当前位置: 仪器信息网 > 行业主题 > >

涡流探头

仪器信息网涡流探头专题为您提供2024年最新涡流探头价格报价、厂家品牌的相关信息, 包括涡流探头参数、型号等,不管是国产,还是进口品牌的涡流探头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合涡流探头相关的耗材配件、试剂标物,还有涡流探头相关的最新资讯、资料,以及涡流探头相关的解决方案。

涡流探头相关的论坛

  • 涡流探伤机在应用中会带来什么样的影响呢?

    涡流探伤机-无损检测仪器-探伤机。涡流探伤仪主要是利用导电材料在交变磁场中产生的涡流性质,检测导电材料叠加磁场的变化信号来表征材料缺陷的仪器。涡流探伤仪对金属管、棒、丝、线、型材的缺陷都有着较高的检测灵敏度。 在各类有色金属、黑色金属管、棒、线、丝、型材的在线、离线探伤中涡流探伤机也都得到了十分广泛的应用。影响涡流探伤仪的因素有很多,像被测材料的形状和尺寸、电导率、导磁率、探头线圈与被测材料的耦合程度和缺陷等都是可以影响涡流探伤仪的。涡流探伤机利用涡流原理可以解决问题有:材料的传导性测量;材料厚度测量;涂层厚度测量;裂缝、缺陷检查等。

  • 电涡流位移振动传感器的安装及注意事项

    电涡流位移传感器是基于高频磁场在金属表面的“涡流效应”而成,是对金属物体的位移、振动、转速等机械量进行检测和控制的理想传感器。电涡流位移传感器具有非接触测量、线性范围宽、灵敏度高、抗干扰能力强、无介质影响、稳定可靠、易于处理等明显优点。电涡流位移传感器广泛用于冶金、化工、航天等行业中,也可用于科研和学校实验中的位移、振动、转速、长度、厚度、表面不平度等机械量的检测。 安装的过程中,首先要在确定电涡流位移传感器已经标定完成后。卸下传感器,连同万用表和电源一起,安装到实际被测体处。调整传感器与被测体之间的距离,使变换器的输出读数符合检测要求。一般来说,(以“0―5V”输出为例)测振动,应使输出指示为“2.5V”即线性段的中点。测位移,如果被测体的位移是双向的也应使输出指示为“2.5V”即线性段的中点。如果是单向的,应使输出指示为“0V”,或者“5V”.即线性段的下限或者上限。安装无误后,固定电涡流位移传感器即可。 电涡流位移传感器在连接无误,接通电源后,请预热10分钟,探头周围一倍于探头直径的地方,不能有其它金属材料。工作时,电涡流位移传感器应避免强磁场和强电场的干扰。传感器和前置变换器之间的插头、插座工作时,不应有抖动,以免引起输出变化。高频电缆的长度不能随意增减。无温度补赏的电涡流位移传感器,测量环境不可出现温度急剧变化,以提高测量精度。

  • 零磁通电流探头的原理和特性是什么?

    零磁通电流探头的原理和特性是什么?

    零磁通交直流电流探头,采用霍尔效应传感器技术来测量交流和直流信号。其最大可测 2000A 的DC、±2000A 的 AC、DC+AC 峰值。标配的适配器为 15V/2A,输入电压为 100~240VAC,可兼容不同国家地区的市电。零磁通交直流电流探头使用过程中功耗比较大,如果出现过温情况,电源指示灯会闪烁,此时请立即停止测量,断开信号源,待探头降温后,再进行测试。外配标准 BNC 输入,其具有一键归零、正常/故障提示。亦可使用 BNC-to-banana 转接器连接数字电表使用。[img=,690,479]https://ng1.17img.cn/bbsfiles/images/2022/08/202208041620444619_8086_5787068_3.jpg!w690x479.jpg[/img]特性:AC/DC 电流探头DC:2000AAC:4000Ap-p带宽:DC-100KHz(PT-712)/200KHz(PT-722)自动归零,误差≤0.1mV采用零磁通技术,具备低零漂、低温漂和低非线性误差;同时具备低插入阻抗、涡流效应和负载效应。最小电流:0.1A DC最大耐压:600VAC固定衰减比:1000:1导体位置误差: 0.5%额定供电电压:15V零磁通彻底解决了大电流下铁心磁通饱和带来的非线性误差;同时也解决了直流下磁芯被磁化存在剩磁引起的直流失调。零磁通电流探头/闭环式电流探头,真真切切地改善了传统开环式电流探头的测量精度问题。

