当前位置: 仪器信息网 > 行业主题 > >

流电抗器

仪器信息网流电抗器专题为您提供2024年最新流电抗器价格报价、厂家品牌的相关信息, 包括流电抗器参数、型号等,不管是国产,还是进口品牌的流电抗器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流电抗器相关的耗材配件、试剂标物,还有流电抗器相关的最新资讯、资料,以及流电抗器相关的解决方案。

流电抗器相关的论坛

  • 【标准换版】关于低压电抗器自愿性认证执行新版标准及认证规则的通知

    各相关企业:中国质量认证中心(英文缩写CQC)对低压电抗器认证规则进行了修订,规则编号:CQC13-461228-2016;申请类别:020008一、 规则修订主要内容:1. 产品依据标准发生变化,由GB/T 10229-1988变更为GB/T 1094.6-2011;2. 适用范围增加了电抗器的类型;3. 确认检验周期为1次/年;4. 修改了低压电抗器质量控制检测要求。二、 新版标准要求:(一)自公告之日起,申请人可按照新版标准申请认证;认证机构将采用新版标准实施认证并出具新版标准认证证书。(二)对于已经获得旧版标准认证证书的产品,申请人应向CQC提交转换新版标准认证证书的申请,并接受实验室针对新、旧版标准差异试验项目(见附件1)实施的检测,检测完成后,CQC将为其换发新版认证证书。(三)旧版标准认证证书转换工作应于2017年12月31日前完成,逾期未完成转换的认证证书,CQC将予以暂停。2018年3月31日前仍未完成证书转换工作的,将撤销旧版标准认证证书。

