5000具备仪表三级用户管理,数据输出符合GMP/GLP时间日期要求,称重数据可追溯一百多年来,奥豪斯始终致力于让复杂的工业和商业称重应用需求可以用更简单的方式实现。Defender系列电子台秤不断追求更卓 越的性能,并通过灵活设置的打印输出,数据输出符合GLP/GMP要求,数据存储,用户管理, 以及多种可选接口等丰富的功能, 使其广泛适用于生产,包装,库存及发运等环节。奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 广东守护食品安全出奇招 九成农贸市场实现自检
    11月22日一大早,广州市天河区天箕市场的门口停驻了一辆食品快检车,从市场买菜出来的张阿姨看到此景很是好奇。“以前没注意过,这是做什么的?”听说车上能免费检测蔬菜水果等的农药残留,张阿姨拿出刚买的一把青菜递给车上的快检人员:“给我也检检,看看安全不?”  如今,在广东,食品快检在群众中引起广泛关注,像张阿姨这样对食品快检很是好奇,也要“检一检”的群众越来越多。  今年3月,广东省政府确定全省10件民生实事,其中之一就是“全省1000家农贸市场推行食用农产品快检工作”。  随着食品快检车、食品快检室如雨后春笋般出现在全省1000家农贸市场,广东率先在全国拉开落实《食用农产品市场销售质量安全监督管理办法》的序幕。  广州:九成农贸市场实现自检  据广东省食品药品监管局食用农产品市场安全监管处钟海鹰科长介绍,今年3月1日起,国家食品药品监管总局颁布的《食用农产品市场销售质量安全监督管理办法》(以下简称《办法》)正式施行,为加强食用农产品市场销售质量安全监管提供了有力的依据和规范。  《办法》第十二条第二款,“销售者无法提供食用农产品产地证明或购货凭证、合格证明文件的,集中交易市场开办者应当进行抽样检验或快速检测 抽样检验或快速检测合格的,方可进入市场销售”的规定,更是为监管部门督促市场开办者落实主体责任、开展快速检测提供了明确的法规支持。  广州市食品药品监管局食品市场安全监管处副处长王中立表示,从近几年广州市局日常监管工作实践来看,面对数量庞大的食用农产品经营者,仅靠基层监管所有限的监管力量显然很难达到预期成效,关键还是要强化落实开办者与经营者的主体责任。  为此,广州市局利用贯彻落实《办法》这个有利时机,就进一步强化企业主体责任落实进行专题研究,明确将督促指导市场落实自检工作作为突破口,在全市范围内强力推进,并力求通过农贸市场落实企业主体责任的示范作用,带动食杂店等其他经营单位,从而促进全市食品经营行业监管效能全面提升。  但是,让农贸市场落实主体责任、加强自检工作面临着诸多困难。部分检测室环境简陋,设备陈旧 检测人员多由市场管理人员兼职,业务不熟练 基层监管部门缺乏专业技术力量,对检测工作技术指导不到位,导致检测能力和成效低下。  为此,广州市局采取购买技术服务、开展专业培训、强化行政监督等举措,逐步建立起农贸市场自检工作的保障机制,目前已基本形成包括农贸市场落实自检、各区局及基层监管所每周定期到市场进行巡回快检、市级检测机构及市局委托第三方法定机构开展监督抽检等在内的三级检测体系。  截至今年10月底,全市已有700多家农贸市场落实了自检工作,覆盖率达到90%以上,共快检食用农产品512715批次,下架销毁不合格食用农产品6617.94公斤。  今年,市区两级监管部门累计投入农贸市场自检工作经费2708.71万元。今后,受到百姓欢迎的“免费为市民检测食品”服务,将进一步扩宽服务范围、增加服务项目,力争把这件民生实事做细、做实、做到位。  佛山: 通过抽检大数据发现案件  11月22日,记者在佛山市三水区百旺城市场的楼上,见到了该市场刚刚建立的快检室。近百平米的快检室里,一面墙上装着硕大的显示屏,“三水区食品抽检管理平台”的字样清晰可见。  据佛山市食品药品监管局副局长王培星介绍,这是今年三水区局针对抽检开发的系统。市场每天、每个批次的检测结果,都可以在这个平台上查询到。每个摊位的哪些品种被抽检,结果如何,是否上传,通过这个系统一目了然。快检室内还设立了气相室,设备已经调试完毕。  而紧邻市场方快检室的是云东海街道食品快检室。此外,在市场门口还有食品快检车。  同一个市场,何以重重把关快检?  重复检验是否浪费资源?  王培星解释说,快检车是通过网上自动排班到各个市场抽检,全区只有这一台快检车,需要在全区30多个市场轮巡。和市场方的快检室一样,快检车上的检测结果也要求上传到“三水区食品抽检管理平台”。而街道快检室,既接受市民送检,也对市场方的快检室起到监督作用。  比如,对市场方的检测结果再次进行检测。在三水区食品药品监管部门的微信公众号上,可以查阅食品快检车到各个市场抽检的时间安排。同时,在全区21家农贸市场的对外公示栏、电子显示屏上,都实时上传了快检信息。  三水区食品药品监管部门主要负责人区显波介绍说,自9月1日快检工作运行以来,三水区共设置了检测点37个,通过区、镇、市场固定检测室和流动快检车的有机结合,大幅度地延伸了监管触角,全区可实现农贸市场的每个摊位平均每周抽检3次以上。  特别是“三水区食品抽检管理平台”,对全区各检测点进行智能分配快检任务,并自动生成和批量上传快检信息。此外,他们还通过购买第三方服务,对农贸市场的快检数据进行对比检验,验证其准确性,并对准确性高的市场方自检数据进行购买,促进市场自检质量的提升。  今年,三水区通过快检等方式发现案件线索,查办了一批在食品中添加食品添加剂以外的化学物质和其他可能危害人体健康物质的违法案件,吊销许可证7个,处罚12人。  王培星告诉记者,截止到11月15日,佛山市一共在130家农贸市场开展了快检工作。针对社会上食用农产品质量安全问题的传闻,积极组织舆情应对,对蒜薹、娃娃菜、白菜组织专项抽检,检测30批次,结果全部合格,并将结果向社会公开,积极回应社会关切。  肇庆: “互联网+”思维提升监管水平  11月22日,肇庆市端州区黄塘综合市场的快检室里,检验员正在忙碌着当天的抽检工作,快检结果在市场门口的显示屏上滚动着。  在肇庆,一共有40家农贸市场开展快检工作。截止到11月15日,全市共开展快检68160批次,合格率99.04%,筛查发现和销毁655批次9263.2公斤不合格食用农产品。  据肇庆市端州区食品药品监管局局长黎敏忠介绍,起初,在农贸市场搞快检工作并不顺利。对于市场开办方和食品经营者来说,要履行上述检测和追溯义务,就必须要投入一定的资金,用于购买检测仪器、试剂等。  从经济角度来说,这是一项有投入、无收益的工作,经营者是不愿意的。通过端州区局的积极宣传、组织学习,市场开办方、经营者详细了解了开展快检工作的前景后,积极性有了很大提高。事实上,农贸市场快检工作正式实施后,市场门口那个醒目的显示屏每天都及时公示当天检测结果,也让买菜的市民对市场更加信任了,促进了市场的发展。  工作至此,已经取得了一定成效。但是,时下流行的多元支付方式,激发了端州区局负责人的思考——既然日常的很多消费都可以通过网络进行电子支付,那么农贸市场可不可以呢?最终,端州区局敲定将基础条件好、管理相对规范的黄塘综合市场作为首个试点市场,建立“互联网+智慧菜市场”体系。  也就是说,给每家经营户都免费发放公平智能电子秤,经营者能够通过电子秤存储的销售数据,分析销售、利润等管理工作,实现智能化服务。消费者将购买的菜品在电子秤称重后,重量和需要支付的总金额显示在电子秤的数字屏上,并在屏幕上自动生成二维码,消费者用手机微信扫一扫,能在几秒钟内完成支付。而且,通过手机扫描二维码,消费者还能够查询肉、菜来自哪个批发市场。  黄塘综合市场负责人余炳龙说:“现在来这里买菜,凭借公平电子秤打印的带有二维码的小票作为买卖凭证,一旦出现纠纷,就可以到消费者维权站投诉,减少了很多不必要的矛盾,给市场带来了良好声誉。而市场在管理上,分析日常数据、建立信用体系等更加便捷了。”  黎敏忠表示,透明的食品安全数据摆出来,无论是消费者、市场经营者和食品安全监管部门都加入到这个大数据时代,“互联网+”的思维促使监管部门提升管理水平。  10月20日,黄塘综合市场成为肇庆市首个启动“互联网+智慧菜市场”的农贸市场当天,“不带钱去黄塘市场买菜”的照片刷爆了微信朋友圈,吸引了大量肇庆市民的点赞和转发,成了当天的大新闻
  • 铝含量超标专项整治开启 电子天平让残留量把控更精准
    p style="text-indent: 2em text-align: justify "近日,为了加强粉丝粉条和面制品质量安全监管,市场监管总局开展专项整治,严厉打击超范围、超限量使用食品添加剂违法行为。而称量衡器(如电子天平)的使用,使食品添加剂称量更方便、更精准,便于食品加工企业对添加剂残留量准确把控。br/ 谈及添加剂,也许给人们的第一印象就是食品不安全,有防腐剂成分,实则不然。我国不少添加剂都可用于添加食品,如防腐剂、抗氧化剂、甜味剂、膨松剂、增味剂、着色剂、酶制剂、营养强化剂等等,但是前提条件是要求合理添加使用,不可以添加非食用物质和超范围、超限量使用食品添加剂。br/ 由于多数食品都会用到明矾等含铝膨松剂,像馒头、包子、油条、麻花等油炸面制品,面包、蛋糕、糕点等焙烤食品,粉丝、粉条、粉皮等,所以不排除一些商家为了节省成本,提高食品口感,藐视《食品安全国家标准 食品添加剂使用标准》原料和食品添加剂的用量规定,超范围、超限量使用食品添加剂。br/ 当然,或许有些小厂家、小作坊等受到加工工艺、设备等相关条件的限制,未能严格控制食品添加剂的使用量或者备有称量器具,但是称量不精准,操作不规范都会存在食品添加剂超量使用的情况。诚然,无论哪种情况,含铝食品添加剂(铝残留量)都是相关部门整治重点。br/ 笔者了解到,在专项整治中,重点检查生产加工过程中是否对原料和食品添加剂的用量进行称量,是否超范围、超限量使用含铝食品添加剂,这时就需要考虑称量问题,不免涉及食品称量设备,也通称衡器,其主要用于工业大型物体的重量称量或者食品生产中相关物料称量的器具。br/ 就像上文提到的操作不规范,操作过失或者称量设备本身的性能限制,选用不合适等都会存在物料重量称量不精准的情况,就食品添加剂而言,不排除称量不准确,导致超量使用添加剂。随着称量设备的不断发展,以及食品生产对原料、配料和食品添加剂的用量严要求,市场上出现了不同类别的称量器具,例如电子秤、电子分析天平、机械秤、商业秤等等。br/ 面对众多的称量设备,电子分析天平是比较先进的称量器具,尤其适用于食品加工业对物料的重量高要求,一般物料能精确称量到0.0001克(0.1毫克),使称量更简单、方便、精准。加之,现代传感器技术、电子技术和计算机技术的发展与应用,不仅有效地解决工业化生产提出“快速、精准、自动”的称量要求,也消除了一定人为误差,便于食品加工企业将添加剂残留量控制在标准范围内。br/ 值得一提的是,由于电子分析天平与计算机相连接进行数据称量统计,同时设有传感器,既能满足连续化作业的需要,也可以保证物料称重精准度。另外,具有自动故障检测、自动校准、超载保护等多种功能,从而保障电子分析天平使用安全。br/ 虽说国家只规定了适量使用相关食品添加剂,但是没有明确使用专用称量设备的规定,不过为了规范食品添加剂用量,食品加工企业仍需要配备相关称量设备(如电子分析天平),满足称量精度的要求,避免因过失超范围、超限量使用食品添加剂而受到一定的处罚。/p
  • 国产大口径原油管道刮板流量计研制成功
    记者7月5日从国家管网集团获悉,该集团东部原油储运公司承担的国产大口径原油管道刮板流量计研制与应用科技项目经过1万余小时的工业试验,日前通过有关部门验收,正式投入使用。这标志着又一油气管道关键设备实现国产化,对有效降低管道建设和运营成本,更好保障国家能源安全具有重要意义。国产大口径原油管道刮板流量计。国家管网集团供图“当前,国家管网集团用于原油贸易交接计量的大口径进口流量计服役时间较长,即将面临着大批量更新。新建的原油管道重点工程对大口径原油管道刮板流量计也有着大量的采购需求。”国家管网集团东部原油储运公司生产运行部副经理张光表示,出于降低建设和运营成本等原因,自主研发国产大口径原油管道刮板流量计势在必行。2021年7月,国家管网集团启动原油管道刮板流量计研制与应用科技项目研究。项目主要研究内容包括技术规格书的编制、图纸设计和样机制造、样机功能和性能测试、工业性试验、国产化鉴定等。国家管网集团东部原油储运公司科技研发中心副经理曹旦夫介绍,通过科研攻关,项目组解决了刮板流量计凸轮设计、刮板选材、机械和电子双表头设计等关键技术难题,使自主研制的刮板流量计提高了准确度和重复性、提升了量程比,实现了双表头和双路脉冲输出功能,消除了流量计倒转或振动造成的发讯误差,满足精准计量需求。国家管网集团工作人员正在操作国产大口径原油管道刮板流量计。国家管网集团供图“该项目研发过程中,共生产制造了4台刮板流量计样机,其中两台分别在中国计量科学研究院和国家石油天然气大流量计量站进行第三方测试,另外两台分别安装在国家管网集团东部原油储运公司扬子作业区扬子站、山东省公司东营站进行工业性试验。”项目经理、国家管网集团东部原油储运公司物资供应中心经理刘波介绍。2022年6月,刮板流量计样机完成1万余小时的工业试验,试验成果运行平稳,满足工业性运行要求。该设备的成功研制,填补了国产大口径原油管道刮板流量计的空白。据了解,下一步,国家管网集团将开展国产刮板流量计的全系列化研制,为先进制造业自主创新助力。