  • 高精度电涡流传感器工作

    [b]  高精度电涡流传感器,[/b]电涡流传感器是一种经典的传感器类型,具有非接触、宽带宽、灵敏度高、可靠性好等优点,并且可以工作在恶劣的环境,具有广泛的应用需求。 [align=center][img=高精度电涡流传感器]https://www.cxyqyb.cn/uploads/191015/1-191015153151515.jpg[/img][/align]https://www.cxyqyb.cn  根据目标导体厚度的不同,电涡流传感器可以划分为两种传感器类型:电涡流位移传感器和电涡流厚度传感器。这两种传感器是应用电涡流效应的自然产物,已经存在并发展了几十年,市场上有各种型号的产品。然而,这两种传感器仍然有大量的应用需求和难题需要去满足和攻克。  工作原理  高精度电涡流传感器系统中的前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。  通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ,ξ,б,D,I,ω)函数来表示。  通常我们能做到控制τ,ξ,б,I,ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化,输出信号的大小随探头到被测体表面之间的间距而变化,高精度电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。

  • 【讨论】反相探头做酸性体系

    前段时间听老师说反相探头不能做酸性体系(例如氘盐酸,氘硫酸)样品,梯度自动匀不上场,我们在用正相探头做酸性体系(例如氘盐酸)时倒是可以匀上场,但就是自动matching时差的很远,而且有时 wobble曲线会跑出界面,请教反相探头不能做酸性体系(例如氘盐酸,氘硫酸)吗?可以做碱性体系吗?例如NaOD

  • 氧探头采购

    大家好,我公司想求购氧探头,可以测到几个PPM,用于手套箱氧含量的测试。之前我公司手套箱用的是原装进口氧探头,可精确到0.1PPM。现在进口氧探头使用年限已久被腐蚀。由于进口氧探头较贵,上级主管让我联系国产氧探头生产厂家。探头要求能测到几个PPM,但不需要精确到0.1PPM。在这里向大家求教相关采购信息,非常感谢!!

  • 【求助】(已应助)急需涡流检测相关标准

    急需以下涡流检测相关标准:GB/T 7735-2004《钢管涡流探伤检测方法》、GB/T5248-1998《铜及铜合金无缝管涡流探伤方法》、GB/T12966-91《铝合金电导率测试方法》、GB/T4956-2003《磁性基体上非磁性覆盖层 覆盖层厚度测量 磁性法》、GB/T4957-2003《非磁性基体金属上非导电覆盖层 覆盖层厚度测量 涡流法》电子版,哪位大侠有?请紧急援助!

