当前位置: 仪器信息网 > 行业主题 > >

液位电极

仪器信息网液位电极专题为您提供2024年最新液位电极价格报价、厂家品牌的相关信息, 包括液位电极参数、型号等,不管是国产,还是进口品牌的液位电极您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液位电极相关的耗材配件、试剂标物,还有液位电极相关的最新资讯、资料,以及液位电极相关的解决方案。

液位电极相关的资讯

  • 如何做好DO电极的维护与保养?
    发酵液中的溶氧浓度(Dissolved Oxygen,简称DO)是需氧微生物发酵、细胞培养过程中一个至关重要的参数,DO值的改变对菌体生长、目标物的性质和产量都会产生不同一定的影响,通过观察发酵液中溶氧量的变化,可以了解到微生物生长代谢是否正常、工艺控制是否合理、设备供氧能力是否完善等。因此,对这个参数进行实时的精确测量是实现溶氧自动控制的基本前提,目前行业内多是通过插入式DO电极进行罐内监测。一、DO电极的基本种类发酵行业中常用的是两种溶氧电极——极谱式溶氧电极和光学溶氧电极。极谱式溶氧电极是由铂(或者金环)作阴极,由银-氯化银(或者汞-氯化亚汞)作阳极。电解液为KCl溶液。阴极外表面覆盖一层透氧薄膜,薄膜可采用聚四氟乙烯、聚氯乙烯、聚乙烯、硅橡胶等透气材料。阴阳两电极之间需要外加0.5~1.5V的极化电压。使用过程中,溶解氧透过薄膜到达阴极表面时会被电离,在此过程中释放出的电子,会在电解液中形成电流,由于透过薄膜的溶解氧含量与水中的溶解氧含量成正比,所以在不同的溶解氧含量下,电解液中形成的电流强度也不相同,而电流的强度的大小可由电极监测到。电极监测到的电流强度可以根据法拉第定律换算为具体的氧浓度,得到数值再经过温度、气压补偿输出最终值。由于整个过程中电解质参与了反应,因此需要定期更换电解液。(溶氧电极结构图)光学溶氧电极采用的是基于物理学中特定物质对活性荧光的猝熄原理。传感器的设计是通过一个发光二极管(LED)发出的蓝光照射在荧光帽内表面的荧光物质上,特定的发光体被蓝光激发后会发生冷光现象(红光),通过检测红光与蓝光之间的相位差,并与内部标定值比对,便可计算出氧浓度,再经过温度和气压自动补偿输出最终值。注意:HOLVES生物反应器标配METTLERTOLEDO InPro6800系列极谱式DO电极,以下内容也只针对此款电极。二、DO电极使用前的准备1、电极液:首次使用或者长期未使用的DO电极,建议在使用前更换电解液。一般建议客户每三个月更换一次电解液,可根据具体情况自行决定。如果电极信号不正常(如出现响应时间长、无氧介质中电流增大等情况)或电极出现“机械损坏时”,就需要更换膜或者退回原厂检修。2、更换电解液的操作步骤:① 将膜内的残余电解液倒掉,用去离子水冲洗溶氧膜内部,冲洗完成后再用吸水纸吸水迹;② 将膜倾斜,电解液瓶的管口垂直向下;③ 轻轻挤压电解液瓶,使电解液缓慢的流入膜内;④ 电解液加入量为二分一左右;⑤ 确认膜内部没有气泡,如有气泡可轻弹膜体,排除气泡;⑥ 将膜缓慢的旋转套入内电极上,再小心的旋紧不锈钢套管。3、DO电极的极化:溶氧电极在使用前须通电极化6小时以上。通过电缆线将电极和变送器连接起来,变送器通电后电极即开始极化。下列情况中的电极需要进行极化:① 电极第一次使用,极化6小时以上;② 更换膜或电解液,极化6小时以上;③ 变送器断电或电极与电缆线断开,最小极化时间见下表。(DO电极极化时间表)三、DO电极的校准DO电极校准前必须充分极化。DO电极使用的两点校准需要结合具体情况进行操作,连接温度电极,同时设定标准大气压为1013mbar。若有相关条件,请按如下操作进行校准:将电极接通电源后,先放入无氧环境中,待读数稳定后点击“零点确认”,再将电极放入纯氧环境中,待读数稳定后点击“满度确认”,弹出窗口“DO电极OK”即表示校准完成。若无相关条件,请按如下操作进行校准:不接电极,点击“零点确认”,满度校准方法由校准介质而定:① 如果以空气为校准介质,将电极放在空气中,并擦干膜上的水迹。待读数稳定后,点击“满度确认”即可;② 生化发酵过程中,一般以饱和介质为校准介质。在实消后以及接种前,于适宜温度下将搅拌开至最大,同时通入最大通气量的饱和空气一定时间,待读数稳定后点击“满度确认”即可。建议在统一的通气时间后进行校准,以统一不同罐批和不同发酵罐的饱和状态。四、DO电极的性能测试每支电极都有自己的零点和斜率,而随着使用时间的延长,电解液逐渐消耗,电极的斜率和零点也会随之发生变化。而通过斜率和零点的变化,我们可以推断出电极的性能情况。斜率判断法:以空气为校准介质进行校准后,参考极谱式溶氧电极电流信号表中空气电流的标准,判断DO电极的斜率是否正常。若处于警告或警报范围,更换电极的电解液或膜后再重新校准,校准后若仍处于警告或警报范围,则需要将电极返厂维修。零点判断法:以纯度99.995%的氮气为校准介质进行校准后,参考极谱式溶氧电极电流信号表中零点电流的标准,判断DO电极的零点是否正常。若处于警告或报警范围,更换电极的电解液或膜后再重新校准,校准后若仍处于警告或警报范围,则需要将电极返厂维修。(极谱式溶氧电极电流信号表)五、电极在空气中的电流值异常电极在空气中的电流值指把电暴露在空气中的电流值,一般用绝对值表示,不同类型的DO电极在空气中的电流值范围不同。详见电极使用说明书。空气中的电流值偏低,可能的原因及解决方法:① 铂阴极表面有氧化物质覆盖这种情况下,将内电极的头部对着光源观察阴极,可以看到阴极表面显露出黑色。可使用标号1000目以上的砂纸在铂丝头部轻轻打磨数次,至铂丝表面发亮即可。切不可过度打磨,否则会使内电极头部受损。② 铂阴极未能接触到溶氧膜检查溶氧膜是否旋紧到位,若未旋紧,则必须将膜旋紧到位,并旋紧膜保护套直至黑色密封圈看不到为止。检查溶氧膜膜片,如果有过度的突起,如下图示,使阴极不能接触到膜片,则必须更换溶氧膜。空气中的电流值偏高,可能的原因及解决方法原因:处理方法:电极极化不充分确认极化时间是否符合电极受到污损清洗电极,应采用去离子水,不能采用含乙醇的清洗液。电解液老化更换电解液膜老化或损坏更换膜电缆损坏更换电缆,不接电极时变送器应显示很低且稳定的电流值。变送器损坏更换变送器六、DO电极的保养使用过程中最容易发生因为膜的堵塞而导致测量不准或不稳的现象,这往往是微小离子在膜表面的附着造成的,这类堵塞一般仅凭肉眼是不易发现的。对这类污染,可将电极取下,用3%~5%的稀盐酸浸泡几个小时后再使用。电极较长时间不用时应将保护帽套好,放置在保护盒内保存。 希望以上的内容能对您的发酵提供一点帮助,如有问题可与我们联系,HOLVES将竭诚为您服务!注:本篇文章内容为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。
  • 微创颅脑手术用可展开电极问世
    据最新一期《科学机器人》杂志报道,瑞士洛桑联邦理工学院研究团队设计出一种能插入人类头骨的微创电极。这种新颖的电极可通过头骨上的一个小孔,插入一个较大的皮质电极阵列,将其部署在头骨和大脑表面之间约1毫米的空间内,而不会损害大脑。这种电极有螺旋状的“手臂”,每只“手臂”可在高度敏感的脑组织上展开。这是结合软生物电子学和软机器人技术概念后的工程设计。这个电极阵列能穿过一个直径2厘米的孔,但当展开时,会延伸成直径4厘米的表面。它有6个螺旋形“手臂”,以最大限度地扩大电极阵列的表面积,从而增加与皮质接触的电极数量。研究人员表示,该装置有点像一只螺旋蝴蝶,在变形之前复杂地挤在它的茧里,电极阵列连同它的螺旋臂被整齐地折叠在一个圆柱形的管子里,即装载器,能在通过头骨上的小孔后展开。受软机器人启发,根据外翻驱动机制,每个螺旋“手臂”都轻轻地依次在敏感的脑组织上展开。研究人员表示,外翻机制的美妙之处在于,他们可以部署任意大小的电极,同时对大脑施加持续且最小的压力。电极阵列看起来像一种橡胶手套,每个螺旋形“手指”的一侧都有柔性电极图案。“手套”是倒置的,或是从里到外翻转的,并在圆柱形装载器内折叠。在展开时,液体被注入每个倒置的“手指”中,一次一个,将倒置的“手指”向外旋转。到目前为止,可展开电极阵列已经在小型猪身上测试成功。未来,该技术可能为癫痫患者提供微创解决方案。
  • 应用指南丨pH电极的日常维护与保养