  • 精雕细琢“小仪表” 筑基服务“大民生”!“520世界计量日”江苏各地开展形式多样的宣传活动
    今年5月20日是第25个世界计量日,全球主题是“可持续发展”,中国特别主题是“计量筑基新质生产力,促进可持续发展”。连日来,全省各地围绕主题开展形式多样的宣传活动,展示计量在支撑经济社会发展、助推产业转型升级、维护市场秩序等方面的重要作用,不断增强企业计量器具依法管理意识;积极回应人民群众关注的计量器具准确度问题,让群众有获得感、安全感。进企业,提振发展信心5月13日,江苏省“520世界计量日”活动暨第二届仪器仪表产业高质量发展会议在金湖举办。记者走进江苏杰克仪表有限公司数字化智能车间,只见硕大的屏幕上实时显示着企业生产、经营、质量控制各项数据,员工们正有条不紊地对仪器仪表“精雕细琢”。“金湖有着省级首家仪器仪表产业园,公司生产的0.05级高精度差压变送器是全省唯一一家通过江苏省计量院全性能测试合同的产品,这一成就离不开当地市场监管部门的帮扶。”江苏杰克仪表有限公司董事长闵沛介绍,去年淮安市场监管部门提出并指导金湖成立了全省首家仪器仪表产业链党委,不仅帮助公司解决了困境难题,还协助他们进行员工培训,举办仪器仪表产业政企对接活动,为他们架桥铺路、整合资源,拓宽销售渠道。5月10日,南通醋酸纤维有限公司在原材料进厂时,发现一台用于进出贸易结算的电子汽车衡质量称重不太稳定,怀疑该秤有问题。为确保称得准确,委托南通市计量所衡器室对该电子汽车衡的质量称量进行复现。接到委托后,南通市计量所衡器室工程师立刻赶赴现场进行校验。为了确保当天解决问题,两位工程师从中午一直忙到晚上8点,凭借30多年丰富的工作经验,最终找到产生误差超差的原因,并给予企业解决方案以及现场指导。此次技术服务为企业减少了每车3万元的原材料价格损失,当天便可节约10余万元的成本。助产业,推动创新发展在显示面板的多种部件中,偏振光学件的检测十分必要。由于相关测试涉及较多基础理论,导致相关测试设备一直被国外设备商垄断,完全依赖国外技术的风险也越来越高。国家平板显示产业计量测试中心(苏州)针对显示产业链上光学膜生产企业的偏振光学测试需求,集中科研力量进行技术攻关,力求突破国外技术垄断。该中心工作人员介绍,通过技术攻关和不断改进,中心研制出偏振光学薄膜测试装置,其独特设计的算法使得测量结果具有非常高的精度,达到国外同类设备技术水准,中心研制的偏振光学薄膜测试装置得到客户的一致好评,满足了产业内各项关键参数测试需求和质量控制要求,在该技术上填补了国内空白。“计量是构建一体化国家战略体系和能力的重要支撑,要在科技研发、成果转化、产业链提升等方面持续发力。”省市场监管局副局长孙沪兵表示,发展仪器仪表产业,要不断完善政策制度体系,会同相关部门出台支撑政策;加大科研投入力度,举办产业计量技术创新挑战赛,建立技术联盟,建设现代先进测量体系服务平台,推进“卡脖子”技术攻关和科技成果转化;培育优势产业集群,培育一批有国际影响力的龙头企业和有特色的“单项冠军”企业,推动建设各具特色、优势互补、链条完整的仪器仪表产业集群;加强人才培养,推动仪器仪表学科建设,建强国家计量人才实训基地,打造高层次人才队伍。护民生,保障合法权益计量是社会公正和人民福祉的重要保障。5月20日,南通市文峰城市广场人头攒动,市场监管人员和市民共同观看了电子计价秤、燃油加油机计量科普知识宣传片和崇川区农贸市场、加油站等行业诚信计量自我承诺短片。当天,崇川区市场监督管理局崇开分局上门送服务,邀请南通市计量检定测试所免费为南通农副产品物流中心新增的165台电子秤开展检定工作。港开分局指导永兴菜市场在全区率先推行电子秤“一秤一码”试点工作,为每台电子秤贴上“电子身份证”,现场发放计量宣传单,接受消费者咨询、受理计量消费投诉。“我们将围绕农贸市场、加油站、医疗服务机构等民生领域,推行‘诚信计量自我承诺示范单位建设’;试点实施电子秤‘一秤一码’管理,严厉打击短斤少两等计量违法行为。”崇川区市场监督管理局党组书记、局长高峰说。今年“世界计量日”,南京市雨花台区市场监督管理局板桥分局加强商品量计量监管,严厉打击计量违法行为。截至目前,板桥分局检查了集贸市场、加油机(气)站、餐饮业、商店(超市)、医疗机构、眼镜制配场所等六大类重点行业相关单位,执法人员随机抽查辖区内16家摊位34台电子秤,核查菜市场主办方是否按规定配备了公平秤,对监管重点海鲜水产餐饮店进行一对一检查。此外,执法人员对加油站计量管理制度执行情况进行了抽查,对每支加油枪的主板、编码器、流量计检定铅封是否完好进行检查,引导经营者自觉履行计量主体责任,依法依规诚信经营。
  • 谱标科技帮助新实验室仪器整体打包全部仪器
    新实验室常备哪些仪器合适?实验室常用仪器都有什么用途呢?下面做一些简单的解说:1 电子秤电子称是用来对货物进行称重的自动化称重设备,通过传感器的力电转换,经称重仪表处理来完成对货物的计量,适用于各种散货的计量。2 电子天平电子天平是实验室分析或质量控制所必须的仪器,具有称量大,精度高,在较差使用环境下亦可达到精密称量的要求。3 离心机通俗讲,将一些混合在一起的液体通过离心机高速旋转能迅速分离液体。该机适用于生物,化学,遗传学,医药学,医院,实验室对学业,生物体,叶绿素,蛋白核酸等液体混合物的分离。4 干燥箱干燥箱是一种常用的仪器设备,主要用来干燥样品,也可以提供实验所需的温度环境.干燥箱应用与化工,电子,铸造,汽车,食品,机械等各个行业.。5 超声波清洗器超声波清洗可以达到物件全面洁净的清洗效果,特别对深孔,盲孔,凹凸槽俄清洗是最理想的设备,不影响任何物件的材质及精度。同时在生化,物理,化学,医学,科研及大专院校的实验中可作提取,脱气,混匀,细胞粉碎之用。6 培养箱培养箱是科研实验的必需设备,主要适用于医疗卫生、医药、生物、农业、科研单位等部门作储藏菌种、生物培养之用。7 索氏提取仪索氏提取器是由提取瓶、提取管、冷凝器三部分组成的,提取管两侧分别有虹吸管和连接管,各部分连接处要严密不能漏气。该仪器应用余含油量在0.5%-60%范围内的食品、油脂、饲料、土壤等样品中。8 微波消解仪微波消解仪可对各种地表水、生活污水、工业废水中化学需氧量(CODcr)、总磷(TP)、总氮(TN)、进行快速高效消解测定。广泛用于各级环保部门,水资源管理部门及公共卫生部门对水质的鉴定与管理。9 氢气发生器氢气发生器为气相色谱FID、FPD、NPD等检测器提供高纯氢气气源,保障配套仪器的样品测定,对环境无污染。10 超纯水机超纯水机是采用预处理、反渗透技术、超纯化处理以及后级处理等方法,将水中的导电介质几乎完全去除,又将水中不离解的胶体物质、气体及有机物均去除至很低程度的水处理设备。2020年4月28日我司谱标科技有新实验室仪器可整体打包,仪器全部是2019年机,安装调试后没有用过,满足实验室常用仪器的需要,如有兴趣欢迎来洽谈!1, 六位的索氏提取仪2, 22.5L超声波清洗仪3, 高速离心机两台4, 冰箱5, 屹尧微波消解仪6, 石墨电热板7, Eyela旋转蒸发仪8, 电热鼓风干燥箱9, 恒温振荡器10, GCMS,GCFID(带空气发生器和氢气发生器)11, HPLC-DAD MS(单杠质谱)12, 瓶口分配器 三个13, ICP-OES14, Ph计15, Cary 60 UV-VIS16, EDX-LE Plus ED-XRF17, 电子天平MS204,ME20418, 纯水仪19, 移液器8把,brand,eppendorf各一套部分仪器图片展示如下:
  • 与时俱“变”,应运而生——看Valor 2000系列防水案秤如何完美解决食品称重中的那些烦恼
    如今,自我国经济发展进入新常态以来,食品工业渐渐支撑起国民经济的脊梁,其发展速度已远高于传统的重工业,成为可持续发展潜力最大的行业之一。但由于其原来基础薄弱,对环境要求苛刻,再加上行业本身具有较为灵活的特殊性,称重技术的应用并不成熟。为此,众多钻研于食品工业的衡器企业一直在寻求创新以应对棘手的应用挑战。 随着智能称重系统的渐渐兴起,作为在食品工业长期拥有丰富行业经验的奥豪斯与时俱“变”,Valor 2000系列防水案秤应运而生,充分满足了食品加工业应用的需要,其不仅符合nsf认证,并且满足食品工业的haccp体系(危害分析和关键控制点)生产卫生要求。产品特点:1. 大屏显示,清晰明亮——Valor 2000防水案秤拥有专门定制的大尺寸前后led双面显示屏,可满足任何食品工厂作业环境,显示清晰、明亮、视角大,同时满足双人作业要求;2. 快速精准,高效作业——Valor 2000防水案秤能有效抵御生产环境振动,实现快速稳定称重,0.5秒内提供准确的称重结果;3. 防水防潮,可靠耐用——Valor 2000防水案秤专门设计了用于潮湿和水冲洗环境的全新防水秤体。防水级别高达ipx8的全新秤体可以在恶劣的潮湿和水冲洗环境中长期可靠使用;4. 手感舒适,坚固可靠——创新设计的机械按键,提供良好舒适手感,同时可有效抵御尖锐物品按戳,保证按键坚固可靠不易失效。 目睹了Valor 2000防水案秤以上这些优异的特性,您可能还对它的真实性存在些许的怀疑,一定想知道在客户那里的具体使用情况如何?接下来,小编就带您走进两家著名的食品加工厂,一起来近距离探索客户们的真实感受!山东某海鲜食品加工厂 客户要求工厂内的电子秤可以经受住低温和极其潮湿的严苛环境,而不影响其分配过程中海鲜的重量。凭借在测压元件、电子元器件、所有线缆和连接器上的强劲保护,同时配备可以正常使用一周的可充电电池,Valor 2000秤体能够在冰冷潮湿的工作车间中比其他同类产品工作持续更长时间。所以客户选择并强力推荐了Valor 2000系列防水案秤,因其优质的防水设计,和少于0.5秒的快速稳定时间,极大提高了生产效率。 河南某肉食品加工厂 肉食品是食品行业中发展最迅速的品类之一。在肉食品处理厂,鸡肉食品在运往大型快餐连锁店前,会进行食品的分配及包装,工人们用刀切分鸡肉后直接放到电子秤上进行称重,在此过程中锋利的刀刃难免划伤电子秤。然而,Valor 2000秤体的电子面板键区覆有防刀伤的特质塑料,从而减少了面板被刀刃划伤的风险,同时不锈钢制的外罩也起到了强大的保护作用而且易于每日的清洗,从而大大增加了案秤的使用寿命。用过的工人们都夸赞道:“Valor 2000防水案秤比以往使用过的任何电子秤都要经久耐用!” 目前,全球各地的食品加工厂都在广泛使用奥豪斯Valor 2000系列的防水案秤,如果您正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!
  • 跨时代智能化产品,T81智能仪表全面上市
    制造业正在以前所未有的速度走向自动化和信息化,称重设备也将不再只是个简单的称重工具,而是企业生产制造、内部物流、以及质量管理的一个个核心节点。称重设备的智能化时代已经到来。奥豪斯Defender? 8000电子称重仪表(T81智能终端),帮助您迈向工业4.0 !T81上市发布会揭幕仪式4月20日、21日,奥豪斯展台观众云集,热烈关注着奥豪斯新品发布会。在奥豪斯华北区销售经理张友权和产品经理的揭幕下,奥豪斯隆重发布T81电子秤仪表。奥豪斯产品经理也为观众解说了产品相关信息,获得到场观众的踊跃咨询。智能仪表的新时代选择 奥豪斯Defender 8000称重仪表拥有强制校准功能,极大程度上增加称重的准确性。全金属外壳,延长了其使用寿命;出色的防电磁干扰性能及IP防护性能,能够在恶劣环境中使用;防水板防护达到IP65,可在潮湿和粉尘严重的场合无忧使用。那么,T81还有哪些突出的特点呢?T81智能终端秤产品特点:不受限制的功能:奥豪斯提供丰富的标准功能应用模块选择,只需换上不同的软件,T81可以满足您任何关于称重管理方面的要求。如果您有自己独有的管理要求,我们可以为您提供定制的软件。智能称重: T81不仅可设计输入窗口,将信息通过各种方式采集上来,结合重量信息,传递给后台,生成真正可以用于企业管理的数据包;还可以允许设定称重流程,确保不会因为操作失误而产生错误的数据。数据存储 : T81可以保存10万条左右的称重记录,能满足用户较长的使用需求。奥豪斯非常感谢这两天到现场的朋友们,奥豪斯将持续致力于产品创新,为大家推成出新,提供优质的产品。更多的产品信息,可致电4008-217-188进行咨询,谢谢!
