光敏三极管

仪器信息网光敏三极管专题为您提供2024年最新光敏三极管价格报价、厂家品牌的相关信息, 包括光敏三极管参数、型号等,不管是国产,还是进口品牌的光敏三极管您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光敏三极管相关的耗材配件、试剂标物,还有光敏三极管相关的最新资讯、资料,以及光敏三极管相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光敏三极管相关的厂商

  • 上海琅图科技有限公司总部坐落于长江三角洲,闻名全球的中国第一大国际经济、金融、科技、商业、贸易中心魔都——上海,多元化的繁荣大都市同时也为琅图科技提供了更为广阔的发展前景和良好机遇。并在素有小香港之称的国际花园城市中国南大门——深圳市设立子公司——深圳市鑫琅图科技有限公司。自创建之初,琅图科技就力求专注成为国际电子元器件行业的领军企业,公司除了提供优质产品之外,更重要的是提供详细的产品应用方案和完善的技术支持等服务。公司拥有先进的生产技术、迅捷的交货流程和科学的管理体系。   琅图科技囊括五大事业部:第一事业部:接线端子连接器  轨装弹簧接线端子、轨装螺钉接线端子、微型弹簧接线端子、多用途弹簧连接器(MCS连接器)、电路板用组合式弹簧接线端子(PCB端子)、刺破式端子、冷压式连接器、变压器接线端子、建筑物布线用连接器、插拔式连接器,贯通式端子台,栅栏式接线端子,拨码开关和贴片等   第二事业部:牛角、排针、排母  牛角、简易牛角,D-SUB系列,IC插座、PLCC,FC、FD,欧式插座、F48,圆孔IC、圆PIN排针、双头圆针,排针、排母,57系列,排线   第三事业部:过压过流保护 瞬态抑制二极管(TVS),压敏电阻(MOV),玻璃气体放电管(SPG),陶瓷气体放电管(GDT),半导体放电管(TSS),自恢复保险丝(PTC),静电保护器(ESD)第四事业部:集成电路IC、存储芯片 主控事业部代理分销的品牌有:HITTITE、MA/COM、Microchip、AD、ATMEL、TI、MAXIM、ALTEAR、NXP、TRIQUNINT等;第五事业部:电阻、电容、二三极管、保险管、晶振  被动元器件代理经销有红宝石全系列产品、长电的二三极管、TVS二极管、AVX的钽电容及片状陶瓷电容、YAGEO的片状陶瓷电容电阻、ROYALOHM台湾厚声片状电阻和VIKING台湾光吉的超精密超低阻大功率的特殊电阻;并经销有TDK和SANSUNG片状电容、KEMET和NEC的钽电容、ROHM 、PHILIPS、ON的片状二三极管、配套供应电源IC及常规LM系列IC、发光二极管及保险管等;   产品应用行业: 琅图产品目前主要被广泛应用于电梯、电力电气控制系统、轨道交通、自动化控制、风能、太阳能、 照明、造船、机械制造、建筑布线、仪器仪表、新能源、通讯、电源、安防监控、军工、通信、防雷、汽车电子、电表、工业产品及消费类电子产品、数码、玩具、家电产品、工控主板、变频器、LCD及电脑板卡和电脑周边电子产品等领域,产品畅销海内外100多个国家和地区,质量得到了客户的高度认可和赞誉,市场占有率遥遥领先,成为全球电子元器件的优质主要供应商。  