    发酵培养基的pH值,对微生物生长具有非常明显的影响,也是影响发酵过程中各种酶活的重要因素。因此,pH的监测与调节,于发酵过程而言十分重要。 发酵过程中通常是采用复合pH电极直接插入罐内发酵液的方式对pH进行实时监测。而高压高温的灭菌操作和发酵液的理化性质会对pH电极测量造成影响,所以正确的使用方法和日常的维护保养尤其关键。 1. 安装使用前的准备① 打开包装时,要仔细检查电极的pH敏感膜玻璃、隔膜(素烧陶瓷芯)和玻璃体是否存在机械损伤。② 取下盛液套并用纯水清洗电极顶部,然后用湿纸巾或者吸水纸轻轻擦干。注意不要摩擦pH敏感膜,以防增加响应时间。③ 将pH电极平缓移至垂直位置以防pH敏感膜玻璃球泡内存有气泡。如没有充满液体或存有气泡,应轻轻甩动电极使球泡内充满液体,直至没有气泡。④ 电极使用前可先在酸性缓冲液(pH4.01)中浸泡数分钟,用纯水冲洗玻璃球泡部分,再用吸水纸轻轻将玻璃球泡部分的水吸干,再在中性缓冲液(pH6.86或7.00等)中浸泡数分钟以活化电极,然后再开始校准。 2. pH电极两点校准操作将pH电极在标准缓冲液中浸泡10min,待测定数值稳定1min左右后,再依次进行pH电极的第1点标定和第二点标定。以HOLVES发酵罐为例:① 进行校准前,根据缓冲液类型进行参数选择:[GB]指使用的是符合GB/T27501-2011标准的缓冲液,一般使用的几种缓冲液pH值为4.00、6.86和9.18,其相对应的“稳定度”即“缓冲液的不确定度”通常选择±0.02pH。霍尔斯通常使用的是METTLER TOLEDO InPro3030系列pH电极,参数[MT_9]即对应其品牌的缓冲液,一般使用的缓冲液pH值为4.01、7.00和9.21,其“稳定度”需根据所使用的缓冲液型号进行选择。 ② 连接电极,并用纯水冲洗电极,冲洗后再用吸水纸轻轻吸干探头上的水。③ 将玻璃球泡部分浸没在第1种缓冲液(例pH=4.01)内(隔膜应完全浸没在缓冲液中),待标准值稳定后(30秒至60秒)点击第1点确认,第1点标定结束。 ④ 将电极从第1种缓冲液中取出,并用纯水冲洗电极,冲洗后再用吸水纸轻轻吸干探头上的水。⑤ 将玻璃球泡部分浸没在第二种缓冲液(例pH=9.18)内(隔膜应完全浸没在缓冲液中),待标准值稳定后(30秒至60秒)点击第二点确认,第二点标定结束,等待使用(建议时间不要太长)。 3. 电极校准时的注意事项① 校准时请注意采用新鲜的缓冲液;② 电极在缓冲液中放置1min后再进行后续操作;③ 冲洗电极后只能用柔软的吸水纸吸干水分,切勿摩擦pH敏感膜;④ 电极的校准周期根据不同的使用环境和精度要求而定,请在保证精度的前提下确定适当的校准周期;⑤ 由于pH电极探头及其易碎,所以在使用过程中切勿磕碰。 4. pH电极性能测试pH电极测定酸碱度法是依据能斯特(Nernst)方程原理来进行的,电极的电动势与pH值呈线性关系,一般用两种不同pH值的缓冲液进行标定,用来确定曲线的斜率。而通常所说的pH电极响应斜率,是指pH电极用来把电极的毫伏(mV)信号转换为pH值,它是通过不同缓冲液测得的电压差值,除以缓冲液差值得到的。这个斜率是判定电极寿命是否耗尽的一个重要指标。 (Nernst能斯特方程) 需要注意的是,由于斜率与温度呈正比关系,当溶液温度发生变化,根据能斯特方程,溶液的ΔE将随温度T呈线性变化,而电极是根据检测到的溶液电动势能换算成pH值的,所以必须进行温度补偿以抵消温度对测量结果的影响。 (斜率与温度呈正比关系)所谓温度补偿,是将电极在标定温度下(一般为25℃)得到的斜率按能斯特公式换算到当前温度下的斜率,从而得到当前温度下正确的pH值。主要用来修正由于标准缓冲液等标样在标定时的温度与实际样品溶液温度不同引起的偏差。HOLVES系列产品可以通过设备的温度电极测量到当前液体温度,然后通过自身软件计算后,显示经温度补偿后的pH值。所以,无论是校准还是性能测试,都需要确保设备的温度电极是工作状态。 斜率测试具体操作方法:① 把进行两点校准后的电极用纯水清洗,并用柔软的吸水纸吸干水分。② 按照上文校准时使用的方法调整参数与稳定度,下文以MT标准为例。③ 首先使用pH=7.00的缓冲液测定零点,并在显示屏上读出mV值。HOLVES标配的pH电极零点在6.5~7.5范围内,表示电极正常。④ 将电极清洗后,再插入pH=4.01(记作pH1)的标准缓冲溶液中,在显示屏上读出mV值(记作mV1)⑤ 将电极清洗后,再插入pH=9.21(记作pH2)的标准缓冲溶液中,在显示屏上读出mV值(记作mV2)⑥ 计算电极的斜率,即(mV1-mV2)/(pH1-pH2)⑦ 根据能斯特方程理想状态下(25℃)时,理想斜率为59mV/pH,即溶液每变化一个pH值,电极就产生59mv的电位变化。那么理想校正下,斜率应在59mV/pH左右。当斜率的值小于53mV/pH或者大于63mV/pH时,需要更换新的pH电极,所以当校正斜率在53~63mV/pH范围时,结果是可信的。 HOLVES系列发酵罐可直接读出电极所测液体的电压信号,并且如果电极出现问题或者安装、使用错误,pH校准界面下方会弹出电极不可用红色提示字样,方便客户了解电极的使用状态。 5. 电极的清洗① 一般性污染用水、0.1mol/L NaOH或0.1mol/L HCl清洗电极数分钟。② 油脂或有机物污染用丙酮或乙醇清洗电极数秒钟。③ 硫化物污染(隔膜发黑)用硫脲/HCl处理,将玻璃球泡部分浸泡在溶液中(隔膜应没入溶液中),直到隔膜无色(至少1小时),然后浸泡在3mol/L的KCl中至少12小时,完全冲洗并重新校准后可使用。④ 蛋白质污染(隔膜发黄)用胃液素/HCl处理,将玻璃球泡部分放入溶液中,确保隔膜浸没在溶液中(至少1小时),然后用蒸馏水冲洗、重新校准。 6. 电极的保存① 每个生产周期结束后,使用去离子水认真冲洗电极头与隔膜,绝不可使这些零件上的测量溶液变干。② 电极不可放在蒸馏水中保存,较长时间不用时,应当将其连同电极头与隔膜充分浸泡在3mol/L的KCI或9816/ViscolytTM电解液内。③ 电极不能长期干放,不能在表面附有干燥介质时贮存电极。如果因错误导致电极被干燥存放数日,应在使用之前将其浸泡在正常存储电解液内若干小时。④ 应时常检查连接器是否出现受潮迹象。如有必要,用去离子水或酒精彻底清洗,然后小心擦干。希望以上的内容能对您的发酵提供一点帮助,如有问题可与我们联系,HOLVES将竭诚为您服务!注:本篇文章内容及图片均为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。
  • 你知道电导电极是怎么使用以及维护的吗
    电导率电极是在保证性能的基础上简化了功能,从而具有了特别强的价格优势。清晰的显示、简易的操作和优良的测试性能使其具有很高的性价比。可广泛应用于火电、化工化肥、冶金、环保、制药、生化、食品和自来水等溶液中电导率值的连续监测。  电导电极的使用  (1)为保证电导率仪器的测量精度,必要时,仪器使用前,用电导率仪对电极常数进行重新标定,同时,应定期进行电导电极常数标定,如出现误差较大时应及时更换电导电极。  (2)在测量高纯水时应避免污染,正确选择电导电极的常数,并采用密封、流动的测量方式。否则,其电导率值将很快升高,这是因为空气中的二氧化碳溶入高纯水后,就变成了具有导电性的碳酸根离子而影响测量值。  (3)为确保测量准确度,电导电极使用前应用小于0.5us/cm的去离子水(或蒸馏水)冲洗2次,然后,用被测试样冲洗后方可测量。  (4)仪器测量后显示的值已折算到25℃测量值,如不需补偿,拔去温度电极仪器显示25℃,测量的值就是当时的溶液的电导值。  电导电极的维护保养  电导电极的贮存  光亮的铂电极、镀铂黑的铂电极(长期不使用)一般贮存在干燥地方,但镀铂黑的铂电极使用前必须放在蒸馏水中数小时,经常使用的镀铂黑电极可以贮存在蒸馏水中。  电导电极的清洗  (1)可以用含有洗涤剂的温水清洗电极上的有机成分沾污,也可用酒精清洗。  (2)钙、镁沉淀物用10%的柠檬酸清洗。  (3)光亮的铂电极可以用软刷子机械清洗,但在电极表面不可以产生刻痕,不可使用螺丝起子之类硬物清除电极表面,甚至在用软刷清洗时也要特别注意。  (4)对于镀铂黑的铂电极,只能用化学方法清洗,用软刷子清洗时会破坏镀在电极表面的镀层(铂黑)。总之,实验室的实验人员如果能正确使用pH电极、电导电极,并做好电极的日常维护和保养工作,不但可以延长电极的使用寿命,而且可以大大地减少pH计、电导率仪的测量误差,从而提高化学实验、检验数据的准确性、可靠性。
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 大脑多巴胺在体(in vivo)记录用电化学微电极研制