  • 杭州未来科技城生物医药平台采购大批量仪器设备
    日前,中国政府采购网发布关于杭州余杭创新投资有限公司未来科技城生物医药平台仪器的公开招标公告,本次招标共有4批,预算金额5395.95万元,仪器设备数量457台/套,涉及超导核磁共振、质谱、色谱等多类别的仪器设备,其中质谱系统7套,色谱系统15套。  据悉,作为中组部和国资委批准的全国四大未来科技城之一,杭州未来科技城总面积113平方公里,北至杭长高速公路,东至杭州绕城高速公路,南至杭徽高速公路(02省道),西至南湖。高新产业研发、企业孵化,是未来科技城的重点规划功能,可大致分为四大主导产业:第一,信息产业,包括云计算、电子商务、互联网 第二,生物医药,包括创新药物、生物技术药物、生物医药材料 第三,新材料、新能源 第四,文化创意。  具体招标内容如下:  第一批:标项标项内容数量单位预算金额(万元)标项一超导核磁共振1套358标项二X射线衍射仪1套152标项三电感耦合等离子体质谱仪和微波消解仪各1套150标项四超高效液相色谱/高分辨串联质谱联用仪1套370标项五超高效液相色谱线性离子阱-串联质谱仪1套371标项六超高效液相色谱仪串联质谱仪1套260标项七三重串联四极杆气质联用仪1套130标项八气相色谱仪2套75标项九:细胞平台(一)此标项打包采购,不接受分项投标电泳垂直套装15套339.07电泳电泳13套电泳电泳1套电泳电泳1套电泳水平套装2套电泳水平套装3套电泳系统(二维)1套转移模块10套凝胶成像仪1套凝胶自动成像曝光系统1套自动蛋白纯化系统1套培养箱C0215套培养箱低氧2套生物安全柜16套安全柜(双人)1套  第二批:标项标项内容数量单位预算金额(万元)标项一Pka/logP测定仪1套41标项二串联四级杆液质联用仪1套196标项三超高效液相色谱仪串联质谱仪1套220标项四(此标项打包采购,不接受分项投标)超高效液相色谱仪1套135高效液相色谱仪1套凝胶色谱仪1套标项五(此标项打包采购,不接受分项投标)超高效液相色谱仪1套106高效液相色谱仪I1套高效液相色谱仪II1套标项六液相色谱仪(制备)1套51标项七离子色谱仪1套75.47标项八:理化(一)(此标项打包采购,不接受分项投标)红外分光光度计1套41荧光分光光度计1套紫外分光光度计1套标项九:理化(二)(此标项打包采购,不接受分项投标)全自动电位滴定仪1套192.01全自动旋光光度仪1套热失重TGA1套示差扫描DSC1套元素分析仪1套熔点仪1套容量法水分仪1套标项十:成像平台(此标项打包采购,不接受分项投标)显微镜(普通倒置)8套131.2显微镜(智能化倒置荧光)1套显微镜(正置)2套显微镜(智能化正置荧光)1套显微镜(配套显微注射)1套  第三批:标项标项内容数量单位预算金额(万元)标项一:制剂设备(一)此标项打包采购,不接受分项投标纳米粒径及电位测定仪1套127.8微米粒径测定仪1套喷雾干燥机1套标项二:制剂设备(二)此标项打包采购,不接受分项投标澄明度测定仪1套39.65片剂脆碎度仪1套微粒检测仪(不溶性)1套硬度计1套真空脱气仪1套振实密度仪1套智能崩解仪1套智能溶出仪(全套)1套标项三:制剂设备(三)此标项打包采购,不接受分项投标胶体渗透压仪1套35.26透皮扩散试验仪(立式)1套透皮扩散仪(水平)1套旋转粘度计1套单冲压片机1套全自动胶囊填充机1套标项四:制剂设备(四)(此标项打包采购,不接受分项投标)包衣机1套50.36混合制粒机1套挤出滚圆机1套流化床1套气流粉碎机1套整粒机1套标项五:细胞平台(二)此标项打包采购,不接受分项投标细胞破碎 非接触1套56核酸蛋白分光光度计1套转染仪1套标项六:细胞平台(三)此标项打包采购,不接受分项投标细胞破碎系统套装(多管球)1套32.06组织破碎系统(接触超声)1套组织匀浆器(活性单细胞)1套标项七:细胞平台(四)此标项打包采购,不接受分项投标酶标仪1套66.8酶标仪(读板)1套酶标仪(全光谱扫)1套标项八:细胞平台(五)培养低氧系统1套41.5标项九:细胞平台(六)膜片钳(细胞全自动)1套88标项十:细胞平台(七)流式细胞仪1套90标项十一:细胞平台(八)生物信号无线遥测系统1套123标项十二:细胞平台(九)血液生化仪(全自动微量)1套68标项十三:细胞平台(十)此标项打包采购,不接受分项投标血液分析仪(全自动五分类)1套81.5全自动血凝分析仪(尿液分析仪)1套标项十四热熔混合挤出设备1套42.8标项十五冷冻干燥机1套48  第四批:标项标项内容数量单位预算金额(万元)标项一:通用基础设备(一)此标项打包采购,不接受分项投标冰箱-20度10套69.6冰箱2-8度8套冰箱2-8度(药品陈列柜)6套冰箱4度2套大型4度层析柜1套标项二:通用基础设备(二)此标项打包采购,不接受分项投标冰箱超低温(双)4套58冰箱超低温(单)4套标项三:通用基础设备(三)此标项打包采购,不接受分项投标液氮罐12套19.9液氮罐24套细胞组织运输罐2套标项四:通用基础设备(四)(此标项打包采购,不接受分项投标)离心机(低温水平冷冻大容量)4套115.8离心机常温水平8套离心机低温高速2套离心机小型冷冻多孔角转5套离心机掌上宝15套标项五:通用基础设备(五)此标项打包采购,不接受分项投标离心机落地大容量1套45离心机(台式高速)1套标项六:通用基础设备(六)落地式超速冷冻离心机1套77.3标项七:通用基础设备(七)此标项打包采购,不接受分项投标电子秤1套23.15电子秤(0.1g)4套天平(千分之一)1套天平(十万分之一)2套天平(万分之一)4套pH计4套马弗炉1套标项八:通用基础设备(八)此标项打包采购,不接受分项投标电动移液器8-12道10套63.9电动吸助器10套连续分液器(电动2+手动4)6套瓶口分液器4套移液器8-12道手动13套移液器套装40套标项九:通用基础设备(九)此标项打包采购,不接受分项投标BOD1套229.84TOC/COD1套高速搅拌机1套旋转蒸发仪1套代谢笼2套IVC2套纯水仪2套电阻仪1套磁力加热搅拌机6套多功能涡旋混合器10套恒温搅拌器2套恒温振荡器1套加热板3套空气浴加热器2套空气浴摇床2套摇床水平3套摇床脱色3套摇床圆周1套水浴锅4套摇床水浴2套水浴超声波4套灭菌锅11套灭菌锅22套洗、烘干机2套制冰机2套药品综合稳定性能试验箱1套烘箱5套培养箱(霉菌、微生物、生化)5套样品储存柜(25℃)1套真空干燥箱1套精密干燥箱1套净气型储药柜7套台式超净台2套废液抽吸系统(真空泵)2套真空过滤系统(真空泵)2套真空泵2套胶片冲印机1套DAS软件1套标项十:通用基础设备(十)此标项打包采购,不接受分项投标离心机1套52.3细胞离心涂片机1套摇床1套菌落收集仪1套抑菌圈(抗生素效价)自动测量分析仪1套热源仪1套阿贝折光仪1套标项十一:通用基础(十一)此标项打包采购,不接受分项投标离心浓缩仪1套52.4高压均质机1套洗瓶机1套标项十二PCR仪 real-time1套70标项十三:分子生物平台(二)此标项打包采购,不接受分项投标PCR仪 real-time1套47.28PCR仪梯度1套标项十四:分子生物平台(三)荧光定量PCR仪1套47标项十五显微注射设备1套40
  • “中国好电镜”系列研讨会丨电子束敏感多孔材料的透射电子显微镜表征
    在材料显微结构表征方面,电子显微镜(包括SEM、FIB、TEM)有着无可比拟的优势,在科学研究,工业领域等作用日益增长。为了有效推动电子显微镜表征技术的发展,深入了解不同电子显微镜的性能特点,充分发挥仪器功效,提高广大用户的分析测试水平及解决实际使用中的难题,赛默飞将在2023年举办“中国好电镜”系列研讨会,特别邀请国内著名的专家学者和赛默飞资深电镜应用科学家与大家交流前沿电镜表征技术。 扫描/透射电子显微镜(S/TEM)可以对材料的结构进行直接成像,能在原子尺度上建立材料的性质与其局域结构之间的相关性。虽然高分辨率 TEM 和 STEM是大多数材料结构的常规表征手段,但由于电子束敏感材料(如典型的多孔材料分子筛、金属有机骨架(MOFs)、共价有机骨架(COFs)等)极端的不稳定性,以常规方式观察它们的局域结构仍然是一个极大的挑战。电子束敏感材料对电子束辐照极为敏感,在常规S/TEM成像模式下,其结构会被立即破坏变为非晶,从而无法得到其局域结构的原子排列信息。因此,如何在无损伤的条件下以高分辨率和高信噪比在实空间中对典型的电子束敏感材料的结构直接成像是TEM和STEM技术应用的难点。 本次研讨会特别邀请清华大学陈晓老师为大家从原子尺度解析多孔材料分子筛局域结构及主客体相互作用,分享其使用超低电子剂量高分辨电子显微技术在电子束敏感多孔材料结构表征中的成功案例。同时邀请赛默飞透射电镜应用科学家刘苏亚博士为大家直播演示如何在球差校正透射电子显微镜Spectra 300平台上对电子束敏感多孔材料进行超低电子剂量下原子尺度直接成像。 特 邀 报告 陈晓 清华大学化工系助理研究员 多孔材料局域结构及主客体相互作用原子尺度结构研究2023.04.20----14:30-15:30个人简介其研究方向主要是发展多孔材料低剂量原子尺度成像方法,致力于分子筛中单分子成像以及主客体相互作用的直接观测,以期从分子层面甚至是原子层面理解和探索这些化学反应过程中的分子进出机制以及客体分子与主体骨架间的作用行为。目前已发表文章50余篇,其中(共同)第一作者/通讯作者12篇,包括 Nature(3篇)、Science(1篇)、Nat. Commun.(4篇)、Adv. Mater.(1篇)、JACS(1篇)等。其中“A single molecule van der waals compass”(Nature. 592, 541(2021))的工作入选 2021 年度“中国高等学校十大科技进展”,获得第三届中国分子筛新秀奖、2022 年度清华大学优秀博士后,入选2022年度中国区“35岁以下科技创新35人”榜单。报告摘要多孔材料由于其特殊的孔道结构成为了催化、分离、医药等多个领域不可替代的原材料,分子筛作为典型的多孔材料在石油化工、煤化工裂解、异构化、芳构化及烷基化等反应中同样发挥着不可替代的作用。因此从分子层面甚至是原子层面理解和探索这些化学反应过程中的分子进出机制以及客体分子与主体骨架间的作用行为对于理解和认识这些工业化背后的微观行为尤为关键,尤其是工况服役状态下的催化剂的本征行为至关重要。该报告将以分子筛催化剂为研究对象,尤其是对工业化中应用最为广泛的ZSM-5进行了系统的研究。首先研究了在超低电子剂量的条件下研究分子筛亚纳米尺度局域结构解析和原位观察限域分子动态行为的方法,在常温甚至是高温的条件下“冷冻”分子,观测了单分子进出孔道的行为,研究限域小分子动态行为和主客体相互作用以及这类折形分子筛中单个芳烃分子的转动行为、加入氢键力作用后定量化了分子在孔道中的作用方式,在原位观测分子进出孔道的基础上解决了60年来困扰科研人员分子筛筛分比孔道稍大点的分子的微观机制。在不断对分子筛有深入理解的过程中希望能够为十万亿产值的工业化过程提供新的见解。扫描上方二维码报名线上网络研讨会Demo演示 刘苏亚 博士超低电子剂量下对电子束敏感多孔材料进行原子尺度直接成像2023.04.21----14:30-15:302019年毕业于浙江大学材料科学与工程专业,主攻非晶合金的结构表征及相关应用。同年入职赛默飞世尔科技,主要从事透射电镜的应用支持工作,拥有十余年的电镜使用经验。扫描上方二维码报名线上Demo演示
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用ApplicationsofTransmissionElectronMicroscopyinStudyofMultiscaleStructuresofPolymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科作者机构:青岛科技大学橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生.青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教.获“国家青年科学基金”资助.主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能.因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域.本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractTheperformanceandfunctionalityofpolymericmaterialsdependstronglyonthemultiscalestructures.Whilethechemicalstructureofapolymerdeterminesitsbasicpropertyandfunctionality,thestructuresatdifferentscalesinsolidstatecanchangetheperformanceandevenenablethepolymerspecialfunctions.Forexample,themodulusofhighlyorientedultrahighmolecularweightpolyethyleneisthreeordersofmagnitudehigherthanthatofitsnon-orientedcounterpart.Forthepolymorphicpoly(vinylidenefluoride),specialpiezoelectricandferroelectricfunctionscanbeendowedbycrystallizingitintheβandγcrystalmodifications.Therefore,itisofgreatsignificancetodisclosethestructureformationmechanismofpolymersatalllevels,torealizethepreciseregulationofthemandtocorrelatethemwiththeirperformance.Thisleadstothestudyofpolymerstructureatvariedscalesandtherelatedstructure-propertyrelationshipaveryimportantresearchfieldofpolymerphysics.Hereinthispaper,wewillfocusontheapplicationoftransmissionelectronmicroscopyinthestudyofdifferenthierarchstructuresofpolymers,includingabriefintroductionoftheworkingprincipleoftransmissionelectronmicroscopy,specialtechniquesusedforsamplepreparationandforinstrumentoperationtogethigh-qualityexperimentaldata,analysisoftheresultsandcorrelationofthemtodifferentstructures.关键词聚合物  透射电子显微镜  样品制备  仪器操作  结构解释KeywordsPolymer  Transmissionelectronmicroscopy  Samplepreparation  Instrumentoperation  Structureexplanation 聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性.首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能.例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5].对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能.以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90MPa和10MPa,分子链高度取向后,模量增加到90GPa,增幅为3个数量级,强度(3GPa)也增加了近300%[6].另外,有机光电材料的性能也与分子链排列方式密切相关[7~12].对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20].由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关.因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据.经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势.如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等.相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42].当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59].例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775nm)和c-轴(0.777nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54].透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60].例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献.然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术.实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察.为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜.如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积.基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰.