当前位置: 仪器信息网 > 行业主题 > >

电子打印秤

仪器信息网电子打印秤专题为您提供2024年最新电子打印秤价格报价、厂家品牌的相关信息, 包括电子打印秤参数、型号等,不管是国产,还是进口品牌的电子打印秤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子打印秤相关的耗材配件、试剂标物,还有电子打印秤相关的最新资讯、资料,以及电子打印秤相关的解决方案。

电子打印秤相关的资讯

  • 慕尼黑电子展圆满落幕,期待相约TCT亚洲3D打印展
    7月3-5日,为期三天的“2020慕尼黑上海电子展”在国家会展中心(上海)正式落下帷幕。本次展会吸引了不少行业厂家参展,为大家带来了一场行业盛宴,作为高精密微尺度3D打印的先行者和领导者,BMF深圳摩方在此次展会中也收获颇丰。穿梭不息的参展人流,见证了BMF所收获的热情与期待。下面,请跟随我们的镜头一起来回顾下BMF展位那些不容错过的精彩画面~此次展会,BMF深圳摩方主要展示以连接器为主的高精密3D打印工业应用案例,现场受到安费诺、ERNI等众多连接器领域企业的重点关注,并与我们的工作人员进行了密切沟通与交流。同时,许多展会观众还对展位上的内窥镜、生物医疗等其他领域的相关应用案例表现出浓厚的兴趣与深切的认可。凭借在高精密3D打印领域的领先技术与产品优势,BMF深圳摩方在展会上获得高度瞩目,让人眼前一亮。来自四面八方的厂家、经销商和预约客户通过本次展会,对BMF的产品和技术能力有了更深入的了解。 自2016年成立以来,BMF深圳摩方始终专注于高精密微尺度3D打印领域,秉承将3D打印转变为真正的精密快速成型及直接生产制造的理念,其nanoArch系列3D打印系统为精密增材制造量身定做。如今,BMF已发展成为高精密3D打印领域的最具实力的代表企业之一,在同行业中的销量也稳居前列。截止到本次展会结束,BMF在本次展会收获众多客户的深度合作意向,为BMF今后的发展奠定了更为坚实的基础。TCT亚洲展展会预告:NEXT亚洲3D打印、增材制造展览会(TCT Asia)展会时间:2020年7月8-10日展会地点:上海新国际博览中心展位信息:E5/C65观展预约网址:www.tctasia.com.cn
  • PEJET发布PeJet 多通道微电子喷墨打印机 新品
    PeJet-ElectroJet多材料多通道微电子打印机 ? Multi-Channels Process 业内独创八通道可同时装载多种材料混合叠层打印技术 ? Multi-Materials Jettable 高性能导电材料, 电介质绝缘材料及抗刻蚀剂材料等 ? Low Cost & High Efficient Production & All in one Electronics Printer 低成本, 高的生产效率, 真正微电子打印设备创新点:1.可同时打印多种材料2.独创8通道喷墨打印3.可进行不同材料叠层打印
  • 湖南大学王兆龙课题组:3D打印超抗冻多功能柔性电子器件
    柔性电子作为一种新兴的电子技术,以其独特的柔性/延展性(弯曲、折叠、扭转、压缩或拉伸)和高灵敏特性,在信息、医疗等领域具有广泛应用前景,如电子皮肤、柔性屏、脑机接口等。水凝胶材料以其独有的特性(柔性、导电性、高拉伸性)在柔性电子领域被广泛研究和使用。采用诸如光学光刻、微接触印刷等微纳制造技术可实现图案化水凝胶柔性电子器件的制造,但是上述技术加工步骤复杂、加工成本高、幅面较小,难以实现复杂三维结构信号强化效应。微纳3D打印技术很好地平衡制造成本、加工精度和幅面的问题,可快速制造并成型任意形状和定制设计的水凝胶跨尺度结构,而且,对水凝胶进行图案化设计可进一步提高柔性电子器件的灵敏性;同时通过对水凝胶的性能诸如自粘附、导电、抗冻等性能的优化,可拓展水凝胶柔性电子的应用范围,如自粘附电子、极端温度环境工作的柔性器件等。近日,湖南大学王兆龙、段辉高教授与上海交通大学郑平院士合作,基于面投影微立体光刻技术,采用摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,通过引入粘附性的光固化单体及材料配比优化,设计了水凝胶诸如强粘附性、导电性和抗冻性等性能。通过水凝胶的结构设计提高运动信号监测的应变灵敏度,实现宽范围的运动信号传感。作者设计3D打印水凝胶柔性电极采集人体的肌电信号,将水凝胶柔性电极采集的肌电信号作为用户界面控制机械手的同步运动,以准确的完成弹奏不同音符的动作,甚至可以控制-80℃低温环境下机械手的运动。该工作引入微尺度3D打印技术使得复杂3D结构多功能柔性电子和复杂人机接口的快速制造成为可能。文章以“3D printed super-anti-freezing self-adhesive human-machine interface”为题发表在Materials Today Physics上。原文链接:https://doi.org/10.1016/j.mtphys.2021.100404该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等基金支持。图1 面投影微立体光刻技术(摩方精密,nanoArch S/P140)原理及水凝胶材料设计,利用共价键交联和氢键网络结合优化水凝胶性能图2 3D打印水凝胶诸如超拉伸、强粘附、抗冻等性能设计图3 基于面投影微立体光刻技术加工跨尺度结构的水凝胶制备高灵敏度的应变传感器,用于监测宽范围的人体运动信号图4 基于面投影微立体光刻技术加工水凝胶用于肌电信号的采集,将采集的肌电信号作为人机接口控制机械手的同步运动,以完成弹奏不同音符、甚至低温环境的动作控制官网:https://www.bmftec.cn/links/10
  • 湖南大学王兆龙课题组:3D打印超抗冻多功能柔性电子器件
    柔性电子作为一种新兴的电子技术,以其独特的柔性/延展性(弯曲、折叠、扭转、压缩或拉伸)和高灵敏特性,在信息、医疗等领域具有广泛应用前景,如电子皮肤、柔性屏、脑机接口等。水凝胶材料以其独有的特性(柔性、导电性、高拉伸性)在柔性电子领域被广泛研究和使用。采用诸如光学光刻、微接触印刷等微纳制造技术可实现图案化水凝胶柔性电子器件的制造,但是上述技术加工步骤复杂、加工成本高、幅面较小,难以实现复杂三维结构信号强化效应。微纳3D打印技术很好地平衡制造成本、加工精度和幅面的问题,可快速制造并成型任意形状和定制设计的水凝胶跨尺度结构,而且,对水凝胶进行图案化设计可进一步提高柔性电子器件的灵敏性;同时通过对水凝胶的性能诸如自粘附、导电、抗冻等性能的优化,可拓展水凝胶柔性电子的应用范围,如自粘附电子、极端温度环境工作的柔性器件等。近日,湖南大学王兆龙、段辉高教授与上海交通大学郑平院士合作,基于面投影微立体光刻技术,采用摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,通过引入粘附性的光固化单体及材料配比优化,设计了水凝胶诸如强粘附性、导电性和抗冻性等性能。通过水凝胶的结构设计提高运动信号监测的应变灵敏度,实现宽范围的运动信号传感。作者设计3D打印水凝胶柔性电极采集人体的肌电信号,将水凝胶柔性电极采集的肌电信号作为用户界面控制机械手的同步运动,以准确的完成弹奏不同音符的动作,甚至可以控制-80℃低温环境下机械手的运动。该工作引入微尺度3D打印技术使得复杂3D结构多功能柔性电子和复杂人机接口的快速制造成为可能。文章以“3D printed super-anti-freezing self-adhesive human-machine interface”为题发表在Materials Today Physics上。该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等基金支持。图1 面投影微立体光刻技术(摩方精密,nanoArch S/P140)原理及水凝胶材料设计,利用共价键交联和氢键网络结合优化水凝胶性能图2 3D打印水凝胶诸如超拉伸、强粘附、抗冻等性能设计图3 基于面投影微立体光刻技术加工跨尺度结构的水凝胶制备高灵敏度的应变传感器,用于监测宽范围的人体运动信号图4 基于面投影微立体光刻技术加工水凝胶用于肌电信号的采集,将采集的肌电信号作为人机接口控制机械手的同步运动,以完成弹奏不同音符、甚至低温环境的动作控制官网:https://www.bmftec.cn/links/10
  • 西湖大学周南嘉/陶亮合作《Nature Electronics》:3D打印软水凝胶电子器件!
    近年来开发了许多用于医疗保健的软性电子设备,它们提供了包括生物信号检测、健康监测、神经刺激、脑机接口等一系列的功能。为了实现可伸展性,电路和互连是通过将刚性导电材料图案化为蛇形几何形状或使用内在可伸展的导体。然而,弹性体和生物组织的力学和化学特性不匹配的情况不可避免地存在,这可能导致免疫反应,损害电子产品的功能。基于水凝胶的电子器件可以与生物组织有内在的相似性,在生物医学应用中具有潜在的用途。理想情况下,这种水凝胶电子器件应该提供可定制的三维电路,但用现有的材料和制造方法制作封装在水凝胶基质中的复杂三维电路是具有挑战性的。鉴于此,西湖大学周南嘉、陶亮团队报告了使用基于可固化水凝胶的支撑基质和可拉伸银水凝胶墨水的水凝胶电子器件的三维打印。支撑基质具有屈服应力流体行为,因此移动打印机喷嘴产生的剪切力会产生暂时的流体状状态,从而可以在银水凝胶墨水电路和电子元件的基质中准确放置。印刷后,整个矩阵和嵌入式电路可以在 60°C 下固化,形成柔软(杨氏模量小于 5 kPa)和可拉伸(伸长率约为 18)的单片水凝胶电子器件,而导电油墨表现出约1.4×103 S cm-1。研究人员进一步使用该三维打印方法来创建应变传感器、电感器和生物电极。相关研究成果以题为“Three-dimensional printing of soft hydrogel electronics”发表在最新一期《Nature Electronics》上。本文第一作者为西湖大学Hui Yue 与Yao Yuan 。【EM3DP的材料设计】作者通过利用海藻酸盐-PAM双网络水凝胶的正交交联机制开发了一种可固化的水凝胶基质:海藻酸盐链与Ca2+形成离子交联,而PAM网络是由丙烯酰胺和交联剂通过自由基聚合共价交联形成的(图1a)。然后将这种离子交联的凝胶粉碎、过滤和脱气,以产生平均直径约为20μm的透明的水凝胶微粒,并表现出屈服应力流体行为;并将它作为EM3DP的支持基质(图1b)。接下来作者通过将准备好的支撑基质凝胶与5μm大小的Ag薄片以及甘油和水溶性聚合物(例如聚乙烯吡咯烷酮)混合来开发导电油墨(图1a),EM3DP在定制的直接墨水书写平台上进行(图1b)。印刷后,水凝胶在60°C下加热以触发PAM的自由基聚合,固化整个基质和嵌入式电路(图1c(i),(ii)),Ag薄片在水凝胶中形成渗透通道,在墨水和基质之间没有观察到明显的接缝(图1c(iii),(iv))。如图1d所示,固化后的嵌入电路的水凝胶可以承受较大程度的拉伸和扭曲,一旦应力消除,可以完全恢复到原来的形状。图1e进一步证明EM3DP在制造自由形式3D结构方面的能力。图 1. 通过 EM3DP 制造水凝胶电子器件【基质和导电油墨的流变特性】在固定的交联剂/单体质量比下,无论藻酸盐含量如何,所有支撑基质都表现出剪切稀化行为(图2a),并且它们的粘度、储能模量(G')和损耗模量(G”)随着藻酸盐含量从0.99%上升到2.31%(图2b)。藻酸盐含量为0.99%的基质像液体一样流动,而藻酸盐含量为1.65%和2.31%的基质表现为凝胶(图2c)。考虑到其中间的流变特性,使用藻酸盐含量为1.65%的基质凝胶来制备导电油墨。将Ag薄片添加到基质凝胶中会增加其粘度(图2d)),表明Ag薄片既充当导电填料又充当流变改性剂。与原始基质凝胶相比,1.5×Ag墨水(Ag/水凝胶质量比=1.5)显示出大约十倍的粘度增加,而其剪切稀化行为保持不变。随着Ag/水凝胶质量比从0增加到1.5,墨水的G'和G”值也显示出大幅增加(图2e)。作者通过优化打印参数,包括压力和喷嘴移动速度,可以精确控制打印出的墨丝宽度与喷嘴内径一致(图2f),并且所有灯丝都呈现出近乎圆形的横截面。打印的长丝在热固化过程中没有表现出明显的形状变化或起泡。图 2. 支撑基质和导电油墨的流变特性【固化水凝胶基质的机械性能】图3a、b比较了通过传统的一锅法(非粉碎)和本文方法(粉碎)制备的藻酸盐-PAM水凝胶在固定交联剂/单体质量比和不同藻酸盐含量下的拉伸应力-应变曲线。随着藻酸盐含量从0.99%增加到2.31%,未粉碎和粉碎水凝胶的拉伸杨氏模量分别从5.35增加到7.69kPa和从2.80增加到3.71kPa(图3c)。在固定的藻酸盐含量(1.65%)下,将水凝胶的交联剂/单体质量比从0.016%提高到0.082%会导致拉伸杨氏模量从3.05略微增加到3.30kPa,但λ从11.3大幅提高到19.5(图3e、f)。图 3. 固化水凝胶基质的拉伸机械性能【导电油墨的电性能】作者制备了具有随机和分离分布的Ag薄片的Ag-水凝胶复合材料。具有随机分散的Ag薄片的复合材料未能形成相互连接的导电通路(图4a)。相反,在分离的复合材料中,Ag薄片在水凝胶域之间的边界处密集堆积并彼此紧密接触(图4a(右红线))。结果,随着Ag/水凝胶质量比分别从0增加到0.5、1.0和1.5,分离的Ag-水凝胶复合材料的电导率从1.5×10–3增加到2.1×101、4.0×102和1.4×103&thinsp S cm–1(图4b)。在相同的Ag/水凝胶质量比(0.5、1.0和1.5)下,具有随机分布的Ag薄片的Ag-水凝胶复合材料的电导率分别仅为6.9×10–3、6.9×101和3.4×102&thinsp S cm–1。作者接下来表征了Ag-水凝胶复合材料在拉伸应变下的电性能(图4c)。作者使用0.5×Ag、1.0×Ag和1.5×Ag的油墨印刷了线宽为250μm、长度为18mm的线性水凝胶电阻,显示初始电阻(R0)分别为246.5、10.9和3.7 Ω(图4d)。在慢速(5mm/s)循环拉伸试验(300%的应变)下,1.5×Ag电阻的R/R0值在前50个循环中从2.7略微增加到3.1,但之后保持稳定(图4e)。打印的气动执行器可以通过测量曲率传感器的R/R0变化来检测(图4g,f)。图 4. Ag-水凝胶导电油墨和印刷的可拉伸水凝胶电子器件的电特性【功能性水凝胶电子产品的制造及生物医学应用】为了说明EM3DP技术的多功能性,作者制造了一系列不同的水凝胶电子设备:电阻传感器、配备曲率传感器的执行器、电感器和生物医学电极。印刷设备表现出出色的机械稳定性和电气性能(图5a-f),以及与外部环境(如商业组件、设备引线和生物组织)的简单和保形接口(图6a-k)。与现有的水凝胶电子产品制造方法相比,本文的材料和制造方法可提供高精度、可设计性和自动化。因此,该方法应该为用于诊断和治疗设备的柔软、可定制的3D水凝胶电子设备开辟新的设计可能性。图 5. 功能性水凝胶电子器件的制造图 6. 3D 打印全水凝胶电极的生物医学应用【小结】作者报告了使用可固化的基于水凝胶的支撑基质和导电银(Ag)水凝胶墨水的水凝胶电子的EM3DP。颗粒状的离子交联水凝胶表现出一种屈服应力的流体行为,使其能够适应具有高导电性(1.4×103 Scm-1)和伸展性的导电油墨的沉积。当喷嘴产生的剪切应力大于屈服应力时,3D打印机喷嘴的运动会使水凝胶基质过渡到暂时的流体状态,然后再返回到固体状态。打印后,基质和墨水可以通过激活共价交联机制而固化在一起,从而形成柔软(杨氏模量,5Ka)和可拉伸(伸长率约18)的整体水凝胶,将电路包裹起来。作者使用3D打印方法来创建一系列基于水凝胶的电子设备,包括应变传感器、配备曲率传感器的执行器、电感和生物医学电极。发光二极管(LED)和射频识别(RFID)芯片等电子元件也可以通过自动混合打印工艺轻易地纳入电路中,以扩大打印设备和电路的功能。来源:高分子科学前沿
  • 《Materials Today Physics》:3D打印超抗冻多功能柔性电子器件
