当前位置: 仪器信息网 > 行业主题 > >

丙烯酸酯

仪器信息网丙烯酸酯专题为您提供2024年最新丙烯酸酯价格报价、厂家品牌的相关信息, 包括丙烯酸酯参数、型号等,不管是国产,还是进口品牌的丙烯酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙烯酸酯相关的耗材配件、试剂标物,还有丙烯酸酯相关的最新资讯、资料,以及丙烯酸酯相关的解决方案。

丙烯酸酯相关的资讯

  • 关于征求《水质 丙烯酸的测定 离子色谱法(征求意见稿)》等四项国家生态环境标准意见的通知
    各有关单位:  为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 丙烯酸的测定 离子色谱法》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。  请于2022年3月21日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。  联系人:生态环境部监测司 杜祯宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.水质 丙烯酸的测定 离子色谱法(征求意见稿)     3.《水质 丙烯酸的测定 离子色谱法(征求意见稿)》编制说明     4.环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)     5.《环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)》编制说明     6.环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)     7.《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)》编制说明     8.环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)     9.《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)》编制说明  生态环境部办公厅  2022年2月17日  (此件社会公开)  附件1征求意见单位名单  中国气象局办公室  生态环境部各流域海域生态环境监督管理局监测与科研中心  各省、自治区、直辖市生态环境监测站(中心)  新疆生产建设兵团生态环境第一监测站  各环境保护重点城市生态环境监测站(中心)  中国科学院生态环境研究中心  中国环境科学研究院  中国环境监测总站  生态环境部环境发展中心  生态环境部南京环境科学研究所  生态环境部华南环境科学研究所  国家环境分析测试中心  河北环境工程学院
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style="text-indent: 2em "近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。/pp style="text-indent: 2em "H酸、对位酯价格暴涨/pp style="text-indent: 2em "作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。/pp style="text-indent: 2em "TDI价格上涨4.16%/pp style="text-indent: 2em "TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。/pp style="text-indent: 2em "对二甲苯价格上涨/pp style="text-indent: 2em "10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。/pp style="text-indent: 2em "正丁醇/pp style="text-indent: 2em "正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。/p
  • 美环保局撤销对亚乙烯基酯的进口限制建议
    美国环保局(EPA)近日撤销了根据《有毒物质控制法案》对亚乙烯基酯(vinylidene esters)发布一项重要新用途规则的提案,该物质也是两个&ldquo 制造前通知(pre-manufacture notices)&rdquo 的目标物质。EPA指出,采取该行动是对拟议规则收到的公众评议的回应。具体来说,提交的信息表明,氰基丙烯酸酯(cyanoacrylates)比拟议规则中的亚乙烯基酯更适合作为评估水生生物潜在毒性的结构类似物,这是拟议的重要新用途规则的通知要求的依据。  决定一种新的化学品作为新用途使用必须考虑以下相关因素,包括(一)该化学物质的预计制造和加工量 (二)该使用方法改变人类或环境暴露于该化学物质的类型或形式的程度 (三)该使用方法增加人类或环境暴露于该化学物质的强度和持续时间的程度 (四)制造、加工、分销,以及处理该化学物质的合理预期方式和方法 和(五)任何其他相关因素。
  • 大连化物所发展出利用生物质合成共聚酯单体新方法
    近日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究室(十五室)研究员张涛与研究员王爱琴/李宁团队,联合生物能源化学品研究组研究员(DNL0603)王峰团队,发展出一种利用乙醛和丙烯酸酯的生物质合成共聚酯单体新方法。  随着现代社会的快速发展,各行各业对性质可调的共聚酯需求越来越高。聚(对苯二甲酸-间苯二甲酸-环己烷二甲醇酯)(PCTA)作为一种代表性的共聚酯,其性质可以通过间苯二甲酸来调控。与传统的聚对苯二甲酸乙二醇酯(PET)相比,PCTA具有更高的耐化学腐蚀性、抗冲击性、玻璃化温度和透明度等特点,可广泛应用于化妆品容器、家用电器和医疗包装等领域。目前,PCTA单体主要由石油下游产品制备获得。为了减少对化石能源的依赖性,发展温和可持续路线制备PCTA单体具有重要意义。  该合作团队在生物质合成路线(Angew. Chem. Int. Ed.)的基础上,发展出一种以生物质基平台化合物丙烯酸酯和乙醛为原料,合成共聚酯PCTA单体的新方法。该过程包括三步反应,分别是乙醛与丙烯酸酯的Morita-Baylis-Hillman反应、H2SO4/SiO2催化一步脱水/Diels-Alder反应、Pd/C催化脱氢反应,总收率为61%;此外,改变上述过程的第三个反应催化剂,即利用Pd/C-Cu/Zn/Al双床层催化剂进行催化加氢反应,可获得另外一种重要的增塑剂单体——UNOXOLTM二醇(CHDM),该过程的总收率为67%。此外,合作团队还运用生命周期评价(LCA)方法将本工作中的生物质路线与传统石油路线进行对比,表明该生物质路线展现出积极的碳减排能力。该研究为共聚酯单体的合成提供了新方法,并为生物质资源转化提供了新思路。  近日,相关研究成果以Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde为题,发表在《德国应用化学》上,并被选为热点文章(Hot Paper)。研究工作得到国家自然科学基金、大连化物所所内合作项目、洁净能源创新研究院-榆林学院联合基金等的支持。  论文链接
  • 102家危险化学品生产企业被注销!
    仪器信息网讯近日,江苏省发布公告,注销南京托普化工科技有限公司、江苏金宏涂料有限公司、江苏德发树脂有限公司等102家危险化学品生产企业《危险化学品生产企业安全生产许可证》,终止相关企业的危险化学品生产活动。涉及的化学品包括2-丙烯酸-1,1-二甲基乙基酯、乙炔、醇酸树脂涂料、硫酸、氨基树脂涂料、氨基酸涂料、硝基涂料、锌粉、甲醇、红磷等。囊括了涂料、化工、焦化、日化、新材料、医药、生物科技、颜料、树脂、橡胶等多个行业领域。被注销的企业名单汇总如下:序号企业名称证书编号有效期起始日有效期终止日许可范围1南京托普化工科技有限公司(苏)WH安许证字[A00028]2018-12-282021-12-272-丙烯酸-1,1-二甲基乙基酯(2000吨/年)、2,4,4-三甲基-1-戊烯(98吨/年)***2南京建虹工业气体有限公司(苏)WH安许证字[A00076]2018-7-102021-7-9乙炔[溶于介质的](1116吨/年)***3南京非凡漆业有限公司(苏)WH安许证字[A00139]2016-11-252019-11-24醇酸树脂涂料(1500吨/年)、酚醛树脂涂料(1200吨/年)、丙烯酸酯类树脂涂料(150吨/年)、聚氨酯树脂涂料(150吨/年)、环氧树脂涂料(100吨/年)、氨基树脂涂料(20吨/年)、沥青涂料(10吨/年)***4南京溧水东南漆业有限公司(苏)WH安许证字[A00141]2016-11-102019-11-9氨基树脂涂料(300吨/年)、丙烯酸酯类树脂涂料(300吨/年)、醇酸树脂涂料(300吨/年)、酚醛树脂涂料(300吨/年)、环氧树脂涂料(300吨/年)、沥青涂料(300吨/年)、有机硅树脂(300吨/年)***5南京金彰实业有限公司(苏)WH安许证字[A00241]2018-6-52021-6-4硫酸(11000吨/年)、氨基磺酸(5000吨/年)***6南京云泰化工总厂(苏)WH安许证字[A00258]2018-6-52021-6-4硫酸(105000吨/年)、发烟硫酸(45000吨/年)***7南京金源钢涂有限公司(苏)WH安许证字[A00263]2017-9-222020-9-21氨基树脂涂料(200吨/年)、丙烯酸酯类树脂涂料(500吨/年)、醇酸树脂涂料(3000吨/年)、酚醛树脂涂料(900吨/年)、过氯乙烯树脂涂料(200吨/年)、环氧树脂涂料(800吨/年)、聚氨酯树脂涂料(300吨/年)、聚酯树脂涂料(50吨/年)、沥青涂料(50吨/年)、烯类树脂涂料(50吨/年)、橡胶涂料(100吨/年)、涂料用稀释剂(850吨/年)、醇酸树脂(2000吨/年)、干性醇酸树脂(1000吨/年)***8江苏金宏涂料有限公司(苏)WH安许证字[A00291]2016-11-252019-11-24醇酸树脂(5000吨/年)、酚醛树脂(1000吨/年)、丙烯酸酯类树脂涂料(2350吨/年)、环氧漆固化剂(850吨/年)、硝基涂料(410吨/年)、过氯乙烯树脂涂料(200吨/年)、醇酸树脂涂料(3000吨/年)、酚醛树脂涂料(130吨/年)、沥青涂料(150吨/年)、环氧树脂涂料(850吨/年)、氨基树脂涂料(100吨/年)、橡胶涂料(180吨/年)、涂料用稀释剂(760吨/年)、环氧腻子(20吨/年)***9南京立业工业气体厂(苏)WH安许证字[A00346]2017-7-172020-7-16氧[压缩的](1500吨/年)、氮[压缩的](150吨/年)***10南京江浦星中化工厂(苏)WH安许证字[A00348]2018-1-42021-1-3丙烯酸酯类树脂涂料(100吨/年)、醇酸树脂涂料(100吨/年)、环氧树脂涂料(600吨/年)、环氧漆固化剂(150吨/年)、涂料用稀释剂(550吨/年)***11南京齐正化学有限公司(苏)WH安许证字[A00368]2017-1-172020-1-16正硅酸甲酯(51.19吨/年)、丙基三氯硅烷(115.9吨/年)***12南京巴诗克环保科技有限公司(苏)WH安许证字[A00376]2018-5-42021-5-32-丙醇(400吨/年)、涂料用稀释剂(800吨/年)、香蕉水(200吨/年)、醇酸树脂涂料(20吨/年)、丙烯酸酯类树脂涂料(100吨/年)、硝基涂料(40吨/年)、硝基漆防潮剂(10吨/年)、酚醛树脂涂料(20吨/年)、氨基树脂涂料(70吨/年)、环氧树脂涂料(180吨/年)、环氧腻子(30吨/年)、元素有机涂料(10吨/年)、烯类树脂涂料(10吨/年)***13南京钟腾化工有限公司(苏)WH安许证字[A00388]2016-10-112019-10-10丁烯二酸酐[顺式](20000吨/年)***14无锡市正和工业气体有限公司(苏)WH安许证字[B00023]2017-7-252020-7-24乙炔(585吨/年)***15宜兴市华航工业气体有限公司(苏)WH安许证字[B00057]2018-2-112021-2-10氧[压缩的或液化的](1080吨/年)、氮[压缩的或液化的](600吨/年)***16京瓷化学(无锡)有限公司(苏)WH安许证字[B00433]2017-3-132020-3-12环氧树脂涂料(600吨/年)***17无锡市新万利化工有限公司(苏)WH安许证字[B00683]2018-8-162021-8-15过氯乙烯树脂涂料(700吨/年)、丙烯酸酯类树脂涂料(400吨/年)、醇酸树脂涂料(200吨/年)、涂料用稀释剂(600吨/年)***18无锡万博涂料化工有限公司(苏)WH安许证字[B00745]2018-8-162021-8-15丙烯酸酯类树脂涂料(500吨/年)、涂料用稀释剂(600吨/年)***19江苏和时利新材料股份有限公司(苏)WH安许证字[B00893]2016-11-102019-11-9四氢呋喃(2000吨/年)***20徐州亚东气体厂(苏)WH安许证字[C00017]2018-3-282021-3-27乙炔(150吨/年)***21徐州市聚源溶解乙炔厂(苏)WH安许证字[C00018]2018-7-302021-7-29乙炔(360吨/年)***22徐州市东风气体厂(苏)WH安许证字[C00024]2018-7-102021-7-10乙炔(111.15吨/年)***23徐州腾达焦化有限公司(苏)WH安许证字[C00140]2016-10-112019-10-10氮[压缩的或液化的](200吨/年)、煤气(200000吨/年)