    成果名称大脑多巴胺在体(in vivo)记录用电化学微电极研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:多巴胺是中枢神经系统中一种重要的神经递质,其胞体主要分布在中脑黑质致密部和腹侧背盖区,轴突末梢主要分布在纹状体、伏隔核、海马等区域。多巴胺在调节运动、情绪、奖赏等生理功能中发挥着重要作用,其分泌异常是多种神经精神类疾病发生、发展的病因之一。因此,监测脑内多巴胺分泌水平具有十分重要的意义。目前,国内外研究人员主要采用Microdialysis法检测脑内多巴胺的平均水平,但这种方法的局限是无法实时地进行检测。北京大学分子医学研究所周专课题组研发的在体碳纤微电极电化学监测技术可以灵敏、实时探测脑内多巴胺的分泌,这种方法需要研制在体检测多巴胺分泌的电化学微电极,并采用不同的动作电位编码进行电刺激,以研究在黑质-纹状体通路中刺激模式对分泌的调控作用。2009年,周专教授申请的&ldquo 大脑多巴胺在体(in vivo)记录用电化学微电极研制&rdquo 项目得到了第一期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金的资助下,通过实验仪器与研制材料的购置,周专课题组开展了富有成效的工作,包括:(1)改进实验室原有的在体电极系统;(2)将该系统应用到具体的大脑多巴胺分泌检测中;(3)优化电极的制作,为更大规模的生产奠定基础。目前,该项目已经顺利结题,其研制的碳纤维电极直径仅7um,制作方便,对脑组织损伤较轻,并已经能够在动物实验中稳定检测多巴胺的异常分泌活动。应用前景:多巴胺在调节运动、情绪、奖赏等生理功能中发挥着重要作用,其分泌异常是多种神经精神类疾病发生、发展的病因之一。因此,实时监测脑内多巴胺分泌水平具有十分重要的意义。由于目前临床上没有较好的检测神经性精神疾病患者多巴胺分泌水平的方法,该技术进一步完善后,将在未来应用到临床辅助多巴胺检测和神经外科手术治疗中。
  • 宁波材料所李润伟团队在超稳定可拉伸电极方面取得重要进展
    在智能可穿戴电子领域,稳定耐用的柔性可拉伸导体仍然是一个巨大的挑战。尤其是在人体表皮生理信号的收集过程中,稳定的可拉伸电极可以实现长时间精准的信号收集。目前无论是表面结构设计型、导电材料复合型还是本真可拉伸型电极,均难以实现在动态变形下稳定的电性能。所以,制备具有高稳定电性能的电极仍然是一个极大的挑战。近日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在李润伟研究员的带领下,受到人工渔网启发,模仿“水膜-鱼网”结构设计了具有柔性自适应导电界面的超稳定可拉伸电极,提出利用静电纺丝法构建液态金属聚氨酯(TPU)二维“仿水膜-鱼网”结构薄膜,实现了极低初始方阻(52mΩ sq-1),解决了弹性电极中导电率和拉伸率不可兼容、循环变形下电性能不稳定的问题,应变下通过网孔束缚液态金属对外扩展和液态金属在网孔内自适应流动,实现低电阻高稳定可拉伸电极,该电极的动态自适应导电网络使其具备极强的动态循环稳定性,经过33万次100%拉伸应变循环,电阻仅变化5%,同时电极面对冷热、酸碱、浸水等服役环境变化,依旧表现出稳定的电性能。该电极可应用于全天候人体表皮生理信号监测、智能人机交互界面及人体热疗等方面,有望助力基于万物互联的可穿戴健康监护系统及电子皮肤人机交互界面的持续发展。该工作以题为“Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction”的论文发表在InfoMat上(DOI:10.1002/inf2.12302),并被选为封面文章(如图1)。图1 液态金属基超稳定可拉伸电极及应用InfoMat封面该团队通过TPU静电纺丝与液态金属微纳颗粒静电喷涂的原位复合,以及随后进行的机械激活,制备出了仿“水膜-渔网”的可拉伸电极。该电极的超稳定电性能,主要得益于其仿“水膜-渔网”结构,也可称之为液态金属动态自适应网络,由于液态金属薄膜与聚氨酯纺丝网的交互作用,在小应变下(<100%的应变),SEM原位观察到液态金属可以实现自适应流动,卸去局部应力,保持导电薄膜连续;在大应变下(300%-500%的应变),尽管液态金属薄膜会破裂,但聚氨酯纺丝网会阻碍其断裂,并使其包裹在纤维丝上,保持整体导电网络的稳定性(图2a)。作者还透彻分析了液态金属微米纳米球如何通过尺寸效应和微观捆绑结构实现与纳米纤维丝网络的复合。图2 超稳定电极机理及应用同时,通过局部激活和激光切割,可以将聚氨酯液态金属复合材料制备成多层多功能人机交互系统。上层电容传感阵列连接在集成电路和蓝牙模块上,能够实现无线信号传输,在拉伸和弯曲状态下均可以对计算机输入无线指令,可应用在智能可穿戴游戏控制等方面。下层蛇形加热器展现出良好的电热稳定性,可以实现45℃-90℃稳定加热,并展现出优异的加热循环性能,可用于人体加热治疗。局部激活的电路对机械破坏展现出很好的抵抗性,该电极可以实现即时导电通路重建,使电极在破坏、拉伸状态下依然能够正常工作(图2b)。该电极展在100%应变拉伸循环试验中,在第一次拉伸电阻发生了轻微升高,后续的33万次循环中,其电阻仅上升了5%,该特性要远远优于其他已报道的可拉伸电极(图2c)。该电极可以实现人体表皮全天候心电信号检测。首先,通过体外细胞实验证明该电极具有良好的生物相容性和极低毒性,可以用在人体表皮进行心电监测,其展现出与商用凝胶电极类似的阻抗性能。其次,该工作根据人的活动场景,为电极设计了静态、运动、水冲三个工作场景,超稳定电极展现出优异的心电信号收集能力,信噪比达到0.43,尤其是在水冲环境中,该电极依然能够收集到稳定、清晰的心电信号,可用于全天候心电诊断(图3)。图3 超稳定电极的生物相容性探究及其在全天候心电监测方面的应用综上所述,该工作设计并实现了超耐用可拉伸电极,基于液态金属和聚氨酯纺丝网络构成的自适应导电网络,实现了在机械变形、长时间氧化、循环浸没、加热、酸碱浸泡等各种环境刺激下的稳定电性能,尤其实现了33万次拉伸循环下极小的电阻变化。该电极可以应用在全天候心电监测、智能人机交互系统等方面,在长时间体表电子皮肤、体内生物相容性器件等方面展现出很大的潜力。该工作由曹晋玮、梁飞、李华阳等在李润伟研究员与宁波诺丁汉大学朱光教授的共同指导下完成,并得到国家自然科学基金(51525103、51701231、51931011),宁波市3315人才计划,宁波科技创新2025项目(2018B10057),浙江省自然基金(LR19F010001),浙江省杰出青年科学基金(2016YFA0202703)中国科学院王宽诚教育基金(GJTD-2020-11)的支持。
  • 溶解氧测定仪电极清洗校准、再生、维护和保养
    1) 1~2周应清洗一次溶解氧测定仪电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将溶解氧测定仪电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。   2) 2~3 月应重新校验一次零点和量程。   3) 溶解氧测定仪电极的再生大约1年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可细砂纸抛光。   4) 在使用中如发现溶解氧电极泄露,就必须更换电解液。   溶解氧测定仪校准标定方法:一般可采用标准液标定或现场取样标定。  1) 标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。   2) 现场取样标定法(Winkler法):在实际使用中,多采用Winkler方法对溶解氧分析仪(溶解氧仪)进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。  3)溶解氧电极再生:溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离z大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液 对于流通式测量方式,要求流过电极的最小流速为0.3m/s。
  • 上海三信LabSen pH电极 为不同行业提供定制化解决方案
    pH电极是pH测试的核心技术、精确之源。拥有30年电化学传感器研发制造经验的上海三信仪表厂打造出的LabSen®pH电极与常规电极相比具有显著特点:耐碰撞玻璃膜强度是传统球泡的十倍以上,凝胶化内溶液避免产生气泡影响测试稳定性,全品种电极满足各种应用场合和测试要求。  据介绍,LabSen®pH电极凝聚了先进的电极技术,通过5种玻璃敏感膜配方、8种玻璃膜形状、4种液络部类型、4种参比系统和5种参比电解液的结构组合,精心打造30余种pH电极,为各行业应用定制专业可靠的测量方案。  LabSen®的产品技术和电极选型可归纳为六大类应用方案:低阻抗玻璃膜和专利三合一电极温度快速感应结构,帮助实验室常规测试得到快速准确的结果;超纯水pH电极的精细复杂结构保证了低离子pH测量的稳定性;特殊配方的玻璃膜满足了强酸、强碱、高温样品和含氢氟酸样品的测量要求;微量样品体积极小,需要细微型坚固玻璃完成pH测试;固体半固体和平面介质的直接pH测量需要各种类型的穿刺和平面电极;粘稠和乳制品测量液络部容易堵塞,预加压参比系统和Protelyte电解液是完美的解决方案……更多产品展示请看视频:
  • 【技术知识】在线溶解氧分析仪的注意事项及电极维护方法