    柔性电子作为一种新兴的电子技术,以其独特的柔性/延展性(弯曲、折叠、扭转、压缩或拉伸)和高灵敏特性,在信息、医疗等领域具有广泛应用前景,如电子皮肤、柔性屏、脑机接口等。水凝胶材料以其独有的特性(柔性、导电性、高拉伸性)在柔性电子领域被广泛研究和使用。采用诸如光学光刻、微接触印刷等微纳制造技术可实现图案化水凝胶柔性电子器件的制造,但是上述技术加工步骤复杂、加工成本高、幅面较小,难以实现复杂三维结构信号强化效应。微纳3D打印技术很好地平衡制造成本、加工精度和幅面的问题,可快速制造并成型任意形状和定制设计的水凝胶跨尺度结构,而且,对水凝胶进行图案化设计可进一步提高柔性电子器件的灵敏性;同时通过对水凝胶的性能诸如自粘附、导电、抗冻等性能的优化,可拓展水凝胶柔性电子的应用范围,如自粘附电子、极端温度环境工作的柔性器件等。近日,湖南大学王兆龙、段辉高教授与上海交通大学郑平院士合作,基于面投影微立体光刻技术,采用摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,通过引入粘附性的光固化单体及材料配比优化,设计了水凝胶诸如强粘附性、导电性和抗冻性等性能。通过水凝胶的结构设计提高运动信号监测的应变灵敏度,实现宽范围的运动信号传感。作者设计3D打印水凝胶柔性电极采集人体的肌电信号,将水凝胶柔性电极采集的肌电信号作为用户界面控制机械手的同步运动,以准确的完成弹奏不同音符的动作,甚至可以控制-80℃低温环境下机械手的运动。该工作引入微尺度3D打印技术使得复杂3D结构多功能柔性电子和复杂人机接口的快速制造成为可能。文章以“3D printed super-anti-freezing self-adhesive human-machine interface”为题发表在Materials Today Physics上。原文链接:https://doi.org/10.1016/j.mtphys.2021.100404该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等基金支持。图1 面投影微立体光刻技术(摩方精密,nanoArch S/P140)原理及水凝胶材料设计,利用共价键交联和氢键网络结合优化水凝胶性能图2 3D打印水凝胶诸如超拉伸、强粘附、抗冻等性能设计图3 基于面投影微立体光刻技术加工跨尺度结构的水凝胶制备高灵敏度的应变传感器,用于监测宽范围的人体运动信号图4 基于面投影微立体光刻技术加工水凝胶用于肌电信号的采集,将采集的肌电信号作为人机接口控制机械手的同步运动,以完成弹奏不同音符、甚至低温环境的动作控制
  • 港理工/港大/港城大《Nature Communications》:亚微米精度单光子3D打印熔融石英
    透明熔融石英玻璃作为一种不可或缺的重要材料,在现代社会中具备广泛应用价值。其卓越性能使得它在日常生活、科学和工业领域均发挥着重要作用。尽管熔融石英玻璃具备卓越的光学性能、热稳定性和化学耐久性等优异特点,但其高硬度和高脆性使得其可加工能性备受诟病。目前,传统熔融石英玻璃微结构制备工艺面临着流程复杂、成本高昂以及材料易碎等诸多挑战,并且在实现复杂三维(3D)结构方面仍然存在巨大困难。这给新型玻璃微纳米器件的开发、高效制造和在先进功能领域的应用带来了巨大的挑战。近年来,以3D打印/增材制造为代表的先进制造技术为玻璃加工行业带来了全新变革和重大突破。相较于传统的减材及等材成型工艺,这些新兴技术以数字设计和逐层累积为手段,成为赋予玻璃构件极高设计自由度和精确成型能力的强大工具,使得制造任意熔融石英玻璃三维结构成为可能。德国Karlsruhe理工学院科学家利用立体光刻(SLA)技术制备玻璃已取得重要突破(Nature, 2017, 544),成功实现了玻璃制品在质量、复杂度和精确度诸多方面的显著提升。这一里程碑式的进展也预示着通过3D打印技术制造具有出色光学性能的玻璃结构离普及更近了一步。随着时间的推移,全球范围内的研究者一直在不断努力提升玻璃打印技术的精确性。通过采用双光子飞秒激光直写(TPP-DIW)技术,实现了微纳米尺寸3D分辨率的玻璃结构的有效成形(Adv. Mater., 2021, 33)。然而,尽管立体光刻和双光子飞秒激光直写已分别实现了约50 μm和约100 nm的成型分辨率,并在宏观及纳观尺度上显著扩展了玻璃三维构件的应用领域,但由于3D打印技术在精度和效率方面存在固有矛盾,迄今为止,已有文献中报道的方法无法有效地制造出既具有毫米/厘米级尺寸又带有亚微米级特征的复杂玻璃三维结构。这一限制严重影响了该技术在微光学、微流控、微机械及微表面等先进领域上的应用。有鉴于此,香港理工大学3D打印中心温燮文教授联合香港大学机械工程系陆洋教授,在此前工作(Nat. Mater., 2021, 20, 1506)基础上更进一步,提出了一种通过摩方精密面投影微立体光刻(PμSL)3D打印技术制备同时具有亚微米特征及毫米/厘米级尺寸的熔融石英玻璃三维构件的方法。研究者选择了聚乙二醇功能化的二氧化硅纳米颗粒(平均直径~11.5 nm)胶体和两种丙烯酸酯作为聚合物前驱体,保证二氧化硅纳米颗粒良好的相容性和分散性。结合面投影微立体光刻3D打印灵活地创建具有复杂的三维亚微米结构的高性能透明熔融石英玻璃,其分辨率、构建速度及成型幅面均超越了目前大多数其他3D打印玻璃技术几个数量级。 图1:通过面投影微立体光刻3D打印所得透明熔融石英玻璃。(a)面投影微立体光刻3D打印示意图,呈现了打印所得熔融石英玻璃制成微缩维多利亚港的光学和电子显微镜图像。(b)复合纳米前驱体的各化学组分。(c)面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列在高温环境下展示了出色的稳定性。(d)4 × 6阵列的透明熔融石英玻璃蜂窝结构的光学和电子显微镜图像,其中央的细长悬线具有亚微米级别尺寸。(e)该方案所制备的熔融石英玻璃在分辨率及成型速度上的关系图,及与已报道的其他同类技术的比较。 图2:面投影微立体光刻3D打印所得具有多尺度临界特征的透明熔融石英玻璃多层级点阵。(a)多层级点阵结构;(b)多层级点阵网络;(c & d)单个多层级点阵胞元;(e)多层级架构;(f)基础点阵;(g & h)基础杆件及其具备的亚微米特征。尺寸跨度由mm逐步减少到nm,接近5个数量级。利用面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列,其具有亚纳米级别的表面粗糙度(Ra≈0.633 nm)。同时,研究者展示了通过3D打印制造的熔融石英玻璃微透镜阵列在成像方面的出色能力,具备优良的均匀性、清晰度、对比度和锐度。 图3:面投影微立体光刻3D打印的具有亚纳米级别表面粗糙度的熔融石英玻璃微透镜阵列。单个透镜的高精度光学显微镜图像,方框区域显示了白光干涉共聚焦显微镜测试结果,沿XY方向均能实现亚纳米级别表面粗糙度,以此制备高均匀性、高清晰度、高对比度和高锐度的微透镜阵列。面投影微立体光刻3D打印技术赋予了熔融石英玻璃微流体器件高精度、简化工艺、高直视性、大结构尺寸及复杂三维设计自由度,进一步展现出该器件出色的液滴/流体操控能力。 图4:面投影微立体光刻3D打印具备超疏水性能的仿生三维熔融石英玻璃微表面结构,以及具有Y型流道的免键合三维熔融石英玻璃微流控芯片。超疏水仿生三维熔融石英玻璃微表面展现了极佳的液滴黏附能力(即“花瓣效应”),即使在翻转180°后仍能牢固锁住液滴;在免键合Y型流道三维熔融石英玻璃微流控芯片,由于表面张力占主导,两种流体呈现了不互溶的“层流”现象。该工作进行于香港城市大学深圳研究院纳米制造实验室,相关成果以“One-photon Three-dimensional Printed Fused Silica Glass with Sub-micron Features”为题发表于国际期刊《自然通讯》(Nature Communications)上,课题组2020级博士研究生黎子永为该论文第一作者。在该研究中,熔融石英玻璃三维微纳样品由摩方精密2 μm精度的nanoArch P130超高精密3D打印系统制备。相关技术已申请专利,后续将与摩方精密合作进行商业化应用。
  • 梅特勒托利多ics系列电子台秤在制剂药行业的应用
    梅特勒托利多ics系列电子台秤在制剂药行业的应用 应用背景 客户介绍:该客户为广州某一具生产粉针剂、水针剂、滴眼剂、服剂、冲剂、片剂、胶囊剂、干混悬剂等剂型能力的大型企业。应用行业:生物制药 应用环节:制剂药-无菌粉针 -称量间称量配料 -固态粉体 -预置物料信息,仪表输入项 -中精度称重 -打印标签用于后道配料追溯 客户关注点 减少人工称量时的错误(选择物料,记录数据…) 实时标签打印和数据存储,提升追溯性 符合统一的标签信息要求,节省了额外的qc评审工作 解决方案 内置物料代码于仪表,自由选取物料,实现标签打印 仪表可以输入信息,并且储存称重记录 产品:ics685,gt800 ics685 多功能自动检重 从直观的用户菜单和计数、检重、累计、填充等称重应用功能中获益。 用户自定义功能键,大尺寸彩色 tft 显示屏,可自定义的用户提示功能可提高工作效率与精确度。 各种接口确保与您的系统集成,并实现至多四台秤的连接。 可单独定义的物品数据库存储多达 30,000 条数据记录,并可利用条形码扫描器或键盘调用数据。
  • 分析称3D生物打印技术即将快速成长并创收
    据著名投资网站Seekingalpha刊登署名为克里斯弗兰戈尔德(Cris Frangold)的评论文章称,3D打印技术已经成为目前最热门的新技术之一,其中3D生物打印技术发展潜力非常巨大,预计未来几年将实现快速成长和创造大量收入。  面向医学研究和医疗设备的3D人体组织开发商和制造商Organovo Holdings正在同云设计和技术软件厂商Autodesk合作开发首款生物打印3D设计软件。  这款软件将与Organovo的NovoGen MMX生物打印机配套使用,这表明人类在提高3D人体组织设计的可用性和功能上向前迈出了重要一步,有可能拓展生物打印用户的数量。Organovo的3D生物打印技术可以创造3维人体组织,从结构上纠正和构成人体细胞。利用这种方式创造出来的组织可以想原生的人体组织一样发挥功能,这也为先进药物发现和开发提供了机会,未来还有可能应用于临床治疗和组织移植。  Autodesk致力于开发人机互动、计算机图形和数字设计等最先进的技术。它打算将其技术拓展应用到设计和模拟分子和人体系统的软件开发之中。  3D生物打印是什么?  Organovo正在探索利用可以生产机体组件的材料来打印人体组织以及利用计算机化可适应制造工艺进行人体组织移植的新途径。定制样品和成品是利用廉价3D计算机打印机生产出来的。这些医学打印机并不使用挤压成型的塑料、金属或陶瓷材料,而是使用活体细胞材料。这种工艺被称作快速生物打印。它是对我们所熟悉的传统喷墨式打印机采用的标准技术的创新应用。这些打印机可以创造出任何形状的组织结构,比如血管、小块皮肤和肌肉等等。  Organovo和Autodesk之间的协同作用  这两家公司有很大的合作潜力。Organovo的NovoGen MMX Bioprinter是一种全新的、全自动化(定制图形用户界面)、专为满足生物研究和生物打印的各种需求而开发的软硬件平台。从硬件的角度来说,它是一种强大的工具,使用了最新的技术,但是它运行在目前最新的软件平台之上。科学家们每次想要使用打印机时,都必须从头编写相关的软件,这意味着科学家们要花大量的时间去调试软件,而不是进行技术研究。  Autodesk已经成为很多专业化设计领域的领军厂商,可能在过去的20年里被开发出来的所有产品都是利用Autodesk的软件开发出来的,但是这将是它第一次去开发能够创造活体事物的软件。未来5年内实现的第一款应用很可能会是准备用于临床试验的简单组织。与此同时,Organovo希望通过生产能够被用于药品研究、发现和开发的活体组织获得一个稳定而且可持续的创收源泉。  了解3D生物打印技术的发展潜力的最好办法就是对比研究其他技术的演变历程,那些技术可能在20年前完全是不可想象的。虽然技术不同,但是还是能够说明问题的,比如最典型的例子就是平板电脑和智能手机的发展历程。推动平板电脑和智能手机技术发展的主要动力可能是消费者需要一种多功能的、价格低廉的、实用性强的便携式设备。微软在2002年率先推出商业化平板电脑Microsoft Tablet PC,但是并未获得微软所希望的成功。8年后,苹果在2010年推出iPad,这才打破了技术上的壁垒。如今,平板电脑已经在全球市场畅销,预计它的销量很快就会超过笔记本电脑。  3D打印技术的开发已经成为当今最热门的新技术之一。3D打印技术最早可追溯至1984年。这种技术按照摩尔定律不断向前发展,同时成本则在不断下降,逐步降低到主流公司能够使用3D打印机的程度。在过去的2年里,3D打印领域的市场领先者3D Systems和Stratasys一直是最热门的两家公司。3D打印公司近几年一直在迅猛发展。预计3D打印机是今年1月初召开的拉斯维加斯CES展会上风头最劲的话题。3D Systems的股票自今年年初以来已经上涨了15%。  预计3D打印行业将在近几年实现快速成长和创造大量收入,因为越来越多的公司开始采用这种技术。如今,象福特、波音和通用电气那样的产业巨头都已经开始在它们的制造工艺中采用3D打印技术。  据Autodesk副总裁布莱恩马修(Brian Mathews)称:“3D打印是重新设想制造工艺的一种方法。”福特公司利用3D打印技术提高了样品制造的速度和成本效率。同样,波音将3D打印技术应用到了军用飞机的组件制造之中。2012年11月,通用电气收购了曾对3D打印设备投入大量资金的工程技术公司Morris Technologies,它将专注于打印最新喷气式飞机引擎的各种组件。  不难想象,人体组织3D打印技术很可能也会以类似的成长趋势发展下去。  据致力于增加人体器官、眼睛和组织捐献工作的美国非营利性组织Donate Life America称:“虽然医学技术和捐献一直在发展,但是市场对人体器官、眼睛和组织的需求仍然远远大于捐献的数量。仅在美国,就有超过11.5万人正在等待器官移植。”  CompaniesandMarkets.com是一家全球性的商业信息整合商,该公司旗下有很多专家分析师,他们编著了数百份市场研究报告。  据一位名叫麦克金(Mike King)的专家称:“预计到2017年的时候,全球人造器官市场将达到200亿美元的规模,这主要是由于需要器官移植的病人的需求不断增长所推动的。另外,技术进步、成本下降、人口老龄化和捐献器官数量少也是造成未来几年内人造器官市场需求猛增的因素。”  报告还指出,由于全球糖尿病患者超过了1亿人,预计人造胰腺将有很好的发展前景。人造器官的全球需求是由人造肾脏引发的。  结论  其他一些公司也在积极研究和开发组织重生和治疗技术,比如Tengion等,但它们使用的是传统的技术,而非生物打印技术 那些公司专注的重点都跟Organovo不同。3D打印技术可能还要较长的一段时间才能获利,尽管这个技术领域的投资风险很高,但是潜在回报可能非常巨大。  但是,这个技术领域也有一些短期利好因素存在,比如从药品发现和开发中获得收入等。2010年,Organovo与Pfizer签订了一份合作协议,预计Organovo在2012年底之前可以从中获得45万美元的收入。后来它又在2011年10月与United Therapeutics达成了一项为期30个月的合作,Organovo将利用其生物打印技术进行与肺动脉高压治疗有关的研究。Organovo已经承认它从这项合作中获得了61.8万美元的收入。
  • 标签打印 - 效率提升的必选方案
