当前位置: 仪器信息网 > 行业主题 > >

碳素材料

仪器信息网碳素材料专题为您提供2024年最新碳素材料价格报价、厂家品牌的相关信息, 包括碳素材料参数、型号等,不管是国产,还是进口品牌的碳素材料您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳素材料相关的耗材配件、试剂标物,还有碳素材料相关的最新资讯、资料,以及碳素材料相关的解决方案。

碳素材料相关的资讯

  • 真没想到!小小棉籽壳居然可以变成新型碳素材料?上海净信研磨为您科普~
    赏析魔术表演的时候,粉丝们经常赞叹魔术师的奇妙能力。由于你没办法猜中下一阶段会产生哪些,也没办法猜中魔术师究竟是如何变出去的。  同样的,研发人员也被当做材料界的“魔术师”,也经常令人赞叹,由于你也没办法猜中他们是从哪些不值一提的东西中,“作出”新型材料;如同这小小的棉籽,在研究者精英团队的妙手实际操作下,成功制取出了“氮夹杂多孔结构碳素原材料”。   棉籽壳主体  棉籽壳,也称棉皮,是棉籽经历去壳机提取后剩下的外壳。它的羧甲基纤维素水分含量较高,平常多用于养植食药用菌、猪群颗粒饲料等,有“食药用菌的全能型细胞培养液”之称。  在我国是全世界关键产棉强国,西藏做为在我国几大产棉区之一,棉絮是西藏最具优点的特点資源之一,棉籽生产量达到450-500万吨级。西藏的棉籽壳資源来源于广,储量比较丰富,对棉籽壳的综合利用运用,意义重大。   功能性碳素原材料  功能性碳素原材料要以碳做为基础骨架图的新材料。它的优势包含:比较发达的孔隙度、高的堆积密度、优质的耐温性能,直径尺寸可调式等,在催化反应、吸咐、传感技术、分离出来及其储能技术行业拥有普遍的运用。选用各种各样可再生能源为原材料来制取新式碳素原材料,变成近些年的1个科学研究学术热点。   氮夹杂多孔结构碳素原材料的提取  依据研究人员的详细介绍,棉籽壳可立即开展炭化,提取方法全过程使用方便,安全性,炭化活性的低温冷冻研磨仪,且不用加上试剂开展后续处理等流程,可以以非常高效的情况下制取氮夹杂多孔结构碳素原材料。  相对于传统式碳素原材料的制取方式,该方式在制备原材料上有:低成本,原材料成份平稳均一,不用开展繁杂的成份分离步骤也能分离出来,原材料也不用预处理等优点。   上海净信低温全自动样品冷冻研磨仪JXFSTPRP-L系列   无需液氮预处理,可直接将样品降至所需温度,安全无噪音,全封闭研磨无污染可能性,进口材质内腔防腐易清洁,冷冻研磨领域的佳选仪器。  研究成果:  氮夹杂多孔结构碳素原材料的优点  据试验计算得出,所制取出的氮夹杂多孔结构碳素原材料堆积密度非常高,堆积密度达到2500 m2/g,氮含水量达到7%。并且以该方式制取的氮夹杂多孔结构碳素原材料制取的金属电极,在超级电容器中显示信息出出色的特性,比电容器达到320-340 F/g(电流强度为0.5 A/g),具备出色的光电催化性特性和循环系统可靠性。  除此之外,氮夹杂多孔结构碳素原材料还具备出色的染剂吸咐特性,可做为新式吸咐和分离出来用新型功能材料。  古语云:“人尽其才,物尽其用”。在科技人员这群“魔术师”的手上,真真正正的做到了灵活运用任何資源,让不值一提的事情也可以容光焕发更新的活力和想像力。也希望将来,他们能够作出更多更好的新型材料。  研磨实例对比图:   将样品和研磨珠加入研磨罐→设置好相关参数→研磨后成品
  • 彼奥德电子携多款产品精彩亮相第35届炭素经济技术信息交流会
    第35届碳素经济技术信息交流会于7月8-9日在素有“中国煤都”之称的山西大同国宾大酒店盛大举办,会议历时2天。本次会议以“结伴同行,相互借力”为主题,针对当前炭素制品生产经营形势,共同研究探讨炭素产业的发展新思路。彼奥德电子作为会议的主要协办单位,携多款产品惊艳亮相会议,前往展台咨询了解设备的用户络绎不绝,兴致勃勃。 现场用户咨询火爆 【展品介绍】kubo 1200超高速比表面积分析仪kubo-1200是一款具有超强测试能力和超高测试效率的静态容量法比表面积分析仪。最多可配置8个分析站,可在30分种内完成bet分析并输出结果,比标样参比法的比表面积仪测试数据更稳定、重复性更好。升级后的 kubo-1200还可进行多孔材料的总孔容积、孔径分布分析。 td2200真密度仪 td-2200气体法真密度分析仪是先进的检测材料骨架体积和真实密度的仪器,能测试排液法无法测定的固体材料。它是理想气态方程的应用,采用惰性气体标定体积,具有不污染不破坏样品的优点,同时具备更高的测试精度和稳定性。 北京彼奥德电子技术有限公司(简称“彼奥德电子”)成立于2003年1月9日,是一家集项目研发、产品生产、测试咨询于一身的技术服务型企业。公司拥有独立的技术研发、产品制造、组装测试及客户服务团队,并具备设计室、数控机床加工中心、装配车间及实验室等自主硬件设施,是业界内规模最大和团队最完善的技术服务型企业。彼奥德电子以“品质至上、服务优先”作为核心发展理念,以用户实际反馈为出发点,提高产品技术等级的同时,引入更多的专业人才,在物理吸附、化学吸附、真密度测试等领域取得了多项技术突破,着力攻克用户的应用难题。
  • 《铝用炭素检测方法》等129项有色金属标准审定会召开
    2011年3月24日~27日,全国有色金属标准化技术委员会在扬州召开了 《铝用炭素检测方法》等129项有色金属标准审定会、讨论会和任务落实会。来自全国有色金属行业的200多名代表参加了此次会议。  会议对《变形铝及铝合金扁铸锭》、《铝电解槽技术参数测量方法》和《镁及镁合金化学分析方法》系列标准等27项轻金属标准进行审定、预审和讨论 对《加工铜及铜合金化学成分与产品形状》、《电工用火法精炼再生铜线坯》、《铜精矿化学分析方法》等14项重金属标准进行审定、预审和讨论 对《碳化钨粉安全生产规程》、《钼化学分析方法》、《钛及钛合金带、箔材》等79项稀有金属、粉末冶金标准进行审定和预审 对《金珠》、《银条》等9项贵金属标准进行讨论。
  • 四川赛恩思仪器与甘肃某石墨电极材料企业达成合作
    以国家供给侧改革和“一带一路”倡议为背景,以抢抓国家“兰州—西宁城市群”建设重大战略机遇为契机,以打造炭素强企为蓝图,又一家炭素行业的新星企业选择四川赛恩思仪器生产的HCS-801D型高频红外碳硫分析仪作为其检测设备。该新材料企业是我国大型钢铁企业中国宝武和辽宁方大集团共同出资筹建,其10万吨超高功率石墨电极项目总体设计代表了世界先进水平,完全符合我国智能制造、绿色制造、高质量发展的要求。感谢客户的选择,四川赛恩思仪器能够参与这一项目倍感荣幸。我公司根据客户的需求配置了碳硫全量程(0.00001%-99%)高频红外碳硫分析仪,满足其测试不同含量样品需求,特别是超高和超低碳硫含量测试数据深受用户好评。硫含量是评价石墨及其石墨制品品质的重要指标,硫含量高低直接影响石墨产品价格,甚至影响其产品性能。四川赛恩思仪器生产的HCS-801D型高频红外碳硫仪分析仪采用大功率高频炉提高了非金属样品的转化率,运用新算法在超低、超高含量的数据补偿计算上突破很大,关键测试器材均采用进口部件,为大型企业,多品种样品分析提供了数据保障。 我公司工程师对客户公司的检测人员进行了仪器操作和维护方面的培训,并在现场测试样品,数据结果获得客户的一致认可。样品名称编号标准含量测试结果C%S%C%S%冶金焦炭GBW11106C0.550.55580.550.54910.550.55930.550.5494硫精矿GSB04-2709-201147.647.577747.647.827847.647.652147.647.5532生铁YSBC28072-953.140.0873.13450.08613.140.0873.15590.08703.140.0873.15310.08713.140.0873.14650.0868普碳钢YSBC37110-080.0830.0310.08250.03150.0830.0310.08270.03160.0830.0310.08310.03080.0830.0310.08410.0311 四川赛恩思仪器已先后研发生产了高频红外碳硫仪、火花直读光谱仪、氧氮氢分析仪以满足客户的检测需求。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士、营销人才加入四川赛恩思仪器有限公司共谋发展!
  • 全国钢标委会金相检验方法分委会成立
    全国钢标委会金相检验方法和炭素材料两个分委会成立  2009年2月26日中国钢铁标准网消息,全国钢标委会金相检验方法和炭素材料两个分委会成立,国标委工业一部主任殷明汉在钢标委金相检验方法和炭素材料分委会成立大会上发表讲话,讲话内容如下:  各位领导、各位专家,今天成立的全国钢标准化技术委员会金相检验方法和炭素材料两个分技术委员会,对钢铁行业具有重要的意义。我代表国家标准化管理委员会对新成立的标委会及各位委员表示热烈的祝贺!  金相检验方法标准是目前ISO、ASTM及先进国家通用的钢产品质量检验方法标准,是控制钢产品质量的重要手段。炭素工业发展迅速,如:电极产品正在向超高功率、大规格发展 炭块产品向超微孔发展 炭纤维产品向高强型发展。这些新的发展趋势急需新的标准来支撑、来促进。  金相检验方法和炭素材料标准化工作已经有了一定的基础,现有金相检验方法国家标准17项,炭素材料国家标准15项,但是仍然不能满足产业发展的需求,急需成立相应的标准化组织,网络全国的专家来系统地加强这两个领域的标准化工作,加快制修订急需的标准,提高标准质量和水平,完善标准体系,提升标准服务企业和市场的能力。  2008年下半年以来,随着国际金融危机的扩散和蔓延,我国钢铁产业受到严重冲击。政府出台一系列灵活、审慎的宏观经济政策,积极维护金融稳定和促进经济平稳较快增长,为钢铁行业最大限度地减少损失创造有利条件。这个月的9号,国务院正式印发了《钢铁产业调整和振兴规划》,明确要求以控制总量、淘汰落后、企业重组、技术改造、优化布局为重点,着力推动钢铁产业结构调整和优化升级,切实增强企业素质和国际竞争力。钢铁行业标准化工作应当结合产业特点,服务于钢铁产业调整振兴规划,进一步解放思想、实事求是、转变观念、改革创新,健全标准体系,服务科学发展,推动钢铁产业由大变强。  解放思想、转变观念,就是要牢固树立三个观念。一是要牢固地树立服务的观念,无论是标准的立项、制定、发布,还是实施与监督,都要服务于钢铁行业保增长、扩内需、调结构的需要,服务于钢铁产业调整和振兴规划的需要,服务于钢铁产业科学发展的需要。二是要牢固树立科学的观念,标准源于实践,必须遵循从实践中来到实践中去,经过实践的检验和提升,再服务于实践。科学观念还体现在标准体系要符合科学发展的要求,保持客观的本质。三是要牢固树立法制的观念,强制性标准是技术法规的重要组成部分,应该从法制的观念来理解强制性标准,增强强制性标准的严肃性。  改革创新、科学发展,就是要在结构、质量、速度、效益和管理五个方面狠下功夫,并且使这五个方面相互协调、相互促进,共同推动钢铁标准化工作的科学发展。  在结构方面,配合产业发展需求,有针对性的开展节能减排及安全生产等方面的标准体系研究与建设,围绕钢铁产业的技术进步和品种结构的优化着力开展重点标准的研制,建成科学合理的钢铁标准体系。在质量方面,标准的质量是我们生存和发展的根基,要进一步规范标准的立项、制订、审查程序,增强标准制修订过程的公开性和透明度,确保标准化工作的公平、公正和公信力。妥善协调和处理各种关系,切实做到统筹兼顾,确保标准的科学性、公正性和有效性。在标准中要增加自主知识产权和创新成果的含量。要根据我国生产力水平实际,加大推进采用国际标准和国外先进标准。积极开展国际标准化活动,努力使具有自主知识产权和自主创新成果的标准成为国际标准。在速度方面,要继续加快标准制修订速度,缩短标准标龄,同时要研究行业及技术发展方向,为及时更新标准做好技术基础,使标准切实跟得上行业发展的需求。在效益方面,要站在提升企业、产业和产品竞争力的角度上来衡量标准的效益。产品是企业创造出来的,企业是市场的主体,要发挥企业的作用,鼓励企业参与标准特别是产品标准的制修订工作。在管理方面,要进一步加强标准化工作规则和管理制度建设,加强对标准的立项、审查和制订过程的管理以及标准实施后的信息反馈,规范技术委员会的管理。加强标准体系建设,特别是要把国家标准的重点放在基础、通用、方法、管理、强制性标准和重点领域标准等方面。要加强协调,管理的核心是协调,要在坚持原则的基础上讲策略、讲艺术,调动各方面的积极性,发挥各方面的作用,不能只强调一方,而是要强调多方,共赢。钢铁行业要着力加强标准化工作宏观管理。充分调动各方面积极性,完善钢铁行业标准化工作协调机制,落实四抓,即:抓战略、抓规划、抓协调、抓落实,着力提升工作和管理水平。  今年国家标准委要重点抓好四件大事,一是加快《标准化法》的修订步伐。按照科学发展观的要求,根据新形势和新任务的需要,进一步明确四级标准的制定范围,理顺标准管理体制,适应一、二、三产业发展的需要 完善标准制修订工作的运行机制,强化闭环管理 明确各方责任和义务,特别是强化企业对企业标准的法律责任。二是加快制定国家技术标准战略发展纲要。尽快形成报送国务院的纲要草案,进一步明确标准化工作的指导思想、原则、目标、措施以及今后十多年的重点项目规划。三是加快国家标准化体系工程建设。按照国民经济分类原则,分析国家标准、行业标准、地方标准的适用性和协调性,明确标准制修订重点领域,制定一系列关键技术标准,研究标准化技术组织布局的系统性和有效性,用3年时间分阶段构建服务经济社会科学发展的标准体系、标准化技术组织体系、国际标准化工作推进体系以及标准化保障体系,整体提升我国标准化水平。四是加强国家技术标准资源服务平台建设。建设涵盖国家标准化资源、国际标准化资源、WTO TBT/SPS资源、标准全文资源以及标准文献服务资源的应用及服务系统,为全社会提供权威、准确、全面的标准化动态信息,努力提升我国标准化信息服务的整体水平。  新成立的两个分技术委员会要从以下几个方面入手开展工作。一是认真学习新印发的《全国专业标准化技术委员会管理规定》,制定分技术委员会的章程、秘书处工作细则和工作计划,明确技术委员会及其委员的责任和义务,增强责任意识,规范委员管理,提高技术委员会的工作水平。二是分析本领域标准化的需求,特别是要围绕《钢铁产业调整和振兴规划》,研究提出本专业领域的国家标准发展规划、标准体系及国家标准制修订计划。三是按照《关于进一步加强国家标准制修订管理确保国家标准质量的意见》,强化国家标准,特别是强制性国家标准制修订工作的质量意识,健全标准制修订全过程的责任制,落实有关各方的责任和义务,保证标准内容科学合理和文本规范。严格对标准各阶段文稿质量把关,及时处理标准制修订过程中出现的质量问题。  钢铁产业是国民经济重要支柱产业,涉及面广、产业关联度高、消费拉动大,钢铁产业的调整振兴,对于增强企业素质和国际竞争力,促进相关产业和经济平稳较快发展,具有重要意义。随着新的分技术委员会的建立,更多的企业和专家参与到钢铁领域的标准化工作当中。我们有理由相信,在中国钢铁工业协会的指导下,在秘书处承担单位首钢总公司首钢技术研究院与冶金工业信息标准研究院的大力支持下,在全体委员的共同努力下,一定能够开创金相检验方法和炭素材料标准化工作领域的新局面!
  • 化妆品行业或被彻底改变:纤维素制成闪光材料无毒可降解
    生活中有很多闪闪发光的包装,化妆瓶、水果盘等等,但它们很多是由有毒和不可持续的材料制成的,会造成塑料污染。最近,英国剑桥大学的研究人员找到了一种方法,可以从纤维素(植物、水果和蔬菜的细胞壁的主要组成部分)中制造出可持续、无毒、且可生物降解的闪光剂。相关论文发表在11日的《自然材料》杂志上。  这种闪光剂由纤维素纳米晶体制成,是通过结构色来改变光线,从而焕发出鲜艳的颜色。在自然界中,譬如蝴蝶翅膀和孔雀羽毛的闪光,都是结构色的杰作,这种色彩经历一个世纪也不会褪色。  研究人员称,利用自组装技术,纤维素可以产生色彩鲜艳的薄膜。通过优化纤维素溶液和涂层参数,研究小组能够完全控制自组装过程,从而使材料可以成卷地大规模制造。他们的工艺与现有的工业规模机器兼容。使用商业上可获得的纤维素材料,只需几个步骤就能转化为含有这种闪光剂的悬浮液。  在大规模地生产出纤维素薄膜后,研究人员将它们研磨成用于制造闪光或效果颜料的大小的颗粒。这种颗粒可生物降解,不含塑料,无毒。此外,与传统方法相比,该过程的能源密集度要低得多。  他们的材料可用来替代化妆品中广泛使用的塑料闪光颗粒和微小的矿物颜料。传统颜料,如日常使用的闪光粉,属于不可持续材料,而且会污染土壤和海洋。一般的颜料矿物必须在800℃的高温下加热才能形成颜料颗粒,这也不利于自然环境。  该团队制备的纤维素纳米晶体薄膜可以用“卷到卷”工艺大规模制造,就像用木浆造纸一样,首次将这种材料工业化制造。  在欧洲,化妆品行业每年使用约5500吨微塑料。该论文资深作者、剑桥大学优素福哈米德化学系的西尔维亚维格诺里尼教授表示,他们相信这种产品可以彻底改变化妆品行业。  将来,研究人员还将进一步优化生产过程,并使该种闪光剂商业化。
  • 有关参加“2010(第四届)中国高校材料院长论坛” 及入刊《中国新材料发展年鉴2009-2010》的函
    一、 《中国新材料发展年鉴》是我国材料领域最具权威性、导向性的工具书,2009-2010卷继续由科技部高技术中心发函并直接参与出版。  二、 时间:2010年4月17日-19日 地点:江苏太仓锦江国际大酒店(五星级)   三、 会议的主要内容:十二五新材料科技发展战略 十二五新材料人才发展战略 新材料产业的核心竞争力。本次论坛恰逢国家“十二五”科技发展规划正在制定,新材料产业被列为国家战略性新兴产业之时,大会将就科技部正在制定的“新材料领域十二五科技发展规划”等业界关注的热点话题进行研讨,献计献策,共同探讨加强新材料核心竞争力的新机制、新举措、新办法。  四、本次“2010(第四届)中国高校材料院长论坛”参会代表由组委会采用定向邀请方式确定。一般来说,每个相关高校可推荐一个主管校长和材料院长(系主任)参加会议,国家重点实验室、国家工程技术研究中心的主任可接受邀请参加会议。受邀参会代表的会议费、会议期间的餐费等均由组委会提供。没有组委会的邀请函,论坛不接待自行参会人员。如果受邀代表因故不能参加论坛,不必推荐其他代表。  五、有关战略发展合作单位  1、注册资本在人民币100万元以上(高等院校的院系必须承担有国家级项目)   2、在国内相关领域具有一定的影响力   3、同时参加年鉴、展览、会刊中的两项及以上的单位   符合以上条件的前20个单位将在《年鉴2009-2010》和院长论坛会刊目录页位置刊登其单位简写(六字以内)、标识和负责人姓名,同时在年鉴网站上同步公示。  六、自行参会人员,需持组委会邀请函和提前缴纳会议费1200元后方可参会,1200元包括资料费、餐费、会务费等 参会代表交通、住宿费自理。  七、年鉴和院长论坛会刊入刊提供资料:  图文资料(最好是按照版面规格设计好的样稿):文字300-1000字,图片2-6张,主要包括单位和产品/技术简介及图片、证书、联系方式等   八、所有参与合作的单位将同步免费获赠一年“中国新材料发展年鉴/中国高校材料院长论坛”网站首页或二级页面图片链接广告。  九、年鉴入刊价格表(单位:元,规格:210mmх285mm):  □前扉首页:12800 □目录前页:10800 □彩色跨页:8800  □彩色整页:6000 □黑白跨页:6800 □黑白整页:5000  十、材料院长论坛展位价格表(单位:元):  □协办单位冠名:50000元 □首要位置:10000  □较好位置:8000 □普通位置:6000  十一、材料院长论坛会刊入刊价格表(单位:元,规格:210mmх285mm):  □封面:18800 □封底:16800 □封二:16800  □封三:12000 □彩色整页:5000 □黑白整页:4000  十二、论坛赞助  □资料袋:10000 □不锈钢保温杯:8000 □笔记本:5000  □碳素笔:2500 □胸卡:2500 □资料发放:2500  *印制赞助单位广告(或Logo)和组委会联系方式,随大会资料袋派发现场所有与会代表。赠参会名额一人。  十三、我编辑部正在组织新材料领域“国家863”计划承担单位展示专题,如果贵单位承担有863项目或课题,请索取有关函件。  十四、参会代表在会议期间可免费散发资料,所有合作单位赠送精美玛瑙礼品手镯一只。  组织机构  主办单位  科学技术部高技术研究发展中心 国家现代材料科技信息网络中心  中国材料研究学会青年委员会 太仓市人民政府  支持单位  科技部、教育部、国防科学技术工业委员会、国家自然科学基金委员会、中国科学院、中国工程院  媒体支持  仪器信息网、中国材料网、中国高新技术产业导报、《新材料产业》、《材料导报》、中国有色金属报、中国企业报、中国化工报  指导委员会  石定环:国务院参事,中国材料网理事会理事长 干 勇:中国工程院院士  黄伯云:中国工程院院士、中国材料研究学会理事长 屠海令:中国工程院院士、中国材料研究学会副理事长  戴国强:科技部高新技术发展及产业化司副司长 陈志敏:科技部高技术研究发展中心副主任  高瑞平:国家自然科学基金委办公厅主任 黎懋明:科技部评估中心高级顾问  邵立勤:科技部高技术研究发展中心高级顾问 李临西:中国产学研合作促进会新材料专业委员会副理事长  浦荣皋:江苏省太仓市委书记 陆留生:江苏省太仓市市长  组织委员会(汉语拼音排序)  徐禄平:科技部高新司材料处处长 卞曙光:科技部高技术研究发展中心处长  张国庆:中国材料研究学会青年委员会主任 朱旺喜:国家自然科学基金委材料与工程学部处长  教育部科技司高技术处处长 高战军:中国工程院处长  徐 坚:863计划新材料领域专家组组长 陈弘达:中科院半导体研究所副所长  张少明:北京有色金属研究总院院长 周科朝:中南大学副校长  李义春:国家现代材料科技信息网络中心主任 王西涛:中国材料研究学会青年委员会秘书长  崔振铎:天津大学材料学院院长 曲选辉:北京科技大学材料学院院长  李贺军:西北工业大学材料学院院长 潘 峰:清华大学教授  聂祚仁:北京工业大学材料学院院长 陈建峰:北京化工大学化学工程学院院长  刘 庆:重庆大学材料学院院长 耿 林:哈尔滨工业大学材料学院副院长  谭建中:太仓市副市长 陈惠良:太仓市科技局局长   地址:北京市海淀区清华大学液晶大楼103室 邮编:100084  电话:010-81738904 81937558 传真:010-81738904  http://www.cmasteq.com E-mail: cmse2003@vip.sina.com  联系人:李四民
  • 化育新材 继往开来|北化新材料高峰论坛暨新材料校友会成立大会成功召开
    春暖花开,相约上海!4月8日-9日,北京化工大学新材料高峰论坛暨北化新材料校友会成立大会在上海大船酒店圆满召开。本次会议采用线下+线上直播的方式进行,近300名来自海内外各地的北化学子赴约而至,携手近5000名线上校友,共同见证北化新材料校友会的诞生!作为北京化工大学校友企业,北京信立方科技发展股份有限公司(旗下网站:仪器信息网,我要测网)荣誉当选北京化工大学新材料校友会第一届理事会副理事长单位,北京信立方科技发展股份有限公司董事长唐海霞女士当选北京化工大学新材料校友会第一届理事会副会长,仪器信息网CEO赵鑫先生当选北京化工大学新材料校友会第一届理事会副秘书长。上海线下会议现场章品书校友主持会议受大会委托,由埃米空间创始人、新材料校友会拟任副会长、研03级校友章品书主持会议,隆重介绍了与会各位领导与嘉宾,并对大家的到来表示衷心的感谢和诚挚的欢迎。上海奉贤区副区长厉蕾致辞上海奉贤区副区长厉蕾在致辞中表示,奉贤意为“敬奉贤人,见贤思齐”,首先代表奉贤区人民政府向莅临论坛的各位专家、北化校友表示诚挚的欢迎,向本次高峰论坛的胜利召开、北化新材料校友会的成立表示热烈的祝贺。厉区长介绍了奉贤区正在全力打造的美丽大健康、新能源、新材料、数字新经济等四大主导产业的发展进展,并向各位北化校友发出诚挚邀请,希望大家能够常来奉贤看看,探讨合作,共享奉贤的发展机遇。北京化工大学党委副书记甘志华致辞北京化工大学党委副书记甘志华在致辞中,首先代表学校依次感谢了奉贤区政府、兄弟校友会、兄弟相关行业协会、校友企业对北化新材料校友会的大力支持。甘书记感谢在新材料领域不断奋斗的广大北化校友,校友们怀着强烈的事业之心、创新之心、报国之心,推动成立北化新材料校友会,诠释了北化校训“宏德博学、化育天工”的精神,也展示了北化学子的创业才干和报国情怀。最后表示,北京化工大学将通过北化新材料校友会平台,进一步加强与广大校友联系、为校友们的全面发展提供全方位服务。中国化工企业管理协会副会长张恭春致辞、赠送诗词墨宝中国化工企业管理协会副会长、84级校友张恭春代表中国化工企业管理协会对本次新材料高峰论坛的开幕、北化新材料校友会的成立表示热烈祝贺。张会长表示,自己从业几十年来,亲身经历了我国化工行业发展壮大的伟大历程。我国已成为当今世界第一化工大国,但化工产业由大变强依旧任重道远。化工新材料是战略性基础性产业,是国际高科技竞争的关键领域制高点,也是我们的短板。而北化新材料校友会的成立将凝聚起一大批校友的优质资源,开辟出一条崭新的行业赛道,架起了通往行业竞争制高点的金色的桥梁。最后,张会长填词一首,并赠送墨宝祝贺北化新材料校友会成立!上海市新材料协会秘书长何扣宝致辞上海市新材料协会秘书长何扣宝在致辞中,代表上海新材料协会对北化新材料校友会的成立和新材料高峰论坛的成功举办表示热烈祝贺。何秘书长表示,北化新材料校友会的成立将进一步促进从事新材料相关行业校友之间的相互沟通与交流,也促成校友与母校之间的创新与合作。必将有效助推我国新材料产业的发展和突破卡脖子技术的研究与产品开发。最后,希望上海新材料协会与北化新材料校友会加强交流,相互学习,相互推进,共同为国家新材料产业的发展作出我们的努力和贡献。上海开伦投资集团有限公司党委书记、董事长宋鲁军致辞上海开伦投资集团有限公司党委书记董事长、93级校友宋鲁军在致辞中表示,作为北化校友,开伦投资集团非常荣幸能够承办本次大会。开伦集团主要经营方向是资产管理、投资、招商引资、金融贸易等五大板块。奉贤正处在高速发展的良好机遇,适逢北化新材料校友会的成立,希望大家认识奉贤、熟悉奉贤,在奉贤的这块热土上成就大家的另一番事业,而开伦集团也一定服务好校友,为校友的交流联络做好平台服务。北京化工大学新材料校友会正式成立接下来,大会进入北化新材料校友会成立仪式环节。首先,北京化工大学国内合作处处长、校友会总会秘书长何雨骏介绍了北京化工大学校友总会情况。接着,北京化工大学国内合作处副处长、校友总会副秘书长刘宏伟宣读北化新材料校友会批复文件。经大会审议表决,选举通过了北化新材料校友会第一届会长、执行副会长、副会长、理事、秘书长、副秘书长人选,并举行聘书颁发仪式。北京化工大学国内合作处处长、校友会总会秘书长何雨骏介绍了北化校友总会情况北京化工大学国内合作处副处长、校友总会副秘书长刘宏伟宣读新材料校友会成立批复文件北京化工大学新材料校友会授旗仪式校领导向北化新材料校友会第一届会长、执行副会长、副会长、理事颁发聘书北京化工大学新材料校友会第一届会长、执行副会长名单如下:会长:武德珍执行副会长:孙艳军、聂俊、李冰、包雷、申富强、何建全向北化新材料校友会第一届理事会秘书处人员颁发聘书聘书颁发仪式结束后,进行了兄弟校友会和兄弟院校致贺环节,上海财经大学创业与投资校友会会长郑峥嵘、北京化工大学美国校友会副会长王笃源分别送上祝贺词。上海财经大学创业与投资校友会会长郑峥嵘祝贺词北京化工大学美国校友会副会长、83级校友王笃源致辞江苏先诺新材料科技有限公司董事长武德珍当选会长并做履职发言授旗受聘和致贺环节后,新当选的82级校友武德珍会长发表了履职讲话。她首先感谢了领导和校友的信任,很荣幸和光荣担任首届北化新材料校友会会长,并代表北化新材料校友会对各位领导嘉宾和各位校友的到来表示热烈欢迎,对为校友会成立付出辛勤劳动的领导、校友老师和工作人员表示衷心的感谢。北京化工大学是各位校友的根,也是大家工作和事业的起点,新材料校友会的成立,为大家从事新材料产学研工作的广大校友搭起了与母校沟通的桥梁,也搭建起了校友之间的信息交流、资源共享、合作共赢、联络感情的平台,标志着北化新材料校友会筹建工作取得了阶段性的成果。北化新材料校友会成立后,将严格遵守校友会章程,遵循“化育新材、继往开来”的主旨,团结和带领校友会成员积极进取,不断加强校友之间校友跟学校之间的联系。加强合作,协同共进,共同推动我国新材料产业发展。北京化工大学新材料校友会成立大会参会人员合影留念4月8日晚宴后,近百位校友围炉夜谈,围绕如何办好新材料校友会,大家积极献计献策,畅所欲言北京化工大学新材料高峰论坛成功举办成立仪式后,大会邀请十余位新材料杰出校友、业内知名专家就大家关心的行业热点痛点难点、园区落地等主题依次为大家作精彩报告。上海市奉贤区经委主任、促投办主任张贤上海市奉贤区经委主任、促投办主任张贤首先对上海市奉贤区产业进行了推介。上海奉贤区聚焦美丽大健康、新能源汽配、数智新经济、化学新材料等新兴产业,拥有亿元商务楼宇、十亿级产值企业、百亿级工业园区、千亿级产业集群,更为特色的新材料高科技产业打造了上海化工新材料产业新高地。为扶持产业发展,奉贤区陆续出台了一系列创新发展、金融支持、人才激励等政策,建立了全要素、立体化政策体系,持续优化营商环境。上海骐杰碳素有限公司副总经理张国强校友企业上海骐杰碳素有限公司副总经理张国强,作为入园企业代表,分享了企业经验。骐杰自成立至今,依托一个中心、三个基地、三个赛道(热场材料、摩擦材料、储能材料),一直在国产化的道路上前行。目前,已拥有百项专利,并获得了国家专精特新小巨人、高新技术企业、高新技术成果转化百佳企业等荣誉称号。报告中,张总分享了骐杰发展历程与成长经验,并表示愿意为校友会平台的发展作贡献。北京化工大学科学技术发展研究院副院长朱保宁北京化工大学科学技术发展研究院副院长朱保宁介绍了北化促进科技成果转化情况。近年来,北京化工大学面向世界科技前沿、经济主战场、国家重大需求、人民生命健康等取得了一系列突出的科技成果,获得国家科技奖励32项、省部级和社会力量奖励264项,并建立了全局化、层次化、专业化的科技成果转移转化服务体系,推动化工新材料行业良性循环。朱保宁从特色学科方向、突出科技成果、科技成果转化服务工作等方面详细介绍了北化在促进科技成果转化方面取得的进展。北京化工大学材料科学与工程学院党委书记赵静北京化工大学材料科学与工程学院党委书记赵静介绍了材料科学与工程学院情况。学院于1958年建校时创办,是我国最早建立的以高分子(聚合物)材料为特色,兼顾复合材料、无机非金属材料和金属材料协同发展的材料类院系。