公司秉承产品创新与科技前瞻,投资建立了技术研发中心。公司拥有先进的产品试验检验中心,针对产品的安全性、可靠性、适用性进行全面的检验和控制,力求满足并超越客户对品质的要求。  在提供标准优质产品外,同时为客户提供ODM/OEM服务,有效解决客户提出的接线端子、连接器及过压过流保护的产品个性化解决方案。  企业文化:简单,勤奋企业目标:力求专注成为国际电子元器件行业的领军企业经营理念:提供优质产品,让客户变的伟大人才战略:择优录用,打造,留住人才立足中国,放眼世界;琅图,正以专注之力,精准专业之道朝着国际电子元器件领军企业的目标大步前行。树琅图民族企业品牌,共创国际美好未来!赵新生 Mobile: 13567418996Tel : 021-58305223 Fax :021-58305121Q Q:254224196M S N:xinsheng0917@hotmail.com EMAIL: zhaoxinsheng0917@163.com上海琅图科技有限公司 Shanghai LoneToo Technology Co.Ltd. 上海市浦东新区华夏西路5778号 (201204)China Pudong New Area Shanghai City West Road No.5778 (201204)http://www.lonetoo.com
    留言咨询
  • 骊微电子专业从事半导体分立器件及集成电路的开发、生产与销售,不仅能为客户提供最新的产品、库存,也可为客户提供相关的开发工具,与PDF技术资料。 亦可满足客户对各大品牌IC的供应需求,为客户提供完善的技术支持与产品方案。其中包括自主封装生产二三极管产品及国内外一些品牌电源管理IC代理销售!
    留言咨询
  • 深圳市中裕精密自动化有限公司是一家致力于为客户提高工厂生产效率,提升产品质量,降低生产成本的高科技公司。为客户量身定制整套自动化解决方案! 我公司是由一批有丰富设计经验的专业技术人才组成,汇聚控制系统开发、视觉检测、机械设计、售后服务等资深工程师。为广大客户提供高效、稳定、先进的自动化测试系统及设备奠定了坚实的后盾。涉猎范围包括测试测量系统集成、视觉检测识别、自动化测试编带设备等领域。 作为一家以市场为驱动,以客户为导向的公司,我们追求与客户紧密联系。为客户创造更高的价值是我们所追求,与客户一起成长是我们所期望。中裕精密将一如既往的凭借先进的技术优势、诚信务实的作风,致力于精密自动化领域,为客户成就更高的价值。 我们曾做过的项目:测试测量系统:压力传感器测试系统、音视频测试系统集成、扬声器自动测试系统、功放PCBA自动测试系统、NAVI整机在线检测系统、开关电源测试系统、生产线测试数据存储管理系统……视觉检测系统: 字符视觉检测系统、外观自动检测系统、螺丝尺寸视觉检测、印刷自动视觉检测系统、色彩机器识别系统……自动化设备:半自动编带机、全自动编带机、散料测试分选机、切脚成型机、贴片三极管测试编带机、轻触开关编带机、SMD元件测试打标编带一体机……代理测试仪表及附件:Agilent、Audio Precision、Hameg、ATB Precision、Stanford Research、KIKUSUI、California Instrument……
    留言咨询