    在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。使用注意事项1、继电器与标准伏设备连接时需使用交流接触器。2、首次使用或更换电极时需要对仪器进行校正,且以后每规定时间进行一次校正(根据使用环境而定)。3、仪表与电极安装地点应尽量避开变频器、标准伏电机等干扰源,若有干扰应做好屏蔽工作。4、仪表与电极之间必须使用屏蔽线且不能剪断,信号线长度不能超过标准限定长度,若要延长或剪断信号线必需安装前置信号放大器。电极维护方法1如发现整个测量系统响应时间长、膜破裂、无氧介质中电流增大等等,就需要进行更换膜头、添加电解液的维护工作。2仪器测量值的正确与否,与测量电极有关系,因此,在整个测量系统中,溶解氧电极的维护是个重点。3更换膜、添加电解液的维护工作每六个月左右一次,每次换膜或添加电解液后,电极需重新极化和校准。4电极膜表面清洗:可用纱布沾少量稀洗涤剂轻轻檫洗,或安装喷水流清洗装置,自动定时对溶解氧测量电极膜表面进行清洗。5金阴极的处理:氧电极使用一段时间后,金阴极表面如出现少量褐色,须取下膜架,蒸馏水清洗擦干后用标准号以上金相砂纸轻轻磨擦黄金表面,进行抛光处理。6抛光后,用蒸馏水冲洗干净安装膜架(没有蒸馏水可以用纯净水替代)。相关仪器B2100在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
  • 四川赛恩思仪器与甘肃某石墨电极材料企业达成合作
    以国家供给侧改革和“一带一路”倡议为背景,以抢抓国家“兰州—西宁城市群”建设重大战略机遇为契机,以打造炭素强企为蓝图,又一家炭素行业的新星企业选择四川赛恩思仪器生产的HCS-801D型高频红外碳硫分析仪作为其检测设备。该新材料企业是我国大型钢铁企业中国宝武和辽宁方大集团共同出资筹建,其10万吨超高功率石墨电极项目总体设计代表了世界先进水平,完全符合我国智能制造、绿色制造、高质量发展的要求。感谢客户的选择,四川赛恩思仪器能够参与这一项目倍感荣幸。我公司根据客户的需求配置了碳硫全量程(0.00001%-99%)高频红外碳硫分析仪,满足其测试不同含量样品需求,特别是超高和超低碳硫含量测试数据深受用户好评。硫含量是评价石墨及其石墨制品品质的重要指标,硫含量高低直接影响石墨产品价格,甚至影响其产品性能。四川赛恩思仪器生产的HCS-801D型高频红外碳硫仪分析仪采用大功率高频炉提高了非金属样品的转化率,运用新算法在超低、超高含量的数据补偿计算上突破很大,关键测试器材均采用进口部件,为大型企业,多品种样品分析提供了数据保障。 我公司工程师对客户公司的检测人员进行了仪器操作和维护方面的培训,并在现场测试样品,数据结果获得客户的一致认可。样品名称编号标准含量测试结果C%S%C%S%冶金焦炭GBW11106C0.550.55580.550.54910.550.55930.550.5494硫精矿GSB04-2709-201147.647.577747.647.827847.647.652147.647.5532生铁YSBC28072-953.140.0873.13450.08613.140.0873.15590.08703.140.0873.15310.08713.140.0873.14650.0868普碳钢YSBC37110-080.0830.0310.08250.03150.0830.0310.08270.03160.0830.0310.08310.03080.0830.0310.08410.0311 四川赛恩思仪器已先后研发生产了高频红外碳硫仪、火花直读光谱仪、氧氮氢分析仪以满足客户的检测需求。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士、营销人才加入四川赛恩思仪器有限公司共谋发展!
  • 干法电极车间除湿机,干法电极车间湿度控制设备
    干法电极车间除湿机,干法电极车间湿度控制设备【新闻导读】对于任何一家工厂或企业来说,一个优质的生产环境可以优化加工工艺,对其生产与品质都起到了至关重要的作用。尤其是在锂电池干法电极车间,不管是机器设备的运行还是产品质量都跟环境的灰尘含量、温度、湿度息息相关。以湿度为例,一般来说,锂电池干法电极车间对空气湿度的要求是在40%RH以下,超过这个范围,那么空气湿度就超标了   锂电材料与空气的反应会在原材料保存、电极制备、极片存储等整个过程进行,因此,对于锂电材料,从原材料到整个电池生产过程都需要严格的环境控制,特别是水分控制。如果水分与材料已经发生了反应,通过常规的干燥过程根本无法再次去除水分的影响,电极浆料的制备、极片制造等环节都需要在干燥环境内进行,一般地,锂电正极电池的生产过程都需要露点-30℃环境。  如果锂电正极材料颗粒表面吸收空气中的水分,反应产生了LiOH,这就会对极片制造工艺过程产生严重的影响。在锂电正极浆料制备过程中,PVDF溶解于NMP中,材料表面的碱性基团会攻击相邻的C-F、C-H键,PVDF很容易发生双分子消去反应,会在分子链上形成一部分的碳碳双键。  锂电材料吸收水分反应产物Li2CO3在充电状态的高电位下容易分解产生CO2气体,造成电池鼓包漏液问题。当材料吸收的水分足够多时,产生的气体多,电池内部的压力就会变大,从而引起电池受力变形,出现电池鼓涨,漏液等危险。  因此,对于锂电正极材料,在原材料保存和电池制备过程中,环境湿度都需要严格控制,才能生产高性能的锂离子电池。为此,这就需要通过专业的湿度控制设备--正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机来对其生产、储存等环境的湿度进行科学合理的控制环境。  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机是严格采用专业的技术和精湛的工艺制造出高效、节能、环保的除湿机产品,具有智能湿度恒定控制系统,用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现高效的除湿效果,降低整机运行成本。欢迎您查询干法电极车间除湿机,干法电极车间湿度控制设备的详细信息!  正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机技术参数与选型参考:  产品型号-------除湿量----适用面积-----功率-------电源----循环风量  正岛ZD-228LB--28(L/D)---30-80(㎡)----420(W)---220V/50Hz--190m3/h  正岛ZD-558LB--58(L/D)---50-100(㎡)---670(W)---220V/50Hz--850m3/h  正岛ZD-880LB--80(L/D)---100-160(㎡)--710(W)---220V/50Hz--980m3/h  【除湿机租赁业务要求】提供灵活的租赁方案,满足客户短期和长期的租赁要求。  【除湿机租赁收费标准】具体可根据租用机型、租用数量以及租用天数等来定价。  正岛ZD-890C---90(L/D)---90-150(㎡)---1700(W)--220V/50Hz--1125m3/h  正岛ZD-8138C--138(L/D)--150-250(㎡)--2000(W)--220V/50Hz--1725m3/h  正岛ZD-8168C--168(L/D)--180-280(㎡)--2800(W)--380V/50Hz--2100m3/h  正岛ZD-8240C--240(L/D)--280-380(㎡)--4900(W)--380V/50Hz--3000m3/h  正岛ZD-8360C--360(L/D)--380-580(㎡)--7000(W)--380V/50Hz--4500m3/h  正岛ZD-8480C--480(L/D)--500-880(㎡)--9900(W)--380V/50Hz--6000m3/h  ◎选型注意事项--除湿机的除湿量和型号的选择,主要根据使用环境空间的体积、新风量的大小、空间环境所需的湿度要求等具体数值来科学计算。另外需要注意的是环境的相对湿度与环境的温度有关,温度越高,湿度蒸发越快,反之效果越差,因此在配置除湿机时,需要在专业人员的指导下进行选型,这样才能选到最为适合你的除湿机!  核心提示:在锂电池的生产加工过程中,采用干法电极工艺提高电极的压实密度,提高极片厚度扩大活性材料可用空间,由于大幅减少了杂质的导入,使得电化学副反应降低,以此也可以提高电化学体系电压,相比湿法电极工艺能量密度大幅提升,成本也大幅下降,可靠性也大幅提升,再加上先天的优势,可谓意在深远!  而锂电正极面对很多问题,其中原材料的保存、电池生产环境要求高是巨大的挑战。本文简单总结下环境因素,特别是湿度对锂电正极材料特性的影响 不过,现在只要在其各个生产车间内配置相应的正岛ZD-8240C干法电极车间除湿机及ZD系列智能湿度控制除湿机,就可以对环境空气湿度进行科学合理的控制,从而满足其生产工艺的湿度控制要求!以上关于干法电极车间除湿机,干法电极车间湿度控制设备的全部内容是正 岛 电 器提供的,仅供大家参考!
