当前位置: 仪器信息网 > 行业主题 > >

振动探头

仪器信息网振动探头专题为您提供2024年最新振动探头价格报价、厂家品牌的相关信息, 包括振动探头参数、型号等,不管是国产,还是进口品牌的振动探头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合振动探头相关的耗材配件、试剂标物,还有振动探头相关的最新资讯、资料,以及振动探头相关的解决方案。

振动探头相关的资讯

  • 合肥研究院研制出固体核磁共振静态探头
    p  近期,中国科学院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组博士毛文平研制出了一种600mhz固体双共振静态探头。/pp  固体a title="" href="http://www.instrument.com.cn/zc/43.html" target="_self"核磁共振/a(nmr)能够原位测定具有原子分辨率的分子结构和动力学信息,在材料表征、多相催化和结构生物学等领域有重要应用。强磁场有助于提高nmr检测灵敏度和谱图分辨率,但同时对探头设计也提出新的挑战:波长效应导致射频场(b1场)均匀度下降、射频电场相对强度过强导致b1场强度受限、含盐生物样品与强电场相互作用导致发热严重甚至失去活性。因此,开展高场下的低旋磁比四极核和生物大分子固体nmr研究,亟需能产生高均匀度和强度b1场、低电场探头,以提高nmr检测灵敏度、缩短谱图数据采集时间。/pp  毛文平通过引入交叉线圈、平衡电路以及阻抗匹配网络优化技术,使得双共振静态探头获得了以下主要性能参数:1h通道b1场均匀度a810/a90约为96%,最大去偶场强度为132khz*80ms,含盐样品脉冲功率损耗为0.02mw· khz-2· mm-1(仅为螺线管线圈探头的10%,因此有利于降低含盐样品的发热效应,测试样品为浓度为0~1000mmnacl溶液) x通道可覆盖31p及以下所有larmor共振频率,b1场a810/a90约为83%,金刚烷静态cp实验4次累加灵敏度为88(相同条件下某商业4毫米双共振mas探头灵敏度为46)。/pp  该探头将纳入合肥战略能源和物质科学大型仪器区域中心向用户开放。br//p
  • 高效率三共振/双共振固体核磁共振MAS探头由合肥研究所研制成功
    p 中国科学院合肥物质科学研究院强磁场科学中心研制出高效率三共振/双共振固体核磁共振魔角旋转(Magic Angle Spinning, MAS)探头,可实现在双共振/三共振模式或不同谐振频率间的切换,主要用于四极核材料、膜蛋白以及锂电池/超级电容的固体NMR研究。/pp style="text-align: justify " 固体核磁共振(NMR)在研究有序或无序材料、不可溶生物分子的原子尺度结构和动力学信息中发挥着重要的作用。固体或半固体样品中,化学位移、偶极耦合以及核四极相互作用的各向异性导致固体NMR谱图分辨率远低于液体NMR。MAS和偶极去耦是固体NMR实验中常用的提高谱图分辨率的基本方法。/pp style="text-align: justify " 不同的实验和应用体系,对MAS探头的要求和功能,如射频场强度和均匀度、脉冲功率-射频场强度的转换效率、MAS转速、射频通道数、通道调谐范围、变温范围以及原位检测等,有不同的要求。因此,探头是NMR波谱仪中需要特别设计和定制的部件。继2015年底研制出固体双共振静态探头后,强磁场中心研究员王俊峰课题组博士毛文平在三共振3.2mmMAS探头研制方面又取得新的突破。/pp style="text-align: justify " 3.2mmMAS转子和定子的设计和加工均在国内完成。经过多次设计-优化后,研究人员联合国内陶瓷加工厂商试制出的转子能够在2380mBar的驱动气压下以21kHz的转速稳定地旋转。为了增大X或Y通道调谐范围,阻抗匹配网络被设计制作成一系列可快速插拔的PCB插件,方便用户在双共振/三共振模式或不同谐振频率间的切换。该探头的主要性能参数为:(1)1H B1场均匀度A810/A90约为96%,三共振模式下B1强度为108kHz@210W;(2)13C B1场均匀度A810/A90约为88%,三共振模式下B1强度为88kHz @ 169W,双共振模式下为111kHz@169W;(3) 三共振模式下15N B1强度为50kHz@269W,双共振模式下为75kHz@269W;(4)双共振时X通道可覆盖39K~31P范围内所有Larmor共振频率。/pp style="text-align: justify " 三共振3.2mm MAS探头主要用于四极核材料、膜蛋白以及锂电池/超级电容的固体NMR研究,将与双共振静态探头一并纳入合肥战略能源和物质科学大型仪器区域中心向用户开放。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c29cecf9-bdcd-4c3d-a8f2-35c730ff8d19.jpg" title="5.png"//pp style="text-align: center "MAS转速表/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/e0428ad4-aa99-46b1-99ba-88ea4d50b228.jpg" title="6.png"//pp style="text-align: center "金刚烷的线型测试/ppbr//p
  • 新品发布|苏州纽迈冻土高灵敏内置探头新品发布,邀您见证!
    3月28日,苏州纽迈分析于2024年第八届全国岩石物理学术研讨会举行冻土高灵敏内置探头新品发布。会议现场,我们有幸与各位岩石物理方向的参会代表共同见证纽迈成长,详细介绍了冻土高灵敏内置探头新产品。产品介绍:纽迈分析在原有一英寸夹持器探头的基础上深度研发。相比传统的外置探头,针对一英寸样品将夹持器探头线圈的内径从70mm缩减到32mm,大幅度提高信噪比,同时节省测试时间,能够满足一些特定的样品例如冻土,煤炭等低温常压的测试需求。应用范围:适用于短弛豫,弱信号的冻融循环、冻结损伤实验。显著优势:1.信噪比提高五倍,节省大量测试时间;2.最短回波时间从120μs缩减为60μs;3.温度平衡(-25-30℃)时间从45min降低到30min。
  • 奥林巴斯A36探头新品发布,助力洞悉更深层缺陷
    在检测过程中,针对于大壁厚(如200mm)的焊缝检测,往往对于检测设备有着更高层次的要求。为了更好的面对在检测时遇到的各种复杂情况及调整,基于A26 DLA 探头成功的应用实践基础上,Evident在近期发布了全新A36双晶64晶片线性探头。全新A36双晶64晶片线性探头的推出,将在大壁厚情形下,协助塑造更为优质的焊缝检测解决方案。更强穿透力A36双晶64晶片线性探头通过将通道数量加倍,进而将其提升了一个档次,从而产生双 64 通道的线性配置。双晶64晶片线阵一发一收探头具有高阵元数的配置,搭配使用 OmniScan&trade X3 64相控阵探伤仪,非常适合检测大壁厚的高衰减材料焊缝检测。OmniScan&trade MXU 软件现在提供不同类型的聚焦选项,即通过电子方式实现工件中不同深度区域聚焦。在相控阵模式下,有助于将焦点位置设定在焊缝内最相关的区域。与OmniScan&trade 搭配使用,如虎添翼在使用A36双晶64晶片线性探头时,搭配OmniScan&trade X3相控阵探伤仪,在根据检测工艺要求的前提下,除了可以创建相控阵(PA)聚焦法则外,也可以设置全聚焦(TFM)模式和相位相干成像(PCI)组。在扫查计划菜单中,亦可以设置平板、管棒材等各种几何形状的工件。A36双晶64晶片线性探头提供 2.25MHz、4MHz 和 5 MHz 三种频率,SA36 楔块提供聚焦深度40 毫米和 200 毫米两种规格,且支持外径8.625英寸至平面的工件类型检测。
  • 您知道吗?我们可以为您的具体应用定制探头!
    随着相控阵超声技术在工业检测应用中的日益普及,奥林巴斯为了满足客户的需求,与时俱进,对自己的产品进行了改造和更新。我们继续拓展现有的制造和工程资源,以开发出有助于完成挑战性应用的定制相控阵(PA)探头和定制常规超声(UT)探头。定制超声探头,提供个性化服务为了帮助客户找到解决检测问题的方案并满足客户的要求,我们的专家直接与客户和工程团队合作,在美国设计和制造出每个定制探头。迄今为止,我们已经为航空航天、电力生产和石化行业设计和生产了用于制造、可再生能源和研究等应用的定制超声探头和相控阵探头。我们的定制探头多种多样,其中包括水浸式、矩阵式、接触式,以及与楔块整合在一起的探头。如果您的待测工件或部件具有复杂的几何形状,我们还可以为您设计特殊的探头和楔块,以克服在检测区域和尺寸方面的多种限制。电力生产行业的一个具有挑战性的检测案例沸水反应器(BWR)的喷嘴和部件可能会随着时间的推移而性能下降,一般的腐蚀到疲劳循环操作都会使其停止工作。在沸水反应器(BWR)中,有多个喷嘴需要检测。喷嘴的类型包括给水型、芯喷型、再循环型、主蒸汽型和排水型。喷嘴部分的裂纹可能会破坏完整性,并导致出现放射性污染,致使发电机意外停机,甚至发生灾难性事故。对喷嘴进行检测相当复杂,因为喷嘴上的焊缝由奥氏体钢和异种材料焊接,而且喷嘴不容易接触到,温度又很高,还有放射性物质泄漏的问题。独特的探头解决方案可以满足不同用户特定的检测要求我们的客户定制的探头符合多项规格,不仅包括声学要求,还具体到探头连接托架的方式。我们在设计探头时,力求满足客户所提出的所有规格要求,并研制出了一种装有弹簧的相控阵探头和固定装置。这种探头可以对沸水反应器(BWR)喷嘴的内壁同时在周向和径向上进行一发一收检测。我们还设计了一种采用常规超声(而非相控阵)技术的类似的探头,用于衍射时差(TOFD)检测应用。为客户定制探头产品,是一种可以满足客户较高期望的便捷方式。符合规格要求并超出客户期望的探头解决方案我们的核心使命是为客户提供满意的服务:无论为客户提供的是专业的仪器和探头,还是定制的解决方案。您是否要完成一项具有挑战性的检测应用?