  • 碳硫分析仪探头问题

    各位,我们用的的是金义博的碳硫分析仪,最近那个探头缩进去了,关机后倒是可以调下来,一开机他又自动缩回去了,现在都不能燃烧了,是哪里问题呢? 谢谢了先

  • 【资料】探头是怎样工作的

    探头是怎样工作的  示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。  我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。屏蔽  探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一面导线来代替探头,那到它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,其些这类噪声甚至还能抽向注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过们于探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。探头带宽  和示波器一们,探头也具有其允许的有限带宽。如果我们使用一台100MHz的示波器和一个100MHz的探头,那么它们组合起来的响应就小于100MHz,探头的电容和示波器的输入电容相加,这就减小了系统的带宽,加大了显示的上升时间tr见第一章1.3节上升时间。使用1.3节的公式  tr(ns)=350/BW(MHz)  如果示波器和探头各自均为100MHz带宽,其上升时间均为tr=3.5ns 。则有效系统上升时间就由下式给出:  trsystem=sqr(t2rscope+t2rprobe)  =sqr(3.52+3.52)ns  =sqr(24.5)2ns  =4.95ns  根据4.95ns的系统上升时间求得,系统带宽为350/4.95MHz=70.7MHz。  Fluke公司给所有示波器配备的探头都能使示波器保证在探头尖端获得规定的示波器带宽,从上述的计算可以看出,视觉要求探头本射的带宽要比示波器的带宽宽得多。负载效应  当我们进行测量时,我们常常以为测得的电压和电路中未连入示波器时是完全一样的。  实际上,每个探头都有其输入阻抗,输入阻抗包含了电阻、电容和电感分量。由于探头引入的额外负载,所以连入探头后就会影响被测电路我以当我们分析测量结果时必须考虑探头的特性以及测试电路的阻抗。  有些探头里没有串联的电阻,这类探头主要就由一段电缆和一个测试头构成,因此,在其工作频率范围或有用带宽之内,探头对信号没有衰减作用。这类探头称为1:1或X1探头。由于这类探头在测试点处将其自身的电容(包括电缆的电容)与示波器的输入阻抗连在了一起,所以这种探头具有负载效应。见图42。图42 探头的等效电路  当信号频率啬时,探头的容性负载效应京戏得更加显著。由于电缆的类型和长度的不同以及探头本身构造等原因,1:1探头的输入电容通常可以从大约35pF到100pF以上,这等于给被测电路施加了一个低阻抗菌素负载,具有47pF输入电容1:1探头在20MHz之下的电抗仅为169W,这就使得这个探头在此频率无法使用。衰减式探头减小了负载效应  我们可以在探头中增加一个和示波器输入阻抗相串联的阻抗,用这种办法就可以减小探头的负载效应。然而,这就意味着输入电压不能完全加到示波器的输入端,因为我们现在已经引入了一个分压器。  图43给出了一处简化的探头等效电路,Rp和Rs构成了一个10:1的分压器,Rs为示波器的输入阻抗。调节补偿电容C补偿使得探头和示波器械相匹配,视觉保证了在探头的尖端获得正确的频率响应曲线,宋一来就使得这种探头的频率响应比1:1探头频率响应要宽得多。图43 10:1探头电路图  示波器的标准输入电阻为1MΩ。这就要求在探头中串联9MΩ的电阻,使得在低频时探头尖端的输入阻抗为10MΩ。探头补偿  一个实际的10:1探头具有几个可调的电容和电阻以便在很宽的频率范围内获得正确的频率响应,这些可调元件的大多数都是在制造探头时由工厂调好的。只有一个微调电容留给用户去调节。这个电容称为低频补偿电容,应当通过调节这个电容使得探头和与相配用的示波器匹配,使用示波器前面板上的信号输出可以很容易地进行这项调节工作,示波器的这个输出端标有"探头调节"、"校准器""CAL"或者"探头校准"等标志,并能送出一个方波输出电压。方波中包含很多频率分量。当所有这些分量都以正确的幅度送至示波器时,就能在示流器屏幕上再现方波信号。图44示出探头欠补偿,正确补偿和过补偿的影响。