、氧[压缩的或液化的](200吨/年)、甲醇(100000吨/年)、杂戊醇(784吨/年)、粗苯(10612吨/年)、煤焦油(43698吨/年)、硫磺(1436吨/年)***24徐州市青年实业有限公司(苏)WH安许证字[C00147]2017-5-172020-5-16不干性醇酸树脂(1000吨/年)、醇酸树脂涂料(1000吨/年)、丙烯酸酯类树脂涂料(500吨/年)、氨基树脂涂料(500吨/年)、环氧树脂涂料(500吨/年)、聚酯树脂涂料(500吨/年)、涂料用稀释剂(1000吨/年)***25江苏唐彩新材料科技股份有限公司(苏)WH安许证字[C00165]2017-1-172020-1-16凹版油墨(1480吨/年)、网孔版油墨(10吨/年)、特种油墨(10吨/年)***26常州市佳美涂料有限公司(苏)WH安许证字[D00018]2018-10-162021-10-15聚酯树脂涂料(51吨/年)***27常州商都制笔有限公司(苏)WH安许证字[D00038]2018-7-102021-7-9硝基涂料(110吨/年)***28常州市武进湟里村前助剂有限公司(苏)WH安许证字[D00214]2018-5-42021-5-3涂料用稀释剂(100吨/年)***29常州市武进永升化工有限公司(苏)WH安许证字[D00257]2018-7-102021-7-9亚磷酸(50吨/年)***30常州中南化工有限公司(苏)WH安许证字[D00289]2018-7-102021-7-9甲醇(20吨/年)***31常州市金恒涂料有限公司(苏)WH安许证字[D00382]2019-2-282022-2-27环氧树脂涂料(300吨/年)、环氧腻子(60吨/年)、元素有机涂料(500吨/年)、涂料用稀释剂(80吨/年)、橡胶涂料(100吨/年)、丙烯酸酯类树脂涂料(390吨/年)***32溧阳振东制氧有限公司(苏)WH安许证字[D00385]2019-1-182022-1-17氧[压缩的或液化的](4200吨/年)、氮[压缩的或液化的](2000吨/年)***33常州康佳涂料有限公司(苏)WH安许证字[D00658]2017-3-132020-3-12丙烯酸酯类树脂涂料(150吨/年)、涂料用稀释剂(105吨/年)、烯类树脂涂料(45吨/年)***34常州市恒泰化工制造有限公司(苏)WH安许证字[D00725]2016-12-122019-12-11丙烯酸酯类树脂涂料(70吨/年)、烯类树脂涂料(100吨/年)、涂料用稀释剂(70吨/年)、环氧树脂涂料(210吨/年)***35常州久日化学有限公司(苏)WH安许证字[D00732]2017-6-162020-6-15盐酸(3000吨/年)、亚磷酸(1800)***36溧阳市辉煌气体有限公司(苏)WH安许证字[D00741]2017-3-272020-3-26氧[压缩的或液化的](300吨/年)、氮[压缩的或液化的](650吨/年)***37常州希柯涂料有限公司(苏)WH安许证字[D00754]2016-12-292019-12-28元素有机涂料(300吨/年)***38苏州开来涂料有限公司(苏)WH安许证字[E00633]2017-4-282020-4-27醇酸树脂(200吨/年)、醇酸树脂涂料(50吨/年)、丙烯酸酯类树脂涂料(50吨/年)、环氧树脂涂料(35吨/年)、氨基树脂涂料(10吨/年)、聚酯树脂涂料(10吨/年)***39韩一化工(昆山)有限公司(苏)WH安许证字[E00753]2017-6-302020-6-29锌粉(10800吨/年)***40南通正达农化有限公司(苏)WH安许证字[F00073]2017-2-102020-2-9磷化铝(210吨/年)***41海门市环宇化工厂(苏)WH安许证字[F00200]2017-2-102020-2-9氨溶液[含氨>10%](220吨/年)、硫酸汞(10吨/年)***42海门市药物化工厂(苏)WH安许证字[F00307]2016-10-112019-10-102-硝基苯酚(1000吨/年)***43南通大鹏化工有限公司(苏)WH安许证字[F00345]2017-1-222020-1-21苯乙腈(500吨/年)、氰基乙酸(550吨/年)***44南通天龙化工有限公司(苏)WH安许证字[F00353]2016-12-122019-12-11乙酰(基)乙烯酮[抑制了的](5000吨/年)、乙酸溶液[含量>10%~80%](7495吨/年)***45江苏容汇通用锂业股份有限公司(苏)WH安许证字[F00377]2018-1-42021-1-3氢氧化锂(2000吨/年)***46南通东港化工有限公司(苏)WH安许证字[F00400]2016-12-292019-12-28三氯乙烯(750吨/年)、四氯乙烯(750吨/年)、六氯乙烷(1000吨/年)***47南通天材科技有限公司(苏)WH安许证字[F00505]2016-12-122019-12-112828项其他类产品(混合戊烷:异戊烷36.9911%,正戊烷34.3569%,环戊烷7.7045%)(4810吨/年)***48连云港海威科技发展有限公司(苏)WH安许证字[G00072]2017-2-102020-2-9甲醇(300吨/年)***49连云港瑞鹏化工有限公司(苏)WH安许证字[G00084]2018-10-312021-10-30红磷(2000吨/年)、正磷酸(50吨/年)***50连云港凤蝶化工有限公司(苏)WH安许证字[G00101]2017-2-272020-2-261,3-二硝基苯(6500吨/年)、2-硝基苯胺(6000吨/年)、3-硝基苯胺(5000吨/年)***51连云港联化化学品有限公司(苏)WH安许证字[G00109]2017-7-172020-7-16正丁醇(24000吨/年)、乙醇[无水](4000吨/年)、丙酮(12000吨/年)***52连云港恒顺化工有限公司(苏)WH安许证字[G00175]2016-3-42019-3-3水杨酸(700吨/年)***53江苏天士力帝益药业有限公司(苏)WH安许证字[H00082]2016-12-292019-12-28甲醇(10吨/年)、乙醇溶液[按体积含乙醇大于24%](8吨/年)、丙酮(6吨/年)***54金湖县晨龙翔实业有限公司(苏)WH安许证字[H00088]2016-11-102019-11-9硫酸(18000吨/年)***55淮安市兴联有机化工有限公司(苏)WH安许证字[H00089]2016-10-112019-10-10三氯化铝[无水](3000吨/年)、盐酸(10吨/年)***56淮安源通电子材料有限公司(苏)WH安许证字[H00114]2017-2-272020-2-26三氯化磷(107吨/年)、盐酸(323吨/年)、三氯氧磷(120吨/年)***57淮安汇波材料科技有限公司(苏)WH安许证字[H00129]2016-11-102019-11-9甲苯(232吨/年)、二甲苯异构体混合物(108吨/年)、2828项其他类(呋喃树脂)(60000吨/年)、2828项其他类(磺酸固化剂)(20000吨/年)***58滨海恒冠医药化工有限公司(苏)WH安许证字[J00017]2016-12-292019-12-28乙醇溶液[按体积含乙醇大于24%](640吨/年)***59滨海县金港华盛气体有限公司(苏)WH安许证字[J00314]2016-12-292019-12-28氢(385吨/年)、氧[压缩的或液化的](2750吨/年)***60江苏鼎龙科技有限公司(苏)WH安许证字[J00324]2017-1-172020-1-16乙腈(10吨/年)、三氯乙腈(20吨/年)、盐酸(100吨/年)***61滨海新东方医化有限公司(苏)WH安许证字[J00333]2017-2-102020-2-91,3-环戊二烯(330吨/年)、1-氯-3-溴丙烷(38吨/年)、乙醇钠乙醇溶液(1920吨/年)、氨溶液[含氨>10%](21.6吨/年)、二氯甲烷(75吨/年)、氢溴酸(250吨/年)、吡啶(212吨/年)、N,N-二甲基苯胺(264.6吨/年)、甲醇(60.75吨/年)、盐酸(157.6吨/年)***62盐城常林生化有限公司(苏)WH安许证字[J00344]2017-3-272020-3-26丙酮(500吨/年)、4-羟基-4-甲基-2-戊酮(3000吨/年)、4-甲基-3-戊烯-2-酮(200吨/年)、盐酸(20吨/年)***63盐城顺恒化工有限公司(苏)WH安许证字[J00364]2016-12-292019-12-28硫酸(47.4吨/年)、氟化钠(1吨/年)、甲醇(12吨/年)***64滨海恒联化工有限公司(苏)WH安许证字[J00380]2016-11-252019-11-24甲醇(700吨/年)、乙醇[无水](500吨/年)、苯胺(1200吨/年)、正丁醇(50吨/年)、3-甲基苯胺(450吨/年)、4-甲基苯胺(170吨/年)、2-甲基苯胺(100吨/年)、N-甲基苯胺(1000吨/年)、N,N-二甲基苯胺(100吨/年)、N-乙基苯胺(200吨/年)、N,N-二乙基苯胺(200吨/年)、N-乙基间甲苯胺(200吨/年)、N,N-二乙基邻甲苯胺(10吨/年)、N-正丁基苯胺(20吨/年)、N,N-二丁基苯胺(5吨/年)、N-乙基对甲苯胺(5吨/年)、N,N-二乙基对甲苯胺(5吨/年)、N-苄基-N-乙基苯胺(10吨/年)***65盐城市华邦化工有限公司(苏)WH安许证字[J00390]2017-3-272020-3-26盐酸(8054.83吨/年)、次氯酸钠溶液[含有效氯>5%](154吨/年)、2,6-二氯苯酚(344.65吨/年)、2,4-二氯苯酚(5000吨/年)***66盐城市坤展化工有限公司(苏)WH安许证字[J00398]2016-10-112019-10-10盐酸(3292吨/年)、2-甲酚(76吨/年)***67响水新联合化学有限公司(苏)WH安许证字[J00399]2016-12-292019-12-28氟代苯(1500吨/年)、氢氟酸(1200吨/年)***68盐城三威化学有限公司(苏)WH安许证字[J00401]2016-11-252019-11-24N-乙基-1-萘胺(56吨/年)、乙酸[含量>80%](22吨/年)***69盐城恰爱娜生物科技有限公司(苏)WH安许证字[J00409]2016-12-122019-12-11杂戊醇(80吨/年)、正丁醇(65吨/年)、2-甲基-1-丁醇(66吨/年)、3-甲基-1-丁醇(217吨/年)、正丁酸(80吨/年)、乙酸异戊酯(150吨/年)、正丁酸乙酯(20吨/年)、异戊酸乙酯(50吨/年)、3-甲基丁醛(2吨/年)***70盐城市龙升化工有限公司(苏)WH安许证字[J00415]2017-2-272020-2-26溴苯(300吨/年)、1,2-二溴乙烷(200吨/年)、三溴甲烷(30吨/年)、三溴化磷(80吨/年)、溴(化)乙酰(30吨/年)、溴(化)丙酰(25吨/年)、溴乙酰溴(100吨/年)、2-溴丁烷(30吨/年)、1-溴-2-甲基丙烷(20吨/年)、3-溴-1-丙烯(150吨/年)、1-氯-2-溴乙烷(25吨/年)、溴(化)乙烷(100吨/年)、1-溴丙烷(350吨/年)、1-溴丁烷(50吨/年)、2-溴丙烷(200吨/年)、1-溴-3-甲基丁烷(80吨/年)、溴代正戊烷(300吨/年)、溴己烷(50吨/年)、溴代环戊烷(5吨/年)、溴乙酸(50吨/年)、废硫酸(685吨/年)、盐酸(256吨/年)、亚磷酸(82吨/年)、氢溴酸(220吨/年)、亚磷酸(14吨/年)、甲醇(77吨/年)、1-氯丙烷(105吨/年)、1-氯丁烷(80吨/年)、2-氯丙烷(65吨/年)、1-氯戊烷(30吨/年)、氯代正己烷(60吨/年)、氯代异丁烷(5吨/年)、1,3-二氯丙烷(50吨/年)、1,4-二氯丁烷(40吨/年)、1,2-二溴苯(15吨/年)、4-溴苯甲醚(25吨/年)、亚磷酸(14吨/年)、甲醇(77吨/年)***71盐城圣奥化工有限公司(苏)WH安许证字[J00452]2016-10-262019-10-25氟化氢[无水](4098.5吨/年)、氟代苯(2000吨/年)、氢氟酸(402吨/年)、亚硝酸钠(126.1吨/年)、硫酸(6399.3吨/年)***72响水恒利达科技化工有限公司(苏)WH安许证字[J00453]2016-12-292019-12-28亚硫酸氢铵(119463.38吨/年)、乙酸[含量>80%](1190.4吨/年)、盐酸(22611.12吨/年)***73建湖县上冈乙炔气有限公司(苏)WH安许证字[J00021]2017-11-202020-11-19乙炔【溶于介质的】(180吨/年)***74盐城广达乙炔气有限公司(苏)WH安许证字[J00023]2017-9-222020-9-21乙炔(100吨/年)***75盐城振阳聚氨酯材料有限公司(苏)WH安许证字[J00111]2018-8-162021-8-15聚氨酯树脂(5000吨/年)***76盐城利民农化有限公司(苏)WH安许证字[J00457]2017-4-102020-4-93-甲基-1-丁烯(80.6吨/年)、盐酸(1886.5吨/年)、甲基叔丁基甲酮(900吨/年)(以上产品生产场所:东厂区);甲醇(198吨/年)、甲硫醚(90吨/年)、乙酸酐(4.9吨/年)、乙醇[无水](36.6吨/年)、盐酸(1589.6吨/年)、乙酸甲酯(5.9吨/年)、丙酮(19.9吨/年)、乙酸乙酯(36.6吨/年)、次氯酸钠溶液[含有效氯>5%](87.61吨/年)(以上产品生产场所:西厂区)***77江苏德发树脂有限公司(苏)WH安许证字[J00091]2017-10-262020-10-25聚氨酯树脂(20000吨/年)***78江苏力禾颜料有限公司(苏)WH安许证字[J00475]2017-1-222020-1-21硫酸(208.2吨/年)、氨溶液[含氨>10%](21091.45吨/年)***79江苏扬农化工股份有限公司(苏)WH安许证字[K00001]2017-4-282020-4-27原乙酸三甲酯(2000吨/年)***80江苏扬农化工集团有限公司(苏)WH安许证字[K00008]2017-5-172020-5-163-氯硝基苯(300吨/年)、2-氯硝基苯(40000吨/年)、4-氯硝基苯(60000吨/年)、过氧化氢溶液[含量 