    随着时代的发展,面对着越来越细化的工作分工,标签打印机正以前所未有速度进入到我们的工作中,合理运用标签打印机的功能,可以有效的实现文件管理,归类,特殊物品的识别,管理等,让我们的工作变成有条不紊。 随着时代的发展,面对着越来越细化的工作分工,标签打印机正以前所未有速度进入到我们的工作中,合理运用标签打印机的功能,可以有效的实现文件管理,归类,特殊物品的识别,管理等,让我们的工作变成有条不紊。在工业生产制造中,标签打印也同样起着非常重要的作用,应用在很多的称重场景,如物料入库,材料分选,配料配方,质检以及成品出库等等,称重与标签打印的需求息息相关。针对标签打印的需求,奥豪斯为您提供完善的解决方案。Defender 5000中精度电子台秤, Defender 6000 XW系列超级防水台秤以及Ranger 7000系列高精度秤均可支持标签打印,其打印内容除毛重、皮重、净重等基础信息外,还可打印产品批次号,时间日期,交易号,称重模式,输出状态,操作人,物料编号,物料名称,平均单重,流水号,条码,二维码及品牌Logo等信息。Defender 5000,Defender 6000™ (XW)与Ranger 7000产品均预设有六个模板,其中一个为简单模板,可打印称重结果,满足客户的打印需求;另外有五个自定义模板,可以根据用户的需求来调整打印尺寸与内容。配合ScaleMate*软件使用,可为客户提供最大程度上的便利去设计标签模版,提高工作效率。 在生物制药行业,食品饮料等行业中使用标签打印机,有助于满足数据管理和记录的相关规定。手动记录称量结果可能会出现抄录错误,同时还会因字迹不佳等导致结果释义不一致! 奥豪斯Explorer天平能为实验室提供灵活的记录和贴标选项,有助于消除抄录误差、加速工作流程并确保可追溯性,天平内置5个自定义打印模板,其中2个预设模板方便客户直接使用。 任何带有串口的斑马标签打印机均可连接以上OHAUS产品,同时我们还支持可以使用ZPL语言的串口标签打印机。配D52加斑马打印机的图片* ScaleMate软件 可在PC端读取、设置以及备份天平或秤的菜单,管理库信息、用户信息以及更加方便地设置打印模板
  • 俄制成该国首台太空3D打印样机
    据新华社莫斯科电,太空3D打印正受到各航天大国的青睐,在美国将3D打印机送入国际空间站后,俄罗斯研究人员也宣布制成了该国首台太空3D打印机样机,计划在进一步完善后,在2018年送入国际空间站进行测试。  据俄媒体近日报道,上述3D打印样机由位于西伯利亚的托木斯克理工大学高科技物理研究所等4家单位联合研制。该研究所副所长科卢巴耶夫介绍说,目前在国际空间站内使用各种设备和装置时,需为它们定期补充、更换零部件,例如螺母、电缆紧固件、仪器插孔的防护盖等。它们需由货运飞船从地球运送,运输成本太高。如果使用太空3D打印机在空间站中按需制造这些零部件,就要方便得多。  科卢巴耶夫表示,这个流程并不复杂,宇航员在与地面通信联络时可收到某个零部件的数字化三维模型,将该模型输入后期处理软件,生成所需产品的各个横截面数据和打印控制代码后,即可执行“打印”操作。  但科卢巴耶夫认为,要让太空3D打印真正走向应用,还需解决一些技术细节问题。例如,太空3D打印任务需在与空间站内部环境隔离的条件下实施,以免生成的废气飘散到空间站内 此外,在地面环境下,重力有助3D打印机层层铺设的材料粉末及其喷涂的胶水黏合在一起,而在太空失重环境中,需要对3D打印机进行针对性的改造。  俄罗斯载人航天任务的重要实施者“能源”集团公司也参与了这一3D打印项目,在其支持下,俄研发单位已向俄航天主管部门递交了国际空间站试验申请。如果获批,俄研发单位将再制作数台太空3D打印机,进行多轮地面测试,力争在2018年年底前将一台筛选出的3D打印机送入国际空间站的俄罗斯太空舱。  俄专家认为,未来的太空3D打印机须具备小规模工业化生产各种工具、零部件和日常用品的能力,才能成为本世纪载人考察月球和火星任务中的标配装备。
  • 3D打印——高端制造的利器
    3D打印是制造业热门技术,应用范围极广。它既可以打印塑料、陶瓷等非金属材料,也可以打印钢铁、铝合金、钛合金、高温合金等金属材料,以及复合材料、生物材料甚至是生命材料,成形尺寸从微纳米元器件到10米以上大型航空结构件,为现代制造业发展及传统制造业升级转型提供了巨大契机。相较传统制造方法,3D打印在理念上大为不同。我们经常使用的产品都是三维的,传统制造方法是模具成形或者切削加工,也被称作是等材制造及减材制造。等材制造就是人们熟知的铸锻焊,已经有数千年历史。无论是四川的三星堆,还是陕西的兵马俑,都能看到用等材制造方法制成的精美铜器。电动机问世后,以其为动力,可以对材料进行切削加工。因为在车铣刨磨的加工过程中材料逐渐被切掉,所以被称为减材制造。与上述两种传统制造方法相比,我们俗称的3D打印技术是上世纪80年代发明的新制造方法,类似燕子衔泥造窝,材料一点一点累加,造出三维物体来,因此又称增材制造。虽然从理念上说,燕子衔泥、万里长城都可以视作增材制造,但是只有在计算机控制下,把需要的材料按照设计累加到需要的地方,实现控形控性,才是真正的增材制造。赋能产品设计制造,推动高端制造业长足进步经过多年研究与发展,人们发明了光固化、粉末烧结、丝材累加等3D打印技术。这3种技术分别利用激光扫描液态光敏树脂表面,使之固化,或者高能束扫描材料粉末,使之烧结,或者采用热/电弧/高能束熔融丝材按照图形剖面铺设等方法,在剖面上一层层累加,制成三维实体零件。信息技术日新月异,3D打印技术在计算机控制下,可以打印出多种材料、任意形状,因此在工业及日常生活中,正带来许多重大变化。不同的制造技术有不同的技术特点。比如等材制造的铸锻焊过程,需要模具、砂型,如果我们只做一件样品,成本上就划不来,它更适合于批量制造。当然,也可以用减材制造进行切削加工,但加工过程会造成材料浪费。比如航空航天制造中,为实现轻量化,一些零件很大却很轻,形状复杂,要把材料尽可能地分布在边沿,这就需要切掉很多材料。对一些像铝合金、钛合金这样贵重的金属来说,付出的成本高昂。3D打印技术摆脱了模具、工装夹具等生产准备工作,在新产品开发、首件制造等方面,极大缩短了周期,降低了成本。而且通过计算机控制,完全实现数字化,哪里需要材料,就可以把材料堆积到哪里,做到节材制造。目前,我国不少企业的制造能力强,但产品开发能力相对不足,制约了制造业向价值链顶端的发展。3D打印可以帮助我们补足这一短板,缩短设计迭代、样机制作、评价、分析、改进、量产等流程。如在航空航天等高端装备的快速开发和迭代升级方面,3D打印已成为新产品开发的有力工具。3D打印还为创新设计拓展出巨大空间。过去设计师虽然有很好的构想,但由于模具制造的复杂性、切削加工空间的可达性,不能按照原构想来设计,只能把大的零件拆成几十、上百个小零件,设计与制造的成本随之增加。对于传统制造难以实现的零件形状或结构,3D打印可以胜任,通过结构一体化制造,实现最优设计构想。这就为设计创新、产品创新、装备创新提供巨大空间,由此为制造业带来不可估量的效益。比如,一家生产飞机发动机的大型公司,原来在制造发动机燃油喷嘴过程中,由于制造技术的局限,需要把喷嘴分成20多个零件去制造。这20多个零件中的每一个都要达到微米级,装配在一起时需要焊接,然而一焊接,就达不到微米级的精度了。结果,燃油喷嘴的制造缺乏一致性,燃油效率很难优化。而现在,可以把20多个零件一体化地3D打印出来,化繁为简,提高了零件的燃油效率,大大增强产品竞争力。除了擅长复杂零件的设计制造,3D打印还可以在个性化制造上大显身手。伴随信息化进程,个性化制造在越来越多的领域替代流水线式大批量制造。家电、可穿戴电子设备乃至汽车等消费品越来越呈现个性化趋势,而3D打印尤为擅长个性化制造。比如为运动员3D打印一双最适合其脚型的鞋子,将有助于改善穿着体验,提高运动成绩。在精准医疗领域,如骨科手术辅具、牙科正畸、手术模型等方面,能够越来越多地看到3D打印的应用。3D打印医疗器械新产品层出不穷,已从最初用于制造生物假体,扩展至细胞、组织和器官打印研究,未来或将用于人体器官再创,为人类带来福祉。产业链不断扩展,“3D打印+”迈上新台阶全球增材制造产业链正在不断扩展。航空航天、航海、能源动力、汽车和轨道交通、电子工业、模具制造、医疗健康、数字创意、建筑等领域的企业和服务厂商不断涌入增材制造产业。汽车行业超越航空航天、医疗等领域,成为3D打印技术的第一大应用行业,包括原型设计、模具制造和批量化3D打印零件等。3D打印在前沿科学研究方面,也发挥着越来越重要的作用。3D打印技术能在可控条件下,快速将不同材料混合在一起,打印试件或零件,因此可以按照材料基因组方法,实验与发明新合金、新复合材料,为工业应用快速开发出更多更好的新材料,满足高端装备、新产品的多方面需求。近年来,功能梯度材料越来越受到重视。用多种不同材料打印零件,将材料分层,不同材料打印在不同层,零件就可以实现表面是耐磨、耐腐蚀的,里面是高强度、韧性好的,再里面就像人体的骨头一样,是疏松的蜂窝状结构。如此一来,产品在增强刚性的同时减轻了重量。当前,人们正致力于增材制造技术开发与产业化。3D打印已经应用于我国航空航天开发和小批量制造、汽车快速开发及轻量化、精准医疗、文化创意等领域。在材料制备、3D打印主流工艺与装备、关键零部件、控制软件及各领域工程应用等方面,初步形成创新链与产业链。去年,我国增材制造产业规模增速高于全球同期增速。我国已将3D打印应用于飞机起落架这类高负荷承力件;中国首枚火星探测器“天问一号”的运载火箭发动机上,安装了许多3D打印零件。作为一种短流程的制造技术,3D打印在抗击新冠肺炎疫情中也发挥了作用,如3D打印医疗方舱、护目镜、呼吸阀等。经过近40年发展,增材制造已经迈向“3D打印+”阶段。从开始的原型制造逐渐发展为直接制造、批量制造;从以形状控制为主要目标的模型模具制造,到形性兼具的结构功能一体化的部件组件制造;从微纳米尺度的功能元器件制造到数十米大小的民用建筑物打印… … 增材制造作为一项变革性技术,是先进制造的有力工具,是智能制造不可分割的重要组成部分。随着“3D打印+”的深入开展,增材制造、减材制造与等材制造将走向互融互通。不同制造技术各显其长,发挥合力,共同推动我国由制造大国向制造强国迈进。(作者为中国工程院院士、西安交通大学教授)
  • 恒美电子:农药残留检测仪器直接打印出蔬菜名称
    农药残留检测仪器可对上百种农产品和食品进行检测,分类管理,检测结果直观显示,方便人们清晰了解农产品的安全性,可直接打印出蔬菜名称。近年来,果蔬农产品的交易量较大。但由于农药残留的存在,许多果蔬农产品的质量安全受到了影响。农药残留检测仪器采用酶抑制率法比色法,快速、准确地检测水果、蔬菜等农林产品中有机磷和氨基甲酸酯类农药的含量。农药残留检测仪器具有操作简单、检测速度快、自动化程度高、检测结果准确、可同时检测多个样本、智能化程度高、数据采集方便等特点,不仅适用于企业自身检验、消费者自检等,同样适用于工商执法部门等,只需30分钟左右即可得到检测结果,小巧便携,相当于一个小型实验室并可随时进行现场测试。农药残留检测仪器可对多种蔬菜水果等农副产品进行快速检测筛查,确保上市农产品的食品安全,有效保障食品安全。
  • 徐铭恩:生物3D打印是3D打印技术研究最前沿领域
    首届世界3D打印技术产业大会于5月29-31日在北京中国大饭店隆重举行。在会上,杭州电子科技大学生物制造研究所教授徐铭恩发表演讲称,生物3D打印是3D打印技术研究最前沿的领域。“说到生物3D打印还有一个概念叫生物制造,这也是我国生物3D打印的前驱颜永年教授提出的一个概念,就是以3D打印为基础的生物医学,为制造技术在生物医学方面的应用开辟了新的领域。”  做生物3D打印的原因有两点:一、生物医学领域的市场规模特别巨大 二、生物3D打印在医学领域应用前景特别巨大。  目前在生物3D打印领域的研究和应用:一、细胞3D打印 二、细胞3D打印技术在药物研发领域的应用也非常广泛 三、细胞芯片 四、手术器械的3D打印。  杭州电子科技大学生物制造研究所教授徐铭恩  以下为杭州电子科技大学生物制造研究所教授徐铭恩演讲实录:  徐铭恩:女士们、先生们,大家上午好!下面由我简要给大家介绍一下生物医学的3D打印,初步给我们介绍一下我们在这个领域做的一些工作。  所谓的生物3D打印,首先面向的问题是生物医学的问题,以三维设计模型为基础,通过软件分层离散和数控成型的方法,用3D打印的方法成型生物材料,特别是细胞等材料的方法,就叫生物3D打印。生物3D打印是3D打印技术研究最前沿的领域,说到生物3D打印还有一个概念叫生物制造,这也是我国生物3D打印的前驱颜永年教授提出的一个概念,就是以3D打印为基础的生物医学,为制造技术在生物医学方面的应用开辟了新的领域。  为什么做生物3D打印?我想在今天的《对话》节目中已经提到了一些,我这里总结了一下,有两点,第一个是生物医学领域的市场规模特别巨大,这是2009年美国卫生部做的一个调查,2009年美国在医疗卫生方面的开支达到2.5亿美元,约占美国GDP的17.6%,国民收入的40%。美国卫生部进一步预测,到2018年美国在医疗方面的支出将达到GDP的20.3%,所以这个领域非常巨大。我想任何一个技术出来,有两个最赚钱的领域,一个就是医学、一个就是军事。  第二点,生物3D打印在医学领域应用前景特别巨大。为什么呢?因为生物3D打印技术所具有的快速性、准确性,及擅长制作复杂形状实体的特性使它在生物医学领域有着非常广泛的应用前景。为什么?每个人的身体构造、病理状况都存在特殊性和差异化,当3D打印与医学影像建模、与仿真技术结合之后,就能够在人工假体、植入体、人工组织器官的制造方面产生巨大的推动效应。  下面,我来讲一下我们实验室在过去几年在生物3D打印领域的研究和应用。第一个,我们来介绍细胞3D打印。这是我们实验室的一个年轻的研究生,他手里拿的是刚刚打印出来的肝单元的结构。在组织器官三维模型指导下,由3D打印机接受控制指令,定位装配或细胞材料单元,制造组织或器官前体的新技术。我们看到,图上这些细胞自发的迁移、扩散、自组织,重新形成了一个器官,也就是说如果我们能将细胞定位的放在我们所需要的位置上,那么我们就可以制造出我们所需要的器官。  细胞3D打印技术经历了这么一个发展的历程,有很多大学,包括清华大学、Slemson大学都是这方面的先驱者。这是第一种技术,叫Cell Printing技术,它的技术原理是将细胞打印在一层一层的特殊热敏材料上,打印完之后将材料叠加起来就得到我们需要的结构,第一台3D细胞打印机是由正常的打印机改的,这是它的喷头,这是打印出来的结构,由细胞组成。这是3D Bioplotter,是将细胞与琼斯基复合材料共混,挤出成型在具有交联剂的底板上,层层叠加。这个是孙伟教授做的平台,集成了基于气动使能连续挤出成型3个喷头,打印一层喷射一次交联剂,可以进行药物毒性试验的肝单元结构。这个是清华大学的细胞组装技术,它是将细胞与水凝较材料共混,挤出成型在低温成型腔内。  细胞3D打印的应用领域有这么几个,第一个是实验室的领域,它可以为再生医学、组织工程、干细胞、癌症等等领域提供非常好的一个研究工具。我们在跟一些学者聊的时候,甚至认为它可以做到像PCR技术和膜片钳技术的推动作用,由于它的这样一个推动作用,获得了诺贝尔奖。第二个可以为构建和修复组织器官提供新的临床医学技术,第三是开发全新的高成功率的技术,这个市场也是非常巨大的。这是我们前段时间做的人工肝单元的3D打印,因为我们打印好这个结构后,并不知道内部设计的通道是否通畅,我们建立了全新的一套3D成型系统。我们可以看到,我们所构建的这项通道有没有产生。这个是我们细胞培养两周之后所看到的细胞在这个结构内生长非常良好,而且我们要构建的通道也形成了。这个是我们开发的一台专门用来进行肝脏肝单元培养的设备,它可以控制温度、流量等等这些参数,这个也是组织工程中非常重要的一个东西,就是这个生物反应器。这个是我们对肝脏做的大概持续8周的肝功能检测,可以看到,在我们的这个结构里,肝脏功能维持得非常好。这是我们另外的一些尝试做的人工组织器官的工作,这是3D打印细胞的软骨组织,这是我们细胞3D打印的皮肤组织,都是用相应的皮肤或者软骨细胞来打印的。  第二个,除了做人工的组织器官以外,细胞3D打印技术在药物研发领域的应用也是非常广泛的。这是一个数据,这是2011年美国制药工业协会新药研发投入,大概是674亿美元,而其中光辉瑞一家就投资了94亿美元,一年这样投下去能产生几个药呢?大概0.5个药还不到,这几年真正原创型新药的产生速度很慢,大概只有2—3个,有3个已经很不错了。所以说,药物的开发产业是一个投入非常大,但是成功率很低的产业。原因是什么呢?这是一个典型的药物筛选图,我们可以看到,首先,进行的一个叫做高通量的筛选,高通量筛选是基于什么呢?基于蛋白质和单细胞水平的,然后,当高通量筛选完后,我们筛选出一些所谓的候选药物,然后进行动物试验。在动物试验中,我们有发现一万个化合物,筛选出一百个候选物,可能在动物试验中只有一个有效果,等的它到了人体以后,一个都没有了,原因是什么?是因为这里有一个缺口,什么缺口?在单细胞、蛋白质以及动物之间,缺乏一个中间过渡阶段的筛选。我们知道,人内部的调控网络是很复杂的,单个蛋白质的增加或降低,并不能说明这个化合对人体有什么效果,有的时候可能效果是完全截然相反的。