图44 在2kHz方波和1MHz正弦波之下观察不同探头补偿情况的影响。  可以看出,在较高的的频率下探头过补偿和欠补偿和欠被偿情况下1MHz正弦波的幅度是很不准确的。  所以在使用的衰减探头之前一定不要忘记检查探头的补偿情况。由于一台示波器的不同输入通道的输入电容可能有小的差异,所以您应当按照示波器上要使用的通道来进行探头补偿调整工作。最大输入电压  多数通用10:1探头的构造使这些探头适合于最大输入电压为峰值400V或500V的情况下使用,所以这些探头可以用于信号电平高达数百伏的广泛的应用场合,对于需要测量更高电压的场面合,我们推荐使用电压额定值更高的100:1探头。探头读出  现代示波器探头都装有编码系统,使得示波器能够识别与它相连年的探头类型。 从而使示波器能够高速垂直偏转指示值及所有幅度测量结果以避免发生泥淆。而如果使用不带这种识别系统的探头,则用户就不得不自己为所有波形显示和测量结果重新定樯以便反映出探头的衰减量。接地引线电感  图45说明探头的接地引线电感如何与探头及示波器的输入电容形成串联谐振电路。而探头的输入电阻则在谐振电路中引入阻尼。图45 带有接地引线电感的探头等效电路  像其它谐振电路一亲,如果在探头上加入阶跃电压则此谐振电路也会发生振铃现象,过大的接地引线电感还会使示波器显示的上升时间变差,图46显示出使用不同长度的接地引线时,连至示波器的快速上升沿脉冲的显示波形。图46 接地引线对脉冲响应的影响  从图中我们可以清楚的看到接地引线电感对测量结果的影响,所以一定要使探头的接地引线尽可能的短,特别是在测高频和快速上升沿的信号时尤应注意。安全接地  为保证电气上的安全,多数示波器都通过电源线与安全地线相连。被测信号有可能和地线具有相同的参考电位,但并非必然如此,因此在连接探头的地线时,一定要注意不要因此而把被测系统的某一部分短路。另一方面,既使被测系统和示波器的地线具有相同的参考电位,这也并不意味着可以用安全地线来作信号返回通路,这是由于安全地线连接走线很长,具有很大的引线电感,因此不适合作信号返回通路。这时一定要用探头的接地引线来作为信号的参考地线。4.2 探头类型  我们已经研究了10:1和1:1两种探头,此外还有多种其它类型的通用探头。可切换式探头  这种探头将10:1探头和1:1探头容为一体,使用起来非常方便,在一般情况下最好使用10:1档,因为在这一档探头对被测电路的负载效应小,而且频带宽。而1:1档则可在测量低频低电平信号时使用。衰减器探头  另一种常用的衰减器探头为100:1探头,其输入电容较低,典型值为2.5pF,输入电阻为20MW,探头的额定电压值很高,典型值为4KV。因此这种探头适合于在测量高压变换器等电压很高的场合使用。FET探头  这是一种可在高频下使用的有源探头,其使用频率可达650MHz。其输入电容可低达1.4pF,因此特别适合于在具有很高源阻抗的电路中测量快速瞬变,或者其它要求探头负载效应最小的场合。由于采用有源设计方案,所以FET探头也可用于1:1的情况,仍具有极低的输入电容。电流探头  顾名思义,使用这种探头时示波器上显示的是导体中的电流而不是其上的电压。在这种探头的头上装有一个电流感应变压器,使用时只要把探头卡到电缆导线上而无需切断电路,探头获得的信号首先变换成电压,再经过比例变换后送到示波器的端,这时示波器显示的单位为A/格或mA/格。探头的频率范围可达70MHz以上。  使用电流探头以后,具有数学处理能力的示波器就可以通过将电压波形和电流波形相乘来进行功率的测量,详细情况见2.3节。隔离放大器  隔离放大器虽然不是一般意义下的探头,但我们可以把它看成是一种用来把示波器测量点和地电位隔离开来的特殊类?quot;探头"。这种"探头"之所以必要是因为,除非使用电源隔离变压器或者电池来为示波器供电,不然的话,示波器的输入参考地线总是在地电位,采用隔离放大器还使我们能够测量叠加于很大的共模电压之上的小信号(见图47)。隔离放大器的输入单元整个由塑料构成。并由电池供电,以保证安全。隔离放大器大都应用在电力和控制系统等领域。图47 具有共模电压的电路带有命令开关的探头  在探头方面的一项最新改进是针对使用探头进行大量测试工作的用户。在PM3094和PM3394A系列的示波器中,Fluke公司采用了一项称为探头命令开关的新技术,为此在探头体上装了一个小开关,使用空虚开关可以启动预选的功能,如启动自动设置,或者从设置存储器中选择另一组设置参数,在组合示波器中命令开送还可以用来启动"接触、保持和测量"功能