  • 华菱公司国家级企业技术中心项目奠基
    4月30日上午,华菱公司国家级企业技术中心项目奠基仪式在星马汽车园内隆重举行。  奠基仪式由马鞍山市副市长金庆丰主持,马鞍山市市委书记郑为文宣布开工,市长周春雨代表市委市政府作重要讲话,市经济技术开发区管委会党工委书记、副主任马少华致辞,集团公司董事长刘汉如介绍了项目情况。市领导郑为文、周春雨、集团公司董事长刘汉如等共同为项目奠基培土。  华菱公司国家级企业技术中心项目总投资26692万元,占地面积45亩,建筑总面积45529平方米,将于2011年底建设完成。主要建设内容为:产品研发大楼、试验中心大楼、新产品试制车间、培训中心大楼等。技术中心建成后,主要进行重型商用车底盘、专用车、客车、清洁燃料汽车等汽车产品及其关键核心零部件的研发工作,并侧重发展整车设计及匹配、车身、整车电器系统匹配、特种专用车开发为主的核心技术研究。建立培养研发团队,迅速掌握核心技术,成为国内具有一定实力国际具有一定影响力的重型商用汽车底盘及特种专用汽车研发中心之一,华菱公司的长远更大发展夯实基础。  在当日的奠基典礼上,刘汉如说:“华菱公司国家级技术中心项目的开工,是公司技术实力的不断提升的结果,是公司长期积累、不断发展、不断进步的结果,是我公司发展史上的一件大事。我深信,在省市各级领导和相关部门的关怀和大力支持下,在广大合作伙伴和社会各界朋友的关心和帮助下,我们就一定能迈向更远的目标,为马鞍山市乃至安徽省的经济发展和汽车工业的进步贡献新的力量,并在世界汽车舞台上占有一席之地!”
  • 铂电极与参比电极测得的电位不是ORP值
    通常用铂电极作为指示为电极,银-氯化银或饱和甘汞电极作为参比电极测得的电位为平衡电位,这个电位往往被人误认为ORP电位(氧化还原电位)。平衡电位加上该温度下参比电极的电位值,才是氧化还原电位(ORP)值,这个电位是铂电极相对于氢电极的电位值。 FJA系列ORP去极化自动测定仪中在测得平衡电位后自动加上当前温度下的饱和甘汞电极或银-氯化银电极的电位值,结果是氧化还原电位(ORP)值。 有些用户购了我们ORP去极化法自动测定仪测定样品的ORP值与传统的方法测得的平衡电位相比较,就得出结论,两种方法结果对不上,相差甚大。 后来 我们要用户把样品寄过来用两种方法测定,结果如下: ORP去极化法自动测定仪测定结果为 -422.9mV -423.4mV 传统的方法测得的平衡电位为 -632mV, 如果加上银-氯化银电极的电位204mV,则样品的氧化还原电位(ORP)值为-428mV。 这说明两种方法完全对得上。www.kew.cn
  • 工业电导率电导电极的选择与使用
    电极的选择与使用根据被测水样电导率的大小范围,选择常数合适的电极是准确测量的关键。特别是对纯水(3μS/cm)和超纯水(1μS/cm)的测量,应用0.1或0.01的电极,必要时还要加上密闭测量槽,才能作到准确的测量,否则将产生较大的误差。选择电极的基本原则:根据被测水样电导率的大小范围,参照下表选择常数合适的电极。在选择电极时,zui易出现的错误是“选择大常数的电极测低电导”。如选1.0的电极测3μS/cm的水样,这不可能得到准确的值。因为低电导介质的导电性很差,若再用大常数的电极去测量,则只会得到更微弱且不稳定的电信号,势必大幅度增加测量误差。 配上各种电极后的测量范围测量范围电极常数电导电极型号备注0.01~20μS/cm0.01DDJ-0.01作流动密闭测量0.1~200μS/cm0.1DDJ -0.10 1~2000μS/cm1.0DDJ -1.00 10~20000μS/cm10DDJ -10.0 30~600.0mS/cm30DDJ -30.0 超出上表所列测量范围进行测量时,误差将会有所增大。当介质电导率值100μS/cm时,宜用常数为1.0或10的铂黑电极测量以增大有效面积,使电极表面的电流密度显著下降,以有效削弱介质是浓溶液时容易产生的电极极化影响。仪表中设置的电极常数必须与电极上所标的常数一致。如所配电极上标注的电极常数为0.102,则仪表里设置的电极常数必须为0.102。
  • 复盘 l pH电极的选择与应用
    电化学(electrochemistry)作为化学的分支之一,是研究两类导体形成的接界面上所发生的带电及电子转移变化的科学。近年来,电化学相关的新技术、新仪器、新应用层出不穷,特别在能源、材料、环境保护、生命科学等多个领域发挥着越来越重要的作用。电化学测量方法在一般科学、研究、食品和饮料生产、化学、制药和生物技术等行业变得越来越重要。近期,在电化学分析主题网络研讨会上,赛莱默应用专家纪宗媛女士为大家带来线上课程《pH电极的选择与应用》,分享了pH应用背景及测试方法、pH玻璃电极原理和电极选择、pH玻璃膜材质及形状等干货内容,并详细讲解了pH玻璃电极、电解液、电极隔膜等详细知识,现在就让我们一起来复盘吧!讲座视频 精彩的课程听不够Xylem Analytics SI在玻璃技术和分析设备开发方面拥有超过75年的经验,阐述不同电极结构、电解液成分、玻璃材质等对pH测试的影响,帮助进行各种应用条件下pH 电极的选择,并提供高效应用的方法及注意事项。想要获得更多电化学测量应用课程,敬请关注赛莱默分析仪器官方微信平台!
  • 植树节献礼丨重大突破,朗石重金属监测仪电极终身免维护!
    时逢植树节,朗石来献礼!礼是什么?问就是,电极终身免维护的重金属监测仪!NanoTek 9000 多参数重金属在线分析仪是朗石创新研发的,专门用于水中痕量重金属自动监测的仪器。它采用阳极溶出伏安法原理,可稳定、准确监测水中镉、铅、铜、锌等重金属的含量,测定下限达μg/L级别。阳极溶出伏安法阳极溶出伏安法是指在一定的电位下,使待测金属离子部分还原成金属并溶入微电极或析出于电极的表面,然后向电极施加反向电压,使微电极上的金属氧化而产生氧化电流,根据氧化过程的电流一电压曲线进行分析的电化学分析法。阳极溶出伏安法的优势在于在合适的工作电极、合适的分析环境条件下,可以对水质中μg/L数量级的重金属进行精确的定量分析。基于聚合物修饰电极技术,朗石成功破局,创新研发了电极终身免维护的NanoTek 9000多参数重金属监测仪。电极终身免维护创新地解决了电极需打磨维护的问题,行业内首次实现了工作电极终身免维护。 测量周期短、废液量低独特的流程及反应体系,极大缩短多参数一次的测量周期同时节省了废液量,废液量低至40mL。定量下限低测量算法的优化,大大提升了仪器低浓度监测的准确性,定量下限得以突破,定量下限低至0.5ppb。朗石成立初期,自主研发的多参数重金属监测仪在云南省环境监测站的重大建设采购项目中,与来自美国、英国、澳大利亚的进口设备进行技术比对,凭借良好的准确性和稳定性成为了云南省环境监测站的最终选择,成就了“国产品牌击败洋品牌”的佳话。项目验收现场朗石人践行“绿水青山就是金山银山”,在实现多参数重金属准确监测的基础上不断突破创新,坚定地“守护水安全,创新水智慧”,为客户持续创造更大价值!