光敏三极管相关的仪器

  • Finder Ultimate“微振”系列三级联拉曼光谱仪激光共振拉曼光谱是当激光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104-106 倍,并观察到正常拉曼效应中难以出现的、其强度可与基频相比拟的振动光谱。由于有机分子的吸收峰通常出现在紫外或近紫外( 蓝光) 区,所以共振拉曼光谱的激发光源通常采用蓝光或紫外激光器,但需要在实际应用中考虑荧光干扰问题,通常来说,紫外区激发能够有效规避荧光干扰问题,实际应用中需要结合测试对象的吸收光谱特性来进行选择。 显微拉曼光谱技术是将传统拉曼光谱分析技术与显微分析技术结合起来的一种应用技术,但是基于传统的标准显微镜的显微拉曼谱测量系统中存在很大的局限性,比如无法灵活的选择实验所需的激光器,而采用光纤作为光收集装置时又存在耦合效率太低等问题, 这些都是采用标准显微镜难以回避的问题。Finder Ultimate“微振”系列拉曼光谱仪是一款采用了卓立汉光公司自行研制生产的三级联影像校正光谱仪和优化设计的光谱测量专用的显微镜结构的专用于激光共振拉曼光谱测量的拉曼光谱仪, 接收器为深度制冷型科学级背感光CCD,系统设计结合了卓立汉光公司十余年荧光光谱仪、拉曼光谱仪和光谱系统的设计经验以及普遍用户的实际需求,有效的解决了传统的局限问题,是目前市场上非常具有性价比的紫外拉曼光谱测量的解决方案,可应用于催化研究、生物、化学、生命科学、高分子材料学、纳米科学等学科领域。Finder Ultimate“微振”系列三级联拉曼光谱仪性能特点 选配可调谐稳态激光器可实现共振拉曼光谱、共振波长范围、共振临界点、最佳共振波长测试 紫外光激发可以避免荧光的干扰 充分利用某些特定研究对象的紫外共振增强效应选择性激发,提升几个数量级的信号强度 以双级联单色仪取代陷波滤光片(或边缘滤光片),激发波长可任意选择和替换,无需重新校准光路Finder Ultimate“微振”系列三级联拉曼光谱仪参数规格表*主型号Finder Ultimate 三级联光谱仪Omni-λ180Di+Omni- λ500i Omni-λ500Di+Omni- λ500i 拉曼光谱范围325nm激发:50-5,000 cm-1 532nm激发:15-5,000 cm-1(低波数10cm-1, 基于超低波数模块) 分辨率≤1cm-1(@585.25nm) 激光器可选配:244nm、266nm、325nm(≥30mW, TEM00)、532nm(≥50mW,TEM00)、窄线宽可调谐激光器(UV-NIR) 探测器类型深度制冷型背感光CCD 探测器响应范围200-1000nm(根据不同需求选配不同范围增强型CCD) *规格参数为典型值,依据所选激发波长的改变会有所改变,详情请洽询! 不同波长测试AlPO-5分子筛的信号比对(荧光干扰) 分别采用244nm、325nm、532nm 激光器实测样品(AIPO-5 分子筛),可清楚看到紫外拉曼光谱在规避荧光干扰信号的良好表现。低波数实测采用532nm 激光器实测样品(L-Cystine),可准确测到低波数峰。三级联光谱仪有两款三级联光谱仪可供选择,一为Omni-λ180Di+Omni-λ500i(紧凑型),一为Omni-λ500Di+Omni-λ500i(全功能型)。 紧凑型型三级联光谱 全功能型三级联光谱仪应用实例:紫外共振拉曼光谱在催化材料研究中的应用微孔- 介孔材料骨架中超低含量的孤立的过渡金属离子( 例如Ti-MCM-41) 能够通过紫外共振拉曼光谱可靠、准确地鉴别出来。 利用紫外拉曼避开荧光和增加灵敏度的特点, 可以对分子筛合成过程中的合成前体、中间物以及分子筛晶体 的演化过程进行研究。 紫外拉曼光谱可以选择性地得到在紫外区具有强吸收的物质(例如TiO2 和ZrO2)的表面相信息。
    留言咨询
  • 光敏晶体三极管 光敏晶体三极管用来放大入射光产生的电流。与光电二极管相比,晶体三极管即使在很小的感光面积上也可以产生很大的输出电流。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!产品图像产品型号产品名称封装封装类型光电流暗电流集电极-发射极电压(最大值)峰值响应波长 S4404-01光敏晶体三极管塑料带透镜2.5 mA100 nA0.4 V870 nm S2829光敏晶体三极管塑料带透镜1 mA100 nA0.4 V850 nm
    留言咨询
  • 主要应用:-5G及其以上传输系统不断增长的高速及大容量需求对光电二极管提出了更高的要求. 铟镓砷 (InGaAs)二极管、磷化镓(GaP)二极管和硅(Si)光电二极管,锗(Ge)光电二极管....-光电二极管(光敏二极管),有机光电二极管,光电三极管(光敏三极管),光敏器件......-光谱响应测试-DIV测试,电容测试-光电二极管( Photodiode)灵敏度角度特性测试.
    留言咨询