所以说,我们认为如果用3D打印技术构建人工的组织器官,这个东西可以用来进行药物的筛选。  这是我们做的一部分工作,这是我们用细胞3D打印技术打印了一个代谢综合症的模型,包括糖尿病、肥胖、高血压、高血脂、心肌梗塞一系列的疾病。大概人口死亡的40%以上是死于代谢综合症,正因为这个病那么重要,所以我们在体外构建了一个代谢综合症的模型,这是一个体内调控系统的结构,我们在体外构建了一个这样的结构。这是我们构建的细胞打印获得的能量代谢的系统模型图,可以看到细胞在里面的生长非常良好,我们把人类的胰岛细胞也放在这个结构中,形成了一个我们所需要的有通讯的三维模型。这是我们模型做的一些结果,可以看到,在这个模型中,人类的胰岛素的分泌跟我们的基体的分泌是非常一致的,而且在长时间的葡萄牙的刺激之后,相当于是仿着我们人体糖尿病的病理,我们可以发现,分泌峰降低而且延迟。这是我们对相关的葡萄牙代谢、脂肪酸代谢,以及脂肪细胞分泌素的研究,相对于传统的模型,这个更接近体内的真情况。  除此以外,我们还做了细胞芯片的工作,这是我们设计的细胞芯片,现在的芯片加工工艺,可以在细胞上加工各种芯片传感器。虽然我们可以做出这样的复杂的结构来,但是目前来说,在往上面放细胞的过程中,有点像是一个撒种子的时候,就这样盲目地撒下去,哪里有、哪里没有,并不能控制,所以我们做的工作就是细胞三维打印技术,在芯片上打印细胞,这是我们做的一部分工作,在不同位置打印不同的细胞,图上这个我们打印的是心肌细胞,这两个刺激点产生刺激,心肌会产生一个动作电位的传递,其他我们测的是一种肾上腺素来源的细胞,这些细胞的工作,它们的增值都能够被芯片同步检测到。  这是我们后来跟一个杭州细胞芯片公司合作的一个芯片,到后来,我们做下去之后,放弃了其他的传感器,只用一种IDA的传感器。但是每个位置都能够打印上不同的细胞,这就允许我们同步检测,在同一种物理因子或者化学因子刺激下,不同细胞的不同生理反应。这是我们当时做的研究,我们用这种方式非常准确地进行了肿瘤药物的筛选,而且这个筛选过程中同时做到两件事情,第一个,我们把最有效的药物筛选出来,第二个,我们把毒副作用最小的药物也筛选出来。在这个系统中,我们可以同步做到这两点。  第二部分是组织工程支架和植入物的3D打印。在美国,骨植入修复材料市场每年超过200亿美元,这是一个个性化骨组织工程支架的工程,首先是3D数据的获取,在获取之后,是3D数据的处理,包括3D模型的建立,包括一个有限源的分析,根据有限源分析的结构和受力类型,我们可以对材料的不同部位进行一个复制,最后在打印过程中可以采取不同的编制方法,从而用最少的材料达到最大的机械强度。  这是一台打印的设备,是清华大学一套低温沉积系统,这是我们做的一些结构。这个是我们用骨支架材料做的生物学的检测,我们给它种上了一种干细胞,经过几周培养之后,我们发现骨胶原的分泌非常的旺盛,而且出现了钙结节。这是我们做的动物试验,可以看到,我们的支架是有孔的,每一个孔里面都长进去一到两根血管,这在骨组织工程上是非常重要的,所以说,在12周后,可以看到我们的材料全部降解了,而且形成了大量的软骨,而且骨细胞还在快速的增殖,这是我们对于植入的骨支架的研究。当然,这部分研究刚刚开始,我们还尝试在个性化的假体的3D打印。  这是参加残疾人运动会一个很有名的运动员,他的旁边有一假肢,在我国,肢体残疾人有800多万,至少有70万需要安装假肢,假肢结构和外形的设计制造都直接影响多患者使用假体的舒适度和功能。目前,美国一家公司提供的假肢大概是5000美元一个。  这是我们的工作,和一个研制机械手的教授合作的,我们做了一个机械手,这个机械手有很好的力量控制和空间多维度的力量控制,但是机械手还是需要跟人的真手有一个非常好的接受腔。  第四个工作是手术器械的3D打印,齿科手术模板,这是一个种牙的过程,在螺钉打进去的过程中需要避开旁边的血管和神经,以前得靠医生的经验来完成,我们可以用3D打印技术做一个模型,只要放到病人的嘴巴里面,根据那些孔你打下去,位置就对了。  最后,我们最近还做了一个下颚修复手术的模板。这是猴子的下颚修复手术,我们打印了模板之后,就可以做相应的加工。谢谢大家!
  • 3D打印粉体材料粒度粒形分析的“黄金CP”
    3D打印技术对多数普通人来说还属于“只闻其声未见其人”的技术。它是一项不同于以往的新型制造技术。3D打印是一种主要用于构建复杂结构三维物体的增材制造技术。主要优势在于制造复杂结构、个性化定制产品。目前在汽车工业、航天航空、医疗领域里的一些复杂结构体,均有望通过3D打印轻松实现。3D打印技术期望在制造业普及程度提高,核心要素之一是新兴材料的发展。3D打印材料的技术水平和产品多样性支撑着整个产业的发展。目前,市场上使用比较普及的3D打印材料主要包括:塑料(ABS、PLA、尼龙、光聚合物等),金属(钢、银、金、钛、铝等单质或者合金)两大类,其形态一般有粉末状、丝状、层片状、液体状等。就目前的市场来看,塑料类材料在消费级产品制造中是主流。其生产材料主要是ABS、PLA、尼龙和光聚合物这四种。但如果从市场需求和大工业、高科技产业角度来看,金属类材料3D打印制作的产品更具有广阔前景。尤其是在航空航天、军工、汽车、医疗等行业的运用上具备很大的发展空间。目前全球3D 打印耗材市场的年增长率超过了20%,其中金属粉末的需求量的增长速率远高于塑料材料。尽管目前塑料3D 打印材料扔占据整个市场接近50%的份额,但是以钛合金粉末为代表的金属粉末,将在未来几年里全面赶超塑料3D 打印耗材。1、金属3D打印技术基本原理:首先在计算机中用CAD设计软件创建出三维模型并导出STL文件,然后将模型横向分割成多层。3D打印机使用生成的数字三维数据,控制高能激光束或电子束逐层熔化金属粉末,形成立体复杂工件。根据加工过程金属粉末材料的使用工艺差异,金属3D打印技术常见的有以下几类:1)激光选区熔化(SLM)技术。采用高能激光束照射熔融预先铺展好的金属粉末原料,逐层“打印”出工件。2)激光近净成型(LENS)技术。其原理是在用高能激光按预先编制的打印轨迹熔化同步供给的金属粉末适用于不锈钢、钛及钛合金、Co-Cr-Mo合金等金属粉末的3D打印制造。3)电子束选区熔化(EBSM)是采用电子束照射预先铺展好的金属粉末原料,形式上跟SLM技术相似。4)纳米颗粒喷射金属成型(NPJ)。这种技术采用的是高温液态“铁水”(内含纳米合金颗粒)。这些金属以液体的状态进入3D打印机,打印机用含有金属纳米颗粒的“铁水”喷射成型。2、3D打印金属粉体材料金属粉体材料是金属3D打印工艺的原材料,其基本性能对成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形貌、粒度分布、流动性等方面。当前主流的3D 打印金属粉末制备方法包括:气雾化法(GA)、等离子旋转电极法(PREP)、等离子雾化法(PA),以及射频等离子球化法(PS)等等。气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。采用气雾化法所得粉末粒度分布宽,平均粒径小,杂质易于控制。但生产出的粉末由于工艺特性导致颗粒内部易产生气泡,粉末形状不均匀以及出现行星球等问题。 左图:粉体理想状态 ;右图:A卫星球 B不规则、内部气泡(缺陷)等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成,制备的粉末球形度可达99.5%以上。但是这种工艺制造的粉末粒径分布较窄,主要介于50~150μm,存在平均粒径偏大的问题。射频等离子球化工艺是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子。例用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。该工艺得到的粉末粒度范围可以达到20~50μm。国内一些知名企业有成熟的工艺应用。应用该工艺生产的AlSi9Cu3打印粉具有较好的耐高温、耐腐蚀性能。经验证的打印力学性能(SLM工艺,打印态)抗拉强度可达480MPa,屈服强度可达300MPa。综上所述,3D打印金属粉末的性能跟粉末的粒度分布、颗粒形貌息息相关。同时,现有的各种生产工艺生产的粉体都存在粒形、粒径相关问题。这使得粒型、粒度分布检测和生产工艺过程控制成为3D打印技术中的重要环节。引入先进的粒度、形貌检测设备,为工艺改进、生产控制、产品质检提供科学数据是势在必行的。3、金属粉体粒度分析仪器原理及特点在粒度分析领域,存在多种不同测量原理、集多门现代科学技术为一体的粒度测量仪器。例如:激光粒度分析仪、库尔特计数器、颗粒图像处理仪、离心沉降仪等等。激光粒度分析仪是现今广为流行的粒度测试仪器,它具有量程大、测量动态范围宽等诸多优点,被广泛的运用到粉体的生产、科研领域。3.1 激光粒度仪原理激光粒度仪3D结构图激光粒度仪光学原理简图(GB/T 19077-2016)光是一种电磁波。它在传播过程中遇到颗粒时,将与之相互作用,其中的一部分将偏离原来的行进方向,这种物理现象称之为光的散射(衍射)。一束平行光在传播过程中遇到障碍物颗粒,光波发生偏转,偏转的角度跟颗粒的大小相关。颗粒粒径越大,光波偏转的角度越小;颗粒粒径越小,光波偏转角度越大。激光粒度分析仪就是根据这种光波的物理特性进行粒度分析的。TOPSIZER参数:量程:0.01-2000μm ,红、蓝激光双光源技术激光粒度分析仪是目前使用领域较广的粒度分析仪,这是由于激光粒度分析仪的内在技术优势决定的。激光粒度分析仪测试量程大,通常可以达到0.1μm到750μm以上。而且不需要任何形式的软件、硬件换挡操作即可实现全量程范围内的样品测试(这种特性通常被称为仪器的动态测量范围)。仪器动态测量范围大,则使用的局限性小,测试宽分布样品的能力强。激光粒度分析仪测试重复性精度高、测试速度很快,一个样品的测试过程一般只需2~3分钟,测试标准粒子重复性精度可达到0.5%以内。3.2 颗粒图像处理仪原理颗粒图像处理仪将电子图像捕捉分析技术与光学成像设备相结合,用数字摄像机拍摄经过光学设备放大、成像的颗粒图像,由计算机自动的对颗粒的形貌特征和粒度进行分析和计算。PIP9.1 量程0.5-3000μm颗粒图像处理仪适用于粉末颗粒的粒度测量、形貌观察和圆度分析,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散、形貌状况。PIP9.1颗粒图像处理使用生物显微镜加工业级高清数码摄像机的硬件组合,有效满足了5-1000μm范围内的粉体颗粒形貌分析需求。该形貌分析范围覆盖了大多数3D金属打印粉体的粒径分布区间。这样的硬件组合在满足技术需求的前提下,具有高性价比。3.3 图像法粒度分析仪、激光粒度分析仪的优缺点一图简述优缺点可以说,激光粒度仪加颗粒图像处理仪是3D打印粉体材料粒度粒形分析的黄金搭档检测设备。通过这两种仪器,能够有效分析粉末耗材的粒度分布及颗粒形貌是否到达理想状态。为进一步优化粉末生产工艺,提供科学数据支持。同时,仪器还能够作为生产企业的粉体产品物性参数检测仪器,为产品质量提供保障。参考资料:1.中国粉体网,曲选辉,《金属3D打印对粉末有何要求,有哪些新工艺,听听专家怎么说》2.材料导报,程玉婉、关航健、李博、肖志瑜,《金属3D打印技术及其专用粉末特征与应用》
  • 招募 | 高精密微纳3D打印系统经销商
    作为微纳3D打印的先行者和领导者,摩方始终秉承将光固化3D打印转变为真正的精密快速成型及直接生产制造的理念,其nanoArch系列3D打印系统已经被中国、日本、新加坡、美国、德国、英国、阿联酋等国家的客户广泛使用,为客户解决了高精密复杂零件的加工和制造难题。 为更好推动微纳3D打印的发展,摩方已经全面开启高精密微纳3D打印系统经销商招募计划,合作共赢、共创辉煌! 关于摩方 深圳摩方材料科技有限公司(BMF Material Technology Inc)于2016年在中国深圳成立,秉承将3D打印转变为真正的精密快速成型及直接生产制造的理念,自主研发nanoArch系列3D打印系统,为精密增材制造量身定做。摩方设备采用面投影微立体光刻(PμSL: Projection Micro Stereolithography)技术,是目前行业极少能实现超高打印精度、高精密公差加工能力的3D打印系统。PμSL技术具有成型效率高、加工成本低等突出优势,被认为是目前最具有前景的微尺度加工技术之一,已被广泛用于新材料、组织工程、微流控器件、连接器、精密医疗器械、消费电子、精密加工等行业和应用。
  • 3D打印无金属柔性胶状电极问世
    研究人员开发了一种不含金属的果冻状材料,它像生物组织一样柔软而坚韧,同时可以像传统金属一样导电。图片来源:美国麻省理工学院据最新一期《自然材料》杂志报道,美国麻省理工学院领导的国际团队开发出一种不含金属的、类似果冻的材料,它像生物组织一样柔软和坚韧,同时可像传统金属一样导电。这种材料可制成打印墨水,有朝一日或成为功能性凝胶基电极,且具有生物组织的外观和手感。研究人员表示,胶状电极有可能取代金属来刺激神经,并与心脏、大脑和身体其他器官连接。研究人员希望导电聚合物和水凝胶的结合将产生一种灵活的、生物相容的和导电的凝胶。但到目前为止制造的材料要么太脆弱,要么电气性能很差。为了分别保持导电聚合物和水凝胶的电气和机械强度,这两种成分应该以一种略有排斥的方式混合,这种状态被称为相分离。在这种略微分离的状态下,每种成分都可将各自的聚合物连接起来,形成细长的微观链,同时也可以作为一个整体混合。研究人员将其称为具有电气和机械性能的“意大利面”。其中“电气意大利面”是一种导电聚合物,可通过材料传递电流;而“机械意大利面”就是水凝胶,可传递机械力,而且由于它也是连续的,所以很坚韧有弹性。研究人员调整了配方,将“意大利面”煮成墨水,通过3D打印机输入,并打印到纯水凝胶薄膜上,图案类似于传统的金属电极。研究人员将打印的果冻状电极植入大鼠的心脏、坐骨神经和脊髓。在动物身上测试了长达两个月后这些设备始终保持稳定,几乎没有导致周围组织产生炎症或疤痕。电极还能够将来自心脏的电脉冲传递给外部监测器,并将微小脉冲传递到坐骨神经和脊髓,进而刺激相关肌肉和四肢的运动。研究人员设想,未来这种新材料能应用于心脏手术患者的恢复,可用作器官和长期植入物(包括起搏器和深部脑刺激器)之间的软电子接口。
  • 基于投影微立体光刻的3D打印技术及其应用