  • 郑州电力高等专科学校238.60万元采购振动台
    基本信息 关键内容: 振动台 开标时间: 2022-01-19 09:00 采购金额: 238.60万元 采购单位: 郑州电力高等专科学校 采购联系人: 安龙 采购联系方式: 立即查看 招标代理机构: 河南省机电设备招标股份有限公司 代理联系人: 何志龙 代理联系方式: 立即查看 详细信息 郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目-公开招标公告 河南省-郑州市 状态:公告 更新时间: 2021-12-29 项目概况 郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目招标项目的潜在投标人应在河南省公共资源交易中心网站下载获取招标文件,并于2022年01月19日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2021-1614 2、项目名称:郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目 3、采购方式:公开招标 4、预算金额:2,386,000.00元 最高限价:2386000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20212663-1 郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目 2386000 2386000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 1)、升级改造现有实训室,增加36台工程师站和36套工程师站软件;2)、增加一套一体化数字化垃圾焚烧电站仿真系统,主要包括虚拟控制器、一体化数字仿真平台、垃圾焚烧电站数字化模型等;3)、垃圾电站数字化仿真实训室配套设备。5.1设备清单序号 设备名称 单位 数量1 卡件 1.1 通用型监测模件 套 11.2 故障诊断试验平台:带转速数显功能双跨转子振动试验台(含一套双跨转子试验台、一套电涡流传感器、一套加速度传感器、一套电涡流式转速探头) 台 12 计算机及软件 2.1 工程师站(核心设备) 套 362.2 工程师站软件 套 362.3 模型服务器(核心设备) 台 13 网络通讯设备 3.1 交换机 台 13.2 以太网电缆 套 14 仿真模型软件及授权 4.1 虚拟控制器 套 384.2 虚拟控制器服务器软件 套 14.3 仿真模型建模软件 套 14.4 控制对象仿真模型 套 405 其它 5.1 手册 套 15.2 工程设计资料 套 15.3 电动执行机构 台 56 技术服务 6.1 现场技术服务 17 工程师培训 7.1 工程师培训 周 188 PLC实验实训装置 套 109 电脑 套 2110 课桌椅 套 205.2交货期:合同签订后60日历天内,交货地点:招标人指定地点。5.3质保期:质保期为系统验收合格后一年或货到现场开箱验收后18个月,以先到者为准。 6、合同履行期限:详见招标公告5.2条 7、本项目是否接受联合体投标:否 8、是否接受进口产品:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无 3、本项目的特定资格要求 3.1在中华人民共和国境内具备履行合同所必需的设备和专业技术能力的法人或者其他组织或自然人,提供有效的营业执照或相关的证明文件。3.2具有良好的商业信誉和健全的财务会计管理制度,具备会计师事务所出具的2020年度的财务报告或银行开具的资信证明;3.3具有依法缴纳税收和社会保障资金的相关材料,提供2020年1月1日以来至少三个月的纳税证明和社保缴纳证明,依法免税或不需要缴纳社会保障资金的,应提供相应文件证明其依法免税或不需要缴纳。3.4参加政府采购活动前三年内,在经营活动中没有重大违法记录的书面声明函。3.5根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》 (财库[2016]125 号)的规定,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,拒绝参与本项目政府采购活动。查询渠道:失信被执行人通过“中国执行信息公开网”网站查询;重大税收违法案件当事人通过“信用中国”网站查询;政府采购严重违法失信行为通过“中国政府采购网”查询; 3.6单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。3.7本次招标不接受联合体投标。 三、获取招标文件 1.时间:2021年12月30日 至 2022年01月06日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站下载 3.方式:市场主体需要完成信息登记及CA数字证书办理,凭CA密钥登陆河南省公共资源交易中心市场主体系统并在规定时间内按网上提示下载招标文件,获取招标文件后,供应商请到河南省公共资源交易中心网站—公共服务—下载专区栏目下载最新版本的投标文件制作工具安装包,并使用安装后的最新版本投标文件制作工具制作电子投标文件。 4.售价:0元 四、投标截止时间及地点 1.时间:2022年01月19日09时00分(北京时间) 2.地点:河南省公共资源交易中心(郑州市经二路纬四路)远程开标室(一)-6,加密电子投标文件须在投标截止时间前在河南省公共资源交易中心交易系统中加密上传成功,加密电子投标文件逾期上传的,采购人不予受理。 五、开标时间及地点 1.时间:2022年01月19日09时00分(北京时间) 2.地点:河南省公共资源交易中心(郑州市经二路纬四路)远程开标室(一)-6注意事项:(1)本项目采用不见面开标,投标人可不到开标现场解密。不见面服务的具体事宜请查阅河南省公共资源交易中心网站“公共服务-办事指南”专区的《河南省公共资源交易平台不见面服务系统使用指南》。(2)投标人未在规定时间解密的,其投标文件招标人将拒绝接收。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》《河南省公共资源交易中心门户网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 落实政府采购政策:1.执行《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知财库〔2019〕9号》的规定;2.执行《政府采购促进中小企业发展管理办法》财库〔2020〕46号;3.执行《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号);4.执行《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:郑州电力高等专科学校 地址:郑州市郑东新区凤栖街296号 联系人:安龙 联系方式:0371-62275051 2.采购代理机构信息(如有) 名称:河南省机电设备招标股份有限公司 地址:郑州市郑东新区商务外环路23号中科大厦8楼802房间 联系人:何志龙 联系方式:0371-65928326/85510500 3.项目联系方式 项目联系人:何志龙 联系方式:0371-65928326/85510500 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:振动台 开标时间:2022-01-19 09:00 预算金额:238.60万元 采购单位:郑州电力高等专科学校 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南省机电设备招标股份有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目-公开招标公告 河南省-郑州市 状态:公告 更新时间: 2021-12-29 项目概况 郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目招标项目的潜在投标人应在河南省公共资源交易中心网站下载获取招标文件,并于2022年01月19日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2021-1614 2、项目名称:郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目 3、采购方式:公开招标 4、预算金额:2,386,000.00元 最高限价:2386000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20212663-1 郑州电力高等专科学校数字化垃圾焚烧发电控制实训基地项目 2386000 2386000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 1)、升级改造现有实训室,增加36台工程师站和36套工程师站软件;2)、增加一套一体化数字化垃圾焚烧电站仿真系统,主要包括虚拟控制器、一体化数字仿真平台、垃圾焚烧电站数字化模型等;3)、垃圾电站数字化仿真实训室配套设备。5.1设备清单序号 设备名称 单位 数量1 卡件 1.1 通用型监测模件 套 11.2 故障诊断试验平台:带转速数显功能双跨转子振动试验台(含一套双跨转子试验台、一套电涡流传感器、一套加速度传感器、一套电涡流式转速探头) 台 12 计算机及软件 2.1 工程师站(核心设备) 套 362.2 工程师站软件 套 362.3 模型服务器(核心设备) 台 13 网络通讯设备 3.1 交换机 台 13.2 以太网电缆 套 14 仿真模型软件及授权 4.1 虚拟控制器 套 384.2 虚拟控制器服务器软件 套 14.3 仿真模型建模软件 套 14.4 控制对象仿真模型 套 405 其它 5.1 手册 套 15.2 工程设计资料 套 15.3 电动执行机构 台 56 技术服务 6.1 现场技术服务 17 工程师培训 7.1 工程师培训 周 188 PLC实验实训装置 套 109 电脑 套 2110 课桌椅 套 205.2交货期:合同签订后60日历天内,交货地点:招标人指定地点。5.3质保期:质保期为系统验收合格后一年或货到现场开箱验收后18个月,以先到者为准。 6、合同履行期限:详见招标公告5.2条 7、本项目是否接受联合体投标:否 8、是否接受进口产品:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无 3、本项目的特定资格要求 3.1在中华人民共和国境内具备履行合同所必需的设备和专业技术能力的法人或者其他组织或自然人,提供有效的营业执照或相关的证明文件。3.2具有良好的商业信誉和健全的财务会计管理制度,具备会计师事务所出具的2020年度的财务报告或银行开具的资信证明;3.3具有依法缴纳税收和社会保障资金的相关材料,提供2020年1月1日以来至少三个月的纳税证明和社保缴纳证明,依法免税或不需要缴纳社会保障资金的,应提供相应文件证明其依法免税或不需要缴纳。3.4参加政府采购活动前三年内,在经营活动中没有重大违法记录的书面声明函。3.5根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》 (财库[2016]125 号)的规定,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,拒绝参与本项目政府采购活动。查询渠道:失信被执行人通过“中国执行信息公开网”网站查询;重大税收违法案件当事人通过“信用中国”网站查询;政府采购严重违法失信行为通过“中国政府采购网”查询; 3.6单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。3.7本次招标不接受联合体投标。 三、获取招标文件 1.时间:2021年12月30日 至 2022年01月06日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站下载 3.方式:市场主体需要完成信息登记及CA数字证书办理,凭CA密钥登陆河南省公共资源交易中心市场主体系统并在规定时间内按网上提示下载招标文件,获取招标文件后,供应商请到河南省公共资源交易中心网站—公共服务—下载专区栏目下载最新版本的投标文件制作工具安装包,并使用安装后的最新版本投标文件制作工具制作电子投标文件。 4.售价:0元 四、投标截止时间及地点 1.时间:2022年01月19日09时00分(北京时间) 2.地点:河南省公共资源交易中心(郑州市经二路纬四路)远程开标室(一)-6,加密电子投标文件须在投标截止时间前在河南省公共资源交易中心交易系统中加密上传成功,加密电子投标文件逾期上传的,采购人不予受理。 五、开标时间及地点 1.时间:2022年01月19日09时00分(北京时间) 2.地点:河南省公共资源交易中心(郑州市经二路纬四路)远程开标室(一)-6注意事项:(1)本项目采用不见面开标,投标人可不到开标现场解密。不见面服务的具体事宜请查阅河南省公共资源交易中心网站“公共服务-办事指南”专区的《河南省公共资源交易平台不见面服务系统使用指南》。(2)投标人未在规定时间解密的,其投标文件招标人将拒绝接收。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》《河南省公共资源交易中心门户网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 落实政府采购政策:1.执行《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知财库〔2019〕9号》的规定;2.执行《政府采购促进中小企业发展管理办法》财库〔2020〕46号;3.执行《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号);4.执行《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:郑州电力高等专科学校 地址:郑州市郑东新区凤栖街296号 联系人:安龙 联系方式:0371-62275051 2.采购代理机构信息(如有) 名称:河南省机电设备招标股份有限公司 地址:郑州市郑东新区商务外环路23号中科大厦8楼802房间 联系人:何志龙 联系方式:0371-65928326/85510500 3.项目联系方式 项目联系人:何志龙 联系方式:0371-65928326/85510500