光敏三极管相关的资讯

  • Nat. Commun. 复旦大学季敏标教授合作研究:设计出光敏特性的拉曼探针,实现可控开关的受激拉曼散射成像 | 前沿用户报道
    供稿:敖建鹏成果简介2021年5月,复旦大学季敏标课题组与南方科技大学吴长锋课题组合作,在国际期刊 Nature Communications 发表了题为 Switchable stimulated Raman scattering microscopy with photochromic vibrational probes 的论文,通过在二芳基乙烯母体分子中引入炔基,设计出一类具有光敏特性的拉曼探针,实现了可控开关的受激拉曼散射成像。背景介绍在生命科学研究中,直接可视化细胞内大量不同的分子种类对于理解复杂的系统和过程愈渐重要。而对于荧光显微技术而言,由于荧光分子本质上的宽光谱特性,限制了其可分辨标记对象的能力,常称为“多色复用壁垒”。与荧光分子电子跃迁相对,拉曼散射表征的是振动跃迁,谱线宽度较窄,具有优越的化学特异性,目前基于炔基、氰基等拉曼信源开发出的拉曼探针已经实现了超多色复用成像,但成像分辨率依旧受到光学衍射极限的限制。在此研究背景下, 复旦大学季敏标课题组与南方科技大学吴长锋课题组合作通过赋予拉曼信号光敏活性,实现可逆光开关的拉曼振动光学成像,探索具有光敏活性的拉曼探针及其显微技术的应用可行性,为开发具备超多色复用的远场超分辨显微技术突破了关键一环。图文导读受激拉曼散射(SRS)以快速、免标记和本征三维化学组分分析的优点在显微成像领域备受青睐。为了提高成像灵敏度与特异性,基于炔基、氰基的拉曼探针被开发并用于SRS,打破了荧光显微成像中难以逾越的“多色复用壁垒”,展现了这些生物正交拉曼探针对比荧光标记分子所具备的窄峰宽、无漂白、信源尺寸小而对目标分子干扰小等优势。基于化学键振动的拉曼信号具有很好的光稳定性,早期开发的拉曼探针几乎都是“always-on”类型,意味着信号不受外界调控,失去了随机发光、光开关性等性质,直接通过外界光刺激改变拉曼信号几乎是不可能的。为了解决这一难题,课题组将炔基通过化学合成的手段连接到光异构母体分子(二芳基乙烯)上,通过光异构分子对外界光刺激的响应来调控拉曼信号,从而实现对光敏感的拉曼光谱响应。1. 通过化学合成将拉曼探针(炔基,拉曼信号强且峰位处于生物静默区,有利于后续推进至生物体系)引入二芳基乙烯母体分子中;2. 通过自发拉曼及受激拉曼散射技术对紫外与可见光照射下的分子的炔基伸缩振动模式峰位表征;左:自发拉曼;右:受激拉曼3. 将分子匀涂成膜,通过光在薄膜上自由书写/擦除文字信息并以受激拉曼散射显微读出信息;通过紫外光在薄膜上手写的“复旦”字样,并通过SRS对其成像4. 将分子进一步修饰以靶向线粒体,在细胞层面展示光开关性质的受激拉曼散射成像。光控可逆点亮/擦除喂食过光活性分子的HeLa细胞,并通过SRS对其成像受激拉曼散射作为相干模式下的拉曼散射,虽然极大的提高了拉曼信号,使得快速化学成像成为可能,但由于两束光的共振激励(ωp-ωs=Ω)局限在某一个拉曼峰位,相比于自发拉曼而言损失了全光谱信息,因此在对未知物质检测时自发拉曼光谱的测定依旧不可或缺。HORIBA LabRAM HR Evolution的1064nm激发模式很大程度上解决了常用可见光光源激发自身对光敏分子的影响,对我们的实验可靠性论证起到了极大的帮助。HORIBA LabRAM HR Evolution如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望“山重水复疑无路,柳暗花明又一村。”实验过程中课题组抛开固有实验套路,另辟蹊径,最终实现了可控开关的受激拉曼散射成像,不仅为开发具有光开关性质的振动光谱探针提供了新思路,同时为光开关受激拉曼散射显微成像技术的提供可行性基础,拓展了SRS的应用范围,将有望推动超多色复用拉曼显微跨入超分辨时代。文献信息Switchable stimulated Raman scattering microscopy with photochromic vibrational probes文章署名作者:Jianpeng Ao, Xiaofeng Fang, Xianchong Miao, Jiwei Ling, Hyunchul Kang, Sungnam Park, Changfeng Wu & Minbiao Ji文章链接:https://doi.org/10.1038/s41467-021-23407-2扫码查看文献季敏标教授课题组简介季敏标教授课题组主要从事非线性光谱学和显微成像技术研发,并将它们用于生物医学光子学应用研究和新型材料的光电性质基础研究。在生物医学光子学领域主要发展用于肿瘤组织的快速无标记病理检测方法和脂质代谢等生物医学问题;在材料学领域主要研究新型二维材料的超快载流子和声子动力学问题等。
  • 北化徐福建团队:阳离子光敏剂烷基链长度对活性氧抗菌机制的影响