  • 热电公司Orion电极走向火星
    期号:3-92506亲爱的热电:欢迎来到Sensible Advantage的第3期–本次新闻的闪光点来自热电Orion产品的关键特色。这周的热门话题是:Orion电极走出世界!热电公司与美国航空和宇宙航行局共同设计的电极将用来分析火星的表面。烧杯和传感器的合并是运用热电Orion电极的核心技术来设计的,并且将围绕火星的表面旅行3亿英里。传感器的模块合并了25种传感器,都是使用Orion的溶液特别制成的烧杯。加上,土壤样品将使用独特的样品搅拌器来制备,OrionStar™ 系列的仪表也起到了重要作用。为美国航空和宇宙航行局专有制备的,这些专业的传感器运用了热电核心技术,这些技术在Orion的电极里都可以找到,通常用来测量例如:钙、钾、硝酸根、铵、二氧化碳、氧和电导。这次旅程将在2007年8月开始,于2008年5月到达火星。Orion的电极和特殊制备的溶液将真实地把我们带到世界以外的地方。
  • 如何修复便携式ph计电极的精度?
    便携式ph计电极按照精度可以分为:0.001级、0.01级、0.002级、0.1级、0.2级,一般情况下,数字越小,精度也就越高了;PH电极按照读数可分为数显PH仪和指针式PH仪,一般情况下数显PH仪应用的比较广泛,而且读数也是比较方便的,指针PH仪应用比较少,主要在滴定试验中用的较多,主要是因为它能显示数据的连续变化。  PH电极出现测量误差较大时应知道有些因素已经开始影响到PH电极了。PH仪PH复合电极“损坏”,其现象是敏感梯度降低、响应慢、读数重复性差,可能由以下三种因素引起,一般客户可以采用适当的方法予以修复,一起了解下:  1.电极球泡和液接界受污染  可以用细的毛刷、棉花球或牙签等,仔细去除污物。有些塑壳pH电极头部的保护罩可以旋下,清洗就更方便了,如污染严重,可按前面的方法使用清洁剂清洗。  2.外参比溶液受污染  对于可充式PH电极,可以配制新的KCl溶液,再加进去,注意首次、第二次加进去时要再倒出来,以便将电极内腔洗净。  3.玻璃敏感膜老化  将PH电极球泡用0.lmol/L稀盐酸浸泡24小时。用纯水洗净,再用电极浸泡溶液浸泡24小时。如果钝化比较严重,也可将电极下端浸泡在4%HF溶液中3-5秒钟(溶液配制:4mlHF用纯水稀释至100m1),用纯水洗净,然后在电极浸泡溶液中浸泡24小时,使其恢复性能。
  • 仪器信息网讲座预告——微电极阵列技术对胰岛进行非侵入性电信号记录的发展与应用
    BUSINESS MEETING会议介绍2020-10-29 14:00,哈佛仪器携仪器信息网将举办“微电极阵列技术对胰岛进行非侵入 性电信号记录的发展与应用”讲座直播会议将对胰岛细胞外中通量电生理记录的新兴技术进行详细的介绍 欢迎大家点击链接报名参加!https://www.instrument.com.cn/webinar/meeting_22140.htmlBUSINESS MEETING主讲人Jessie Wang王娟哈佛仪器亚洲区技术支持会议时间:2021-10-29 14:00BUSINESS MEETING会议内容胰岛电生理活性传统研究方法简介微电极阵列技术与胰岛细胞外电生理记录的发展与特点微电极阵列技术在胰岛细胞外电生理记录中的应用a.氧化应激对胰岛电生理活性的影响b.胰岛在微电极阵列电极上的长期培养与记录Beta Screen与MEA2100-MINI 系统简介BUSINESS MEETING主讲人简介王娟,上海交通大学医学院硕士,曾参与5-HT抑制坏死性调往信号通路改善糖尿病胃肠神经病变的机制研究,具有多年神经电生理、神经电化学、离体器官灌流、动物行为学等产品的应用经验,现任哈佛仪器资 深产品应用专家,为哈佛电生理产品线提供技术支持。BUSINESS MEETING参会说明一、参会条件1.免费报名无需任何差旅费用,只需一台电脑或一部手机,网络宽带超过128K。2.讲座PPT将实时传送给所有参会者,参会者也可通过文字向报告人提问,报告人在报告结束后统一进行解答。二、参会方式1.报名参会并通过审核后,您将收到邮件通知,并在会前一天收到提醒参会的短信通知。2.会议当天进入仪器信息网网络讲堂首页(webinar.instrument .com.cn),点击“进入会场”,填写报报时手机号,即可登陆会场参会。
  • 丁传凡教授:从双曲面电极到平面电极——新型离子阱质谱仪的研究
    复旦大学丁传凡教授  丁传凡教授在报告中提到,从潜艇到宇宙飞船,质谱仪有广泛的用途 并解释了为什要研究离子阱质谱:一是离子阱质谱体积小,造价便宜,使用起来比较方便,其次是我们用的质谱仪器几乎都是进口的,主要原因是四极杆和离子阱的加工精度要求非常高。是否还有另外一种简单一点的方法,能够使四极杆质谱、离子阱质谱加工制造相对容易一些?传统理论认为四极杆质谱和四极离子阱质谱的四个电极必须满足一个双曲面方程才能够稳定的工作。另一方面,电极的形状决定了电场的分布,通过调节电极一定会导致离子阱性能的改善。丁传凡教授在实验中研究了非双曲面四极杆质谱——印刷线路板平面电极。  该离子阱是由一组印刷线路板合围而成,电路板包含绝缘体或半导体的基底。在这些基底的内、外两表面上附有电导体材料构,基底的内面上被加工成所需形状,以便可以产生用来传输、存储和分析离子的空间中产生所需要的电场分布。实验证明该离子阱的测定质量数可以达到4000以上,在实验中质量分辩能力达2800左右,可以满足大多数的有机做无机质谱方面的要求。同样可以做MS/MS分析,可以实现通常离子阱的大部分功能。实验证明,用印刷线路板做离子阱质量分析器可以用到通常的GC-MS或者LC-MS。  丁传凡教授还研究了一维和两维离子阱阵列,用比较简单的电极生产多个质量分析器,用于多样品同时分析,理论和实验证明可以进行质量分析。
  • 赛默飞世尔科技推出全新pH电极产品系列
    2008年3月3日,赛默飞世尔科技宣布推出全新的pH电极产品系列:Thermo Scientific Orion ROSS Ultra 三合一电极系列和Thermo Scientific Orion 绿色电极系列。新推出的环保型电极性能更稳定,使用更方便。Orion Ultra 三合一电极不仅继承了Orion ROSS电极的高品质,高精度,高稳定性的优点,还可同时准确快速的测量pH值和温度,无需另配温度探头。Orion ROSS Ultra 三合一双液接电极内不含汞和银。由于不存在银和汞对样品的干扰,该电极可用于测量TRIS缓冲液或含蛋白质的样品。环氧树脂体可填充电极可与三种型号仪表连用:Star系列,A系列以及logRTM系列仪表。pH测量范围为0-14pH,温度测量范围为0-100℃。Orion 绿色电极是第一款符合RoHS要求的实验室及野外测量pH电极,不含汞,铅及其他受RoHS限制的物质。有可填充电极及低维护电极可选,也有单液接及双液接电极可选。双液接电极也可用于测量TRIS缓冲液,含蛋白质或硫化物的样品。所有Orion 绿色电极都为防水BNC接口。如需了解更多详情,请咨询021-68654588-2343,或登录我们的网站:www.thermo.com.cn 查询。
  • 卡尔费休水分仪电极怎么活化
    卡尔费休水分仪电极怎么活化,卡尔费休水分仪电极的活化方法主要有以下几种,以下是详细的步骤和注意事项:  丙酮清洗法:  使用干净的专用纸张,沾取少量丙酮。  小心翼翼地擦拭电极,确保丙酮能够均匀接触并覆盖电极表面。  等待丙酮完全挥发后,电极方可继续使用。稀硝酸浸泡法:  将电极浸入稀硝酸溶液中,浸泡时间通常为24小时。  取出电极后,用清水进行彻底漂洗,去除残留的硝酸溶液。  使用滤纸轻轻擦拭电极,直至干净为止。重铬酸钾溶液清洗法:  使用重铬酸钾溶液对电极进行清洗,清洗时间一般为1分钟。  该方法可以快速活化电极,提高电极的灵敏度。  清洗后,用清水冲洗电极,并用滤纸擦干。极细沙纸打磨法:  在特殊情况下,如样品急需分析,时间紧迫,可采用此方法。  使用极细的沙纸轻轻擦磨电极两端,注意力度要适中,避免损坏电极。  擦磨后,用滤纸拭净电极表面。注意事项:  在进行电极活化时,务必小心谨慎,避免损坏电极。  使用丙酮、稀硝酸和重铬酸钾溶液时,要注意安全,避免直接接触皮肤和眼睛。  清洗和活化后,要确保电极表面干燥、清洁,没有残留的液体或污染物。总结:  卡尔费休水分仪电极的活化方法包括丙酮清洗、稀硝酸浸泡、重铬酸钾溶液清洗和极细沙纸打磨。根据电极的污染程度和实际情况,选择合适的方法进行活化。适当的电极活化可以确保卡尔费休水分仪的准确性和可靠性,延长其使用寿命。
  • 你知道怎么更换溶氧仪电极膜片吗?