  • 光谱仪小百科 | 光纤与探头日常维护的5个技巧
    海洋光学的光纤附件、探头和配件可让用户在我们的光谱仪上传输和收集光。从现成的光纤跳线和定制光纤到专门设计的 OEM 附件,您的光纤选项和应用一样多种多样。以下是确保光纤和探头性能可靠、持久的一些技巧。 技巧1:做出明智的选择模块化光谱系统的优异性能取决于各个部分的总和。在选择光谱仪时要注意的方面应与选择光源、取样光学元件、光纤或探头相同。您是否在测量吸光度或反射率?您是否在测量低于 270 nm 的波长,在该波长下紫外线照射会使某些光纤受到曝晒?光纤将放置在您实验的什么位置?样品环境是否具有化学刺激性?确定这些标准将有助于我们指导您找到满足需求并适应样品条件的最佳组件(包括光纤)。技巧2:小心处理光纤连接器和末端如果保养不当,SMA 905 和其他光纤连接器可能会被划伤或损坏,从而影响测量。有时,客户甚至会因端部拉力过猛将连接器或套圈从光纤或探头上意外拉出。由于光纤端部磨损最大,设计了具有额外应力消除和护套保护的末端。但是,在取下端罩时要小心,用一只手握住连接器的光纤,用另一只手拉开端罩。海洋光学XSR 抗紫外老化光纤更进一步,它有一个端罩,用螺丝固定在光纤的末端 -- 无需拉动。技巧3:注意弯曲半径尽管光纤和探头在光谱仪周围移动光,但是这些组件可以承受的弯曲程度是有限的。光纤的弯曲半径表示在光纤发生损坏之前可以承受的弯曲程度。这种损坏程度可能会使光纤衰减和断裂,从而导致更严重的光损耗。这就是为什么定期检测光纤确保光传输的很好方法。光纤断裂,会使光停止传输。海洋光学报告了长时间弯曲半径(LTBR)和短时间弯曲半径(STBR)。LTBR 是存放条件下建议的最小弯曲半径。STBR 是光纤使用期间建议的最小弯曲半径。可见-近红外光、紫外-可见光、SR 和 XSR 光纤的弯曲半径技巧4:避免过热避免超过光纤材料的温度阈值:对于标准光纤,硅纤维的温度阈值为 300 °C,而环氧树脂和 PVDF 管的温度为 100 °C。对于高级光纤,整个组件的额定温度为 220 °C。包括不锈钢 BX 在内的护套可提供更好的保护,但最好咨询您的海洋光学代表,寻求在恶劣环境下的应用帮助。正如一位大学教授最近与我们分享的那样,他大一时化学实验室中的一些海洋光学光纤在初学化学家手中“存活”了 20 年。这些光纤可持续更长时间,但一些学生将这些光纤太靠近他们在测量的本生燃烧火焰,导致光纤护套和 PVDF 管熔化。耐化学性是您应用很重要的另一项标准。避免将光纤浸入可损坏石英、镍、钢、铝或环氧树脂的材料中。在恶劣的样品环境中,选择耐用的护套材料(包括硅胶单线圈或不锈钢 BX)是您不错的选择。定制套筒和套圈是另一种选择。技巧5:记住小东西虽然这并不总是可行,但在不用光纤连接器时,更换光纤连接器的端罩很有用。这有助于防止划伤,避免灰尘和指纹污染。此外,我们建议定期用透镜纸和蒸馏水、酒精或丙酮清洁光纤端部,避免划伤表面。本
  • 振动试验基础:什么是振动,振动的种类
    1 什么是振动振动是指带质量的物体做往复运动的状态。比如,通过观察振幅比较大的秋千或者单摆运动便可理解。运动通过眼睛观察不到的话,有时候可以通过手去接触来感知。振动状态下,一秒以内往返运动的次数我们称为频率。※我们身边的振动①汽车行驶中的振动对汽车部品的故障发生和寿命影响的试验。最近几年,电动汽车的振动试验越来越多。发动机、汽车音响、安全气囊冲击、NVH、etc.。②铁道交通振动对列车部品等故障影响的试验。列车搭载电子设备、轨道附近的设备(信号切换机、ATC)、etc.。③运输行业卡车、轮船等的运输中,产品是否故障、损伤、外包装擦伤等的试验。④飞机发动机产生的振动,受到气流的振动、起飞降落受到的振动和冲击,会不会发生故障等以及耐久性确认。⑤地震确认部件、房屋、建筑物等的耐震性。2 振动的种类※正弦波振动(简谐振动)正弦定频试验频率一定的正弦振动。振动的最基本波形。频率扫描试验(sweep)频率一定间隔的变化。线性扫描、对数扫描。等幅扫描不等幅扫描SOS(sine on sine)※随机振动没有规则性的波形,无法预测性,但在一定的振动时间内含有各种频率正弦分量。● 正态分布随机试验● 非正态分布随机试验● 正弦+随机(SOR,sine on random)● 随机+随机(ROR,random on random)※冲击短时间内施加大脉冲形状的加速度波形试验。半正弦波(halfsine wave)半正矢波形(haversine wave)梯形波(trapezoidal wave)锯齿波(sawtooth wave)三角波(triangle wave)※拍波(sinebeat)※实测波形再现以上介绍的是几种常见的振动试验波形,对于初学者来说,只要记住各种波形即可,以后会每个试验波形进行详述。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 必达泰克公司推出新型光纤拉曼探头
    由于目前市面上现有的光纤拉曼探头只能简单的控制激光光路的开关,而无法控制采样检测,因此在实际的野外和现场检测采用手持采样时,往往需要一边将探头对准样品,一边在电脑上操作软件进行检测。为了克服这个缺点,必达泰克公司推出了一种新的拉曼光纤探头,在该探头上增加了一个电子触发开关,可以与本公司的全系列便携式拉曼光谱仪共同使用,直接利用该电子触发开关控制采样检测,从而使得手持采样更为方便稳定,大大提高了光纤拉曼探头在野外和现场检测的便利性和实用性,非常适用于考古,地质勘探,危险物检测或其他的野外和现场检测应用。  该探头需要在拉曼光谱仪上有一个控制接口,因此无法应用于本公司早前销售出的便携式拉曼光谱仪上,如要使用该探头需要对早期的拉曼光谱仪进行升级。如客户需要进行升级,请与必达泰克光电科技(上海)有限公司联系,电话: 021-64515208,Email: info@bwtek.cn
  • iCMR 2017厂商报告:高性能探头用于具有挑战性的样品
    p style="TEXT-ALIGN: center"strong第一届磁共振网络会议(iCMR 2017)厂商报告/strong/pp style="TEXT-ALIGN: center"strong高性能探头用于具有挑战性的样品/strong/pp style="TEXT-ALIGN: center"img title="123.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/78f096e4-839f-4dd7-9cb4-1baba0597e43.jpg"//pp style="TEXT-ALIGN: center"strong单璐 博士/strong/pp style="TEXT-ALIGN: center"strong布鲁克核磁应用专家/strong/pp strong 报告时间:/strong2017年12月5日/pp  strong报名链接:/stronga title="" href="http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target="_self"http://www.instrument.com.cn/webinar/meetings/iCMR2017//a/pp  strong报告摘要:/strong/pp  聚焦于低温探头(氦气和氮气),产品线,性能和应用实例/pp  strong报告人简介:/strong/pp  单璐博士,毕业于中国科学院生物物理研究所。博士期间主要从事蛋白质溶液三维结构研究。单璐博士2005年加入布鲁克,目前担任核磁应用专家。/pp /p
  • 【国内首发】通过复眼仿生的MOEMS拉曼探头了解简智仪器MOEMS 阵列光斑检测技术
    【新一代小型拉曼必配技术】 近年来,拉曼光谱快检技术在食品安全、生物医药、分子结构研究、化工过程、生物化学、考古及文物鉴定、公安与法学样品分析、反恐技术等各行各业得到广泛应用,被称为“分子指纹”的拉曼光谱技术因其无损、便捷、速度快、稳定性高的优良特性,在光学快检领域受到大力推崇。但是实际使用过拉曼光谱检测方法的都知道,由于采用聚焦测量的方式,在对有些目标物检测时,必须很小心。由物像共轭关系可以知道,只有在光谱仪接收狭缝的像点发出的所有光信号才能被光谱仪所接收。因此当激发激光的聚焦点正好处于这个位置的时候,拉曼信号才有最高的收集效率。为了获得更高的分辨力,色散光谱仪的狭缝,通常只有几十个微米,所以在进行拉曼检测的时候我们需要对激光进行聚焦。对于一些应用这是非常方便的,比如需要对天然宝石中的胞体进行研究。但在很多时候,高聚焦也带来了其它的问题。比如:深色物质,由于深色物质会吸收大部分激光功率,因此容易引起样品的灼烧。在测量文物字画时有损害样品的可能,而测量黑火药、烟火药等炸药时,甚至有直接引爆的危险。如下图此外,由于拉曼的聚焦特性,因此实际上只能进行“点测量”,对于一些非均匀样品的分析,高聚焦很可能导致对检测谱图代表性的质疑。如果被测物为非均匀混合物,很可能测量的那个点上,并没有目标物。比如测一个注胶的翡翠手镯,但测量点上没有胶,可能就会被误认为A货翡翠。测量多组分混合的固体违禁品时,可能测量点上只有食用辅材而不包含违禁品。 如下图针对这种情况,出现了一些针对性技术:首先是ORS移动光斑技术,这种技术通过降低单个位置激光照射时间来避免引燃物体。但由于微机械传动结构很难保证光斑运动轨迹在某个平面范围上均匀分布,因此实际效果只是光斑在某个小范围内呈线性“抖动”,并且由于单点功率密度并没有下降,因此很多情况下仍旧会灼烧甚至引爆物品,而且对设备光机结构要求非常高,导致可靠性下降。 第二种是TRS透射技术。该技术对样品要求很高,需要是薄片状样品,而且受数值孔径的限制,这种方式的光学效率不高,测量范围更小。 第三种是采用非聚焦方式的“大光斑”技术,由于不在物镜聚焦点上测量,使得照射光斑扩大,但由于违背了前面所说的聚焦测量的原则,因此导致收光效率大幅损失,即使在周围加上反射腔做弥补,也至少损失一个数量级以上的光学效率。 并且,以上三种技术都只能将光斑范围扩大到毫米级,在实际应用中仍然太小了。而且后两种技术还会大幅的损失光学收集效率,导致信号恶化,无法有效分辨样品。 如何才能获得一个较大面积的拉曼特征并且实现激光功率的均匀分布,而又不以牺牲光学效率为代价呢?复眼昆虫眼部分解成无数的复眼,每个小的眼睛均可独立成像,通过复眼结构昆虫获得了更高的视野和反应速度。从昆虫的复眼,我们获得了很好的启示。通过对复眼的仿生,科学家发明了“蝇眼相机”,具有160度的视野,能够同时聚焦物体的不同深度。 如果像复眼一样,有无数个小透镜同时对激发光聚焦,我们就可以在透镜的焦平面将激发光平均分配为很多份。每个小的透镜都是一套独立的光学系统,光谱仪狭缝和样品激发位置构成物象共轭关系。由于小透镜位置不同,我们可以把检测点覆盖在一个很宽的范围同时检测,解决了拉曼检测实际上只能进行“点测量”的问题。 这就是简智仪器通过研究率先推出的MOEMS 阵列光斑检测技术,不止解决了拉曼光谱高聚焦容易引起样品的灼烧的问题,同时实现了拉曼检测技术从“点测量”到“面测量”的突破。简智仪器依托自身元器件级的研发设计能力,突破重重设计和工艺难点,将传统拉曼中使用的单一透镜,优化为阵列微透镜,然后再做对应的光路系统的优化,研发出来的复眼仿生的MOEMS拉曼探头,实现将检测范围扩大为厘米量级!而光点能量降低1-2个数量级,并且在检测范围内,均匀分布上百个聚焦光斑点;并且每个光斑点,保持了高数值孔径,在不显著降低接收效率的前提下,又均匀地分摊了激光照射功率,可以对样品进行大面积检测。特别是在测量危险样品时,由于单点功率低于5mw,因此,绝对安全。彻底杜绝拉曼光谱灼烧损坏样品,或者引燃引爆危险品的可能性!并且在均匀分摊激光功率的同时,保持超高拉曼接受效率,不会因为测量深色物体而导致信号恶化无法正确分辨。MOEMS 阵列光斑检测技术可以解决目前对于违禁品等混合样品在拉曼检测中出现的代表性问题,避免了对高吸收率物质(如黑火药、ABS材料等)进行拉曼光谱检测时出现的烧蚀损毁现象,解决了易燃目标目前无法用拉曼技术直接检测的问题,同时创新性地实现了低能量密度下的大面积拉曼检测,是对传统拉曼检测技术的革新性变化。简智仪器有信心,MOEMS将成为下一代便携式拉曼光谱的常态性必配技术。绝对安全的保证,将大幅扩大拉曼光谱技术的适用范围。简智仪器在现场快检技术发展高峰论坛暨2019简智新品发布会上发布该项新科技,为拉曼快检底层技术革新拉开了序幕。2019年简智仪器即将推出的Easy-Raman EV系列新款手持式拉曼光谱产品也将搭载MOEMS阵列光斑检测技术,敬请期待。