六十年发展至今,已形成了“人才培养-基础研究-技术创新-工程应用-社会服务”五位一体的材料学科特色创新体系;材料学为国家重点学科,高分子化学与物理为国家重点(培育)学科;材料科学与工程学科在全国第四轮学科评估中位列A类(排名前10%),进入“绿色化学化工及材料”一流学科群重点建设行列。中国合成树脂协会理事长郑垲中国合成树脂协会理事长、74级校友郑垲分享了合成树脂行业产业现状及趋势。目前,我们合成树脂行业整体水平与发达国家相比,还有相当大的差距。全球的高端市场,几乎被国外所垄断,美国、日本和西欧占据了新材料市场的70%。因此,我国需培育一批具有全球竞争力的世界一流企业和石化基地;并积极采用新技术、新工艺、新设备,提高装置的效率和工艺水平以及产品的技术含量;努力降低能耗物耗,降低原料所占成本的比例,同时,也要注重新材料研发及产品的应用性能提高、同时赋予产品绿色可持续的生态特性、改进服务手段;并且需要全面提升现代化管理水平和核心竞争能力,推进行业健康发展。中国石油和化学工业联合会化工新材料专委会秘书长卜新平中国石油和化学工业联合会化工新材料专委会秘书长、研01级校友卜新平分享了化工新材料产业现状及发展趋势。近年来,我国化工新材料产业体系不断健全,产业规模持续扩大;技术创新能力不断增强,光伏级EVA,光学级PMMA、193纳米光刻胶等多个领域有新突破;中石油、中石化、万华化学、盛虹等一批专业化工新材料企业迅速崛起;上海化工园区、宁波石化经济开发区、南京化工园区等一批专业化工新材料园区迅速成长;BASF、诺利昂、英国威格斯等外资企业持续加大我国化工新材料市场布局;在产业政策的引导下,化工新材料投资热情高。但是,还存在结构性矛盾突出,高端供应不足;关键原辅料及特种装备存在瓶颈,产业链一体化程度有待提高;核心技术受制于人;市场主体小而分散;部分产品存在投资过热等问题。国瓷材料创始人、CTO宋锡滨特邀嘉宾国瓷材料创始人、CTO宋锡滨分享了如何应对外部环境对新材料产业的影响,对新材料产业的现状和差距进行了分析,讲述了外部环境对新材料产业的影响,并给出新材料产业的高质量发展建议:政府方面,应注重顶层设计,全国统筹,集群化发展,注重战略布局、系统规划,建立国家实验室,加强技术创新、打通应用创新,提升技术竞争力和战略竞争优势;产业方面,应符合新材料高质量发展的规律,符合新材料科技成果转化的原理,符合材料、工艺、设备协同性的原则,符合技术优势与收益性相结合的逻辑,重视新材料产业相关人才的建设,坚持长期主义和极致主义的理念等。中科院化学所赵永生研究员2022年未来科学大奖得主、中科院化学所研究员、研00级校友赵永生为大家分享了有机微纳激光材料与器件的相关研究。首先从有机微纳谐振腔的可控组装与加工、有机材料激发态过程两方面介绍了有机微纳激光的研究进展。接着讲解了团队在有机微纳电泵浦激光方面的探索,针对有机材料的发光依赖激子,激子形成慢、消耗快,难以实现粒子数反转等关键难点,采用“开源、节流”等解决方案取得一定进展。最后展示了有机微纳激光在显示领域的系列应用案例及应用展望。江苏集萃光敏电子材料研究所有限公司董事长聂俊江苏集萃光敏电子材料研究所有限公司董事长聂俊校友分享了光刻胶产业现状及趋势。光刻是半导体制造中最重要的工艺环节,占芯片制造时间的40-50%,占制造成本的30%。在7nm 制程的EUV技术成熟之前,ArFi光刻胶仍是市场主流,占比高达36.8%。2022年全球光刻胶市场规模约为23亿美元,我国光刻胶市场规模 5.6 亿美元。2022年我国高端半导体用光刻胶占比仅约为3%。当前,光刻胶还需解决如何控制合成高稳定性高分子、光化学反应等科学问题,以及超纯化处理及检测、长期稳定性及批次稳定性、工程化设备、工程化管理等工程问题。江苏先诺新材料科技有限公司董事长武德珍江苏先诺新材料科技有限公司董事长武德珍分享了高性能PI纤维产业现状及趋势。当前,国外PI薄膜、树脂、工程塑料等产品规模和性能都处于领先水平,并对我国展开技术封锁。纤维是聚酰亚胺材料中难点最多、难度最大的研究和技术方向,国际上只实现了普通型PI纤维的产业化,而高强高模型PI纤维始终未获得工程化和产业化突破。先诺自成立以来,聚焦高性能聚酰亚胺纤维的研发、生产和销售,为国内高性能纤维产业发展持续助力。最后,武德珍会长也结合自己创业经历,分享了从科研到产业化的个人感想与建议。中科院福建物构所吴立新研究员中科院福建物构所研究员、84级校友吴立新分享了高性能光固化3D打印树脂制造进展。现阶段,光固化3D打印设备正朝着高速、高精、高粘方向发展,3D打印材料也正朝着低收缩、高性能和功能化发展。吴立新团队聚焦高性能3D打印树脂,取得了一系列成果,包括突破光固化树脂弹性不足的技术瓶颈,获得拉伸强度26.9MPa且断裂伸长率1750%的高弹高强光敏树脂等。接着,北京化工大学国家科技园管委会办公室主任张国彬、DT新材料创始人&CEO张立生、汇银投资创始人&董事长陈锐华、北京中检启迪私募基金管理有限公司总经理刘涛等多位校友依次为大家进行了有关创新创业的主题分享。北京化工大学国家科技园管委会办公室主任张国彬分享主题:共聚优势资源,共建双创平台,共谋高质量发展,共赢精彩未来特邀嘉宾DT新材料创始人、CEO张立生分享主题:中国新材料产业发展现状及科技成果转移转化汇银投资创始人、董事长、95级校友陈锐华分享主题:北化新材料创投联盟赋能加速新材料创新北京中检启迪私募基金管理有限公司总经理、97级校友刘涛分享主题:化育新材料杯北化新材料校友创新创业大赛介绍北京化工大学新材料校友会会长武德珍作大会总结发言会议最后,北京化工大学新材料校友会会长武德珍作总结发言,再次感谢了各位嘉宾带来的精彩报告,这些报告为北化新材料校友会的成立添加了更加浓郁的交流氛围。同时也再次感谢了大会筹备背后会务组所有人员,大家夜以继日的无私奉献为这次会议的成功举办打下坚实基础,也希望大家能够一如既往地支持北化新材料校友会的工作,让校友会能够越办越好。北化新材料校友会也将为大家做好服务,大家一起为北京化工大学的未来发展共同添砖加瓦。至此,本次大会圆满结束。会场外景:大船酒店,象征着新材料校友会这艘大船已经乘风破浪,扬帆起航!
  • 全国有色金属标委会召开标准审定会和讨论会
    全国有色金属标准化技术委员会于2010年4月19日~4月23日在福建省武夷山市召开有色金属标准审定会和讨论会,来自近70家单位的110多名代表参加了会议。全国有色金属标准化技术委员会主任委员范顺科和秘书长朱玉华出席了会议。  会议审定了《原铝生产用碳素材料 电极用沥青》系列分析方法、《超细羰基镍粉》、《冷轧钛带卷》等7项标准 预审了《石墨化焦》、《海绵钛单位产品能耗限额》、《锂辉石精矿》、《合成白钨技术条件》等6项标准 讨论了《氧化铝生产用絮凝剂》、《加工铜及铜合金化学成分和产品形状》、《铜及铜合金状态表示方法》、《铟化学分析方法》系列标准、《锑精矿化学分析方法》系列标准、《真空脱脂烧结一体炉》、《钽及钽合金牌号和化学成分》、《粉冶钼合金顶头》、《铱管》等32项标准,并对《高纯锡化学分析方法》系列标准、《钌靶》、《铂靶》等7项标准进行了起草任务落实。
  • 第六届国际碳材料大会暨产业展览会
    齐聚全球力量,共‘碳’材料未来!Carbontech专注于推动碳材料行业高质量发展,始终秉持产学研融合,搭建碳材料行业交流平台载体,积极促进人才、技术及项目的合作交流与对接。Carbontech2021将于11月18日开启新起点,大会将诚邀碳材料领域专家400位+,带来极具时效性和参考价值的碳材料相关主题报告和分享,涵盖金刚石、培育钻石、碳基储能、碳化硅半导体、碳化硅陶瓷、石墨烯、碳纳米管、碳纤维及碳/碳复合材料、多孔碳材料等相关碳材料主题论坛。同期举办青年科学家论坛,CEO高峰论坛,圆桌会议,项目路演,需求对接,新品发布,逆向采购和碳材料主题特色展览等精彩活动。为什么参与——前沿、趋势、应用、决策、市场、智库聚焦碳材料行业动态荟聚碳材料全产业链人群精准链接,找到对的人;思维碰撞,开拓新思路;精彩纷呈,呈现多样性碳材料主题活动碳材料主题展览会议信息• 组织机构主办单位:DT新材料协办单位:中科悦达(上海)材料科技有限公司,中国超硬材料网,湖南省新材料产业协会名誉主席:成会明,中国科学院院士,中国科学院金属研究所研究员 黄政仁,中国科学宁波材料技术与工程研究所研究员,所长论坛主席:敖玉辉,长春工业大学教授陈成猛,中国科学院山西煤炭化学研究所研究员郭领军,西北工业大学教授黄启忠,中南大学教授黄 庆,中科院宁波材料所先进能源材料工程实验室主任李清文,中国科学院苏州纳米技术与纳米仿生研究所副所长邱介山,北京化工大学教授,化学工程学院院长阮殿波,俄罗斯自然科学院院士,宁波大学教授王 炜,重庆石墨烯研究院有限公司总经理张久俊,加拿大皇家科学院院士,上海大学教授(以姓氏字母为序)承办单位:宁波德泰中研信息科技有限公司媒体支持: Carbontech,材视科技,华讯活性炭网,材料分析与应用,烯碳资讯,石墨盟,阿仪网,环球会展网,涂料在线,粉体圏• 大会日程日期时间活动安排地点11月17日星期三全天会议报到一楼签到处09:00-17:002021中国新材料产业发展大会暨CEO高峰论坛上海新发展亚太JW万豪酒店18:00-20:00CEO商务酒会11月18日星期四09:00-09:30开幕式活动主会场09:30-12:00碳材料大会主论坛主会场09:00-17:002021中国新材料产业发展大会暨CEO高峰论坛上海新发展亚太JW万豪酒店碳材料主题展览,英才计划、需求对接、逆向采购会会场一、二楼14:00-17:00金刚石论坛,培育钻石论坛,碳基储能论坛,碳化硅半导体论坛,碳化硅陶瓷论坛,石墨烯论坛,碳纳米管论坛,碳纤维及碳/碳复合材料论坛,多孔碳材料论坛分会场夯邦创新挑战赛分会场12:00-14:00自助午餐餐饮区18:00-20:00欢迎晚宴11月19日星期五09:00-17:00金刚石论坛,培育钻石论坛,碳基储能论坛,碳化硅半导体论坛,碳化硅陶瓷论坛,石墨烯论坛,碳纳米管论坛,碳纤维及碳/碳复合材料论坛,多孔碳材料论坛分会场碳材料主题展览,英才计划、需求对接、逆向采购会会场一、二楼12:00-14:00自助午餐餐饮区11月20日星期六09:00-12:00金刚石论坛,培育钻石论坛,碳基储能论坛,碳化硅半导体论坛,碳化硅陶瓷论坛,石墨烯论坛,碳纳米管论坛,碳纤维及碳/碳复合材料论坛,多孔碳材料论坛分会场碳材料主题展览,英才计划、需求对接、逆向采购会会场一、二楼14:00-17:00自由离会12:00-14:00自助午餐餐饮区• 报告议题确认嘉宾及报告议题时间论坛及议题(排名不分先后,持续更新中)11月18-20日09:00-17:00金刚石论坛超精密加工与智能制造袁巨龙,浙江工业大学教授 半导体基片超精密加工技术与装备康仁科,大连理工大学教授超高速磨削加工难加工材料表面完整性研究张璧,南方科技大学教授 超硬材料的激光加工王成勇,广东工业大学教授 金刚石刀具在树脂基碳纤维复合材料与碳化硅陶瓷基复合材料中应用陈明,上海交通大学教授 新型超硬材料的合成与性能研究赵智胜,燕山大学教授大面积单晶金刚石材料与器件研究进展张进成,西安电子科技大学教授金刚石激光——实现高亮度激光输出的新手段吕志伟,河北工业大学教授金刚石在激光晶体中的应用杭寅,上海光机所研究员金刚石材料和光电器件单崇新,郑州大学教授大尺寸超高导热金刚石单晶制备及其装备技术朱嘉琦,哈尔滨工业大学教授金刚石布里渊激光器——突破高相干激光功率极限的新手段白振旭,河北工业大学教授基于金刚石NV的晶圆级电磁兼容测试技术杜关祥,南京邮电大学教授氢终端金刚石半导体导电沟道研究刘金龙,北京科技大学副教授(李成明教授团队)高导热材料的设计与制备郭宏,有研科技集团有限公司教授GaN大功率放大器基于金刚石散热片的研发郭跃进,南方科技大学教授碳基芯片散热江南,中国科学院宁波材料所研究员微纳尺度下金刚石的弹性应变工程及器件探索陆洋,香港城市大学教授金刚石在大功率微波射频器件及5G高功率芯片中的应用徐跃杭,电子科技大学教授CVD金刚石热沉封装高功率器件张星,集美大学副教授CVD金刚石在激光中的应用秦景霞,元素六技术负责人飞秒激光加工金刚石微结构及NV色心田振男,吉林大学副教授先进激光技术助力新材料应用突破Dhruv Rajguru,Deputy Manager – International Sales & Marketing11月18-20日09:00-17:00培育钻石论坛有关培育钻石首饰创新设计的思考施健,上海交通大学、上海市首饰设计协会副会长培育钻石与设计师的多种可能杜半,深圳珠宝首饰设计师协会会长技术驱动重塑钻石零售的新机会郭海峰,钻石小鸟创新总经理培育钻石品牌元年,克拉自由时代到来刘韧, Light Mark 联合创始人、品牌合伙人沈锡田,中国地质大学(武汉)教授宋中华,国家珠宝玉石质量监督检验中心(NGTC)北京研究所副所长黄耀庭,中信证券研究部高级经理圆桌嘉宾:梁伟章, 广州钻石交易中心总经理刘厚祥,国家珠宝玉石质量监督检验中心(NGTC)上海实验室顾问11月18-20日09:00-17:00碳纤维复合材料论坛碳纤维在能源领域应用与发展杨小平,北京化工大学教授碳纤维/环氧复合材料分层裂纹的自修复研究刘玲,同济大学教授耐高温含硅芳炔树脂及其复合材料研究进展黄发荣,华东理工大学教授碳纤维热塑性复合材料的热冲压成型吴海宏,河南工业大学教授“双碳”目标下碳纤维复合材料的发展机遇吴刚平,中科院山西煤化所研究员耐高温聚酰亚胺树脂及其复合材料王震,中科院宁波材料所碳纤维自动铺放成型技术与应用吴保林,中科院自动化研究所高性能中间相沥青基碳纤维发展及应用叶崇,湖南大学教授 碳纤维增强热塑性复合材料超声波焊接研究进展李洋,天津大学副教授 激光新技术在碳纤维领域的应用王菲,长春工业大学副教授 先进复合材料用高性能环氧树脂吕蔚,上海华谊树脂总经理11月18-20日09:00-17:00碳/碳复合材料论坛黄启忠,中南大学教授郭领军,西北工业大学教授董志军,武汉科技大学教授王大伟,上海大学绍兴研究院副院长李铁虎,西北工业大学教授史小红,西北工业大学教授袭建人,山东大学教授彭雨晴,上海大学副研究员廖寄乔,金博股份董事长王秀飞,优材百慕技术副总肖鹏,中南大学教授/湖南世鑫董事长申富强,骐杰碳素总经理张晓卉,沈阳科斯莫科技有限公司总经理姜勇,湖南省鑫源新材料董事长11月18-20日09:00-17:00石墨烯论坛面向工业制备的石墨烯薄膜制备与转移技术研究李雪松,电子科技大学教授差异化石墨烯规模化制备与应用卢红斌,复旦大学教授石墨烯导热增强复合材料与热界面材料林正得,中国科学院宁波材料技术与工程研究所研究员石墨烯与先进润滑田煜,清华大学教授面向极端环境应用的碳纳米多功能材料结构设计徐鸣,华中科技大学教授成会明,中国科学院院士,中国科学院金属研究所研究员王炜,重庆石墨烯研究院总经理丁古巧,中国科学院上海微系统与信息技术研究所研究员任广义,信和新材料股份有限公司重防腐负责人牛利,广州大学教授张锦英,西安交通大学教授侯士峰,山东利特纳米技术有限公司洪江彬,厦门凯纳石墨烯技术股份有限公司11月18-20日09:00-17:00多孔碳材料论坛多孔碳商业化评价方法及流程安仲勋,上海奥威科技开发有限公司副总经理,国家车用超级电容器系统工程技术研究中心主任活性炭在全氟化合物(PFAS)的应用贺鹏,卡尔冈炭素(苏州)有限公司总经理新一代净水MTP滤芯介绍许鑫,北京碧水源科技股份有限公司研发中心高级工程师以生物质碳为原料的超级电容活性炭的工业化生产张永林,北海星石碳材料科技有限责任公司总经理Structural Design of Carbon Materials for Microwave Absorbing Properties黄小萧,哈尔滨工业大学教授酚醛树脂微球的分子尺度设计及光催化生产双氧水刘健,中国科学院大连化学物理研究所研究员功能介孔碳材料的设计合成李伟,复旦大学教授碳@铝复合材料的制备及其污染物去除性能研究杨世迎,中国海洋大学教授超级电容器用多孔碳材料的可控构筑及其产业化研究杨维清,西南交通大学教授生物质基碳材料在高级氧化技术中的应用张延荣,华中科技大学教授功能性多孔碳材料的制备与应用研究张世国,湖南大学教授多孔碳功能材料设计与能源转换张进涛,山东大学教授电化学应用导向的纳米多孔碳的设计与合成张国新,山东科技大学教授三维多孔碳的制备及其在5V高电压超级电容单体中的应用赵磊,岭南师范学院物理系副主任隔热承载一体化材料及其高温演变规律郭鹏磊,中国科学院金属研究所博士蒋剑春,中国工程院院士,中国林业科学研究院林产化学工业研究所研究员俞书宏,中国科学院院士,中国科学技术大学教授(确认中)陈成猛,中国科学院山西煤炭化学研究所研究员陆安慧,大连理工大学教授王朝阳,中物院激光聚变研究中心研究员张亚刚,电子科技大学教授张学同,中国科学院苏州纳米技术与纳米仿生研究所研究员陈永,海南大学教授李瑛,浙江工业大学教授麦亦勇,上海交通大学教授李凯,军事科学院防化研究院防化研究院副研究员汪海燕,深圳市环球绿地新材料有限公司技术总监力小安,南京动量材料科技有限公司总经理吴惠东,福建元力活性炭股份有限公司销售总监11月18-20日09:00-17:00碳纳米管论坛纳米碳金属基复合材料的构型化复合张荻,上海交通大学金属基复合材料国家重点实验室主任从碳管到碳笼——材料设计及能源应用胡征,杰青、长江学者、南京大学教授超长碳纳米管的可控制备与优异性能张如范,清华大学化工系副教授TEM碳基纳米增材、减材、等材制造王鸣生,厦门大学教授碳纳米管真空电子学柳鹏,清华大学副研究员一种新的固相合成手段-极端条件下碳材料的可控合成郑海燕,北京高压科学研究中心研究员碳纳米管飞秒激光器刘雪明,杰青、浙江大学教授单壁碳纳米管量产技术王文宏,北京北方国能科技有限公司总经理面向热管理应用的碳纳米管组装材料研究邱琳,北京科技大学教授碳纳米管纱线许福军,东华大学纺织学院副院长碳纳米管/硅异质结太阳电池陈剑辉,河北大学物理科学与技术学院副研究员碳纳米管水处理刘艳彪,东华大学环境科学与工程学院研究员碳纳米管结构复合吸波材料桂许春,中山大学光电材料与技术国家重点实验室副教授面向电化学储能的碳及聚合物材料设计与应用耿建新,天津工业大学院长高导电铜/碳纳米管复合材料高召顺,中科院电工研究所研究员李清文,中科院苏州纳米技术与纳米仿生研究所副所长戴 庆,杰青、国家纳米科学中心所务委员丁建宁,江苏大学副校长、教授刘开辉,杰青、北京大学物理学院教授张永毅,中科院苏州纳米所南昌研究院材料部主任杨 烽,南方科技大学副教授张莹莹,清华大学副教授蒋仲庆,浙江理工大学教授陈培宁,复旦大学彭慧胜课题组副研究员耿宏章,天津工业大学教授苏言杰,上海交通大学薄膜与微细技术教育部重点实验室副研究员11月18-20日09:00-17:00碳基储能论坛碳基储能材料的设计构筑方法及挑战邱介山,北京化工大学教授,化学工程学院院长电化学储能助力碳中和马福元,浙江浙能技术研究院有限公司电化学储能首席研究员新一代的高导电单双壁碳纳米管的开发和应用毛鸥,江苏天奈科技股份有限公司研发&知识产权总监锂离子电池快充负极材料研究进展潘广宏,国家能源集团北京低碳清洁能源研究院高级工程师锂离子电池炭负极材料的结构设计和性能宋怀河,北京化工大学教授高性能硅基材料的研发及产业化徐泉,北京壹金新能源科技有限公司研发总监 纳米线储能材料与器件麦立强,武汉理工大学教授中国储能产业政策与发展潜力展望李楠,中国海油集团能源经济研究院资深研究员、博士阮殿波,宁波大学教授,俄罗斯自然科学院院士胡涵,中国石油大学教授张海娇,上海大学教授王振波,哈尔滨工业大学教授何孝军,安徽工业大学教授、化学化工学院院长杨卷,西安交通大学副教授郑时有,上海理工大学教授刘栋,北京化工大学副教授金亮,中钢集团马鞍山矿山研究总院股份有限公司雷成,乌海宝杰新能源有限公司副总经理黄伟国,超威电源集团有限公司研究院副院长路崎,能源材料业务中国区应用开发负责人诺瑞(深圳)新技术有限公司重庆石墨烯研究院有限公司圆桌话题:硅负极在电动汽车动力电池中的应用刘萍博士,上海昱瓴新能源科技有限公司首席技术官徐泉,北京壹金新能源科技有限公司研发总监11月18-20日09:00-17:00碳化硅半导体论坛SiC功率MOSFET可靠性研究进展孙伟锋,东南大学电子科学与工程学院院长SiC衬底氮化物HEMT外延材料研究进展李忠辉,中国电子科技集团公司第五十五研究所首席专家高电压(15kV)功率器件封装基板设计与绝缘材料研究梅云辉,天津工业大学教授SiC 功率器件与应用研究进展张峰,厦门大学教授全碳化硅高频隔离光伏逆变器的研制杨文强,北京低碳清洁能源研究院研发经理碳化硅MOSFET器件特性及应用章剑锋,瑞能半导体科技股份有限公司研发总监盛况,浙江大学电气工程学院院长傅振兴,云度新能源汽车有限公司CTO梁亚非,北汽新能源研究院动力系统部总工程师江协龙,湖南三安半导体有限责任公司总经理赵然,国宏中宇科技发展有限公司总经理刘国友,株洲中车时代电气股份有限公司副总工程师王学合,上汽英飞凌汽车功率半导体(上海)有限公司总经理杨霏,国家电网有限公司功率半导体研究所副总工程师颜剑,华润微电子有限公司研发经理11月18-20日09:00-17:00碳化硅陶瓷论坛再结晶碳化硅及其复合材料的研究进展与应用肖汉宁,湖南大学教授半导体制造装备用高精密碳化硅陶瓷部件刘海林,中国建筑材料科学研究总院有限公司所长碳化硅陶瓷膜材料关键制备技术与前沿应用徐慢,武汉工程大学教授高比表面积碳化硅: 新型绿色催化材料郭向云,常州大学教授SiC陶瓷及其复合材料的3D打印与微结构设计杨勇,中国科学院上海硅酸盐研究所研究员碳化硅陶瓷基复合材料工程应用研究向阳,国防科技大学副研究员黄庆,中国科学院宁波材料技术与工程研究所研究员何流,中国科学院宁波材料技术与工程研究所研究员吴澜尔,北方民族大学材料科学与工程学院教授、院长王应德,国防科技大学教授茹红强,东北大学教授黄小忠,中南大学教授李江涛,中国科学院理化技术研究所研究员陈建军,浙江理工大学教授焦健,中国航发北京航空材料研究院表面工程研究所副所长• 参会费用碳材料论坛参会费用信息(元/人)(非通票及通票均含餐饮)企业参会科研代表参会学生参会通票4800非通票3800通票3500非通票2500通票3000非通票2000说明与备注含活动期间会刊、论文集等资料、茶歇、3个午餐、1场晚宴券等、纪念胸针、胸卡、参会证等缴费方式银行转账名 称:宁波德泰中研信息科技有限公司开户银行:中国建设银行股份有限公司宁波住房城市建设支行帐 号:33150198343600000107支付宝转账名 称:宁波德泰中研信息科技有限公司支付宝账户:info@polydt.com会议现场缴费现场可通过刷卡、现金、支付宝及微信缴费特别提醒1)请务必完整填写注册表信息!请一定在汇款附言上注明“姓名、单位、热管理会务费”! 2)现场缴费,发票在会后10个工作日内开具并寄出。3)需要开具普通增值税发票时,提供单位名称和纳税人识别号即可;需要开具增值税专用发票时,需提供单位名称、纳税人识别号、单位地址、电话、开户行及银行账号全部信息。• 交通住宿地址:上海跨国采购会展中心,上海市普陀区光复西路2739号(南门)地点距离地铁路线虹桥机场1号航站楼8.8公里2号航站楼12.6公里2号线(2号航站楼—威宁路站)浦东国际机场52公里2号线(浦东国际机场—威宁路站),2号线威宁路站4号口出来右转上威宁路桥,过河后即下楼梯沿光复西路向东步行400米即到。虹桥高铁站13公里2号线(虹桥火车站—威宁路站)上海火车站9.1公里4号线:上海火车站—中山公园(换乘地铁2号线)—2号线(威宁路)1号线:上海火车站—人民幸场站(换乘地铁2号线)—2号线(威宁路)3号线:上海火车站—中山公园(换乘地铁2号线)—2号线(威宁路)• 推荐酒店酒店房型地点步行联系方式 ★★★★★上海新发展亚太JW万豪酒店单/双 ¥800上海市普陀区大渡河路158号600米7分钟预定链接https://www.marriott.com.cn/event-reservations/reservation-link.mi?id=1634113048868&key=GRP&app=resvlink ★★★★桔子酒店(上海威宁路地铁站店)单 ¥450双 ¥500上海市长宁区威宁路428号1.3km15分钟程浩17621608436 ★★★全季酒店(长风公园店)单/双 ¥450上海市普陀区丹巴路28弄26号1.5km18分钟梁志愿15711695657 ★★★上海协信莎玛长风服务式公寓高级大床房:¥500豪华大床房:¥550豪华双床房:¥600上海市普陀区大渡河路388弄2号420米7分钟杨振兴15921507086联系我们王城英手机:17855813137邮箱:wangchengying@polydt.com
  • 中科院青岛能源所石墨炔作为催化剂应用研究获进展
    p style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/60d0cd7a-7ebb-4aef-90aa-cec1436c2dc8.jpg"//pp  中科院青岛生物能源与过程研究所新型能源碳素材料团队研发了一种氮掺杂的石墨炔材料,用作氧还原反应,表现出优异的催化性能,相关工作近日发表于《应用材料与界面》。/pp  石墨炔是一种新型碳材料,由炔键和苯环连接而成,具有特殊的sp杂化(一种较常见的杂化方式)碳原子,已被报道在光催化、电催化以及生物方面均表现出优异特性。研究利用石墨炔材料独特的炔键引起碳骨架中部分碳原子带正电的特性,进一步通过氮修饰,将石墨炔材料成功应用于氧还原电催化反应,表现出优异的氧还原催化性能。/pp  石墨炔中碳原子被氮取代后,其电荷结构将被调控,与氮相邻的碳原子表现出更强的正电性,可作为氧还原反应的活性中心。由于石墨炔材料具有不同于常规碳材料(石墨烯、碳纳米管、石墨、无定形碳等)的特殊sp杂化碳原子,氮原子可以通过取代sp杂化碳,得到新的氮掺杂方式,理论和实验结果表明这种新的掺杂方式可以有效提高碳材料的催化性能。所制得的氮取代的石墨炔材料的氧还原催化性能与商业碳载铂催化剂相当。该工作显示石墨炔在电催化材料和燃料电池中的巨大应用前景,也为解决氧还原反应中铂等贵金属催化剂高昂的成本和储量有限的问题,提供了重要的途径。/p
  • 第六届国际碳材料大会碳基储能高峰论坛
    论坛背景2021年,在全球“碳中和”和经济转型背景下,我国风光储能一体化建设发展将更有利于推进在全球新一轮能源技术革命和产业变革中抢先占领先机和国际影响力。储能作为“风光”背后重要关键支撑技术之一,优异的储能材料是储能系统的核心部分,而具有特殊结构的碳材料一直是储能材料大家族的重要成员,尤其在电储能表现突出。锂电池、铅炭电池、钠离子电池、超级电容等化学储能,均不断取得突破。Carbontech2021碳基储能高峰论坛以“驱动储能创新,碳索储能新趋势”为主题,讨论碳基材料在化学储能领域的创新突破,将最新研究成果从实验室对接转移到市场,让科研赋能产业、产业反哺科研,共同为产业发展打下基础。组织机构主办单位:DT新材料承办单位:宁波德泰中研信息科技有限公司合作媒体:DT新材料、Carbontech、DT新能源、Carbon energy、仪器信息网合作期刊:Carbon energy执行主席邱介山:北京化工大学教授,化学工程学院院长报告形式主旨报告,邀请报告,申请报告,口头报告论坛规划时间拟邀嘉宾及参考议题11月17日,星期三13:00-20:00论坛报到11月18日,星期四09:00-12:00大会主论坛14:00-17:00政策及产业主席致辞参考话题:政策&趋势、标准、分析测试、认证检测、投融资拟邀嘉宾:院士参考话题:电化学储能助力碳中和演讲嘉宾:马福元,浙江浙能技术研究院有限公司首席科学家参考话题:碳基负极及快充技术拟邀嘉宾:国家能源集团北京低碳清洁能源研究院/广州巨湾技研有限公司参考话题:电力市场化与能源互联网持续推进助力储能产业发展拟邀嘉宾:国网浙江省电力有限公司/中国电力科学研究院参考话题:碳纳米材料在储能器件中的应用拟邀嘉宾:清华大学/天目湖储能技术研究院/北京科技大学11月19日,星期五09:00-12:00储能碳基材料及器件参考话题:碳纳米管导电添加剂拟邀嘉宾:江苏天奈科技/卡博特公司/宁德时代/河南克莱威纳米碳材料有限公司参考话题:从电池体系探讨高性能导电剂拟邀嘉宾:珠海冠宇/惠州亿维锂能/深圳市比亚迪锂电池有限公司针状焦/石油焦在锂电负极原料应用中的比较拟邀嘉宾:山东益大新材料股份有限公司/中国石化金陵石化分公司参考话题:沥青基负极材料拟邀嘉宾:乌海宝杰新能源有限公司/万向一二三股份有限公司参考话题:动力电池中的负极材料要求拟邀嘉宾:南都电源/合肥国轩高科/蜂巢能源参考话题:碳基材料在超级电容器的应用创新演讲嘉宾:李文生,锦州凯美能源有限公司总工程师参考话题:多孔材料及其在超级电容器的应用拟邀嘉宾:宁波中车新能源科技有限公司/上海奥威科技开发有限公司14:00-17:00储能碳基材料及器件参考话题:石墨烯复合纤维及柔性超级电容器拟邀嘉宾:西安交大/东北林业大学参考话题:涂碳集流体拟邀嘉宾:松湖神健科技(东莞)有限公司/江苏鼎盛新能源科技有限公司参考话题:基于孔结构得电容碳研究中国地质大学/中科院山西煤化所参考话题:新型锂电池负极包覆材料拟邀嘉宾:辽宁信德新材料科技股份有限公司/浙江卡波恩新材料有限公司参考话题:不同类型负极的技术路线和趋势拟邀嘉宾:湖南大学/北京化工大学参考话题:高性能导电炭黑及分布控制拟邀嘉宾:焦作市和兴化学/新乡德隆参考话题:钠离子电池负极功能化设计拟邀嘉宾:吉林大学/北京化工大学18:00-20:00交流晚宴11月20日,星期六储能碳基材料与器件09:00-12:00参考话题:硬碳及其在钠离子电池应用拟邀嘉宾:宁德时代/中科海钠参考话题:长寿命高容量硅碳负极产业化技术拟邀嘉宾:纳米技术及应用国家工程中心/上海杉杉新能源科技有限公司参考话题:负极级片工艺的设备与评测拟邀嘉宾:合肥科晶/武汉蓝电/海裕百特参考话题:石油系针状焦的生产技术开发及在锂电池负极材料的应用拟邀嘉宾:中国石油化工股份有限公司石油化工科学研究院/潍坊孚美新能源有限公司参考话题:铅碳电池及其应用拟邀嘉宾:超威集团/天能集团技术总监/浙江南都电源参考话题:高性能硅基负极材料拟邀嘉宾:国联汽车动力电池研究院有限责任公司/贝特瑞/陕西动力越源有限公司参考话题:硅基负极在储能电池中的发展前景拟邀嘉宾:欣旺达/深圳比克动力电池.............12:00-13:30自助午餐13:30-15:00圆桌对话: 硅负极在电动汽车动力电池中的应用拟邀:江苏海四达电源股份有限公司,安普瑞斯(南京)有限公司,贝特瑞,上海昱瓴新能源,江西紫宸,中科星程,欣旺达,比克电池..........会议日程日期时间活动安排11月17日(星期三)13:00-21:00论坛报到、注册11月18日(星期四)09:00-12:00开幕致辞、大会主论坛12:00-17:00论坛报告11月19日(星期五)09:00-12:00论坛报告12:00-14:00自助午餐14:00-17:00论坛报告18:00-20:00交流晚宴11月20日(星期六)09:00-12:00论坛报告12:00-13:30自助午餐13:30-16:30硅基负极圆桌对话交通住宿会议地址:上海跨国采购会展中心交通路线:往届回顾Carbontech 2020共包含全体大会和8个分论坛,领袖企业、知名科研院所和高校的3000+决策者和科学家齐聚,呈现200+演讲与互动、新材料CEO高峰论坛和国际碳材料+制造创新挑战赛,同期20000平碳材料主题展区,200+展商产品展示,一站式逛遍碳材料全产业链,打造沉浸式的参会观展体验,共同畅谈碳材料行业未来。碳基储能论坛共有近200家单位,包括宁德时代、江苏天奈、上海昱瓴、上海奥威科技开发有限公司、方大炭素、卡博特、宁波杉元科技有限公司、LG化学等著名企业,也有清华大学、苏州大学、中国科学院、哈尔滨工业大学、南京大学、四川大学、武汉大学等名牌高校。论坛分别以硅碳负极材料、导电剂材料、新型碳负极材料在锂电池、锂硫电池、超级电容器和柔性电池等的应用领域多方面带来精彩的报告分享!邱介山教授带来了精彩致辞和期许,各位嘉宾和单位积极热情支持,论坛得以顺利圆满举办!参会联系王城英(参会、展商、赞助) 电话:17757839401(微信同号)邮箱:wangchengying@polydt.com