    作者:葛锜、李志琴、王兆龙、Kavin Kowsari、张旺、何向楠、周建林、Nicholas X Fang单位:1 Southern University of Science and Technology, China2 BMF Material Technology Inc., Shenzhen, China3 Hunan University, China4 Massachusetts Institute of Technology, USA5 Singapore University of Technology and Design, Singapore1文章导读投影微立体光刻(Projection Micro Stereolithography – PμSL)是一种基于面投影光固化原理的高精度(最高可达0.6微米)增材制造(3D打印)技术。该技术可以用于制造具有跨尺度与多材料特性的高精度复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料及生物医学等领域具有广阔的应用前景。南方科技大学、深圳摩方材科技有限公司、湖南大学、麻省理工学院等单位的葛锜、李志琴、王兆龙、周建林、Nicholas X Fang等作者在《极端制造》期刊(International Journal of Extreme Manufacturing, IJEM)上发表《基于投影微立体光刻的3D打印技术及其应用》综述,系统介绍了投影微立体光刻3D打印技术的研究背景、最新进展及未来展望。2研究背景增材制造,又称3D打印,是一种以数字模型文件为基础,将部件离散成二维图形或者路径,通过逐层叠加的方式构造三维物体的快速成型技术。对比于传统制造方法,3D打印因具有制造高精度复杂三维结构、节省材料、方便快捷等优点,已被应用到航空航天、生物医疗、电子、汽车等国民经济领域。自被发明以来,3D打印发展出了各种不同的技术,包括熔融沉积成型(FDM)、墨水直写(DIW)、喷墨(Inkjet)、立体光刻(SLA)、选区激光烧结/熔融(SLS/SLM)、双光子(TPP),以及基于数字光处理(DLP)的连续液体界面制造(CLIP)、大面积快速打印(HARP)、投影微立体光刻技术(PμSL)等。对比于其他3D打印技术,投影微立体光刻技术因其可同时实现高分辨率与大幅面3D打印(图1),被应用于前沿领域的复杂三维结构制造,并产生了一系列具有影响力的科研成果。南方科技大学葛锜副教授、湖南大学王兆龙助理教授与麻省理工学院Fang教授团队联合深圳摩方材科技有限公司针对投影微立体光刻3D打印技术在最近所做的相关代表性工作逐一地进行了详细介绍。图1 不同3D打印技术的打印精度与幅面范围3最新进展投影微立体光刻是一种通过将构成三维模型的二维离散图案投影到光敏树脂表面,激发局部光固化反应的方式,逐层叠加成型三维结构的3D打印技术。通过对光路系统、光源以及打印工艺的优化,最高打印精度可达到0.6微米。面投影微立体光刻因其能够快速一体化成型高精度、跨尺度、多材料复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料以及生物医药方面应用广泛。深圳摩方科技有限公司将原有投影微立体光刻3D打印技术进行发展与升级(图2a),并成功地将其转化为工业级3D打印装备,实现了稳定的超高精度-大幅面3D打印(精度:2微米,幅面:50毫米×50毫米;精度:10微米精度,幅面:94毫米×52毫米幅面),用于力学超材料、生物医疗器件、微力学器件及精密结构件等工业应用(图2b-j)。图2 投影微立体光刻3D技术及其相关工业级应用。(a)高精度-大幅面投影微立体光刻3D打印技术原理;(b)-(j)工业级应用典型案例。在实现跨尺度、多材料3D打印方面,采用面投影与图形扫描技术相结合的方法实现了跨尺度3D打印(图3a),采用吹气辅助投影微立体光刻法(图3b)与流体控制法(图3c)实现了多材料三维结构的快速打印。图3 跨尺度、多材料3D打印。(a)面投影与图形扫描结合实现跨尺度3D打印;(b)吹气辅助多材料3D打印;(c)流体控制辅助多材料3D打印。在实现力学超材料方面,通过投影微立体光刻3D打印技术一次成型以拉压变形占主导的八隅体桁架结构超轻-超硬力学超材料(图4a),通过多材料投影微立体光刻3D打印技术一次成型由两种不同刚度和热膨胀系数材料构成的负热膨胀系数超材料(图4b)。图4 力学超材料。(a)超轻-超硬力学超材料;(b)负热膨胀系数超材料。在光学器件打印方面,采用面投影立体光刻灰度曝光与表面浸润相结合的方法,实现光学镜头的3D打印(图5a),以及振动辅助与灰度曝光相结合的方法,实现表面纳米级光滑度的微透镜阵列3D打印(图5b)。图5 光学器件。(a)灰度曝光与表面浸润相结合实现光学镜头3D打印;(b)振动辅助与灰度曝光结合实现微透镜阵列3D打印。在4D打印方面,通过开发形状记忆光敏树脂,实现了大变形4D打印(图6a)、多材料4D打印(图6b)、自修4D打印(图6c),4D打印超材料结构(图6d)与4D打印吸能结构(图6e)等案例。图6 4D打印。(a)大变形4D打印;(b)多材料4D打印;(c)自修4D打印 (d)4D打印超材料结构;(e)4D打印吸能结构。4未来展望尽管面投影微立体光刻3D打印技术在近年来取得了快速的发展,但仍面临着如海量的图片数据传输与存储、多材料体素打印精确控制、高精度陶瓷打印等问题,亟待解决。5作者简介葛锜博士葛锜博士,南方科技大学机械与能源工程系长聘副教授。长期从事面投影微立体光刻3D打印技术研究,主要研究领域为4D打印、多功能3D打印、软物质力学、软体机器人、柔性电子等。王兆龙博士王兆龙博士,湖南大学机械与运载工程学院助理教授,长期从事微立体光刻3D打印,光学超材料及微流与热控理论及技术研究,先后参与包括重点国际(地区)合作研究项目及国家重点研发计划在内的多项国家自然科学基金和科技部重点研发项目。目前承担湖南省优秀青年基金及广东省重点领域研发计划等多项科研项目。Nicholas X. Fang博士Nicholas X. Fang博士,麻省理工学院机械系教授,长期从事包括微立体光刻3D打印技术在内的微纳技术研究,研究领域包括纳米光学、声学超材料、微纳制造、软物质等。本篇文章来自专辑:《极端制造》2020年第2期文章
  • 高校建筑模型打印:清华大学&华中科技大学
    各位朋友,新一批摩方超高精度3D打印的高校建筑模型出来啦!本轮高校建筑模型有2个,分别来自清华大学和华中科技大学,以下为实拍图分享~ 同时,欢迎感兴趣的朋友抓住机会参与“高校建筑模型征集活动”,免费获取超高精度3D打印母校建筑模型! 模型一:清华大学-大礼堂前日晷模型二:华中科技大学-新光电信息大楼活动主题:征集高校建筑模型图免费超高精度3D打印第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。感兴趣的也欢迎加小编微信,小编会拉您进群哦!
  • 让你大跌眼镜的十大3D打印术
    与传统技术相比,3D打印技术最突出的优点是无需机械加工或任何模具就能直接从计算机图形数据中生成任何形状的零件,从而大幅缩短生产周期,提高生产效率。 随着3D打印技术的迅速发展,人们对于3D打印的模型、玩具、配件等玩赏性居多的物件早已习以为常。这一技术的应用已经突破人们最初的设想,成为&ldquo 无所不能&rdquo 的&ldquo 造物&rdquo 魔术。  1. 人体器官  法国技术人员采用3D打印技术,帮助一位失去鼻子的病人找回了&ldquo 鼻子&rdquo 。外科医生先使用3D扫描仪扫描了这位病人的脸部,之后以此为基准用计算机重新构建他的鼻子。利用3D打印机和尼龙材料制作出面部外壳模具,再用硅胶为原材料制作出&ldquo 新的&rdquo 鼻子,固定在病人脸上。目前,这位病人已经恢复了正常的生活。  2.假肢  美国的两岁女孩Kate患有先天性的畸指,但Kate的家人不想让她接受外科手术。然而3D打印技术给了他们另外一个选择&mdash &mdash 一只3D打印的手,而且这只&ldquo 高科技&rdquo 的手掌只需5美元。  东京Maker Faire的新闻发布会上,一个团队展示了他们3D打印的义手&mdash &mdash Handie。Handie所有部件都是3D打印的,用户很容易根据自己的需要进行调整或者复制。开发人员还设计了一个独特的手指屈伸系统,为了降低电机的数量,他们开发了由一台电机驱动的三关节手指,可根据物体的形状被动地改变它的轨迹。 Handie能够完成很多手的功能而且它的价格十分吸引人,费用不超过400美元。  3. 食物  英国埃克塞特大学研究人员去年推出了一种3D巧克力打印机,使用者可根据自身喜好,制作出自己的专属形状巧克力。与普通喷墨打印机工作原理类似,3D巧克力打印机在打印物体时也要经过扫描、分层加工成型等步骤。  4. 服饰和鞋子  今年3月,纽约设计师 Michael Schmidt 和建筑师 Francis Bitonti 联合3D打印公司为Dita Von Teese量身定做出世界上第一条完全由3D打印技术制造的礼服。这件礼服由17片3D打印出的织物连接而成并镶有13000多颗施华洛世奇水晶。  这双3D打印的Nike鞋子名为Vapor Laser Talon Boot(蒸汽激光爪),整个鞋底都是采用3D打印技术制造。 官方称该跑鞋不仅具有出色的外观还拥有优异的性能,能提升足球运动员在前40米的冲刺能力。  5.乐器  上个月,新西兰梅西大学的机电一体化教授Olaf用3D打印技术设计制造了一把非常独特的吉他:蒸汽朋克(Steampunk)3D打印吉他。这个吉他有一个3D打印的琴体,上面带有可活动的齿轮和活塞。这些部件都是做为一个整体一次性打印出来的。这款吉他和此前其他利用3D技术打印出的长笛、小提琴等乐器都具有不错的音色。  6. 相机  法国一位名叫Lé o Marius的24岁学生使用3D打印机制作出了一部能够正常工作的单反相机(SLR),不同于数码单反(DSLR),OpenReflex使用胶卷进行拍摄。这款通过3D打印技术制成的单反相机虽然外型很粗糙,但它能够正常工作。  7. 汽车  Urbee 2是世界上第一款完全通过3D打印技术制造的汽车。这款汽车拥有三个车轮,动力7马力(5KW),并且采用的是后轮驱动的方式,预计将会在2015年正式上路。Urbee 2的燃油效率非常高,如果驾驶它横穿美国,行驶4500公里的距离,油耗一共只有38升。第一代的Urbee曾经在2010年诞生,但是受限于设计和安全因素的考虑,Urbee最终只能停留在概念阶段,并没有实际生产。  8. 枪支  近日,美国得克萨斯州一家公司宣布用金属粉末制造并测试了世界上第一支3D打印金属枪。这款全球首支3D打印金属枪依照的模板是美军曾经的经典装备布郎宁1911式手枪,由超过30个3D打印原件组装而成,包括不锈钢和一些特殊合金材料,实际装配时间只需5至7分钟。 截至目前,这支枪已经成功发射了50发子弹,射击距离超过27米,和常规武器一样精准。  9. 火箭部件  今年8月,NASA对用3D打印技术制作出的火箭发动机喷射器进行了测试。一般而言,火箭发动机喷射器是火箭生产中最昂贵的组件之一。通过使用金属3D打印技术的工艺,成本能够减少70%以上,并且极大缩短开发时间。NASA对新型火箭发动机喷射器进行的包括液态氧和气态氢等一系列高压消防测试均取得了成功。NASA有计划继续推动该技术的发展并扩大应用范围。  10. 飞行器   HEX是世界第一款用智能手机控制、与3D打印结合的四轴飞行器,外壳采用3D打印实现个性化定制。用户也可以自行下载定制外壳的3D文件打印,组装方式类似乐高玩具,无需工具,非常简单。这也是目前3D打印在消费类电子产品中的新尝试。
  • 高校建筑模型打印——南京大学&安庆师范大学
    各位朋友,新一批摩方超高精度3D打印的高校建筑模型出来啦!本轮高校建筑模型有2个,分别来自南京大学和安庆师范大学,以下为实拍图分享~ 同时,欢迎感兴趣的朋友抓住机会参与“免费超高精度3D打印高校建筑模型”活动,免费获取超高精度3D打印母校建筑模型! 模型一:南京大学-现代工程与应用科学学院院楼模型二:安庆师范大学-红楼活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。
  • 最后一周丨超高精度高校建筑模型免费打印
    各位朋友,摩方最新超高精度3D打印的高校建筑模型出炉啦!本轮高校建筑模型有1个,来自中南大学,以下为实拍图分享~ 本轮“免费超高精度3D打印高校建筑模型”活动即将到8月底截止,欢迎感兴趣的朋友抓住最后一周机会参与,免费获取超高精度3D打印母校建筑模型! 中南大学门牌坊活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。
  • 哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用
    便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1. 3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034
  • 4D打印技术的研究进展
    p style="text-align: justify text-indent: 2em "“4D打印”概念源于2013年初麻省理工学院自组装实验室斯凯拉蒂比茨(Skylar Tibbits)的一次现场演示。在著名的技术、娱乐、设计(Technology Entertainment Design)大会上,一段绳状物体被放入水中,物体自动折成预先设计的形状,斯凯拉蒂比茨称之为4D打印。4D打印技术的实现基于“智能材料”(intelligent/smart materials),智能材料的概念来源于仿生,鉴于其具有独特且优越的性能,智能材料及相关结构近年来引起了科研工作者极大的研究兴趣。目前,研究主流是集成型智能材料及相关结构,利用先进的材料复合技术将敏感元件、驱动元件甚至控制元件集成于基体材料中,使材料结构具有感知外界或内部状态与特性变化,并能根据变化的具体特征进行辨识,从而做出合理响应的能力。/pp style="text-align: justify text-indent: 2em "近年来,4D打印概念不断发展延伸,逐渐被定义为是实现对智能感应材料的增材制造技术。与3D打印相比,4D打印中多出的这个“D”是指时间纬度,准确地说是一种新型能够自动变形的智能感应材料,不需要借助于任何机电设备,在外界环境(温度、外应力、电磁场等)变化时,能够按照事先所设计的要求进行相应的形状变化,满足相关特定要求。4D打印技术可直接将设计内置到物料当中,简化了从“设计理念”到“实物”的造物过程,颠覆了传统的造物方式。对4D打印的研究,主要涉及多种复合材料或多材料、形状记忆聚合物、形状记忆合金等。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong一、复合材料/strong/span/pp style="text-align: justify text-indent: 2em "复合材料种类众多,但能够用于4D打印的复合材料种类却相对有限,表1给出了目前部分用于4D 打印的复合材料或多材料的类别、特点以及研究发展方向。基于压电聚合物材料制备的智能纳米复合材料,通过控制材料尺寸与结构,能够得到具有特定功能的智能纳米复合材料。目前,大多数压电智能材料基于脆性陶瓷(如锆钛酸铅)等,具有高压电常数和高机电耦合系数等优点。尽管压电聚合物材料相对压电陶瓷材料响应频率降低,但具有机械柔性、生物相容性好以及可加工性等优势,使其成为需要机械灵活性、生物相容性和可加工性微型系统的理想候选材料。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4177de05-75d0-4f42-9f7b-b7d7582035f4.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "目前制备具有复杂3D结构的压电聚合物材料仍然存在困难。提高压电聚合物的可制造性,将对微尺度和纳米级压电聚合物的各种应用发展做出巨大贡献,例如生物诊断设备、微机电系统、成像系统、紧凑型传感器设计和电子设备等。/pp style="text-align: justify text-indent: 2em "压电材料的微细加工和纳米制造有许多不同的技术,如电子束光刻、自组装、静电纺丝等;但对于压电聚合物材料而言这些技术都不易采用。Kim等在2014年提出了一种新的纳米制造方法,使用数字投影打印产生2D和3D压电纳米聚合物复合结构(图1)。数字投影打印技术的主要优点是其分辨率可以小至1μm,重现性高、重复性好、重量轻。此外,实现数字投影打印技术所用设备简单,制造时间缩短。通过使用数字投影技术Kim等制造了2D和3D样品。2D样品以及3D样品之一的微管结构如图1所示,通过打印具有不同热膨胀系数、密度或参数的层来控制管的直径和弯曲程度。进而,通过光聚合工艺成功实现了压电纳米复合材料的4D打印成形技术。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e4763d47-780d-4674-acbc-c9834dca508d.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 0, 0) "图1 2D和3D纳米复合材料样品(a)点阵列;(b)、(c)不同尺寸的正方形阵列;(d)蜂窝阵列;(e)3D微管结构/span/strong/pp style="text-align: justify text-indent: 2em "由极亲水的聚合物材料和刚性塑料材料作为基体组成的自演变复合材料,其原理是亲水性材料暴露在水中时,吸收水分,体积增加到原来的两倍。/pp style="text-align: justify text-indent: 2em "在研究自演变结构的过程中,研究人员运用4D打印技术制造了三种不同组分的材料,其暴露于水中时显示出不同类型的变形。