    近日,北京化工大学材料科学与工程学院徐福建教授团队和济宁医学院的李敬博士在Adv. Mater.上发表了题为“Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms”的研究论文。阳离子光敏剂与带负电荷的细菌和真菌具有良好的结合能力,在抗菌光动力疗法(aPDT)中应用广泛。然而,阳离子光敏剂对病原菌,尤其是真菌与哺乳动物细胞不具有选择性,往往会存在生物安全性的问题。同时,由于缺乏对相同光敏剂的系统性研究,目前尚不清楚细菌的哪些生物活性分子位点是光动力的有效损伤位点。因此,以小檗碱(BBR)为光敏剂核心,设计并合成了一系列具有不同烷基链长度的阳离子聚集诱导发光(AIE)衍生物(CABs),用于灵活调节阳离子光敏剂对细胞活性物质的选择性。BBR核心可以有效地产生活性氧(ROS),并在生理环境中实现高性能的aPDT。通过精确调节烷基链长度,实现了CABs在细菌、真菌和哺乳动物细胞中的不同结合、定位和光动力杀伤效果。研究发现,aPDT更有效的损伤位点是细胞内活性物质(DNA和蛋白质),而不是细菌膜。中等长度烷基链的CABs在光照下能有效地杀死革兰氏阴性菌和真菌,同时仍然保持良好的生物安全性。通过HOMO-LUMO实验证明烷基链长度的改变并不会改变核心BBR的AIE性能,但是随着烷基链的增长,CABs更容易形成分子间聚集体。与此同时,随着烷基链的增长,CABs与细菌的结合速率与结合量增加。CAB-8光照时的抗菌性能提升更明显。进一步的激光共聚焦定位实验证明,烷基链长调控CABs在细菌内的定位,CAB-8进入细菌,CAB-10卡在膜上。通过分子动力学模拟实验发现,CAB-10比CAB-8要克服更大的自由能,导致CAB-10卡在细菌膜上。透射电镜冷冻切片证明,CABs的定位调控杀伤,CAB-8损伤菌内活性物质,CAB-10损伤细菌膜上。进一步通过液质联用、DNA彗星实验以及β-半乳糖苷酶检测证明:CAB-10(膜上)膜损伤程度大于CAB-8(膜内),CAB-8(膜内)对DNA、酶损伤程度大于CAB-10(膜上)。随着烷基链的增加,CABs进入真菌的能力增强:CAB-10>CAB-8 CAB-6。同时,烷基链越长,CABs进入哺乳动物细胞的能力越强,具体表现为CAB-10的细胞毒性远大于CAB-8和CAB-6。综上所述,CAB-8可以很好的平衡光动力杀菌和生物相容性,具有高效杀菌性和生物安全性。该研究通过烷基链的定位调控,解决了阳离子光动力抗菌材料对细菌、真菌、哺乳动物细胞不具有选择性造成的生物安全问题,同时证明了相对于细菌膜来说,细菌内部的活性物质是光动力更为有效的氧化位点。本研究有望为构建具有良好选择性的高性能阳离子光敏剂提供系统的理论和研究指导。北京化工大学材料科学与工程学院博士生郑良和博士生朱艺文为本文的共同第一作者。材料科学与工程学院徐福建教授和俞丙然教授、济宁医学院的李敬博士为本文的通讯作者。北京化工大学为第一完成单位。本研究工作得到了国家重点研发计划,国家自然科学基金,和北京市优秀青年科技人才计划的资助。
  • 摄像光线不足将成历史 新传感器光敏度强千倍
    这种新型传感器是由新加坡南洋理工大学的研究人员研制的,它对可见光和红外线都高度敏感,这就意味着它可以用于尼康品牌的所有产品。   研究人员称,这是首次使用纯石墨烯制造出一种用途广泛的高光敏度传感器  这种传感器对光线的敏感度超过现在摄像机所使用的成像传感器千倍,这都得益于它所使用的创新式结构。它是由石墨烯制作而成的,石墨烯是一种拥有蜂窝状结构的超强碳化合物,它和橡胶一样柔韧,而且比硅更具传导性。石墨烯是一种单原子厚的石墨层,它已经获得了认同可以作为未来的建筑材料。2010年Andre Geim和Konstantin Novoselov也因为他们对于石墨烯的研究而获得了诺贝尔物理学奖。  南洋理工大学电气与电子工程系的助教Wang Qijie发明了这种新型传感器,他说道:&ldquo 这是首次使用纯石墨烯制造出一种用途广泛的高光敏度传感器。我们已经证实,现在有可能仅使用石墨烯就制造出廉价而又柔韧的感光传感器。我们期望这项创新,不仅能够对成像企业的消费者而且能够对卫星成像和通信企业产生巨大的影响。&rdquo Wang声称,这种新型传感器的关键在于使用了&ldquo 滞留光线&rdquo 的纳米结构。纳米结构能够比传统的传感器更长时间的捕获产生光线的电子微粒。这就会导致产生一种更强的电信号,就像数码相机所拍摄的照片一样,它能够将这种电信号转变成图像。  现在大多数摄像机的传感器都使用一种互补金属氧化物半导体作为基座。但是Wang声称他的石墨烯基座要高效的多,能产生更加清晰和精美的照片。而且据Wang所说,他在设计这种新型传感器的时候,甚至考虑到了现在的制造业规范。一般而言,摄像机生产企业能够使用同样的过程来制造这种传感器,仅仅需要将基座材料转换成石墨烯即可。Wang说道,如果有企业采纳他的设计,那么就能够带来更廉价、更轻便而且电池寿命更长久的摄像机。