    在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。那么你们知道溶氧仪电极膜片怎么更换吗?下面就由我来教大家怎么更换溶氧仪电极膜片:  1、如果仪表处于运行状态,应先切断电源,八点几从测量池中取出。  2、从分析仪上拆下电极,电极结构如图所示。  3、垂直握紧电极,使电极朝上,旋下膜压帽,把旧膜从膜压帽中取出,并用纯净水冲洗膜压帽和新膜。将新膜黑点朝上放在膜压帽内。   4、电极朝下,旋开电极侧面的密封螺丝,使电解液流出,然后再拧紧螺丝。  5、用纯净水冲洗金阴极,然后用软纸巾轻轻吸去金阴极表面附着的水珠。  6、将电极朝上,垂直电极,用注射器通过电极上面的孔往电极内注入电解液,直到有电解液溢流。这样可确保电极内没有气泡存在。  7、将膜压帽旋在电极上,用装膜工具拧紧膜压帽,然后拧松一点,再拧紧。  8、用纯净水彻底冲洗电极,并用软纸巾轻轻吸干电极和膜表面的水珠。特别注意不要用力电极膜。  注意事项:  1、请勿用手触摸金阴极表面,受伤的油脂回影响电极特性。  2、电解液中含有低于1%的氢氧化钾,尽量避免与眼睛接触,,若不慎接触眼睛,应迅速用大量清水冲洗。  3、短时间与皮肤接触并无伤害,用水冲洗即可。
  • 《水质 pH值的测定 电极法》新版发布,明年6月实施
    近日,生态环境部在官方网站正式发布新版《水质 pH值的测定 电极法》方法标准。本标准与《水质pH值的测定 玻璃电极法》(GB 6920-86)相比,主要差异如下:——名称修改为《水质pH 值的测定电极法》;——修改了方法适用范围、方法原理以及样品保存条件;——删除了定义部分;——完善了标准缓冲溶液和实验用水的要求;——细化了校准、样品测定和结果表示等内容;——增加了样品的采集、质量保证和质量控制以及注意事项等条款。自本标准实施之日起,原国家环境保护局1986 年10 月10 日批准发布的《水质pH 值的测定玻璃电极法》(GB 6920-86)在相应的环境质量标准和污染物排放(控制)标准实施中停止执行。下面我们一起看一下《水质pH 值的测定电极法》部分新增内容一、明确了pH计校准溶液的选择要依据待测溶液性质而定。“8.2.1 校准溶液使用pH广泛试纸粗测样品的pH值,根据样品的pH值大小选择两种合适的校准用标准缓冲溶液。两种标准缓冲溶液pH值相差约3个pH 单位。样品pH值尽量在两种标准缓冲溶液pH值范围之间,若超出范围,样品pH值至少与其中一个标准缓冲溶液pH值之差不超过2个pH单位。”二、完善了仪器校准细节,把进口仪器常用的三点校准纳入国标“8.2.3 校准方法采用两点校准法,按照仪器说明书选择校准模式,先用中性(或弱酸、弱碱)标准缓冲溶液,再用酸性或碱性标准缓冲溶液校准。不同温度下各种标准缓冲溶液的pH值参见附表A.2。a)将电极浸入第一个标准缓冲溶液,缓慢水平搅拌,避免产生气泡,待读数稳定后,调节仪器示值与标准缓冲溶液的pH值一致。b)用蒸馏水冲洗电极并用滤纸边缘吸去电极表面水分,将电极浸入第二个标准缓冲溶液中,缓慢水平搅拌,避免产生气泡,待读数稳定后,调节仪器示值与标准缓冲溶液的pH值一致。c)重复a)操作,待读数稳定后,仪器的示值与标准缓冲溶液的pH值之差应≤0.05 个pH单位,否则重复步骤a)和b),直至合格。注1:亦可采用多点校准法,按照仪器说明书操作,在测定实际样品时,需采用pH值相近(不得大于3个pH单位)的有证标准样品或标准物质核查。注2:酸度计1 min 内读数变化小于0.05 个pH 单位即可视为读数稳定。”三、结果表示中增加超出0-14样品表示方式测定结果保留小数点后1位,并注明样品测定时的温度。当测量结果超出测量范围(0~14)时,以“强酸,超出测量范围”或“强碱,超出测量范围”报出。四、完善质量控制要求11.1 每批样品测定前应对仪器进行校准,当样品pH 值变化较大或监测场地变化时均应重新校准。11.2 每连续测定20个样品或每批次(≤20个样品/批)应分析1个有证标准样品或标准物质,测定结果应在保证值范围内,否则应重新校准,重新测定该批次样品。11.3 每20个样品或每批次(≤20个样品/批)应分析1个平行样。当pH 值在6~9之间时,允许差为±0.1个pH单位;当pH值≤6或pH值≥9时,允许差为±0.2 个pH 单位。测定结果取第一次测定值。注:文章转自网络
  • 离子色谱与离子选择电极结合的巨大潜力
    环境指标测定河流、湖泊和其他水体中铵离子(NH4+)浓度有两种基本方法。铵离子浓度是一个重要的环境指标,因为高浓度的铵(通常由工业污染或从农田中冲洗出来的过量肥料引起)会导致有毒有害的藻华。第一种选择是使用离子色谱法分析水样,通常与简单的电导检测器结合使用。第二种选择是使用电位测定法分析样品,在电位测定法中,离子选择电极(ISE)上的铵离子产生电压。离子选择电极通常由一个玻璃碳电极组成,该电极覆盖在一个膜上,膜上含有一个优先与特定离子结合的分子,称为离子载体,当遇到该离子时,离子选择电极可以产生电压。正如所料,这两种选择各有优缺点。带有电导检测的离子色谱法快速简便,但不如电位法灵敏,难以测定低浓度的铵离子。但离子选择电极电位滴定法可能会受到水样中其他离子的干扰。尽管离子载体(如无活性菌素)优先与铵离子结合,但它也会对水中的其他离子(尤其是钾离子和钠离子)产生反应,从而导致铵离子浓度的测量不准确。流动池因此,由斯德哥尔摩KTH皇家理工学院的玛丽亚库特罗(Maria Cuartero)领导的瑞典和葡萄牙研究团队决定尝试将这两种选择结合起来。他们希望这种组合型的仪器具有电位滴定法的灵敏度,并能够区分离子色谱法中的不同阳离子。为了将它们结合起来,库特罗和她的同事们创造了一个流动池,其中有三个离子选择电极的空间,然后将其简单地耦合到离子色谱柱上。来自色谱柱的洗脱液首先流经电导检测器,然后流经流动池,在流动池中它可以与离子交换膜相互作用。研究者们自己制作了这个模型。像往常一样,这些离子交换电极是基于玻碳电极,但研究人员用碳纳米管覆盖了这一点,以增强离子电荷向可检测电压的转化。在此基础上,他们涂覆了一种膜混合物,该混合物由聚合物基质、增塑剂、阳离子交换剂和溶解在四氢呋喃中的离子载体组成。最初,库特罗和她的团队将三个相同的离子交换电极插入流动细胞,每个电极都以非活性蛋白作为离子载体。这种设置提供了最可靠的测量,因为可以比较三个离子选择电极的响应。作为组合系统的首次测试,他们尝试使用它来分析一种特殊制备的锂、钾、钠和铵阳离子溶液。除了使他们能够优化各种分离参数外,这些试验还证实,所有四种阳离子都可以通过离子色谱法进行清晰分离,从而可以通过电导检测器和流动池中的离子交换检测器进行检测。多离子测定当溶液中所有阳离子的浓度相同时,它们从电导检测器中产生相似的响应,在得到的色谱图中显示出四个大小相似的峰。但是,由于非活性蛋白对铵离子的反应最好,因此离子交换电极对铵离子的反应比其他阳离子更强,产生的峰值要小得多。然而,离子选择电极仍然检测到了其他阳离子,尤其是钾,这表明如果单独使用流动池,它会高估铵离子浓度。正如研究人员在《ACS测量科学》(ACS Measurement Science Au)的一篇论文中所报告的那样,这些测试也证实了离子选择电极比电导检测器更灵敏,能够检测微摩尔浓度下的铵离子。最后,库特罗和她的团队表明,这种组合与实际水样的效果一样好,离子选择电极能够区分铵离子,并准确测定瑞典、西班牙和葡萄牙10个环境水样中的铵离子浓度。但这可能只是一个开始,因为有多种方法可以改善这种组合。首先,库特罗和她的团队表明,通过简单地插入含有优先与不同离子结合的离子载体的离子,电位流动池可以同时测量多个离子。此外,流动池应该很容易缩小,因为它是基于电极的,可能允许组合系统安装在单个芯片上。作者简介——乔恩埃文斯(Jon Evans)乔恩埃文斯是一位科学作家、编辑和作家。他为《新科学家》、《化学世界》和《今日材料》等出版物撰写了广泛的科学主题。他的最新著作《科学中的伟大思想》(2020)由约翰默里出版社出版。他还是一家名为JES Editical的编辑出版公司的创始人,该公司为科技型公司和组织制作广泛的书面材料,包括杂志、技术简报和新闻稿。JES社论最近出版了一本名为《实验室之谈:分析》的新杂志,刊登了对分析领域鼓舞人心的科学家的采访。符斌 供稿