  • 金属材料检测或试验标准汇总
    p  span style="color: rgb(0, 112, 192) "strong金属材料化学成分分析/strong/span/pp  GB/T 222—2006钢的成品化学成分允许偏差/pp  GB/T 223.X系列钢铁及合金X含量的测定/pp  GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)/pp  GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定/pp  GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定/pp  GB/T 5678—1985铸造合金光谱分析取样方法/pp  GBT 6987.X系列铝及铝合金化学分析方法& #823& #823/pp  GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法/pp  GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法)/pp  GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法/pp  GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定& #823& #823/pp  span style="color: rgb(0, 112, 192) "strong金属材料物理冶金试验方法/strong/span/pp  GB/T 224—2008钢的脱碳层深度测定法/pp  GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验)/pp  GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法/pp  GB/T 227—1991工具钢淬透性试验方法/pp  GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法/pp  GB/T 1979—2001结构钢低倍组织缺陷评级图/pp  GB/T 1814—1979钢材断口检验法/pp  GB/T 2971—1982碳素钢和低合金钢断口检验方法/pp  GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法/pp  GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法/pp  GB/T 3488—1983硬质合金显微组织的金相测定/pp  GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定/pp  GB/T 4236—1984钢的硫印检验方法/pp  GB/T 4296—2004变形镁合金显微组织检验方法/pp  GB/T 4297—2004变形镁合金低倍组织检验方法/pp  GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法/pp  GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法/pp  GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法/pp  GB/T 4462—1984高速工具钢大块碳化物评级图/pp  GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法)/pp  GB/T 5168—2008α-β钛合金高低倍组织检验方法/pp  GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定/pp  GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法/pp  GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法/pp  GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核/pp  GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定/pp  GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法/pp  GB/T 10851—1989铸造铝合金针孔/pp  GB/T 10852—1989铸造铝铜合金晶粒度/pp  GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验/pp  GB/T 13298—2015金属显微组织检验方法/pp  GB/T 13299—1991钢的显微组织检验方法/pp  GB/T 13302—1991钢中石墨碳显微评定方法/pp  GB/T 13305—2008不锈钢中α-相面积含量金相测定法/pp  GB/T 13320—2007钢质模锻件金相组织评级图及评定方法/pp  GB/T 13825—2008金属覆盖层黑色金属材料热镀锌单位面积称量法/pp  GB/T 13912—2002金属覆盖层钢铁制件热浸镀层技术要求及试验方法/pp  GB/T 14979—1994钢的共晶碳化物不均匀度评定法/pp  GB/T 15711—1995钢材塔形发纹酸浸检验方法/pp  GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法/pp  GB/T 14999.1—2012高温合金试验方法第1部分:纵向低倍组织及缺陷酸浸检验/pp  GB/T 14999.2—2012高温合金试验方法第2部分:横向低倍组织及缺陷酸浸检验/pp  GB/T 14999.3—2012高温合金试验方法第3部分:棒材纵向断口检验/pp  GB/T 14999.4—2012高温合金试验方法第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定/pp  YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图/pp  strongspan style="color: rgb(0, 112, 192) "金属材料力学性能试验方法/span/strong/pp  GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法/pp  GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法/pp  GB/T 229—2007金属材料夏比摆锤冲击试验方法/pp  GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)/pp  GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法/pp  GB/T 232—1999金属材料弯曲试验方法/pp  GB/T 233—2000金属材料顶锻试验方法/pp  GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法/pp  GB/T 238—2013金属材料线材反复弯曲试验方法/pp  GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法/pp  GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法/pp  GB/T 241—2007金属管液压试验方法/pp  GB/T 242—2007金属管扩口试验方法/pp  GB/T 244—2008金属管弯曲试验方法/pp  GB/T 245—2008金属管卷边试验方法/pp  GB/T 246—2007金属管压扁试验方法/pp  GB/T 1172—1999黑色金属硬度及强度换算值/pp  GB/T 2038—1991金属材料延性断裂韧度JIC试验方法/pp  GB/T 2039—2012金属材料单轴拉伸蠕变试验方法/pp  GB/T 2107—1980金属高温旋转弯曲疲劳试验方法/pp  GB/T 2358—1994金属材料裂纹尖端张开位移试验方法/pp  GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备/pp  GB/T 3075—2008金属材料疲劳试验轴向力控制方法/pp  GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法/pp  GB/T 3251—2006铝及铝合金管材压缩试验方法/pp  GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法/pp  GB/T 3771—1983铜合金硬度和强度换算值/pp  GB/T 4156—2007金属材料薄板和薄带埃里克森杯突试验/pp  GB/T 4158—1984金属艾氏冲击试验方法/pp  GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法)/pp  GB/T 4161—2007金属材料平面应变断裂韧度KIC试验方法/pp  GB/T 4337—2008金属材料疲劳试验旋转弯曲方法/pp  GB/T 4338—2006金属材料高温拉伸试验方法/pp  GB/T 4340.1—2009金属材料维氏硬度试验第1部分:试验方法/pp  GB/T 4340.2—2012金属材料维氏硬度试验第2部分:硬度计的检验与校准/pp  GB/T 4340.3—2012金属材料维氏硬度试验第3部分:标准硬度块的标定/pp  GB/T 4341.1—2014金属材料肖氏硬度试验第1部分:试验方法/pp  GB/T 5027—2007金属材料薄板和薄带塑性应变比(r值)的测定/pp  GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定/pp  GB/T 5482—2007金属材料动态撕裂试验方法/pp  GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法/pp  GB/T 6400—2007金属材料线材和铆钉剪切试验方法/pp  GB/T 7314—2005金属材料室温压缩试验方法/pp  GB/T 7732—2008金属材料表面裂纹拉伸试样断裂韧度试验方法/pp  GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法/pp  GB/T 10120—2013金属材料拉伸应力松弛试验方法/pp  GB/T 10128—2007金属材料室温扭转试验方法/pp  GB/T 10622—1989金属材料滚动接触疲劳试验方法/pp  GB/T 10623—2008金属材料力学性能试验术语/pp  GB/T 12347—2008钢丝绳弯曲疲劳试验方法/pp  GB/T 12443—2007金属材料扭应力疲劳试验方法/pp  GB/T 12444—2006金属材料磨损试验方法试环-试块滑动磨损试验/pp  GB/T 12778—2008金属夏比冲击断口测定方法/pp  GB/T 13239—2006金属材料低温拉伸试验方法/pp  GB/T 13329—2006金属材料低温拉伸试验方法/pp  GB/T 14452—1993金属弯曲力学性能试验方法/pp  GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法/pp  GB/T 15824—2008热作模具钢热疲劳试验方法/pp  GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法/pp  GB/T 17104—1997金属管管环拉伸试验方法/pp  GB/T 17394.1—2014金属材料里氏硬度试验第1部分试验方法/pp  GB/T 17394.2—2012金属材料里氏硬度试验第2部分:硬度计的检验与校准/pp  GB/T 17394.3—2012金属材料里氏硬度试验第3部分:标准硬度块的标定/pp  GB/T 17394.4—2014金属材料里氏硬度试验第4部分硬度值换算表/pp  GB/T 17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢/pp  GB/T 17600.2—1998钢的伸长率换算第2部分奥氏体钢/pp  GB/T 26077—2010金属材料疲劳试验轴向应变控制方法/pp  GB/T 22315—2008金属材料弹性模量和泊松比试验方法/pp  strongspan style="color: rgb(0, 112, 192) "金属材料无损检测方法/span/strong/pp  GB/T 1786—2008锻制圆饼超声波检验方法/pp  GB/T 2970—2004厚钢板超声波检验方法/pp  GB/T 3310—1999铜合金棒材超声波探伤方法/pp  GB/T 4162—2008锻轧钢棒超声检测方法/pp  GB/T 5097—2005无损检测渗透检测和磁粉检测观察条件/pp  GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法/pp  GB/T 5193—2007钛及钛合金加工产品超声波探伤方法/pp  GB/T 5248—2008铜及铜合金无缝管涡流探伤方法/pp  GB/T 5616—2014无损检测应用导则/pp  GB/T 5777—2008无缝钢管超声波探伤检验方法/pp  GB/T 6402—2008钢锻件超声检测方法/pp  GB/T 6519—2013变形铝、镁合金产品超声波检验方法/pp  GB/T 7233.1—2009超声波检验第1部分:一般用途铸钢件/pp  GB/T 7233.2—2010铸钢件超声检测第2部分:高承压铸钢件/pp  GB/T 7734—2004复合钢板超声波检验/pp  GB/T 7735—2004钢管涡流探伤检验方法/pp  GB/T 7736—2008钢的低倍缺陷超声波检验法/pp  GB/T 8361—2001冷拉圆钢表面超声波探伤方法/pp  GB/T 8651—2002金属板材超声波探伤方法/pp  GB/T 8652—1988变形高强度钢超声波检验方法/pp  GB/T 9443—2007铸钢件渗透检测/pp  GB/T 9445—2015无损检测人员资格鉴定与认证/pp  GB/T 10121—2008钢材塔形发纹磁粉检验方法/pp  GB/T 11259—2015无损检测超声检测用钢参考试块的制作和控制方法/pp  GB/T 11260—2008圆钢涡流探伤方法/pp  GB/T 11343—2008无损检测接触式超声斜射检测方法/pp  GB/T 11345—2013焊缝无损检测超声检测技术、检测等级和评定/pp  GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级/pp  GB/T 12604.1—2005无损检测术语超声检测/pp  GB/T 12604.2—2005无损检测术语射线照相检测/pp  GB/T 12604.3—2005无损检测术语渗透检测/pp  GB/T 12604.5—2008无损检测术语磁粉检测/pp  GB/T 12604.6—2008无损检测术语涡流检测/pp  GB/T 12604.7—2014无损检测术语泄漏检测/pp  GB/T 12604.8—1995无损检测术语中子检测/pp  GB/T 12604.9—2008无损检测术语红外检测/pp  GB/T 12604.10—2011无损检测术语磁记忆检测/pp  GB/T 12604.11—2015无损检测术语X射线数字成像检测/pp  GB/T 12605—2007无损检测金属管道熔化焊环向对接接头射线照相检测/pp  GB/T 12966—2008铝合金电导率涡流测试方法/pp  GB/T 12969.1—2007钛及钛合金管材超声波探伤方法/pp  GB/T 12969.2—2007钛及钛合金管材涡流探伤方法/pp  GB/T14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验/pp  GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验/pp  GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验/pp  GB/T 15822.1—2005无损检测磁粉检测第1部分:总则/pp  GB/T 15822.2—2005无损检测磁粉检测第2部分检测介质/pp  GB/T 15822.3—2005无损检测磁粉检测第3部分设备/pp  GB/T 18694—2002无损检测超声检验探头及其声场的表征/pp  GB/T 18851.1—2005无损检测渗透检测第1部分总则/pp  GB/T 18851.2—2008无损检测渗透检测第2部分:渗透材料的检验/pp  GB/T 18851.3—2008无损检测渗透检测第3部分:参考试块/pp  GB/T 18851.4—2005无损检测渗透检测第4部分设备/pp  GB/T 18851.5—2005无损检测渗透检测第5部分验证方法/pp  GB/T 19799.1—2005无损检测超声检测1号校准试块/pp  GB/T 19799.2—2005无损检测超声检测2号校准试块/pp  GB/T 23911—2009无损检测渗透检测用试块/pp  strongspan style="color: rgb(0, 112, 192) "金属材料腐蚀试验方法/span/strong/pp  GB/T 1838—2008电镀锡钢板镀锡量试验方法/pp  GB/T 1839—2008钢产品镀锌层质量试验方法/pp  GB/T 10123—2001金属和合金的腐蚀基本术语和定义/pp  GB/T 13303—1991钢的抗氧化性能测定方法/pp  GBT 15970.X系列金属和合金的腐蚀应力腐蚀试验第X部分/ppbr//p
  • 德国元素助力碳材料转型-石油焦中碳、氢、氮、硫测定方案
    什么是石油焦石油焦是原油经过蒸馏分离出重质油,重质油再经热裂转化而成的产品,是一种在石油加工过程中产生的副产品。石油焦的质量与性能指标是评价其使用价值的重要标准,如硫含量、氮含量、水分等。石油焦主要的元素组成是碳,占80%以上, 含氢1.5%-8%,其余的为氧、氮、硫和金属元素碳。石油焦可分为四种:针状焦(针状结构和纤维纹理,用于石墨电极、负极材料)、海绵焦(杂质含量低,用于炼铝工业)、弹丸焦(由高硫、高沥青质杂油生产,只能用于发电和水泥使用)和粉焦(挥发分高)。为什么要测石油焦中的CHNS元素根据NB/SH/T 0527-2019 石油焦(生焦)的要求,其中硫是石油焦出厂必检项目,所以准确测定石油焦中的硫含量至关重要。石油焦的硫具有高低不同含量,所以对分析仪器也提出了高要求。氮作为石油焦中的检测项目,其的准确测定也是非常重要。德国元素Elementar作为具有120多年元素分析经验的厂家,在CHNS元素分析方面具有多款产品,满足客户的不同测试需求。德国元素Elementar助力碳材料转型石油焦中碳、氢、氮、硫测定方案德国元素 vario MACRO cube 大进样量有机元素分析仪,是市面上唯一一款实现CHNS同时测定的大进样量元素分析仪。vario MACRO cube 大进样量有机元素分析仪且可以通过TCD检测器+IR红外检测器联合使用,实现石油焦中高低含量硫的高精度、高准确性测定。德国元素 rapid CS cube 红外碳硫仪,配置高碳、低硫红外检测器,可精确测定石油焦中碳、硫含量,其检出限低至2 ppm。案例分享—石油焦样品检测案例仪器型号:德国元素 vario MACRO cube 元素分析仪模式:CHNS模式仪器型号:德国元素 rapid CS cube 红外碳硫仪结论石油焦作为高单质碳、低氮、低硫样品,对燃烧条件与检测器的要求很高。德国元素 vario MACRO cube 有机元素分析仪 和 rapid CS cube 红外碳硫仪 的高性能燃烧炉与快速加氧方式,可确保此类样品的充分燃烧氧化,再结合IR红外检测器,实现高碳、低硫的精准测定。
  • Brookfield 锂离子非牛顿流体粘度测定方案
    锂离子电池诞生于上世纪90年代初,它是在锂电池的基础上发展而来的。锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。 锂系电池分为锂电池和锂离子电池。锂离子电池作为一种新兴清洁、可再生的二次能源具有工作电压高、能量密度大、质量轻等优点,手机、笔记本电脑、电动工具、数码相机等领域使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品。近些年来,锂离子电池在军用及航空航天领域的应用逐渐增加,军事通信、鱼雷、潜艇、飞天、探月等领域锂离子电池的身影也随处可见。 对于锂离子电池生产来说,涂布是电池生产的一道关键工序,直接影响电极及电池质量,所以对电池浆料的控制相当重要。浆料属于非牛顿流体,粘度反映了非牛顿流体的基本特征。锂离子电池正负极浆料粘度低了就涂不了布,涂布决定电池质量(涂布是将正负极浆料涂布在铜铝箔上经过烘干制成制作电池的极片),电极的质量水平就决定了电池的性能。因此,非牛顿流体粘度测定的控制具有重要的意义。 brookfield是当今世界上首屈一指的实验室和在线旋转粘度计生产商。作为当今世界上首屈一指的实验室和在线旋转粘度计生产商,大多数的质量控制、研究开发及生产工艺部门都将布氏粘度计作为它们在粘度测量方面的首要选择。 锂离子电池搅拌浆料粘度测量时,可采用brookfield博勒飞粘度计-dv2t粘度计。美国博勒飞brookfield dv2t粘度计快速定位支架: 按住按扭,即可快速而方便地上下移动粘度计,从而快速定位和进行样品更换 滚珠轴承悬挂系统: 更加强韧耐用的传感系统,大大提高生产效率和仪器使用寿命 ez-lock转子快速连接系统: 简单的两个步骤即可快速安全地安装及卸除转子,可避免由于转子更换频繁或多人操作等场合下给粘度计带来的损害。更多详情请关注东南科仪。
  • 精微高博与中国材料大会2017共见证——科研用户对材料测试仪器关注走高
    借此盛会,“中国氮吸附仪的开拓者”——北京精微高博科学技术有限公司(以下简称“精微高博”)携jw-bk132f型高性能研究级比表面及微孔分析仪、jw-m100a型全自动真密度、开闭孔率测试仪等在展会上亮相。精微高博展位 精微高博由知名的材料科学家钟家湘教授于2004年领衔创建,十多年来,在国内率先研发成功动态全自动比表面仪、bet比表面仪、阶梯法动态比表面仪、単气路常压孔径分析仪、静态容量法介孔分析仪、静态四站比表面测定仪、高性能静态微孔分析仪、气体法真密度仪、高压吸附仪等,在微纳米新材料表征与测试仪器领域赢得大量用户的青睐。此次大会参会人员主要由材料领域高等院校、研究院/所相关科研专家、学者构成,这也正是精微高博的老用户或潜在用户所在。正值宁夏最热的季节,烈日炎炎的展位依然迎来了不少新老用户,有来自沈阳工业大学、西安理工大学等的,也有来自本地宁夏大学等的 有反馈已购买比表面仪使用情况的,也有咨询精微高博展出产品参数的。 另外,古燕玲总经理还提到,本次大会结束后,他们并不准备立即返回北京。而是打算趁这次来银川的机会,去拜访一下当地高校院所的老客户,去看看精微高博产品的使用情况,去听听用户的声音,为精微高博下一步提供更好产品和服务支持提供素材。jw-bk132f型高性能研究级比表面及微孔分析仪 jw-bk132f曾荣获由仪器信息网评选的2014年“国产好仪器”特殊荣誉,其核心硬件全部采用国际先进品牌,并引入“涡轮分子泵”高端技术,配合微孔分析模型的准确应用,使得该产品综合性能更加完善,测试结果准确性、精确性、稳定性更加完美,是现今国际市场上性价比最高的一款分子泵微孔分析仪,其质量与性能完全能够与国外同类产品相媲美,非常适合活性炭、分子筛等超微孔纳米粉体材料的研究。 jw-m100a在本次展会上受到许多用户的关注,该产品是中美强强联合产品,引进美国和新技术,测试精度(±0.03%)及重复性(±0.01%)达到了国际先进水平。其标准配置1个分析站,有10ml和100ml两种不同池体积的仪器可选,配有国家计量认证的标准样品。可应用于橡胶材料、电池材料、催化剂材料、食品添加剂、纳米材料等领域。精微高博欢迎您的到来感谢大家一直以来的支持联系我们免费热线:400-600-5039电话:010-63326034 68949817 68949825转(销售或技术)地址:北京市西城区广安门南滨河路23号立恒名苑1号楼2206
  • 国家标准委发布2009年第09号国标公告