  • 电动型振动试验机的构成
    ※振动试验机的种类① 机械式低频率、单纯振动,现在基本上已淘汰,没有发展性。② 液压式50kN以上的加振力、便宜、运行成本和修理费用高、上限频率和电动型振动台相比比较低、控制难。低频大位移运输试验和大质量试验体低频小速度试验还有点市场。③ 电动型(现在的主流)可以简单的对应任意波形的振动、频率范围广、加速度大。50kN以上设备比液压式贵。※系统构成实物图(带水平滑台的时候还需要油压控制单元)(振动控制仪和前置功放一体化)※振动台体(空冷式)内部简单示意图※动作原理弗莱明左手定则上图,将动圈插入磁束回路的圆形空隙中,下面用空气弹簧固定保持。励磁线圈内通入直流电,在空隙中形成箭头所示的磁场(右手法则),驱动线圈与磁场方向直交。如果在驱动线圈内通入交流电源,动圈就会发生上下振动(弗莱明左手定则)。此时,发生的力和动圈通过的电流成正比。即 F=IBL实际在振动试验机的制作过程中,为了增加磁场效率以及持续稳定振动,各个厂家花费心思,内藏各种部品,并对励磁线圈和动圈的形状等进行各种各样的复杂设计。※振动控制仪振动试验机系统的大脑,振动试验条件输入后,转换成电压电流信号驱动功放,使振动台进行各种振动动作,并对反馈回来的加速度信号进行分析,有效控制振动台的动作。可进行随机振动控制、正弦振动控制、冲击波控制、拍波控制、实测波再现控制、SOS、SOR、ROR控制、多通道多自由度控制、etc.。 ※动圈、励磁线圈※功放(电力增幅器)目的:给振动台提供电力。振动控制仪过来的小信号(±3V),变成大电压大电流信号(几百伏几百安培),驱动振动台运动。功放趋势:开关式、小型化、高功率、模块化、组合兼容性、省空间、省电等。最近,SiC技术的发展,相信不久的将来功放模块会越来越小。工作原理和音响的功放一样。总结:以上简单介绍了振动试验机系统各个部分的组成,看似简单其实一套好的振动试验系统,涉及到各种技术领域,各厂家都花费大量时间、金钱、精力在设备的研发和制作上。在欧美主要厂家有LDS、UD,日本主要有IMV、EMIC、振研,国内主要有东菱、苏试、希尔等。比较可喜的是,国内厂家现在振动台单台最大推力可以生产到60tonf,已经赶超国外厂家。个人认为20年后,随着国内基础工业和材料的发展,国内生产的振动台在故障性和耐久性上面将有质的飞跃。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 新品来袭!Cobra扫查器A25 DLA焊缝探头闪亮登场~
    新探头和楔块系列发布~用于扩展Cobra扫查器在难以穿透的材料中使用对于难以检测、耐腐蚀的材料,如奥氏体或其他粗晶合金,一种新的双线性阵列相控阵解决方案已推出。此方案可以解决小管径焊缝检验,兼容Cobra扫查器,包括一个新的探头(A25)和新的楔块系列(SA25)。该探头在同一个外壳具有两个线性阵列,配合具有特定屋顶角的不同弧度的楔块,有助于在薄壁材料中更有效地聚焦声束。使用纵波一发一收(TRL)技术使它可以检查不能使用标准A15探头脉冲回波探测解决方案的材料。探头和楔块将可用SetupBuiler创建聚焦法则。该解决方案将兼容OmniScan SX,Omniscan32:128以及任何Omniscan PR模块。
  • 我国振动试验仪器发展重点探讨分析
    据有关人士分析,未来几年间,我国振动试验机发展将重点围绕以下几个方面:  工业自动化振动试验机:重点发展基于现场总线技术的主控系统装置及智能化仪表、特种和专用自动化仪表 全面扩大服务领域,推进仪器仪表系统的数字化、智能化、网络化,完成自动化仪表从模拟技术向数字技术的转变,5年内数字仪表比例达到60%以上 加速具有自主知识产权的自动化软件的商品化。  电工仪器振动试验机:重点发展长寿命电能表、电子式电能表、特种专用电测仪表和电网计量自动管理系统。到2005年,中低档电工仪器仪表国内市场占有率要达到95% 到2010年,高中档电工仪器仪表国内市场占有率达到80%。  科学测试振动试验机:重点发展过程分析仪器、环保监测仪器仪表、工业炉窑节能分析仪器以及围绕基础产业所需的汽车零部件动平衡、动力测试及整车性能检测仪、大地测量仪、电子速测仪、测量型全球定位系统以及其他实验机、实验室仪器等新产品。产品以技术含量叫高的中档产品为主,到2005年在总产值中占50%~60%。  振动试验机元器件:“十五”及2010年以前,尽快开发出一批适销对路、市场效果好的产品,品种占有率达到70%~80%,高档产品市场占有率达到60%以上。通过科技公关、新品开发,使产品质量水平达到国际20世纪90年代末水平,部分产品接近国外同类产品先进水平。  信息技术振动试验机仪器:主要发展振动试验机仪器软件化智能化技术、总线式自动测试技术、综合自动化测试系统、新型元器件测量技术及测试仪器、在线测试技术、信息产业产品测试技术、多媒体测量技术以及相应测试仪器等。
  • 海洋光学R1000-4探头改善了有色及浑浊环境中的pH响应
    海洋光学新型R1000-4反射探头将极大提高pH测定效率。R1000-4与海洋光学非侵入式反射pH感应补丁搭配使用,可以克服使用单一方式检测的弊端,在浑浊或有色环境中实现精确的pH反应。 海洋光学的光学pH传感系统由具有pH反应补丁的光纤探头、光源、光谱仪和软件组成。从酒精和溶剂等清澈浅色的样本,到泥浆和地表水等浑浊且光密质样本,指示材料补丁和探头可充分优化各种样本和环境中的pH值监控过程。传感补丁可以直接用于光纤探针,比色皿以及其他基片上。 在食品、饮料和环境检测情况下,通常有色或浑浊溶液对pH测定制造了挑战。R1000-4探头设计极大地增强了反射式pH补丁的背反射率,提高了信噪比,以提供更精确的结果。将R1000-4探针与海洋光学反射式补丁相结合,可实现精确的非侵入式pH测量,其用途包括啤酒和葡萄酒的发酵监控,以及湖水和河水的检测。 关于海洋光学(Ocean Optics)和豪迈(HALMA):总部位于美国佛罗里达的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了近20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 振动试验内容介绍——随机振动试验
    随机(random)振动试验条件内容介绍如上图,随机振动没有周期性,其波形在时间轴上无法数式化表示,一般,振幅的概率密度函数近似符合正态分布(Normal Distribution)。假定:随机振动试验是平稳的各态历经(ergodic process)的正态分布。离开了这个假定,随机振动试验无从谈起。另外,初入者还要理解一个频谱的概念,随机振动基本上都是在频域范围内展开的。其波形,通过傅里叶变换,可以理解成是由无数的正弦波合成而来。将各个正弦波的频率和幅值用坐标表示的话,就得到其频谱图,如下二图。一般,随机振动都是有无数正弦波构成的,其频谱图为一条曲线,而不是下二图中间断性表示的。理解频谱图以后,经过一系列的数学计算、傅里叶变换、解析等,得到随机振动的功率谱密度,即PSD(power spectrum density),功率谱密度是随机试验中使用的一种谱,用通过在中心频率设置的窄幅过滤器的加速度信号平方的平均值的单位频率值表示。也称为加速度谱密度(acceleration spectral density,ASD),单位(m/s2)2/Hz。PSD单位用G2/Hz,两者之间的关系如下:1G2/Hz =(9.81m/s2)2/Hz = 96.236(m/s2)2/Hz有了PSD(或ASD)我们才可以进行随机振动试验,如何得到PSD,这是一个很复杂的数学计算过程,涉及到大量的人力、物力、财力。个人理解为以下过程:1. 场景作成。对实际使用环境进行划分为几个子场景,对子场景进行组合,再构成全体的使用条件(场景)。2. 振动测定。对各个子场景下的实际振动进行测定,保存时域的波形振动数据。3. 振动解析。FFT,将保存的各振动波形变换成加速度功率谱密度PSD。4. 数据编辑。观察所有的PSD数据,通过PSD形状来划分群组。求出各个子场景代表性的PSD,对各个群正态化处理。通过正态化处理,短缩试验时间(加速化)。5. 试验条件生成。通过对正态化的各子场景PSD的包络,求出试验条件的PSD。其试验时间是各子场景正态化的试验时间的总和。这个过程一般称为tailoring,是指对产品在使用或者运输等实际环境中的振动进行测定和解析,开发出适合产品的振动试验条件。随机振动试验正好相反。PSD中有能量的表示方法。一个PSD可以有无数个随机波形对应,或者说对于相同的PSD条件,我们每次做的试验波形是不同的(严格意义上,可能几十年或几百年后会出相同的波形,主要取决于振动控制仪中的算法。),但是其在该频率范围内所含的能量是一样的。一般随机振动试验的量级可以通过加速度有效值来衡量,其计算方法为:如下图PSD中,加速度rms值作为表示随机振动试验大小的一个指标,经常会使用到。上例中PSD是单纯的平直谱,计算比较简单。实际中PSD谱比较复杂,建议使用振动控制仪,输入频率和PSD值后,会自动得到加速度rms值。接下来介绍几个典型随机振动的试验条件。试验1:加速度Arms 96.663m/s2 频率与功率谱密度(PSD)值图中S表示绿线所围面积,开根号后即可得到加速度有效值。面积可以看成4个图形(长方形+梯形+梯形+长方形)的和。由于是对数坐标,各个图形的面积计算公式不能简单的用直线坐标方式计算,具体计算方法以后再叙。试验2:正斜率表示。加速度有效值rms为303.11m/s2。问题:100Hz和1000Hz处对应的PSD为什么约为100(m/s2)2/Hz?说明:10-100Hz之间有log(100/10)/log2 = 1/0.301 =3.322oct。所以,100Hz处PSD是10Hz处PSD的3.322oct×6dB/oct = 19.934dB,即10log(PSD100/1)= 19.934dB,最后得到PSD100 = 101.9934 = 98.5(m/s2)2/Hz。1000Hz处PSD没有增加(0dB),所以此处的PSD值和100Hz处的PSD值一样。总结:随机振动试验涉及到很复杂的数学计算,想要搞懂其内涵,及其困难。初入者先理解上面所述即可,有能力的,推荐书籍《随机振动试验应用技术》,胡志强、法庆衍等编著,北京:中国计量出版社,1996。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 美国研发出可同时操控光线和振动的晶体
    光线传播和机械振动是两种不同的物理现象,而美国研究人员新研发出的晶体可以在一个小空间中同时操控这两者。这种光学机械晶体将有助于量子计算机等领域的科研工作。  英国《自然》杂志网站日前刊登研究报告说,美国加州理工学院的研究人员在一条只有10微米长的硅晶片上刻了许多凹槽,然后再利用具有特定共振频率的激光照射该晶体,光线在凹槽中多次反射并互相干涉,最后只有部分光线透出,这说明另一部分光线被截留在了晶体中间。与此同时,研究人员探测到晶体中间的小格子在进行前后的机械振动。  研究人员说,这种光学机械晶体可用于未来的计算机电路中,尤其是在当前的量子计算机研究中。量子计算处理器的基础各有不同,如原子、光子或超导体等,需要使用不同频率的光,难以结合到一起,而新晶体可以将一种量子处理器的光转化为振动,再将这种振动转化为另一种频率的光。这样,新晶体可以成为混合型量子计算机的理想“连接器”。  由于这种晶体对光频率的变化非常敏感,它还可以用作医疗探测器,检查DNA(脱氧核糖核酸)序列和病原体等。此外,它还可以帮助研发出能够检测单个气体分子的探测仪器,这将超出当前任何一种探测仪器的精度。
  • 全新FLIR VS290 :狭窄区域检测专用“神器”,更多探头帮您解锁新场景!