  • HAMILTON工业在线电极迎来25周岁
    25年前您在哪里?  25年前瑞士哈美顿生产出第一支专业的工业在线电极,逐步发展壮大至今。  回顾25年来的辛路历程与成就,今天我们完全有理由也有资格来庆祝一下,当年的过程传感器专家生产出了第一支具有里程碑意义的pH电极。  上世纪 90 年代初期,具有专利单孔技术的pH玻璃电极最初虽是为实验室使用而设计,但它也可以广泛应用于各种解决方案。仅仅在几年以后,为工业定制的pH 电极就被研发出来了,并且很快成为市场不可或缺的选择。   2004年哈美顿研发出了应用于纯水的电导率标准液,成为世界上第一家提供经认证的,精度为± 1 %的1.3µ S/cm和5µ S/cm的电导率标准液生产商。  2008年,瑞士哈美顿研发出了创新方式的光学溶解氧电极&mdash &mdash 内置变送器的光学氧电极。全球首家将光学技术引入生物发酵领域,并成为行业的领导者,这就是现在众所周知的VISIFERM,不仅拥有现代化的溶氧测量技术,而且已被频繁地应用于各种使用过程包括复杂的生物监测和废水检测等工况。  用于细胞培养和发酵过程的工业在线活细胞浓度仪将帮助瑞士哈美顿在2014年再次设置生物检测传感技术新标准。  回顾过去的25年里这些显著的成果,我们为取得的成就感到非常自豪。  在生物技术和制药行业领域内,我们已经成为了世界上名列前茅的供应商之一,我们非常确信这种趋势仍将继续增长。  contact.china@hamilton.ch  www.hamiltonchina.com
  • 新型柔性电极“看”大脑更清晰
    近日,《科学》期刊发表了一项有关新型柔性电极应用于神经外科领域的研究进展。该研究团队创新采用分子设计新策略,研制出一种由仅有2微米大小的电极点组成的新型柔性电极,在手术中放到大脑上,可以帮助医生精确地“看”到大脑的神经核团、功能区,可以最大限度保护患者的大脑功能、减少致残致死情况。业内专家表示,这是目前世界上精度最高的柔性可拉伸微阵列电极。未来,该技术可以作为脑机接口中的核心技术,帮助瘫痪患者康复,并有望在未来的脑科学研究与临床转化中发挥重要作用。中国科学院外籍院士、美国斯坦福大学工程学院化工系主任鲍哲南,天津大学副教授王以轩为论文共同通讯作者,美国斯坦福大学博士后蒋圆闻、张智涛,王以轩和北京天坛医院神经外科副教授李德岭作为论文共同第一作者。其中,北京天坛医院副院长贾旺团队在提出生物医学问题、开展动物实验、调试电极参数、分析数据和撰写论文等步骤发挥重要作用。更清楚地看清大脑大脑是中枢神经系统的最高司令部,也是自然界最复杂的事物。“人的大脑中存在皮层功能区、神经核团等,是发放神经信号以控制人体各种行为的‘中枢司令部’,大脑中的多种神经传导束作为连接不同结构的‘桥梁’,传递各种信息。”北京天坛医院副院长贾旺对《中国科学报》说。贾旺介绍研究成果。(北京天坛医院供图)现代神经外科对于“精准”的要求极高,医生在手术中需要更及时、更精准地“看到”这些结构,以最大限度地保护患者的脑功能,减少致残甚至致死的几率。但在临床实践中,目前的技术体系无法完全满足需求,疾病累计功能密集区域的患者,在开颅手术后致残甚至致死的几率仍比较高。针对临床需求,研究团队提出 “可以紧密贴合在大脑不规则区域的柔性微阵列电极”的解决方案,并用分子设计新策略,研发出能在拉伸数倍情况下仍能保持导电性能的新型导电高分子材料。科研人员在展示柔性电极。(北京天坛医院供图)“这种电极在加工到2微米尺度下仍能保持可拉伸性和高导电性的特征,实现了可拉伸有机电子器件领域的重大突破。”蒋圆闻告诉《中国科学报》。同时,这种电极极为柔软而且可拉伸,可以放在脑干或神经外科术腔等多种不规则且容易损伤的场景,手术器械牵拉扭转等操作都不会损伤;基于高导电性和高密度的特征,应用该电极能精准定位到单个细胞的精度,以“热图”的形式直接“看到”大脑的神经核团,得以保护这些重要的大脑结构。从章鱼获得灵感“这是我很喜欢的一项研究,因为它很好地诠释了化学之美,并且展示了通过材料创新,我们可以开辟新的应用场景,尤其是在神经工程等新兴领域上。”鲍哲南对《中国科学报》表示。在早期的研究工作中,为了突破现有导电材料无法综合兼顾力学和电学性能的瓶颈,研究团队经历了一次次失败后,最终设计出更为合理有效的结构——在导电高分子材料中引入了拓扑交联网络,并实现了创纪录的高拉伸性、高导电性和高分辨光图案化的性能优势。“在寻找生物应用过程中,我们早期比较专注于在人体皮肤测试表面肌电。虽然结果还不错,但并不能完全突出我们器件的全部优势。”蒋圆闻说。“从人体到软体,可以考虑在其他更需要柔性设备的方向上进行尝试。”这是鲍哲南给蒋圆闻的建议。连接在章鱼臂上的可伸缩电极阵列(蒋圆闻供图)随后,蒋圆闻在软体动物上进行了测试,并发现不仅可以直接突出柔性可拉伸器件的优势,整个应用还更具有说服力。在实验中,蒋圆闻选择了具有代表性的软体动物——章鱼,并首次记录了章鱼触腕运动过程中的精细肌肉信号。利用获得的高质量电生理信号,研究人员可以对软体动物独特的分布式智能系统进行更深一步的解码研究,有望研制出更加智能的人造软体机器人。期望最终惠及患者这条章鱼给蒋圆闻带来了全新的思路和实验结果,就像蒋圆闻所说:“最终的结果都是一开始无法预测的。”在随后的实验中,研究团队实现了一系列过去难以实现的生物医疗应用,特别是针对柔软且精细的组织,包括以高分辨率稳定记录软体动物的肌肉信号,以及通过脑干实现单核团级别精准神经调控。研究团队选用大鼠来模拟脑外科手术,首次将该材料制备的神经电极运用在脑干等不规则并且高度易损伤的区域,并通过电极阵列精准定位到单个神经元的精度,以热图的形式快速且准确地勾勒脑干神经核团。“我们团队花了很长时间才开发出这种材料,该材料让未来的可拉伸电子产品的出现成为可能,其中透明的可拉伸导体是关键部件。”鲍哲南表示,“为了改进这种材料,我们还有很多工作要做。”谈到如何应用这种新技术,贾旺表示,北京天坛医院神经外科将依托国家神经疾病医学中心、国家神经系统疾病临床医学研究中心等平台,继续深入开展颅底手术中容易损伤重要神经的功能监测新技术和肢体瘫痪病人智能修复新策略等研究,从神经外科的角度助力脑科学发展,最终惠及患者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制