  • 【求助】REF探头和BSE探头问题

    我们用的设备是JEOL,JSM-IT100。但是背散射探头坏了,现在客户反应我们的二次电子探头拍不出第三方(BSE)的效果- -。实际就是PC塑胶件表面的空洞,二次电子由于边缘放电效应导致边缘发光。客户反应BSE探头立体感更强(实际上SE探头更强...但是毕竟客户投诉)需要我们更换。我们想知道JEOL的REF探头(二次电子探头探测背散射电子)能否代替BSE探头?此时图像的明暗是导电性的强弱还是原子的相对原子质量大小影响?dalao们有REF的介绍吗?最好是和BSE的对比,感谢!

  • 【求购】预购固体探头

    我单位有BrukerAV-600和AV-400两台液体核磁,配有TXI和BBO探头,最近欲购买固体探头,请教下买哪种探头较为合适.应该如何配置,谢谢

  • 我的核磁没有办法调探头,怎么办?

    各位朋友,我们用的是一台JEOL公司的300兆赫兹的核磁,这几天由于一次突然停电,先是13C的累加次数不到200多次就会突然停掉,我把系统重新关掉重启后竟然不让调探头,总是告诉我有错误,错误类型是“Error 9”,我不知道怎么办,请各位帮帮忙。

  • 示波器电流探头,探头的选择及使用

    正确的探头选择会扩展和增强仪器的性能,而错误的探头选择往往会降低你的系统性能。对探头特性的深思熟虑会帮助保证你的仪器性能满足你的应用要求。虽然对合适的探头主要考虑是它的负载影响和信号逼真度的传送。但物理参数例如:探头尺寸大小、电缆长度和与被测装置互相连接的适配器对你测量的成功可能更重要。在高频段正确使用探头也是很重要的。 许多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 不要把示波器与地隔离开而浮置起来。用单端探头做差分测量是很危险的。通常示波器的输入端与地之间接有10pF或15pF电容,也有少数大型示波器在输入端与地之间接有100pF的电容,若用它做差分测量,由于存在不平衡的容性负载,使信号扭曲。 量无零点参考信号时,用差分探头能解决这些问题,用两个探头分别接在示波器的两个通道上,设置示波器显示出两者相减的结果,此两探头应选用匹配好的一对,所谓匹配好实际上是指两探头的电缆要一样长,即对信号的延迟要一样,其输入电容、电阻和衰减也一样。用微调电容可以减小两者的差别。 多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 以上信息由Agitek整理,希望对大家有所帮助。

  • 【求助】探头的问题

    听说购买Bruker仪器时,标准配置中提供的CP-MASS探头对测I1/2的元素灵敏度不如另外一种探头,想知道那种探头叫什么名字?

  • 【原创】牛津公司推出第6代的SDD探头

    [size=4]本人在北京电镜会议上听牛津公司的销售经理介绍,牛津公司推出了第六代SDD,又说是KETEK公司生产.可是KETEK公司至今只推出第5代的SDD,请问这个怎么理解呀?有人告诉我:牛津公司的探头根本不是德国产.据某业内人士透入:牛津公司的SDD其实是日本产的,牛津公司与日本掘场是互为OEM商和供应商.在液氮能谱仪上,牛津为掘场贴牌生产.而在SDD能谱仪上,牛津独家销售掘场的SDD探头.这就是牛津公司愿意放弃日本全球第二大市场,改成OEM商真正的内因.看了前面SDD探头的争论,本人十分迷惑,是否请人指点迷津.到底是谁家的好,Bruker吗?[/size]

  • 核磁探头的工作原理?