    感谢宋工,上次介绍的那款FLIR VS290-32红外内窥镜套件,解决了我很多麻烦!确实,那款机型能到达难以接触的狭窄空间,延伸了我们的检查区域。今天还要告诉你个好消息,它更新啦~去年FLIR VS290-32横空出世占领了狭窄空间红外检测的市场今年,为了满足更多更细分的客户Teledyne FLIR对它进行全面升级新推出了FLIR VS290-21和FLIR VS290-33两种全新专业探头它们具体有哪些新功能呢?让小菲来给您详细述说下~,时长01:43FLIR VS290系列产品视频详细解析VS290细分产品线,致力扩大应用“版图”FLIR VS290是一款工业红外视频内窥镜系统,旨在帮助专业人士快速安全地发现不便位置的隐患。VS290搭载一个160×120真热像仪和 FLIR MSX(多波段动态成像)技术*(专利号:201380073584.9),可以帮助用户在安全距离内看到并准确测量肉眼不可见的热点,提前检测到问题点,防止设备发生灾难性的故障。全新FLIR VS290红外成像内窥镜套件,目前可搭配三种专业探头:★ FLIR VS290-33红外视频内窥镜套件,配备2MP可见光摄像头和带工作灯的19毫米圆形侧视探头,可在黑暗的空间提供FLIR MSX热图像。2米的圆形侧视探头可以深入到您通常无法检查的区域,让您能够准确、安全地评估潜在问题。★ FLIR VS290-21是圆形前视探头,它采用1米长的探头,19毫米圆形探头,以及160×120分辨率的热像仪。该视频内窥镜探头足够小巧,可伸入墙壁内部、电机内部或其他狭小空间的地方。非常适合建筑检测(搜寻虫害,检查绝缘层是否缺失,或定位墙壁内的电线和管道等)、设施维护或机械检查。★ 还有去年推出的FLIR VS290-32带矩形侧视探头的工业红外视频内窥镜套件,旨在帮助用户在安全位置查找地下配电库等难以接近位置的隐患。使用配备可见光相机和热像仪以及内置LED灯的2米探头,您将能够检查危险、黑暗或难以接近的区域,从而提高工作效率并缩短诊断时间。全新FLIR VS290,性能可靠易使用全新FLIR VS290配有IP67摄像探头和IP54基础装置以及超高的防尘和防水性能探头,支持最苛刻的应用环境。并且支持现场轻松更换或互换探头,以满足用户的各项应用需求,还可以使用CAT IV 600 V级VSC-IR32和VSC-IR33探头,安全地实施电气检查。FLIR VS290配备3.5英寸超大彩色显示屏,让用户可以清晰查看结果,搭配FLIR Lepton红外传感器,还可提供热/冷颜色警报(等温线),以在-10℃至400℃的极宽温度范围内快速识别问题区域。检查完成后,还可利用内置的SD存储卡或USB-C下载和分享图像和视频,随后使用FLIR Thermal Studio快速创建并与团队成员分享报告,尽快安排维修工作。想要了解产品的更多详细信息,扫描下方二维码获取:全新FLIR VS290打破了某些狭窄/危险区域手持热像仪难以触及的局限有了它,维护检查员可以深入观察电机并查看机械或电气故障的根源;公用设施检查员可以向下查看地下保险库避免带电电缆和进水等危险寻找潜在故障的热量迹象;建筑检查员可以在狭小的空间内检查水分、绝缘层缺失或害虫入侵的迹象。........FLIR VS290让您提高安全性、加快检测速度目前菲力尔天猫、京东官方旗舰店已全部上线心动的小伙伴可以直接购买带走呀~
  • 1490万!中国科学院上海药物研究所全光谱流式细胞分析仪、核磁共振谱仪(配液氦低温探头)等采购项目
    一、项目基本情况1.项目编号:OITC-G240300876项目名称:中国科学院上海药物研究所全光谱流式细胞分析仪采购项目预算金额:520.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1全光谱流式细胞分析仪1套是 520万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G240300877项目名称:中国科学院上海药物研究所分选型流式细胞仪采购项目预算金额:320.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1分选型流式细胞仪1套是 320万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。3.招标项目编号:0729-244OIT300875招标项目名称:中国科学院上海药物研究所核磁共振谱仪(配液氦低温探头)采购项目预算金额:650.000000 万元(人民币)项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1核磁共振谱仪(配液氦低温探头)1详见具体技术参数部分无二、获取招标文件1.时间:2024年05月31日 至 2024年06月07日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录“东方招标”平台www.oitccas.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和2.招标文件的获取招标文件领购开始时间:2024-05-28招标文件领购结束时间:2024-06-04是否在线售卖标书:否获取招标文件方式:现场领购招标文件领购地点:有兴趣的投标人可登陆网址(http://www.oitccas.com/东方招标平台)招标文件售价:¥600/$100三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院上海药物研究所     地址:上海市浦东张江祖冲之路555号        联系方式:崔海音,021-50806092      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:杨帆 陈小舫 赵倩,021-64318161/010-68290551            3.项目联系方式项目联系人:杨帆 陈小舫 赵倩电 话:  021-64318161/010-68290551
  • 振动试验机的选择及试验可否判断——加振力的计算(垂直、水平)
    对于试验条件,如何选择合适的电动振动台进行对应,加振力(推力)的计算是一个必须面对的问题。推力选择过小会使振动台过负载工作,导致功放或动圈等损坏。推力选择过大,造成“高射炮打蚊子”,没有经济性可言。对于行业初入者,这是必须掌握的技能,其原理便是牛顿第二定律,现说明如下:※垂直加振F(加振力)= Σm(总质量) × A(加速度)F:必要的加振力[N] A:试验最大加速度(m/s2)m1:振动台动圈质量(kg)m2:垂直扩展台质量(kg)(也有不使用的时候)m3:试验体和夹具的质量(kg)Σm = m1 + m2 + m3(kg)例:正弦定频试验条件 频率10Hz、加速度:10G(1G=9.8m/s2)、试验体和夹具质量m3:40kg、现在试验室只有振动台J250/SA6M [最大正弦加振力40kN]动圈质量45kg、垂直扩张台TBV-550-J250-A-H(质量30kg、共振点600Hz)使用 、此时需要的加振力F =(40+45+30)×10×9.8 = 11270 [N] = 11.27[kN]安全系数取1.2后,11.27×1.2 = 13.524[kN] 40 [kN]40kN振动台J250垂直方向可以对应。※水平加振F(加振力) = Σm(总质量) × A(加速度)m1:振动台动圈质量+水平滑台质量+连接头(牛头)质量(kg)【注意:一般厂家产品式样中,动圈和水平滑台质量分开显示。有的厂家式样书中水平滑台质量中含连接头(牛头)质量。】m2:试验体和夹具的质量(kg)例:正弦定频试验条件频率10Hz、加速度10G(1G=9.8m/s2)、m2质量40kg(即垂直方向的m3)现在试验室只有J250/SA6M静压轴承水平台TBH-6使用,质量100kg,共振点1600Hz,最大正弦加振力40kN此时需要的加振力F=(100+40)×10×9.8=13720[N]=13.72[kN]安全系数1.2使用,13.72×1.2 =16.464[kN]40kN40kN振动台J250水平滑台TBH-6水平方向可以对应。总结:当加振力不够时,需要重新选择加振力大的振动台,并对应实际现有振动台参数重新计算。当加振力偏大时,重新选择加振力小的振动台,同样对应实际现有振动台参数重新计算。尽量做到成本最优化。加振力计算后,再结合前节所述计算位移、速度、加速度、使用频率范围,便可基本上确定最合适的振动台。加振力计算是维护设备安全运行的最基本方式,切记!备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "【作者按】形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、边缘效应、电位衬度等是形成扫描电镜表面形貌像的几个重要衬度信息。对这些衬度信息的接收离不开探头。本文将就扫描电镜两种主要探头的构造、工作原理及其接收的样品信息进行详细探讨。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "一、二次电子探头/span/h1p style="text-align: justify text-indent: 2em "目前教科书的观点认为:二次电子探头接收的样品表面信息主要是二次电子。真实情况是否如此呢?/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.1二次电子图像所拥有的特性/strong/span/pp style="text-align: justify text-indent: 2em "A) 二次电子能量很低(低于50ev),从样品表面溢出的深度浅,在样品中的扩散范围小。适合用于表现样品表面形貌像的极细小细节(小于10nm)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/3edeb286-6abb-4bf7-8b3a-008c9ab1551f.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "B)二次电子能量低,在样品表面的溢出量容易受到静电场(荷电)的影响,出现图像局部或全部异常变亮、磨平、变暗并伴随图像畸变的现象,即样品图像的荷电现象。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/fb564107-ab21-4b67-9812-18699dec50be.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "C)二次电子的产额受平面斜率影响较大,边缘处产额最高,形成所谓的二次电子衬度及边缘效应。这些衬度信息会形成信息的假象,也有助于分辨某些特殊的样品信息。/pp style="text-align: justify text-indent: 0em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/51c0d3a0-49ba-412e-96ee-f789a068425d.jpg" title="3.png" alt="3.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "D) 二次电子图像的Z衬度一般表现较差。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/9d2c7e97-f6a9-4de1-b054-9b8e5101f0f5.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.2二次电子探头的组成及工作原理/strong/span/pp style="text-align: justify text-indent: 2em "二次电子能量弱(低于50ev),要想获取二次电子信息就必须采用高灵敏探头。利用敏感度极强的荧光材料接收弱信号,再以光电倍增管对弱信号做百万倍的放大,将能量极弱的二次电子信息转化为能被电子线路处理的电子信息。/pp style="text-align: justify text-indent: 2em "这种设计是目前解决这一难题的最佳方案。二次电子探头的基本构造正是以这个思路为基础来设计。/pp style="text-align: justify text-indent: 2em "strong1.2.1 Everhart-Thornley探测器的结构组成/strong/pp style="text-align: justify text-indent: 2em "由金属网收集极、闪烁体、光导管、光电倍增管和前置放大电路组成的探测器被称为Everhart-Thornley探测器。一直以来都是各厂家用于接收二次电子的主流探测器。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/2f6dd144-afab-427d-99c2-96f6565bc641.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "strong1.2.2 Everhart-Thornley探测器的工作原理/strong/pp style="text-align: justify text-indent: 2em "位于探头最前端的收集极是由金属网构成,其上加有200V的正偏压以捕获更多的二次电子。进入收集极的二次电子由加载在闪烁体金属铝膜上的10KV电压加速在闪烁体上产生一定数量的光子。由闪烁体产生的光子经过光导管的全反射进入光电倍增管阴极,在阴极上转换成电子。这些电子由打拿极的不断倍增,经阳极输出高增益低噪音的电信号。该信号由紧贴阳极的前置放大器放大后,从探测器输出。/pp style="text-align: justify text-indent: 2em "探测器本身无法将到达探测器的高能量背散射电子从低能量的二次电子中分离,但通过改变收集极偏压可以将低能量的二次电子给阻绝在探头外面。其接收的信息特性完全取决于到达探头的信息组成,如果信息中二次电子含量大则图像偏向于二次电子的图像特性,如果背散射电子含量大则结果偏向于背散射电子的图像特性。/pp style="text-align: justify text-indent: 2em "将探头的收集极变成负偏压,则我们可以获得偏向于背散射电子的图像。但是图像信号衰减较多,图像质量较差。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "1.3二次电子探头的位置与成像特性/span/strong/pp style="text-align: justify text-indent: 2em "高分辨场发射扫描电镜中,二次电子探头(ET探头)往往被置于仪器的两个位置:镜筒及样品仓。虽然各电镜厂家探头的具体位置有差异,但其结构是基本一致。探头位置不同,获取的图像性质差异也非常大。下面就以日立冷场电镜S-4800二次电子探头的位置设计为例来加以说明。/pp style="text-align: justify text-indent: 2em "strong1.3.1 S-4800二次电子探头的位置设计/strong/pp style="text-align: justify text-indent: 2em "在冷场扫描电镜S-4800中标配了两个二次电子探头。