8%](100000吨/年)、乙基环己烷(3000吨/年)、甲基环己烷(6000吨/年)、环己烷(6000吨/年)、1,2,3-三氯(代)苯(1450吨/年)、1,2,4-三氯(代)苯(8550吨/年)、1,2-二氯苯(9000吨/年)、1,4-二氯苯(29000吨/年)、1,3-二氯苯(5000吨/年)、次氯酸钠溶液[含有效氯>5%](15000吨/年)、盐酸(95000吨/年)、氢氧化钠溶液(120000吨/年)、氯苯(80000吨/年)、1,3-二氯-2-丙醇(40000吨/年)、三氯乙醛[稳定的](5000吨/年)***81扬州市普林斯化工有限公司(苏)WH安许证字[K00049]2018-5-222021-5-21盐酸(200吨/年)、1,2-二甲氧基乙烷(80吨/年)、1,3-二氯丙烷(80吨/年)、3-氯-1-丙醇(80吨/年)***82高邮市明义乙炔制造有限公司(苏)WH安许证字[K00058]2018-3-282021-3-27乙炔(200吨/年)***83扬州市经济开发区亿万新型涂料厂(苏)WH安许证字[K00142]2017-1-172020-1-16氨基树脂涂料(100吨/年)、环氧树脂涂料(100吨/年)、丙烯酸酯类树脂涂料(100吨/年)、沥青涂料(100吨/年)***84住精科技(扬州)有限公司(苏)WH安许证字[K00174]2018-11-262021-11-25氨(3000吨/年)、氨溶液[含氨>10%](4800吨/年)***85镇江茂源化工有限公司(苏)WH安许证字[L00004]2018-1-312021-1-30甲醇(700吨/年)、氨溶液[含氨>10%](550吨/年)***86丹阳市安达漆业有限公司(苏)WH安许证字[L00026]2016-12-292019-12-28丙烯酸酯类树脂涂料(100吨/年)、氨基树脂涂料(60吨/年)***87丹阳市万隆化工有限公司(苏)WH安许证字[L00047]2018-5-112021-5-10盐酸(2500吨/年)、苯甲酰氯(1000吨/年)、4-氯苯甲酰氯(1000吨/年)、2-氯苯甲酰氯(1000吨/年)、2,4-二氯苯甲酰氯(1000吨/年)***88丹阳市群杰化工有限公司(苏)WH安许证字[L00135]2016-10-262019-10-25丙烯酸酯类树脂涂料(60吨/年)、聚氨酯树脂涂料(30吨/年)***89丹阳市振邦涂料有限公司(苏)WH安许证字[L00137]2016-10-262019-10-25丙烯酸酯类树脂涂料(300吨/年)***90江苏华元焦化有限公司(苏)WH安许证字[L00176]2017-8-292020-8-28硫磺(1000吨/年)、煤气(166225吨/年)、煤焦油(25000吨/年)、苯(6000吨/年)***91句容玉明化工有限公司(苏)WH安许证字[L00198]2018-12-142021-12-13盐酸(34000吨/年)***92镇江宏鸣橡塑助剂有限公司(苏)WH安许证字[L00205]2016-10-112019-10-10盐酸(1100吨/年)、苯酚(500吨/年)、亚磷酸三苯酯(2500吨/年)***93丹阳市宏光涂料有限公司(苏)WH安许证字[L00224]2016-10-262019-10-25丙烯酸酯类树脂涂料(400吨/年)、醇酸树脂涂料(300吨/年)、聚氨酯树脂涂料(300吨/年)***94镇江市化剂厂有限公司(苏)WH安许证字[L00229]2017-2-102020-2-9乙醇[无水](2000吨/年)、2-丙醇(2000吨/年)、丙酮(800吨/年)、乙酸[含量>80%](800吨/年)、硝酸[含硝酸<70%](3000吨/年)、硫酸(2500吨/年)、盐酸(3000吨/年)、氢氟酸(1000吨/年)、过氧化氢溶液[27.5%>含量>8%](1800吨/年)、氟化钠(100吨/年)、氟化铵(200吨/年)、氟化钾(300吨/年)***95江苏长三角精细化工有限公司(苏)WH安许证字[L00230]2017-4-112020-4-9甲苯(100吨/年)、氯化氢[无水](3036吨/年)、混氯甲苯(52%邻氯甲苯、48%对氯甲苯)(10301吨/年)、4-氯甲苯(4350吨/年)、2-氯甲苯(5650吨/年)、马来酸酐(30000吨/年)、盐酸(10120吨/年)、2,4-二氯甲苯(85吨/年)、2,5-二氯甲苯(10吨/年)、2,6-二氯甲苯(85吨/年)、3,4-二氯甲苯(10吨/年)***96扬中市永勤制氧厂有限公司(苏)WH安许证字[L00247]2016-12-292019-12-28氧[压缩的或液化的](2036吨/年)、氮[压缩的或液化的](3564吨/年)***97靖江市德诚化工有限公司(苏)WH安许证字[M00124]2017-2-102020-2-91,2-苯二胺(200吨/年)***98靖江市天利化工厂有限公司(苏)WH安许证字[M00166]2017-3-132020-3-12二-(2-乙基己基)磷酸酯(300吨/年)、橡胶涂料(300吨/年)***99泰州开源化工有限公司(苏)WH安许证字[M00202]2016-11-252019-11-24苯(13800吨/年)、甲基苯(2600吨/年)、二甲苯异构体混合物(800吨/年)***100泰州凯世通石化有限公司(苏)WH安许证字[M00262]2016-11-102019-11-9溶剂油[闭杯闪点≤60℃](15000吨/年)***101沭阳兆宇酿酒有限公司(苏)WH安许证字[N00077]2016-10-112019-10-10乙醇溶液[-18℃≤闪点<23℃](50000吨/年)、杂戊醇(200吨/年)、乙醛(20000吨/年)、2-丁烯醛(10000吨/年)***102宿迁市福康装饰材料厂(苏)WH安许证字[N00079]2017-1-222020-1-21甲醛溶液(30000吨/年)***
  • Vocus PTR-TOF对工业园区环境大气中丙烯监测案例详解
    丙烯是一种无色、无臭、稍带有甜味的有机化合物,分子式为C3H6。丙烯是三大合成材料的基本原料之一,应用范围非常广泛,如常见的聚丙烯生产,丙烯腈、环氧丙烷、异丙醇、苯酚、丙酮、丁醇、辛醇、丙烯酸及其酯类、丙二醇、环氧氯丙烷和合成甘油等的制备1。因此,丙烯也是工业区一种比较常见的污染物,属极易燃品,且具有低毒性,丙烯的泄漏会带来潜在的爆炸和健康风险。当前,对丙烯的测量主要依赖于固定站点气相色谱法,如较为通用的搭配低碳色谱柱的GC-FID/PID法。但较长的色谱分离时间限制了其实时捕捉丙烯的瞬时变化特征,也就无法给园区业主提供及时的决策反馈。另一方面,受限于配套的质谱检测器或者离子源等部件属性,现市面上常见的VOCs走航解决方案对以丙烯为代表的低碳烷烃和烯烃的测量和准确分析存在分析难点和数据疑问。Vocus PTR-TOF质谱仪以较高的时间分辨率和质量分辨率,能够对大气中常见VOCs以及多种园区特征物种的瞬时变化进行实时精确分析。丙烯的质子亲核势为751.6 kJ/mol,属于PTR-TOF仪器可检测的物种之一。本文中我们将详细介绍Vocus PTR-TOF对丙烯的定性定量测量能力和定点结合走航案例。 图1. 质子化丙烯分子峰(m/Q 43.054)在Vocus PTR-TOF谱图上的响应以及相对应的同位素峰丙烯的质子亲核势大于水,能够有效的与水合氢离子(H3O+)发生质子转移反应,在’软’质子转移反应条件下检测到的质子化分子离子峰是C3H7+,其精确质量为m/Q 43.054。实际上在质荷比43整数位置上,除丙烯外,还有其他的物质或者干扰峰存在,比如m/Q43.018, 这是一个含氧的干扰峰,其分子组成为C2H3O+。 由图1可见,这两个峰可以清晰的被VocusPTR-TOF质谱仪分开,二者同位素分布也符合的很好。值得说明的是,如需要清楚分开上述这两个峰,质谱仪的质量分辨率需要达到1500Th/Th或更高(参考‘VOCs走航中同标称质量分子(不完全)列表’一文)。简而言之,Vocus PTR-TOF高分辨率质谱仪就像一套高倍放大镜,能够清晰的将目标物与其他微小干扰峰区别开来,这也是实时分析质谱仪精确定性分析的关键所在。这也意味着,受这些潜在的同标称质量的离子碎片或其他干扰物影响,质量分辨率不到1000的实时分析质谱仪会经常出现‘虚高值’或者‘误报’的情况。值得注意的是,丙烯为代表的C2和C3烷烃、烯烃一般需要特别的低碳色谱柱配合FID检测器才能进行有效监测2,而现市面上的走航应用较多的便携式直接进样EI-四级杆质谱对于丙烯或其他短链烷烯烃检测难度较大。 图2. Vocus PTR-TOF丙烯的灵敏度多点标准曲线利用Vocus PTR-TOF质谱仪,我们测试了丙烯标准气体的灵敏度多点标准曲线,结果如图2所示。可见,Vocus PTR-TOF质谱仪对丙烯有较好响应,其灵敏度可达3245cps/ppbv, 线性关系达到0.9996。高灵敏度意味着较高的响应,这对环境大气中单个ppbv级别的丙烯检测来说,具有非常大的检测优势。图3. Vocus PTR-TOF与GC-FID/MS同期检测的丙烯时序图最后,我们进行在线GC-FID/MS与Vocus PTR-TOF平行运行的检测数据对比(图3)。由于GC-MS/FID的数据时间分辨率为1小时,从图中大致可以看出,两个仪器检测的丙烯浓度具有较好的一致性(一般零点为GC校准时段)。而Vocus PTR-TOF质谱仪的秒级响应,在GC两次报数的空档期内,给园区业主和业务部门提供了更多更及时污染物浓度变化信息(参考‘秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路’一文)。这对工业园区污染物的泄露或其他事故的提前预警至关重。一旦观测到有超出预警范围的浓度时,园区工作人员就可以通过Vocus PTR-TOF发出的实时数据及时采取预警措施,从而为工业园区安全生产带来保障,最大程度的减少对生命安全,生产设备和经济效益的潜在损害。同时,将Vocus PTR-TOF搭载到走航车,从而实现对工业园区区界,厂界和各重点点位的多污染因子(包括丙烯)进行动态网格化监测。如图4所示,我们在某园区内监测到两处丙烯浓度高值污染点,可通过此类方式来发现高污染源,进而有目标性的开展重点监测和排放管控工作。图4. Vocus PTR-TOF质谱仪在某工业园区内丙烯走航监测浓度分布图。绿色线条高度越高,意味着该点位丙烯浓度越高。小结工业园区内以丙烯为代表的低碳烷烃和烯烃的精确测量是现市面上VOCs走航解决方案的一个技术难点。Vocus PTR-TOF所特有的高质量分辨率,‘亚’秒级仪器响应速度和ppt级别的检测限是其成为复杂大气基体中准确鉴别并定量分析痕量丙烯的首选技术之一。除此之外,Vocus PTR-TOF也是园区内异味物质快速检测的优选手段(参考‘国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览’一文)。 感谢中科三清科技提供文中部分数据! 参考文献1 https://baike.baidu.com/item/%E4%B8%99%E7%83%AF/2276398?fr=aladdin2 https://www.restek.com/en/chromablography/chromablography/to-15--pams--to-11a--chinas-hj759--pams--hj683-part-2-deans-switching-and-to-15pams/
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项国家生态环境标准