光敏三极管相关的方案

光敏三极管相关的资料

光敏三极管相关的论坛

  • 三极管的简易方法

    三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:"三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。"而常用的三极管有A1015等等。下面让我们逐句进行解释吧。  一、 三颠倒,找基极  大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,是它们的电路符号和等效电路。  测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。绘出了万用电表欧姆挡的等效电路。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。  假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两 个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的 正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后 指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。  二、 PN结,定管型  找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电 极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。  三、 顺箭头,偏转大  找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e.  (1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中 万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中 的箭头方向一致("顺箭头"),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e.  (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c.  四、 测不出,动嘴巴  若在"顺箭头,偏转大"的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要"动嘴巴"了。具体方法是:在"顺箭头,偏转大"的两次测 量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用"顺箭头,偏转大"的判别方法即可区分开集电极c与发射极e.其 中人体起到直流偏置电阻的作用,目的是使效果更加明显。

  • 测判三极管的口诀

    三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。  一、 三颠倒,找基极  大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管。  测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。  假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。  二、 PN结,定管型  找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。  三、 顺箭头,偏转大  找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。  (1) 对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。  (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。

  • 怎样检测片状三极管

    万用表是电力电子等部门不可缺少的测量仪表,一般以测量电压、电流和电阻为主要目的。万用表按品牌可分为吉时利万用表、福禄克万用表及安捷伦万用表等。万用表可用来检测片状三极管。片状三极管因其体积微小。片状三极管因其体积微小。所以又俗称为芝麻三极管。片状三极管与普通三极管一样,种类很多,有NPN型、PNP型、超高频和高反压型等。片状三极管广泛用于厚摸集成电路、电子模块、超微型电子产品中。  片状三极管的3个电极b、e、c,有的位于壳体两侧,如图2a所示,有的位于壳体一侧,如图2b昕示。  片状三极管的检测内容主要包括判定b、e、c电极,区分。NPN型和PNP型,测试其hFE等。  这里以检测一块壳体没有任何标示的矩形片状三极管为例,具体介绍一下片状三极管的检测方法。  为叙述方便,现给其三个电极分别加上序号①、②、③,如图2c所示。  判定基极b和管子类型。将指针式万用表的量程开关置于Rxlk挡,依次测试各电极的正反向电阻值,当黑表笔接某一电极(假设为电极①),红表笔接另外两个电极②、③时,两次测得的正向电阻值部较小,即可判定电极①为基极b,并可判定被测三极管为NPN型。当红表笔接某一电极(假设为电极①),黑表笔接另外两个电极②、③时,两次测得的正向电阻值都较小,即可判定电极①为基极b,并可判定被测三极管为PNP型。  判定e、c极并测试其hFE。判定e、c极的方法是将片状三极管的三个电极分别焊上导线,并将导线插入指针式万用表的hfE测试插口,在将三个电极引线插入万用表的hFE测试插口时,要根据已判明的所测管子是PNP管还是NPN管,选择所测管子要插入的三个插口。首先要将已测出的b极引线插入b 插口,其余两电极引线按照相反的接人方法,分两次分别插入剩下的两个hFE插口,并观察两次接入时万用表指示的hFE读数(三极管的放大能力)有无明显变化。若被测三极管是好管,则两次接入的万用表指示的读数会差别较大,读数较大的那次接人方法是正确的,此时根据万用表的测试插口上所标示的电极名称,便可直接确定被测三极管的e极和c极。确定被测三极管的e、c极后,用数字式万用表可直接测出其hFE,方法是将测被管子的三个电极引线直接插入相应的hFE 插口,便可从液晶屏上直接读出其hFE值。  判定是硅管还是锗管。为提高识别的可靠性,选择500型万用表的Rxl00挡,当黑表笔接电极①,红表笔接电极②时,万用表的指针指在700Ω 附近,对应于n′=20.5格,则该PN结的导通电压=0.03V/格x20.5格=0.615V,由此可判定被测三极管是硅管。  若万用表的指针不指在700Ω附近,则说明被测管子是锗管。 .  需要注意的是,用万用表测试片状元器件时,其笔尖一定要细,以保证接触位置正确并保持接触良好。