  • 【分享】无功补偿设备的几种类型

    1 同步调相机   同步发电机 低压同步发电机 既是有功功率源,又是最基本的无功功率源。当系统的无功功率比较紧张时,必须充分利用发电机供给无功功率。例如冬季枯水季节时,水库水源不多,水力发电厂不可能按装机容量发出额定设计的有功功率,此时应考虑将水轮发电机降低功率因数运行,使其多发无功功率,将发电机以调相机方式运行。同步调相机相当于空载运行的同步发电机,在过励磁运行时,它可作为无功电源向系统供给感性无功功率,以提高系统电压水平。在欠励磁运行时,它可作为无功功率负荷从系统吸收感性无功功率以适当降低系统电压水平,同步调相机欠励磁运行最大容量一般只有过励磁运行时的容量的5~60%。同步调相机一度发挥着重要的作用,被称为传统的无功动态补偿装置。同步调相机容量愈大,其单位容量设备费用就愈低。因此适用于补偿容量较大的集中补偿方式。然而,由于它是旋转电机,运行维护复杂,响应速度慢,难以满足动态补偿要求,现只在短路容抗很小的系统使用。 2 并联电容器   并联电容器是电力系统无功功率补偿的重要设备,主要用于正常情况下电网和用户的无功补偿和控制。由于它投资少,功率消耗少,便于分散安装,维护量小,技术效果也较好,但并联电容器只能减少无功电流损耗且不能减少电压变化下限。一般来说,每个变电站约安装1~4组电容器,对于负荷较大的110 kV变电站和220 kV变电站,则要装更多组数的电容器。我国有些电网高峰时电压过低,其主要原因是系统安装的并联电容器容量不足。有些电网低谷时电压过高,其原因之一是高峰时系统投入的并联电容器在低谷时没有去除或去除不够,造成系统在低谷时无功过剩、使电压过高。因此并联电容器不能平滑调节无功。电容器自动投切装置以主变无功的大小作为电容器开关投切的主要条件。 3 并联电抗器 限流电抗器XD1/2   并联电抗器的工作原理和并联电容器的工作原理正好相反,它属于负补偿,常用于补偿线路电容的作用。并联电抗器是高电压长线路的重要补偿方式,新建变电站的电容器装置中串联电抗器的选择要慎重,不能任意组合,一定要考虑电容器接入、撤出的谐波因素。电容器组容量变化很大时,可选用与电容器同步调整分接头的电抗器或选择串联电抗器混合装设,以便防止电容器组投切时产生的过电压。 4 变压器   有载调压变压器不能作为无功电源,相反消耗电网中的无功功率,属于无功负荷之一。有载调压变压器分接头的调整不但改变了变压器各侧的电压状况,同时也对变压器各侧的无功功率的分布产生影响。分接头上调时,变压器二次侧电压上升,同时流过变压器的无功功率增加;分接头下调后,变压器二侧次电压下降,流过变压器的无功功率减少。 5 无功电压综合控制   无功电压综合控制(VQC)装置是基于变电站自动化系统的。随着无人值守变电站的增多,在变电站中一般均有用于当地和远方监控的自动化系统或具有“四遥”功能的RTU装置,它们有完善的输入、输出功能,包括对测量量及信号量的采集。该装置也具有控制变压器分接头、无功控制设备开关动作的功能。因此在此装置的基础上把相应的电压无功控制模块添加到边远电站自动化系统软件上,即可实现VQC控制目的。根据设备运行需要或各单位运行方式不同,VQC可以有几种调节方式:分接头不调节,电容器按无功定值投切;分接头按电压定值调节,电容器定时投切;分接头按电压定值调节,无功不调节;电容器、分接头都不调节。 6 静止无功补偿器   静止无功补偿器(SVC)被用于输电系统波阻抗补偿及长距离输电的分段补偿,也用于无功补偿。有以下几种类型:晶闸管控制电抗器(TRC)、晶闸管投切电容器(TSC)、TCR/TSC混合装置、TCR与固定电容器(FC)或机械投切电容器(MSC)混合使用。SVC装置是通过改变电抗器来调节其输出的无功功率,它输出的无功电流与系统电压成正比,因此在电力系统电压降低时,SVC装置输出的无功功率会以与系统电压下降的平方的比例下降。要防止SVC装置接入后因改变系统阻抗特性而导致出现谐振。 7 静止无功发生器   随着电力电子技术的进一步发展,静止无功发生器(SVG)诞生了,它采用自换相变流电路,通过改变输出电压调节其输出的无功功率,会以与系统电压下降的比例而下降。他可等效为可控电流源,接入后不会改变阻尼特性。SVG采用门极可关断晶闸管或其他可关断器件,因此价格比较贵,目前还没有广泛应用。 8 静止同步补偿器   静止同步补偿器(STATCOM)是灵活交流输电系统(FACTS)的核心装置和核心技术之一,在电力系统中维持连接点的电压为给定值,提高系统电压的稳定性,改善系统的稳态性能和动态性能。STATCOM是基于瞬时无功功率的概念和补偿原理,采用全控型开关器件组成自换相逆变器 自动逆变电源QLN ,辅之以小容量储能元件构成无功补偿装置,与SVC相比,具有调节速度更快、运行范围更广、吸收无功连续、谐波电流小、损耗小、所用电抗器和电容器容量大为降低等优点。更多技术论文请详见:买电器网(MIDIQI.COM) 知识库[URL=http://]http://www.midiqi.com/Knowledge/Index.asp[/URL][URL=http://]http://www.midiqi.com[/URL]

  • 【分享】变频器基本应用须知1

    变频器基本应用须知变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。一.变频器的选型:1.分析负载类型:如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。2. 变频器与负载的匹配问题:1).电压匹配:变频器的额定电压与负载的额定电压相符。   2). 电流匹配:普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。   3).转矩匹配:这种情况在恒转矩负载或有减速装置时有可能发生。  3. 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。  4 .变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。  5 .对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。