另外,考虑到人眼的分辨本领大概为0.1mm,而光学显微镜的极限分辨率为0.2μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2μm放大到人眼能分辨的0.1mm.由此可见,要观察更细微结构需要提高显微镜的分辨率.根据瑞利准则,光学显微镜的分辨本领可表示为:Fig.1Sketchillustratingtheworkingprincipleofopticalmicroscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA=nsinα.可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26×V−−√式表示,根据该公式,100kV和200kV电压加速电子束的波长分别为0.00387nm和0.00274nm,经相对论修正后变为0.0037nm和0.00251nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发.如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objectivelens)以及投影镜(projectionlens)均由磁透镜替代了光学显微镜的玻璃透镜.另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜.例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig.2Sketchillustratingtheworkingprincipleofelectronmicroscope.Fig.3Sketchshowsdifferentelectronsgeneratedafterinteractionoftheincidentelectronswiththeatomsinthesample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1µm的水.因此,要求电镜观察用样品非常薄,在200nm以内,最好控制在30~50nm.用于高分辨成像的样品需更薄,最好为10nm左右.因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性.一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构.另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品.基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法.下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的.支撑膜的厚度一般为10nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现.如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60℃干燥后便可投入使用.根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5wt%~1.5wt%范围内.对有经验的学者而言,滤纸捞膜法更简洁.如图4(b)所示,用浓度为0.5wt%~1.5wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig.4Sketchillustratingthewaysforpreparingnitrocellulose(NC)supportingmembraneusedinelectronmicroscopyexperiments.(a)SedimentationoftheNCmembraneoncoppergrids.(b)FilterpaperfishingofcoppergridssupportedbytheNCmembrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得.如图5(a)所示,将沉浸于0.1wt%~0.2wt%PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig.5AdiagramillustratingthepreparationofPVFsupportfilmthroughdippingacleanglassslideintoitschloroformsolution(a)andthenfloatingthethinPVFlayerontothesurfaceofdistilledwater(b).2.1.3无定型碳支撑膜制备上述硝化纤维素和聚乙烯醇缩甲醛支撑膜的制备方法无需专用设备,但在后续的聚合物样品制备过程中会有困难.例如:需要高温处理的样品,高温处理过程会破坏支撑膜,即便是常温下聚合物溶液的沉积过程中,若所用溶剂为共溶剂,支撑膜也会被破坏.因此,最理想、最常用的支撑膜是无定型碳膜,它具有耐高温、耐溶剂、高模量等优点.用无定型碳固定聚合物薄膜的最简单办法是直接对要观察的聚合物样品表面真空沉积薄层碳,以确保聚合物样品在电子束下稳定.需要指出的是,由此获得的聚合物样品不适用于需进一步处理样品,原因是直接表面沉积的碳膜对聚合物的结构有固定能力,如表面沉积碳膜的取向聚合物薄膜熔融重结晶仍保持原有取向结构[64~67].实际上,制备碳支撑膜的简单方法是在硝化纤维素和聚乙烯醇缩甲醛支撑膜表面真空沉积薄层碳,以此获得支撑膜可直接使用,也可以溶解除去硝化纤维素和聚乙烯醇缩甲醛后使用.当然,无定型碳支撑膜的传统制法是在光洁的载玻片或新剥离的云母表面真空沉积无定型碳,获得连续的无定型碳膜后,用刀片将其分割成3mm×3mm的小片,通过图5(b)所示的方式漂浮转移到蒸馏水表面,然后用镊子夹住铜网自下而上捞起即可用作支撑膜.2.2聚合物样品制备2.2.1微粒材料的电镜样品制备方法用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a)悬浮法.对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b)微量喷雾法.用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集.为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上.微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c)干撒法.对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(d)空中沉积法.将浮游性好的微粒材料置于真空罩的放气阀处,通过注入大气使其猛烈飞溅而雾化,这样微粒便能缓慢、均匀地沉降到预先放在底部带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(e)硝化纤维素包埋法.将适量的微粒混合在1.5wt%的硝化纤维素溶液中,使其分散均匀,然后浇注在蒸馏水表面,当溶液向周围展开时,颗粒也随之分布于膜层内,所成膜转移到铜网上便可用于电镜观察.(f)糊状法.对处于油脂等介质中的微粒,可以取其少许糊状物轻涂于有支持膜的铜网上,用适当的溶剂逐渐清洗糊状物,将含适量糊状物的铜网干燥后用于电镜观察.2.2.2块状材料的电镜样品制备方法在加工条件-形态结构-性能关系的研究中,对块状高分子制品材料微观结构的电镜观察通常是借助超薄切片获得电子束能够穿透的薄片样品,颗粒状样品也可以通过环氧树脂包埋后进行超薄切片.对块状高分子材料表面微观结构的研究还可以采用复型法制备样品,包括一次和二次复型法.如图6(a)所示,一次复型是首先对需观察的块状样品表面进行重金属投影,然后真空蒸涂一层15~25nm厚的碳膜,再将聚丙烯酸的水溶液涂在碳膜上,待聚丙烯酸的水溶液干燥后,将聚丙烯酸膜从样品表面剥离并反向(即与样品的接触面朝上)置于蒸馏水表面,反复几次更换蒸馏水将聚丙烯酸完全溶解掉后,捞在铜网上即可用电镜观察.二次复型,如图6(b)所示,是在刻蚀处理过的块状样品表面滴上适量的丙酮溶剂,使其均匀铺开并及时将略大于样品的醋酸纤维素(AC)薄膜粘贴到样品表面,借助溶剂使AC薄膜软化,轻压AC薄膜记录样品的微细结构,待溶剂完全挥发后,将AC薄膜剥离样品,在印痕面投影重金属和蒸涂碳膜,然后用丁酮将AC薄膜完全溶除,即可得到与样品表面结构完全一致的碳复型膜.Fig.6Sketchesshowingthesingle(a)anddouble(b)duplicationprocessesforrecordingsurfacemicrostructuresofbigblockmaterialsusedinelectronmicroscopyexperiments.2.2.3高分子薄膜的直接制备方法可溶性高分子材料,特别是样品拥有量很少时,可采用稀溶液制样.其中,稀溶液结晶是获得高分子单晶的常用方法,通常是高温配置聚合物的极稀溶液(~0.1wt%),降至适合温度静置结晶,然后用铜网在溶液中捞取单晶进行观察.为高效获取聚合物单晶,人们经常采用自晶种(self-seeding)技术[68,69],即将高温配置的聚合物极稀溶液降至室温,获得大量聚合物晶体,再次加热到适当温度溶解大部分晶体后降至适合温度静置,这样借助残留晶核诱导结晶能够获得大尺寸高分子单晶.聚合物超薄膜可用溶液浇铸(solutioncastfilm)或甩膜(spincoating)等方法直接获得,即将浓度合适的聚合物稀溶液滴在液面(如甘油或磷酸),静止或快速转动基体表面(如载玻片或新剥离的云母)蒸发成膜.甩膜法是最常用制样方法,广为人知,此处不再赘述.溶液浇铸制样的过程如下,使用甘油或磷酸浴,加热至合适温度,将盛满洁净甘油或磷酸的烧杯置于高温浴中,待温度平衡后,将聚合物液滴滴在烧杯中的甘油或磷酸表面成膜,用滤纸沿烧杯壁插入甘油或磷酸中,缓慢倾斜提起聚合物膜,然后将捞取聚合物薄膜的滤纸平放在蒸馏水表面冲洗净甘油或磷酸,由此获得的聚合物薄膜转移至铜网后即可用于电镜观察.以此获得聚合物膜的厚度由溶液浓度控制,聚合物稀溶液的浓度通常在0.3wt%~0.5wt%范围内.成膜质量及聚合物的形态结构与成膜温度和溶剂性质及其挥发速度有关.确定最佳温度的最有效方法是先将甘油或磷酸浴加热到一定温度,在停止加热的缓慢冷却过程中,不断重复上述的浇注过程,直至获得理想的聚合物薄膜,此时的油浴温度即是最佳成膜温度.实验表明,全同聚丙烯(iPP)的最佳成膜条件为0.3wt%二甲苯稀溶液在110℃左右的甘油表面浇注成膜[70].高分子的取向薄膜可以通过熔体拉伸(melt-drawtechnique)[71]、摩擦成膜(frictiontransfertechnique)[72,73]或固相拉伸[74]等方法获得.如图7(a)所示,熔体拉伸法是将聚合物溶液均匀浇注在预热的玻璃板上,待溶剂挥发后,用转动的滚筒将玻璃板上的聚合物熔体拉起,图7(a)下侧是由此获得的高取向聚乙烯(PE)的电镜明场像和电子衍射图,薄膜厚度取决于溶液浓度和拉伸速率,取向程度及结构由拉伸速率和温度控制.摩擦成膜法是一定压力下将块状聚合物材料在预热的玻璃板上快速滑动(图7(b)),在玻璃表面留下高取向聚合物超薄膜,由此制得的聚合物膜可直接采用2.2.2节中描述的聚丙烯酸脱膜法从玻璃表面脱落,转移到铜网上进行电镜观察.图7(b)中给出了聚四氟乙烯(PTFE)摩擦高取向膜的电镜明场像和电子衍射图,其优点是无需溶剂,缺点是需要样品量比较大.固相拉伸方法是将聚合物溶液浇注在韧性好的聚合物载体上,待溶剂挥发后,拉伸聚合物载体至一定延伸率后,溶去载体聚合物即可得到取向的聚合物薄膜.另外,我们发展了聚丙烯酸辅助的聚合物超薄膜拉伸技术,具体操作是在聚合物超薄膜表面浇注聚丙烯酸水溶液,待聚丙烯酸水溶液凝固到能够拉伸的程度进行不同程度的拉伸.以高取向见同聚丙烯(sPP)超薄膜(50~60nm)的拉伸形变过程电镜跟踪研究为例[74,75],研究表明sPP存在多种晶型,如图8(a)和8(b)所示的晶型I和晶型Ⅲ,固相拉伸导致晶型I向晶型Ⅲ转变,高温(~100℃)退火则可实现晶型Ⅲ向晶型I的转变‍.利用我们发明的方法,成功实现了sPP超薄膜拉伸过程晶型I-Ⅲ转变的电镜跟踪研究.结果表明,拉伸50%时(图8(c))部分晶型I转变为晶型Ⅲ,进一步拉伸至100%时,晶型I和Ⅲ依然共存(图8(d)),但晶型Ⅱ的含量明显高于晶型I,在拉伸150%时,晶型I的衍射点消失(图8(e)),说明应变λ为2.5时,sPP完成晶型I-Ⅲ转变.Fig.7Sketchesillustratingthemelt-draw(a)andfriction-transfer(b)techniquesforpreparinghighlyorientedpolymerultrathinfilms,andthecorrespondingBFimagesandelectrondiffractionpatternsoftheresultantPEthinfilms.Thewhitearrowsindicatethedrawandslidingdirectionsduringfilmpreparation.Fig.8ElectrondiffractionpatternsofhighlyorientedformI(a)andformⅢ(b)syndiotacticpolypropyleneultrathinfilms(50-60nminthickness).ThebottompanelshowsitsI-Ⅲphasetransitionduringstretchingoftheultrathinfilmwiththehelpofincompletelysolidifiedpoly(acrylicacid)todifferentdrawratiosof(c)1.5,(d)2.0,and(e)2.5.Thewhitearrowindicatesthestretchingdirection.(ReprintedwithpermissionfromRef.‍[74] Copyright(2001)KluwerAcademicPublishers).2.2.4高分子薄膜热处理方法尽管上述方法制备的聚合物薄膜能够直接用于电镜实验,许多研究还需对所获膜做进一步处理,如研究结晶温度对聚合物形态结构影响时,需将聚合物薄膜在不同温度熔融重结晶.对聚合物薄膜熔融处理的一种简单、实用方法是对新剥离的云母片表面真空蒸涂薄层碳膜,将聚合物膜置于碳膜上进行相应处理,然后将云母边缘剪除,用图5(b)的方式漂膜后,转移到铜网表面用于电镜观察.图9是碳膜表面间同聚丁烯-1(sPB-1)膜60℃熔融15min30℃等温结晶几周后获得单晶的明场和电子衍射图[76].Fig.9BFelectronmicrograph(a)andcorrespondingelectrondiffractionpattern(b)ofansPB-1filmpreparedbycastingofa0.1wt%xylenesolutiononacarbon-coatedmicasurface,whichwasheat-treatedafterevaporationofthesolventat60℃for15minandthenisothermallycrystallizedat30℃forseveralweeks.(ReprintedwithpermissionfromRef.‍[76] Copyright(2001)AmericanChemicalSociety).2.2.5增加高分子薄膜衬度的方法透射电镜利用透过样品的弹性及非弹性散射电子成像,图像的衬度(又称反差)取决于试样对入射电子的散射过程.根据波动理论,入射电子波(也即电子束)经过试样后产生透过电子波和散射电子波,依靠波函数的振幅和相位传递样品的结构信息,因此能产生振幅衬度和相位衬度.在样品厚度大于10nm时,振幅衬度成像起主要作用.振幅衬度又分衍射衬度和质量厚度衬度,其中衍射衬度也称为Bragg衬度,只存在于晶体样品,是指当某晶面与入射电子束间夹角满足Bragg条件时,由于衍射现象使经过样品并通过物镜光阑的电子束强度降低而产生的反差.衍射衬度受限于聚合物晶体的辐照寿命,如图10所示,高取向PE薄膜晶体破坏前存在衍射反差(图10(a)),但晶体有序结构被电子束破坏后,全部衍射反差消失(图10(b)).质量厚度衬度也叫吸收衬度,起因是试样不同部位的质量厚度(即电子密度乘以样品厚度)差异,造成电子束通过物镜光阑到达像平面的强度不同,因此产生像的明暗差别.如图10所示,PE片晶区因质量厚度大而暗,质量厚度小的非晶区较片晶区明亮.Fig.10BFelectronmicrographsofhighlyorientedPEthinfilmbefore(a)andafter(b)destructionofthecrystals.Therectanglesdemonstratethesameplaceoftherecordedimages,whiletheellipsesillustratethedisappearanceofthediffractioncontrastafterdestructionofthecrystals.相位衬度是透过样品的散射与未散射电子波间的相位差在成像过程中的体现,当样品厚度小于10nm且被观察的结构细节小于2nm时,如高分辨电子显微成像,电子束经过样品后的振幅变化不大,相位衬度对成像起主要作用.由于肉眼对相位衬度完全不敏感,通常是将相位反差转变为振幅反差,实现肉眼辨别,这会在电镜观察技巧处详细介绍.从上述描述可以看到,电镜的成像衬度主要来自经样品后的振幅变化,聚合物材料的电子密度差异很小,致使聚合物样品的电镜明场像反差不够强,因此发展了一些增加聚合物样品衬度的方法,如染色和重金属投影等.染色是将电子密度高的重金属原子引入聚合物的某些区域,使这些区域的电子密度大幅度提高来增大衬度,在对生物大分子的电镜研究中经常使用.常用染色剂有四氧化锇(OsO4)和四氧化钌(RuO4)2种,其作用机制分别为化学反应和物理渗透.如图11(a)所示,四氧化锇染色是利用其与―C=C―双键、―OH以及―NH2基团间的化学反应,使被染色的聚合物材料中含有重金属锇,使样品的明场成像衬度明显提高.图11(b)是经四氧化锇染色的高抗冲聚苯乙烯(HIPS)样品的电镜明场像,基于四氧化锇与HIPS中接枝丁二烯链的反应,使重金属饿键接到丁二烯链上,因而清晰地区分了聚苯乙烯基体、分散的聚丁二烯微区以及聚丁二烯微区中的聚苯乙烯微区,呈现了蜂窝状的相中相结构,说分散在聚苯乙烯基体中的聚丁二烯微区中同样包含了聚苯乙烯更小微区.