    为支撑相关生态环境质量标准、风险管控标准、污染物排放标准实施,近期,生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)、《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)、《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)、《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)、《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)、《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)、《生态遥感地面观测与验证技术导则》(HJ 1320-2023)等9项国家生态环境标准。  《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)为首次发布,适用于土壤和沉积物中19种金属元素总量的测定。与现行相关监测标准相比,本标准具有可测定金属元素种类多、灵敏度高、易于推广等优点,可支撑《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)、《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等标准实施。  《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)等3项标准均为第一次修订,适用于地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的测定。与原标准相比,3项标准增加了试样制备、质量保证和质量控制等条款,完善了干扰和消除、标准曲线建立等内容,可支撑《地表水环境质量标准》(GB 3838-2002)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)等标准实施。  《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)为首次发布,适用于固定污染源废气和无组织排放监控点空气中丙烯酸与甲基丙烯酸的测定,填补了大气中相关分析方法标准空白。本标准具有检出限低、准确度高、稳定性好等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施。  《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)为首次发布,适用于环境空气、无组织排放监控点空气和固定污染源废气中6种丙烯酸酯类化合物的测定,填补了大气中相关分析方法标准空白。本标准具有可测定污染物种类多、检出限低、精密度高等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。  《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)为首次发布,适用于对采用紫外光度法等原理的点式环境空气臭氧分析仪监测的质量评估。本标准明确了区域环境空气臭氧自动监测质量评估工作的流程与内容,具有操作简便、易于推广等优点,有力支撑臭氧自动监测质量控制、监督检查与质量评估等工作。  《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)为首次发布,适用于臭氧二、三、四级传递标准之间的校准。本标准规范了臭氧传递标准的逐级校准工作,与《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范》(HJ 818-2018)、《环境空气臭氧监测一级校准技术规范》(HJ 1099-2020)配套执行,构成一条从现场臭氧分析仪至臭氧原级测量标准的不间断的量值溯源链。  《生态遥感地面观测与验证技术导则》(HJ 1320-2023)为首次发布,适用于全国及区域尺度生态遥感监测、遥感产品验证等相关工作。本标准规定了生态遥感地面观测与验证工作各环节的基本要求,有助于提高生态遥感监测结果的准确性、可比性,支撑全国生态质量监测与评价、自然保护地和生态保护红线监管等工作。  上述9项标准的发布实施,丰富了监测标准供给,对于进一步完善国家生态环境监测标准体系,规范生态环境监测工作,保证环境监测数据质量,服务生态环境监管执法具有重要意义。
  • 生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项国家生态环境标准,2024-06-01 实施
    为支撑相关生态环境质量标准、风险管控标准、污染物排放标准实施,近期,生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)、《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)、《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)、《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)、《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)、《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)、《生态遥感地面观测与验证技术导则》(HJ 1320-2023)等9项国家生态环境标准。  《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)为首次发布,适用于土壤和沉积物中19种金属元素总量的测定。与现行相关监测标准相比,本标准具有可测定金属元素种类多、灵敏度高、易于推广等优点,可支撑《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)、《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等标准实施。  《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)等3项标准均为第一次修订,适用于地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的测定。与原标准相比,3项标准增加了试样制备、质量保证和质量控制等条款,完善了干扰和消除、标准曲线建立等内容,可支撑《地表水环境质量标准》(GB 3838-2002)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)等标准实施。  《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)为首次发布,适用于固定污染源废气和无组织排放监控点空气中丙烯酸与甲基丙烯酸的测定,填补了大气中相关分析方法标准空白。本标准具有检出限低、准确度高、稳定性好等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施。  《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)为首次发布,适用于环境空气、无组织排放监控点空气和固定污染源废气中6种丙烯酸酯类化合物的测定,填补了大气中相关分析方法标准空白。本标准具有可测定污染物种类多、检出限低、精密度高等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。  《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)为首次发布,适用于对采用紫外光度法等原理的点式环境空气臭氧分析仪监测的质量评估。本标准明确了区域环境空气臭氧自动监测质量评估工作的流程与内容,具有操作简便、易于推广等优点,有力支撑臭氧自动监测质量控制、监督检查与质量评估等工作。  《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)为首次发布,适用于臭氧二、三、四级传递标准之间的校准。本标准规范了臭氧传递标准的逐级校准工作,与《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范》(HJ 818-2018)、《环境空气臭氧监测一级校准技术规范》(HJ 1099-2020)配套执行,构成一条从现场臭氧分析仪至臭氧原级测量标准的不间断的量值溯源链。  《生态遥感地面观测与验证技术导则》(HJ 1320-2023)为首次发布,适用于全国及区域尺度生态遥感监测、遥感产品验证等相关工作。本标准规定了生态遥感地面观测与验证工作各环节的基本要求,有助于提高生态遥感监测结果的准确性、可比性,支撑全国生态质量监测与评价、自然保护地和生态保护红线监管等工作。  上述9项标准的发布实施,丰富了监测标准供给,对于进一步完善国家生态环境监测标准体系,规范生态环境监测工作,保证环境监测数据质量,服务生态环境监管执法具有重要意义。
  • 9项国家生态环境标准发布,涉及多类别仪器检测方法
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项标准为国家生态环境标准批准发布,自 2024年6月1日起实施。一、 土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023)此标准规定了测定土壤和沉积物中 19 种金属元素总量的电感耦合等离子体质谱法,适用于土壤和沉积物中银(Ag)、砷(As)、钡(Ba)、铍(Be)、铋(Bi)、镉(Cd)、铬(Cr)、钴(Co)、铜(Cu)、锂(Li)、锰(Mn)、钼(Mo)、镍(Ni)、锑(Sb)、锶(Sr)、铅(Pb)、铊(Tl)、钒(V)和锌(Zn)共 19 种金属元素的测定。此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为中国环境监测总站、生态环境部华南环境科学研究所、湖南省生态环境监测中心、河南省生态环境监测中心,验证单位为湖北省生态环境监测中心站、河南省济源生态环境监测中心、辽宁省生态环境监测中心、宁夏回族自治区生态环境监测中心、天津市生态环境监测中心、北京市生态环境监测中心。此标准自2024年6月1日起实施。二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ/T 195—2005)此标准规定了测定水中氨氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中氨氮(以N 计)的测定,方法的检出限为 0.02 mg/L,测定下限为 0.08 mg/L。自此标准实施之日起,《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195—2005)废止。此标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。三、 水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ/T 199—2005)本标准规定了测定水中总氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中总氮(以N 计)的测定。采用高温高压消解,取样量为 20.0 ml 时,方法检出限为 0.05 mg/L,测定下限为0.20 mg/L;采用在线紫外消解,方法检出限为 0.05 mg/L,测定下限为 0.20 mg/L。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ/T 200—2005)本标准规定了测定水中硫化物的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中硫化物(以S2-计)的测定。方法的检出限为 0.005 mg/L,测定下限为 0.020 mg/L。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023)本标准规定了测定固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的高效液相色谱法,适用于固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定。进样体积为 10 µl 时,丙烯酸和甲基丙烯酸的最低检出浓度分别为 0.011 mg/L、0.017 mg/L。固定污染源有组织排放废气采样体积为 30 L(标准状态下的干排气),试样定容体积为50 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.02 mg/m3、0.03 mg/m3,测定下限分别为0.08 mg/m3、0.12 mg/m3。无组织排放监控点空气采样体积为 30 L(标准状态下的干排气),试样定容体积为10 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.004 mg/m3、0.006 mg/m3,测定下限分别为0.016 mg/m3、0.024mg/m3。本标准主要起草单位:广东环境保护工程职业学院。本标准验证单位:广东省广州生态环境监测中心站、广东省佛山生态环境监测站、广东省东莞生态环境监测站、广西壮族自治区南宁生态环境监测中心、广东省科学院生态环境与土壤研究所、广西大学。本标准自 2024 年 6 月 1 日起实施。六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023)本标准规定了测定环境空气和废气中 6 种丙烯酸酯类化合物的气相色谱法,适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、丙烯酸丙酯、丙烯酸丁酯和甲基丙烯酸丁酯等 6 种丙烯酸酯类化合物的测定。环境空气和无组织排放监控点空气采样体积为 20 L,解吸体积为 1.0 ml,进样量为1.0 μl 时,方法检出限为 0.02 mg/m3,测定下限为 0.08 mg/m3;固定污染源有组织排放废气的进样体积为1.0 ml 时,方法检出限为 1 mg/m3~2 mg/m3,测定下限为 4 mg/m3~8 mg/m3。本标准主要起草单位:江苏省苏州环境监测中心。本标准验证单位:江苏省无锡环境监测中心、上海市浦东新区环境监测站、江苏康达检测技术股份有限公司、苏州市华测检测技术有限公司、浙江省生态环境监测中心和江苏省泰州环境监测中心。本标准自 2024 年 6 月 1 日起实施。七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023)本标准规定了开展区域环境空气臭氧自动监测质量评估的的工作流程、仪器和设备、质量评估目标、评估区域及点位抽样、现场检查与比对、质量评估、评价质量保证与质量控制,适用于以紫外光度法等为原理的环境空气臭氧自动监测的质量评估。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、河北省生态环境应急与重污染天气预警中心。本标准自 2024 年 6 月 1 日起实施。八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023)本标准规定了采用臭氧传递标准校准下级臭氧传递标准的操作技术要求,适用于校准环境空气监测臭氧传递标准,浓度范围为 1 nmol/mol~500 nmol/mol。