span style="text-indent: 2em "图2给出了三种类型的变形,其中(a)呈线性拉伸,(b)显示出伸展环,(c)部件呈现折叠变形。(a)部件暴露于水中时,其自变化行为通过改变亲水材料与刚性材料的比例,实现不同百分比的线性膨胀。(b)部件由许多环状形成,每个环有两层不同的材料,当暴露于水中时,内层膨胀并引起环的变形,逐步实现自演变行为,该组件的整体线性膨胀可以通过改变环的半径来控制。(c)部件表现出折叠行为。目前,自演变结构可以实现的形态变化相对较少,因而正在逐步向着形态变化多样、分步变化、微观结构更加精确化的方向发展。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/39c0b255-c36e-43b3-9bbf-a96bf61b5f95.jpg" title="3.png" alt="3.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 0, 0) "图2 自演变结构随时间变化的变形情况(a)线性拉伸;(b)伸展环;(c)折叠变形/span/strong/pp style="text-align: justify text-indent: 2em "执行器是自动化控制技术工具中接收控制信号并对受控对象施加控制运行作用的装置。近年来机器人执行器得到长足发展,涉及金属、陶瓷、硬塑料等硬质材料机器人。这些硬质材料机器人是专为特定应用而设计的,不适用于所有环境。例如,使用硬质材料制成的传统机器人不能实现大的结构变形,难以模仿软体动物的行为。为实现大的结构变形,产生了软体机器人,其重点在于软体执行器。/pp style="text-align: justify text-indent: 2em "软体机器人执行器研究是一个新兴领域。基于软智能材料(如电活性聚合物)的执行器可以感知测量、变化形态和改变刚度。2007年,Kofod等通过4D打印技术制造出了用于软体机器人的介质弹性体致动器,解决了传统方法难以制造弹性体致动器的问题。图3(a)中为Kofod等通过实验使用软介电弹性体智能材料来捕捉天然物质,图3(b)中为Zhao等对抓取行为的有限元模拟。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/14981844-c7be-4c42-9bdb-24a558ae0502.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 0, 0) "图3 基于介电弹性体的夹爪(a)介电弹性体致动器夹紧小圆柱;(b)(a)中介电弹性体执行器的有限元建模/span/strong/pp style="text-align: justify text-indent: 2em "目前,研究人员已经证实4D打印技术制造弹性体致动器的可操作性,但研究中所面临的局限性在于一个功能完整的致动器无法一次成形。此外,关于软体机器人执行器研究的未来趋势是制造多层膜,以产生不需要预应变的软结构或者制造单态和双态致动器。/pp style="text-align: justify text-indent: 2em "软体机器人执行器作为目前的热门研究领域,得到了广泛的关注。为实现某些特定功能(如地震之后被困人员的搜救等),执行器部件正在向响应快、功能多样化、形态可变等方向发展。/pp style="text-align: justify text-indent: 2em "折纸是中国的一种传统艺术,即将一张平面纸折叠成3D物体。/pp style="text-align: justify text-indent: 2em "折纸这一理念为大型物品压缩成小体积空间的问题提供了创新的解决方案。折纸概念在纸箱、购物袋、光伏太阳能电池板的展开、汽车安全气囊中已经有所体现。然而,传统工艺上这些产品的设计包装过程复杂,会导致基础架构成本增加,因为折叠设计有任何变化,就可能需要购买新设备。在此背景下,自折叠的想法被提出,它可以大大减少折叠设备所需的投资,具有良好的市场前景。/pp style="text-align: justify text-indent: 2em "自折叠是设计并创建折叠物体,该折叠物体能够自折叠或具有自折叠的能力,这一过程的实现是以智能材料为基础的。活性复合材料是由玻璃态形状记忆聚合物和纤维组成的软质复合材料,纤维材料可增强基体弹性。通过调节形状记忆聚合物和纤维的体积分数和取向,可以制造具有不同性质的自折叠材料。对其进行热机械编程,可自适应变为复杂的3D结构,如弯曲,卷绕,扭曲和折叠等行为的自实现,如图4所示。因此,4D打印的一个发展趋势就是利用多材料打印技术来实现活性复合材料的精确3D成形,并研究其性能。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b1755fe0-c468-4cce-ac16-8484dcc9165b.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "strong图4 材料自适应变为复杂的3D结构,包括弯曲、卷绕、扭曲和折叠行为(a)和在加热和冷却条件下,复合材料的自折叠行为(b)/strong/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "二、 形状记忆聚合物/span/strong/pp style="text-align: justify text-indent: 2em "形状记忆聚合物(SMPs)属于刺激响应材料,具有可设计性能,是指变形后通过外界条件(如热、电、光、化学感应等)的刺激可恢复其初始形状的材料。与形状记忆合金和压电陶瓷材料相比,形状记忆聚合物具有高应变恢复、低密度、低成本、简单的形状编程程序,以及在恢复温度下具有良好的可控性等优点。此外,可以通过对形状记忆聚合物进行化学修饰以实现生物相容性和生物降解性。因此,形状记忆聚合物的制备方法、性能与各种应用环境获得了研究人员的广泛关注。其主要缺点表现在强度相对低、模量低和操作温度较低等方面。/pp style="text-align: justify text-indent: 2em "几十年来,形状记忆聚合物的自发形状变化得到了深入研究,但实现精确控制的顺序形状恢复仍是大的挑战。为实现这一目标,提出了两种策略。/pp style="text-align: justify text-indent: 2em "一是实现形状记忆聚合物材料内在的功能梯度。具体而言就是聚合物材料或结构具有空间依赖性,不同部位由微观结构不同、热机械性能不同的聚合物组成。当施加适当刺激时,材料各个部分的独立形状恢复将被连续激活。因而,形状记忆聚合物的形状改变顺序可通过适当控制各个部分的材料属性来实现。/pp style="text-align: justify text-indent: 2em "二是实现形状记忆聚合物的4D打印技术。如图5(a)所示的螺旋形状记忆聚合物组件的示意图,①-⑨表示具有不同玻璃化转变温度的聚合物。成形组件的形状通过4D打印技术设置。在没有外部刺激时,形状记忆聚合物的形状能够保持。在存在外部刺激时,会观察到如图5(d)所示的变形恢复行为。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/322605c6-fefd-4a66-a98e-83012e92309b.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "strong图5 形状记忆聚合物的4D打印(a)螺旋形状记忆聚合物组件的示意图,图中①-⑨表示分级铰链;(b) SLA设计和制造球状 SMPs 的过程概述;(c)4D打印得到的SMPs 弹簧的动态变化过程;(d)螺旋形状记忆聚合物组件的自发和顺序形状恢复过程;(e)得到的4D打印球状SMPs;(f)基于(c)4D打印得到的塔形结构/strong/pp style="text-align: justify text-indent: 2em "4D打印多材料形状记忆聚合物对特定动作的实现,如图6所示,为其实现复杂功能化提供了可能。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/105a655c-bde6-4708-acf1-e99c714d7755.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em "strong图6 基于SMPs的4D打印夹子的动态行为/strong/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "三、 仿生4D打印/span/strong/pp style="text-align: justify text-indent: 2em "生物打印可以被定义为“使用材料转移过程来模拟和组装生物相关材料—分子、细胞、组织和可生物降解的生物材料—与规定的组织完成一个或多个生物功能”。生物打印的主要优点表现在可以大规模生产组织工程产品的能力,可以定位不同类型细胞的高精度和制造高细胞密度组织的能力。/pp style="text-align: justify text-indent: 2em "目前仿生4D打印处于初级阶段,本文只做简要介绍。目前的组织工程技术存在局限性,如非自动化的操作、小的制造规模、无法生产复杂结构的器官和无序的组织显微结构。因此,研究人员在此基础上提出了基于生物的仿生4D打印,作为组织工程技术一个的新分支,已经被研究者广泛关注。/pp style="text-align: justify text-indent: 2em "仿生4D打印是一种新兴技术,该技术的最大优点在于能够制造仿真活体生物结构如组织、器官等。最近,哈佛大学的研究人员创建了自然界植物模拟的4D打印系统。研究人员采用一种生物相容的水凝胶复合油墨作为实现仿生4D打印的原材料。该材料浸入水中会自发膨胀,为实现仿生4D打印提供了基础。其具体的复杂仿生4D行为如图7所示。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4affb11c-2e45-4905-b294-9c7ea003fa9b.jpg" title="8.png" alt="8.png"/img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d210f0e2-df3d-481a-8a86-45640e0e82fd.jpg" title="8.png" alt="8.png"//pp style="text-align: justify text-indent: 2em "strong图7 仿生4D打印产生的复杂花形态/strong/pp style="text-align: justify text-indent: 2em "仿生4D打印作为一种新兴技术,要实现对人体器官、组织等的精确制造仍然存在诸多难题,如微区功能差异化、组织差异化、环境控制等。对于仿植物4D打印技术,目前也正在逐步开展,并取得了不错成果,技术的成熟度仍有待不断提高。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "四、 形状记忆合金/span/strong/pp style="text-align: justify text-indent: 2em "形状记忆合金是一类能够“记忆”其初始形状的合金材料,由于其同时具有传感和驱动功能,也是一种智能材料。/pp style="text-align: justify text-indent: 2em "迄今,应用最广的形状记忆合金是NiTi基合金。由于其较大的形状记忆效应、优异的力学性能、抗腐蚀性能、生物相容性,NiTi基合金已经在医学、航天航空、电子、机械、能源及日常生活等领域获得日益广泛的应用。然而,由于较高的成分敏感性、可加工性差、难以精确成形等问题,NiTi基合金不易运用传统加工工艺成形复杂零部件。运用3D打印技术对NiTi基合金进行研究,可得到高效精确的成形工艺。作为一种重要的3D成形方法,选区激光熔化技术具有可控、效率高、成形精确等优势。部分研究人员已运用该技术制造出了小尺寸、结构复杂的NiTi基合金微机电系统。/pp style="text-align: justify text-indent: 2em "近期,研究人员对NiTi基合金的选区激光熔化成形工艺进行了研究,获得了如图8所示的NiTi基合金样品。通过差示扫描量热仪的表征结果表明,其基体存在马氏体与奥氏体之间的相转变行为,为获得4D打印形状记忆合金及其构件提供了理论基础。对4D打印NiTi基合金的工艺参数、生物相容性、热处理行为、相转变行为、微观结构等也有人进行了研究。此外,Ma等以NiTi基合金粉为原材料,采用不同的选区激光熔化工艺参数得到了能够实现多阶段分步变形行为的“U”形简单构件,如图9所示。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a8391f19-9ade-40bb-b1b5-af71c4f540c8.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "strong图8 选区激光熔化制备的NiTi合金试样(a)和4D打印NiTi合金的微观结构(b)、(c)/strong/pp style="text-align: center text-indent: 0em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3da22576-9c6a-4069-a33e-3056cda9f181.jpg" title="10.png" alt="10.png"//strong/pp style="text-align: justify text-indent: 2em "strong图9 选区激光熔化成形的U形NiTi合金构件的多阶段形状恢复过程(a)和U形片不同区域采用的工艺参数(b)/strong/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "结束语/span/strong/pp style="text-align: justify text-indent: 2em "4D打印技术是一个快速增长的行业。新型原材料、成形方法、控制软件和机器精度不断发展和完善,为4D打印技术的实现提供了基础,使其得到了广泛关注与发展。一方面,4D打印技术引入了新的设计技术,可以减少制造产品的能源消耗、材料使用量、时间以及成本;另一方面,4D打印技术的未来在于成形产品的组装和拆卸的可控性,4D打印智能材料的激活与控制,并在理论上创建模型和模拟形状变化行为的软件。/pp style="text-align: justify text-indent: 2em "(1)4D 打印所用的原材料为智能材料,大体上可以分为智能纳米复合材料、形状记忆聚合物、软体机器人的执行器、自演变结构、主动折叠和受控顺序折叠结构、形状记忆合金等。4D打印结构能够实现集传感、驱动甚至控制等功能于基体材料中。对于仿生4D打印也逐步受到重视,得到了快速发展。/pp style="text-align: justify text-indent: 2em "(2)对于4D打印技术成形形状记忆合金而言,存在着如何获得近全致密、组织性能控制、动态变形控制等挑战,在成形样品或零件的过程中,也需考虑各项性能冗余度、氧含量、孔隙率、各向异性等因素。只有克服这些挑战,综合考虑各影响因素,才能得到高性能 4D打印记忆合金构件。/pp style="text-align: justify text-indent: 2em "(3)4D打印技术正在向智能化、精确化和高效化方向发展。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "i本文引自:卢海洲, 罗炫, 陈涛,等. 4D打印技术的研究进展[J]. 航空材料学报, 2019, 39(02):5-13./i/p
  • 材料限制标准过低 3D打印只是"看上去很美"?