这两个探头的结构和性能完全一致,仅仅在电镜中安装的位置有所差异。一个位于样品仓,另一个位于物镜的上方。/pp style="text-align: justify text-indent: 2em "如下图所示:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6b4fc92d-a161-48eb-938a-cdc27b8be3a5.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "strong1.3.2 上、下探头的工作过程及获取图像的特性/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.1上探头接收的样品信息/span/pp style="text-align: justify text-indent: 2em "扫描电镜EXB系统的结构是在物镜磁场(B)上方正对着上探头设计一个电场(E)。该电场的作用是将物镜磁场吸上来的背散射电子、二次电子混合信息中能量较弱的二次电子分离出来,推向上探头。这个过程如同碾米机进行米、糠分离时吹风机的作用一样。故上探头获取信息是较为纯正的二次电子。背散射电子也可以通过位于物镜内的电极板转换成二次电子被上探头接收,通过调节电极板上加载的电压来选择到达上探头的信息特性。这种间接接收的背散射电子有其一定的特点,但损耗大,大部分情况下信号量不足。/pp style="text-align: justify text-indent: 2em "下面组图为上探头接收的四种信息特性。/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/312e9fc9-364e-47b7-aa0f-f4a6759f8a69.jpg" title="7.png" alt="7.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6ccf7e3c-4ea6-4df7-a35f-702c3461675e.jpg" title="8.png" alt="8.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.2上探头的工作过程/span/pp style="text-align: justify text-indent: 2em "高能电子束轰击样品产生各种电子信息被物镜磁场吸收送往物镜上方。工作距离越小被物镜俘获的样品电子信息越多,其中二次电子和背散射电子是呈现扫描电镜表面形貌信息的主要信号源,将被拿出来单独讨论。/pp style="text-align: justify text-indent: 2em "二次电子和背散射电子混合信息被物镜磁场送到位于物镜上方的电场,能量弱的二次电子受电场影响从混合信息中被分离出来并推送到位于物镜上方的上探头,背散射电子由于能量较强,电场对其影响较小,将穿过电场轰击位于电场上方的电极板,产生间接二次电子也会被上探头接收到,但其含量较小不是主要信息。/pp style="text-align: justify text-indent: 2em "位于物镜中的电极板通过调整加载电压来选择进入物镜的信息类型。低角度(LA)背散射电子可由电极板转换成二次电子被上探头接收,形成所谓间接的LA背散射电子像。/pp style="text-align: justify text-indent: 2em "电极板加载+50V电压,将吸收低角度的二次电子和背散射电子,抑制低角度电子信息进入镜筒(U)。/pp style="text-align: justify text-indent: 2em "电极板加载0V,将由其转化成二次电子的低角度背散射电子和低角度二次电子信息都送入镜筒。上探头接收的是各种角度二次电子和低角度背散射电子的混合信息。其混合比例将随着电极板电压的降低,背散射信息逐渐增多(U,LA0)。/pp style="text-align: justify text-indent: 2em "-150V时,二次电子被全部压制,此时上探头接收到的是纯的低角度背散射电子所激发的二次电子信息(U,LA100)。/pp style="text-align: justify text-indent: 2em "位于镜筒内的能量过滤器,会将二次电子以及低角度背散射电子所形成的二次电子给抑制,此时上探头或顶探头接收的是高角度背散射电子信息(U,HA)。/pp style="text-align: justify text-indent: 2em "图像特性:Z衬度充分,其他都不足。由于高角度背散射电子产额少,对样品及束流的要求都较高。目前在束流较低的冷场扫描电镜中取消这个功能,只在束流较高的regulus8200系列冷场电镜中保留顶探头设计。但适用的样品并不多。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/54aea59e-1225-4703-a62d-324fa54bf35c.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.3下探头的位置及其图像特性/span/pp style="text-align: justify text-indent: 2em " 下探头位于场发射扫描电镜样品仓位置。示意图如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/17380253-5429-4944-af61-5caa22457c69.jpg" title="11.png" alt="11.png"//pp style="text-align: justify text-indent: 2em "下探头位于样品仓中,因此也称样品仓探头。它与样品之间没有任何阻碍物,激发出来的样品信息可以不受影响的到达该探头。下探头本身不能对到达探头的背散射电子信号加以甄别,其图像特性取决于到达探头的信息特征。二次电子居多,就偏向二次电子的图像特性;背散射电子居多,则偏向于背散射电子的图像特性。/pp style="text-align: justify text-indent: 2em " 样品仓探头接收的样品信息以低角度信息为主,背散射电子含量占主导。对样品信息的接收效果取决于探头与样品之间形成的固体角,样品的位置十分关键,存在一个最佳工作距离。各厂家的最佳工作距离各不相同,日立电镜是15mm。下探头位于样品的侧向,图像特性:形貌衬度好,立体感强;荷电影响小;Z衬度好;细节易受信号扩散影响,高倍清晰度不足,10纳米以下细节很难分辨。 /pp style="text-align: justify text-indent: 2em "不同厂家的样品仓探头位置不同,因此最佳工作距离以及探头、电子束、样品之间的夹角都会略有不同。形成的图像在空间感及高分辨能力上存在差异。样品仓真空度也是样品仓探头分辨力的主要影响因素之一。/pp style="text-align: justify text-indent: 2em "日立冷场扫描电镜下探头的成像实例:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/b5917c9d-9e59-41fb-82c6-4c3fd3475cab.jpg" title="12.png" alt="12.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/decfd495-8ec1-490e-b6e8-c6735f4f5ad9.jpg" title="13.png" alt="13.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.4上、下探头的图像特性对比实例/span/pp style="text-align: justify text-indent: 2em "上、下探头结构一致,仅仅由于安装位置不同导致其成像特性也不一样,充分掌握这些差异将有利于你选择正确的测试条件。下面将通过几组对照图来加以阐述:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c911ae27-5aac-4936-a791-5f3f37126870.jpg" title="14.png" alt="14.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/7388deb2-be2f-472d-9c96-52b873fb089c.jpg" title="15.png" alt="15.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/169e28be-1208-4ae4-ace5-96820e80cb8b.jpg" title="16.png" alt="16.png"//pp style="text-align: justify text-indent: 2em "从以上各组对照图可以清晰看到,上探头二次电子信息特征极为强烈,而下探头偏重背散射信息。这些特点使得该两种探头获得的样品信息差异较大,各自都有适合的样品及所表现的样品信息。在各自适用的范围内对方都无可替代。/pp style="text-align: justify text-indent: 2em "根据个人多年的测试经验,下探头获取的样品信息虽然在10纳米细节观察上有所欠缺,但获取的信息更为充分。本着初始图像以信息量是否充分为主的原则,15mm工作距离选用下探头测试,常常被用做扫描电镜测试时的初始条件。以该条件下获取的形貌像为参考,依据样品的信息需求以及对上、下探头成像特性的正确认识,再做进一步调整。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "二、背散射电子探头/span/h1p style="text-align: justify text-indent: 2em "strong2.1背散射电子的图像特性/strong/pp style="text-align: justify text-indent: 2em "高能电子束受样品原子核及核外电子云的库仑势影响,发生弹性和非弹性散射后溢出样品表面,形成样品背散射电子。其特点是:能量大(与入射电子相当),产额受样品原子序数、密度以及晶体材料的晶体结构及晶粒取向影响较大,是形成样品Z衬度和晶粒取向衬度信息的主要信号源。/pp style="text-align: justify text-indent: 2em "背散射电子按信号溢出角分为高角度和低角度两种类型。/pp style="text-align: justify text-indent: 2em "高角度背散射电子的Z衬度更为明显,但整体产额很低,仅在束流较大的场发射扫描电镜上配置了接收该信息的探头。探头位于镜筒中物镜的正上方(或称T),适用样品并不多。扫描电镜日常采集的主要是低角度背散射电子。/pp style="text-align: justify text-indent: 2em "高角度背散射电子相较于低角度背散射电子,Z衬度更为明显,但其产额较低。由于该信息最佳接收位置在样品正上方,探头、样品以及入射电子束在一条线上,故空间形貌较差。低角度背散射电子Z衬度略弱,但产额大,形貌像更好。/pp style="text-align: justify text-indent: 2em "要充分接收低角度背散射电子信息,探头需要与样品形成一定角度。相对于高角度背散射电子,低角度背散射电子形成的图像空间感好,表面形态及细节信息较充分,但Z衬度略差,不如高角度背散射电子明显。以下是分别以二次电子和高、低角度背散射电子为主所形成的形貌像比较。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/cf857ded-2b46-4cfa-b30e-df25d2f6cbcb.jpg" title="17.png" alt="17.png"//pp style="text-align: center text-indent: 0em "strong style="text-align: center text-indent: 0em "碳复合金颗粒的二次电子、高角度背散射电子、低角度背散射电子对照 /strongspan style="text-align: center text-indent: 0em " /span/pp style="text-align: justify text-indent: 2em "strong2.2背散射电子探头的构造及工作原理/strong/pp style="text-align: justify text-indent: 2em "环形半导体背散射电子探头是最经典的背散射电子探头。该探头采用环状硅基材料做成,构造形式是半导体面垒肖特基结二极管或p-n结二极管,如下图:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c6983a61-7f15-42c3-849e-c0b3f78c0f4f.jpg" title="18.png" alt="18.png"//pp style="text-align: center text-indent: 0em "strong图片节选自《微分析物理及其应用》 丁泽军/strong/pp style="text-align: justify text-indent: 2em " 背散射电子在硅基探测器中激发大量的电子-空穴对。同样加速电压下,电子-空穴对的产量和背散射电子强度形成一定的对应关系。并由此形成对应的电信号,经处理后在显示器形成样品的背散射电子图像(Z衬度像或晶粒取向衬度像)。/pp style="text-align: justify text-indent: 2em " 硅基材料形成电子-空穴对,需要信号激发源有一定的能量(肖特基结对5KV以下电子有大增益,P-N结对10KV电子才有大增益),能量较小的二次电子很难在该探头上产生信息,故探头形成的图像带有强烈的背散射电子图像特性。/pp style="text-align: justify text-indent: 2em "为了获取低能量的背散射电子信息,背散射电子探头改用YAG晶体或在探头上做一层薄膜如FEI的CBS,这些改变都对探头获取低能量背散射电子有利,形成的图像细节更丰富。但探头灵敏了,干扰也会增多,Z衬度也会减弱。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/a6b2de85-8984-486a-8940-122ff5311cf1.jpg" title="19.png" alt="19.png"//pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "2.3各种探头接收背散射电子信息的结果对比/span/strong/pp style="text-align: justify text-indent: 2em "传统硅基P- N结背散射电子探头对加速电压的要求高(10KV以上),它获取的背散射电子信息不易受低能量信息的干扰。