四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透能力,使不同聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高.图11(c)和11(d)给出了iPP超薄膜四氧化钌染色前(图11(c))、后(图11(d))的电镜明场像[70],因为四氧化钌渗入iPP非晶区的能力强,导致染色前后iPP片晶结构的衬度反转,即染色前的iPP黑色片晶,染色后变为白色线条.Fig.11(a)thereactionbetween―C=C―doublebondsandOsO4.(b)AnelectronmicrographofHIPSthinfilmstainedbyOsO4,whichshowsthehoneycombstructuresofpolybutadienedomainsdispersedinthepolystyrenematrix.TheBFelectronmicrographsofiPPthinfilmbefore(c)andafter(d)RuO4staining.(Part(c)isreprintedwithpermissionfromRef.‍[70] Copyright(2013)ElsevierScienceLtd.).重金属投影在复型法制备聚合物样品时必须使用(2.2.2节),目的也是增加反差.其原理如图12(a)所示,利用样品的表面起伏,通过小角度(15°~30°)溅射铂金(Pt)或金(Au),使样品凸起部位的电子密度显著增加,而处于凹陷部位的阴影区电子密度保持不变,以此突显样品的微细结构.图12(b)和12(c)分别是Pt投影和非投影间同丙烯-丁烯-1共聚物(sPPBu)单晶的电镜明场像[77,78],显然Pt投影的图像更清晰,除平躺(flat-on)单晶外,还展示了一些侧立(edge-on)微细片晶结构.Fig.12AsketchshowsthePtorAushadowingprocess(a)andtheBFelectronmicrographsofsPPBusinglecrystalswith(b)andwithout(c)Ptshadowing(Part(c)isreprintedwithpermissionfromRef.‍[77] Copyright(2002)AmericanChemicalSociety).3电镜观察技术电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.本节将简要介绍电镜观察聚合物样品的一些常用技巧.3.1明暗场观察与成像电镜能够结合明场像、暗场像和电子衍射结果诠释聚合物结构.其中,电子衍射与X-射线衍射原理完全一致,只是所用的电子束光源波长(100kV加速电压时为0.0037nm,200kV加速电压时为0.00251nm)比X-射线的波长(0.154nm)短很多,感兴趣的读者可参阅该系列专辑的X-射线衍射一文[79].明、暗场像利用不同的透过光成像获取,如图13(a)所示,直接利用透过样品的弹性和非弹性散射电子成像即可获得明场像.暗场像只能通过选取满足某晶面衍射的特定光成像而获得,常用的操作方法如下:在衍射模式下,获取样品的电子衍射图,确定想了解的某个晶面结构信息后,加入物镜光阑,通过偏移物镜光阑到只能观察到感兴趣的晶面衍射点时(图13(b)),退出衍射光阑,即可获得相应晶面的暗场像.在保持物镜光阑居中的情况下,也可以通过倾斜入射电子束,使感兴趣晶面的衍射点呈现在物镜光阑的中心位置(图13(c)),退出衍射光阑获得相应晶面的暗场像.对设有特殊物镜光阑的电镜设备,通过狭缝物镜光阑选择拟观察的晶面衍射点或衍射环(图13(d)),能够在不倾斜入射光和偏置物镜光阑的前提下直接获得暗场像.无论采取何种方式暗场观察,设置成像条件后,移动样品寻找到理想的位置迅速取图便可得到高质量的暗场像.Fig.13SketchesshowingBFimaging(a)andDFimagingbyoffsetobjectiveaperture(b),tiltingofincidentlight(c),oruseofspecialobjectiveaperture(d).3.2防止样品抖动及破碎电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.避免样品破碎的办法是使用支撑膜,2.1节描述的所有支撑膜对防止聚合物超薄膜破碎均有很好效果,但防止样品抖动最好采用高模量无定型碳支撑膜.在无支撑膜的条件下,选择大目数四方孔铜网制备样品,观察铜网角落部位的样品区域也能够一定程度的降低抖动和避免破碎.3.3邻位聚焦技术聚合物晶体在电子束下的存活寿命非常短,通常只有几秒钟,也给记录聚合物晶态样品的真实形态结构带来困难,解决这一问题的常用方法是低剂量电子束下观察.正常条件下观察时,人们发展了邻位聚焦技术.操作程序是先在低放大倍数、低光照剂量下选择适合观察的样品区域,然后在所需放大倍率、正常光照条件进行聚焦,尽管聚焦过程破坏了样品的原有结构(图14(a)),将样品移动到邻近的位置,并迅速拍摄图像即可清晰记录样品的固有结构,如图14(b)所示.图14(c)给出了取向聚乙烯薄膜横跨聚焦区及其临近区域的电子显微镜暗场像,由于晶体结构在聚焦过程被破坏,聚焦区未显示任何结构信息,邻近区域却很好展示了平行排列的取向片晶结构.Fig.14BFelectronmicrographsofasolutioncastiPPthinfilmrecordedattheareausedforfocusing(a)andanadjacentfresharea(b).(c)ADFelectronmicrographofamelt-drawnPEorientedthinfilmtakenattheboundarybetweentheareausedforfocusingandanadjacentfresharea.3.4欠焦成像技术因聚合物样品的成像衬度很低,发展了染色和重金属投影增加聚合物样品衬度的方法,但2种方法均有存在一些问题.例如:重金属投影需要相应设备,且使样品制备过程繁琐,而染色剂对人体有害,因此建议慎用.实际上,在电镜观察聚合物样品时,也有提高聚合物样品成像衬度的技巧,也就是此处要阐述的欠焦成像技术.2.2.5节提到,电子显微像的衬度包括振幅衬度和相位衬度,但肉眼对相位衬度不敏感,需要将相位反差转变为振幅反差才能实现肉眼辨别,这种由相位变化引起的振幅反差称为“位相反差”(简称相差),在电镜观察过程中,相差可通过欠焦成像技术实现.图15给出了取向PE薄膜同一位置在不同聚焦程度下拍摄的明场电子显微像.由图15可以看到,正焦条件拍摄的图像(图15(a))最不清晰,离焦(欠焦:图15(b),过焦:图15(c))状态成像的反差反而好,且适当欠焦时图像(图15(b))清晰度最好.造成这一现象的原因是离焦状态在样品质量密度突变区域的周围会出现费涅耳环(Fresnelring),如图15的右下角样品空缺处所示,费涅耳环在欠焦和过焦时分别以亮、暗线勾画区域边缘,使图像更加清晰,因此欠焦成像提高反差的技术被有效利用.采用欠焦而非过焦成像的原因是:(1)基于人眼睛的马赫效应,即生理上的反差抑制习惯,费涅耳亮环可使图像更清晰;(2)过焦成像可能会产生假象,如图16所示.图16实际上给出是微纤样品不同聚焦程度的明场电子显微像,很明显,正焦时(图16(a))结构相对模糊,欠焦时(图16(b))结构变得清晰,虽然过焦时(图16(c))结构也很清晰,但因过焦量太大使真实的微纤结构变为管状结构,造成失真.在欠焦成像操作过程中,首先通过电镜的聚焦辅助功能(如摇摆聚焦功能)获得正交状态,然后逆时针旋转聚焦钮至所需的欠焦状态,并在此状态下进行图像记录.最佳欠焦程度取决于样品的结构尺寸,根据像传递理论,离焦量ρz产生的相差结构约为:d~(2λρz)1/2,也就是说,最佳欠焦量为ρz~d2/2λ,其中:d为样品结构空间距离,λ为电子束波长,由此确定的欠焦量通常为十几个微米.实际操作过程中,可选择合适的参照目标进行聚焦,如图15中的样品空白边缘和图16中箭头所指的杂质等,所选参照目标最清晰时即为最佳欠焦状态.Fig.15BFelectronmicrographsofahighlyorientedPEthinfilmtakeninthesameareaunder(a)focus,(b)defocus,and(c)overfocusconditions.Fig.16BFelectronmicrographsofmicrofibrilstakeninthesameareaasdemonstratedbythearrowsunder(a)focus,(b)defocus,and(c)overfocusconditions.透射电子显微镜不仅能通过明场和暗场像直观展示聚合物材料的微观结构,而且能结合电子衍射关联微细结构与相应的晶体结构与取向行为等.这一节扼要阐述利用透射电子显微镜能够获得的一些结构信息.4.1晶型分析大部分聚合物存在多种晶型,不同类型晶体具有不同的结晶习性,产生不同的形态结构,从而结合明场观察到的形态结构和电子衍射确定的晶体类型被广泛用于不同晶体的结晶行为研究.另外,聚合物的不同晶型间可以发生相转变,有时仅靠明场像无法获取晶体种类的信息.以iPB-1为例[80~91],它存在六方晶型I和I' ,四方晶型Ⅱ和正交晶型Ⅲ,正常情况下结晶首先形成亚稳态晶型Ⅱ,然后室温自发、缓慢地固相转变为晶型I.由于固相转变过程不改变形态结构,电镜明场像在任何时间均给出相似的微观结构,然而电子衍射跟踪不同时刻样品的晶体结构表明,晶型Ⅱ-I固相转变在不断发生.对95℃等温结晶iPB样品的电子衍射研究发现,其晶型Ⅱ-I固相转变可持续近3个月,因此能够获得晶型Ⅱ和I共存的电子衍射图(参见文献[89]的图2(a)).通过对相应电子衍射图的分析发现,转变前后晶型Ⅱ与晶型I拥有相同的(110)衍射方向,说明iPB的相转变沿晶型Ⅱ的(110)晶面发生,从而分子水平揭示了晶型Ⅱ-I转变机理,也为晶型Ⅱ单晶转变晶型I孪晶提供了合理解释.另外,明场观察到的晶型Ⅱ板条状结构和超薄膜高温结晶直接获得的晶型I的六边形结构很好说明了iPB-1晶型Ⅱ和I因晶格对称性不同造成的不同结晶习性.4.2晶体暴露面分析在获取聚合物形态和晶体结构信息的基础上,如需知道聚合物晶体最快生长轴以及聚合物间的特殊相互作用面,还要确定聚合物晶态薄膜的暴露面,即薄膜样品表面对应的晶面.如图17所示,以正交晶型为例,如果所有晶体的结晶学b-和c-轴在膜平面内,a-轴则垂直于bc面,在这种情况下,晶态聚合物薄膜具有固定暴露面,即为(100)晶面(图17(a)).假如所有晶体的结晶学b-或c-轴垂直于膜平面,则可确定其(010)或(001)为固定暴露面(见图17(b)和17(c)).由于聚合物薄膜通常由大量微晶聚集构成,存在每个微晶的结晶学a-、b-和c-轴指向不同的现象.例如:聚合物纤维,其分子链(即结晶学c-轴)沿纤维轴高度取向,但结晶学a-或b-轴在垂直于c-轴的平面任意取向,聚合物薄膜的类似结构(图17(d))说明其没有固定暴露面.聚合物晶态薄膜的暴露面可通过对相应电子衍射结果分析来获取[88],具体做法如图18所示,在相应的电子衍射图中,任意选取2个不应出现在同一方向的衍射点,用2个衍射点的米勒指数(Millerindex),即h、k和l,构成一个三维矩阵,矩阵的第一行为h、k和l,第二、三行分别为两个衍射点对应的h、k和l值,用h1、k1、l1和h2、k2、l2表示,移除该矩阵的第一行(即h、k、l行)以及h(或k或l)对应的列后产生3个独立的二维矩阵,这些二维矩阵的绝对值约化后便是暴露面的h(或k或l)值,即暴露面米勒指数.以溶液浇注iPP薄膜为例,图19是其明场和电子衍射图[92],从明场图可观察到支化的片晶结构,而电子衍射图出现了(001)、(101)和(200)衍射点,这3个衍射点不会出现在同一方向,均可用来确定其晶体的暴露面,根据图18描述的过程,选择任意2个衍射点都会得到暴露面为(010)晶面,也就是说其a-和c-轴在膜平面内,b-轴垂直于膜平面.考虑到聚合物超薄膜结晶,结晶学c-轴和其最快生长轴通常在膜平面内,由此得出iPP最快生长轴为a-轴的结论.对具有诱导附生结晶能力的聚合物体系,根据暴露面分析结果,能够确定2种聚合物的实际接触面[93,94].如iPP与全同聚苯乙烯(iPS)附生结晶的有利相互作用面分别是iPP的(100)和iPS的(110)晶面[95].Fig.17Diagramillustraxposurelatticeplaneofpolymercrystalsinthinfilmsample.Fig.18Diagramillustratingthedeterminationprocessofexposureplaneofpolymerthinfilms.Fig.19Aphasecontrastbrightfieldtransmissionelectronmicrograph(a),itscorrespondingelectrondiffractionpattern(b)andasketchofitwithindexingofthereflectionspots(c)ofasolutioncastiPPthinfilm(ReprintedwithpermissionfromRef.‍[92] Copyright(2013)ChineseChemicalSociety).4.3晶体取向分析电子衍射能够提供聚合物晶体取向的准确信息[95~99].图20(a)和20(b)分别给出了表面蒸涂碳膜的熔体拉伸PE膜及其150℃熔融15min后128℃重结晶2h的明场像和电子衍射图,从明场像可以看到热处理前后并未改变平行排列的、高度取向的片晶结构,热处理前后的电子衍射图却非常不同,用4.2节描述确定晶体暴露面的方法分析图20(a)和20(b)中的衍射图发现,热处理前,选择图20(a)中所标注的不同衍射点会得出的不同结论.例如:(002)和(110)衍射点确定的暴露面为(110),(002)和(200)衍射点确定的暴露面为(100),(002)和(200)衍射点给出的暴露面是(010)晶面.然而,热处理后,选择图20(b)中任何2个标定的衍射点得到的暴露面均为(100)晶面.上述结果似乎难以理解,但实际上它准确给出了热处理前后PE熔体拉伸膜的不同晶体取向结构.热处理前的衍射结果说明熔体拉伸制备的PE膜为单轴取向结构(又称为纤维取向结构),分子链(c-轴)沿拉伸方向取向,但a-轴和b-轴在垂直于c-轴的平面内无规取向.热处理后的衍射结果证明表面蒸涂碳膜固定了熔体拉伸PE膜的原有分子链取向,但熔融重结晶过程中其最快生长轴(b-轴)落于膜平面内,从而产生c-轴和b-轴均在膜平面内且c-轴沿拉伸方向排列的双轴取向结构.Fig.20ElectronmicrographsandcorrespondingelectrondiffractionpatternsofvacuumcarboncoatedPEmelt-drawnfilms(a)aspreparedand(b)aftermeltingat150℃for15minandthenrecrystallizedat128℃for2h.Arrowsindicatethedrawingdirectionduringfilmpreparation.为精准确定晶体取向结构,有时需要通过单轴或双轴倾斜样品获取转轴电子衍射图[100,101].样品倾转首先需要确定绕那个轴旋转,并使旋转轴沿样品杆轴取向.例如:欲绕c-轴旋转,需将c-轴调整到与样品杆轴平行状态,然后单轴旋转样品杆即可改变a-和b-轴的取向,使不同晶面满足Bragg衍射条件,从而产生衍射,如b-轴在膜平面时出现相应的(0kl),而a-轴在膜平面时出现相应的(h0l).同理,双轴倾转需要先经单轴倾斜调整好垂直于样品杆轴另一个方向的旋转轴后才能进行另一个方向倾转,使要观察的晶面满足Bragg衍射条件.由于大尺寸聚合物单晶不易获得,且晶体在电子束轰击稳定性极差,获取聚合物转轴电子衍射比较困难,特别是双轴倾转,需要很强的操作技巧.4.4晶体缺陷分析图21给出了sPP和sPB-1不同晶型的晶胞结构示意图,可以看出sPP晶型I属于面心晶胞结构(图21(a)),而sPB-1晶型I为体心晶胞结构(图21(d)),sPP晶型Ⅱ具有与sPB-1晶型I类似的体心晶胞结构(图21(b)),sPB-1晶型I' 则采取与sPP晶型I类似的堆砌方式(图21(c)).由于晶体中sPP与sPB-1的分子链均呈反式-反式-旁式-旁式(ttgg)螺旋链构象结构,sPP和sPB-1能够共晶,即sPP和sPB-1分子链均可排入对方的晶胞中.因此,我们对sPP、sPB-1和及其共聚物sPPBu的单晶结构进行了研究.结果发现,如图22所示,纯sPP(图22(a))[77]和sPB-1(图22(f))[76,102]单晶均为其相应的晶型I结构.sPPBu共聚物的单晶结构取决于2个组分的共聚比[77,78],含少量丁烯-1组分(sPPBu具有与sPP完全相同的堆砌结构(图22(b)),当丁烯-1组分含量为9.9mol%时,sPPBu单晶的衍射与sPP单晶类似(图22(c)),但在h20衍射层(相对于sPB-1为h10层)出现衍射条带,该衍射条带在丁烯-1组分含量为34.7mol%时更加明显(图22(d)),在丁烯-1组分超过90mol%后,sPPBu采取与sPB-1相同的结晶方式堆砌(图22(e)).衍射条带的出现说明sPPBu单晶有结构缺陷[103],根据其出现位置(sPP的h20衍射层或sPB-1的h10层)能够明确缺陷的存在形式和给出合理解释[104].如图23所示,图中分别用A、B、C、D描绘了sPP的晶型I、Ⅱ以及sPBu的晶型I' 和I晶胞结构,富含丙烯的sPPBu结晶倾向于形成sPP的晶型I结构(A),但其某一排分子链沿b-轴方向的b/4位移后产生sPP的晶型Ⅱ结构(B)或sPBu的晶型I结构(C).对富含丁烯的sPPBu而言,易于形成sPBu的晶型I结构(C),此时的b-轴方向b/2位移则导致sPP的晶型I结构(A)或sPBu的晶型I' 结构(D)的产生.在同一个单晶中上述不同晶体结构类型的存在表现为单晶的缺陷,使其电子衍射出现条带结构.Fig.21ChainpackingmodelsofformIsPP(a),formⅡsPP(b),formI' sPB-1(c)andformIsPB-1(d).Inpart(c),thesymbolR/LindicatestheexistenceofstructuredisorderinformI' sPB-1withright(R)andleft(L)handedhelices,thatis,therightandlefthandedchainscanbefoundwiththesameprobabilityineachsiteofunitcell.