    2013年4月11日,一场以“新产业革命”为主题的国际论坛在五台山召开,英国《经济学家》杂志主笔保罗麦基里远渡重洋前来参会,并随后对中国的3D打印等数字制造企业一探究竟。  在其《第三次工业革命》一文中,保罗麦基里将3D打印列为推动第三次工业革命转型动力之一,从而引爆3D打印讨论热潮的。而除了用手中笔提醒人们注意3D打印的保罗,近日来,打印衣服、自行车、假肢,甚至步枪、人体器官……3D打印机新的造物成果频频见诸报端。这一切似乎在向人们表明,3D打印改变传统制造业和我们的生活,都只是时间问题了。  然而,事实真的如此吗?  光“概念美”显然不够美  4月2日,3D打印概念股出现暴跌,板块内个股超声电子、机器人触及跌停,深天马A跌近7%,其他多个个股也均有不小的跌幅。  其实在两个月前的美国,3D概念股暴跌的景象已经发生过一次。  2月14日,做空机构香橼公司发布了针对美国3D打印龙头公司3D Systems的做空报告,指出3D打印技术已被过分炒作,3D公司股票估值过高,存在严重泡沫化。受此影响,美国3D打印概念股集体随即迎来大幅下跌,在报告公布后的两个交易日中,3D系统公司和其主要竞争对手Stratasys公司以及刚刚上市的ExOne公司跌幅均接近10%。  概念美,瓶颈多,短时间内难以纾解商业化难题——这是概念股暴跌背后映射出3D产业面临的真正问题。  3D打印产业发展的窘况,看数字便一目了然:2012年,全球3D打印机全行业销量只有不到5万台,这其中的两万台还是由龙头企业Stratasys一家售出的,另外有4000多台都是中关村企业太尔时代研制售出的。  与反映投资者对3D打印“信心指数”不稳定的股价相对应的,是3D打印底气不足的市场规模。根据美国消费者电子协会发布的最新年度报告,全球3D打印市场经过10余年的发展,仅有21亿美元的总量,即使以目前表现的约20%的年增速,未来几年内,全球3D打印产业的产值也不过是微软、苹果这种美国IT巨头单个公司产值的零头。  是什么在阻碍3D打印奔向千家万户和大工厂的脚步?  被材料“绑架”的神笔马良  “连机器带物料差不多两万块钱,用了整整四个小时才打印出一个小小的手环。”一位购买了3D打印机的用户徐天舒在微博上抱怨。  在他看来,3D打印机目前只能小规模打印一些复杂的物件,除了对个人用户来说成本太高,有限的材料选择也是很大的问题。“打印来打印去,不管是打印玩偶还是模型,都是固定的一种材料,时间长了新鲜感也就没了。”  除了个人用户对打印体验丰富性的要求,对工业级用户而言,材料的稀缺也让3D打印机是暂时只能用于小规模试制的“奢侈品”。一家已采用3D打印的医疗器械公司负责人向记者透露,工业级3D打印机使用的材质几乎不能通过淘宝等电商平台买到,很多只能匹配生产厂家提供的耗材,大多是国外进口,价格非常昂贵。  材料的限制“绑”住了用户的使用热情,也“绑”住了3D打印设备厂商阔步向前的步伐。  十多年前,曾任教于清华大学高分子材料研究所的冯涛尝试一边做3D打印设备,一边研发3D打印材料。然而,巨额的投资需求和短期内极小的市场回报,使他和团队不得不暂缓了工程塑料等材料的研制。  而今,冯涛是一家3D打印公司的掌门人,但情况依然没有好转。  虽然国际上先进的3D打印企业已能实现工程塑料、尼龙、树脂、石膏粉等十多种3D打印材料的打印,但是在国内,3D打印材料严重受限的“缺钙”现象丝毫没有好转——自主研发的3D打印机大多只能打印金属、ABS这区区两种材料,并且每一台机器只能打印一种材料,无法实现打印材料的自由切换。  “即便美国最先进的厂家有10多种打印材料,要想让3D打印进入大众消费领域,他们这个数量也远远不够。”冯涛说。  北京航空航天大学材料学院教授、凭借飞机钛合金大型复杂整体构件激光成形技术获得国家技术发明一等奖的王华明介绍,之所以材料如此稀缺,是因为3D打印所用的材料是一套与传统材料学不同,需结合精密仪器、3D打印工艺和材料本身的相对独立的研发系统。在可应用的材料方面,所有的3D打印设备厂家都是白手起家。对于绝大多数企业来说,3D打印市场培育尚处初期,投资研发新材料的动力严重不足。  3D打印能打印人耳、肝脏等人体器官的消息频见报端,王华明则认为,“真正能打印出人体器官,那一定是生物组织工程的突破,而绝非3D打印机的功劳。”  “个性”也需“标准”牵手  假如材料问题解决了,成本也降下来了,能够帮人们随时随地实现个性打印,3D打印机是不是就能畅通无阻地“飞入寻常百姓家”呢?  答案依然是否定的,事情远非这么简单。  “打印精度是否达到厂家宣称的标准、喷头是不是容易堵,这些产品特性都没有官方的评价机制,只能上网查查、凭网友和同行的口碑推荐了。”一位想要购买一台桌面3D打印机的首饰设计师向记者表达了困惑。  她的担心绝非个例。记者调查发现,市场上专业3D打印设备公司的桌面3D打印机售价一万到三万元不等。然而,在一些硬件社区,只需花六千元就能买到一台DIY的3D打印机。  相差1到5倍的价格,质量上的差别,买家却很难从权威机构的质量认证标准上获得辨别。  事实上,中国机械工程学会特种加工分会此前已牵头制定了3D打印技术相关的安全标准、产品标准,但是对于这一标准,从业多年、被业界公认为3D打印行业专家的冯涛认为,“现有标准定得太低、太粗糙,几乎任何一家3D打印企业都能轻易达标。对维护行业健康竞争发展,对消费者权益也更为重要的具体的产品检测方法、检测标准,这些都没有明确的规定。”  冯涛认为,当3D打印机像手机、电视这种成熟的产品或电子仪器一样,由第三方机构都可对其产品达标情况进行检验时,3D打印机才有可能真正地“飞入寻常百姓家”。  市场培育的过程虽然漫长,却极少有人否认3D打印机的发展前景。“20年前机器人刚刚兴起时,发展也极其缓慢,但随着这一两年富士康等制造企业大规模启用工业机器人,工业机器人的发展拐点已经到来。同样是制造业变革的一部分,3D打印机肯定会与机器人一样,也会迎来这一天。”冯涛说。
  • 世界3D打印大会开幕 国内3D打印产值三年将达百亿
    世界3D打印大会开幕 全球顶尖专家畅想3D梦  备受瞩目的“2013世界3D打印技术产业大会”将于29日正式开幕。上证报记者从在昨日召开的媒体见面会上获悉,本次大会邀请了全世界从事3D打印行业的知名专家和重要企业,与会代表共500多人,媒体约60余家,规格之高为业界罕见。  28日的媒体见面会由亚洲制造业协会首席执行官、中国3D打印技术产业联盟秘书长罗军主持,一同出席的还有全球3D打印行业享有盛誉的专家之一Terry Wohlers,英国增材制造联盟主席、中国3D打印技术产业联盟首席顾问Graham Tromas,华中科技大学教授史玉升等知名专家。  本次会议将讨论全球3D打印技术的发展现状和趋势,并对3D打印在文化创意、生物医学、工业制造等领域的应用前景进行展望和分析,同时也为国内外企业3D打印合作项目对接、洽谈搭建一个高端平台。  作为全球最知名的3D打印行业研究机构,Wohlers Associates公司已连续18年发表年度Wohlers报告,该报告被视为全球3D打印行业的风向标。媒体见面会上,公司主席Terry Wohlers介绍了刚于上周发表的2013年Wohlers报告。  该报告汇集了包括中国在内的全球70余个国家3D打印公司的相关数据。2012年,全世界3D打印行业总产值增长了28%,达22亿美元。3D打印机的全球销量同比增长25%,其中38%产自美国,中国占8.5%。  英国增材制造联盟主席Graham Tromas表示,3至5年内,中国有潜力成为世界最大的3D打印市场。关于3D打印的发展方向,Graham Tromas认为,从机型上说,真正能够推动生产力发展的是大型打印机,“中国想达到世界领先水平,应在此方向上取得突破。”  作为国内最早从事工业3D打印技术研发的专家,史玉升教授认为,中国制造业产值居世界首位,但想要长期保持优势地位,依靠传统技术难以为继,必须借助3D打印等先进技术。他甚至认为,在中国制造业中,能够从起步阶段就与世界处于同一水平的只有3D打印。  史玉升坦言,中国工业级3D打印技术和设备与国际先进水平还存在差距,主要体现在两方面:一是,设备功能的可靠性较低 二是,从材料的性能到品种,都与国外有一定差距。不过,他乐观认为,随着国家近期启动一系列科技支撑计划, 国内3D打印设备在可靠性、材料性能和品种等方面,将逐步与国际水平并驾齐驱。  中国3D打印技术产业联盟秘书长罗军:未来三年 国内3D打印市场力争上百亿  如能顺利跨上百亿台阶,此后几年,3D打印技术无论是在国内市场,还是国外市场都有望保持几何级数增长  当业内企业、科研机构“各自为战”、一盘散沙之际,  他发起倡议成立了中国3D打印技术产业联盟,以期扭转国内3D打印市场“小而散”的格局   当国内众多企业嗅到3D打印技术的巨大商机、蜂拥而入之际,他以“业内人”的身份呼吁大家保持理性,给予3D打印产业健康、良性的发展环境   当业界为“如何实现3D打印产业化”愁眉不展之际,他适时提出“建设3D打印技术产业创新中心”的良策,集结成员单位充分发挥自身优势,共谋产业发展之路。  亚洲制造业协会首席执行官、中国3D打印技术产业联盟秘书长罗军,就这样闯入了公众的视野。在首届“世界3D打印技术产业大会”召开前夕,罗军在百忙之中接受了上证报记者的独家专访,就外界关注的诸多热点话题进行了详尽阐述。  谈“3D打印热”:盲目介入不可取  记者:随着3D打印技术在各领域的应用逐步成熟,国内众多企业也嗅到了背后的潜在巨大商机,以各种方式进入以期抢占市场先机,其中不乏一些上市公司的身影。您如何看待资本涌入3D打印产业的现象?  罗军:任何一项新兴技术在发展初期都需要激情的推动,但单靠激情是远远不够的,还需要切实可行的思路和措施。3D打印技术作为一项前沿性、先导性很强的技术,的确具有很好的发展前景,上下游相关配套企业尽早涉足这个产业,是为了抢占先机,做好战略布局,这种思路是值得充分肯定的。上市公司具有较强的融资能力,抢先进入新兴技术领域,有利于加快新兴技术产业化进程。  但必须指出,作为公众企业,出于对投资者负责的角度考虑,上市公司进入一个新兴领域还需结合实际,发挥自身优势,盲目冒进与自身产业关联度不强的产业,很可能得不偿失。  记者:那么,您认为哪些行业内的企业开展3D打印比较有先发优势?  罗军:由于3D打印技术与激光制造、材料等领域关联度很大,这方面优势明显的企业,其涉足3D打印产业或具有一定的先发优势。如中航激光便掌握了大型金属结构件直接制造方面的技术,并在钛合金等特殊金属材料方面取得重大突破。另外,据我了解,一直密切关注各类激光应用技术的光韵达,在客户积累和市场应用方面积聚了许多经验,并且在红外、紫外等各种激光的加工特性,金属、非金属等各种材料的加工方面取得了突破,加之其与电子、通信和汽车等领域众多客户建立的长期合作关系,该类公司若介入3D打印领域的门槛应不会太高。  记者:如今3D打印热,不由让我们联想到前几年的光伏产业,彼时光伏产业前景也是一片光明,但短短几年过后,随着各路资本涌入,产能过剩问题凸显,光伏景气度也急转直下。未来,3D打印行业是否也会重蹈覆辙?如何促进这一产业健康、有序发展?  罗军:其实,作为清洁能源,光伏产业的发展前景还是比较乐观的,糟糕的是产能严重过剩,短期内难以消化,而成本居高不下、市场需求不旺,导致光伏业内外交困。在我看来,关键原因在于光伏产业在起步阶段缺乏行业组织的引导,企业间互不沟通甚至互相排斥,等到大家认为行业需要规范自律的时候为时已晚。3D打印产业应该不会重蹈覆辙,原因在于起步阶段就有了一个产业联盟来引导并促进行业自律。在对话合作的框架下,各方加强沟通维护行业整体利益,促使行业健康、可持续发展。  谈产业化:建创新中心是关键  记者:不可否认,3D打印技术有很多优点,如耗时短、成本低等,但反过来看,这项技术目前是否也存在一些缺陷或瓶颈?若要实施大规模产业化,需要克服哪些障碍?  罗军:任何一项技术都不可能十全十美,优势和劣势往往是并存的。3D打印技术具有节约材料、节省时间、节能环保等诸多优点。但与传统制造技术相比也有许多缺点,比所用材料限制较多、精度不够,尚不能规模化生产等。  要推动3D打印技术规模化、产业化运用,我认为,首先需要打开用户市场,使更多传统制造业企业增进对3D打印技术的认识。只有市场打开了,3D打印产业才有发展的基础 其次,要攻克材料难关,使更多材料能够满足3D打印技术的需求,只有市场需求起来了,3D打印技术得到广泛应用以后,材料价格才可能降下来 第三,加工服务和配套服务业务也要跟上。  记者:围绕上述目标,我们是否已经着手制定一些切实可行的对策?  罗军:目前,我们正在通过联盟的力量组织成员企业,集中优势资源在国内主要工业城市建设10家中国3D打印技术产业创新中心,首批选择在南京、青岛等重点城市运行,并计划明年将产业创新中心扩至10家。由于我们成员单位都是国内3D打印的佼佼者,以此为支撑,产业创新中心未来将主要发挥四项功能:一是3D打印产品的集中展览展示中心 二是3D打印技术的科普、教育、培训中心 三是3D打印技术加工服务中心 四是,3D打印技术研发中心。若产业创新中心能按照上述目标稳步推进,那么市场需求弱、应用空间窄的难题将迎刃而解。在我看来,产业创新中心大规模成功运行,将是国内3D打印机实现产业化的强力助推剂。  记者:能否大胆设想一下,比如5年后的今天,国内3D打印产业将呈现怎样一番景象?  罗军:我国目前尚处于3D打印产业化的起步阶段,今明两年将是产业发展的关键时期,将直接影响到3D打印的未来走向。今明两年的发展核心是要推动3D打印与传统产业的深度结合,把3D打印技术的应用市场快速开拓。总体而言,我们要把握以下几点:一是必须改变当前“小而散”的产业状况,抱团发展,集群发展,这样行业才有希望、才会得到市场的认可。二是3D打印技术必须与加工服务结合起来,通过服务来拓展市场 三是必须加强与国际间的对话合作。  以3D打印技术产业创新中心为平台,乐观预测,我们力争3年时间将3D打印市场规模扩至100亿元人民币,将3D打印技术更广泛地与传统制造业、文化创意产业、生物医学等产业结合。如果我们能够顺利跨上百亿台阶,此后几年3D打印技术无论是在国内市场还是国外市场都有望保持几何级数的增长。
  • 3D打印制芯片 西湖大学实现国内最高精度三维精密制造
    p style="line-height: 1.5em " 一根细细的金属探针正在一块名片大小的电路板上循环画圈,探针内流下的液体逐渐围成一个圆环。“这是我们通过3D打印而成的微电极阵列,再用硅胶进行二次加工后,可用于药物机理检测等领域,检测效率将大大提升。”日前,在西湖大学精密智造实验室,正在显示屏前监测情况的西湖大学工学院周南嘉实验室博士生朱沛然对记者说。/pp style="margin-top: 10px line-height: 1.5em "  西湖大学工学院特聘研究员周南嘉团队自主研发的这项微米级精度三维精密制造技术,是目前国内最高精度的电子3D打印技术,以新材料作为突破3D打印精度极限的核心,设计全新的3D打印功能材料,实现了百纳米至微米级别电子3D打印。/pp style="margin-top: 10px line-height: 1.5em " “我们开展的最小尺度的3D打印,就是直接在芯片上用3D打印进行加工。”周南嘉说。周南嘉团队将3D多材料打印技术引入芯片级高端制造领域,利用3D打印技术进行三维高精度光电封装、制造高频无源器件,例如可将天线尺寸缩小到十微米至百微米级别。周南嘉介绍,这一做法较现有的加工方式,在精度上提升了1个到2个数量级,从而让3D打印技术得以应用到毫米波技术、光通讯、微型机器人、柔性电子等领域,为未来小型化、集成化、个性化电子设备提供新的制造方案。/pp style="margin-top: 10px line-height: 1.5em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/8b30d035-636c-4309-892f-b615fbb5a600.jpg" title="t011b1664dd6ab99891.webp.jpg" alt="t011b1664dd6ab99891.webp.jpg"//pp style="margin-top: 10px line-height: 1.5em text-align: center "span style="font-family: 宋体, SimSun "strongspan style="color: rgb(63, 63, 63) "西湖大学工学院特聘研究员 周南嘉/span/strong/span/pp style="margin-top: 10px line-height: 1.5em " 当下,电子与光学领域核心功能器件与系统加工对技术精度的要求越来越高,传统工艺难以满足产品需求;同时,目前市场上为人所熟知的3D打印主要以激光烧结、光固化等工艺为主,其产品主要为金属、航空件以及塑料等聚合物,但这些3D打印产品往往仅具备结构而无法功能化。这些都成为当下相关行业领域的痛点。/pp style="margin-top: 10px line-height: 1.5em " 在周南嘉看来,3D 打印并不只是能够实现具体的结构,更重要的是实现特定的功能。依托西湖大学精密制造实验室及浙江省3D微纳加工与表征重点实验室,周南嘉以精密增材制造技术为核心,基于先进功能材料和三维集成技术方面的优势,开发了多材料、多尺度的灵活加工工艺。/pp style="margin-top: 10px line-height: 1.5em " “在超高精度 3D 打印方面,工艺本身并不复杂,要实现超高精度以及多样化功能,真正在实际应用上取得突破,从源头出发,实现材料方面的突破才是关键。”周南嘉说。通过材料和技术两方面的努力,突破目前的打印精度之后,其团队自主研发的微米、亚微米级3D打印技术与材料体系成功解决了这些难题。“其实,今后生活中常见的显示屏、手机、可穿戴设备、无人机、汽车导航、医疗健康仪器等许多电子产品的‘内脏’里,就能找到我们产品的身影。”周南嘉说。/p
  • 我国高分辨率OLED喷墨打印成套装备取得重大突破
    近日,季华实验室公众号发布消息称,朱云龙教授团队在高分辨率OLED喷墨打印成套装备研究中取得重大突破。OLED喷墨印刷技术与传统OLED面板蒸镀技术相比,由于其具有按需打印,材料利用率高(蒸镀工艺材料利用率15%,喷墨打印可提高到85%以上),无需高精度掩膜版、无需真空环境等优点,是制作大尺寸OLED面板最具潜力的发光层成形方法,正成为新型显示产业的一次重大技术革命,也被誉为是彻底改变目前OLED电子显示行业由“蒸镀工艺”向“喷墨打印”技术转变的颠覆性产业技术革命。然而,我国OLED喷墨打印技术面临技术瓶颈问题,核心装备一直未有突破。季华实验室朱云龙教授团队一直致力于研发高分辨率OLED喷墨打印成套装备,该团队历时3年多时间,先后突破宏量喷墨打印同步协同控制技术、大型腔体多物理场高稳定性可控技术、高精密对位系统、高精度循环供墨系统等多项关键核心技术,形成了独特的喷墨打印技术方案,成功研制了200mm×200mm OLED喷墨打印成套装备,并实现7吋137ppi基板全彩打印点亮、5吋254ppi、300ppi基板打印及UV测试,标志着我国自主装备首次实现了300ppi的高分辨率打印,性能达到国际先进水平。2023年8月,该团队研制的G4.5代高分辨率OLED喷墨打印成套装备已完成安装调试,导入试验线,目前运行稳定。该装备于近期成功实现31吋基板多色打印与图案化展示,为我国喷墨打印显示技术产业化发展提供了强有力的技术装备支撑,具有里程碑式的意义。图1. 200mm×200mm OLED喷墨打印成套装备图2. 7吋137ppi基板全彩打印及点亮测试图3. 254ppi/300ppi 基板打印及UV点亮测试图4. G4.5代高分辨率OLED喷墨打印成套装备图5. 31吋基板全彩打印点亮测试及图案化展示