Z衬度分明,荷电影响极小,但图像的细节呆板,表面细节信息缺失严重,较高倍时图像的清晰度差。/pp style="text-align: justify text-indent: 2em "钨灯丝扫描电镜,电子枪本征亮度差,要获得高质量形貌像所需的电子束发射亮度,加速电压必须在10KV以上。P-N结背散射电子探头正好与其互相匹配,故被广泛使用。/pp style="text-align: justify text-indent: 2em "场发射扫描电镜本征亮度大,低加速电压下进行高分辨形貌像测试是常态,P-N结背散射电子探头与其匹配度差。而CBS和YAG探头的功能和样品仓探头比起来Z衬度优势并不明显,二次电子的接收效果又不如,个人认为完全可以用样品仓探头来完美的替代背散射电子探头。/pp style="text-align: justify text-indent: 2em "如前所述,二次电子探头也能接收大量背散射电子。它所获取的图像性质取决于到达探头的信息组成,如果背散射电子信息居多,它就偏向背散射电子的图像特征,二次电子居多就偏向二次电子图像特征。二次电子探头适合在不同加速电压(几百伏到30KV)下获取背散射电子图像。/pp style="text-align: justify text-indent: 2em "低加速电压有利于取得是浅表层信息;高加速电压有利于取得较深层信息。探头的适用范围越广,测试条件的选择越充分,获取的样品信息越完整。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/de1afe4f-f593-4e4e-88d0-92b7ec8a573e.jpg" title="20.png" alt="20.png"//pp style="text-align: justify text-indent: 2em "背散射探头通过电子-空穴对的转移来传递信息,运行速度较二次电子探头(光电转换)慢很多。在进行聚焦、像散、对中操作时,图像对操作的反应滞后严重,须在慢速下调整。整个操作麻烦,精确的高倍调整更为困难。/pp style="text-align: justify text-indent: 2em "背散射电子探头往往置于样品与物镜之间,推进推出操作麻烦且易引发探头和样品间碰撞,对探头造成损伤。对该位置的占有,也会给后期分析设备安装带来麻烦。随着能谱仪、EBSD性能的突飞猛进,背散射电子探头对成分及结构组成分析的作用大大衰减,且成本不低,信息量少,使用率低。/pp style="text-align: justify text-indent: 2em "个人观点:背散射探头连鸡肋都算不上,基本可以抛弃。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px "strong结束语/strong/span/h1p style="text-align: justify text-indent: 2em "探头是扫描电镜获取样品表面形貌信息的关键部件。其性能高低对形成样品高质量、高分辨的表面形貌像至关重要。/pp style="text-align: justify text-indent: 2em "探头主要有两大类:二次电子探头、背散射电子探头。传统的观点认为:二次电子探头主要用来接收样品的二次电子信息,背散射电子探头接收的是背散射电子信息。/pp style="text-align: justify text-indent: 2em "实践经验告诉我们这个观点并不正确。二次电子探头的图像性质取决于到达探头的信息组成。到达探头的信息以背散射电子信息为主则图像倾向背散射电子图像特性,二次电子信息为主则是二次电子的图像特性。/pp style="text-align: justify text-indent: 2em "高分辨场发射扫描电镜常规设计有两个二次电子探头,分别位于样品仓和镜筒内部。不同位置的探头获取样品表面形貌信息的组成差异很大。镜筒内探头获取的基本都是二次电子信息,样品仓探头则是以背散射电子为主的混合信息。/pp style="text-align: justify text-indent: 2em "改变工作距离对探头获取样品信息的影响极大,工作距离越小越有利于上探头获取样品的二次电子信息,大工作距离有利于样品仓探头获取样品的混合信息。/pp style="text-align: justify text-indent: 2em "工作距离对样品仓探头接收样品信息的影响并不是越大越好,而是有一个最佳工作位置。最佳工作位置设计的越合理,你获取的样品信息也就会越丰富。/pp style="text-align: justify text-indent: 2em "传统的半导体背散射电子探头由于需要较大的激发能,故能量较弱的二次电子很难在探头上产生信号,该探头获取的背散射电子图像较为纯净。早期的硅基P-N结半导体背散射探头激发能要求较高(10KV)所以它形成的图像呆板,细节分辨差,表面信息少,但Z衬度强烈,不易受荷电影响。/pp style="text-align: justify text-indent: 2em "高加速电压对充分获取样品表面信息不利,为了提高探头获取表面信息的能力,出现许多低电压背散射探头(CBS\YAG)。但个人认为:低电压背散射电子探头的成像效果不如样品仓探头来的细腻,设计合理的样品仓探头完全可以替代背散射探头的功能。/pp style="text-align: justify text-indent: 2em "要掌握好仪器设备,对各功能部件的充分认识是基础。希望通过本文,能和大家一起对扫描电镜的信息接收系统有个重新认识。对探头以及工作距离的正确选择必定会为你带来更为丰富的样品信息。span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日 span style="text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月 span style="text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月 span style="text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月 span style="text-indent: 2em "清华大学出版社/span/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍span style="text-indent: 2em " 高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "strong作者简介:/strong/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 115px " src="https://img1.17img.cn/17img/images/202003/uepic/741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" title="扫描电镜的探头新解-林中清.jpg" alt="扫描电镜的探头新解-林中清.jpg" width="75" height="115" border="0" vspace="0"/林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: justify text-indent: 2em "strong/strong/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200218/522167.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)/span/a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) text-decoration: underline "strong/strong/span/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/p
  • 哈希发布荧光法测溶解氧探头LDO II
    美国哈希公司近日发布最新一代荧光法测溶解氧探头LDO II. 该产品在拥有精准读数和可靠质量的同时无需校准,无需换膜,维护量极低。这些特性大大提升了测量效率因此也在迅速改变行业的传统测量方式。 来自南得克萨斯州的化工厂操作员Kevin G.说道:&ldquo 使用新LDO探头后我们取得了很大的进步。数据更加可靠和准确。我们用这些数据来控制过程中的溶氧量。&rdquo 溶解氧的测量在污水行业非常重要。因为污水厂的曝气,硝化反硝化,以及达标排放等过程都和溶解氧数值息息相关。通过准确的溶解氧读数来精确控制曝气量可大幅降低污水厂的运维成本。在2003年之前,人们还只能使用膜法技术测量溶解氧。但是膜法电极维护量大,维护成本高,读数不稳定,因此业内很多公司都在寻求新的解决方案。2003年,哈希发明荧光法测溶解氧,引领了行业解决方案。这项领先技术最近也被美国EPA作为NPDES (National Pollutant Discharge Elimination System)报告溶解氧的标准方法之一。 &ldquo 哈系的荧光法技术对行业来说是一项革命性的技术,&rdquo Toon Streppel,哈希全球过程仪器产品总监介绍说,&ldquo 现在我们拥有新一代的LDO产品,它比上一代更加准确可靠并且几乎不需要维护。&rdquo 哈希的荧光法技术是在LDO探头最前端的传感器罩上覆盖一层荧光物质,LED光源发出的蓝光照射到荧光物质上,荧光物质被激发并发出红光;一个光电池检测荧光物质从发射红光到回到基态所需要的时间。这个时间只和蓝光的发射时间以及氧气的多少有关。探头另有一个LED 光源,在蓝光发射的同时发射红光,做为蓝光发射时间的参考。传感器周围的氧气越多,荧光物质发射红光的时间就越短。据此计算出溶解氧的浓度 目前该系列产品已在发售,详细信息请登陆www.hach.com.cn获取。更多详情请点击
  • 振动试验入门——振动试验装置基础知识1
    振动试验目的满足产品的高性能、高品质、高可靠性要求。产品在其寿命周期内会受到各种各样的振动,必须在产品设计和制造阶段考虑振动的影响。特别是对大量制造的产品、不允许有故障的产品等。产品没有经过振动试验验证而制造,产生故障后,对顾客对厂家都会造成金钱损失,失去信任,比如汽车零部件行业等。振动试验装置系统是什么?振动试验装置系统主要包含以下几个部分,如下图。1 振动试验机(含冷却装置);2 功放;3 振动控制仪;4 加速度传感器(控制用)。振动控制仪中输入试验条件,产生振动波形,功放放大后,驱动振动试验机振动,加速度传感器感知加速度量级,反馈给振动控制仪,实现振动控制,振动试验机运行产生的热量,冷却装置对应冷却。振动试验实施时需要什么?※ 振动试验装置※ 振动试验条件※ 试验体(被试验品,含夹具)1 振动试验装置 根据试验条件、试验体形状质量等来选择振动试验装置,特别需要注意以下几个概念,如最大加振力、频率范围、最大加速度、最大速度、最大位移、最大搭载质量等。2 振动试验条件 各个产品有其各自适合的试验条件,有各种各样的规格进行选择,如GB、GJB、IEC、ISO、JIS、MIL等。特殊情况下,可根据测定产品的振动环境,决定其独自的试验条件。 需要注意,按照试验条件进行试验时,会产生过试验和欠试验现象。过试验就是实际试验条件超出要求试验条件(比如加速度量级变大),对试验体实施过剩试验,导致本来不该出现的故障反而发生。欠试验即实际试验条件低于要求试验条件(比如加速度量级变小),导致本来预测发生的故障没有被激发出来。所以,对试验条件或试验情况需要充分研究,根据数据,慢慢加以改善试验条件(学者研究)。3 试验体为了使试验体更好地固定在振动台面上,达到刚性连接,需要使用振动夹具。振动夹具需要满足完全传递振动,将振动试验机产生的振动完完全全地传递给试验体。然而这是一种理想要求,实际上夹具完全传递振动是很难的,特别是在500Hz以上的频率,所以需要对振动夹具进行不停的评价,不断地改良夹具(夹具设计)。在对振动夹具评价的同时,也需要注意加速度传感器的安装和安装位置的选择。安装位置不同,对试验内容有不同的影响,下文别章叙述。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 振动试验入门——振动试验装置基础知识2
    振动试验机的动作原理和构造电动型振动试验机的基本构造和音响的喇叭类似,只是喇叭的发音部分变成了金属制(铝合金或镁合金)的动圈,动圈受力发生上下振动。(注意:本专栏内振动试验机都是指电动型振动试验机。)其原理是高中时学的左手定则,磁场中的导体通电产生力,可通过下式表示。B的产生利用右手法则,即电流流过导体,其四周产生磁场。励磁线圈内流经直流电流,形成磁场(下图中N、S表示)。振动台面和线圈(动圈)加工在一起,安装在该磁场中,需要注意的是在振动试验机的动圈里面通过的是交流电流,受到的力是有正负之分的。产生上下交变力,发生振动,即振动台面上下振动。当然,为了保持振动台面的垂直方向振动不偏移,还需要上下支撑机构。具体内部构造简单示意图如下。功放的目的和动作功放主要是将振动控制的振动信号进行放大,即提供电能量给振动发生机动作,电能量可通过功率电压乘以电流表示。比如,输出10KVA的功放,振动控制仪输入信号约3V10mA(30mVA),通过功放可放大为100V100A(10kVA)。功放的类型也多种多样,有模拟型,开关数字型等等,下表是其各自特点比较。振动控制仪的种类振动控制仪对安装在振动台面上的控制加速度传感器反馈来的加速度值(振动量级响应值)和目标值进行比较,进行振动的控制。响应值大了就降低振动控制仪的输出,响应值小就增大振动控制仪的输出,始终使振动台面加速度在目标值附近振动,满足振动试验精度要求。简单理解,其实内部控制很复杂,不仅仅只控制加速度值。其种类有很多,主要有以下几种,正弦波控制软件:正弦波加振,对振动幅值控制。随机波控制软件:随即波加振,对振动谱控制。冲击波控制软件:实现有限脉宽(约2秒以下)冲击各波形控制。波形再现控制软件:实现长时间波形控制。由上可知,波形不同,控制方法各异,需要专门的控制软件进行对应。以前以模拟振动控制仪为主流,最近随着数字电子技术的发展,数字振动控制仪得到普及,且价格也相对变得便宜很多。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 质构仪在乳制品质地分析中的应用及探头选择