光敏三极管相关的耗材

  • 力可动力三极管771-425
    上海安帕特实验室仪器有限公司专业提供实验室分析仪器原装配件及耗材,例如:ICP-AES/OES光谱,ICP-MS质谱,AAS原吸、直读光谱,X荧光光谱,碳硫,氧氮等分析仪器配套使用的各种原装零配件及耗材。包括热电(ThermoFisher),珀金埃尔默(PerkinElmer),力可(Leco),戴安,瓦里安(Varian),安捷伦(Agilent),利曼(Leeman),斯派克(Spectro),岛津(Shimadzu)等品牌各种分析仪器的原装配件及耗材。。 配件编号:771-425 产品名称: 产品规格:771-425 仪器厂商:美国力可/LECO 价格:面议 库存:是
  • vwr光敏离心管15ml
    vwr光敏离心管15mlPP, high grade gamma resistant, conical, amber, with white HDPE plug style cap with deep sealing area. 旨在保护光敏样品。 离心管和盖可高温高压灭菌及可冷冻γ辐照每个离心管圆锥形底部刻有刻度耐氯仿刻度和书写区域更长长度螺旋盖,带密封圈,防泄漏15或50 ml尺寸可选,采用多种包装无细胞毒素、无核酸酶及无热原认证 Designed to provide protection for light-sensitive samples. vwr光敏离心管15ml容量 盖 包装规格 版本 最相对离心力 包装规格 VWR目录号15 ml 配有螺帽 散装,500件/箱 未灭菌 12 500 ×g 500VWRI525-0600 15 ml 配有螺帽 50个/袋,10袋/箱 无菌 12 500 ×g 500VWRI525-0599 15 ml 配有螺帽 25个/架,20架/箱 无菌 12 500 ×g 500VWRI525-0598 50 ml 配有螺帽 散装,500件/箱 未灭菌 12 500 ×g 500VWRI525-0603 50 ml 配有螺帽 50个/袋,10袋/箱 无菌 12 500 ×g 500VWRI525-0602 50 ml 配有螺帽 25个/架,20架/箱 无菌 12 500 ×g 500VWRI525-0601
  • VSS200光敏光纤
    VSS200系列-光敏光纤量青光电代理的Verrillon光纤有多种设计形式,可以是多模也可以是单模,可以单涂层也可以多种复合涂层。包含:Polyimide, Silicone-PFA,和 Carbon,这些都可以多种复合涂层。我们这种光纤典型应用在井下数据记录,分布式传感,成像应用。 Verrillon 碳涂层(Carbon-coated)光纤相比较一般商业类型光纤具有超高的密封性。Verrillon还可以根据客户的要求提供多支密封光纤加金属套管服务。 特征: l 旨在提供高水平的包层模式抑制。l 高光敏性减少写光栅时间。l 亚克力涂层易剥离,使得FBG操作更容易。l MFD和普通SMF光纤兼容,减少熔接损耗。 产品参数:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制