(ReprintedwithpermissionfromRef.[78] Copyright(2010)AmericanChemicalSociety).Fig.22ElectrondiffractionpatternsofsPPBusinglecrystalscontaining0mol%(a),2.6mol%(b),9.9mol%(c),34.7mol%(d),98.6mol%(e)and100mol%1-butenecomponent(f)(ReprintedwithpermissionfromRefs.[77,78] Copyright(2002,2010)AmericanChemicalSociety).Fig.23sPPBuchainpackingmodelsasafunctionofbutane-1concentration.TheunitcellsoftheB-centeredformIofsPP(A),theC-centeredisochiralformⅡofsPP(B),theC-centeredisochiralformIofsPB-1(C)andB-centeredformI' ofsPB-1(D)areindicated.Forpropene-richcopolymersb/4shiftdefectsproducelocalarrangementofchainsasintheC-centeredformⅡofsPP(B)orformIsPB-1(C)inaprevailingmodeofpackingoftheB-centeredformIofsPP(A).Athighbutenecontent,b/4shiftdefectsproducelocalarrangementofchainsasintheB-centeredformI(A)ofsPPandformI' ofsPB-1(D)inaprevailingmodeofpackingoftheC-centeredformIofsPB-1(C)andformⅡofsPP(B).(ReprintedwithpermissionfromRef.‍[78] Copyright(2010)AmericanChemicalSociety).5总结与展望透射电子显微镜集明、暗场观察以及电子衍射技术于一体,能直观展示样品的微细结构与形态,并准确关联晶态结构和晶体取向,是材料微观结构表征不可或缺的仪器设备.由于电子束的弱穿透能力,只能观察厚度在几十纳米的样品,聚合物超薄膜因电子束轰击下不稳定和非常低的结构反差给电镜研究聚合物样品带来很大困难.因此,经长期的研究探索与发展,开发了系列电镜用于聚合物结构研究的技术手段,包括制样方法、观察技巧等.针对聚合物超薄膜电子束轰击抖动和破碎等不稳定问题,人们发掘了用硝化纤维素、聚乙烯醇缩甲醛和真空蒸涂无定型碳等薄膜支撑样品的方法,特别是在样品表面直接真空沉积的高模量无定型碳膜能够确保样品不抖动、不破碎,但该方法不能用于需进一步处理样品的固定.当然,在不使用支撑膜的条件下,采用大目数四方孔铜网制备样品,选择铜网角落部位的样品观察,对降低样品抖动和避免样品破碎也有较好效果.针对电子束轰击聚合物超薄膜真实结构破坏问题,如聚合物晶体在电子束下的寿命仅有几秒钟,常用的解决方法是低剂量电子束下观察.在正常条件观察时,人们巧妙地发展了邻位聚焦技巧.即在需观察部位的邻近处完成聚焦、亮度和成像时间等的调整,然后移至观察部位迅速记录图像.针对聚合物材料非常低的结构反差,人们在制样方面发明了钌酸和锇酸染色以及铂金或金重金属投影等提高聚合物样品衬度的办法,在观察技巧方面发展了欠焦成像技术.上述各种特殊技术的发展,使电镜在聚合物微观结构研究中得到了广泛应用.电镜除能直观展示聚合物的微细结构外,结合暗场和电子衍射技术能够准确关联相关微观结构中晶体结构、晶体取向以及晶体缺陷存在方式等,已经对高分子科学领域的发展做出了重要贡献,如聚乙烯单晶的电镜研究结果为高分子结晶折叠链模型的建立提供了坚实依据,推动了高分子结晶理论的快速发展.基于电镜在聚合物微观结构研究中的重要作用,电镜仪器本身也得到了不断发展,如超低温样品室和低剂量辐照模式的使用为聚合物材料的高分辨成像提供了条件[105,106],样品倾转和三维结构重构技术的结合拓展了电镜在聚合物三维微观结构研究方面的应用[107,108].聚合物电子显微术在其本身低辐照损伤、高精度原位观察以及与其他技术联用(如光谱技术)等方面的进一步发展无疑会对高分子科学领域的快速发展做出更大的贡献.作者简介:闫寿科,男,1963年生.1996年中国科学院长春应用化学研究所获得博士学位.1997~2001年德国多特蒙德大学从事科研工作.2001~2008年中国科学院化学研究所,研究员.2008年至今北京化工大学,教授.2018年至今青岛科技大学,教授.曾获“中国科学院百人计划”、“国家杰出青年科学基金”资助.主要研究方向是高分子材料多层次结构和结构调控及其结构-性能关系.参考文献1LiuY,LiC,RenZ,YanS,BryceMR.NatRevMater,2018,3(4):18020.doi:10.1038/natrevmats.2018.202MemonWA,LiJ,FangQ,RenZ,YanS,SunX.JPhysChemB,2019,123(33):7233-7239.doi:10.1021/acs.jpcb.9b035223WangJ,LiuY,HuaL,WangT,DongH,LiH,SunX,RenZ,YanS.ACSApplPolymMater,2021,3(4):2098-2108.doi:10.1021/acsapm.1c001444Deng,LF,ZhangXX,ZhouD,TangJH,LeiJ,LiJF,LiZM.ChineseJPolymSci,2020,38(7):715-729.doi:10.1007/s10118-020-2397-75HuaLei(华磊),YanShouke(闫寿科),RenZhongjie(任忠杰).ActaPolymericaSinica(高分子学报),2020,51(5):457-468.doi:10.11777/j.issn1000-3304.2020.192246SmithP,LemstraPJ.MaterSci,1980,15(2):505-514.doi:10.1007/bf023968027LovingerAJ.Science,1983,220(4602):1115-1121.doi:10.1126/science.220.4602.11158DongH,LiH,WangE,YanS,ZhangJ,YangC,TakahashiI,NakashimaH,TorimitsuK,HuW.JPhysChemB,2009,113(13):4176-4180.doi:10.1021/jp811374h9DongH,LiH,WangE,WeiZ,XuW,HuW,YanS.Langmuir,2008,24(23):13241-13244.doi:10.1021/la802609410LiuL,RenZ,XiaoC,DongD,YanS,HuW,WangZ.OrgElectron,2016,35:186-192.doi:10.1016/j.orgel.2016.05.01711LiuL,RenZ,XiaoC,HeB,DongH,YanS,HuW,WangZ.ChemCommun,2016,52(27):4902-4905.doi:10.1039/c6cc01148a12SunD,LiY,RenZ,BryceMR,LiH,YanS.ChemSci,2014,5(8):3240-3245.doi:10.1039/c4sc01068j13ZhaoC,HongY,ChuX,DongY,HuZ,SunX,YanS.MaterTodayEnergy,2021,20(2):100678.doi:10.1016/j.mtener.2021.10067814WangM,WangS,HuJ,LiH,RenZ,SunX,WangH,YanS.Macromolecules,2020,53(14):5971-5979.doi:10.1021/acs.macromol.0c0110615LiuJ,ZhaoQ,DongY,SunX,HuZ,DongH,HuW,YanS.ACSApplMaterInterfaces,2020:12(26):29818-29825.doi:10.1021/acsami.0c0680916TangZ,YangS,WangH,SunX,RenZ,LiH,YanS.Polymer,2020,194(24):122409.doi:10.1016/j.polymer.2020.12240917SongT,WangS,WangH,SunX,LiH,YanS.IndEngChemRes,2020,59(8):3438-3445.doi:10.1021/acs.iecr.9b0643218MiC,GaoN,LiH,LiuJ,SunX,YanS.ACSApplPolymMater,2019,1(8):1971-1978.doi:10.1021/acsapm.9b0006019MiC,RenZ,LiH,YanS,SunX.IndEngChemRes,2019,58(17):7389-7396.doi:10.1021/acs.iecr.8b0554520ElyashevichGK,KuryndinIS,DmitrievIY,LavrentyevVK,SaprykinaNN,BukošekV.ChineseJPolymSci,2019,37(12):1283-1289.doi:10.1007/s10118-019-2284-221MenY,RiegerJ,HomeyerJ.Macromolecules,2004,37(25):9481-9488.doi:10.1021/ma048274k22DuanY,ZhangJ,ShenD,YanS.Macromolecules,2003,36(13):4874-4879.doi:10.1021/ma034008f23ZhangY,LuY,DuanY,ZhangJ,YanS,ShenD.JPolymSciPhysEd,2004,42(24):4440-4447.doi:10.1002/polb.2030624ZhangJ,DuanY,ShenD,YanS,NodaI,OzakiY.Macromolecules,2004,37(9):3292-3298.doi:10.1021/ma049910h25SunX,PiF,ZhangJ,TakahashiI,Wang,F,YanS,OzakiY.JPhysChemB,2011,115(9):1950-1957.doi:10.1021/jp110003m26HuJ,HanL,ZhangT,DuanY,ZhangJ.ChineseJPolymSci,2019,37(3):253-257.doi:10.1007/s10118-019-2184-527LiH,HouL,WuP.ChineseJPolymSci,2021,39(8):975-983.doi:10.1007/s10118-021-2571-628LiH,RussellT,WangD.ChineseJPolymSci,2021,39(6):651-658.doi:10.1007/s10118-021-2567-229WangY,JiangZ,FuL,LuY,MenY.Macromolecules,2013,46(19):7874-7879.doi:10.1021/ma401326g30LinY,LiX,MengL,ChenX,LvF,ZhangQ,ZhangR,LiL.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025531WanR,SunX,RenZ,LiH,YanS.Materials,2020,13(24):5655.doi:10.3390/ma1324565532SunX,GuoL,SatoH,OzakiY,YanS,TakahashiI.Polymer,2011,52(17):3865-3870.doi:10.1016/j.polymer.2011.06.02433SuR,WangK,ZhaoP,ZhangQ,DuR,FuQ,LiL,LiL.Polymer,2007,48(15):4529-4536.doi:10.1016/j.polymer.2007.06.00134ZhuH,LvY,ShiD,LiYG,MiaoWJ,WangZB.ChineseJPolymSci,2020,38(9):1015-1024.doi:10.1007/s10118-020-2427-535KangXW,LiuD,ZhangP,KangM,ChenF,YuanQX,ZhaoXL,SongYZ,SongLX.ChineseJPolymSci,2020,38(9):1006-1014.doi:10.1007/s10118-020-2402-136ChenP,ZhaoH,XiaZ,ZhangQ,WangD,MengL,ChenW.ChineseJPolymSci,2021,39(1):102-112.doi:10.1007/s10118-020-2458-y37AleksandrovAI,AleksandrovIA,ShevchenkoVG,OzerinAN.ChineseJPolymSci,2021,39(5):601-609.doi:10.1007/s10118-021-2511-538GaoM,RenZ,YanS,SunJ,ChenX.JPhysChemB,2012,116(32):9832-9837.doi:10.1021/jp304137839LiL,ZhangS,XueM,SunX,RenZ,LiH,HuangQ,YanS.Langmuir,2019,35(34):11167-11174.doi:10.1021/acs.langmuir.9b0181440HuJ,XinR,HouC,YanS,LiuJ.ChineseJPolymSci,2019,37(7):693-699.doi:10.1007/s10118-019-2226-z41SunX,LiH,ZhangX,WangD,SchultzJM,YanS.Macromolecules,2010,43(1):561-564.doi:10.1021/ma901978442StockerW,SchumacherM,GraffS,LangJ,WittmannJC,LovingerAJ,LotzB.Macromolecules,1994,27(23):6948-6955.doi:10.1021/ma00101a03643JiangS,DuanY,LiL,YanD,YanS.Polymer,2004,45(18):6365-6374.doi:http://202.98.16.49/handle/322003/1510944LiH,LiuD,BuX,ZhouZ,RenZ,SunX,ReiterR,YanS,ReiterG.Macromolecules,2020,53(1):346-354.doi:10.1021/acs.macromol.9b0202145LiL,HuJ,LiY,HuangQ,SunX,YanS.Macromolecules,2020,53(5):1745-1751.doi:10.1021/acs.macromol.9b0259846WangH,SchultzJM,YanS.Polymer,2007,48(12):3530-3539.doi:10.1016/j.polymer.2007.03.07947LiL,XinR,LiH,SunX,RenZ,HuangQ,YanS.Macromolecules,2020,53(19):8487-8493.doi:10.1021/acs.macromol.0c0145648HouC,WanR,SunX,RenZ,LiH,YanS.PolymCryst,2020,3(5):e10157.doi:10.1002/pcr2.1015749LiH,SunX,YanS,SchultzJM.Macromolecules,2008,41(13):5062-5064.doi:10.1021/ma702725g50ZhangLL,MiaoWK,RenLJ,YanYK,WangW.ChineseJPolymSci,2021,39(6):716-724.doi:10.1007/s10118-021-2520-451NieY,GaoH,YuM,HuZ,ReiterG,HuW.Polymer,54(13):2013,3402-340752LiJ,LiH,YanS,SunX.ACSApplMaterInterfaces,2021,13(2):2944-2951.doi:10.1021/acsami.0c1919953DuanY,LiuJ,SatoH,ZhangJ,TsujiH,OzakiY,YanS.Biomacromolecules,2006,7(10):2728-2735.doi:10.1021/bm060043t54ZhouH,JiangS,YanS.JPhysChemB,2011,115(46):13449-13454.doi:10.1021/jp205755r55ChangH,ZhangJ,LiL,WangZ,YangC,TakahashiI,OzakiY,YanS.Macromolecules,2010,43(1):362-366.doi:10.1021/ma902235f56XinR,WangS,ZengC,JiA,ZhangJ,RenZ,JiangW,WangZ,YanS.ACSOmega,2020,5(1):843-850.doi:10.1021/acsomega.9b0367557JiangT,WanP,RenZ,YanS.ACSApplMaterInterfaces,2019,11(41):38169-38176.doi:10.1021/acsami.9b1333658LiuJ,WangJ,LiH,ShenD,ZhangJ,OzakiY,YanS.JPhysChemB,2006,110(2):738-742.doi:10.1021/jp053369p59ChuXiao(初笑),YanShouke(闫寿科),SunXiaoli(孙晓丽).ActaPolymericaSinica(高分子学报),2