    现在做不同的谱图都使用不同的探头,如很多杂核都有各自的探头,其中不同探头的不同在哪些地方,能不能发展出通用型探头,那样核磁检测也就方便多了!

  • 求助涡流制冷器的运用

    涡流制冷器需要使用压缩气体作为制冷源,通过调节涡流制冷器上面的旋钮可以调节压缩气体量的大小,从而达到调整制冷温度的高低!我想请教专家:是增大排放量,可以使样气温度低,还是减小排放量,可以使样气温度低?还有就是涡流制冷器到底能制冷到多是度?谁有没有具体的资料?还有就是半导体冷凝器的资料(包括原理)

  • 溶解氧探头终身免维护的好,还是能换膜的探头好?

    我们买了个溶解氧仪器,据说最先进的是探头,是欧美大牌探头,终身免维护,几乎不用什么酸洗什么的,前面的膜也不用更换,不行就需要换新的探头。据说探头寿命有三年。也许是中国人的消费习惯问题,总喜欢坏了修修还能用。这个探头的理念就是不行了就换新的,不搞局部维修,换个膜,充个液什么的,方便是真的,利索也是真的。不知您喜欢这样的,还是能换膜,能换液的探头?

  • 变温实验对探头的影响

    变温实验对探头有不良影响,探头的组成材料是什么?探头应该不会这么脆弱吧,为什么能忍受很低的低温,就不能忍受太高的高温(小于130)?变温实验还有没有需要比这个温度还要高的温度?

  • 【原创】能谱探头保护

    鉴于有很多用户在电镜的使用过程中,出现使用不当,导致能谱破窗的问题,现我提一些保护能谱探头的建议:1. 样品室破真空时不要用力拉拽样品室门;2. 关样品门时要慢慢推进舱门;3. 样品一定要清洁,用洗耳球使劲的吹干净,尤其涉及到松软的样品更要注意防止它在观察时有小颗粒飞溅污染窗口;4. 平时不使用能谱时一定要注意随时将探头摇出;5. 杜瓦瓶内一直有液氮时每隔半年做一次Condition(大约需要2小时探头除霜,在此期间一定要保证有液氮);6. 能谱长时间不用,杜瓦瓶内没有液氮时加液氮前要先执行Cool Down程序(大约需要等待75分钟)。

  • 超声波测厚仪探头使用注意事项

    [url=http://www.dscr.com.cn/show.asp?id=374]超声波测厚仪[/url]可以测量金属材质、管道、压力容器、板材(钢板、铝板)、塑料、铁管、PVC管、玻璃等其他特殊材料的厚度;也可以测量工件表面油漆层等带涂层的材料;广泛应用于制作业、金属加工业、化工业、商检业等检测领域。  超声波测厚仪探头如果以构造来分类可以分为直探头、斜探头、带曲率探头、聚焦探头和表面波探头。  下面小编来讲一下,超声波测厚仪探头如何维护  1.探头不能投掷、跌落以及使用猛力拉扯。  2.使用的时候,探头的两根电缆线插入和拔出的时候应手握电缆线的金属部分,防止探头断线。  3.现场工作俄时候,探头应尽量避免在粗糙不平的表面上磨动,仪延长探头的使用寿命。  4.探头使用完之后,应及时擦去探头上的耦合剂,保持探头的清洁.  相关阅读:超声波测厚仪如何保养  一、使用超声波测厚仪时应小心轻放,避免碰撞。  二、仪器每次使用完毕后,应将仪器主机和探头擦干净,放入仪器箱内保存。  三、仪器长期不使用时,须将电池取出。  四、若仪器出现故障无法使用时,则需要返回原厂进行维修。  五、试块的清洁

  • 探头的匀场效果变差

    探头内没有碎过核磁管,用了4年多了,以前没有任何问题,就最近发现,匀场效果越匀,谱线分辨率越差,是探头脏了,还是匀场部件坏了?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制