    中华人民共和国国家标准批准发布公告Announcement of Newly Approved National Standards of P.R.China2009年第09号(总第149号)序号标准号标准名称代替标准号批准日期修订日期实施日期1GB/T 24218.1-2009纺织品 非织造布试验方法 第1部分:单位面积质量的测定 2009-06-19 2010-02-012GB/T 24218.2-2009纺织品 非织造布试验方法 第2部分:厚度的测定 2009-06-19 2010-02-013GB/T 24219-2009机织过滤布泡点孔径的测定 2009-06-19 2010-02-014GB/T 24220-2009铬矿石 分析样品中湿存水的测定 重量法 2009-07-15 2010-04-015GB/T 24221-2009铬矿石 钙和镁含量的测定 EDTA滴定法 2009-07-15 2010-04-016GB/T 24222-2009铬矿石 交货批水分的测定 2009-07-15 2010-04-017GB/T 24223-2009铬矿石 磷含量的测定 还原磷钼酸盐分光光度法 2009-07-15 2010-04-018GB/T 24224-2009铬矿石 硫含量的测定 燃烧-中和滴定法、燃烧-碘酸钾滴定法和燃烧-红外线吸收法 2009-07-15 2010-04-019GB/T 24225-2009铬矿石 全铁含量的测定 还原滴定法 2009-07-15 2010-04-0110GB/T 24226-2009铬矿石和铬精矿 钙含量的测定 火焰原子吸收光谱法 2009-07-15 2010-04-0111GB/T 24227-2009铬矿石和铬精矿 硅含量的测定 分光光度法和重量法 2009-07-15 2010-04-0112GB/T 24228-2009铬矿石和铬精矿 化学分析方法 通则 2009-07-15 2010-04-0113GB/T 24229-2009铬矿石和铬精矿 铝含量的测定 络合滴定法 2009-07-15 2010-04-0114GB/T 24230-2009铬矿石和铬精矿 铬含量的测定 滴定法 2009-07-15 2010-04-0115GB/T 24231-2009铬矿石 镁、铝、硅、钙、钛、钒、铬、锰、铁和镍含量的测定 波长色散X射线荧光光谱法 2009-07-15 2010-04-0116GB/T 24232-2009锰矿石和铬矿石 校核取样和制样偏差的试验方法 2009-07-15 2010-04-0117GB/T 24233-2009锰矿石和铬矿石 评定品质波动和校核取样精密度的试验方法 2009-07-15 2010-04-0118GB/T 24234-2009铸铁 多元素含量的测定 火花放电原子发射光谱法(常规法) 2009-07-15 2010-04-0119GB/T 24235-2009直接还原炉料用铁矿石 低温还原粉化率和金属化率的测定 气体直接还原法 2009-07-15 2010-04-0120GB/T 24187-2009冷拔精密单层焊接钢管 2009-06-25 2010-04-0121GB 24188-2009城镇污水处理厂污泥泥质 2007-07-08 2010-06-0122GB/T 24189-2009高炉用铁矿石 用最终还原度指数表示的还原性的测定 2009-07-08 2010-04-0123GB/T 24190-2009铁矿石 化合水含量的测定 卡尔费休滴定法 2009-07-08 2010-04-0124GB/T 24191-2009钢丝绳 实际弹性模量测定方法 2009-07-08 2010-04-0125GB/T 24192-2009铬矿石 粒度的筛分测定 2009-07-08 2010-04-0126GB/T 24193-2009铬矿石和铬精矿 铝、铁、镁和硅含量的测定 电感耦合等离子体原子发射光谱法 2009-07-08 2010-04-0127GB/T 24194-2009硅铁 铝、钙、锰、铬、钛、铜、磷和镍含量的测定 电感耦合等离子体原子发射光谱法 2009-07-08 2010-04-0128GB/T 24195-2009金属和合金的腐蚀 酸性盐雾、“干燥”和“湿润”条件下的循环加速腐蚀试验 2009-07-08 2010-04-0129GB/T 24196-2009金属和合金的腐蚀 电化学试验方法 恒电位和动电位极化测量导则 2009-07-08 2010-04-0130GB/T 24197-2009锰矿石 铁、硅、铝、钙、钡、镁、钾、铜、镍、锌、磷、钴、铬、钒、砷、铅和钛含量的测定 电感耦合等离子体原子发射光谱法 2009-07-08 2010-04-0131GB/T 24198-2009镍铁 镍、硅、磷、锰、钴、铬和铜含量的测定 波长色散X-射线荧光光谱法(常规法) 2009-07-08 2010-04-0132GB/T 24199-2009纯吡啶中吡啶含量的气相色谱测定方法 2009-07-08 2010-04-0133GB/T 24200-2009粗酚中酚及同系物含量的测定方法 2009-07-08 2010-04-0134GB/T 24201-2009高炉炭块抗铁水熔蚀性试验方法 2009-07-08 2010-04-0135GB/T 24202-2009光缆增强用碳素钢丝 2009-07-08 2010-04-0136GB/T 24203-2009炭素材料真密度、真气孔率测定方法 煮沸法 2009-07-08 2010-04-0137GB/T 24204-2009高炉炉料用铁矿石 低温还原粉化率的测定 动态试验法 2009-07-08 2010-04-0138GB/T 24205-2009铁矿粉 烧结试验结果表示方法 2009-07-08 2010-04-0139GB/T 24206-2009洗油15℃结晶物的测定方法 2009-07-08 2010-04-0140GB/T 24207-2009洗油酚含量的测定方法 2009-07-08 2010-04-0141GB/T 24208-2009洗油萘含量的测定方法 2009-07-08 2010-04-0142GB/T 24209-2009洗油粘度的测定方法 2009-07-08 2010-04-0143GB/T 24210-2009整体石墨电极弹性模量试验 声速法 2009-07-08 2010-04-0144GB/T 24211-2009蒽油 2009-07-08 2010-04-0145GB/T 24212-2009甲基萘油 2009-07-08 2010-04-0146GB/T 24213-2009金属原位统计分布分析方法通则 2009-07-08 2010-04-0147GB/T 24214-2009煤焦油水分快速测定方法 2009-07-08 2010-04-0148GB/T 24215-2009桥梁主缆缠绕用低碳热镀锌圆钢丝 2009-07-08 2010-04-0149GB/T 24216-2009轻油 2009-07-08 2010-04-0150GB/T 24217-2009洗油 2009-07-08 2010-04-0151GB/T 15006-2009弹性合金的尺寸、外形、表面质量、试验方法和检验规则的一般规定GB/T 15006-19941994-04-042009-06-252010-04-0152GB/T 16270-2009高强度结构用调质钢板GB/T 16270-19961996-04-052009-06-252010-04-0153GB/T 16606.1-2009快递封装用品 第1部分:封套GB/T 16606-20021996-11-112009-06-122009-12-0154GB/T 16606.2-2009快递封装用品 第2部分:包装箱 2009-06-12 2009-12-0155GB/T 16606.3-2009快递封装用品 第3部分:包装袋 2009-06-12 2009-12-0156GB/T 18359-2009中小学教科书用纸、印制质量要求和检验方法GB/T 18359-20012001-06-072009-07-162009-12-0157GB/T 18449.1-2009金属材料 努氏硬度试验 第1部分:试验方法GB/T 18449.1-20012001-09-152009-06-252010-04-0158GB/T 18449.4-2009金属材料 努氏硬度试验 第4部分:硬度值表 2009-06-25 2010-04-0159GB/T 18830-2009纺织品 防紫外线性能的评定GB/T 18830-20022002-09-052009-06-112010-01-0160GB/T 18885-2009生态纺织品技术要求GB/T 18885-20022002-11-222009-06-112010-01-0161GB/T 21655.2-2009纺织品 吸湿速干性的评定 第2部分:动态水分传递法 2009-06-19 2010-02-0162GB/T 24025-2009环境标志和声明 III型环境声明 原则和程序 2009-07-10 2009-12-0163GB/T 24062-2009环境管理 将环境因素引入产品的设计和开发 2009-07-10 2009-12-0164GB/T 24170.1-2009表面抗菌不锈钢 第1部分:电化学法 2009-06-25 2010-04-0165GB/T 24171.1-2009金属材料 薄板和薄带 成形极限曲线的测定 第1部分:冲压车间成形极限图的测量及应用 2009-06-25 2010-04-0166GB/T 24171.2-2009金属材料 薄板和薄带 成形极限曲线的测定 第2部分:实验室成形极限曲线的测定 2009-06-25 2010-04-0167GB/T 24172-2009金属超塑性材料拉伸性能测定方法 2009-06-25 2010-04-0168GB/T 24173-2009钢板 二次加工脆化试验方法 2009-06-25 2010-04-0169GB/T 24174-2009钢 烘烤硬化值(BH2)的测定方法 2009-06-25 2010-04-0170GB/T 24175-2009钢渣稳定性试验方法 2009-06-25 2010-04-0171GB/T 24176-2009金属材料 疲劳试验 数据统计方案与分析方法 2009-06-25 2010-04-0172GB/T 24177-2009双重晶粒度表征与测定方法 2009-06-25 2010-04-0173GB/T 24178-2009连铸钢坯凝固组织低倍评定方法 2009-06-25 2010-04-0174GB/T 24179-2009金属材料 残余应力测定 压痕应变法 2009-06-25 2010-04-0175GB/T 24180-2009冷轧电镀铬钢板及钢带 2009-06-25 2010-04-0176GB/T 24181-2009金刚石焊接锯片基体用钢 2009-06-25 2010-04-0177GB/T 24182-2009金属力学性能试验 出版标准中的符号及定义 2009-06-25 2010-04-0178GB/T 24183-2009金属材料 制耳试验方法 2009-06-25 2010-04-0179GB/T 24184-2009烧结熔剂用高钙脱硫渣 2009-06-25 2010-04-0180GB/T 24185-2009逐级加力法测定钢中氢脆临界值试验方法 2009-06-25 2010-04-0181GB/T 24186-2009工程机械用高强度耐磨钢板 2009-06-25 2010-04-0182GB/T 8034-2009焦化苯类产品铜片腐蚀的测定方法GB/T 8034-19871987-06-302009-07-082010-04-0183GB/T 8035-2009焦化苯类产品酸洗比色的测定方法GB/T 8035-19871987-06-302009-07-082010-04-0184GB/T 8038-2009焦化甲苯中烃类杂质的气相色谱测定方法GB/T 8038-19871987-06-302009-07-082010-04-0185GB/T 8039-2009焦化苯类产品全硫含量的还原分光光度测定方法GB/T 8039-19871987-06-302009-07-082010-04-0186GB/T 8211-2009猪鬃GB/T 8211-1987,GB/T 8212-1987,GB/T 8213-1987,GB/T 8214-19871987-09-232009-07-082009-12-0187GB/T 8215-2009猪鬃检验方法GB/T 8215-19871987-09-232009-07-082009-12-0188GB/T 8704.1-2009钒铁 碳含量的测定 红外线吸收法及气体容量法GB/T 8704.1-19971988-02-212009-07-082010-04-0189GB/T 8704.3-2009钒铁 硫含量的测定 红外线吸收法及燃烧中和滴定法GB/T 8704.3-19971988-02-212009-07-152010-04-0190GB/T 8704.7-2009钒铁 磷含量的测定 钼蓝分光光度法GB/T 8704.7-19941994-09-262009-07-152010-04-0191GB/T 8704.8-2009钒铁 铝含量的测定 铬天青S分光光度法和EDTA滴定法GB/T 8704.8-19941994-09-262009-07-152010-04-0192GB/T 8704.9-2009钒铁 锰含量的测定 高碘酸钾光度法和火焰原子吸收光谱法GB/T 8704.9-19941994-09-262009-07-152010-04-0193GB/T 8719-2009炭素材料及其制品的包装、标志、储存、运输和质量证明书的一般规定GB/T 8719-19971988-02-222009-07-082010-04-0194GB/T 8721-2009炭素材料抗拉强度测定方法GB/T 8721-19881988-02-222009-07-082010-04-0195GB 10252-2009γ辐照装置的辐射防护与安全规范GB 10252-19961988-12-302009-06-192010-06-0196GB/T 11115-20, , 09聚乙烯(PE)树脂GB 11115-1989,GB 11116-1989,GB/T 15182-19941989-03-312009-07-172010-02-0197GB/T 12672-2009丙烯腈-丁二烯-苯乙烯(ABS)树脂GB 12672-19901990-12-302009-07-172010-02-0198GB/T 12703.2-2009纺织品 静电性能的评定 第2部分:电荷面密度GB/T 12703-19911991-01-052009-06-192010-02-0199GB/T 12703.3-2009纺织品 静电性能的评定 第3部分:电荷量GB/T 12703-19911991-01-052009-06-192010-02-01100GB/T 12705.1-2009纺织品 织物防钻绒性试验方法 第1部分:摩擦法 2009-06-19 2010-02-01101GB/T 12705.2-2009纺织品 织物防钻绒性试验方法 第2部分:转箱法GB/T 12705-19911991-01-142009-06-192010-02-01102GB/T 13759-2009土工合成材料 术语和定义GB/T 13759-19921992-11-042009-06-112010-01-01103GB/T 13760-2009土工合成材料 取样和试样准备GB/T 13760-19921992-11-042009-06-112010-01-01104GB/T 13761.1-2009土工合成材料 规定压力下厚度的测定 第1部分:单层产品厚度的测定方法GB/T 13761-19921992-11-042009-06-192010-02-01105GB/T 13762-2009土工合成材料 土工布及土工布有关产品单位面积质量的测定方法GB/T 13762-19921992-11-042009-06-192010-02-01106GB/T 14326-2009苯中二硫化碳含量的测定方法GB/T 14326-19931993-03-312009-07-082010-04-01107GB/T 14327-2009苯中噻吩含量的测定方法GB/T 14327-19931993-03-312009-07-082010-04-01108GB/T 14576-2009纺织品 色牢度试验 耐光、汗复合色牢度GB/T 14576-19931993-08-292009-06-192010-02-01109GB/T 14981-2009热轧圆盘条尺寸、外形、重量及允许偏差GB/T 14981-20041994-04-052009-07-152010-04-01110GB/T 231.4-2009金属材料 布氏硬度试验 第4部分:硬度值表 2009-06-25 2010-04-01111GB/T 420-2009纺织品 色牢度试验 颜料印染纺织品耐刷洗色牢度GB/T 420-19901965-06-242009-06-112010-01-01112GB/T 1429-2009炭素材料灰分含量的测定方法GB/T 1429-19851978-09-292009-07-152010-04-01113GB/T 1431-2009炭素材料耐压强度测定方法GB/T 1431-19851978-09-292009-07-082010-04-01114GB/T 2272-2009硅铁GB/T 2272-19871980-12-312009-07-082010-04-01115GB/T 2284-2009焦化甲苯GB/T 2284-19931980-12-312009-07-082010-04-01116GB/T 2600-2009焦化二甲酚GB/T 2600-19971981-04-102009-07-082010-04-01117GB/T 2912.1-2009纺织品 甲醛的测定 第1部分:游离和水解的甲醛(水萃取法)GB/T 2912.1-19981982-03-032009-06-112010-01-01118GB/T 2912.2-2009纺织品 甲醛的测定 第2部分:释放的甲醛(蒸汽吸收法)GB/T 2912.2-19981982-03-032009-06-112010-01-01119GB/T 2912.3-2009纺织品 甲醛的测定 第3部分:高效液相色谱法 2009-06-19 2010-02-01120GB/T 3208-2009苯类产品总硫含量的微库仑测定方法GB/T 3208-19821982-09-232009-07-082010-04-01121GB/T 3209-2009苯类产品蒸发残留量的测定方法GB/T 3209-19821982-09-232009-07-152010-04-01122GB/T 3292.2-2009纺织品 纱线条干不匀试验方法 第2部分:光电法 2009-06-19 2010-02-01123GB/T 3710-2009工业酚、苯酚结晶点测定方法GB/T 3710-20051983-05-242009-07-082010-04-01124GB/T 4340.1-2009金属材料 维氏硬度试验 第1部分:试验方法GB/T 4340.1-19991984-04-092009-06-252010-04-01125GB/T 4340.4-2009金属材料 维氏硬度试验 第4部分:硬度值表 2009-06-25 2010-04-01126GB/T 230.1-2009金属材料 洛氏硬度试验 第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)GB/T 230.1-20041963-12-312009-06-252010-04-01127GB/T 231.1-2009金属材料 布氏硬度试验 第1部分:试验方法GB/T 231.1-20021963-12-312009-06-252010-04-01128GB/T 4701.2-2009钛铁 硅含量的测定 硫酸脱水重量法GB/T 4701.2-19841984-10-042009-07-082010-04-01129GB/T 4701.3-2009钛铁 铜含量的测定 铜试剂光度法和火焰原子吸收光谱法GB/T 4701.3-19841984-10-042009-07-082010-04-01130GB/T 4701.7-2009钛铁 磷含量的测定 铋磷钼蓝分光光度法和钼蓝分光光度法GB/T 4701.7-19851985-04-152009-07-082010-04-01131GB/T 4701.8-2009钛铁 碳含量的测定 红外线吸收法GB/T 4701.8-19881988-02-212009-07-082010-04-01132GB/T 4743-2009纺织品 卷装纱 绞纱法线密度的测定GB/T 4743-19951984-11-022009-06-192010-02-01133GB/T 4802.4-2009纺织品 织物起毛起球性能的测定 第4部分:随机翻滚法 2009-06-19 2010-02-01134GB/T 5953.1-2009冷镦钢丝 第1部分:热处理型冷镦钢丝GB/T 5953-19991986-03-202009-07-082010-04-01135GB/T 5953.2-2009冷镦钢丝 第2部分:非热处理型冷镦钢丝GB/T 5953-19991986-03-202009-07-082010-04-01136GB/T 7573-2009纺织品 水萃取液pH值的测定GB/T 7573-20021987-03-262009-06-112010-01-01137GB/T 8033-2009焦化苯类产品馏程的测定方法GB/T 8033-19871987-06-302009-07-082010-04-01138GB/T 24270-2009永磁材料磁性能温度系数测量方法 2009-06-19 2010-02-01139GB/T 24271-2009热双金属条形元件技术条件 2009-06-19 2010-02-01140GB/T 24272-2009热双金属平螺旋形元件机械转矩率试验方法 2009-06-19 2010-02-01141GB/T 24273-2009电触头材料电性能试验方法 2009-06-19 2010-02-01142GB/T 24274-2009低压抽出式成套开关设备和控制设备 2009-06-19 2010-02-01143GB/T 24275-2009低压固定封闭式成套开关设备和控制设备 2009-06-19 2010-02-01144GB/T 24276-2009评估部分型式试验的低压成套开关设备和控制设备(PTTA)温升的外推法 2009-06-19 2010-02-01145GB/T 24277-2009评估部分型式试验成套设备(PTTA)短路耐受强度的一种方法 2009-06-19 2010-02-01146GB/T 24278-2009摩托车手防护服装 2009-06-11 2010-01-01147GB/T 24279-2009纺织品 禁/限用阻燃剂的测定 2009-06-11 2010-01-01148GB/T 24280-2009纺织品 维护标签上维护符号选择指南 2009-06-11 2010-01-01149GB/T 24281-2009纺织品 有机挥发物的测定 气相色谱-质谱法 2009-06-11 2010-01-01150GB/T 24282-2009塑料 聚丙烯中二甲苯可溶物含量的测定 2009-07-17 2010-02-01151GB/T 24283-2009蜂胶 2009-07-08 2009-12-01152GB/T 24285-2009晒图原纸 2009-07-31 2010-03-01153GB/T 24286-2009黑色不透光包装纸 2009-07-31 2010-03-01154GB/T 24287-2009伸性纸袋纸 2009-07-31 2010-03-01155GB/T 24288-2009纸和纸板 主波长和兴奋纯度的测定 D65/10°漫反射法 2009-07-31 2010-03-01156GB/T 24289-2009纸和纸板 镜面光泽度的测定 平行光束75°,DIN法 2009-07-31 2010-03-01157GB/T 24290-2009造纸用成形网、干燥网测量方法 2009-07-31 2010-03-01158GB/T 24291-2009纸和纸板 卷筒纸芯内径的规定 2009-07-31 2010-03-01159GB/T 24292-2009卫生用品用无尘纸 2009-07-31 2010-03-01160GB/T 24293-2009数控恒温水嘴 2009-07-31 2010-03-01161GB/Z 24294-2009信息安全技术 基于互联网电子政务信息安全实施指南 2009-07-30 2010-02-01162GB/T 24295-2009住宅信报箱 2009-06-12 2009-12-01163GB/T 24236-2009直接还原炉用铁矿石 还原指数、最终还原度和金属化率的测定 2009-07-15 2010-04-01164GB/T 24237-2009直接还原炉料用铁矿球团 成团性的测定方法 2009-07-15 2010-04-01165GB/T 24238-2009预应力钢丝及钢绞线用热轧盘条 2009-07-15 2010-04-01166GB/T 24239-2009直接还原铁和热压铁块 取样和制样方法 2009-07-15 2010-04-01167GB/T 24240-2009直接还原铁 热压铁块(HBI)表观密度和吸水率的测定 2009-07-15 2010-04-01168GB/T 24241-2009直接还原铁 热压铁块转鼓和耐磨指数的测定 2009-07-15 2010-04-01169GB/T 24242.1-2009制丝用非合金钢盘条 第1部分: 一般要求 2009-07-15 2010-04-01170GB/T 24242.2-2009制丝用非合金钢盘条 第2部分: 一般用途盘条 2009-07-15 2010-04-01171GB/T 24243-2009铬矿石 采取份样 2009-07-15 2010-04-01172GB/T 24244-2009铁氧体用氧化铁 2009-07-15 2010-04-01173GB/T 24245-2009橡胶履带用钢帘线 2009-07-15 2010-04-01174GB/T 24246-2009放射性物质与特殊核材料监测系统 2009-06-19 2010-02-01175GB/T 24247-2009测定放射性核素用电离室系统的校准和使用 2009-06-19 2010-02-01176GB/T 24248-2009纺织品 合成革用非织造基布 2009-06-19 2010-02-01177GB/T 24249-2009防静电洁净织物 2009-06-19 2010-02-01178GB/T 24250-2009机织物 疵点的描述 术语 2009-06-19 2010-02-01179GB/T 24251-2009针织 基本概念 术语 2009-06-19 2010-02-01180GB/T 24252-2009蚕丝被 2009-06-19 2010-02-01181GB/T 24253-2009纺织品 防螨性能的评价 2009-06-19 2010-02-01182GB/T 24254-2009纺织品和服装 冷环境下需求热阻的确定 2009-06-19 2010-02-01183GB/T 24255-2009沙化土地监测技术规程 2009-07-08 2009-12-01184GB/T 24256-2009产品生态设计通则 2009-07-10 2009-12-01185GB/T 24257-2009石油天然气工业 功能规范的内容与编写 2009-07-10 2009-12-01186GB/T 24258-2009石油天然气工业 技术规范的内容与编写 2009-07-10 2009-12-01187GB/T 24259-2009石油天然气工业 管道输送系统 2009-07-10 2009-12-01188GB/T 24260-2009石油地震检波器 2009-07-10 2009-12-01189GB/T 24261.1-2009石油海上数字地震采集拖缆系统 第1部分:水听器技术条件 2009-07-10 2009-12-01190GB/T 24262-2009石油物探仪器环境试验及可靠性要求 2009-07-10 2009-12-01191GB/T 24263-2009石油钻井指重表 2009-07-10 2009-12-01192GB 24264-2009饰面石材用胶粘剂 2009-07-17 2010-06-01193GB 24265-2009硅藻土助滤剂 2009-07-17 2010-06-01194GB 24266-2009中空玻璃用硅酮结构密封胶 2009-07-17 2010-06-01195GB/T 24267-2009建筑用阻燃密封胶 2009-07-17 2010-02-01196GB/T 24268-2009银氧化锡电触头材料化学分析方法 2009-06-19 2010-02-01197GB/T 24269-2009铜铬铁电触头技术条件 2009-06-19 2010-02-01
  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • OPTON的微观世界|第22期 SEM技术在Li电池中的应用(上)
    前 言随着全球能源与环境问题不断凸显,发展新能源汽车已成为世界各国的共识,欧洲多个国家已经制定了燃油汽车限售的时间表,同时据人民网消息,我国工信部表示我国已启动研究传统燃油车的退出时间表,这一消息使得新能源汽车与锂电池产业站在了资本的风口,那么作为新能源汽车的重要一个方面的锂电池产业又将呈现更广泛的应用潜力。那么今天小编就将简单介绍一下Li电池的基本原理与其组成的正负极材料。一、锂电池概述首先,我们来介绍一下锂电池的概念。“锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。锂电池大致可以分为两类:锂金属电池和锂离子电池。其中锂金属电池最早于1912年由Gilbert N.Lewis提出并研究。20世纪70年代时,M.S.Whittingham首先采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂金属电池。由但由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,其安全隐患备受关注,所以,锂金属电池长期没有得到应用。1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。1991年索尼公司发布了首个商用锂离子电池,锂离子电池革新了消费电子产品的面貌。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。随着锂离子电池正极材料的发展,多种类型的锂离子电池被研发出来,锂离子电池由于其电压高、电容量高、低消耗、无记忆效应、无公害、体积小、内阻小、自放电小循环次数多,广泛应用在移动电子设备等民用军用设备中。二、锂电池工作原理锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。放电反应:Li+MnO2=LiMnO2锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。如图1显示了锂离子电池的示意图。图1.锂离子电池示意图以LiCoO2为例子充电正极上发生的反应为LiCoO2=Li(1-x)CoO2+XLi+Xe-充电负极上发生的反应为6C+XLi+ Xe-=LixC6充电电池总反应LiCoO2+6C=Li(1-x)CoO2+LixC6三、Li电池正极材料一般可选的正极材料有很多,例如:钴酸锂、锰酸锂、磷酸铁锂、镍酸锂、三元、富锂相、硅酸铁锂、磷酸锰锂、硫酸氟铁锂。不同的正极材料对应不同的平均输出电压于能量密度:正极材料平均输出电压能量密度LiCoO23.7 V140 mAh/gLi2MnO33.7 V100 mAh/gLiFePO43.2 V130 mAh/g四、锂离子电池负极材料第一种是碳负极材料:实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。第二种是锡基负极材料:锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。第三种是含锂过渡金属氮化物负极材料,没有商业化产品。第四种是合金类负极材料:包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金 ,没有商业化产品。第五种是纳米级负极材料:纳米碳管、纳米合金材料。第六种纳米材料是纳米氧化物材料:目前根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大地提高锂电池的充放电量和充放电次数。五、后 记前面已经介绍了当前应用最广范的Li离子电池的基本原理与正负极材料,使我们对锂离子电池有了一个基本的了解,而在电子显微学中,Li离子电池又是如何被表征的呢?下期小编将带您一起去了解,敬请期待。下期有什么精彩内容呢?敬请期待吧!