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、山东省生态环境监测中心、中国环境科学研究院。本标准自 2024 年 6 月 1 日起实施。九、 生态遥感地面观测与验证技术导则(HJ 1320—2023)本标准规定了陆地生态遥感地面观测与验证工作各环节的基本要求,包括地面验证场(站)选址、验证样地样方布设、观测参数、观测方法、基础设施建设、遥感产品验证及验证精度评价等,适用于指导基于生态遥感及地面观测技术的全国及区域遥感产品验证、遥感监测等相关工作。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:生态环境部卫星环境应用中心、中国科学院地理科学与资源研究所、中国科学院空天信息创新研究院、山西省生态环境监测和应急保障中心(山西省生态环境科学研究院)、四川省生态环境科学研究院、江苏省环境监测中心。本标准自 2024 年 6 月 1 日起实施。附:一、土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023).pdf二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ_T 195—2005).pdf三、水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ_T 199—2005).pdf四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ_T 200—2005).pdf五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023).pdf六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023).pdf七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023).pdf八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023).pdf九、生态遥感地面观测与验证技术导则(HJ 1320—2023).pdf
  • 应对新国标——生活饮用水中SVOCs的测定整体解决方案
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共资源。最新生活饮用水卫生标准(GB-5749-2022)已于2023年4月1日正式生效。为配合各项水质指标的执行,相关部门还制定了一系列标准检验方法,即GB5750-2023,该标准目前也已于2023年10月1日正式实施。本次修订主要特点:大幅增加了高通量的分析方法;大幅扩展了质谱技术的应用范畴;重点加强了自动化程度高检测方法;进一步强化了以人为本的制标理念;充分体现了方法标准的配套性和前瞻性。仪器信息网特别建立“《生活饮用水标准检验方法》——前处理篇”话题,聚焦前处理技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的前处理产品、技术解决方案。本文邀请到纳鸥科技分享生活饮用水检测中15种SVOCs测定的相关的技术及解决方案。纳鸥科技针对GB/T 5750-2023关于固相萃取技术密切关注,并推出相应特色产品和应用案例供各位检测工作者进行参考。GB/T 5750-2023《生活饮用水标准检验方法》于2023年10月1日起即将开始实施。标准中第八部分规范了有机物类物质的检测方法,其中邻苯二甲酸二(2-乙基己基)酯等15种SVOCs,检测工作者普遍反映使用C18和HLB等前处理小柱,回收率不理想。Anavo针对GB/T 5750-2023第 8 部分(有机物指标15),采用了Anavo高交联聚甲基丙烯酸酯-苯乙烯小柱,测定水中邻苯二甲酸二(2-乙基己基)酯等15种SVOCs的含量,方法回收率高、精密度好,符合国标要求。Anavo聚甲基丙烯酸酯-苯乙烯(Anavo HLB-3)新型固相材料,它具有较高的表面积和吸附能力。Anavo HLB-3既可以对亲水性物质进行选择性分离,也可以对疏水性物质进行分离。此外,还具有较高的耐久性和稳定性,不易被化学溶剂和pH值改变所破坏。纳鸥科技参照GB/T 5750.8-2023中方法,使用Anavo大容量采样管上样、Anavo 聚甲基丙烯酸酯-苯乙烯(HLB-3) SPE 玻璃小柱净化富集水样,采用内标法测定了水中15种SVOC的含量,方法回收率高、精密度好,符合国标要求。1、 实验关键点&注意事项:①所有玻璃器皿在使用前先用重铬酸钾洗液清洗,然后用高纯水冲洗,晾干,最后用有机溶剂清洗,用铝箔封口,放置在干净地方,避免污染。②本实验使用的试剂、耗材均可能含杂质而产生干扰,必须采用现场空白来验证实验中所用的材料是否存在干扰。确保污染物不会干扰目标物的定性和定量分析。③水样经萃取柱净化后,一定尽可能去除萃取柱中的水分。④ 氮气浓缩时吹至近干即可,避免完全吹干导致目标化合物的损失。⑤ 实验过程中避免使用塑料制品,塑料中含有污染物,会对测定结果产生干扰。⑥ 水样进样到固相萃取时,流速尽可能满足方法要求。2、 水样预处理采集水样于透明蓝盖玻璃瓶中,每升水样中加入约100 mg抗坏血酸,混匀后0℃-4℃保存,保存时间为24 h。使用前用盐酸溶液[c(HCI)=6 mol/L]将水样的pH调至2。3、 固相萃取流程固相萃取柱:Anavo 聚甲基丙烯酸酯-苯乙烯(HLB-3)玻璃SPE小柱(200 mg/6 mL, PN:AN60E021)。以下试剂均为色谱纯。4、 仪器条件1. 色谱参考条件①气化室温度:250℃②柱温:初始温度50℃保持4min,以每分钟10℃升温至280℃,保持8min③ 载气:高纯氦气④柱流量:1.0 mL/min⑤色谱柱:DB-5(30m*0.32mm*0.25µm)2. 质谱条件①质谱扫描范围:45 amu~450 amu②离子源温度:230℃③传输温度:280℃④扫描方式:SCAN模式5 定量特征离子见GB5750.8-20233. 相关谱图:5、 实验数据按照上述方法和仪器条件对15种半挥发性有机物加标水样进行重复测定,加标回收率和精密度见表一。表一 15种半挥发性有机物的加标回收率和精密度6、 实验结论使用Anavo 聚甲基丙烯酸酯-苯乙烯(HLB-3) SPE 玻璃小柱净化富集水样,检测水样中15中半挥发性有机物,目标物加标回收率在72.5%-124%之间,相对标准偏差均小于10%,满足GB/T5750.8-2023方法要求。点击专题,获取更多饮用水解决方案》》》》》
  • GC/MS法测定杀菌剂残留标准将实施
    由青海检验检疫局制定的应对日本肯定列表制度第二批检验检疫行业标准《进出口食品中甲氧基丙烯酸酯类杀菌剂残留量测定方法——气相色谱-质谱法》经国家认证认可监督管理委员会的审定,将于今年6月1日起实施。  据业内人士介绍,该标准在广泛验证和实际应用的基础上,依据国内最大残留量的要求,提出了合理的测定底限,制定了进出口食品中甲氧基丙烯酸酯类杀菌剂残留量测定方法——气相色谱-质谱法。该标准结构严谨,技术路线正确,测定方法合理可行,填补了出入境检验检疫行业标准的空白,达到国内领先水平。
  • IXblue-新型“全玻璃”有源光纤! ---适用于智能驾驶应用
    ‍IXblue-新型“全玻璃”有源光纤!---适用于智能驾驶应用 如今,有一个新兴市场:需求量非常大的紧凑型市场所需激光雷达的激光器,其要求具备高功率输出(脉冲功率高达几瓦)。它们被用于自动驾驶车辆,以绘制环境地图。这种高功率激光器的泵浦信号在光纤中通过纯二氧化硅的多模波导进行传输。在高功率下,泵浦激光最终将与光纤的丙烯酸酯涂覆层相互作用,泵浦激光的能量会分布到该涂覆层所存在的细小缺陷上,产生过高的热量,该缺陷最终会被破坏并将其烧毁(造成光纤涂覆层的损伤)。解决该问题的一个常规方案,是生产一种具有耐热特性的丙烯酸酯涂层的光纤(最高125°C;85°C会发生)。但今天,iXblue提供了一个最终的解决方案--IXblue全玻璃有源光纤:在光纤中,泵浦激光将不再与光纤涂覆层相互作用,无论温度如何、激光传输特性都将保持不变。基于iXblue在Er/Yb光纤方面的长期技术和一些获得专利的新工艺技术,成就了这一新产品——“IXF-2CF-AGEY”(双包层全玻璃铒镱光纤):一种在其纤芯中Er-Yb共掺的光纤,纤芯被双包层(甚至三包层*)包裹。在外包层是一种折射率较低的掺氟二氧化硅(SiF)材料,这意味着激光仅与光纤内的玻璃材料相互作用,使其非常可靠且对温度不敏感(高达200°C)我们仔细甄选了纤芯成分,从而获得了高效率(每根新光纤上测试的功率转换效率都高于40%)和低的1μm放大自发辐射,这也是10年来开发的iXblue铒镱共掺光纤一直被认可的标记。 “使用高温双层丙烯酸酯涂层(HTC)可将长期工作温度范围提高至125°C,使IXblue全玻璃有源光纤成 为恶劣环境下1.5μm激光雷达的理想解决方案。”iXblue产品线经理Arnaud Laurent 解释道。 全玻璃设计保证泵浦激光仅仅与光纤中玻璃材质接触,确保在苛刻使用环境中长期运行。增强的长期可靠性、更高的工作温度是应对恶劣环境的关键优势,同时降低了系统对冷却条件的要求。 iXblue全玻璃光纤非常适合大批量需求的光纤激光器制造商,基于自由空间或混合(光纤/自由空间)架构中使用。光纤直径为125μm,纤芯为5或9μm。Si内包层的八角形结构是一种良好的几何结构,可实现有源光纤纤芯的最佳的泵浦信号吸收。上海昊量光电作为IXblue在中国的授权代理商,负责IXblue电光调制器、IXblue光纤及其他新型激光器等光电仪器在中国市场的销售、技术服务、市场推广服务。对于IXblue全玻璃有源光纤有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。‍‍
  • 岛津推出猪肉中瘦肉精GCMS法检测方案
    早在2002年,国家已明令禁止在饲料和动物饮用水中添加盐酸克仑特罗和莱克多巴胺等7种 &ldquo 瘦肉精&rdquo 。然而时至今日,瘦肉精依然阴魂不散,据CCTV《每周质量报告》,在河南省孟州市、沁阳市、温县和获嘉县十几家养猪场,几乎家家都在使用&ldquo 瘦肉精&rdquo 。 瘦肉精是动物用药,包括盐酸克仑特罗、莱克多巴胺、沙丁胺醇和硫酸特布他林等,属于肾上腺类神经兴奋剂。把&ldquo 瘦肉精&rdquo 添加到饲料中,的确可以增加动物的瘦肉量。但国内外的相关科学研究表明,食用含有 &ldquo 瘦肉精&rdquo 的肉会对人体产生危害,常见有恶心、头晕、四肢无力、手颤等中毒症状,特别是对心脏病、高血压患者危害更大。长期食用则有可能导致染色体畸变,会诱发恶性肿瘤,至于究竟摄入多大量,如何导致恶性肿瘤,有关病例研究国内外尚无定论。但是,近几年,各地&ldquo 瘦肉精&rdquo 致人中毒甚至死亡的案例时有发生。 长期关注食品安全的岛津公司,很早之前就已推出了多种检测克伦特罗(clenbuterol)的方案。最近,岛津上海分析中心又推出了基于GC -MS法的克伦特罗检测方案。GC-MS法具有灵敏度高、假阳性率低的特点,常用作筛选后阳性样品的确证。本方案针对盐酸克伦特罗的化学性质,建立了C18小柱和聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)整体柱二维萃取的方法。样品提取后,用C18小柱和聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)整体柱进一步富集净化,经N ,O-双三甲基硅烷三氟乙酰胺 (BSTFA) 衍生,选择离子监测方式进行气相色谱质谱测定。该方法以克伦特罗同位素(Clenbuterol-D9) 为内标,内标法定量。猪肉中克伦特罗的检出限为0.13 &mu g/kg,在0.5~50 &mu g/kg的浓度范围内具有良好的线性关系,r大于0.999。日内、日间相对标准偏差不高于20%,加标回收率大于75%。结果表明,该方法简单、快速、灵敏度高、重现性好,适用于猪肉中克伦特罗的测定。 有关&ldquo 气相色谱质谱联用测定猪肉中的瘦肉精的含量&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_163373.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 麦当劳肯德基薯条被检出致癌物丙烯酰胺