    呈固体块状的均质样品乳制品中的塑性粘性固体有人造黄油、黄油、奶油干酪、乳清干酪、乳化干酪等产品,此类产品关键物性特点是硬度即延展性、融化性与温度相关性、加工过程中的硬度变化、内聚性等。而蜡质和绵软弹性固体样品则主要是意大利干酪、荷兰干酪、羊乳酪、白乳酪、软质乳酪等,通过质构仪可分析其硬度、表面粘附性、成熟度、货架期、水分丧失引起的表面结构变化等。典型实例 1:奶油的铺展性分析(挤压/挤出实验) 该探头专业用于检测黄油、人造黄油的铺展性、蜡质性的特殊探头,通过实验可得到样品的硬度、粘附性、柔软度等指标。实验结果解读:如图所示为不同状态下黄油的测试曲线。曲线的正向峰值反映了黄油样品的硬度,可见 Dry 的黄油由于含水量少,故而在质地上较为坚硬,而 Wet 的黄油则硬度最小,Good 的黄油硬度处于二者之间,硬度的大小也反映了反映了产品的柔软度,硬度小则柔软度高,反之则柔软度差。从图中可见,太干或太湿的黄油在硬度上都会与“Good”产品存在明显的差异。典型案例 2:传统与素食奶酪产品的质地分析(穿刺实验)实验结果解读:用小直径的柱形探头做奶酪的穿刺实验,穿刺实验主要比较的是破裂力(正向峰值前面出现的小的峰)、硬度(正向峰值)、穿刺做功(正峰面积)、粘附力和粘附性。通过质构仪分析可见,素食产品在硬度和表面粘性上均小于传统奶酪,素食产品的内部均一性要优于传统产品(穿刺过程中力量基本不发生变化),而传统产的内部随着挤压的进行力量在缓慢的增大,可见其均一性不如素食产品,即脂肪含量的不同使得素食产品含水量较少且更脆,可见素食产品还需要在硬度、表面粘性、含水量等方便进行优化与改良。典型实例 3:黄油的硬度检测分析实验结果解读:人造黄油改善了黄油脂肪含量高的问题,为了使人造黄油在口感和质地上与黄油更加的接近,生产商需要了解二者在质地和口感上存在的差异具体表现在哪里。切线切割探头可以反应切割黄油时的平均力量(最大峰值),以及挤压做功(正峰面积),通过力量与做功的比较发现,人造黄油切割力与做功都远小于天然黄油,由此可见在质地上人造黄油更为柔软。
  • 振动试验入门——振动试验装置基础知识3
    振动试验使用的基本用语振动试验中使用的基本用语有:力(加振力)[N]、加速度[m/s2]、速度[m/s]、位移[mmp-p]。从力[加振力]开始说明,先了解牛顿第二定律,即一般质量m的物体施加加速度A,则下式成立,即1[kg]的物体施加1[m/s2]的加速度,产生1[N]的力。公式中单位g为重力加速度9.81[m/s2]。振动的描述还需要用频率和振动量级来指定。以前使用的是重力单位来描述,现在用SI单位比较普及。加速度、速度、位移的关系如下,物体正弦振动,位移表达式为:速度是位移的微分,加速度是速度的微分,将代入上几个式子,并取其最大值得到:实际的波形为:上面两个式子也可以用下面的形式表示:需要注意的是,这些公式里面的半位移值(位移半峰值),如果用振动试验中常用的位移峰峰值,单位mm的话,公式变化如下:可通过公式可以看出,四个量里面知道两个,即可求出其他两个。通过此公式还可以计算出无负载情况下,振动试验机的最大特性曲线中的频率交越点。【例】正弦波试验最早实施的振动试验方法,有很多的振动试验规格对应。和近来快速发展的随机试验和冲击试验相比,加振简单、基本上所有类型的振动试验机都能对应此试验方法。有定频和扫频两种方式,定频比较简单,下面以扫频方式进行主要说明。扫频试验是指频率按照一定的速度变化,对振动量级进行控制。【例】上述扫频试验条件,10Hz到58Hz以位移2[mmp-p]加振,58Hz到500Hz以加速度132.7[m/s2]加振,频率由10Hz-500Hz-10Hz-500Hz往返扫频进行,直到达到试验时间1小时。可以通过加速度和频率关系公式计算得到58Hz和2[mmp-p]处对应的加速度为132.7[m/s2]。在58Hz处振动量由位移变为加速度(一种振动量变为另一种振动量),这个频率点称为交越点。需要注意的是,在交越点处,必须满足上述四者之间的公式关系,如果58Hz处位移为2[mmp-p]且加速度为300[m/s2],这种试验条件显然是有问题的,但是现在很多试验规格里经常有这样的定义方式,需要引起重视,在振动控制仪正弦波控制软件中输入试验条件时,都是经过特殊处理的,即58Hz输入位移2[mmp-p],58.01Hz输入加速度300[m/s2]。最后对扫频速度进行说明。一般都是对数扫频,单位【oct/min】,频率一分钟内的变化量。oct即倍频程,2倍的意思,一分钟内相对起始频率,有几个两倍。用下面的关系式表示:【例】起始频率10Hz,终止频率500Hz,则这个频率范围内有5.64个倍频程。扫频速度1oct/min的话,即10Hz扫频到500Hz,可以判断出需要时间为5.64分钟。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 梅特勒托利多第四代光纤探头全新上市
    梅特勒托利多推出第四代光学界面全新设计的AgX光纤探头DS系列。DS系列性能优异,使用方便,能灵活与ReactIR™ 和MonARC™ 系统连接,在化学反应体系中进行原位测量,提供有价值的信息帮助化学家进行定量和定性分析。  DS系列卤化银 (AgX) 光纤探头有以下优点:  • 无需光路调准,即插即用  • 可选钻石和硅,氧化锆或者硫化锌ATR传感器  • 配合用户需求,提供多种尺寸  • 适用于多种化学反应条件,低温、高压、气相等  • 整合RTD监测器进行原位实时温度测量  更多信息,请登入www.mt.com/autochem  梅特勒托利多中国
  • 舜宇“光电振动测量仪”重大仪器项目启动
    2月28日下午,国家重大科学仪器设备开发专项项目协调推进会在余姚河姆渡宾馆三楼尊茂厅举行,标志着由舜宇集团承担的&ldquo 跨尺度三维光电振动测量仪的开发和应用&rdquo 项目全面启动实施,进入实质性研发和应用定义阶段 同时也标志着舜宇在承担国家重点、重大项目上又迈出了坚实的一步,为今后更好地参与国家重大科技工程夯实了基础。  中国工程院院士、清华大学教授金国藩,中国工程院院士、上海理工大学教授庄松林,中国工程院院士、天津大学教授叶声华,中国工程院院士、中国计量科学院研究员张钟华,中国仪器仪表学会秘书长朱险峰,科技部条财司条件处处长孙增奇,省科技厅条件与基础研究处处长王桂良,宁波科技局计划处处长张永庆以及项目相关单位的专家和领导出席会议。  国家重大科学仪器设备开发专项于2011年首次启动,强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。&ldquo 跨尺度三维光电振动测量仪的开发和应用&rdquo 项目于2013年10月经国家科技部批准立项,由舜宇集团牵头,多家产、学、研、用单位共同参与,是继&ldquo 高通量优选开发及应用&rdquo 项目后,舜宇承担的第二个国家重大科学仪器设备开发专项。该项目旨在攻克三维激光运动姿态测量、视觉多点三维振动测量、三分量振动校准等技术,通过系统集成和软件开发以及在汽车NVH测试、陀螺电机转子振动测量、数控机床动态性能识别、火炮振动测试等的应用开发,丰富仪器功能,优化技术方案,形成具有自主知识产权、功能健全、质量稳定可靠的跨尺度三维光电测振仪,为我国航空航天、兵器工业、汽车工业等精密制造领域提供测试技术支撑。同时通过产学研用的合作实践,进一步完善及优化光电振动测量产业链,以提升行业的全球竞争力,进而促进国民经济、国防和科学技术的发展。  科技部条财司条件处处长孙增奇在项目协调推进会上强调,项目的全面实施不仅是要完成国家的任务,更重要的是通过项目的执行提高参与单位的研发能力,提高行业竞争力,最终通过整个项目的实施促进我国科学仪器整个产业的健康发展,并预祝项目取得圆满成功。  省科技厅条件与基础研究处处长王桂良也对项目的全面实施表示祝贺,并提出了三点要求:一要精诚团结,开展协同创新 二要科学组织,做到分工明确 三要规范管理,保证项目顺利进行。  舜宇集团董事长王文鉴向与会领导和专家长期来对舜宇仪器事业发展的关心、帮助和支持表示衷心感谢,同时郑重承诺:一定做到资金到位、人员到位、工作到位,全力以赴推进项目的实施 一定认真落实各位领导的指示和要求,做好各项目组成员之间的协同配合,严格按照项目要求及任务书展开工作,系统推进各项目标的达成 一定努力加快项目产业化进程,并践行舜宇的&ldquo 共同创造&rdquo 理念,通过项目组成员的充分磋商,公正评价各方贡献,合理分享合作的效益与成果。他表示,舜宇一定不辜负国家所托,为中国科学仪器事业做出自己的贡献,回报国家与社会各界对我们的信任和支持。  会上,各位专家和领导听取了宋云峰博士所作的项目报告。王文鉴董事长还分别向参与项目的技术专家和用户专家颁发了聘任证书。各位专家也分别从市场宣传、应用领域、产业化、产品稳定性及可靠性等方面就项目的具体实施展开&ldquo 会诊&rdquo ,提出了许多有益的建议和意见。
  • 中汽院打造汽车噪声振动和安全技术实验室
    2011年10月25日,以“舒适、安全——汽车技术的焦点”为主题的2011汽车噪声振动和安全技术国际会议在重庆圆满落幕。为期三天的研讨会,吸引了全球各大车企、高校、研究院的专家学者来渝论道,研究探讨汽车噪声振动和安全技术发展趋势。这是继中汽院承办的“2010中国汽车安全技术国际研讨会”和“第22届国际交通医学会议”后,重庆市在汽车安全领域召开的又一次科技盛会,必将推动重庆乃至全国汽车行业与国际同行的技术交流和科技进步,出席大会的重庆市副市长童小平如是评价。  顶级专家聚渝“论道”  此次会议是“2011国际知名研发机构重庆行动”分项活动之一,会议由汽车噪声振动和安全技术国家重点实验室承办,重庆市科委、中国汽车工程研究院股份有限公司、长安汽车股份有限公司联合协办。中国工程院院士、重庆市科委主任钟志华担当大会名誉主席,中国汽车工程研究院院长任晓常和长安汽车党委书记、副总裁朱华荣联合出任大会主席。  此次大会吸引到中国工程院院士郭孔辉、法国国家交通运输安全研究所Dominique Cesari教授、欧洲新车安全评价协会Michiel博士、美国ohio大学声与振动实验室主任Rajendra.Singh等共计八个国家的该领域全球顶级专家学者和研究机构出席了会议。  以“产学研”模式 打造一流实验室  据记者了解,该国家重点实验室是中汽院继与汽车企业、知名大学历经多年的“产学研”合作后,开展的又一次重要合作。早在2005年,中汽院和第三军医大学便建立了“重庆市车辆/生物碰撞安全重点实验室”,2006年,中汽院和长安、重庆大学又申请设立了重庆市NVH工程技术研究中心。在这些工作的基础上,2010年,中汽院和长安一起通过招标的形式,共同申请设立了“汽车噪声振动和安全技术国家重点实验室”。用重庆市副市长童小平的话说,中汽院和长安汽车分别是重庆本土汽车行业最具实力的研究机构和企业,两家单位合作,将充分整合各自资源优势,为中国噪声振动和安全技术的科技进步做出突出贡献。  记者实地走访发现,发现重点实验室部分已经建设完成,中汽院除了已有的实验室外,正在重庆北部新区新建一个能够满足汽车全方位碰撞安全要求,包括各个角度的碰撞以及翻滚,满足从轿车到重型商用车的碰撞要求的碰撞实验室,另外中汽院正在建设噪声振动的实验室,该实验室相应的硬件和软件均从国外引进。这样一批设施和设备到位以后,将具备国内领先,国际一流的测试、评价、分析的实验室条件。  汇集顶尖人才,为高品质造车服务  据重点实验室主任邓兆祥透露,实验室的主要研究方向有五个,包括汽车NVH分析与评价、汽车NVH设计与控制、被动安全与损伤生物力学、汽车系统动力学与主动安全、汽车电器电子安全这五个方向。  目前实验室还汇集了专业顶尖技术人才,拥有固定研究人员85人,其中研究员级高工15人、博士18人、列入国家“千人计划”的引进专家2人、部省级以上的学术技术带头人4人,还有30余位访问学者参加实验室研究工作,为高品质造车提供了夯实的人才基础。目前,实验室承担了包括 “863”和“973”等在内的30余个国家项目,比如正在设计的汽车排气系统专家系统,系统中包含了消声器的设计知识,经验,这个系统具有快速建模,快速分析,快速设计等功能,可以使一般的工程技术人员能迅速完成消声器的开发设计。商用车安全法规的研究,以及交通事故深度调查以及事故的模式、以及商用车和其他车碰撞的相融性、商用车碰撞安全性实验评价技术。这些研究成果,必将推动汽车行业的进一步发展。
  • 应对电镜振动解决方案——AMETEK TMC STACIS® III Quiet Island®
    透射电子显微镜是世界上对振动最敏感的仪器之一,它容易受到建筑物地板振动的影响,从而影响透射电镜高分辨性能。2014 年,美国俄勒冈健康与科学大学 (OHSU) 的多尺度显微镜核心扩展了其联合生命科学大楼,以纳入先进的 TFS Titan Krios 低温透射电子显微镜。图片来源:俄勒冈健康与科学大学 (OHSU)建筑活动和车辆交通会导致建筑地板振动水平显着增加。最近关乎仪器性能的最大担忧之一,就是附近一座桥梁即将建设和开通。此外,Titan Krios对噪音也很敏感。TEM的柱被隔音罩包围,从而减少了声波对 TEM 的影响。当地板振动时,大型机柜会将声波耦合到TEM的支撑平台,因此将外壳与立柱分离至关重要。解决方案 – TMC STACIS III Quiet IslandSTACIS III 包括新颖的串行设计和专有的高力压电技术,具有在2 Hz 开始减少 90% 的惯性主动振动和0.6 Hz 到150 Hz宽的有源带宽。与主动空气系统不同,STACIS 没有软悬架,自然兼容 Titan Krios 的内部主动空气隔离系统,每个系统都经过全面优化。TMC 开发了 Titan Krios 独有的两部分嵌套式Quiet Island,包括一个支撑柱子的内部 STACIS Quiet Island和一个分离及支撑隔音罩的外部刚性Quiet Island“环”。STACIS Quiet Island 是一种使用地点解决方案,可在设计和规划实验室设施和流程时提供更大的灵活性并节省资金。安装工具后测量的水平(顶部)和垂直(底部)隔振性能图片来源:TMC 振动控制总结STACIS Quiet Island似乎恰如其名。“我们旁边的一座桥开放了,火车、公共汽车和街车全天经过,我们没有遇到任何问题,这太棒了!”OHSU 多尺度显微镜核心管理 Claudia López 博士说。技术制造公司(Technical Manufacturing Corporation)振动控制TMC 的精密地板隔振系统产品线范围从简单的桌面隔振显微镜底座到任何尺寸的光学顶端,再到具有压电致动器和数字控制器的复杂主动惯性减振系统。他们最近的创新包括 STACIS 2100、STACIS iX SEM-Base™ 、STACIS iX Stage-Base™ 、STACIS iX LaserTable-Base™ 和 Mag-NetX™ 磁场消除系统。TMC 是精密地板隔振技术的领导者。他们的客户包括主流研究中心、OEM 和终端用户半导体制造商、大学研究实验室、药物研发公司和纳米技术实验室。除了少数的例外,他们的产品线都是在 TMC 设计和制造的。通过垂直集成制造,他们可以快速经济高效地制造复杂的机械结构。曲解规格和质量顾虑不会发生。他们的许多产品都是为 OEM 和终端用户定制的。在 TMC 制造一切的主要优势之一是 3D 工程模型等工具可以直接进入工厂车间,而不会出现失误和延误。TMC 现在是 AMETEK 的一部分,AMETEK 是全球领先的电子仪器和机电设备制造商。 TMC 加入 AMETEK,成为 AMETEK EIG 超精密技术部门的一部分。Ultra Precision Technologies 是开发超精密测量仪器的先驱,也是半导体、光伏、纳米技术、军事、国防和眼科镜片市场的超精密机床和制造系统的全球领导者。AMETEK, Inc. 是全球领先的电子仪器和机电设备制造商。 AMETEK 拥有大约 11,600 名同事,在美国和世界各地的 100 多个制造工厂和 100 多个销售和服务中心工作。虽然现在是 AMETEK 的一部分,他们仍然是 TMC。同一地点的同一个人致力于设计和制造最先进的商用精密地板隔振系统。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制