  • ESPEC在5个领域拓展新业务,为加快材料方面进展推新品
    p style="text-align: justify text-indent: 2em "近日,日本爱斯佩克公司(ESPEC)结合各种材料测试机,推出“点式冷却加热装置”,该装置可以在实际使用环境中轻松测试与汽车和5G有关的材料。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/bccaf2d4-6d03-43b1-b852-062a8546da53.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 0em "strong点式冷却加热装置(左)材料试验机型号(右)/strong/pp style="text-indent: 0em "strong/strong/pp style="text-align: center "span style="color: rgb(127, 127, 127) "该产品的发行日期为2019年12月10日/span/pp style="text-align: justify text-indent: 2em "为了实现进一步增长,ESPEC正在努力开发五个领域的新业务:医疗、材料、食品、农业和环境保护。目前,已在材料领域推出了一种新产品“现场冷热装置”,并通过向客户提出新的测试方法,从而加快材料业务的发展。/pp style="text-align: justify text-indent: 2em "近年来,为了防止地球变暖,以提高燃料效率为目的,汽车的轻量化正在进行,金属和碳纤维复合材料(CFRP)等树脂材料粘合在一起的多素材化正在进行。而树脂材料和粘合剂受到温度的影响,其机械性能(硬度、抗变形性、耐磨性等)可能会发生变化,所以根据这些材料暴露的实际使用环境而进行的材料试验要求越来越高。/pp style="text-align: justify text-indent: 2em "该“点式冷却加热装置”采用ESPEC公司独有的高效冷却和加热试样的新方法,通过设置材料测试机(例如通用测试机或疲劳测试机),可以在将-60℃~+200℃的空气吹到测试件上的同时进行测试。由此,能够进行再现实际使用环境的材料试验,更准确地把握材料的性质,确保质量和性能。/pp style="text-align: justify text-indent: 2em "以往,在进行赋予温度的材料试验时,需要为每个材料试验机准备专用设备,所以试验准备很麻烦。另外,每次开关门都要花费恢复温度的时间等,既费事又花时间。本装置通过更换附件,可以方便地与多种材料试验机配套。由此,至今为止不能进行附加温度试验的试验机也可以在实际使用环境中进行材料试验。/pp style="text-align: justify text-indent: 2em "ESPEC将通过利用传统材料领域无法提供的新思路,向客户提出利用ESPEC核心技术优势的产品,来扩展ESPEC的材料业务。/p
  • 电动车进电梯发生爆炸!国仪量子扫描电镜可对爆炸源锂电池进行检测,或可避免意外发生
    近日发生了一件与锂电池有关的惨烈事故:在成都一小区的电梯里,一辆电动车的锂电池起火爆炸!由于电梯空间狭小,温度瞬间飙升,这如同人间炼狱一般的场面,造成包括一名婴儿在内的多人受伤,让人心有余悸。近年来,锂电池以其高比能量、较高的工作电压、体积小、重量轻等优点已成为移动通讯、笔记本电脑等便携式电子产品的主要电源之一。但很多人不知道的是,锂电池这样一个稀松平常、在生活中常见的物品,爆后炸会产生很大的威力,并且,随着电芯所储存的能量越高,其爆炸威力也越大。央视曾经报道过,用电动车做短路起火测试,结果惊人:小小的电动车仅需3分钟可以烧到上千度,一旦爆炸将会严重影响人身安全!因此,研究锂离子电池的爆炸机理对提高锂离子电池的安全性有重要的意义。电动车锂电池为什么会爆炸?让我们先来了解下锂电池的工作原理。锂离子电池以碳素材料为负极,以含锂的化合物为正极(根据正极化合物不同,常见的锂离子电池有钴酸锂、锰酸锂、磷酸铁锂、三元锂等)。中间有一层隔膜,避免正负极短路。在充放电过程中,Li+在正负极间往返:充电时,锂离子从正极脱嵌,经过电解质嵌入负极;放电时则相反。在锂离子的嵌入与脱嵌过程中,同时伴随着等当量的电子的嵌入和脱嵌,也就产生了电流。了解了锂电池的工作原理,也就能知道锂离子电池会爆炸的原因了,主要分为以下两点:1、过充导致放出的锂过多,负极部位容量不足,充电时产生的锂就无法插入负极石墨的间层结构中,会在负极表面形成金属锂。时间一久,这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓胀破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。2、充放电时,电流的限制也很有必要。电流过大时,锂离子来不及进入间层结构中,也会汇集在负极材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。从上面可以看出锂电池燃烧爆炸的根本原因还是由于材料导致的。想要减少锂电池的燃烧或爆炸,普通用户除了在日常使用中注意减少撞击、高温接触等保护措施以外,电池厂家也应该注重电池的生产质量管理,提高锂电池的品质也可以减少事故的发生。利用扫描电镜可对锂电池的原材料及制作工艺进行检测扫描电镜可以用于观测锂电池的原材料表面形貌及微观结构,包括正极、负极、隔膜等材料,也可用于观测浆料活性物质、导电剂、粘接剂分散情况,以及极片辊压后极片材料表面状态、极片分切后极片边缘金属毛刺大小。 扫描电镜还可用于检测正负极耳焊接情况。这些检测对于锂电池的质量保证具有重要意义。电镜下的负极材料电镜下的隔膜极片涂层辊压过程微观结构演变示意图极片边缘金属毛刺国仪量子扫描电镜了解一下国仪量子扫描电子显微镜SEM3100SEM3100是一款性能优良的钨灯丝扫描电子显微镜。本型号电镜可快速更换灯丝,使用维护更便捷。标配超大尺寸样品仓,最大可支持样品直径370 mm,高68 mm,可在20至300,000倍下观察样品,最高分辨率可达3 nm,使用场景更为广泛。产品特点1.大腔体设计, 三轴电动样品台或五轴电动样品台 (选配),可放置最大样品直径370mm,高68mm2.纯中文界面操作简洁高效3.稳定的成像效果,超高的分辨率4.多种探测器可供选配,满足不同的应用需求5.模块化的结构设计,易于维护及保养6.符合人体工程学设计的旋钮控制板 (选配)
  • 质检总局公布271项国家标准(09年第12期)
    中华人民共和国国家标准批准发布公告AnnouncementofNewlyApprovedNationalStandardsofP.R.China2009年第12号(总第152号)  2009年11月4日,国家质量监督检验检疫总局批准271项国家标准,现予以公布,详细标准见下表:序号标准号标准名称代替标准号批准日期修订日期实施日期1GB/T223.83-2009钢铁及合金高硫含量的测定感应炉燃烧后红外吸收法2009-10-302010-05-012GB/T223.84-2009钢铁及合金钛含量的测定二安替比林甲烷分光光度法2009-10-302010-05-013GB/T223.85-2009钢铁及合金硫含量的测定感应炉燃烧后红外吸收法2009-10-302010-05-014GB/T223.86-2009钢铁及合金总碳含量的测定感应炉燃烧后红外吸收法2009-10-302010-05-015GB/T1551-2009硅单晶电阻率测定方法GB/T1551-1995,GB/T1552-19951979-05-262009-10-302010-06-016GB/T1553-2009硅和锗体内少数载流子寿命测定光电导衰减法GB/T1553-19971979-05-262009-10-302010-06-017GB/T1554-2009硅晶体完整性化学择优腐蚀检验方法GB/T1554-19951979-05-262009-10-302010-06-018GB/T1555-2009半导体单晶晶向测定方法GB/T1555-19971979-05-262009-10-302010-06-019GB/T1558-2009硅中代位碳原子含量红外吸收测量方法GB/T1558-19971979-05-262009-10-302010-06-0110GB/T2933-2009充气轮胎用车轮和轮辋的术语、规格代号和标志GB/T2933-19951982-03-162009-10-302010-07-0111GB/T3279-2009弹簧钢热轧钢板GB/T3279-19891982-07-092009-10-302010-05-0112GB/T3393-2009工业用乙烯、丙烯中微量氢的测定气相色谱法GB/T3393-19931983-12-302009-10-302010-06-0113GB/T3394-2009工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定气相色谱法GB/T3394-1993,GB/T3395-19931983-12-302009-10-302010-06-0114GB/T3639-2009冷拔或冷轧精密无缝钢管GB/T3639-20001983-05-022009-10-302010-05-0115GB/T4058-2009硅抛光片氧化诱生缺陷的检验方法GB/T4058-19951983-12-202009-10-302010-06-0116GB/T4061-2009硅多晶断面夹层化学腐蚀检验方法GB/T4061-19831983-12-202009-10-302010-06-0117GB/T4226-2009不锈钢冷加工钢棒GB/T4226-19841984-03-262009-10-302010-05-0118GB/T4232-2009冷顶锻用不锈钢丝GB/T4232-19931984-03-262009-10-302010-05-0119GB/T4240-2009不锈钢丝GB/T4240-19931984-03-262009-10-302010-05-0120GB/T4357-2009冷拉碳素弹簧钢丝GB/T4357-19891984-04-302009-10-302010-05-0121GB/T4701.1-2009钛铁钛含量的测定硫酸铁铵滴定法GB/T4701.1-19841984-10-042009-10-302010-05-0122GB/T4970-2009汽车平顺性试验方法GB/T4970-1996,GB/T5902-19861985-03-022009-10-302010-07-0123GB/T4971-2009汽车平顺性术语和定义GB/T4971-19851985-03-022009-10-302010-07-0124GB/T5238-2009锗单晶和锗单晶片GB/T15713-1995,GB/T5238-19951985-07-222009-10-302010-06-0125GB/T5312-2009船舶用碳钢和碳锰钢无缝钢管GB/T5312-19991985-08-242009-10-302010-05-0126GB/T5503-2009粮油检验碎米检验法GB/T5503-19851985-11-022009-10-302009-12-0127GB/T5909-2009商用车辆车轮性能要求和试验方法GB/T5909-19951986-03-032009-10-302010-07-0128GB/T6150.16-2009钨精矿化学分析方法铁量的测定磺基水杨酸分光光度法GB/T6150.18-19851985-06-212009-10-302010-06-0129GB/T6150.3-2009钨精矿化学分析方法磷量的测定磷钼黄分光光度法GB/T6150.4-19851985-06-212009-10-302010-06-0130GB/T6150.8-2009钨精矿化学分析方法钼量的测定硫氰酸盐分光光度法GB/T6150.10-19851985-06-212009-10-302010-06-0131GB/T6150.9-2009钨精矿化学分析方法铜量的测定火焰原子吸收光谱法GB/T6150.11-19851985-06-212009-10-302010-06-0132GB/T6412-2009家庭用煤及炉具试验方法GB/T6412-19861986-05-172009-10-302010-04-0133GB/T6616-2009半导体硅片电阻率及硅薄膜薄层电阻测试方法非接触涡流法GB/T6616-19951986-07-262009-10-302010-06-0134GB/T6617-2009硅片电阻率测定扩展电阻探针法GB/T6617-19951986-07-262009-10-302010-06-0135GB/T6618-2009硅片厚度和总厚度变化测试方法GB/T6618-19951986-07-262009-10-302010-06-0136GB/T6619-2009硅片弯曲度测试方法GB/T6619-19951985-06-172009-10-302010-06-0137GB/T6620-2009硅片翘曲度非接触式测试方法GB/T6620-19951986-07-262009-10-302010-06-0138GB/T6621-2009硅片表面平整度测试方法GB/T6621-19951986-07-262009-10-302010-06-0139GB/T6624-2009硅抛光片表面质量目测检验方法GB/T6624-19951986-07-262009-10-302010-06-0140GB/T6730.65-2009铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)2009-10-302010-05-0141GB/T6730.66-2009铁矿石全铁含量的测定自动电位滴定法2009-10-302010-05-0142GB/T6730.67-2009铁矿石砷含量的测定氢化物发生原子吸收光谱法2009-10-302010-05-0143GB/T6730.68-2009铁矿石灼烧减量的测定重量法2009-10-302010-05-0144GB/T7216-2009灰铸铁金相检验GB/T7216-19871987-01-242009-10-302010-04-0145GB/T7233.1-2009铸钢件超声检测第1部分:一般用途铸钢件部分代替:GB/T7233-19871987-02-042009-10-302010-04-0146GB/T7717.16-2009工业用丙烯腈第16部分:铁含量的测定石墨炉原子吸收法2009-10-302010-06-0147GB/T7717.17-2009工业用丙烯腈第17部分:铜含量的测定石墨炉原子吸收法2009-10-302010-06-0148GB/T8036-2009焦化苯类产品颜色的测定方法GB/T8036-19871987-06-302009-10-302010-05-0149GB/T8037-2009焦化苯类产品中硫醇的检验方法GB/T8037-19871987-06-302009-10-302010-05-0150GB/T8321.9-2009农药合理使用准则(九)2009-10-302009-12-0151GB/T9441-2009球墨铸铁金相检验GB/T9441-19881988-06-252009-10-302010-04-0152GB/T9941-2009高速工具钢钢板GB/T9941-19881988-09-202009-10-302010-05-0153GB/T10117-2009高纯锑GB/T10117-19881988-12-102009-10-302010-06-0154GB/T10118-2009高纯镓GB/T10118-19881988-12-102009-10-302010-06-0155GB/T10322.8-2009铁矿石比表面积的单点测定氮吸附法2009-10-302010-05-0156GB/T11072-2009锑化铟多晶、单晶及切割片GB/T11072-19891989-03-312009-10-302010-06-0157GB/T11251-2009合金结构钢热轧厚钢板GB/T11251-19891989-03-312009-10-302010-05-0158GB/T11412.1-2009海船安全开航技术要求 第1部分:一般要求GB/T11412.1-1989,GB/T11412.2-1989,GB/T11412.3-1989,GB/T6551-19931989-05-312009-10-302010-03-0159GB/T11718-2009中密度纤维板GB/T11718-19991989-11-162009-10-302010-04-0160GB/T12467.1-2009金属材料熔焊质量要求第1部分:质量要求相应等级的选择准则GB/T12467.1-19981990-09-082009-10-302010-04-0161GB/T12467.2-2009金属材料熔焊质量要求第2部分:完整质量要求GB/T12467.2-19981990-09-082009-10-302010-04-0162GB/T12467.3-2009金属材料熔焊质量要求第3部分:一般质量要求GB/T12467.3-19981990-09-082009-10-302010-04-0163GB/T12467.4-2009金属材料熔焊质量要求第4部分:基本质量要求GB/T12467.4-19981990-09-082009-10-302010-04-0164GB/T12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件2009-10-302010-04-0165GB/T12718-2009矿用高强度圆环链GB/T12718-20011991-02-042009-10-302010-04-0166GB/T12963-2009硅多晶GB/T12963-19961991-06-042009-10-302010-06-0167GB/T13387-2009硅及其它电子材料晶片参考面长度测量方法GB/T13387-19921992-02-192009-10-302010-06-0168GB/T13388-2009硅片参考面结晶学取向X射线测试方法GB/T13388-19921992-02-192009-10-302010-06-0169GB/T13608-2009合理润滑技术通则GB/T13608-19921992-08-152009-10-302010-05-0170GB/T14139-2009硅外延片GB/T14139-19931993-02-062009-10-302010-06-0171GB/T14140-2009硅片直径测量方法GB/T14140.1-1993,GB/T14140.2-19931993-02-062009-10-302010-06-0172GB/T14141-2009硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法GB/T14141-19931993-02-062009-10-302010-06-0173GB/T14144-2009硅晶体中间隙氧含量径向变化测量方法GB/T14144-19931993-02-062009-10-302010-06-0174GB/T14146-2009硅外延层载流子浓度测定汞探针电容-电压法GB/T14146-19931993-02-062009-10-302010-06-0175GB/T14264-2009半导体材料术语GB/T14264-19931993-03-202009-10-302010-06-0176GB/T14600-2009电子工业用气体氧化亚氮GB/T14600-19931993-08-262009-10-302010-05-0177GB/T14601-2009电子工业用气体氨GB/T14601-19931993-08-262009-10-302010-05-0178GB/T14603-2009电子工业用气体三氟化硼GB/T14603-19931993-08-262009-10-302010-05-0179GB/T14604-2009电子工业用气体氧GB/T14604-19931993-08-262009-10-302010-05-0180GB/T14743-2009港口轮胎起重机GB/T14743-1993,GB/T14744-19931993-12-102009-10-302010-03-0181GB/T14851-2009电子工业用气体磷化氢GB/T14851-19931993-12-302009-10-302010-05-0182GB/T15036.1-2009实木地板第1部分:技术要求GB/T15036.1-20011994-03-292009-10-302009-12-0183GB/T15036.2-2009实木地板第2部分:检验方法GB/T15036.2-20011994-03-292009-10-302009-12-0184GB/T15317-2009燃煤工业锅炉节能监测GB/T15317-19941994-12-172009-10-302010-05-0185GB/T15672-2009食用菌中总糖含量的测定GB/T15672-19951995-08-172009-10-302009-12-0186GB/T15673-2009食用菌中粗蛋白含量的测定GB/T15673-19951995-08-172009-10-302009-12-0187GB/T15674-2009食用菌中粗脂肪含量的测定GB/T15674-19951995-08-172009-10-302009-12-0188GB/T15909-2009电子工业用气体硅烷(SiH4)GB/T15909-19951995-12-202009-10-302010-05-0189GB/T15910-2009热力输送系统节能监测GB/T15910-19951995-12-202009-10-302010-05-0190GB/T15912.1-2009制冷机组及供制冷系统节能测试第1部分:冷库GB/T15912-19951995-12-202009-10-302010-05-0191GB/T15913-2009风机机组与管网系统节能监测GB/T15913-19951995-12-202009-10-302010-05-0192GB/T16271-2009钢丝绳吊索插编索扣GB/T16271-19961996-04-052009-10-302010-05-0193GB16413-2009煤矿井下用玻璃钢制品安全性能检验规范GB16413-19961996-06-142009-10-302010-09-0194GB/T16484.10-2009氯化稀土、碳酸轻稀土化学分析方法第10部分:氧化锰量的测定火焰原子吸收光谱法GB/T16484.10-19961996-07-092009-10-302010-05-0195GB/T16484.1-2009氯化稀土、碳酸轻稀土化学分析方法第1部分:氧化铈量的测定硫酸亚铁铵滴定法GB/T16484.1-19961996-07-092009-10-302010-05-0196GB/T16484.11-2009氯化稀土、碳酸轻稀土化学分析方法第11部分:氧化铅量的测定火焰原子吸收光谱法GB/T16484.11-19961996-07-092009-10-302010-05-0197GB/T16484.12-2009氯化稀土、碳酸轻稀土化学分析方法第12部分:硫酸根量的测定GB/T16484.12-19961996-07-092009-10-302010-05-0198GB/T16484.13-2009氯化稀土、碳酸轻稀土化学分析方法第13部分:氯化铵量的测定蒸馏-滴定法GB/T16484.13-19961996-07-092009-10-302010-05-0199GB/T16484.14-2009氯化稀土、碳酸轻稀土化学分析方法第14部分:磷酸根量的测定锑磷钼蓝分光光度法GB/T16484.14-19961996-07-092009-10-302010-05-01100GB/T16484.15-2009氯化稀土、碳酸轻稀土化学分析方法第15部分:碳酸轻稀土中氯量的测定硝酸银比浊法GB/T16484.15-19961996-07-092009-10-302010-05-01101GB/T16484.16-2009氯化稀土、碳酸轻稀土化学分析方法第16部分:氯化稀土中水不溶物量的测定重量法GB/T16484.16-19961996-07-092009-10-302010-05-01102GB/T16484.18-2009氯化稀土、碳酸轻稀土化学分析方法第18部分:碳酸轻稀土中灼减量的测定重量法GB/T16484.18-19961996-07-092009-10-302010-05-01103GB/T16484.20-2009氯化稀土、碳酸轻稀土化学分析方法第20部分:氧化镍、氧化锰、氧化铅、氧化铝、氧化锌、氧化钍量的测定电感耦合等离子体质谱法2009-10-302010-05-01104GB/T16484.2-2009氯化稀土、碳酸轻稀土化学分析方法第2部分:氧化铕量的测定电感耦合等离子体质谱法GB/T16484.2-19961996-07-092009-10-302010-05-01105GB/T16484.21-2009氯化稀土、碳酸轻稀土化学分析方法第21部分:氧化铁量的测定1,10-二氮杂菲分光光度法2009-10-302010-05-01106GB/T16484.22-2009氯化稀土、碳酸轻稀土化学分析方法第22部分:氧化锌量的测定火焰原子吸收光谱法2009-10-302010-05-01107GB/T16484.23-2009氯化稀土、碳酸轻稀土化学分析方法第23部分:碳酸轻稀土中酸不溶物量的测定重量法2009-10-302010-05-01108GB/T16484.3-2009氯化稀土、碳酸轻稀土化学分析方法第3部分:15个稀土元素氧化物配分量的测定电感耦合等离子体发射光谱法GB/T16484.3-19961996-07-092009-10-302010-05-01109GB/T16484.4-2009氯化稀土、碳酸轻稀土化学分析方法第4部分:氧化钍量的测定偶氮胂Ⅲ分光光度法GB/T16484.4-19961996-07-092009-10-302010-05-01110GB/T16484.5-2009氯化稀土、碳酸轻稀土化学分析方法第5部分:氧化钡量的测定电感耦合等离子体发射光谱法GB/T16484.5-19961996-07-092009-10-302010-05-01111GB/T16484.6-2009氯化稀土、碳酸轻稀土化学分析方法第6部分:氧化钙量的测定火焰原子吸收光谱法GB/T16484.6-19961996-07-092009-10-302010-05-01112GB/T16484.7-2009氯化稀土、碳酸轻稀土化学分析方法第7部分:氧化镁量的测定火焰原子吸收光谱法GB/T16484.7-19961996-07-092009-10-302010-05-01113GB/T16484.8-2009氯化稀土、碳酸轻稀土化学分析方法第8部分:氧化钠量的测定火焰原子吸收光谱法GB/T16484.8-19961996-07-092009-10-302010-05-01114GB/T16484.9-2009氯化稀土、碳酸轻稀土化学分析方法第9部分:氧化镍量的测定火焰原子吸收光谱法GB/T16484.9-19961996-07-092009-10-302010-05-01115GB/T16762-2009一般用途钢丝绳吊索特性和技术条件GB/T16762-19971997-03-172009-10-302010-05-01116GB/T16942-2009电子工业用气体氢GB/T16942-19971997-08-132009-10-302010-05-01117GB/T16943-2009电子工业用气体氦GB/T16943-19971997-08-132009-10-302010-05-01118GB/T16944-2009电子工业用气体氮GB/T16944-19971997-08-132009-10-302010-05-01119GB/T16945-2009电子工业用气体氩GB/T16945-19971997-08-132009-10-302010-05-01120GB/T17396-2009液压支柱用热轧无缝钢管GB/T17396-19981998-05-282009-10-302010-05-01121GB/T17428-2009通风管道耐火试验方法GB17428-19981998-07-152009-10-302010-04-01122GB/T17445-2009铸造磨球GB/T17445-19981998-07-302009-10-302010-04-01123GB/T17456.1-2009球墨铸铁管外表面锌涂层第1部分:带终饰层的金属锌涂层GB/T17456-19981998-08-122009-10-302010-05-01124GB/T17457-2009球墨铸铁管和管件水泥砂浆内衬GB/T17457-19981998-08-122009-10-302010-05-01125GB/T17495-2009港口门座起重机GB/T17495-19981998-09-162009-10-302010-03-01126GB/T17502-2009海底电缆管道路由勘察规范GB17502-19981998-10-122009-10-302010-04-01127GB/T17503-2009海上平台场址工程地质勘察规范GB17503-19981998-10-122009-10-302010-04-01,128GB/T17731-2009镁合金牺牲阳极GB/T17731-20041994-04-152009-10-302010-06-01129GB/T17822.1-2009橡胶树种子GB/T17822.1-19991999-08-112009-10-302009-12-01130GB/T17822.2-2009橡胶树苗木GB/T17822.2-19991999-08-112009-10-302009-12-01131GB/T18024.1-2009煤矿机械技术文件用图形符号第1部分:总则GB/T18024.1-20002000-03-162009-10-302010-04-01132GB/T18259-2009人造板及其表面装饰术语GB/T18259-20002000-12-042009-10-302010-04-01133GB19761-2009通风机能效限定值及能效等级GB19761-20052005-05-132009-10-302010-09-01134GB/T20935.2-2009金属材料电磁超声检验方法第2部分:利用电磁超声换能器技术进行超声检测的方法2009-10-302010-05-01135GB/T20935.3-2009金属材料电磁超声检验方法第3部分:利用电磁超声换能器技术进行超声表面检测的方法2009-10-302010-05-01136GB/T22101.2-2009棉花抗病虫性评价技术规范第2部分:蚜虫2009-10-302009-12-01137GB/T22101.3-2009棉花抗病虫性评价技术规范第3部分:红铃虫2009-10-302009-12-01138GB/T22101.4-2009棉花抗病虫性评价技术规范第4部分:枯萎病2009-10-302009-12-01139GB/T22101.5-2009棉花抗病虫性评价技术规范第5部分:黄萎病2009-10-302009-12-01140GB/T24481-20093C产品用镁合金薄板2009-10-302010-06-01141GB/T24482-2009焙烧钼精矿2009-10-302010-06-01142GB/T24483-2009铝土矿石2009-10-302010-06-01143GB/T24484-2009钼铁试样的采取和制备方法2009-10-302010-06-01144GB/T24485-2009碳化铌粉2009-10-302010-06-01145GB/T24486-2009线缆编织用铝合金线2009-10-302010-06-01146GB/T24487-2009氧化铝2009-10-302010-06-01147GB/T24488-2009镁合金牺牲阳极电化学性能测试方法2009-10-302010-06-01148GB/T24489-2009用能产品能效指标编制通则2009-10-302010-05-01149GB/T24490-2009多壁碳纳米管纯度的测量方法2009-10-302010-06-01150GB/T24491-2009多壁碳纳米管2009-10-302010-06-01151GB/T24492-2009非承重混凝土空心砖2009-10-302010-04-01152GB/T24493-2009装饰混凝土砖2009-10-302010-04-01153GB/T24494-2009门两侧在不同气候条件下的变形检测方法2009-10-302010-04-01154GB/T24495-2009承重墙与混凝土楼板间的水平接缝实验室力学试验由楼板传来的垂直荷载和弯矩的影响2009-10-302010-04-01155GB/T24496-2009钢筋混凝土大板间有连接筋并用混凝土浇灌的键槽式竖向接缝实验室力学试验平面内切向荷载的影响2009-10-302010-04-01156GB/T24497-2009建筑物的性能标准预制混凝土楼板的性能试验在集中荷载下的工况2009-10-302010-04-01157GB/T24498-2009建筑门窗、幕墙用密封胶条2009-10-302010-04-01158GB/T24499-2009氢气、氢能与氢能系统术语2009-10-302010-05-01159GB24500-2009工业锅炉能效限定值及能效等级2009-10-302010-09-01160GB/T24501.2-2009小麦条锈病、吸浆虫防治技术规范第2部分:小麦吸浆虫2009-10-302009-12-01161GB24502-2009煤矿用化学氧自救器2009-10-302010-09-01162GB/T24503-2009矿用圆环链驱动链轮2009-10-302010-04-01163GB/T24504-2009煤层气井注入/压降试井方法2009-10-302010-04-01164GB/T24505-2009矿井井下高压含水层探水钻探技术规范2009-10-302010-04-01165GB/T24506-2009液压支架型式、参数及型号编制2009-10-302010-04-01166GB/T24507-2009浸渍纸层压板饰面多层实木复合地板2009-10-302010-04-01167GB/T24508-2009木塑地板2009-10-302010-04-01168GB/T24509-2009阻燃木质复合地板2009-10