    &ldquo 麦叔叔&rdquo 和&ldquo 肯爷爷&rdquo 的洋快餐形象可谓风靡全球。做为洋快餐的两大代表,其在中国消费者心目中的地位多年来互有高低,在仲伯之间。  不过,近几年来国内外层出不穷的&ldquo 洋快餐薯条含大量致癌物、反式脂肪酸&rdquo 的消息,也让不少消费者心有余悸。  究竟洋快餐的健康风险有多高?反式脂肪酸可怕吗?麦当劳、肯德基谁的薯条、可乐、汉堡的热量、脂肪含量更健康?  2014年6月,《消费者报道》送检了麦当劳、肯德基、汉堡王三大洋快餐的经典套餐至第三方权威机构进行检测,以期告诉消费者如何安全选食洋快餐。  在本刊此次关于三大洋快餐薯条的检测中,安全性指标选择了可能致癌物丙烯酰胺和反式脂肪酸两项指标,检测结果显示,肯德基和麦当劳的薯条均检出丙烯酰胺,其中肯德基为280&mu g/100g,麦当劳为240&mu g/100g。而两大洋快餐薯条均未检出反式脂肪酸(检出限0.05g/100g)。  丙烯酰胺含量肯德基高于麦当劳  外酥内嫩的薯条,沾上酸甜可口的番茄酱,征服了不少男女老少的胃。  不过,薯条中含有可能致癌物丙烯酰胺一直颇受诟病。2013年,台湾媒体报道,常吃薯条除了发胖,恐怕还有罹癌风险。因为马铃薯一旦碰上120℃以上的高温,就会产生毒性化学物丙烯酰胺。  《消费者报道》此次送检权威检测机构的检测结果显示,肯德基和麦当劳薯条均未检出反式脂肪酸(检出限0.05g/100g),但均含有丙烯酰胺,    肯德基薯条中丙烯酰胺含量比麦当劳高40&mu g/100g的结果,是不是因为用于油炸的油反复使用导致的呢?  复旦大学公共卫生学院营养学教授厉曙光告诉本刊记者,丙烯酰胺含量的高低主要取决于薯条的油炸温度、油炸时间、原料马铃薯的种类以及油的种类。另外,现在没有规定油在使用了多少次后就该倒掉,如果不倒掉,在里面再加点新鲜油都有可能使丙烯酰胺的含量偏高。  为此,本刊记者就薯条的油炸温度、时间以及换油次数联系肯德基、麦当劳两大洋快餐企业,但两家企业均未对该问题作出正面回应。  致癌风险有多高?  2005年,中国卫生部颁布的《食品中丙烯酰胺的危险性评估》报告指出,丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性。该报告还指出,职业接触人群的流行病学观察表明,长期低剂量接触丙烯酰胺会出现嗜睡、情绪和记忆改变、幻觉和震颤等症状,伴随末梢神经病如手套样感觉、出汗和肌肉无力。  目前,丙烯酰胺已在动物实验中被证明可以致癌,但对人体是否能致癌尚不明确。国际肿瘤研究机构(IARC)将丙烯酰胺认定为2A类致癌物即人类可能致癌物,位列砒霜、槟榔等1类致癌物之后。  经本刊记者查阅,中国暂无规定食品中丙烯酰胺的安全限值,而在生活饮用水中,中国限值定为0.5&mu g/L,世界卫生组织(WHO)则限定1&mu g/L。  2009年,国际权威学术期刊《食品和化学毒物学期刊》发表的一篇《食品中丙烯酰胺在人体中的安全摄入水平评估结果》论文指出,当丙烯酰胺的耐受摄入量(TDI)为2.6&mu g/公斤体重每日时,不会引发癌症风险,这相当于一个70公斤重的人,每日TDI为182&mu g 当TDI为40&mu g/公斤体重每日,即一个70公斤重的人每天摄入2800微克时,不会引起神经毒害。  该研究结果的安全性临界值都远超过各国以及其他研究报告中评估的成人正常接触水平。例如,加拿大卫生部认为成人对食品中丙烯酰胺的平均接触水平应为每天0.3-0.4&mu g/公斤体重 瑞典的研究结果为每天约0.5&mu g/公斤体重 美国FDA的估计摄入量为每天约0.4&mu g/公斤体重。  肯德基所属百胜餐饮集团中国事业部回应本刊指,丙烯酰胺普遍存在各种常见食品中。世界卫生组织和联合国粮农组织的报告指出目前还未有科学证据显示丙烯酰胺对人体健康的危害。肯德基所有食品均符合国家相关食品卫生和安全规定。  应减少食用  近几年,国外规避丙烯酰胺致癌风险的举措一直未曾消停。美国食品药品管理局(FDA)2013年11月发布减少食品中丙烯酰胺的行业指导草案 欧洲食品安全局基于食品中的丙烯酰胺可能增加各年龄段消费者的患癌风险,日前发布一份丙烯酰胺研究草案。  那么,面对洋快餐薯条的诱惑,消费者该如何选择?  中国《食品中丙烯酰胺的危险性评估》指出,中国居民食用油炸食品较多,暴露量较大,存在着潜在危害,因此提醒居民改变以吃油炸和高脂肪食品为主的饮食习惯,以减少因丙烯酰胺可能导致的健康危害。  中山大学营养和食品安全教授蒋卓勤评价,所有油炸、烧烤食品的丙烯酰胺含量都会偏高,且温度越高、油炸时间越长,含量越高。丙烯酰胺是公认的致癌物,建议消费者尽量少吃含有该物质的食物。  中国营养协会理事焦通在接受本刊记者采访时也表示,目前对于丙烯酰胺的毒理测试,并没有推广到人体,所以没有一个权威的说法说丙烯酰胺人吃多少会致死。虽然不会立即致死,但是煎炸食品要少吃,根据食品安全理论中的一律原则,具有潜在风险的食物都要尽量减少或者杜绝食用。  而对于这两个品牌的薯条中检测出的丙烯酰胺含量,首都保健营养美食学会执行会长王旭峰表示,一次性摄入不会出现急性毒性症状,但是长期大量的摄入可能就会对身体健康造成影响。  基于本次检测结果,本刊记者粗算出一包肯德基中份薯条含丙烯酰胺310&mu g,而同分量的麦当劳薯条含228&mu g。(如图)如果实在难以抵挡美味,偶尔吃下,消费者可选择份量小、丙烯酰胺含量低的薯条以满足嘴瘾。
  • 如何解决飞机座舱盖/驾驶舱风挡玻璃的光畸变
    可脉检测(南京)有限公司实验手记 关键词: 抛光磨料:DePowder氧化铝抛光粉3μm、1μm、0.3μm 抛光织物:DuraCloth抛光布、MicroMet抛光布、ChemoCloth抛光布分别配合3μm、1μm、0.3μm的氧化铝抛光粉调制的抛光液 一、飞机座舱盖/驾驶舱风挡玻璃的材质 目前,飞机座舱盖/驾驶舱风挡玻璃的主流材料是两层丙烯酸酯类材料(PMMA)中间夹一层聚碳酸酯类材料(PC)的复合结构有机玻璃。 丙烯酸酯类材料的优点是质轻而比强度高,透光性好,抗环境作用能力突出。 丙烯酸脂类材料的缺点是抗冲击性和耐温性差。 聚碳酸酯类材料的优点刚好是韧性好,强度大,抗冲击,耐热。 聚碳酸酯类材料的缺点是加工工艺难度大,耐磨性较差,易溶于有机溶剂,价格昂贵。 所以,将聚碳酸酯类材料夹在丙烯酸酯类材料中间的三明治工艺成为高质量座舱盖/风挡玻璃的优化解决方案。两者的优势性能被充分利用起来。 二、飞机座舱盖/驾驶舱风挡玻璃加工过程中的工艺缺陷 无论是入厂的平板原料,还是成型后的弧形半成品,其两个表面层都有典型的工艺缺陷: &bull 包装物痕迹 &bull 局部表面凸凹导致光畸变 &bull 表面划伤 &bull 砂纸打磨痕迹 所有这些表面缺陷必须消除,尤其是光畸变。 同时,工厂还必须考虑为了消除这些缺陷的投入、成本和效率问题: &bull 不规则弧形凹凸正反面如何设计研磨抛光工艺? &bull 研磨和抛光选择什么磨具、磨料、承载磨料的织物? &bull 双面厚度各减薄0.2mm所需的研磨、抛光时间需要多久? &bull 达到验收标准时,抛光布的使用寿命/消耗量是多少? 三、飞机座舱盖/驾驶舱风挡玻璃取样 四、飞机座舱盖/驾驶舱风挡玻璃样品的研磨与抛光实验 1. 研磨阶段 用QMAXIS(可脉)CarbiPaper碳化硅金相砂纸+水冷却研磨。 起步的砂纸粒径视材料表面划痕深度、宽度、数量而定——严重的划痕,从G280 [P320]粒径(约46μm)起步;而表面仅仅留有包装印迹和轻微划痕,甚至可以选择G1200 [P4000]粒径(约5μm)的砂纸一道完成研磨。 中间步骤,同样是看材料的原始表面状态来选择步骤数,亦即选择CarbiPaper砂纸的粒径。 最后一步研磨则是G1200 [P4000]粒径(约5μm)的CarbiPaper砂纸。 研磨阶段,即使到最后一步,工件表面有明显的砂纸划痕。 2. 抛光阶段 分为三个抛光步骤——3μm、1μm、0.3μm 金相抛光布:依次为QMAXIS(可脉)的DuraCloth、MicroMet、ChemoCloth 抛光液:QMAXIS(可脉)的DePowder氧化铝抛光粉用蒸馏水调制成抛光液 2.1. 用QMAXIS(可脉)DuraCloth抛光布+DePowder 3μm氧化铝抛光粉调制的抛光液作为第一道抛光步骤,宏观上已经可以透明地看到后面的设备,但是显微观察时还有轻微划痕。 2.2. 用QMAXIS(可脉)MicroMet抛光布+DePowder 1μm氧化铝抛光粉调制的抛光液作为第二道抛光步骤,已经完全透明,无划痕。 2.3. 用QMAXIS(可脉)ChemoCloth抛光布+DePowder 0.3μm氧化铝抛光粉调制的抛光液作为最后一道抛光步骤,完全透明,可以透过样品清晰地阅读后面设备铭牌的小号字体。 五、飞机座舱盖/驾驶舱风挡玻璃样品抛光后的显微图像 以下显微照片使用的是Leica DVM 6拍摄。图1 3微米抛光后,50X 图2 3微米抛光后,500X 图3 1微米抛光后,50X 图4 1微米抛光后,500X 图5 0.3微米抛光后,50X 图6 0.3微米抛光后,500X 六、飞机座舱盖/驾驶舱风挡玻璃研磨抛光建议 1. 抛光工具 1.1. 弧形的非规则凸凹两面研磨和抛光,因光学检测质量为绝对性验收标准,所以,优选机器人抛光。 机器人既可以自动扫描工件,记忆轨迹,也可以通过示教器编程。自动化程度高,受外界影响因素少,因此,抛光的效果有保障。 1.2. 由于飞机座舱盖/驾驶舱风挡玻璃的产量/用量有限,如果用机器人抛光,投入——产出不理想,因此,以机械臂代替机器人更可取。 2. 抛光液 2.1. 液体的运输成本高,应该购买QMAXIS(可脉)的DePowder氧化铝抛光粉,现场调试,混配成合适浓度的液体使用。 2.2. 从实验结果证明,QMAXIS(可脉)的CarbiPaper砂纸,G1200 [P4000],约5μm,质量突出,已经取得了精磨的效果。因此可以跳过3μm的步骤,直接进入1μm的抛光步骤;同时,我们在显微图像中可以看到,1μm的DePowder氧化铝抛光粉质量确实出众,完全达到了抛光效果,消除了有机玻璃样品的光畸变,因此,最后的0.3μm步骤也可以取消。 3. 抛光布 3.1. 只保留1μm的抛光步骤,所以,只选择QMAXIS(可脉)的MicroMet抛光布即可。这是一款加工精湛的植绒布,配合3μm及以下的金刚石抛光液、各种氧化物抛光液,应用于所有材料的精抛。其100X的微观结构如下: 3.2. MicroMet抛光布的尺寸可以定制,以适应机器人或机械臂的工装夹具,可直接提供带自粘结构和适配器的成品。适应客户的各种使用需求和使用习惯。可脉检测(南京)有限公司电话:400-860-5168转4479
  • Protein A材质对生物分离传化的影响 ,微球精准制造技术应运而生
    早前,江必旺博士分享了《浅谈令人“爱恨交加”的Protein A亲和层析介质》、《盘点Protein A亲和填料质控必看的重要参数》,本期带大家了解Protein A 亲和层析介质的制备过程中需要考虑的那些影响因素以及纳微科技带来的创新成果,也欢迎大家在评论区留言讨论。纯化后的Protein A配基可以通过其分子上的氨基或末端的巯基与微球上的功能基团偶联制备成Protein A 层析介质。Protein A层析介质的性能与其本身的配基性能,基球材料组成,基球孔径大小,孔容积及表面功能化等都有关系。为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。 Protein A材质的影响 目前Protein A 亲和层析介质基球主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的多糖层析介质;第二类是以聚丙烯酸酯和聚丙烯酰胺为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。软胶是生物大分子分离纯化应用历史最悠久,最广泛的亲和层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等,另外软胶在干燥状态下脱水容易导致孔道结构塌陷从而失去分离性能,因此,软胶填充的层析柱床一般不能脱水。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,虽然其在市场应用的晚但其市场增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度,高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。 介质孔径大小及孔隙率对生物分离的影响 除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求 Protein A 配基的影响 Protein A 亲和层析分离是基于Protein A 配基与抗体的特异性结合。天然Protein A 来源于金黄色葡萄球菌的一个株系,它含有5个可以和抗体IgG 分子Fc 段特异性结合的结构域。由于天然的Protein A 配基耐碱性差,为了提高Protein A 耐碱性,延长其使用寿命,因此现在市场上使用的Protein A都是经过天然Protein A序列改造过的重组蛋白。每家重组蛋白A的序列不同,亲和力不同,洗脱pH 条件不同,耐碱性能不同。Protein A 配基对抗体纯度,回收率等有重要影响。 粒径大小和粒径均匀性的影响 粒径大小和均匀性不仅影响柱效,分离效率,对Protein A 载量影响也很大。粒径越小,分子传递路径越短,Protein A 与抗体结合的效率越高,载量就越大,比如说以琼脂糖为基质的Protein A 介质,如果粒径是90微米,载量只有50毫克/毫升,如果粒径减小到50微米,载量可高达90毫克/毫升,因此粒径与载量成反比,但粒径越小,反压越大,因此选择粒径大小需要考虑压力和载量。另外粒径越均一,其洗脱越集中。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。纳微十多年坚持不懈的研究开发出世界领先的微球精准制造技术,该技术可以对微球的材料组成、粒径大小、粒径均匀性、孔径大小及表面性能达到前所未有的精准控制。纳微利用这一技术平台开发出新一代单分散多孔聚丙烯酸酯为基质的Protein A 亲和层析介质克服了传统Protein A 软胶的缺点。纳微Protein A 介质创新点主要有以下几点:首先,纳微Protein A 介质具有精准的粒径大小和高度的粒径均一性,使其具有流速均匀、洗脱集中、流动相用量少而且装柱容易、柱效高、柱床稳定、压力低、柱与柱重复性好等优点;图4 纳微单分散Protein A介质与传统软胶基质微观结构对比图5 传统多分散Protein A亲和软胶与UniMab液流路径对比示意图第二,纳微Protein A 基球经过优化筛选专门设计的大孔结构,其孔径远大于GE Protein A 产品。因此该介质具有蛋白传质速度快,使得介质在高流速下具有高载量。从实验测试数据可以看到,纳微UniMab与GE MabSelectSuRe在驻留时间大于4分钟时,载量都差不多,当驻留时间小于2分钟时UniMab的载量高于MabSelectSuRe载量50%以上, 而且速度越快UniMab载量优势越明显。抗体生产效率是由载量和流速共同决定,但流速越快载量越低,因此对于每个亲和层析来说有个最优的流速。