  • 2019年全球3D打印医疗市场销售将达9.66亿美元
    3D打印正在多个垂直行业颠覆制造过程,尤其是在医疗领域,3D打印技术的应用导致了更多创新、高效的产品出现。日前,市场研究机构Transparency Market Research在其最新的研究报告中,分析了全球3D打印医疗垂直应用市场,预测从2013年至2019年该市场的年复合增长率将达15.4%。而全球3D打印医疗市场的总销售额也将从2012年3.545亿美元增至9.655亿美元。该报告的题目是《3D打印在医疗应用市场——全球行业分析,大小、份额、增长、趋势和预测,2013年—2019年(3D Printing in Medical Applications Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019)》。该报告称,全球3D打印技术医疗应用市场主要受到一下几个因素的推动:各种3D打印医疗应用不断增加、定制化3D打印医疗产品的增长趋势、来自私人和政府机构的资金、能够扩大医疗应用的技术进步,以及3D打印应用所带来的成本和时间的缩短以及相应的病人护理的改善等。该报告同时显示,3D设计软件公司的并购也将在该市场的未来发展中占据重要地位。然而,缺乏训练有素的专业人员和材料相关的问题有可能阻碍到3D打印在医疗应用市场上的扩展。如果将3D打印技术在医疗领域的应用进一步细分的话,按照基本的应用可以分为手术器械、手术指南、生物工程和植入物等。而手术指南和植入物可以进一步分成牙科、骨科和颅骨-颌面部等。而按照原材料则可以分为聚合物、生物细胞、金属和陶瓷等。而按照3D打印技术来分,3D打印医疗应用市场则可以分为光固化(SLA)、电子束熔融(EBM)和液滴沉积制造等。其中,EBM技术占据了市场主导,这一部分还包括了光聚合反应和激光束熔化(LBM)。这两种技术都能够精准而高效地制造各种生物模型,而后者在3D打印市场上的需求十分强烈。除此之外,光固化还可以进一步分解成数字光处理和双光子聚合等,液滴沉积制造则包括多相射流固化、 熔融沉积建模和喷墨打印等。从区域上分,该市场则可以划分为北美、亚太、欧洲和世界其他地区。在2012年,北美地区占据全球市场的主导地位,但欧洲地区的预计增长速度最快,估计到2019年将超越北美成为全球最大的区域市场,其中的主要原因是扶植政策、有利的经济条件、为实现技术进步而出现的并购,以及政府投资等。该研究报告认为,从竞争角度看,这个市场更偏向于寡头垄断,3D Systems、Voxeljet、EnvisionTEC、Eos、Electro Optical Systems、Stratasys、Nanoscribe、Materialise将是其中处于领先位
  • 生物医疗碰撞3D打印技术——第二届生物医疗3D打印发展高峰论坛顺利召开
    p  strong仪器信息网讯/strong 第三十三届中国国际塑料橡胶工业展览会于2019年5月21日在中国广州中国进出口商品交易会展馆开幕。" CHINAPLAS 国际橡塑展" 伴随着中国塑料及橡胶行业成长逾30年,至今已发展成为亚洲最具规模之橡塑业展会,并对中国橡塑业的发展产生了积极的推动作用,并受到全球展览业协会(UFI)和欧洲塑料和橡胶工业机械制造商协会(EUROMAP)认可。本届展会的观众总人数高达163314人,海外观众人数达42005人,占观众总人数的25.72%。展会同期举行了多个行业的应用行业技术研讨会,包括汽车及轨道交通轻量化材料与应用技术研讨会、 第二届生物医疗3D打印发展高峰论坛、2019动力电池用隔膜与铝塑膜技术与应用论坛、汽车及轨道交通低VOCs材料与应用技术研讨会和2019光电显示类光学膜及相关原材料技术与应用论坛等。/pp  strong第二届生物医疗3D打印发展高峰论坛/strong于5月23日上午在中国进出口商品交易会展馆B区B层8号南厅顺利召开。本次论坛由上海市增材制造协会和雅式展览服务有限公司主办,由商务部投促局智能制造产业国际合作委员会作指导单位,世界先进制造协会作协办单位,上海交通大学医学3D打印创新研究中心、广东省增材制造协会、广东省3D打印产业技术创新联盟、香港三维打印协会、香港城市大学、上海黒焰医疗科技有限公司和瓦克化学(中国)有限公司作支持单位。/pp style="text-align: center "img width="600" height="399" title="IMG_1736_副本.jpg" style="width: 600px height: 399px max-height: 100% max-width: 100% " alt="IMG_1736_副本.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/1a3cc28f-047a-4496-8dc1-dc1ac54d01bf.jpg" border="0" vspace="0"//pp  3D打印技术在推动精准手术和个性化医学方面扮演着很重要的角色,生物医学更被认为是3D打印行业应用最具发展前景的领域之一,受到骨科、口腔、康复等领域的医学专家、科研人员、企业关注。为加快推进3D打印技术在生物医疗领域的普及与应用,本次论坛邀请到了科研机构、高校、医疗机构与企业就医学3D打印技术和新材料的产业政策导向、最新技术发展与路径、行业发展与应用现状、商业模式创新等议题开展了深入探讨。/pp  上海交通大学附属第九人民医院3D打印中心常务副主任姜闻博主持了本次会议。/pp style="text-align: center "img width="400" height="299" title="姜闻博.jpg" style="width: 400px height: 299px max-height: 100% max-width: 100% " alt="姜闻博.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/c229c117-c4ca-465c-aac4-6451235a8df5.jpg" border="0" vspace="0"/  /pp style="text-align: center "上海交通大学姜闻博/pp  华南理工大学教授、广东省增材制造协会会长杨永强作“3D打印改变未来”报告。杨永强首先介绍了国家增材制造产业发展推进计划和广东省重点领域研发计划重大科技专项,说明了国家对增材制造产业的大力支持。接着,杨永强隆重介绍了华南理工大学自主研发的激光选区熔化快速成型机。杨永强阐述了3D打印技术在航空航天、模具、汽车、珠宝和首饰、消费和电子与医疗等多个领域的重要应用价值。最后,杨永强详细介绍了华南理工大学的精密金属3D打印医学应用研究,其中包含了口腔医学、个性化膝关节假体和骨科等多个项目。/pp style="text-align: center "img width="400" height="300" title="杨永强.jpg" style="width: 400px height: 300px max-height: 100% max-width: 100% " alt="杨永强.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/68065724-365f-4ff3-9438-ef0e4f09f70a.jpg" border="0" vspace="0"/  /pp style="text-align: center "华南理工大学杨永强/pp  法国国家技术科学院院士、香港城市大学副校长吕坚作“2-3-4D打印及在医疗领域的应用展望”报告,报告展示了其课题组发表在世界顶级杂志Nature、Science、Nature Materials、Advanced Materials的重量级研究成果。吕坚的研究工作致力于追求三个基本目标:最好的、独一无二的、颠覆性的。由此出发,吕坚发表了有关超纳材料的大量有重要价值的研究成果。其在Science Adcances上发表的“弹性体衍生的折纸陶瓷和4D打印陶瓷”成果,以其新颖性和易懂性被多家媒体争相报道。吕坚还在现场以动画的形式生动地展现了陶瓷的4D打印过程。 通过3/4D打印可以制备复杂形状的陶瓷或陶瓷/金属结构,该技术可以制备复杂形状陶瓷材料及生物材料,在航空航天及轻型防弹等需要制备复杂形状高温材料领域有广泛的应用前景。/pp style="text-align: center "img width="400" height="299" title="吕坚.jpg" style="width: 400px height: 299px max-height: 100% max-width: 100% " alt="吕坚.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/c422e939-1d70-4b10-b576-809b2ca7e471.jpg" border="0" vspace="0"/  /pp style="text-align: center "法国国家技术科学院院士吕坚/pp  南方医科大学教授黄文华作“医学3D打印研究平台的建设及应用”报告,介绍了四个国家重点学科研究方向的研究情况,包含了临床应用解剖学、医学生物力学、数字医学和生物材料与组织工程。会上黄文华展示了3D打印在断指手术、个体化矫形器和整形烧伤等领域的应用,通过大量的阶段性成果证实了医学3D打印研究平台的建设的必要性和应用的可行性。/pp style="text-align: center "img width="400" height="299" title="黄文华.jpg" style="width: 400px height: 299px max-height: 100% max-width: 100% " alt="黄文华.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/8d43aa2b-dcf8-4186-8248-24d59dd5d91a.jpg" border="0" vspace="0"/  /pp style="text-align: center "南方医科大学黄文华/pp  上海黑焰医疗科技有限公司总经理陆益栋作“黑焰医疗推动医学3D打印技术临床应用实践”报告,主要介绍了黒焰医疗的数字化一站式个性化医疗解决方案,主要包含云服务平台、3D打印需求分析及打印实现和研究与临床应用。云服务平台包括打印数据收集、分析、再应用 数字化医疗三维建模软件 打印机、打印材料的支持。3D打印需求分析及打印实现包含临床应用需求沟通分析、基于云平台的三维建模和3D打印成品。研究与临床应用包含术前模拟、手术导板、定制假体、实验药筛、康复辅具和生物打印。陆益栋还介绍了个性化定制辅具、矫形器和个性化定制功能鞋垫的设计制造流程。陆益栋展示了延伸个性化定制的产品——可以由肌电信号控制的3D打印假肢。在应用方面,3D打印技术还可用于打印骨硬质材料支架、皮肤组织、水凝胶耳朵等。/pp style="text-align: center "img width="400" height="300" title="陆益栋.jpg" style="width: 400px height: 300px max-height: 100% max-width: 100% " alt="陆益栋.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/92f00cd3-1e0b-415b-bd61-5d96d6deae6b.jpg" border="0" vspace="0"/  /pp style="text-align: center "上海黑焰医疗科技有限公司陆益栋/pp  GE增材制造华南区销售总监刘致平作“GE Additive助力增材制造在骨科的应用发展”报告,介绍了增材制造革新了骨科植入制造技术,推动批量化生产和个性化定制,以及GE Additive的产品和服务。/pp style="text-align: center "img width="400" height="300" title="刘致平.jpg" style="width: 400px height: 300px max-height: 100% max-width: 100% " alt="刘致平.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/1708639e-c2b0-4cfb-94a2-426605b7d58f.jpg" border="0" vspace="0"/  /pp style="text-align: center "GE增材制造刘致平/pp  南方医科大学康复学院院长黄国志作“云计算智能3D打印的理念在康复医学中的应用与实践”报告,从3D打印技术谈到3D打印技术在康复辅助器具(矫形器)中的应用,最后说明了云计算智能3D打印平台建设的意义。黄国志认为康复辅助器具市场需求巨大,但人才相对匮乏。3D打印云平台的建设,可以将3D打印矫形器可将从原来的装配/制作难度提前至网上设计阶段,真正解放假肢矫形治疗师 缓解目前国内康复假肢矫形专业人才匮乏问题 实现远程3D打印的可能 可以真正将假肢矫形技术沉入到基层 基层投入少、场地要求低:3D扫描仪即可开展假肢矫形业务。/pp style="text-align: center "img width="400" height="300" title="黄国志.jpg" style="width: 400px height: 300px max-height: 100% max-width: 100% " alt="黄国志.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/7a76a75d-a1d4-4ce4-8b96-9f531cf14968.jpg" border="0" vspace="0"/  /pp style="text-align: center "南方医科大学黄国志/pp  中山大学第一附属医院关节外科邬培慧作“THA臼杯定位系统的研制与应用”报告,报告中通过大量病例,强调臼杯位置合理重建的重要意义,阐述了“术前规划+3D打印+术中定位”进行量化定位手术的思路:以数据展示术前规划的合理,术中准确对接定位,以此减少假体位置不良的并发症。/pp style="text-align: center "img width="400" height="299" title="邬培慧.jpg" style="width: 400px height: 299px max-height: 100% max-width: 100% " alt="邬培慧.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/367fcb0d-3398-42de-94d1-916dec14f938.jpg" border="0" vspace="0"//pp style="text-align: center "  中山大学第一附属医院关节外科邬培慧/pp  广州医科大学附属顺德医院手足整形外科副主任何藻鹏作“基于3D打印的四肢远端关节内骨折高成功率内固定手术”报告,通过大量模型介绍了医学3D打印应用。在辅助工具方面,涉及模型、支具、手术导板和义肢等。在植入物方面,涉及关节假体、人工椎体、颌面修补材料和可吸收材料等。生物打印可用于组织工程骨、人造皮肤和生物器官等。何藻鹏通过模型介绍了3D打印在骨折固定手术中的应用。/pp style="text-align: center "img width="400" height="299" title="何藻鹏.jpg" style="width: 400px height: 299px max-height: 100% max-width: 100% " alt="何藻鹏.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/c7369cc6-9a73-4fb1-83fe-e6f1429a3ec6.jpg" border="0" vspace="0"//pp style="text-align: center "广州医科大学附属顺德医院手足整形外科副主任何藻鹏/pp  瓦克化学(中国)有限公司商务发展经理张崇峰作“瓦克化学ACEO有机硅3D打印创新性解决方案”报告。ACEO使用单液滴计量喷出的方法实现了有机硅的3D打印,具有非接触、设计自由、支撑材料可同时打印、可实现镂空和悬挂等架构、高准确度、无气泡等特点。张崇峰展示了瓦克化学在航空航天、汽车运输、医疗、设备器械、电子与光学和日用消费品等领域大量的产品。/pp style="text-align: center "img width="400" height="299" title="张崇峰.jpg" style="width: 400px height: 299px max-height: 100% max-width: 100% " alt="张崇峰.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/1e393dd4-874b-4bab-bf49-ed9e7e56048f.jpg" border="0" vspace="0"//pp style="text-align: center "瓦克化学(中国)有限公司商务发展经理张崇峰/pp  报告结束后,围绕“3D打印医学应用是推广不够还是已经过度炒作,如何健康发展”,进行了高端对话环节。中科院广州电子技术研究所所长、广东省3D打印产业创新联盟理事长李耀棠主持了该环节。上海黑焰医疗科技有限公司总经理陆益栋、美国3D Systems售前与产品管理经理邓瀚诚、香港三维打印协会副会长胡启明、深圳魔方科技有限公司事业部总经理周建林、亚马逊中国区招商和卖家业务拓展总监杨大志与瑞士欧瑞康增材制造事业部中国区业务发展总监马骏参与了此次高端对话。/pp style="text-align: center "img width="600" height="399" title="IMG_2123_副本.jpg" style="width: 600px height: 399px max-height: 100% max-width: 100% " alt="IMG_2123_副本.jpg" src="https://img1.17img.cn/17img/images/201905/uepic/8c9c4f83-6846-4020-8131-90cd357a340c.jpg" border="0" vspace="0"//pp style="text-align: center "高端对话环节/pp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制