-302010-04-01169GB24510-2009低温压力容器用9%Ni钢板2009-10-302010-06-01170GB24511-2009承压设备用不锈钢钢板及钢带2009-10-302010-06-01171GB24512.1-2009核电站用无缝钢管第1部分:碳素钢无缝钢管2009-10-302010-06-01172GB24512.2-2009核电站用无缝钢管第2部分:合金钢无缝钢管2009-10-302010-06-01173GB/T24513.1-2009金属和合金的腐蚀室内大气低腐蚀性分类第1部分:室内大气腐蚀性的测定与评价2009-10-302010-05-01174GB/T24514-2009钢表面锌基和(或)铝基镀层单位面积镀层质量和化学成分测定重量法、电感耦合等离子体原子发射光谱法和火焰原子吸收光谱法2009-10-302010-05-01175GB/T24515-2009高炉用铁矿石用还原速率表示的还原性的测定2009-10-302010-05-01176GB/T24516.1-2009金属和合金的腐蚀大气腐蚀地面气象因素观测方法2009-10-302010-05-01177GB/T24516.2-2009金属和合金的腐蚀大气腐蚀跟踪太阳暴露试验方法2009-10-302010-05-01178GB/T24517-2009金属和合金的腐蚀户外周期喷淋暴露试验方法2009-10-302010-05-01179GB/T24518-2009金属和合金的腐蚀应力腐蚀室外暴露试验方法2009-10-302010-05-01180GB/T24519-2009锰矿石镁、铝、硅、磷、硫、钾、钙、钛、锰、铁、镍、铜、锌、钡和铅含量的测定波长色散X射线荧光光谱法2009-10-302010-05-01181GB/T24520-2009铸铁和低合金钢镧、铈和镁含量的测定电感耦合等离子体原子发射光谱法2009-10-302010-05-01182GB/T24521-2009焦炭电阻率测定方法2009-10-302010-05-01183GB/T24522-2009金属材料低拘束试样测定稳定裂纹扩展阻力的试验方法2009-10-302010-05-01184GB/T24523-2009金属材料快速压痕(布氏)硬度试验方法2009-10-302010-05-01185GB/T24524-2009金属材料薄板和薄带扩孔试验方法2009-10-302010-05-01186GB/T24525-2009炭素材料电阻率测定方法2009-10-302010-05-01187GB/T24526-2009炭素材料全硫含量测定方法2009-10-302010-05-01188GB/T24527-2009炭素材料内在水分的测定2009-10-302010-05-01189GB/T24528-2009炭素材料体积密度测定方法2009-10-302010-05-01190GB/T24529-2009炭素材料显气孔率的测定方法2009-10-302010-05-01191GB/T24530-2009高炉用铁矿石荷重还原性的测定2009-10-302010-05-01192GB/T24531-2009高炉和直接还原用铁矿石转鼓和耐磨指数的测定2009-10-302010-05-01193GB/T24532-2009微米级羰基铁粉2009-10-302010-05-01194GB/T24533-2009锂离子电池石墨类负极材料2009-10-302010-05-01195GB/T24534.1-2009谷物与豆类隐蔽性昆虫感染的测定第1部分:总则2009-10-302009-12-01196GB/T24534.2-2009谷物与豆类隐蔽性昆虫感染的测定第2部分:取样2009-10-302009-12-01197GB/T24534.3-2009谷物与豆类隐蔽性昆虫感染的测定第3部分:基准方法2009-10-302009-12-01198GB/T24534.4-2009谷物与豆类隐蔽性昆虫感染的测定第4部分:快速方法2009-10-302009-12-01199GB/T24535-2009粮油检验稻谷粒型检验方法2009-10-302009-12-01200GB/T24536-2009防护服装化学防护服的选择、使用和维护2009-10-302010-09-01201GB/T24537-2009坠落防护带柔性导轨的自锁器2009-10-302010-09-01202GB/T24538-2009坠落防护缓冲器2009-10-302010-09-01203GB24539-2009防护服装化学防护服通用技术要求2009-10-302010-09-01204GB24540-2009防护服装酸碱类化学品防护服2009-10-302010-09-01205GB24541-2009手部防护机械危害防护手套2009-10-302010-09-01206GB24542-2009坠落防护带刚性导轨的自锁器2009-10-302010-09-01207GB24543-2009坠落防护安全绳2009-10-302010-09-01208GB24544-2009坠落防护速差自控器2009-10-302010-09-01209GB/T24545-2009车辆车速限制系统技术要求2009-10-302010-07-01210GB/T24546-2009摩托车重心位置的测量方法2009-10-302010-07-01211GB/T24547-2009轻便摩托车重心位置的测量方法2009-10-302010-07-01212GB/T24548-2009燃料电池电动汽车术语2009-10-302010-07-01213GB/T24549-2009燃料电池电动汽车安全要求2009-10-302010-07-01214GB/T24550-2009汽车对行人的碰撞保护2009-10-302010-07-01215GB/T24551-2009汽车安全带提醒装置2009-10-302010-07-01216GB/T24552-2009电动汽车风窗玻璃除霜除雾系统的性能要求及试验方法2009-10-302010-07-01217GB/T24553-2009摩托车和轻便摩托车转向轮限位装置及最大转向角的技术要求和测定方法2009-10-302010-07-01218GB/T24554-2009燃料电池发动机性能试验方法2009-10-302010-07-01219GB/T24555-2009200m氦氧饱和潜水作业要求2009-10-302010-03-01220GB/T24556-2009200m氦氧饱和潜水作业应急措施2009-10-302010-03-01221GB/T24557-2009职业潜水员心理选拔方法及评价2009-10-302010-03-01222GB/T24558-2009声学多普勒流速剖面仪2009-10-302010-04-01223GB/T24559-2009海洋螺旋桨式风向风速计2009-10-302010-04-01224GB/T24560-2009电解、电镀设备节能监测2009-10-302010-05-01225GB/T24561-2009干燥窑与烘烤炉节能监测2009-10-302010-05-01226GB/T24562-2009燃料热处理炉节能监测2009-10-302010-05-01227GB/T24563-2009煤气发生炉节能监测2009-10-302010-05-01228GB/T24564-2009高炉热风炉节能监测2009-10-302010-05-01229GB/T24565-2009隧道窑节能监测2009-10-302010-05-01230GB/T24566-2009整流设备节能监测2009-10-302010-05-01231GB24567-2009牙膏工业用单氟磷酸钠2009-10-302010-06-01232GB24568-2009牙膏工业用磷酸氢钙2009-10-302010-06-01233GB/T24569-2009地理标志产品常山山茶油2009-10-302010-01-01234GB/T24570-2009无菌袋成型灌装封口机2009-10-302010-03-01235GB/T24571-2009PET瓶无菌冷灌装生产线2009-10-302010-03-01236GB/T24572.1-2009火灾现场易燃液体残留物实验室提取方法第1部分:溶剂提取法2009-10-302010-04-01237GB/T24572.2-2009火灾现场易燃液体残留物实验室提取方法第2部分:直接顶空进样法2009-10-302010-04-01238GB/T24572.3-2009火灾现场易燃液体残留物实验室提取方法第3部分:活性炭吸附法2009-10-302010-04-01239GB/T24572.4-2009火灾现场易燃液体残留物实验室提取方法第4部分:固相微萃取法2009-10-302010-04-01240GB/T24573-2009金库和档案室门耐火性能试验方法2009-10-302010-04-01241GB/T24574-2009硅单晶中Ⅲ-Ⅴ族杂质的光致发光测试方法2009-10-302010-06-01242GB/T24575-2009硅和外延片表面Na、Al、K和Fe的二次离子质谱检测方法2009-10-302010-06-01243GB/T24576-2009高分辩率X射线衍射测量GaAs衬底生长的AlGaAs中Al成分的试验方法2009-10-302010-06-01244GB/T24577-2009热解吸气相色谱法测定硅片表面的有机污染物2009-10-302010-06-01245GB/T24578-2009硅片表面金属沾污的全反射X光荧光光谱测试方法2009-10-302010-06-01246GB/T24579-2009酸浸取原子吸收光谱法测定多晶硅表面金属污染物2009-10-302010-06-01247GB/T24580-2009重掺n型硅衬底中硼沾污的二次离子质谱检测方法2009-10-302010-06-01248GB/T24581-2009低温傅立叶变换红外光谱法测量硅单晶中III、V族杂质含量的测试方法2009-10-302010-06-01249GB/T24582-2009酸浸取电感耦合等离子质谱仪测定多晶硅表面金属杂质2009-10-302010-06-01250GB/T24583.1-2009钒氮合金钒含量的测定硫酸亚铁铵滴定法2009-10-302010-05-01251GB/T24583.2-2009钒氮合金氮含量的测定惰性气体熔融热导法2009-10-302010-05-01252GB/T24583.3-2009钒氮合金氮含量的测定蒸馏-中和滴定法2009-10-302010-05-01253GB/T24583.4-2009钒氮合金碳含量的测定红外线吸收法2009-10-302010-05-01254GB/T24583.5-2009钒氮合金磷含量的测定铋磷钼蓝分光光度法2009-10-302010-05-01255GB/T24583.6-2009钒氮合金硫含量的测定红外线吸收法2009-10-302010-05-01256GB/T24583.7-2009钒氮合金氧含量的测定红外线吸收法2009-10-302010-05-01257GB/T24583.8-2009钒氮合金硅、锰、磷、铝含量的测定电感耦合等离子体原子发射光谱法2009-10-302010-05-01258GB/T24584-2009金属材料拉伸试验液氦试验方法2009-10-302010-05-01259GB/T24585-2009镍铁磷、锰、铬、铜、钴和硅含量的测定电感耦合等离子体原子发射光谱法2009-10-302010-05-01260GB/T24586-2009铁矿石表观密度、真密度和孔隙率的测定2009-10-302010-05-01261GB/T24587-2009预应力混凝土钢棒用热轧盘条2009-10-302010-05-01262GB/T24588-2009不锈弹簧钢丝2009-10-302010-05-01263GB/T24590-2009高效换热器用特型管2009-10-302010-05-01264GB/T24591-2009高压给水加热器用无缝钢管2009-10-302010-05-01265GB/T24592-2009聚乙烯用高压合金钢管2009-10-302010-05-01266GB/T24593-2009锅炉和热交换器用奥氏体不锈钢焊接钢管2009-10-302010-05-01267GB/T24594-2009优质合金模具钢2009-10-302010-05-01268GB/T24595-2009调质汽车曲轴用钢棒2009-10-302010-05-01269GB/T24596-2009球墨铸铁管和管件聚氨酯涂层2009-10-302010-05-01270GB/T24597-2009铬锰钨系抗磨铸铁件2009-10-302010-04-01271GB/T24598-2009铝及铝合金熔化焊焊工技能评定2009-10-302010-04-01,/PGB/T4232-19931984-03-262009-10-302010-05-0119GB/T4240-2009不锈钢丝GB/T4240-19931984-03-262009-10-302010-05-0120GB/T4357-2009冷拉碳素弹簧钢丝GB/T4357-19891984-04-302009-10-302010-05-0121GB/T4701.1-2009钛铁钛含量的测定硫酸铁铵滴定法GB/T4701.1-19841984-10-042009-10-302010-05-0122GB/T4970-2009汽车平顺性试验方法GB/T4970-1996,GB/T5902-19861985-03-022009-10-302010-07-0123GB/T4971-2009汽车平顺性术语和定义GB/T4971-19851985-03-022009-10-302010-07-0124GB/T5238-2009锗单晶和锗单晶片GB/T15713-1995,GB/T5238-19951985-07-222009-10-302010-06-0125GB/T5312-2009船舶用碳钢和碳锰钢无缝钢管GB/T5312-19991985-08-242009-10-302010-05-0126GB/T5503-2009粮油检验碎米检验法GB/T5503-19851985-11-022009-10-302009-12-0127GB/T5909-2009商用车辆车轮性能要求和试验方法GB/T5909-19951986-03-032009-10-302010-07-0128GB/T6150.16-2009钨精矿化学分析方法铁量的测定磺基水杨酸分光光度法GB/T6150.18-19851985-06-212009-10-302010-06-0129GB/T6150.3-2009钨精矿化学分析方法磷量的测定磷钼黄分光光度法GB/T6150.4-19851985-06-212009-10-302010-06-0130GB/T6150.8-2009钨精矿化学分析方法钼量的测定硫氰酸盐分光光度法GB/T6150.10-19851985-06-212009-10-302010-06-0131GB/T6150.9-2009钨精矿化学分析方法铜量的测定火焰原子吸收光谱法GB/T6150.11-19851985-06-212009-10-302010-06-0132GB/T6412-2009家庭用煤及炉具试验方法GB/T6412-19861986-05-172009-10-302010-04-0133GB/T6616-2009半导体硅片电阻率及硅薄膜薄层电阻测试方法非接触涡流法GB/T6616-19951986-07-262009-10-302010-06-0134GB/T6617-2009硅片电阻率测定扩展电阻探针法GB/T6617-19951986-07-262009-10-302010-06-0135GB/T6618-2009硅片厚度和总厚度变化测试方法GB/T6618-19951986-07-262009-10-302010-06-0136GB/T6619-2009硅片弯曲度测试方法GB/T6619-19951985-06-172009-10-302010-06-0137GB/T6620-2009硅片翘曲度非接触式测试方法GB/T6620-19951986-07-262009-10-302010-06-0138GB/T6621-2009硅片表面平整度测试方法GB/T6621-19951986-07-262009-10-302010-06-0139GB/T6624-2009硅抛光片表面质量目测检验方法GB/T6624-19951986-07-262009-10-302010-06-0140GB/T6730.65-2009铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)2009-10-302010-05-0141GB/T6730.66-2009铁矿石全铁含量的测定自动电位滴定法2009-10-302010-05-0142GB/T6730.67-2009铁矿石砷含量的测定氢化物发生原子吸收光谱法2009-10-302010-05-0143GB/T6730.68-2009铁矿石灼烧减量的测定重量法2009-10-302010-05-0144GB/T7216-2009灰铸铁金相检验GB/T7216-19871987-01-242009-10-302010-04-0145GB/T7233.1-2009铸钢件超声检测第1部分:一般用途铸钢件部分代替:GB/T7233-19871987-02-042009-10-302010-04-0146GB/T7717.16-2009工业用丙烯腈第16部分:铁含量的测定石墨炉原子吸收法2009-10-302010-06-0147GB/T7717.17-2009工业用丙烯腈第17部分:铜含量的测定石墨炉原子吸收法2009-10-302010-06-0148GB/T8036-2009焦化苯类产品颜色的测定方法GB/T8036-19871987-06-302009-10-302010-05-0149GB/T8037-2009焦化苯类产品中硫醇的检验方法GB/T8037-19871987-06-302009-10-302010-05-0150GB/T8321.9-2009农药合理使用准则(九)2009-10-302009-12-0151GB/T9441-2009球墨铸铁金相检验GB/T9441-19881988-06-252009-10-302010-04-0152GB/T9941-2009高速工具钢钢板GB/T9941-19881988-09-202009-10-302010-05-0153GB/T10117-2009高纯锑GB/T10117-19881988-12-102009-10-302010-06-0154GB/T10118-2009高纯镓GB/T10118-19881988-12-102009-10-302010-06-0155GB/T10322.8-2009铁矿石比表面积的单点测定氮吸附法2009-10-302010-05-0156GB/T11072-2009锑化铟多晶、单晶及切割片GB/T11072-19891989-03-312009-10-302010-06-0157GB/T11251-2009合金结构钢热轧厚钢板GB/T11251-19891989-03-312009-10-302010-05-0158GB/T11412.1-2009海船安全开航技术要求 第1部分:一般要求GB/T11412.1-1989,GB/T11412.2-1989,GB/T11412.3-1989,GB/T6551-19931989-05-312009-10-302010-03-0159GB/T11718-2009中密度纤维板GB/T11718-19991989-11-162009-10-302010-04-0160GB/T12467.1-2009金属材料熔焊质量要求第1部分:质量要求相应等级的选择准则GB/T12467.1-19981990-09-082009-10-302010-04-0161GB/T12467.2-2009金属材料熔焊质量要求第2部分:完整质量要求GB/T12467.2-19981990-09-082009-10-302010-04-0162GB/T12467.3-2009金属材料熔焊质量要求第3部分:一般质量要求GB/T12467.3-19981990-09-082009-10-302010-04-0163GB/T12467.4-2009金属材料熔焊质量要求第4部分:基本质量要求GB/T12467.4-19981990-09-082009-10-302010-04-0164GB/T12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件2009-10-302010-04-0165GB/T12718-2009矿用高强度圆环链GB/T12718-20011991-02-042009-10-302010-04-0166GB/T12963-2009硅多晶GB/T12963-19961991-06-042009-10-302010-06-0167GB/T13387-2009硅及其它电子材料晶片参考面长度测量方法GB/T13387-19921992-02-192009-10-302010-06-0168GB/T13388-2009硅片参考面结晶学取向X射线测试方法GB/T13388-19921992-02-192009-10-302010-06-0169GB/T13608-2009合理润滑技术通则GB/T13608-19921992-08-152009-10-302010-05-0170GB/T14139-2009硅外延片GB/T14139-19931993-02-062009-10-302010-06-0171GB/T14140-2009硅片直径测量方法GB/T14140.1-1993,GB/T14140.2-19931993-02-062009-10-302010-06-0172GB/T14141-2009硅外延层、扩散层和离子注入层薄层电阻的测定直排四探针法GB/T14141-19931993-02-062009-10-302010-06-0173GB/T14144-2009硅晶体中间隙氧含量径向变化测量方法GB/T14144-19931993-02-062009-10-302010-06-0174GB/T14146-2009硅外延层载流子浓度测定汞探针电容-电压法GB/T14146-19931993-02-062009-10-302010-06-0175GB/T14264-2009半导体材料术语GB/T14264-19931993-03-202009-10-302010-06-0176GB/T14600-2009电子工业用气体氧化亚氮GB/T14600-19931993-08-262009-10-302010-05-0177GB/T14601-2009电子工业用气体氨GB/T14601-19931993-08-262009-10-302010-05-0178GB/T14603-2009电子工业用气体三氟化硼GB/T14603-19931993-08-262009-10-302010-05-0179GB/T14604-2009电子工业用气体氧GB/T14604-19931993-08-262009-10-302010-05-0180GB/T14743-2009港口轮胎起重机GB/T14743-1993,GB/T14744-19931993-12-102009-10-302010-03-0181GB/T14851-2009电子工业用气体磷化氢GB/T14851-19931993-12-302009-10-302010-05-0182GB/T15036.1-2009实木地板第1部分:技术要求GB/T15036.1-20011994-03-292009-10-302009-12-0183GB/T15036.2-2009实木地板第2部分:检验方法GB/T15036.2-20011994-03-292009-10-302009-12-0184GB/T15317-2009燃煤工业锅炉节能监测GB/T15317-19941994-12-172009-10-302010-05-0185GB/T15672-2009食用菌中总糖含量的测定GB/T15672-19951995-08-172009-10-302009-12-0186GB/T15673-2009食用菌中粗蛋白含量的测定GB/T15673-19951995-08-172009-10-302009-12-0187GB/T15674-2009食用菌中粗脂肪含量的测定GB/T15674-19951995-08-172009-10-302009-12-0188GB/T15909-2009电子工业用气体硅烷(SiH4)GB/T15909-19951995-12-202009-10-302010-05-0189GB/T15910-2009热力输送系统节能监测GB/T15910-19951995-12-202009-10-302010-05-0190GB/T15912.1-2009制冷机组及供制冷系统节能测试第1部分:冷库GB/T15912-19951995-12-202009-10-302010-05-0191GB/T15913-2009风机机组与管网系统节能监测GB/T15913-19951995-12-202009-10-302010-05-0192GB/T16271-2009钢丝绳吊索插编索扣GB/T16271-19961996-04-052009-10-302010-05-0193GB16413-2009煤矿井下用玻璃钢制品安全性能检验规范GB16413-19961996-06-142009-10-302010-09-0194GB/T16484.10-2009氯化稀土、碳酸轻稀土化学分析方法第10部分:氧化锰量的测定火焰原子吸收光谱法GB/T16484.10-19961996-07-092009-10-302010-05-0195GB/T16484.1-2009氯化稀土、碳酸轻稀土化学分析方法第1部分:氧化铈量的测定硫酸亚铁铵滴定法GB/T16484.1-19961996-07-092009-10-302010-05-0196GB/T16484.11-2009氯化稀土、碳酸轻稀土化学分析方法第11部分:氧化铅量的测定火焰原子吸收光谱法GB/T16484.11-19961996-07-092009-10-302010-05-0197GB/T16484.12-2009氯化稀土、碳酸轻稀土化学分析方法第12部分:硫酸根量的测定GB/T16484.12-19961996-07-092009-10-302010-05-0198GB/T16484.13-2009氯化稀土、碳酸轻稀土化学分析方法第13部分:氯化铵量的测定蒸馏-滴定法GB/T16484.13-19961996-07-092009-10-302010-05-0199GB/T16484.14-2009氯化稀土、碳酸轻稀土化学分析方法第14部分:磷酸根量的测定锑磷钼蓝分光光度法GB/T16484.14-19961996-07-092009-10-302010-05-01100GB/T16484.15-2009氯化稀土、碳酸轻稀土化学分析方法第15部分:碳酸轻稀土中氯量的测定硝酸银比浊法GB/T16484.15-19961996-07-092009-10-302010-05-01101GB/T16484.16-2009氯化稀土、碳酸轻稀土化学分析方法第16部分:氯化稀土中水不溶物量的测定重量法GB/T16484.16-19961996-07-092009-10-302010-05-01102GB/T16484.18-2009氯化稀土、碳酸轻稀土化学分析方法第18部分:碳酸轻稀土中灼减量的测定重量法GB/T16484.18-19961996-07-092009-10-302010-05-01103GB/T16484.20-2009氯化稀土、碳酸轻稀土化学分析方法第20部分:氧化镍、氧化锰、氧化铅、氧化铝、氧化锌、氧化钍量的测定电感耦合等离子体质谱法2009-10-302010-05-01104GB/T16484.2-2009氯化稀土、碳酸轻稀土化学分析方法第2部分:氧化铕量的测定电感耦合等离子体质谱法GB/T16484.2-19961996-07-092009-10-302010-05-01105GB/T16484.21-2009氯化稀土、碳酸轻稀土化学分析方法第21部分:氧化铁量的测定1,10-二氮杂菲分光光度法2009-10-302010-05-01106GB/T16484.22-2009氯化稀土、碳酸轻稀土化学分析方法第22部分:氧化锌量的测定火焰原子吸收光谱法2009-10-302010-05-01107GB/T16484.23-2009氯化稀土、碳酸轻稀土化学分析方法第23部分:碳酸轻稀土中酸不溶物量的测定重量法2009-10-302010-05-01108GB/T16484.3-2009氯化稀土、碳酸轻稀土化学分析方法第3部分:15个稀土元素氧化物配分量的测定电感耦合等离子体发射光谱法GB/T16484.3-19961996-07-092009-10-302010-05-01109GB/T16484.4-2009氯化稀土、碳酸轻稀土化学分析方法第4部分:氧化钍量的测定偶氮胂Ⅲ分光光度法GB/T16484.4-19961996-07-092009-10-302010-05-01110GB/T16484.5-2009氯化稀土、碳酸轻稀土化学分析方法第5部分:氧化钡量的测定电感耦合等离子体发射光谱法GB/T16484.5-19961996-07-092009-10-302010-05-01111GB/T16484.6-2009氯化稀土、碳酸轻稀土化学分析方法第6部分:氧化钙量的测定火焰原子吸收光谱法GB/T16484.6-19961996-07-092009-10-302010-05-01112GB/T16484.7-2009氯化稀土、碳酸轻稀土化学分析方法第7部分:氧化镁量的测定火焰原子吸收光谱法GB/T16484.7-19961996-07-092009-10-302010-05-01113GB/T16484.8-2009氯化稀土、碳酸轻稀土化学分析方法第8部分:氧化钠量的测定火焰原子吸收光谱法GB/T16484.8-19961996-07-092009-10-302010-05-01114GB/T16484.9-2009氯化稀土、碳酸轻稀土化学分析方法第9部分:氧化镍量的测定火焰原子吸收光谱法GB/T16484.9-19961996-07-092009-10-302010-05-01115GB/T16762-2009一般用途钢丝绳吊索特性和技术条件GB/T16762-19971997-03-172009-10-302010-05-01116GB/T16942-2009电子工业用气体氢GB/T16942-19971997-08-132009-10-302010-05-01117GB/T16943-2009电子工业用气体氦GB/T16943-19971997-08-132009-10-302010-05-01118GB/T16944-2009电子工业用气体氮GB/T16944-19971997-08-132009-10-302010-05-01119GB/T16945-2009电子工业用气体氩GB/T16945-19971997-08-132009-10-302010-05-01120GB/T17396-2009液压支柱用热轧无缝钢管GB/T17396-19981998-05-282009-10-302010-05-01121GB/T17428-2009通风管道耐火试验方法GB17428-19981998-07-152009-10-302010-04-01122GB/T17445-2009铸造磨球GB/T17445-19981998-07-302009-10-302010-04-01123GB/T17456.1-2009球墨铸铁管外表面锌涂层第1部分:带终饰层的金属锌涂层GB/T17456-19981998-08-122009-10-302010-05-01124GB/T17457-2009球墨铸铁管和管件水泥砂浆内衬GB/T17457-19981998-08-122009-10-302010-05-01125GB/T17495-2009港口门座起重机GB/T17495-19981998-09-162009-10-302010-03-01126GB/T17502-2009海底电缆管道路由勘察规范GB17502-19981998-10-122009-10-302010-04-01127GB/T17503-2009海上平台场址工程地质勘察规范GB17503-19981998-10-122009-10-302010-04-01,128GB/T17731-2009镁合金牺牲阳极GB/T17731-20041994-04-152009-10-302010-06-01129GB/T17822.1-2009橡胶树种子GB/T17822.1-19991999-08-112009-10-302009-12-01130GB/T17822.2-2009橡胶树苗木GB/T17822.2-19991999-08-112009-10-302009-12-01131GB/T18024.1-2009煤矿机械技术文件用图形符号第1部分:总则GB/T18024.1-20002000-03-162009-10-302010-04-01132GB/T18259-2009人造板及其表面装饰术语GB/T18259-20002000-12-042009-10-302010-04-01133GB19761-2009通风机能效限定值及能效等级GB19761-20052005-05-132009-10-302010-09-01134GB/T20935.2-2009金属材料电磁超声检验方法第2部分:利用电磁超声换能器技术进行超声检测的方法2009-10-302010-05-01135GB/T20935.3-2009金属材料电磁超声检验方法第3部分:利用电磁超声换能器技术进行超声表面检测的方法2009-10-302010-05-01136GB/T22101.2-2009棉花抗病虫性评价技术规范第2部分:蚜虫2009-10-302009-12-01137GB/T22101.3-2009棉花抗病虫性评价技术规范第3部分:红铃虫2009-10-302009-12-01138GB/T22101.4-2009棉花抗病虫性评价技术规范第4部分:枯萎病2009-10-302009-12-01139GB/T22101.5-2009棉花抗病虫性评价技术规范第5部分:黄萎病2009-10-302009-12-01140GB/T24481-20093C产品用镁合金薄板2009-10-302010-06-01141GB/T24482-2009焙烧钼精矿2009-10-302010-06-01142GB/T24483-2009铝土矿石2009-10-302010