实验证明对于批次亲和层析,驻留时间是2分钟时生产效率达到最高,对于连续层析驻留时间是1分钟时生产效率最高;图6 UniMab与MabSelectSuRe产品不同驻留时间动态载量对比图7 不同Protein A 层析介质驻留时间与抗体生产效率与关系对比从抗体流穿曲线对比图也可以看出具有大孔结构及高度粒径均匀性的单分散Protein A亲和层析介质与进口软胶相比具有更陡的穿透曲线,说明纳微单分散层析介质具有更畅通的孔道结构,分子在介质里扩散速度快。抗体流穿少,回收率高。图8 抗体流穿曲线对比图第三,纳微Protein A 基球是高度交联的聚丙烯酸酯组成,与市场上软胶或低交联度聚丙烯酸酯为基质的Protein A 介质相比具有溶胀系数小,压缩比例低,而且具有优异机械性能,可以承受更高流速条件产生的压力,并装更高的柱床,有利于增加抗体批处理量,提高抗体生产效率,减少设备投资。UniMab在2公斤压缩比例只有5%,而市场上Protein A 介质压缩比例往往超过15%。图9 UniMab与软胶与压力流速曲线对比第四,纳微用于Protein A 介质的基球是通过多步表面亲水化改性,因此表面亲水性能好,非特异性吸附低,在抗体分离过程中,HCP去除效果好。一般来说聚合物基质的Protein A 因为亲水性问题,HCP 去除效果往往比软胶差,但UniMab可以达到软胶Protein A 的同等水平。图10 纳微UniMab与对照填料的HCP去除效果第五,除了创新基球外,纳微又经过多年的努力通过优化组合不同片段的Protein A 设计出有自主知识产权的耐碱性Protein A 配基,并实现大规模生产。最后通过优化偶联工艺成功地生产出世界首个单分散Protein A 亲和介质产品,不仅实现该产品的国产化,而且克服了现有市场上Protein A 介质的主要缺陷。纳微单分散Protein A 介质不仅可以提高抗体的生产效率,降低抗体的生产成本,更是下一代连续层析理想的介质。亲和层析分离条件影响ProteinA亲和条件相对简单,无需繁琐参数优化。平衡阶段,盐浓度及pH是两个重要参数。由于ProteinA与抗体分子核心区域主要作用力依靠组氨酸疏水性介导,所以增加平衡盐浓度一般可增加3-5mg载量。pH则通常控制在6-7.5,若低于5.0以下,可能会降低动态结合载量,从而降低了回收率。上样后清洗是去除结合于填料的宿主蛋白(HCP)及核酸(DNA)等杂质的主要过程。清洗pH较为关键,在抗体分子未清洗掉的前提下,选择尽可能低的pH作为清洗条件,以去除更多的HCP等杂质。若常规pH条件无法奏效,可以加入高盐(1M氯化钠)或添加剂如精氨酸、吐温80、尿素及异丙醇等。pH是洗脱过程中最关键工艺参数,在确保回收率的前提下,尽可能选择更高的pH进行洗脱。较低pH会导致洗脱的抗体浓度过高,产生更多的聚集体。另外,洗脱buffer类型也会对洗脱浓度及杂质含量有影响,如相同pH的柠檬酸洗脱强度高于醋酸。表4 不同Buffer洗脱液效果比较缓冲液洗脱体积(ml)洗脱浓度(mg/ml)收率(%)HCP(ppm)洗脱液20mM HAc pH3.546.591.5129洗脱液20mM Gly pH3.563.880.3167洗脱液20mM Citric pH3.53.77.395.186另外,洗脱液加入精氨酸、氯化钠、聚乙二醇、尿素、组氨酸、咪唑等皆有助于减缓低pH的破坏作用,提高洗脱液纯度。下图是UniMab50纯化过程中在淋洗及洗脱步骤加入了1%聚乙二醇PEG3350,SEC纯度提示PEG可显著降低聚集体含量。
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 成果:可拉伸离子二极管
    p  随着对软性和柔性器件需求的稳步增长,凝胶材料演示的离子应用受到了人们的关注。本文介绍了由聚电解质水凝胶制成的可拉伸可穿戴式离子二极管(SIDs)。采用甲基丙烯酸酯化多糖对聚电解质水凝胶进行了机械改性,同时保留了聚(磺丙基丙烯酸酯)钾盐(PSPA)和聚([丙烯酰胺丙基]氯化三甲铵(PDMAPAA‐Q)的离子选择性,形成了离子共聚物。然后将聚电解质共聚物水凝胶组成的小岛屿发展中国家在VHB基板上制作成可拉伸的透明绝缘层,用激光刻蚀而成。sid在水凝胶与弹性体基体之间的良好粘附作用下,在拉伸超过3倍的范围内表现出整流行为,并在数百个周期内保持整流状态。可穿戴式离子电路在手指运动过程中对离子电流进行整流,并在正向偏压下点亮LED灯,从而实现SID的操作可视化。/pp原文链接:/ppa href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201806909" target="_blank"A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides/a/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="10.1002@adfm.201806909.pdf" style="color: rgb(0, 102, 204) font-size: 12px " href="https://img1.17img.cn/17img/files/201812/attachment/bbee6195-d2c0-439f-81d4-023f7d38927d.pdf"10.1002@adfm.201806909.pdf/a/pp/p
  • 上海禾工塑料粒子行业水分仪技术交流培训
    日前,上海禾工在广东东莞群安塑胶实业有限公司安排了一场安调培训、技术交流会,东莞群安塑胶生产的离子型中间膜可广泛的应用在光伏、航天、国防、建筑、汽车等众多领域。 而在生产过程中。如果使用水分含量过多的塑料粒子进行生产,则会产生一些加工问题,并最终影响成品质量,如:表面开裂、反光,以及抗冲击性能和拉伸强度等机械性能降低等。因此,水分含量的控制对于生产高质量的塑胶产品是至关重要的。 在之前的很多产品选购指南中也提到,如果需要检测的塑料样品水分含量在0.1%以上,加热温度在200度以内,而且加热之后除了水分之外没有其他挥发性成分,可以选择方便快捷的加热失重法水分测定仪器,如果这三个条件有一个不符合您的测量要求,那么就建议选择卡尔费休滴定的测水方法,而且,一定要选择带卡式加热炉的卡尔费休滴定仪器。在离子型中间膜生产中东莞群安塑胶选择了禾工AKF-PL2015C卡尔费休塑料粒子专用水分测定仪,在仪器的培训过程中,禾工技术员在现场协助客户使用AKF-PL2015C塑料粒子专用水分仪检测了四组数据,根据计算结果得出平均值及RSD值较好。 卡式炉测定塑料水分含量建议温度ABS/160℃已内酰胺/100-120℃环氧树脂/120℃三聚氰胺甲醛树脂/160℃尼龙6(尼龙66)160-230℃苯酚甲醛树脂/200℃聚苯稀酰胺/200℃聚酰胺/160-230℃聚碳酸二酰亚胺/150℃聚碳酸酯/140-160℃聚酯/140-240℃聚醚/150℃聚异丁烯/250℃聚酰亚胺/160℃聚甲酯/160℃聚对苯二甲酸乙二醇酯/180-200℃聚乙烯/200℃聚甲基丙烯酸甲酯/180℃聚丙烯/160-200℃聚苯乙烯/120℃聚氨酯/180℃多乙酸乙烯酯 /170℃聚乙烯醇缩丁醛PVB/150℃聚四氟乙烯PTFE/250℃橡胶塞/250℃哇橡胶/250℃软PVC /140-160℃苯乙烯丙烯酸酯/170℃特氟隆/250℃对苯二酸酯 /150℃尿素甲醛酯 /100℃
  • 咖啡中的"隐形杀手":丙烯酰胺
    近日,根据福建省消费者权益保护委员会与福州市消费者权益保护委员会的联合调查,他们通过线上和线下途径,对福州市20家咖啡销售点的59款现场制作的咖啡产品进行了抽样检测(包括线下30款和线上29款)。这些样品涵盖了“瑞幸”、“星巴克”、“幸运咖”、“COTTI COFFEE”等多个知名品牌。(来源:福建省消费者权益保护委员会) 令人关注的是,在这次检测的59款样品中,未发现反式脂肪酸(低于0.0013g/100g的检测限),然而却都检出了较低浓度的致癌物质“丙烯酰胺”。被查出的”丙烯酰胺“,是一种有机化合物,损害人体神经系统,为白色结晶性粉末,溶于水、乙醇、乙醚、丙酮,不溶于苯、己烷。它是一种潜在致癌物,属于2A类致癌物,即:虽然在动物试验中具有明确致癌作用,在人群研究结果中还没得定论。丙烯酰胺存在于很多食物中,除了咖啡外,油条、薯条、烧烤等食物都含有。丙烯酷胺检测方法般包括以下几种:1.液相色谱法: 采用高效液相色谱技术,通过分离、净化、测定来确定丙烯酷胺的含量。2.毛细管电泳法: 采用毛细管电泳技术,通过分离、净化、测定来确定丙烯酷胺的含量。3.光谱法:采用紧外、红外、拉是等光谱技术,通过吸收、散射、振动等特征来确定丙烯酷胺的含量。4.化学发光法:采用化学发光技术,通过与相关反应物的化学反应产生化学发光信号来确定丙爆酷胺的含量。5.气相色谱-质谱联用法:采用气相色谱-质谱联用技术,通过分离、净化、测定来确定丙烯酷胺的含量。小编整理了咖啡中检测丙烯酰胺的解决方案供大家参考: 1. 咖啡中丙烯酰胺含量的测定 2. 根据DIN EN ISO 18862标准,对咖啡中丙烯酰胺的自动SPE净化和LC-MS/MS测定 3. 月旭“舌尖上的卫士”为您把关食品中丙烯酰胺的残留更多丙烯酰胺检测相方案请点击查看涉及相关产品:三重四极杆液质联用仪QSight 400(珀金埃尔默)GERSTEL自动进样器 MPS robotic (GERSTEL( 哲斯泰) )月旭固相萃取装置 (月旭科技 ) 在福建省消费者权益保护委员会微信公众中也提到了,目前我国暂未对咖啡中丙烯酰胺有限制性或禁止性规定。同时,也提醒广大消费者,现制现售咖啡口感醇香浓郁,但不宜多喝,应科学、合理饮用。在购买现制现售咖啡需关注以下几点: 1、消费者在进行咖啡消费前要学习了解一些基本的咖啡常识,比如常见咖啡分类及区别(如美式咖啡、卡布奇诺、拿铁、摩卡等)、了解阿拉比卡和罗布斯塔咖啡豆的区别、留意添加牛奶、风味糖浆等原料的咖啡能量及含糖量相对较高等。 2、消费者在购买咖啡时,要注意查看商家菜单或外卖平台选项上有无含糖分、咖啡因等提示警示,并根据个人口味喜好及身体状况,选择合适的咖啡产品。孕妇及哺乳期妇女、儿童、青少年等敏感人群应尽量不饮用或减少饮用咖啡。 3、不要长期过量饮用咖啡,按每日咖啡因的安全摄取量不超过400 mg,一般每天1至2杯,比较安全。同时咖啡中含有咖啡因、草酸等物质,过量饮用会影响钙质的吸收,增加患骨质疏松的风险、会使人体长时间兴奋、失眠、焦虑,严重的还会造成抑郁、记忆力减退等问题。 4、养成正确咖啡饮用方式。平时喝咖啡水温要控制好,最好不要超过65度,否则会影响口腔粘膜、胃肠粘膜,甚至造成粘膜损伤。注意喝咖啡的时间,尽量选择在用餐后,避免在晚上睡觉前或早上空腹时喝咖啡。酒之后不宜喝咖啡,人在饮酒后会进入精神亢奋状态,如再喝咖啡的话,只会加重人体的兴奋状态,对人体器官的伤害很大。 同时建议各现制现售咖啡商家在严格把控咖啡豆/粉、牛奶、糖浆等原料质量的同时,要在产品销售目录上对香草拿铁等含糖量较高产品、咖啡因含量及不适宜人群等予以警示或作出明确标示,以供消费者选择参考。行业应用栏目简介:(http://www.instrument.com.cn/application/) 【行业应用】是仪器信息网专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 国家市场监督管理总局关于对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年8月6日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001309,查询项目信息和反馈意见建议。2023年7月7日相关标准如下:#项目中文名称制修订截止日期1动物和动物产品沙门氏菌检测方法制定2023-08-062工业锅炉技术规范修订2023-08-063工业锅炉综合能效评价技术规范制定2023-08-064工业氯化钙分析方法修订2023-08-065工业碳酸氢钠修订2023-08-066工业用二甲基二氯硅烷修订2023-08-067工业用甲醇修订2023-08-068工业用六次甲基四胺修订2023-08-069锅炉温室气体排放测试与计算方法制定2023-08-0610锅炉温室气体排放监测技术指南制定2023-08-0611甲醇纯度及其微量有机杂质的测定 气相色谱法制定2023-08-0612奶粉定量充填包装机修订2023-08-0613农业拖拉机 机具用液压压力制定2023-08-0614起重机 分级 第3部分:塔式起重机修订2023-08-0615起重机 检查 第3部分:塔式起重机修订2023-08-0616起重机 司机培训 第3部分:塔式起重机修订2023-08-0617气体分析 纯度分析和纯度数据的处理修订2023-08-0618全自动旋转式PET瓶吹瓶机修订2023-08-0619输送带 基于带宽的压陷滚动阻力 技术条件和试验方法制定2023-08-0620输送带 实验室规模的燃烧特性 要求和试验方法修订2023-08-0621水处理剂 阳离子型聚丙烯酰胺修订2023-08-0622塑料 胺类环氧固化剂 伯、仲、叔胺基氮含量的测定制定2023-08-0623塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第1部分:命名系统和分类基础修订2023-08-0624塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第2部分:试样制备和性能测定修订2023-08-0625塑料 标准气候老化试验方法中性能变化的表观活化能测定制定2023-08-0626塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-08-0627塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第2部分:试样制备和性能测定制定2023-08-0628塑料 