021,52(6):634-646.doi:10.11777/j.issn1000-3304.2021.2103660ZhouW,WengX,JinS,RastogiS,LovingerAJ,LotzB,ChengSZD.Macromolecules,2003,36(25):9485-9491.doi:10.1021/ma030312x61KellerA.PhilosophicalMagazine,1957,2(21):1171-1175.doi:10.1080/1478643570824274662FischerEWZ.Naturforsch,1957,12a:753-754.doi:10.1021/ac60131a71063TillPHJ.JPolymSci,1957,24(106):301-306.doi:10.1002/pol.1957.120241061664YanS.Macromolecules,2003,36(2):339-345.doi:10.1021/ma021387o65MaL,ZhouZ,ZhangJ,SunX,LiH,ZhangJ,YanS.Macromolecules,2017,50(9):3582-3589.doi:10.1021/acs.macromol.7b0029966MaL,ZhangJ,MemonMA,SunX,LiH,YanS.PolymChem,2015,6(43):7524-7532.doi:10.1039/c5py01083g67YanS,PetermannJ.Polymer,2000,41(17):6679-668163.doi:10.1016/s0032-3861(00)00109-968LiuX,WeiQS,ChaiLG,ZhouJJ,HuoH,YanDD,YanSK,XuJ,LiL.ChineseJPolymSci,2017,35(1):78-86.doi:10.1007/s10118-017-1872-269ChaiLG,LiuX,SunXL,LiL,YanSK.PolymChem,2016,7(10):1892-1898.doi:10.1039/c5py02037a70LiuQ,SunX,LiH,YanS.Polymer,2013,54(17):4404-4421.doi:10.1016/j.polymer.2013.04.06671HuJ,XinR,HouC,YanS.MacromolChemPhys,2019,220(5):1800478.doi:10.1002/macp.20180047872WittmannJC,SmithP.Nature,1991,352(6334):414-417.doi:10.1038/352414a073ChaiL,ZhouH,SunX,LiH,YanS.ChineseJPolymSci,2016,34(4):513-522.doi:10.1007/s10118-016-1770-z74BonnetM,YanS,PetermannJ,ZhangB,YangD.JMaterSci,2001,36(2):635-641.doi:10.1023/a:100486832028775LoosJ,SchauwienoldAM,YanS,PetermannJ.PolymBull,1997,38(2):185-189.doi:10.1007/s00289005003676ZhangB,YangD,DeRosaC,YanS.PetermannJ.Macromolecules,2001,34(15):5221-5223.doi:10.1021/ma010036r77ZhangB,YangD,DeRosaC,YanS.Macromolecules,2002,35(12):4646-4652.doi:10.1021/ma011975m78JiangS,LiH,DeRosaC,AuriemmaF,YanS.Macromolecules,2010,43(3):1449-1454.doi:10.1021/ma902389479HuJian(扈健),WangMengfan(王梦梵),WuJinghua(吴婧华).ActaPolymericaSinica(高分子学报),2021,52(10):1390-1405.doi:10.11777/j.issn1000-3304.2020.2025880QiaoY,MenY.Macromolecules,2017,50(14):5490-5497.doi:10.1021/acs.macromol.7b0077181QiaoY,WangQ,MenY.Macromolecules,2016,49(14):5126-5136.doi:10.1021/acs.macromol.6b0086282QiaoY,WangH,MenY.Macromolecules,2018,51(6):2232-2239.doi:10.1021/acs.macromol.7b0248183LiuP,MenY.Macromolecules,2021,54(2):858-865.doi:10.1021/acs.macromol.0c0217184XinR,WangS,GuoZ,LiY,HuJ,SunX,XueM,ZhangJ,YanS.Macromolecules,2020,53(8):3090-3096.doi:10.1021/acs.macromol.0c0041485XinR,GuoZ,LiY,SunX,XueM,ZhangJ,YanS.Macromolecules,2019,52(19):7175-7182.doi:10.1021/acs.macromol.9b0157486XinR,ZhangJ,SunX,LiH,RenZ,YanS.Polymers,2018,10(5):556.doi:10.3390/polym1005055687SuF,LiX,ZhouW,ZhuS,JiY,WangZ,QiZ,LiL.Macromolecules,2013,46(18):7399-7405.doi:10.1021/ma400952r88ZhangB,YangD,YanS.JPolymSciPhysEd,2002,40(23):2641-2645.doi:10.1002/polb.1032789QiuX,AzharU,LiJ,HuangD,JiangS.ChineseJPolymSci,2019,37(7):633-636.doi:10.1007/s10118-019-2273-590MaYP,ZhengWP,LiuCG,ShaoHF,NieHR,HeAH.ChineseJPolymSci,2020,38(2):164-173.doi:10.1007/s10118-020-2337-691ZhangZ,ChenX,ZhangC,Liu,CT,WangZ,LiuYP.ChineseJPolymSci,2020,38(8):888-897.doi:10.1007/s10118-020-2409-792WuJ,ZhouH,LiuQ,YanS.ChineseJPolymSci,2013,31(6):841-852.doi:10.1007/s10118-013-1269-993WangJ,LiuY,ZouD,RenZ,LinJ,LiuX,YanS.Macromolecules,2021,54(9):4342-4350.doi:10.1021/acs.macromol.0c0281594LiY,GuoZ,XueM,YanS.Macromolecules,2019,52(11):4232-4239.doi:10.1021/acs.macromol.9b0062795GuoZ,YuanC,SongC,XinR,HouC,HuJ,LiH,SunX,RenZ,YanS.Macromolecules,2021,54(16):7564-7571.doi:10.1021/acs.macromol.1c0142996WangJ,LiuY,LiH,YanS,SunX,TuD,GuoX,RenZ.MaterChemFront,2020,4(2):661-668.doi:10.1039/c9qm00684b97GuoZ,XinR,HuJ,LiY,SunX,YanS.Macromolecules,2019,52(24):9657-9664.doi:10.1021/acs.macromol.9b0202398LiJ,XueM,XueN,LiH,ZhangL,RenZ,YanS,SunX.Langmuir,2019,35(24):7841-7847.doi:10.1021/acs.langmuir.9b0040299GuoZ,LiS,LiuX,ZhangJ,LiH,SunX,RenZ,YanS.JPhysChemB,2018,122(40):9425-9433.doi:10.1021/acs.jpcb.8b08193100LotzB.Macromolecules,2014,47(21):7612-7624.doi:10.1021/ma5009868101LiC,JinS,WengX,GeJ,ZhangD,BaiF,HarrisF,ChengS,YanD,HeT,LotzB,ChienL.Macromolecules,2002,35(14):5475-5482.doi:10.1021/ma0204453102GuanG,ZhangJ,SunX,LiH,YanS,LotzB.MacromolRapidCommun,2018,39(20):1800353.doi:10.1002/marc.201800353103LovingerAJ,DavisDD,LotzB.Macromolecules,1991,24(2):552-560.doi:10.1021/ma00002a033104LovingerAJ.JApplPhys,1981,52(10):5934-5938.doi:10.1063/1.328522105BrinkmannM,RannouP.Macromolecules,2009,42(4):1125-1130.doi:10.6342/NTU.2009.02410106TosakaM,KamijoT,TsujiM,KohjiyaS,OgawaT,IsodaS,KobayashiT.Macromolecules,2000,33(26):9666-9672.doi:10.1021/ma001495f107JinnaiH,SpontakRJ,NishiT.Macromolecules,2010,43(4):1675-1688.doi:10.1021/ma902035p108JinnaiH,NishikawaY,IkeharaT,ToshioN.AdvPolymSci,2004,170:115-167.doi:10.1007/12_2006_102原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21251
  • 承鸿鹄之志,造大国电镜!首台国产商业场发射透射电子显微镜发布
    1月20日,广州慧炬科技有限公司成功举办“承鸿鹄之志,造大国电镜”新品发布会,正式发布首台国产商业场发射透射电子显微镜“太行”TH-F120。标志着我国已掌握透射电镜整机研制能力以及电子枪、高压电源、电子探测相机等核心技术。该产品将打破国内透射电镜100%依赖进口的局面,为我国在材料科学、生命科学、化学、物理等前沿科学以及半导体工业、锂电新能源材料等先进制造业领域的高质量发展提供有力支撑。  中国科学院院士饶子和、中国科学院院士隋森芳、中国科学院院士徐涛,以及来自全国学界、业界相关领域的60余位专家出席本次发布会。  院士大咖云集!共见首台国产商业场发射透射电子显微镜发布会议伊始,广州慧炬科技总经理曹峰向各位嘉宾的到来表示热烈欢迎,并感谢各位专家对国产透射电子显微镜的支持。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞。国仪量子技术(合肥)股份有限公司董事长贺羽致辞。中国科学院隋森芳院士致辞。中国科学院物理研究所研究员、松山湖材料实验室研究员、中国电子显微学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞。中国科学院生物物理研究所、生物岛实验室研究员、广州慧炬科技首席科学家孙飞分享了《生物医学电镜自主研制之路》报告。发布会上,饶子和院士与隋森芳院士共同为太行TH-F120揭幕。饶子和院士(左二)与隋森芳院士(左一)为太行TH-F120揭幕,徐涛院士(左三)等专家见证揭幕仪式合影  ▍破局之作!场发射透射电子显微镜“太行”TH-F120广州慧炬科技总经理曹峰向与会嘉宾详细介绍了太行TH-F120的产品特点与优势。TH-F120是慧炬120kV成像平台的首款产品,它的诞生意味着国产商业透射电镜向前迈进了一大步。其中文名称“太行”源自中华名山太行山,寓意TH-F120将如太行山一样,挺起中国透射电镜产业的脊梁。  TH-F120自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化了电子光学设计,可为用户带来更佳的图像衬度和分辨率;自主研制的高稳定性的低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;整机以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;同时,TH-F120预设了充足的拓展接口和整机升级空间,满足用户迭代需求,有效延长整机使用年限。太行TH-F120产品参数太行TH-F120应用案例  ▍承鸿鹄之志,造大国电镜  透射电镜具有极高的技术门槛,国外品牌已形成了垄断局面。此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  2022年,生物岛实验室与国内领先的科学仪器公司国仪量子技术(合肥)股份有限公司联合成立广州慧炬科技有限公司,依托生物岛实验室徐涛院士、孙飞研究员团队在国产透射电镜领域的研发成果,与国仪量子成熟的产品工程化与市场开拓经验,进一步推动透射电镜的普及和应用。此前,国仪量子自主研制的场发射/钨灯丝扫描电镜、超高分辨场发射扫描电镜、镓离子束双束电镜、量子传感设备、电子顺磁共振波谱仪、气体吸附分析仪等产品获得了良好的市场反响,形成了国产高端科学仪器的示范应用。双方的合作,将充分整合人才与技术优势,加速推进透射电镜技术转化为商业化产品并进行批量生产。  广州慧炬科技首台国产商业场发射透射电子显微镜正式发布,填补了国内该领域的空白,实现了从“买”到“造”的重大突破。未来,广州慧炬科技将持续加强在透射电镜领域的自主创新能力,研发更高端的电镜产品,服务中国科研人,为实现科技自立自强贡献力量。与会嘉宾合影
  • 承鸿鹄之志,造大国电镜!首台国产商业场发射透射电子显微镜发布
    1月20日,广州慧炬科技有限公司成功举办“承鸿鹄之志,造大国电镜”新品发布会,正式发布首台国产商业场发射透射电子显微镜“太行”TH-F120。标志着我国已掌握透射电镜整机研制能力以及电子枪、高压电源、电子探测相机等核心技术。该产品将打破国内透射电镜100%依赖进口的局面,为我国在材料科学、生命科学、化学、物理等前沿科学以及半导体工业、锂电新能源材料等先进制造业领域的高质量发展提供有力支撑。中国科学院院士饶子和、中国科学院院士隋森芳、中国科学院院士徐涛,以及来自全国学界、业界相关领域的60余位专家出席本次发布会。点击观看发布会精彩回顾院士大咖云集!共见首台国产商业场发射透射电子显微镜发布会议伊始,广州慧炬科技总经理曹峰向各位嘉宾的到来表示热烈欢迎,并感谢各位专家对国产透射电子显微镜的支持。广州开发区管委会二级巡视员、生物岛实验室主任助理杨寿桃致辞。国仪量子技术(合肥)股份有限公司董事长贺羽致辞。中国科学院隋森芳院士致辞。中国科学院物理研究所研究员、松山湖材料实验室研究员、中国电子显微学会副理事长、粤港澳大湾区电镜联盟理事长马秀良致辞。中国科学院生物物理研究所、生物岛实验室研究员、广州慧炬科技首席科学家孙飞分享了《生物医学电镜自主研制之路》报告。发布会上,饶子和院士与隋森芳院士共同为太行TH-F120揭幕。饶子和院士(左二)与隋森芳院士(左一)为太行TH-F120揭幕,徐涛院士(左三)等专家见证揭幕仪式合影破局之作!场发射透射电子显微镜“太行”TH-F120广州慧炬科技总经理曹峰向与会嘉宾详细介绍了太行TH-F120的产品特点与优势。TH-F120是慧炬120kV成像平台的首款产品,它的诞生意味着国产商业透射电镜向前迈进了一大步。其中文名称“太行”源自中华名山太行山,寓意TH-F120将如太行山一样,挺起中国透射电镜产业的脊梁。TH-F120自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化了电子光学设计,可为用户带来更佳的图像衬度和分辨率;自主研制的高稳定性的低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;整机以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;同时,TH-F120预设了充足的拓展接口和整机升级空间,满足用户迭代需求,有效延长整机使用年限。太行TH-F120产品参数太行TH-F120应用案例承鸿鹄之志,造大国电镜透射电镜具有极高的技术门槛,国外品牌已形成了垄断局面。此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。2022年,生物岛实验室与国内领先的科学仪器公司国仪量子技术(合肥)股份有限公司联合成立广州慧炬科技有限公司,依托生物岛实验室徐涛院士、孙飞研究员团队在国产透射电镜领域的研发成果,与国仪量子成熟的产品工程化与市场开拓经验,进一步推动透射电镜的普及和应用。此前,国仪量子自主研制的场发射/钨灯丝扫描电镜、超高分辨场发射扫描电镜、镓离子束双束电镜、量子传感设备、电子顺磁共振波谱仪、气体吸附分析仪等产品获得了良好的市场反响,形成了国产高端科学仪器的示范应用。双方的合作,将充分整合人才与技术优势,加速推进透射电镜技术转化为商业化产品并进行批量生产。广州慧炬科技首台国产商业场发射透射电子显微镜正式发布,填补了国内该领域的空白,实现了从“买”到“造”的重大突破。未来,广州慧炬科技将持续加强在透射电镜领域的自主创新能力,研发更高端的电镜产品,服务中国科研人,为实现科技自立自强贡献力量。与会嘉宾合影
  • 迈向量子电子显微镜!香港城大研发小型“脉冲空心锥扫描与透射一体化电子显微镜”