-06-01143GB/T24484-2009钼铁试样的采取和制备方法2009-10-302010-06-01144GB/T24485-2009碳化铌粉2009-10-302010-06-01145GB/T24486-2009线缆编织用铝合金线2009-10-302010-06-01146GB/T24487-2009氧化铝2009-10-302010-06-01147GB/T24488-2009镁合金牺牲阳极电化学性能测试方法2009-10-302010-06-01148GB/T24489-2009用能产品能效指标编制通则2009-10-302010-05-01149GB/T24490-2009多壁碳纳米管纯度的测量方法2009-10-302010-06-01150GB/T24491-2009多壁碳纳米管2009-10-302010-06-01151GB/T24492-2009非承重混凝土空心砖2009-10-302010-04-01152GB/T24493-2009装饰混凝土砖2009-10-302010-04-01153GB/T24494-2009门两侧在不同气候条件下的变形检测方法2009-10-302010-04-01154GB/T24495-2009承重墙与混凝土楼板间的水平接缝实验室力学试验由楼板传来的垂直荷载和弯矩的影响2009-10-302010-04-01155GB/T24496-2009钢筋混凝土大板间有连接筋并用混凝土浇灌的键槽式竖向接缝实验室力学试验平面内切向荷载的影响2009-10-302010-04-01156GB/T24497-2009建筑物的性能标准预制混凝土楼板的性能试验在集中荷载下的工况2009-10-302010-04-01157GB/T24498-2009建筑门窗、幕墙用密封胶条2009-10-302010-04-01158GB/T24499-2009氢气、氢能与氢能系统术语2009-10-302010-05-01159GB24500-2009工业锅炉能效限定值及能效等级2009-10-302010-09-01160GB/T24501.2-2009小麦条锈病、吸浆虫防治技术规范第2部分:小麦吸浆虫2009-10-302009-12-01161GB24502-2009煤矿用化学氧自救器2009-10-302010-09-01162GB/T24503-2009矿用圆环链驱动链轮2009-10-302010-04-01163GB/T24504-2009煤层气井注入/压降试井方法2009-10-302010-04-01164GB/T24505-2009矿井井下高压含水层探水钻探技术规范2009-10-302010-04-01165GB/T24506-2009液压支架型式、参数及型号编制2009-10-302010-04-01166GB/T24507-2009浸渍纸层压板饰面多层实木复合地板2009-10-302010-04-01167GB/T24508-2009木塑地板2009-10-302010-04-01168GB/T24509-2009阻燃木质复合地板2009-10-302010-04-01169GB24510-2009低温压力容器用9%Ni钢板2009-10-302010-06-01170GB24511-2009承压设备用不锈钢钢板及钢带2009-10-302010-06-01171GB24512.1-2009核电站用无缝钢管第1部分:碳素钢无缝钢管2009-10-302010-06-01172GB24512.2-2009核电站用无缝钢管第2部分:合金钢无缝钢管2009-10-302010-06-01173GB/T24513.1-2009金属和合金的腐蚀室内大气低腐蚀性分类第1部分:室内大气腐蚀性的测定与评价2009-10-302010-05-01174GB/T24514-2009钢表面锌基和(或)铝基镀层单位面积镀层质量和化学成分测定重量法、电感耦合等离子体原子发射光谱法和火焰原子吸收光谱法2009-10-302010-05-01175GB/T24515-2009高炉用铁矿石用还原速率表示的还原性的测定2009-10-302010-05-01176GB/T24516.1-2009金属和合金的腐蚀大气腐蚀地面气象因素观测方法2009-10-302010-05-01177GB/T24516.2-2009金属和合金的腐蚀大气腐蚀跟踪太阳暴露试验方法2009-10-302010-05-01178GB/T24517-2009金属和合金的腐蚀户外周期喷淋暴露试验方法2009-10-302010-05-01179GB/T24518-2009金属和合金的腐蚀应力腐蚀室外暴露试验方法2009-10-302010-05-01180GB/T24519-2009锰矿石镁、铝、硅、磷、硫、钾、钙、钛、锰、铁、镍、铜、锌、钡和铅含量的测定波长色散X射线荧光光谱法2009-10-302010-05-01181GB/T24520-2009铸铁和低合金钢镧、铈和镁含量的测定电感耦合等离子体原子发射光谱法2009-10-302010-05-01182GB/T24521-2009焦炭电阻率测定方法2009-10-302010-05-01183GB/T24522-2009金属材料低拘束试样测定稳定裂纹扩展阻力的试验方法2009-10-302010-05-01184GB/T24523-2009金属材料快速压痕(布氏)硬度试验方法2009-10-302010-05-01185GB/T24524-2009金属材料薄板和薄带扩孔试验方法2009-10-302010-05-01186GB/T24525-2009炭素材料电阻率测定方法2009-10-302010-05-01187GB/T24526-2009炭素材料全硫含量测定方法2009-10-302010-05-01188GB/T24527-2009炭素材料内在水分的测定2009-10-302010-05-01189GB/T24528-2009炭素材料体积密度测定方法2009-10-302010-05-01190GB/T24529-2009炭素材料显气孔率的测定方法2009-10-302010-05-01191GB/T24530-2009高炉用铁矿石荷重还原性的测定2009-10-302010-05-01192GB/T24531-2009高炉和直接还原用铁矿石转鼓和耐磨指数的测定2009-10-302010-05-01193GB/T24532-2009微米级羰基铁粉2009-10-302010-05-01194GB/T24533-2009锂离子电池石墨类负极材料2009-10-302010-05-01195GB/T24534.1-2009谷物与豆类隐蔽性昆虫感染的测定第1部分:总则2009-10-302009-12-01196GB/T24534.2-2009谷物与豆类隐蔽性昆虫感染的测定第2部分:取样2009-10-302009-12-01197GB/T24534.3-2009谷物与豆类隐蔽性昆虫感染的测定第3部分:基准方法2009-10-302009-12-01198GB/T24534.4-2009谷物与豆类隐蔽性昆虫感染的测定第4部分:快速方法2009-10-302009-12-01199GB/T24535-2009粮油检验稻谷粒型检验方法2009-10-302009-12-01200GB/T24536-2009防护服装化学防护服的选择、使用和维护2009-10-302010-09-01201GB/T24537-2009坠落防护带柔性导轨的自锁器2009-10-302010-09-01202GB/T24538-2009坠落防护缓冲器2009-10-302010-09-01203GB24539-2009防护服装化学防护服通用技术要求2009-10-302010-09-01204GB24540-2009防护服装酸碱类化学品防护服2009-10-302010-09-01205GB24541-2009手部防护机械危害防护手套2009-10-302010-09-01206GB24542-2009坠落防护带刚性导轨的自锁器2009-10-302010-09-01207GB24543-2009坠落防护安全绳2009-10-302010-09-01208GB24544-2009坠落防护速差自控器2009-10-302010-09-01209GB/T24545-2009车辆车速限制系统技术要求2009-10-302010-07-01210GB/T24546-2009摩托车重心位置的测量方法2009-10-302010-07-01211GB/T24547-2009轻便摩托车重心位置的测量方法2009-10-302010-07-01212GB/T24548-2009燃料电池电动汽车术语2009-10-302010-07-01213GB/T24549-2009燃料电池电动汽车安全要求2009-10-302010-07-01214GB/T24550-2009汽车对行人的碰撞保护2009-10-302010-07-01215GB/T24551-2009汽车安全带提醒装置2009-10-302010-07-01216GB/T24552-2009电动汽车风窗玻璃除霜除雾系统的性能要求及试验方法2009-10-302010-07-01217GB/T24553-2009摩托车和轻便摩托车转向轮限位装置及最大转向角的技术要求和测定方法2009-10-302010-07-01218GB/T24554-2009燃料电池发动机性能试验方法2009-10-302010-07-01219GB/T24555-2009200m氦氧饱和潜水作业要求2009-10-302010-03-01220GB/T24556-2009200m氦氧饱和潜水作业应急措施2009-10-302010-03-01221GB/T24557-2009职业潜水员心理选拔方法及评价2009-10-302010-03-01222GB/T24558-2009声学多普勒流速剖面仪2009-10-302010-04-01223GB/T24559-2009海洋螺旋桨式风向风速计2009-10-302010-04-01224GB/T24560-2009电解、电镀设备节能监测2009-10-302010-05-01225GB/T24561-2009干燥窑与烘烤炉节能监测2009-10-302010-05-01226GB/T24562-2009燃料热处理炉节能监测2009-10-302010-05-01227GB/T24563-2009煤气发生炉节能监测2009-10-302010-05-01228GB/T24564-2009高炉热风炉节能监测2009-10-302010-05-01229GB/T24565-2009隧道窑节能监测2009-10-302010-05-01230GB/T24566-2009整流设备节能监测2009-10-302010-05-01231GB24567-2009牙膏工业用单氟磷酸钠2009-10-302010-06-01232GB24568-2009牙膏工业用磷酸氢钙2009-10-302010-06-01233GB/T24569-2009地理标志产品常山山茶油2009-10-302010-01-01234GB/T24570-2009无菌袋成型灌装封口机2009-10-302010-03-01235GB/T24571-2009PET瓶无菌冷灌装生产线2009-10-302010-03-01236GB/T24572.1-2009火灾现场易燃液体残留物实验室提取方法第1部分:溶剂提取法2009-10-302010-04-01237GB/T24572.2-2009火灾现场易燃液体残留物实验室提取方法第2部分:直接顶空进样法2009-10-302010-04-01238GB/T24572.3-2009火灾现场易燃液体残留物实验室提取方法第3部分:活性炭吸附法2009-10-302010-04-01239GB/T24572.4-2009火灾现场易燃液体残留物实验室提取方法第4部分:固相微萃取法2009-10-302010-04-01240GB/T24573-2009金库和档案室门耐火性能试验方法2009-10-302010-04-01241GB/T24574-2009硅单晶中Ⅲ-Ⅴ族杂质的光致发光测试方法2009-10-302010-06-01242GB/T24575-2009硅和外延片表面Na、Al、K和Fe的二次离子质谱检测方法2009-10-302010-06-01243GB/T24576-2009高分辩率X射线衍射测量GaAs衬底生长的AlGaAs中Al成分的试验方法2009-10-302010-06-01244GB/T24577-2009热解吸气相色谱法测定硅片表面的有机污染物2009-10-302010-06-01245GB/T24578-2009硅片表面金属沾污的全反射X光荧光光谱测试方法2009-10-302010-06-01246GB/T24579-2009酸浸取原子吸收光谱法测定多晶硅表面金属污染物2009-10-302010-06-01247GB/T24580-2009重掺n型硅衬底中硼沾污的二次离子质谱检测方法2009-10-302010-06-01248GB/T24581-2009低温傅立叶变换红外光谱法测量硅单晶中III、V族杂质含量的测试方法2009-10-302010-06-01249GB/T24582-2009酸浸取电感耦合等离子质谱仪测定多晶硅表面金属杂质2009-10-302010-06-01250GB/T24583.1-2009钒氮合金钒含量的测定硫酸亚铁铵滴定法2009-10-302010-05-01251GB/T24583.2-2009钒氮合金氮含量的测定惰性气体熔融热导法2009-10-302010-05-01252GB/T24583.3-2009钒氮合金氮含量的测定蒸馏-中和滴定法2009-10-302010-05-01253GB/T24583.4-2009钒氮合金碳含量的测定红外线吸收法2009-10-302010-05-01254GB/T24583.5-2009钒氮合金磷含量的测定铋磷钼蓝分光光度法2009-10-302010-05-01255GB/T24583.6-2009钒氮合金硫含量的测定红外线吸收法2009-10-302010-05-01256GB/T24583.7-2009钒氮合金氧含量的测定红外线吸收法2009-10-302010-05-01257GB/T24583.8-2009钒氮合金硅、锰、磷、铝含量的测定电感耦合等离子体原子发射光谱法2009-10-302010-05-01258GB/T24584-2009金属材料拉伸试验液氦试验方法2009-10-302010-05-01259GB/T24585-2009镍铁磷、锰、铬、铜、钴和硅含量的测定电感耦合等离子体原子发射光谱法2009-10-302010-05-01260GB/T24586-2009铁矿石表观密度、真密度和孔隙率的测定2009-10-302010-05-01261GB/T24587-2009预应力混凝土钢棒用热轧盘条2009-10-302010-05-01262GB/T24588-2009不锈弹簧钢丝2009-10-302010-05-01263GB/T24590-2009高效换热器用特型管2009-10-302010-05-01264GB/T24591-2009高压给水加热器用无缝钢管2009-10-302010-05-01265GB/T24592-2009聚乙烯用高压合金钢管2009-10-302010-05-01266GB/T24593-2009锅炉和热交换器用奥氏体不锈钢焊接钢管2009-10-302010-05-01267GB/T24594-2009优质合金模具钢2009-10-302010-05-01268GB/T24595-2009调质汽车曲轴用钢棒2009-10-302010-05-01269GB/T24596-2009球墨铸铁管和管件聚氨酯涂层2009-10-302010-05-01270GB/T24597-2009铬锰钨系抗磨铸铁件2009-10-302010-04-01271GB/T24598-2009铝及铝合金熔化焊焊工技能评定2009-10-302010-04-01
  • 日本电子ARM球差电镜用户研发的新材料将引起电子产业革命——记德克萨斯大学研究小组的诺奖级成果
    随着新成果在Science杂志上发表,来自德克萨斯大学的Arturo Ponce教授向我们展示了他是如何开展他的诺奖级工作的。通过使用日本电子的ARM系列球差校正电镜,Ponce教授发现并表征了结构类似石墨烯的二维材料——“硼墨烯”(borophene)。用于观察硼墨烯的ARM系列球差校正电镜,摄于德克萨斯大学(2016.1.6)  “这真是激动人心的一刻,”Ponce教授说道“这项发现将会极大地促进电子设备的发展。”  在2010年曼彻斯特大学的科学家们因为发现石墨烯而获得诺贝尔奖,去年Arturo Ponce教授与Miguel Yacaman教授通过研究硼元素材料,又把这项工作向前推进了一步。由于硼元素的原子半径极小且质量极轻,所以它比构成石墨烯的碳元素更难以表征。得益于德克萨斯大学ARM球差矫正电镜的强大机能,这项研究工作得以顺利的展开。  但从使用角度来说,小而轻的单层硼元素——硼墨烯对于电子设备的进步具有很高的实用价值。由于极薄,硼墨烯能够如半导体一样传输各向异性的电子信号,且其传输的速度将远大于其他各类材料。类似的技术已被应用于一些新型电子设备,比如Apple Watch。而硼墨烯的使用能够让这类设备变得更小、更快、更灵活。  “在电子设备的设计与制造中,我们总是试图获得更小的元器件”Ponce教授说“得益于超薄的硼墨烯材料,我们将可以让一些电子器件更袖珍。”相信在未来的20年内大家将会用到装有硼墨烯器件的电子设备。  当样品极薄(比如硼墨烯或石墨烯这样的单层材料)时,一般透射电镜的扫描透射功能(STEM)经常无法取得原子级别的分辨率,这还是在不考虑电子束辐照损伤的基础上得到的结论。对于电子束敏感的轻元素(比如硼元素)来说,一切将变得更为困难。得益于ARM系列球差校正电镜的环形明场探测功能(ABF),有效的把信息量较小的“噪音”信号——透射电子与大角度散射电子信号滤去,成功的获得了硼元素原子级别的ABF像,为研究的展开铺平了道路。
  • 新材料十二五规划将出炉 高端钢铁产业获发展良机
    新材料“十二五”规划即将推出,涉及了包括高强轻质合金、高性能钢材、功能膜材料在内的6类新型材料。其中,高性能钢铁将分别受益于未来大飞机、新能源汽车和高端装备制造业的高速发展,需求提升潜力巨大,还将获得数千亿的资金支持,抚顺钢铁、西宁特钢、太钢不锈等上市公司值得重点关注。  《新材料产业“十二五”发展规划》即将推出,其中,高性能钢铁是新材料“十二五”规划中获得政策重点支持的品种之一,国家将通过税收减免、补贴、重大项目支持等形式支持企业的研发、研究成果产业化和发展相关配套设施,资金由企业和政府共同承担,保守估计达数千亿元。  当传统的钢铁产能面临着高耗能瓶颈,即将遭到大规模淘汰的时候,高性能钢铁产品有望成为突破能耗、资源和环境瓶颈的领头羊。同时,“十二五”高端装备制造业的发展将是这类产品需求提升的主要推动力。  据悉,中国目前需要淘汰的螺纹钢、热轧带钢、热轧硅钢产能分别达到7,800万吨、4,541万吨、58.5万吨。传统的低端钢铁产品逐步淘汰后,将为高端钢铁产品提供广阔的市场空间。  上半年出台的《钢铁行业“十二五”规划(草案)》指明的特种钢铁重点方向是:高速铁路、城市轨道交通、海洋工程和海上石油开采、大型和特殊性能船舶和舰艇、节能环保汽车、特高压电网等高端装备制造领域,预计大飞机、高铁、海工、能源等高端装备制造领域“十二五”投资规模有望达到10万亿元。  资料显示,钢铁分为22个大类,每一类都包含高性能钢铁,我国高性能钢铁总体占比不高,远低于发达国家水平。专家称,我国有的高性能钢铁技术水平相对较领先,如第三代汽车用钢、机械制造用钢、管线用钢等。业内人士表示,国内高性能钢铁部分技术还停留在实验室层面,科研成果产业化还需要继续努力。  特钢可以分为高、中、低三个层次:一是以优质碳素结构钢为主的低端特钢 二是以合金钢为代表的中端特钢 三是以不锈钢、工具钢、模具钢和高速钢为代表的高端特钢。数据显示,2010年我国特殊钢产量约为4.800万吨,仅占钢产量的8%左右,特钢占比远低于发达国家。目前我国特钢的发展以中低端产品为主,高端特钢占比不到7%,远低于日本30%的水平,未来高端特钢的市场前景广阔。  中国的特钢行业集中度是比较高的,前10大特钢企业市场占有率超过了50%,已形成了四大特钢集团,分别是:东北特钢集团、宝钢集团、中信泰富特钢和西宁特钢,目前主要的技术储备和订单都来自于这四大特钢集团。  东北特钢旗下的抚顺特钢是我国国防军工产业配套材料最重要的生产科研试制基地,为我国国防工程提供大批关键的新型钢材料,在模具钢、汽车用齿轮钢、高温合金轴承钢国内市场占有率分别为40%、35%、40%。宝钢股份作为中国钢铁的龙头企业,主要生产特钢和不锈钢,主要用于汽车和造船,其产品具有高技术含量、高附加值的特点,具有很强的定价能力。  西宁特钢的主要优势来自于其完整的“煤铁钢”一体化产业链,并形成了“高炉-转炉-精炼-连铸-连轧”优特钢生产线。  而在不锈钢方面,太钢不锈是这一子行业当仁不让的领头羊,该公司已经成为核电最全钢材供应商,目前在特种硅钢领域获得技术突破,未来发展潜力巨大。  除高性能钢铁外,新材料“十二五”规划将优先支持一些影响相对更大的先导性和更为基础的用量较大的材料,比如复合材料、高强轻型合金、稀土功能材料等。工业和信息化部部长苗圩表示,新材料是七大战略性新兴产业之一,对于支撑整个战略性新兴产业发展,促进传统产业转型升级,保障国家重大工程建设,具有重要战略意义。我国将大力发展新材料和先进制造技术,加快推进材料产业结构调整,积极发展先进结构材料、功能材料和复合材料 将加大新材料推广应用和市场培育,加快发展科技含量高、产业基础好、市场潜力大的关键新材料,选择最有可能率先突破和做大做强的领域予以重点推进,支持有条件的地区率先发展。  据估计,近几年中国新材料市场需求平均年增长高达20%左右,截至2010年产业规模已经超过1,000亿元。新材料产业具有基础性产业的特点,其产业规模的扩大对于扩大其他产业的规模具有乘数效应。未来,该产业的市场空间将更加广阔。
  • 乘风“碳中和”| 发展新能源---光伏材料的金属元素检测方案
    乘风“碳中和”| 发展新能源---光伏材料的金属元素检测方案王英光伏技术Photovoltaics在我国“力争2030年前实现碳达峰,2060年前实现碳中和”的目标指引下,能源低碳转型步入长发展周期,光伏、风电作为可再生能源将逐渐取代传统化石能源。我国当前光伏、风电总装机容量在2-3亿千瓦,到2030年将达到12亿千瓦,未来的零碳城市将随处可见光伏技术。 光伏产业链主要由硅料环节、硅片环节、电池环节、电池组件环节以及应用产品环节组成,其中硅片是太阳能电池最重要的材料。硅片材料以及其它应用在太阳能电池的相关辅料如光伏玻璃的纯度直接影响到太阳能电池的性能和寿命。 图片来自百度百科 赛默飞不断开发光伏材料中的金属离子的检测方案,为太阳能电池材料及重要部件的纯度保驾护航。从上游晶体硅原料到光伏组件,帮助客户建立完整的质量控制体系。 ICP-OES 测定工业硅中的磷、硼及其它金属元素工业硅通常情况下作为生产高纯度多晶硅和单晶硅的原材料,对其杂质元素含量的准确测定成为控制最终成品质量的重要保障,基于工业硅样品中磷、硼元素存在易挥发损失造成回收率偏低的特殊性质,赛默飞采用iCAP PROSeries ICP-OES法建立工业硅样品中磷、硼以及其它金属元素准确可靠的分析检测方法。 iCAP™ PRO ICP-OES iCAP PRO Duo ICP-OES的水平和垂直观测模式以及耐氢氟酸进样系统,对于硅粉样品中的多种杂质元素进行测定,其快速、简单、准确的特点,完全满足于工业硅样品中磷、硼、钙、铁等杂质元素的日常检测需求。 ICP-MS测定光伏玻璃中的痕量杂质光伏玻璃的主要原料成分包括石英砂、纯碱。石英砂主要是起着网络形成体的作用,用量通常占据玻璃组分的大半,由于晶硅太阳能电池本身机械强度差,容易破裂,空气中的水分和腐蚀性气体会逐渐氧化和锈蚀电极,无法承受露天工作的严酷条件,为此,太阳能电池通常采用光伏玻璃通过 EVA 和背板进行封装,这样既可保护电池不受水气侵蚀、阻隔氧气防止氧化、耐高低温、还具有良好的绝缘性和耐老化性能,光伏玻璃必须具备良好的透光率,因此对于杂质含量的控制具有严格的限制。 iCAP™ ICP-MS 赛默飞的iCAP RQ ICP-MS可以测定ppb级的Ca Co Cr 等10多种金属杂质。其一键仪器设置和直观分析工作流程,为操作人员简化了实验步骤并避免出错,同时自动和记录监控仪器状态,确保了操作的一致性和结果的重现性。 总结: 光伏在双碳政策的激励下,会进入长足的发展。赛默飞为客户提供痕量金属离子解决方案,助力光伏产业大发展。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 专访吉田博久教授:深入探究材料奥秘,促进社会可持续发展
    pspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  本文转载日立高新技术公司《SI NEWS》第58-1刊,刊载了吉田博久老师撰写的“使用AFM和DSC观察高分子相分离界面”,为读者介绍了结合原子力显微镜和热分析对高分子混合物的相分离界面,分别进行微观观察和宏观性能分析的案例。我们有幸参观了位于首都大学东京南大泽校园的实验室,零距离接触吉田老师,还观摩了他研发新材料的过程。 /span/pp style="TEXT-ALIGN: center"img title="01.jpg" style="HEIGHT: 357px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/9b020a3d-44a7-4306-acd2-d498a664f88a.jpg" width="500" height="357"/ /pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"吉田博久,1974年毕业于东京农工大学。曾任日本热分析学会会长一职,现任东京都立大学研究生院城市环境科学研究科教授。主要致力于高分子化学领域,对有机分子集合体进行纳米结构的研究等。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  1986年荣获纤维学会论文奖/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  2007年荣获文部科学大臣表彰 科学技术奖。/span/ppstrong  感受科研的乐趣,开启分子世界/strong/pp  有时偶然因素会左右人的判断,对未来结果产生巨大影响。吉田博久先生从事高分子研究工作,是深受当时社会环境的影响。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“我上研一的时候,全球第一次石油危机爆发,新生们的就业前景十分堪忧。我一开始觉得进了研究生院,也算是找到工作了。但是在我们实验室,成绩差的学生会被叫到实验室外。”/span/pp  其中就有吉田先生,大四的时候他在横滨的工业技术院纤维高分子材料研究所(前身:产业技术综合研究所)工作过一年。1918年绢业实验室成立,这是当时唯一一家研究高分子材料的公立机构,由此开启了研究所的新未来。/pp style="TEXT-ALIGN: center"img title="02.jpg" style="HEIGHT: 448px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/5a1e668f-01ef-432b-a5d0-2c95dc63c08b.jpg" width="300" height="448"//pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“如果我没去绢业实验室,应该会成为一个普通小职员。就在这个重要时期,我遇到了三位恩师,他们给日本化学带来了黎明的曙光。人都十分热心,他们并不是直接教给学生科研知识,而是让大家一起钻研”/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  “高分子和低分子有什么不同?”前辈们对某个未知概念提出疑问,激发大家自己钻研。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  “低分子末端的官能团决定分子的性质,形成高分子后,其末端分子性质也不会消失。我们还讨论过‘分子本身能否识别自身末端’,‘高分子的定义是什么’,探索的过程十分有趣。而且老师们并不觉得学生提出的想法是天方夜谭,反而认为这是非常值得推敲的设想。我觉得这个非常难得。”/span/pp style="TEXT-ALIGN: center"img title="03.jpg" style="HEIGHT: 353px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/9f8a0ce7-1b5d-443d-a225-2114e88b408d.jpg" width="300" height="353"//ppstrong  控制高分子结构,迎合时代需求/strong/pp  高分子究竟是什么呢?如果将分子置于某种环境中,分子将如何识别所处的环境?吉田老师以此为出发点,开始研发功能高分子材料。/pp  高分子一旦形成,其化学结构将很难控制。因此,为发挥高分子的某种特定功能,控制高分子结构(即分子的排列和结构重组)就变得尤为重要。/pp style="TEXT-ALIGN: center"img title="04.jpg" style="HEIGHT: 336px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/7abf3343-676d-42d3-950b-a334f3556ebd.jpg" width="500" height="336"//pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“我们也称之为‘分子积木’,例如,我们在生产高性能的传感器时,首先要考虑的就是结构。然后在高分子膜外侧,紧密排列官能团。所以首先要考虑的是如何设计高分子。通过单体控制结构,直接形成高分子,然后进行固化。”/span/pp  以最大程度发挥分子特性,设计分子排列顺序,结构固定后的分子聚集体可应用到能源、医疗、环境等多个领域。为推进新材料和产品的研发,吉田老师经常和材料公司、化妆品公司合作,有时一年要和5、6家公司合作,他们就各自的看法展开讨论。/pp  例如,在正常行驶和停车时汽车“低滚动阻力轮胎”所需要的阻力,正是影响燃油经济性的因素。为满足更高的用户需求,轮胎必须采用纳米结构材料。橡胶特性是亲油性材料,如何在橡胶内均匀分布可提高燃油性能的亲水性二氧化硅?这项研究吉田先生和轮胎厂家研究了十多年,这里必须要做的就是不同高分子间的界面分析。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“炭黑、二氧化硅纳米颗粒的表面和橡胶之间相互作用且平衡,其原因也非常值得我们去探索。为探其究竟,我使用日立高新技术公司研发的DSC进行热分析。值得一提的是,日立高新技术的DSC7000X灵敏度比前代仪器提高了3个数量级。之前热分析只能测定毫克级别,而DSC7000X产品可以实现微克级别。”/span/pp style="TEXT-ALIGN: center"img title="05.jpg" style="HEIGHT: 333px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/c263947f-22a8-490e-82b8-bc72bc80b63f.jpg" width="500" height="333"//pp strong 热分析迎来了表面和界面分析的新时代/strong/pp  2009年至2011年期间吉田先生担任日本热分析学会会长一职,据他所说,传统的热分析旨在研究材料的“平均值”变化,不适用于某些特殊的界面和表面分析。而日立热分析仪灵敏度高,可测量微克样品,实现了过去做不到的界面分析。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“高分子混合物由两种物质混合时,以前无法判别AB聚合物融合的界面的浓度梯度大小。而通过热分析,我们可以观察到界面的物质浓度和分布面积。”/span/pp  无论是日常生活,还是在最先进的领域,使用单一组成的高分子的案例少之又少。由于高分子材料可充分发挥混合高分子的所有特性,现已成为当今时代的迫切要求,界面分析的重要性也日益凸显。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“并不是均匀地混合不同的高分子形成高分子复合材料,而是进行局部处理,使得到的高分子复合材料具备新特性。如果界面处理不当,力学特性会很差,而且得到的高分子复合材料没有实用价值。虽然一定程度上实现了相分离,但是部分分子还是会相互融合,因此界面问题的解决对于现代生产领域至关重要。”/span/pp  乍一看,化妆品似乎与汽车轮胎毫不相干。了解皮肤角质层的组成细胞和细胞间脂质的界面状态对于化妆品来说尤为关键。什么时间,什么样的化妆品,如何使用会有效果?吉田老师和学生们结合物质界面因素,研究化妆品成分在角质层的分散情况。/pp  无论是轮胎还是化妆品,“达到纳米级别会是什么样子”,这项评估的重要性从未改变。吉田老师联用原子力显微镜(AFM)对样品进行结构分析,以提高整体热性能评价和分析精度水平。吉田老师曾参观过由日立高新科学研发的原子力显微镜国产1号机。通过不断提高仪器的灵敏度,“以前使用热分析无法观察到的,可通过AFM实现,而仅用AFM无法实现的,利用热分析数据又可以知晓”。其中,我们可以在使用AFM观察皮肤结构的同时,通过热分析仪观察皮肤细胞间角质层结构的变化过程。/pp style="TEXT-ALIGN: center"img title="06.jpg" style="HEIGHT: 195px WIDTH: 600px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/d8932cc1-16e1-4f8c-be95-ab379e31de8d.jpg" width="600" height="195"//pp  吉田老师毕业时正值经济高度增长期,高分子材料作为生产领域的原材料,与金属相比,种类还是少之又少。之后,高分子材料发展迅速,应用广泛,未来前景也十分可观。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“说起一辆最新型电动汽车使用的高分子材料量,算上车身我想应该是相当多。原来用金属,现在大量的开始采用有机材料。”/span/pp style="TEXT-ALIGN: center"img title="07.jpg" style="HEIGHT: 333px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201712/insimg/35ff7e0c-910a-40bd-9f98-a25c90fc1644.jpg" width="500" height="333"//ppstrong  表面、界面分析向环保难题挑战/strong/pp  未来在医疗和通信领域将着重推进高分子的科研工作。吉田老师十分重视环保问题。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“如何减少二氧化碳的排放?如何减少垃圾的产生?我认为这是关乎环境的最重要的两个问题。那么对于如何减少废弃物品,如何有效实现物质转换,能量转换和物质转换尤为重要,使用高分子材料合成产品也十分重要。”/span/pp  为解决这一环保课题,吉田老师全身心投入到放射性物质的研究中。吉田实验室研发了一种新型纤维,可在高分子表面形成普鲁士蓝的纳米晶体,并使用过滤装置过滤98%以上的原子弹爆炸中释放的放射性铯离子。过滤装置不仅可以吸附放射性铯,还可以作为环境监测系统使用。为查证水中放射性铯的分布情况,目前在福岛各地区进行验证试验。美国土壤受放射性铯污染严重,吉田研究室使用过滤装置治理污染的方式得到了美国环保局科研人员的高度关注。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“吸附放射性铯的过滤装置研发成功对于福岛人民意义深远,进而言之,这项研究将造福于日本乃至世界,所以这项研究也必须要坚持下去。”/span/ppstrong  从热性能评价到新材料的研发/strong/pp  吉田老师在新材料研发和环保活动等一系列研究中,围绕高分子表面和界面进行了多项调查,以真实反映社会现状和需求,为世人呈现更多彩的世界。虽然各项研究的目的不同,但科研人员凭借强烈的好奇心展开实用性的探索。这里我讲一件趣事儿,小学5年级的时候,我对烟花非常好奇,便混合火药,自制烟花。因为这事儿还被妈妈狠狠地骂了一顿,现在回想起来觉得挺好笑的。/pp  目前小学生也能够接触到电子显微镜,鉴于此现状,吉田老师谈到“如何培养孩子对科学的兴趣十分重要”,他从用户角度出发,十分期待以日立高新技术为主的测量仪器厂家能够尽快研发出更多的“最先进的研究装置和一般人可轻松操作的装置”、并且产品可满足高性能和通用性这两种需求。科研人员站在历史车轮最前线,应明确将用户的真实意见和需求传达给厂商。DSC7000X可满足用户的“DSC灵敏度提高100倍”的需求。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"“这是至关重要的一点,为满足用户需求,我们一鼓作气开展科研工作,只要用户说出自身的需求,我们就会付诸于实践,并全力以赴。所以用户反馈十分重要。”/span/pp  吉田老师于2016年3月退休,但是他还继续为企业科研项目提供宝贵意见,围绕放射性物质研究项目以及物质如何识别界面,材料厚度和尺寸对界面的影响,他连同日立高新技术其他科研人员一起钻研调查,干劲十足。最终实现了以前做不到的热性能评价和分析,为新材料的研发提供更多的可能性。从界面评价到引领新时代产业发展的材料研发。吉田老师开拓了肉眼看不到的微观世界的无限可能性。/pp style="TEXT-ALIGN: right"  (采访· 撰稿:石桥今日美)/ppstrong span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 编者按/span/strong/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  弄清每个分子的性质,充分发挥其特点。就像是理想型育儿一样。吉田老师发掘分子的无限可能性时,犹如对待自己的孩子一般。我忽然想起了一件事。20多年前,日立高新技术公司的某位老师讲过,“界面研究方面的一位顶尖老师曾说‘分子也有感情’”,我不知道他叫什么,斗胆设想一下,或许他就是那个老师?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  吉田老师培养的学生们会在解决社会难题的过程中不断进步。素材取自20年前体验的“科研奥秘”、“乐趣”和“开拓未来科学的可能性”。/span/pp style="TEXT-ALIGN: right"span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  (编辑:大塚智惠)/span/pp style="TEXT-ALIGN: right" /p