丙烯腈-丁二烯-苯乙烯 (ABS)模塑和挤出材料 第2部分:试样制备和性能测定修订2023-08-0629塑料 差示扫描量热法(DSC)第8部分:导热系数的测定制定2023-08-0630塑料 弹性指数 熔体弹性性能的测定制定2023-08-0631塑料 导热系数和热扩散系数的测定 第2部分:瞬时平面热源(发热盘)法制定2023-08-0632塑料 动态力学性能的测定 第12部分:非共振压缩振动法制定2023-08-0633塑料 动态力学性能的测定 第2部分:扭摆法制定2023-08-0634塑料 动态力学性能的测定 第3部分:共振弯曲振动法制定2023-08-0635塑料 对火反应 垂直方向试样的火焰蔓延和燃烧产物释放的试验方法制定2023-08-0636塑料 酚醛树脂 分类和试验方法制定2023-08-0637塑料 酚醛树脂 六次甲基四胺含量的测定 凯式定氮法、高氯酸法和盐酸法修订2023-08-0638塑料 酚醛树脂 游离甲醛含量的测定修订2023-08-0639塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第2部分:试样制备和性能测定制定2023-08-0640塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第3部分:选定模塑料的要求制定2023-08-0641塑料 粉状不饱和聚酯模塑料(UP-PMCs)第1部分:命名系统和分类基础制定2023-08-0642塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第1部分:命名系统和分类基础制定2023-08-0643塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第2部分: 试样制备和性能测定制定2023-08-0644塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第3部分:选定模塑料的要求制定2023-08-0645塑料 滑动摩擦和磨损 试验参数制定2023-08-0646塑料 环氧树脂硬化剂和促进剂 酸酐中游离酸的测定制定2023-08-0647塑料 环氧树脂用硬化剂和促进剂 第1部分:命名制定2023-08-0648塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯 (MABS)模塑和挤出材料 第2部分:试样制备和性能测定制定2023-08-0649塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯(MABS) 模塑和挤出材料 第1部分:命名系统和分类基础制定2023-08-0650塑料 聚氨酯生产用多元醇 近红外光谱法测定羟值制定2023-08-0651塑料 聚丙烯(PP)等规指数的测定 低分辨率核磁共振光谱法制定2023-08-0652塑料 聚乙烯(PE)和聚丙烯(PP)树脂中金属含量的测定 电感耦合等离子体发射光谱法制定2023-08-0653塑料 模塑和挤出用热塑性聚氨酯 第3部分:用于区分聚醚型聚氨酯和聚酯型聚氨酯的测定方法制定2023-08-0654塑料 磨料磨损性能的测定 往复线性滑动法制定2023-08-0655塑料 燃烧试验 标准点火源制定2023-08-0656塑料 热固性粉末模塑料(PMCs)试样的制备 第1部分: 一般原理及多用途试样的制备制定2023-08-0657塑料 热固性粉末模塑料(PMCs)试样的制备 第2部分: 小板制定2023-08-0658塑料 生产质量控制 采用单次测量的统计方法制定2023-08-0659塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第2部分:聚氯乙烯树脂修订2023-08-0660塑料 透明材料总透光率的测定 第1部分:单光束仪器制定2023-08-0661塑料 透明材料总透光率的测定 第2部分:双光束仪器制定2023-08-0662塑料 鲜映度的测定制定2023-08-0663塑料 液体环氧树脂 结晶倾向的测定制定2023-08-0664塑料 用氧指数法测定燃烧行为 第4部分:高气体流速试验制定2023-08-0665塑料 中高加载速率(1m/s)下断裂韧性(GIC和KIC)的测定制定2023-08-0666塑料 总透光率和反射率的测定制定2023-08-0667塑料/橡胶 聚合物分散体和橡胶胶乳(天然和合成)测试方法制定2023-08-0668无机化工产品中总碳和总有机碳含量测定通用方法制定2023-08-0669循环冷却水节水技术规范修订2023-08-0670压力管道规范 长输管道修订2023-08-0671医疗保健产品灭菌 辐射 第2部分:建立灭菌剂量修订2023-08-0672医疗保健产品灭菌 辐射 第3部分:开发、确认和常规控制的剂量测量指南修订2023-08-0673育苗纸修订2023-08-0674纸和纸板 耐脂度的测定 第3部分:松节油法制定2023-08-0675纸和纸浆 印刷纸产品的脱墨性试验方法制定2023-08-0676纸浆 丙酮可溶物的测定修订2023-08-06
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力复合聚合物领域实现新突破
    背景简介聚合物纳米复合材料是以聚合物为基体连续相,以纳米填充物为分散相的一种复合材料,具有易加工、摩擦和磨损率小、表面硬度高以及成本低廉等特点,在工业中具有广泛应用,受到诸多科学家的关注。研究聚合物复合材料的内部结构是一种综合性认知材料聚集形态形成和物质组成分布的有效方法。通常,科学家通过透射电子显微镜(TEM)研究颗粒的内部结构及聚集形态。但是,电子显微镜并不能对轻质元素(C, H, N和O) 进行元素识别及表征,而这些元素正是水体系聚合物主链单元的主要组成元素。同时,电子显微镜对聚合物功能团的识别强烈依赖于选择性染色,需要将电子密度高的重金属离子引入聚合物链。因此,通过扫描透射电子显微镜-电子能量损失谱方法(STEM-EELS)或者TEM相衬度法来研究聚合物纳米材料的形态结构及元素分布仍然存在一些争议,特别是在研究水溶性主链的聚合物体系中染色带来的误差和衬度失真尤为严重。近年来,迅速发展的纳米分辨傅里叶红外光谱与超分辨光学成像技术(nano-FTIR & neaSNOM)能够实现在10 nm的空间分辨率下对材料的化学组成和结构进行表征。与电子显微镜与电子能谱结合的方法相比,光学探测技术具有无损伤、无需染色标记、快速且适用性广等优点,可以研究材料化学组分,微观结构、电学、力学、高分子取向与构象以及物质相互作用等信息。研究进展近期西班牙纳米科学研究中心的Rainer Hillenbrand团队通过nano-FTIR & neaSNOM对聚全氟辛基丙烯酸酯-基丙烯酸酯-丙烯酸丁酯(PMB)形成的纳米复合颗粒进行研究[1]:证明了颗粒内部形成了复杂的Core-Shell-Shell结构。进一步,通过nano-FTIR对全氟取代共聚物(POA)和丙烯酸共聚物(MMA/BA)在三层结构中的分布及比例进行定量研究,发现本该富集在Core部分的疏水POA在三层结构中都存在,并且在inner-Shell的比例高度达到了65%。结合聚合反应动力学研究,nano-FTIR & neaSNOM可以呈现复合聚合物颗粒Core-Shell-Shell结构在形成过程中各化学组分生成时间、相分离及迁移的具体路径以及疏水、亲水相互作用,有助于提升对纳米材料复杂高次结构的理解和设计。需要指出的是:由于不同的域(核,壳)显示出显着不同的机械性能和形貌(图1a),其他方法(例如PiFM和AFM-IR)得到的红外信息会跟局域的机械性能有一定关联,造成一些数据假象。而nano-FTIR对于这种材料系统的优点是部与样品之间的纯光学相互作用决定了信号,因而得到的信号与材料的机械性能无关。 精彩结果展示图1 PMB嵌段聚合物截面光学超分辨成像。(a)s-SNOM原理示意图。通过激发光(Einc)聚焦照射AFM探针,在针周围形成增强的局域近场,进一步AFM探针以Ω轻敲振动频率调制针散射(Esca)的近场信号,从而获取纳米尺度下聚合物截面的光学图像。(b)纯poly(POA) 与poly(MMA-co-BA)的nano-FTIR光谱,用作对比参考光谱。垂直的蓝色虚线表示记录在图(d)和(e)中的近场光学图像的红外频率。(c) PMB颗粒的拓扑结构成像。(d, e) 近场红外的相位图对应了样品分别在1250 cm−1 (d)和在1736 cm−1 (e)处的吸收。图像的积分时间为每个像素6 ms 图像获取时间为24 min。图2 nano-FTIR&neaSNOM对PMB单颗截面Core-Shell-Shell结构中POA/ARC(MMA-co-BA)的高光谱及纳米红外光谱研究(左);图3 对多个PMB聚合物颗粒化学组分的统计研究,定量给出了Core-Shell-Shell的比例分布(右)。结论作者展示了无需化学染色标记的一种纳米成像与纳米光谱表征方法(s-SNOM& nano-FTIR),该方法确认了PMB聚合物复合颗粒内部结构并证明了新型的核-壳-壳复杂结构的存在。进一步通过对参比样品光谱进行线性叠加拟合,定量的计算出核-壳-壳结构中各个组分的定量比例及分布。这种同时表征材料微观纳米结构与对应化学成分的方法是前所未见的,有助于帮助科学找到影响材料性能的关键参数以及终材料聚集形态形成的动力学路径,依此来设计和调控材料所需的宏观性能。 研究利器上述研究中的纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)是由德国Neaspec公司利用其有的散射型近场光学技术发展出来的,使纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,可以在纳米尺度下实现对几乎所有材料的化学分辨。由此开启了现代化学分析的纳米新时代。该设备还具有高度的可靠性和可重复性,已成为纳米光学领域热点研究方向的重要科研设备!图4 neaspec纳米傅里叶红外光谱仪-Nano-FTIR 参考文献:[1]. Cross-Sectional Chemical Nanoimaging of Composite Polymer Nanoparticles by Infrared Nanospectroscopy, Macromolecules, 2021, 54 (2), 995-1005, DOI: 10.1021/acs.macromol.0c02287
  • 从此不再 折箭为誓——RESTEK最新SPME产品亮相
    RESTEK最新的SPME产品 Arrow重新设计了结构,从根本上解决了传统产品的缺点 下图为传统的微萃取针。存在两个最大的问题,一是非常易折,二是键合相膜厚太薄,容量太小。导致稳定性和检出限都不好。 造成这两个问题的原因都是由于它的结构设计导致的: 一是键合相直接键合在针尖处。 二是使用的23号针头,内径太细导致键合相膜厚不能做的太厚。外径太细,导致易折。 RESTEK最新的SPME产品 Arrow重新设计了结构,从根本上解决了传统产品的缺点。 一是设计了箭头形状的针尖,更加容易穿透密封垫,使针杆受力更小。 二是键合相层设计在箭头以上的部分。并且将针头的尺寸由原来的23号(0.58mm)增大到了1.1 和1.5mm。这样有两个好处,一是有足够的空间可以加厚键合相的膜厚。另外针头加粗彻底杜绝针头折弯的现象发生。 下面这个表格很清晰的列出来如何根据要分析的化合物的种类来选择对应的Arrow产品: 分析物分子量固定相膜厚(um)针头外径针座颜色货号挥发性化合物60–275聚甲基硅氧烷1001.1红色27485挥发性化合物(高容量)60–275聚甲基硅氧烷2501.5黑色27484极性,半挥发性化合物80-300聚丙烯酸酯1001.1灰色27488高挥发性化合物30-225聚甲基硅氧烷1201.1亮蓝27487胺类和极性化合物60-300聚甲基硅氧烷1201.1紫色27486 由于对SPME结构上进行了升级,所以也需要对对应的进样口配件进行对应的调整。只需要从RESTEK购买如下对应设备的套装安装到进样口上就可以了。 适用套装 气相套装货号Thermo TRACE Ultra27495Thermo TRACE 1300/131027494Agilent GC 689027492Agilent GC 789027493Shimadzu GC 201027491 SPME在第一次使用之前或者定期都需要进行一次老化。老化需要注意一下几点: 1 老化需要在惰性环境下进行。2 老化最高温度建议在最高耐受温度以下20C进行。3 可以直接在进样口老化,但是一定要使用SPME专用衬管。4 不要使用石英棉,防止破坏键合相,老化的时候设置最大分流比,防止杂质进入到色谱柱内。5 无论是老化还是使用过程中不要用手触碰键合相位置。6 杜绝接触含氯化合物,防止键合相膨胀。 老化条件和方法请参考如下表格内容: 键合相以及膜厚最高耐受温度推荐操作温度最低/最高老化温度老化时间清洗溶剂清洗时间PDMS, 100um300°C180–300°C200 / 300°C30min甲醇/乙醇/异丙醇2minPDMS, 250um300°C200–300°C220 / 300°C 30min甲醇/乙醇/异丙醇2min聚丙烯酸酯,100um280°C180–280°C200 / 280°C30min甲醇/脂肪烃2minCarbon WR, 120um300°C180–300°C200 / 300°C30min甲醇2minDVB, 120um300°C200–300°C220 / 300°C 30min甲醇/乙醇/异丙醇2min
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制