    电子显微镜一直是尖端科学研究中不可或缺的重要工具,它提供了无与伦比的高解像度和放大能力,帮助人类探索无限的微观世界。然而,现有的电子显微镜科技面临著高成本、大体积,以及因为电子与研究样本会产生作用并导致辐照损伤而需要极度低温环境等不同限制。为突破上述技术樽颈,香港城市大学(香港城大)科研团队正在致力于研发电子束和样本产生“零作用”的未来“量子电子显微镜”。团队现阶段把量子电子显微镜的部分零组件设计成一款可以在室温下操作的紧凑型扫描与透射一体化电子显微镜,开创了电子显微镜的新纪元。他们计划在三年内把这革命性的高倍电子显微镜创新技术商品化,把它制造成产品推出市场及量产。这项目名为“脉冲空心锥扫描与透射一体化电子显微镜的商业化计划”,由香港城大材料科学及工程学系讲座教授陈福荣教授领导,最近获得香港特别行政区政府创新科技署的“产学研1+计划”(RAISe+计划)拨款资助。该计划旨在释放本地大学在研究成果转化和商品化方面的潜力。香港城大陈福荣教授(左二)与他的研究团队成员,包括薛又峻教授(左一)、陈岩博士(右二)和陈宇驰先生(右一),早前出席“产学研1+计划”签署仪式。(图片来源:香港城市大学)透射电子显微镜(transmission electron microscopes,TEM)和扫描电子显微镜(scanning electron microscopes,SEM)是许多现代科研工作中必不可少的工具。从生物样本到纳米结构,TEM及SEM电子显微镜都能提供超高放大率及解像度的图像,帮助科研人员研究各种材料既复杂又精密的细节。然而,无论是透射还是扫描电子显微镜使用的高能量电子束,均会对脆弱的生物样本造成严重的辐射损伤。故此,在结构生物学领域,科研人员便采用冷冻透射电子显微镜(cryo-TEM)技术,即是先把蛋白质置于玻璃态冰层中,然后才进行观测,以减少高能量电子束造成的辐射损伤。但缺点是冰层的引入,会对显微成像带来图像杂讯,导致解像度下降。为应对这些挑战,陈福荣教授及其香港城大科研团队基于他们在香港城大福田研究院(现更名为“香港城市大学物质科学研究院(福田)”)研发出的尖端技术,创制了“脉冲电子空心锥照明混合TEM/SEM电子显微镜”。这创新的显微镜系统在多方面克服及解决了现有电子显微镜的技术限制。首先,新系统的脉冲电子源减少了对软材料样本的辐射损伤,这对于保护生物样本尤其重要;其次,透过空心锥照明技术产生的样本放大图像,其“对比度”是传统透射电子显微镜模式所产生的明场图像的四倍,遂能够更详细及清晰地对样本进行成像。此外,香港城大团队亦将利用它之前已开发出的色差和球面像差校正器(CS/SS)技术,进一步提高显微影像的空间解像度。而这套混合TEM及SEM的电子显微镜系统是座台型,比传统的TEM/SEM电子显微镜体积细小得多,而且更具成本效益。它可以在15-30 keV的低电压范围内操作,亦能够在普通室温下进行3D蛋白分子重建和纳米材料研究,较冷冻电子显微镜更佳。团队亦展示了新的电子显微镜系统在多种不同的应用场景中,均能提供极高解像度的成像,包括可以优于10nm的超高表面解像度,对印刷电路板上的金属接触点、纳米颗粒和其他生物样本进行成像。团队相信,新设计的电子显微镜最终可以做到在透射模式下观测蛋白质和分子的3D立体结构,以及在扫描模式下观测纳米材料并应用于半导体和晶片检测。“与现有的桌上型扫描电子显微镜(SEM)系统相比,我们最新研发的脉冲电子空心锥系统提供了优异的SEM电子显微成像质数,能够与市场上最好的桌上型系统媲美。”陈福荣教授续说:“此外,现时市场上并没有电子显微镜产品的质量,达致我们新系统的同等高质量。我们的脉冲空心锥照明系统具有独一无二的卓越性能,能够使用透射电子显微境(TEM)模式进行3D立体蛋白质重建,这是现时桌上型SEM所无法做到的。”香港城大陈福荣教授(左)和薛又峻教授(右)于2023年4月分享了他们在“高时间分辨电子显微镜”研究的最新成果及突破,这崭新的电子显微镜系统结合了扫描和透射电子显微镜模式,体积小巧,又兼具高效能。(图片来源:香港城市大学)“在RAISe+计划提供资金以及我们业界伙伴的支持下,我们计划在三年内为这款创新、小巧而又功能强大的混合模式电子显微镜建成生产线,以便把高质电子显微镜商业化及量产。”陈教授补充说。陈教授长期从事材料科学和电子显微镜的尖端研究,是相关研究领域的翘楚。2023年4月,他和香港城大的科研团队率先创建了一款结合了扫描和透射电子显微镜模式的“高时间分辨率电子显微镜”,成为全球首个达成这一重大突破及成就的大学研究团队。
  • 梅特勒托利多参加2009中国国际衡器展
    一年一度的中国国际衡器展览会于2009年5月7日-9日在上海光大会展中心成功举行。本届展会共吸引了来自国内外的285家参展企业及50多个国家的600多位外宾参加,展会面积达8000多平方米,标准展位950个。 中国国际衡器展览会是一次中国衡器企业的大聚会及寻找衡器供应商的世界最大平台。凭借着10个标准展位、开放式理念设计的展台及90多平方米的展区,梅特勒托利多在本次展会中展出了包括工业、商用及实验室在内的多款新型产品,吸引了众多参观者驻足。 在工业产品展区,IND780提供了彩色和中文显示界面,使得称重终端更加适合国内客户的应用。最新的IND131和IND331仪表,除了延续高精度、高速度的特点外,还提供了更多的安装方式和显示方式,让客户有更多选择。Loadrite称重系统可以在装载机上灵活安装,让超载、超限控制更加容易。BBA449check+检重秤具有彩色显示功能,可以根据不同的重量显示不同的颜色,帮助客户减轻操作疲劳,提高操作效率。展会上还特别展出了用于邮政行业的PS60邮包秤,将秤台台面与输送台面巧妙结合,极大地方便了操作人员,提高了工作效率。另外,堪称亮点的WM124-L22单称重模块,为广大需要将高精度称重模块集成到控制设备上的客户提供了解决方案。无需称重仪表,您就可以方便快捷地将数据直接传送到PLC或者PC,节约空间的同时获得了高精度的称重结果,可广泛应用在制药、化工、电子等专用设备上。 梅特勒托利多IND131仪表 在商业产品区,最新的Impact S系列电子秤,采用Windows CE操作系统,1/4VGA触摸屏显示以及240x240全点阵式客户显示窗口,内置4GB的存储介质,带有以太网、USB以及无线网络接口,适合各大中小型超市、卖场、便利店、熟食店使用。同时,梅特勒托利多还展出了代表当今市场上最先进技术的全新bPro和bCom商用电子秤。 Impact S商用电子秤 在实验室产品区,具有当前世界最先进技术的分析天平XP205DR,以其全中文界面、触摸屏、红外触发操作等特点以及优越的高精度称重性能,得到了广大观众的好评。操作者只需轻轻一点,所有操作就可在瞬间完成。另外,梅特勒托利多还展出了XP6002S精密天平,它采用高精度单模块传感器,超载保护能力堪称一流,一头1吨多重的大象从秤上走过,还可以继续称重,真是不可思议。 梅特勒托利多XP205DR分析天平 作为世界领先的称重衡器和精密仪器制造商,梅特勒托利多将始终为客户提供精确、高效、安全、可靠的称量解决方案,帮助客户简化流程、提高产品质量、提升效益! 2009中国国际衡器展梅特勒托利多展台
  • 餐饮业的巨变,你也是重要的推动者| 奥豪斯Valor防水案秤
    p  餐桌上的事儿,看起来是小事儿,实际上折射出这个时代的风云变化,正所谓“滴水看世界”。/pp  在几十年前,去餐馆饭店吃饭还是个稀罕事儿。如今到处都是装修精致的小餐厅,许多餐饮品牌如雨后春笋冒尖儿的生长,全国走哪都能得到一致的服务,尝到口味一致的菜品 此外,这些丰富的菜品也借助外卖送餐服务,也从“外面的餐厅”走向“自家的餐桌”,使得众多餐饮品牌的精品厨房变成了大众厨房。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/bb5262a8-2fff-4d3f-9876-908b24fd4815.jpg" title="1.jpg"//pp  餐厅越来越专注于提供标准化的菜单、标准化的做法、标准化的口味、标准化的服务、标准化的流程??这样的经营理念及经营模式,已成为餐饮业的标配。/pp  看,这一场悄无声息的变革,无一不汇成一个潮流:规模化!/pp  规模化的变革,并非新兴事物。如今的所见,不过是叶和果 根,在几十年前就已经开始生长了。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d515915f-40ee-4b3d-8b19-7392aeaa6ff9.jpg" title="2.jpg"//pp  这要从打开国门后说起:1987年,全球连锁餐饮巨头——肯德基率先进入中国市场,为国人带来了新的冲击:原来餐饮还可以这样做啊!/pp  人们不只惊艳于肯德基的汉堡可乐,其带来的新惊喜——透明的橱窗、点餐的模式,以及在每家肯德基吃到口感一致、外形一致的快餐等餐饮新模式,刺激着上世纪80年代消费主力军的神经。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/3f4ad65e-1406-4bcc-a397-2e24a80b1b44.jpg" title="3.png" width="400" height="548" border="0" hspace="0" vspace="0" style="width: 400px height: 548px "//pp  政策的开放,不仅为外资餐饮提供了巨大的市场,还给国内餐饮走向连锁带来了机遇。/pp  几年后,也就是上世纪90年代中期,在广州公路边的一家名为“168甜品屋”的餐厅,开始扩张规模,采取标准化中餐的服务模式,升级为在广东遍地开花的“双种子”餐厅 跨入到二十一世纪,享受到“中餐标准化”带来的“品牌连锁效应”,“双种子”餐厅再次扩大规模辐射全国,成为如今的知名品牌“真功夫”,如今的“真功夫”在全国乃至全球已拥有近600家分店。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/84d58227-428b-41f3-930f-2a9af29ffd7a.jpg" title="4.jpg"//pp  作为第一家将中餐标准化的快餐连锁品牌,其意义在于:他们为后来者开拓了一条可复制化的道路,标准化中餐因此遍地开花。/pp  此时此刻,打开你的外卖APP,点开你的历史订单:花式各样的煲饭、香锅、套餐、简餐、甜品??这些琳琅满目的选择,都是中餐标准化带来的实惠。/pp  但你也许完全没有意识到:平日点外卖、与朋友周末小聚选择餐厅??你每一个小小的选择,也是促进品牌餐饮规模化的重要力量。/pp  也许,你更不会意识到这场变革还有许多在背后默默付出的推动者与变革创造者——譬如奥豪斯公司。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/0c349d24-f537-4f7a-8d8d-428927e91136.jpg" title="5.jpg"//pp  从奥豪斯产品设计研发者,到奥豪斯生产部门的员工 从奔波在前端的销售工程师,到奥豪斯称重设备的经销商??每一个奥豪斯人的付出,都在默默推动着这场“餐饮规模化”的巨变:/pp  吃着“真功夫”套餐的你,当然不会注意到忙碌的后厨才是餐饮规模化的大舞台。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/2a541c67-f11e-4012-9160-211f00781658.jpg" title="6.jpg"//pp  真功夫门店的后厨、总部工厂,都有着奥豪Valor2000防水电子案秤的身影!/pp  通过与真功夫的详细沟通,奥豪斯对Valor2000防水电子案秤进行了优化设计,使之更符合真功夫厨房的工作要求:清晰高亮的大显示屏可以帮助厨房操作人员快速简单准确的进行称量,从而提升了工作效率 /pp  从定制优化到生产装配,奥豪斯遵循着精益求精、品质至上的理念,因此,Valor2000防水电子案秤才能遍布真功夫的各个厨房,在忙碌高强度的工作环境下依然保证精准快速的称量 /pp  不仅如此,奥豪斯完备、及时、专业的售后解惑及用户维修服务,是Valor200能在真功夫提供精准称重服务的长久保障。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/99c21666-cb82-4ab0-8e94-33a1f4efb0e8.jpg" title="7.jpg" width="450" height="341" border="0" hspace="0" vspace="0" style="width: 450px height: 341px "//pp  正是奥豪斯Valor2000防水电子案秤,为每一份套餐中每一种食材都能符合配方标准提供了有力支持,确保真功夫套餐始终品质如一、营养如一。/pp  有人说:“当雪崩的时候,每一片雪花都负有责任” 同样,当积土成山的时候,每一粒沙土都得其巍峨的荣光。/pp  在餐饮业的变革中做出贡献的奥豪斯Valor2000防水电子案秤只是一个缩影,奥豪斯的工业衡器家族仪器一直在推动这场变革:/pp  奥豪斯的T81手工配料系统,在许多生产车间进行配方操作智能控制,以保证全流程可追溯/pp  你在超市和购买的肉松产品,其出厂之前的称重确认,也许就是由奥豪斯检重台秤完成的 /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/37ddd26b-bf92-47b5-b0e9-678d2992eca2.jpg" title="8.jpg" width="450" height="441" border="0" hspace="0" vspace="0" style="width: 450px height: 441px "//pp  你最喜欢吃的海产品,捕捞后进入水产加工厂需要进行称重确认,其中就有奥豪斯台秤在低温条件下坚守称重的身影。/pp  ....../pp  在这场变革中,奥豪斯和你一样,看似默默无闻的付出,却都是不可替代的角色。/pp  也许你的目光还停留在一堆待处理事项之中,觉得自己不过是一个小人物??但在你没有注意到的地方,你每天日复一日的努力工作,正在悄悄地改变着这个世界。/pp  奥豪斯也是如此,在每一个日出日落里,坚守着“灵感源于务实”的信念,研发精进专业的产品,推动我们的生活变得更好。/pp  哪怕,只是一台小而精巧的Valor2000防水电子案秤,也有它卓尔不凡之处,于默然中散发出可靠、可信的光辉。/pp style="text-align: center "strong奥豪斯Valor2000防水电子案秤 | 助力餐饮业变革/strong/pp  Ø 大屏显示,清晰明亮:复杂环境下清楚读数/pp  Ø 稳定时间≤0.5秒:快速精准,高效作业,适应流水线操作/pp  Ø IPX8防水等级:防水防潮,可靠耐用/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c2937fb4-0d87-464a-aa71-df428390e9f0.jpg" title="9.jpg" width="450" height="363" border="0" hspace="0" vspace="0" style="width: 450px height: 363px "//pp  Ø ABS材质秤盘及外壳:手感舒适,坚固可靠,耐用易清洁/pp  Ø 底部把手设计,便于携带:/pp  Ø 标配可充电铅酸电池,一次充电可持续使用50小时。/pp  Ø 单面屏& 双面屏两种选择,适应企业不同需求/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/8fe9cca9-bf13-4292-8112-41488fb4707c.jpg" title="10.jpg" width="450" height="306" border="0" hspace="0" vspace="0" style="width: 450px height: 306px "//pp  奥豪斯Valor2000防水电子案秤,其卓越的品质,继承了奥豪斯工业衡器家族坚实耐用的血统。走进奥豪斯工业衡器家族,有无数坚守岗位、专注自己使命的产品等着你发现!/pp style="text-align: center "strong奥豪斯工业衡器系列/strong/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c76f4bb8-5143-4fdd-80dd-8c2022a638d6.jpg" title="11.jpg"//pp  Trooper系列:Trooper3000过程称重仪表/pp  Defender系列衡器:防水台秤、电子平台秤、电子台秤、电子称重仪表、平台秤秤体/pp  Ranger系列电子秤:Ranger2000电子计重秤、RangerCount2000电子计数、RC21PL电子计数秤/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/f445eef6-9ca8-4db4-b5e3-fb454b57e9e7.jpg" title="12.jpg"//p
  • 恒奥德仪器智能数字磁通计 数字磁通计 智能磁通计 型号ZRX-15484可对磁性材料进行检测
    智能数字磁通计 数字磁通计 智能磁通计 型号ZRX-15484可对磁性材料进行检测SHT-HT707智能数字磁通计是由单片机控制,利用电子积分原理、用液晶显示屏显示被测磁通量大小的仪器。 可对磁性材料进行检测,不仅可测量磁通量值还可以对磁性产品的性能进行直接检测,从而达到控制产品质量的目的。 本磁通计显示清晰,操作方便,是磁通测量的理想工具。 技术指标 量程范围:0-1 mWb、0-10 mWb、0-100 mWb、0-1000 mWb 基本误差:±1% 测定数值:Ф磁通量:mwb B磁场强度:mT、Gs(适用于通过单线圈测定剩余磁感应强度) M磁化强度:KA/m、mT、Gs(适用于通过亥姆霍兹线圈测定剩余磁感应强度) 功 能:可同时显示当前值和峰值;有分选功能;根据表头指示调节漂移简单方便 分辨率:0.1 μWb、1 μWb、10 μWb、100 μWb 漂 移:0.1 μWb /30S 输入阻抗:1 kΩ 、10 kΩ 、100 kΩ 、1000 kΩ 显示方式:字符型背光显示屏,5位数字 环境温度:5℃-40℃ 预热时间: 15 分钟。 相对湿度:20%-80%(无凝露) 供电电源:220VAC 50Hz 外型尺寸:300mm× 470mm×150mm(长*宽*高) 仪器重量:2.6 kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制