  • 北京航空航天大学实现二维材料合成方法新突破
    近日,北京航空航天大学宫勇吉教授团队与北京大学吴凯教授团队合作在Nature Synthesis期刊上发表了一篇题为“Flux-assisted growth of atomically thin materials”的研究成果。课题组突破传统方法合成二维材料的限制,采用熔体辅助析出的方法,高效可控地实现了近100种超薄纳米片材料的合成,包括传统方法无法合成的复杂多元层状或者非层状超薄二维单晶材料。论文通讯作者是宫勇吉、吴凯;第一作者是张鹏、王兴国、江华宁。二维材料由于特殊的物理和化学特性,近年来引起了大量关注。尤其是这些原子薄材料为在二维极限层面探索催化、磁性、超导和拓扑性质提供了理想的平台。因此,高质量二维材料的可控制备已经成为其在电子和信息产业应用的先决条件。化学气相沉积(CVD)和机械剥离(ME)已被广泛应用于各种超薄材料的制备,但是这些方法目前面临越来越多的挑战。CVD气相反应的特性,决定了其在制备多元素材料时,气相分布不均匀往往会导致相分离,因此很难可控合成复杂多元二维材料。另外,对于具有一些特殊性质的非层状材料,由于其材料高表面能或者晶面之间较强的键合能,既不能被CVD合成,也不能被ME机械剥离。有鉴于此,为突破传统方法合成二维材料的限制,北京航空航天大学宫勇吉教授团队联合北京大学吴凯教授团队,提出一种全新、简单、强大且高效的熔体辅助生长二维材料的普适性策略。该方法利用经典生长单晶的熔体析出过程辅以空间限域,成功制备出一系列超薄二维单晶,包括层状或者非层状,少元或者多元二维单晶。另外,该方法也展现出制备二维单晶薄膜的潜力。不同于气相沉积方法,熔体析出法具有高效稳定、组分可控、重复性高等优点。特别的,该方法对外在生长条件,如温度、气流大小、前驱体数量等具有极高容忍度。图1:a-d. 熔体辅助析出过程及生长机制。e-h. Fe5GeTe2、AgCrS2重复率及厚度分布统计和条件容忍度。熔体辅助生长方法具有高重复率及对生长条件高容忍度。以Fe5GeTe2及AgCrS2为代表性的二维材料,生长重复率均接近100%,约为98%。另外,其生长气流大小可在50-500 sccm变化,生长温度区间可达接近200 °C,显示出熔体辅助法的优越性。图2:合成的80种超薄二维单晶及代表性的大尺寸单晶及厘米级薄膜。熔体辅助生长方法具有普适性。利用熔体辅助析出方法,成功制备出80种具有代表性的超薄二维单晶。其中包括层状和非层状,少元和多元和大尺寸单晶及薄膜二维材料。特别的,其中以CuCrTe2、FeGe、BiFeO3等为代表的非层状材料,既难以被CVD合成,也不能被机械剥离。充分证明了熔体辅助生长方法的独特性和优越性。图3:代表性材料Fe3GeTe2、Fe5GeTe2、MnPS3、CuInP2S6结构及比例分析。熔体析出二维单晶比例控制准确,性能优异。球差电镜测试结果表明材料结晶性能良好,元素比例准确。PFM测试结果证明了生长的超薄In2Se3具有明显铁电性能,可以和机械剥离In2Se3纳米片相媲美。NbSe2超导测试结果与CVD及机械剥离NbSe2二维片相当,表明熔体析出样品出色的结晶性。图4:In2Se3铁电性能及NbSe2超导性能表征。该研究提出一种不同于传统合成二维材料的普适性新方法,为合成更多复杂多元二维材料,非层状二维材料及大尺寸薄膜铺平了道路。相关论文信息:https://doi.org/10.1038/s44160-022-00165-7为促进二维材料的研究与应用,仪器信息网将于2022年11月15日组织召开 “二维材料的表征与评价”主题网络研讨会。邀请业内专家以及厂商技术人员就二维材料最新应用研究进展、检测技术及标准化等分享精彩报告,为广大用户搭建一个即时、高效的交流平台。点击图片直达会议页面
  • 中国石墨粉体与负极材料大会· 2018鹤岗邀请函
    p  中国石墨粉体与负极材料大会· 2018鹤岗/pp  China Graphite Powder and Negative Material Conference/pp  2018年9月8日-10日/pp  黑龙江鹤岗九州大酒店/pp  东北这片肥厚的黑土地,不仅是与人参与鹿茸的故乡,还盛产亮闪闪的鳞片石墨。/pp  它是极佳的锂离子电池负极材料,不仅能够延长电池使用时间,促使电压平稳,增强导电率,还可降低电池成本。难怪,全国70%的天然石墨负极材料都来自鳞片石墨的主产区——黑龙江鹤岗。/pp  这个初秋,我们将会同全国石墨粉体和负极材料的从业者,集结鹤岗,探讨一些行进中的矛盾以及关于未来的可能。电池能量密度到上限了么?矿产开发总是不可持续么?要提升导电性就得增加成本么?石墨提纯非要和环境为敌么? 石墨球化意味着浪费么?/pp  我们期望促成一场学术前沿和产业实践者的对话,一次技术脉冲与市场回响的碰撞,赋能、生态、协作、适用,用技术变革推动产业升级与创新。未来已来,我们邀您共同见证。/pp  中国石墨粉体与负极材料大会· 2018鹤岗/pp  China Graphite Powder and Negative Material Conference/ppstrong  一、主题/strong/pp  赋能 生态 协作 适用/pp  Enabling, Ecology, Coordination & Appliance/ppstrong  二、时间地点/strong/pp  (一)时间:2018年9月8至10日/pp  (二)地点:黑龙江鹤岗九州大酒店/pp  三、组织机构/pp  (一)指导单位:中国建筑材料联合会/pp  (二)主办单位:鹤岗市人民政府、中国建筑材料联合会粉体技术分会、中国石墨产业发展联盟/pp  (三)协办单位:国际粉体检测与控制联合会、清华大学粉体工程研究室、日本粉体协会、中国非金属矿工业协会、中国塑料加工工业协会、黑龙江石墨产业协会、鹤岗市石墨产业发展联盟、中国有色金属学会铝用碳素分会/pp  (四)支持媒体:小颗粒大世界、仪器信息网、矿材网/pp  (五)承办单位:长兴清华粉体及新材料工程中心有限公司/pp strong 四、会议专注点/strong/pp  (一)矿产资源合理开发利用,可持续发展/pp  鹤岗市拥有丰富的石墨资源,大规模的开采,势必会导致矿产资源的浪费和环境生态问题,阻碍石墨产业的可持续发展。通过研讨会探讨矿产资源规划、高效采选,特别是在锂电伏击深加工,调控矿产资源保护与合理开发、综合利用的方式。/pp  (二)石墨产品精细化、功能化发展方向/pp  通过分析国内外石墨行业精细化、功能化产品的现状、市场需求和市场预测,确定石墨产品精细化、功能化发展规模和方向。议题包括超细分散与高均匀度混合、石墨烯类微量导电剂的高均匀度混合、石墨高温纯化与碳材料石墨化、包覆负极材料的碳化等。/pp  (三)石墨产业装备先进节能、智能化方向/pp  通过分析国内外石墨行业中高效节能设备的应用和开发情况,以及整个产业智能化应用程度,构建石墨产业装备选型和智能化发展方式。探讨耐磨陶瓷为结构件的粉体加工装备、气流磨节能与超细沥青粉体制备、纳米硅粉体材料的制备、加工过程智能化与质量稳定性改善等问题。/pp  (四)新型石墨粉体材料制备与检测分析/pp  随着电池容量和性能的提升,电池粉体产品性能和中间产品的品质控制,成为企业质量控制的关键。探讨议题包括:标准粉体的使用与检测准确性分析、超微细氧化铝粉体制备及其改性锂电隔膜的性能研究、电池(粉体)材料的检测技术与应用等。/pp  (五)推动鹤岗石墨工业打造城市“新名片”/pp  通过大会影响力吸引资金和企业,推动鹤岗市石墨新材料产业园区建设和产业发展壮大。探讨如何依托鹤岗市石墨产业基础,逐渐建立石墨产业交易平台,拓展多层交易模式,促进国际产品交易等话题。/pp strong 五、部分嘉宾及报告主题/strong/pp  · 《鹤岗市石墨新材料产业园区规划》和《招商引资政策》推介/pp  · 《粉体技术在天然石墨新材料中的作用》沈万慈 清华大学材料学院教授/pp  · 《我国石墨产业现状及发展建议》王文利 中国非金属矿工业协会专职副会长兼秘书长、教授级高工/pp  · 《石墨球形化技术进展》盖国胜 清华大学材料学院教授/pp  · 《锂离子电池隔膜与铝塑封装膜行业2018年发展分析》孙冬泉中国塑料加工工业协会副秘书长/pp  · 《超细研磨技术与锂电池产业》李强 华东师范大学化学与分子工程学院教授/pp  · 《超高能量硅碳负极材料》唐有根 中南大学化学电源与材料研究所所长/pp  · 《石墨烯改性锂离子电池负极材料研究》温广武 山东理工大学材料科学与工程学院教授/pp  · 《天然石墨深加工技术研究现状》申士富 北京矿冶研究总院教授/pp  · 《晶质石墨层压粉碎-分质分选技术》刘磊 中国地质调查局郑州矿产综合利用研究所副研究员/pp  (持续更新中)/ppstrong  六、 参会对象/strong/pp  1、拟邀工信部、中国建材联合会、黑龙江及鹤岗市相关部门领导 /pp  2、锂电池生产、研发、锂电设备及锂电池下游应用厂商等企业相关人员 /pp  3、正负极及隔膜等材料(石墨烯、钴酸锂、锰酸锂、磷酸铁锂、石墨、纳米硅、氧化铝等)的生产企业相关人员 /pp  4、粉碎、分级、检测、干燥、整形、除尘、混合装备等企业相关人员 /pp  5、科研院所和高校相关专业人员。/ppstrong  七、会议费用/strong/pp  (一) 会议注册费用/pp  非协会会员代表1500元/人,8月15日前完成完成注册及汇款代表可享受优惠1200元/人 /pp  协会会员代表1000元/人 /pp  鹤岗地区企业代表600元/pp  (注册费包含餐费、资料费及会务会,不包含酒店住宿费用)。/pp  (二)展位费用/pp  6000元/个,含展位一个、桌椅各1个、大会代表资格2人。/pp  展位费用须于8月30日前汇款确认。/pp  (三)晚宴、现场印刷产品等赞助详情请咨询会务组。/pp  (四)汇款单位及账号:/pp  账户名称:长兴清华粉体及新材料工程中心有限公司/pp  开户行:中国工商银行股份有限公司长兴县龙山支行/pp  银行账号:1205 2704 0920 0017 997/pp  商务合作: 彭女士 010-62771473 18500079538/pp  会务联系: 王先生 010-62771473 13001015696/pp  电子邮箱: huiyi1@chinapowder.com/pp/p
  • 257项检测国家标准2020实施 十类仪器出镜率最高
    国家标准是规范行业的重要技术依据,更是科学仪器与检测试验领域健康发展的重要抓手。在2019年,共有超过300项发布的国家标准涉及到使用科学仪器检测相关内容,其中有257项于2020年正式实施。后者涉及超过160类仪器设备及相关部件,包括试验机、光谱、色谱、显微镜、质谱等。万象更新之际,仪器信息网对这257项发布于2019年并于2020正式实施的国家标准(下简称新实施国标)进行了汇总分析,梳理出其背后的仪器脉络,并公布新实施国标中仪器出镜率排行榜,以飨读者。(注:本文涉及标准全部来源于国家标准权威公布平台)新实施国标仪器出镜率——试验机居首光谱家族多剑齐发据统计分析,在257项新实施国标中,出镜率最高的前十大仪器为试验机、分光光度计、液相色谱仪、ICP-AES、天平、气相色谱仪、原子荧光光谱仪、显微镜和试验筛,排名详情如图1所示。图1新实施国标仪器出镜率前十大排行榜在257项新实施国标中,共有24项与试验机相关,包括拉力试验机、弯曲试验机、万能试验机、静力单轴试验机等试验机等。这些涉及试验机新实施国标主要覆盖的材料类型如图2所示。图224项新实施国标覆盖的材料类型分布共有9项涉及试验机的新实施国标与金属材料有关,另外覆盖较多的材料类型为塑料和碳材料,各有四项,24项新实施国标明细如表1所示。表124项涉及试验机的新实施国标名录标准编号标准名称涉及主要仪器代替标准号实施日期GB/T23711.5-2019塑料衬里压力容器试验方法第5部分:冷热循环检验试验机GB/T23711.5-20092020/11/1GB/T23711.2-2019塑料衬里压力容器试验方法第2部分:耐低温试验拉力试验机GB/T23711.2-20092020/11/1GB/T23711.3-2019塑料衬里压力容器试验方法第3部分:耐高温检验拉力试验机GB/T23711.3-20092020/11/1GB/T228.4-2019金属材料拉伸试验第4部分:液氦试验方法试验机GB/T24584-20092020/7/1GB/T13477.14-2019建筑密封材料试验方法第14部分:浸水及拉伸-压缩循环后粘结性的测定试验机GB/T13477.14-20022020/7/1GB/T19748-2019金属材料夏比V型缺口摆锤冲击试验仪器化试验方法试验机GB/T19748-20052020/7/1GB/T21838.1-2019金属材料硬度和材料参数的仪器化压入试验第1部分:试验方法试验机GB/T21838.1-20082020/7/1GB/T37781-2019玻璃材料弯曲强度试验方法试验机——2020/7/1GB/T37789-2019钢结构十字接头试验方法试验机——2020/7/1GB/T37794-2019碳纤维结节拉伸强度的测定拉伸试验机——2020/7/1GB/T38338-2019炭素材料断裂韧性测定方法材料试验机——2020/7/1GB/T1431-2019炭素材料耐压强度测定方法万能材料试验机GB/T1431-20092020/5/1GB/T13477.13-2019建筑密封材料试验方法第13部分:冷拉-热压后粘结性的测定试验机GB/T13477.13-20022020/5/1GB/T38074-2019手动变速箱润滑油摩擦磨损性能的测定SRV试验机法试验机——2020/5/1GB/T38250-2019金属材料疲劳试验机同轴度的检验试验机——2020/5/1GB/T25217.3-2019冲击地压测定、监测与防治方法第3部分:煤岩组合试件冲击倾向性分类及指数的测定方法材料试验机、动态电阻应变仪——2020/5/1GB/T8721-2019炭素材料抗拉强度测定方法材料试验机GB/T8721-20092020/5/1GB/T21839-2019预应力混凝土用钢材试验方法材料试验机GB/T21839-20082020/5/1GB/T37616-2019铝合金挤压型材轴向力控制疲劳试验方法材料试验机——2020/5/1GB/T1634.1-2019塑料负荷变形温度的测定第1部分:通用试验方法弯曲试验机GB/T1634.1-20042020/4/1GB/T3903.43-2019鞋类帮面、衬里和内垫试验方法缝合强度拉力试验机GB/T3903.43-20082020/3/1GB/T3903.39-2019鞋类帮面试验方法层间剥离强度静力单轴试验机GB/T3903.39-20082020/3/1GB/T37306.1-2019金属材料疲劳试验变幅疲劳试验第1部分:总则、试验方法和报告要求试验机——2020/2/1GB/T6525-2019烧结金属材料室温压缩强度的测定试验机GB/T6525-19862020/1/1除试验机之外,排名第二位的是分光光度计,包括紫外分光光度计、原子吸收分光光度计、可见分光光度计等,共有17项新实施国标涉及,主要分布于合金、精矿和化学催化剂领域。详情名录如表2所示:表217项涉及分光光度计的新实施国标名录标准编号标准名称涉及主要仪器代替标准号实施日期GB/T37632-2019化学纤维二氧化钛含量试验方法可见分光光度计——2020/1/1GB/T13747.6-2019锆及锆合金化学分析方法第6部分:铜量的测定2,9-二甲基-1,10-二氮杂菲分光光度法分光光度计GB/T13747.6-19922020/1/1GB/T37354-2019活性炭脱汞催化剂化学成分分析方法原子吸收分光光度计——2020/2/1GB/T23981.1-2019色漆和清漆遮盖力的测定第1部分:白色和浅色漆对比率的测定反射计、分光光度计、分析天平GB/T23981-20092020/2/1GB/T38007-2019桑蚕天然彩色丝鉴别试验方法紫外可见分光光度计——2020/3/1GB/T4333.6-2019硅铁铬含量的测定二苯基碳酰二肼分光光度法分光光度计GB/T4333.6-19882020/5/1GB/T13747.5-2019锆及锆合金化学分析方法第5部分:铝量的测定铬天青S-氯化十四烷基吡啶分光光度法分光光度计GB/T13747.5-19922020/5/1GB/T20975.29-2019铝及铝合金化学分析方法第29部分:钼含量的测定硫氰酸盐分光光度法分光光度计——2020/5/1GB/T20975.31-2019铝及铝合金化学分析方法第31部分:磷含量的测定钼蓝分光光度法分光光度计——2020/5/1GB/T24583.5-2019钒氮合金磷含量的测定铋磷钼蓝分光光度法分光光度计GB/T24583.5-20092020/5/1GB/T12442-2019石英玻璃中羟基含量检验方法分光光度计、红外光谱仪GB/T12442-19902020/7/1GB/T8152.14-2019铅精矿化学分析方法第14部分:二氧化硅含量的测定钼蓝分光光度法分光光度计——2020/7/1GB/T18882.3-2019离子型稀土矿混合稀土氧化物化学分析方法第3部分:二氧化硅含量的测定分光光度计——2020/7/1GB/Z38062-2019纳米技术石墨烯材料比表面积的测试亚甲基蓝吸附法紫外可见分光光度计——2020/9/1GB/T23844-2019无机化工产品中硫酸盐测定通用方法分光光度计、电感耦合等离子体发射光谱仪、比色管GB/T23844-20092020/9/1GB/T38216.1-2019钢渣氧化铬含量的测定二苯基碳酰二肼分光光度法分光光度计——2020/9/1GB/T20899.3-2019金矿石化学分析方法第3部分:砷量的测定紫外可见分光光度计GB/T20899.3-20072020/11/1接下来是ICP-AES和液相色谱仪,涉及的新实施国标数量都为16项。ICP-AES相关的新实施国标则遍布金精矿、硅酸盐岩石等化学成分分析、水处理重金属测定,以及贵金属合金含量测定等领域。液相色谱仪相关的新实施国标将在下文分析。另外,值得一提的是光谱类仪器在仪器出镜率前十榜单中占有四个席位,除了上述两类外,还有原子吸收光谱仪和原子荧光光谱仪。除了前十大高出镜率的仪器外,新实施国标中涉及较多的仪器还有离子色谱仪、ICP-OES、XRF、环境试验箱,以及无损检测中常用的像质计等。新实施国标5、7月迎实施爆发期33项已实施由图3可知,这257项检测类新实施国标的实施日期主要分布在1-11月的月初,除6月和8月外,每个月月初都有标准正式实施。其中5月和7月是实施的两大最高爆发期,分别将正式实施76项和56项。图3257项新实施国标实施日期分布另外有33项新实施国标已经于2020年1月1日正式实施,其中液相色谱仪是这批已实施新实施国标中涉及最多的仪器类型,特别是在化妆品领域,有8项标准与液相色谱仪有关。2020年这类常用分析仪器将在化妆品用抗菌剂、抗生素等数十种相关添加物质的检测中,发挥重要作用。另外值得一提的是,国标《GB/T13336-2019水文仪器系列型谱》也正式实施,其中激光粒度分析仪正式成为泥沙颗粒测验及颗粒分析的标准仪器之一。这些已于2020年1月1日正式实施的新实施国标及涉及到的仪器名单详情如表2所示。表22020年1月1日实施新实施国标名录标准编号标准名称涉及主要仪器类型代替标准号实施日期GB/T2293-2019焦化沥青类产品喹啉不溶物试验方法恒温水浴器、天平、筛子GB/T2293-20082020-01-01GB/T6525-2019烧结金属材料室温压缩强度的测定试验机GB/T6525-19862020-01-01GB/T11826-2019转子式流速仪转子式流速仪GB/T11826-20022020-01-01GB/T11828.1-2019水位测量仪器第1部分:浮子式水位计浮子式水位计GB/T11828.1-20022020-01-01GB/T13336-2019水文仪器系列型谱水文系列仪器GB/T13336-20072020-01-01GB/T13747.6-2019锆及锆合金化学分析方法第6部分:铜量的测定2,9-二甲基-1,10-二氮杂菲分光光度法分光光度计GB/T13747.6-19922020-01-01GB/T14318-2019辐射防护仪器中子周围剂量当量(率)仪中子周围剂量当量(率)仪GB/T14318-20082020-01-01GB/T15076.3-2019钽铌化学分析方法第3部分:铜量的测定火焰原子吸收光谱法原子吸收光谱仪GB/T15076.3-19942020-01-01GB/T23901.2-2019无损检测射线照相检测图像质量第2部分:阶梯孔型像质计像质值的测定像质计GB/T23901.2-20092020-01-01GB/T23901.5-2019无损检测射线照相检测图像质量第5部分:双丝型像质计图像不清晰度的测定像质计GB/T23901.5-20092020-01-01GB/T37487-2019岩土工程仪器测斜仪测斜仪——2020-01-01GB/T37500-2019肥料中植物生长调节剂的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37543-2019直流输电线路和换流站的合成场强与离子流密度的测量方法直流合成强测量仪——2020-01-01GB/T37544-2019化妆品中邻伞花烃-5-醇等6种酚类抗菌剂的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37545-2019化妆品中38种准用着色剂的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37626-2019化妆品中阿莫西林等9种禁用青霉素类抗生素的测定液相色谱-串联质谱法液相色谱-三重四级杆质谱联用仪——2020-01-01GB/T37628-2019化妆品中黄芪甲苷、芍药苷、连翘苷和连翘酯苷A的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37629-2019纺织品定量化学分析聚丙烯腈纤维与某些其他纤维的混合物(甲酸/氯化锌法)密度计——2020-01-01GB/T37630-2019纺织品定量化学分析醋酯纤维或三醋酯纤维与某些其他纤维的混合物(盐酸法)密度计——2020-01-01GB/T37631-2019化学纤维热分解温度试验方法热重分析仪——2020-01-01GB/T37632-2019化学纤维二氧化钛含量试验方法可见分光光度计——2020-01-01GB/T37633-2019纺织品1,2-二氯乙烷、氯乙醇和氯乙酸的测定气相色谱-质谱仪——2020-01-01GB/T37638-2019塑料制品中多溴联苯和多溴二苯醚的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37639-2019塑料制品中多溴联苯和多溴二苯醚的测定气相色谱-质谱法气相色谱质谱-联用仪——2020-01-01GB/T37640-2019化妆品中氯乙醛、2,4-二羟基-3-甲基苯甲醛、巴豆醛、苯乙酮、2-亚戊基环己酮、戊二醛含量的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37641-2019化妆品中2,3,5,4' -四羟基二苯乙烯-2-O-β-D-葡萄糖苷的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37644-2019化妆品中8-羟基喹啉和硝羟喹啉的测定高效液相色谱法液相色谱仪——2020-01-01GB/T37649-2019化妆品中硫柳汞和苯基汞的测定高效液相色谱-电感耦合等离子体质谱法液相色谱-电杆耦合等离子体质谱联用仪——2020-01-01GB/T37667-2019煤灰中铁、钙、镁、钾、钠、锰、磷、铝、钛、钡和锶的测定电感耦合等离子体原子发射光谱法电杆耦合等离子体原子发射光谱仪——2020-01-01GB/T37673-2019煤灰中硅、铝、铁、钙、镁、钠、钾、磷、钛、锰、钡、锶的测定X射线荧光光谱法X射线荧光光谱仪——2020-01-01GB/T37746-2019草鱼呼肠孤病毒三重RT-PCR检测方法PCR扩增仪——2020-01-01GB/T37757-2019电子电气产品用材料和零部件中挥发性有机物释放速率的测定释放测试舱-气相色谱质谱法气相色谱仪——2020-01-01GB/T37760-2019电子电气产品中全氟辛酸和全氟辛烷磺酸的测定超高效液相色谱串联质谱法液相色谱串联质谱联用仪(配有喷雾离子源)——2020-01-01更多相关新施国标及相关仪器的情况,敬请请关注仪器信息网后续报道。需要相关的标准文档的读者可以到仪器信息网资料中心(点击进入)查询下载阅读。
  • 精微高博与中国材料大会2017共见证——科研用户对材料测试仪器关注走高
    p  strong仪器信息网讯 /strong2017年7月9日-12日,由中国材料研究学会主办的“中国材料大会2017暨银川国际材料周”在宁夏国际会堂隆重召开。同期还举行了“新材料、新工艺和材料测试技术和设备展览”。本届大会盛况空前,不仅参会人数达到历史新高的5000余人,材料测试仪器设备参展商也达到150多家。/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201707/insimg/8f20baeb-6bb4-4be9-b018-0e0ad6d45872.jpg" title="1.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center " strong 大会现场/strong/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201707/insimg/1c0a15c7-91a8-4680-b597-75fc804e84a6.jpg" title="2.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong材料测试仪器设备参展商一角/strong/pp  借此盛会,“中国氮吸附仪的开拓者”——北京精微高博科学技术有限公司(以下简称“精微高博”)携JW-BK132F型高性能研究级比表面及微孔分析仪、JW-M100A型全自动真密度、开闭孔率测试仪等在展会上亮相。/pp style="text-align: center"img style="width: 324px height: 450px " src="http://img1.17img.cn/17img/images/201707/insimg/8675f884-dec2-4d81-b04f-3cf6ba584b9f.jpg" title="微信图片_20170719093844_meitu_1.jpg" height="450" hspace="0" border="0" vspace="0" width="324"//pp style="text-align: center " strong 精微高博展位/strong/pp  在精微高博展位,精微高博总经理古艳玲向仪器信息网编辑介绍到,本次是精微高博第三次参加“中国材料大会”,前两次参加还是在五年前。与之前相比,最大的感受是关注材料测试仪器设备的用户越来越多,且用户整体也更加专业,这与近几年国家科学技术的发展以及对新材料产业的高度重视是分不开的。/pp  精微高博由知名的材料科学家钟家湘教授于2004年领衔创建,十多年来,在国内率先研发成功动态全自动比表面仪、BET比表面仪、阶梯法动态比表面仪、単气路常压孔径分析仪、静态容量法介孔分析仪、静态四站比表面测定仪、高性能静态微孔分析仪、气体法真密度仪、高压吸附仪等,在微纳米新材料表征与测试仪器领域赢得大量用户的青睐。此次大会参会人员主要由材料领域高等院校、研究院/所相关科研专家、学者构成,这也正是精微高博的老用户或潜在用户所在。正值宁夏最热的季节,烈日炎炎的展位依然迎来了不少新老用户,有来自沈阳工业大学、西安理工大学等的,也有来自本地宁夏大学等的 有反馈已购买比表面仪使用情况的,也有咨询精微高博展出产品参数的。/pp  另外,古艳玲还提到,本次大会结束后,他们并不准备立即返回北京。而是打算趁这次来银川的机会,去拜访一下当地高校院所的老客户,去看看精微高博产品的使用情况,去听听用户的声音,为精微高博下一步提供更好产品和服务支持提供素材。/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201707/insimg/4ddfeada-6015-4304-a1d8-b8de7709f10c.jpg" title="3.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "  strongJW-BK132F型高性能研究级比表面及微孔分析仪/strong/pp  JW-BK132F曾荣获由仪器信息网评选的2014年“国产好仪器”特殊荣誉,其核心硬件全部采用国际先进品牌,并引入“涡轮分子泵”高端技术,配合微孔分析模型的准确应用,使得该产品综合性能更加完善,测试结果准确性、精确性、稳定性更加完美,是现今国际市场上性价比最高的一款分子泵微孔分析仪,其质量与性能完全能够与国外同类产品相媲美,非常适合活性炭、分子筛等超微孔纳米粉体材料的研究。/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201707/insimg/b9aaf1fe-de1e-4885-813e-888f8317766e.jpg" title="4.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "  strongJW-M100A型全自动真密度、开闭孔率测试仪/strong/pp  JW-M100A在本次展会上受到许多用户的关注,该产品是中美强强联合产品,引进美国和新技术,测试精度(± 0.03%)及重复性(± 0.01%)达到了国际先进水平。其标准配置1个分析站,有10ml和100ml两种不同池体积的仪器可选,配有国家计量认证的标准样品。可应用于橡胶材料、电池材料、催化剂材料、食品添加剂、纳米材料等领域。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制