  • 中华人民共和国国家标准 公   告 2011年第12号

    关于批准发布《电力变压器 第6部分:电抗器》等147项国家标准的公告 国家质量监督检验检疫总局、国家标准化管理委员会批准《电力变压器 第6部分:电抗器》等147项国家标准,现予以公布(见附件)。二 〇 一 一 年 七 月二 十 九 日 序号 标准号 标准名称 代替标准号 实施日期 1 GB/T 1094.6-2011 电力变压器 第6部分:电抗器 GB/T 10229-1988 2011-12-01 2 GB/T 2828.5-2011 计数抽样检验程序 第5部分:按接收质量限(AQL)检索的逐批序贯抽样检验系统 2011-12-01 3 GB/T 2887-2011 计算机场地通用规范 GB/T 2887-2000 2011-11-01 4 GB/T 2900.87-2011 电工术语 电力市场 2011-12-01 5 GB/T 2900.88-2011 电工术语 超声学 2011-12-01 6 GB/T 3405-2011 石油苯 GB 3405-1989 2011-10-01 7 GB/T 3454-2011 数据终端设备(DTE)和数据电路终接设备(DCE)之间的接口电路定义表 GB/T 3454-1982 2011-11-01 8 GB/T 6159.2-2011 缩微摄影技术 词汇 第2部分: 影像的布局和记录方法 GB/T 6159.22-2000 2011-12-01 9 GB/T 6159.5-2011 缩微摄影技术 词汇 第5部分:影像的质量、可读性和检查 GB/T 6159.5-2000 2011-12-01 10 GB/T 6159.7-2011 缩微摄影技术 词汇 第7部分:计算机缩微摄影技术 GB/T 6159.7-2000 2011-12-01[td

  • 【分享】变压器的主要功能及其原理

    变压器的主要功能及其原理 变压器的简介  变压器的功能主要有:电压变换;电流变换,阻抗变换;隔离;稳压(磁饱和变压器);自耦变压器;高压变压器(干式和油浸式)等,变压器常用的铁芯形状一般有E型和C型铁芯,XED型,ED型CD型。   变压器按用途可以分为:配电变压器、电力变压器、 全密封变压器、组合式变压器、干式变压器、 单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器 试验变压器 转角变压器 大电流变压器 励磁变压器 。   变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。   一般指连接交流电源的线圈称之为「一次线圈」(Primary coil);而跨于此线圈的电压称之为「一次电压.」。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。   大部分的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部分磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,可以这样说,没有变压器,现代工业实无法达到目前发展的现况。   电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供50Hz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部分属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部分得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。「阻抗」其中之一项重要概念,亦即二手机器人电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备-变压器。   变压器又有其做试验而用的,是试验变压器,分别可以分为充气式,油浸式,干式等试验变压器,是发电厂、供电局及科研单位等广大用户的用来做交流耐压试验的基本试验设备,通过了国家质量监督局的标准,用于对各种电气产品、电器元件、绝缘材料等进行规定电压下的绝缘强度试验   变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件   1.变压器 ---- 静止的电磁装置   变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能   电压器的主要部件是一个铁心和套在铁心上的两个绕组。   变压器原理   与电源相连的线圈,接收交流电能,称为一次绕组   与负载相连的线圈,送出交流电能,称为二次绕组   一次绕组的 二次绕组的   电压相量 U1 电压相量 U2   电流相量 I1 电流相量 I2   电动势相量 E1 电动势相量 E2   匝数 N1 匝数 N2   同时交链一次,二次绕组的磁通量的相量为 φm ,该磁通量称为主磁通 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器的工作原理   变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器   输送的电能的多少由用电器的功率决定.制作原理  在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。分类  按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。  按防潮方式分类:开放式变压器、灌封式变压器、密封式变压器。   按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。   按电源相数分类:单相变压器、三相变压器、多相变压器。   按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器。电源变压器的特性参数  工作频率  变压器锅炉铁芯损耗与频率关系很大,故应根据使用频率来设计和使用,这种频率称工作频率。   额定功率   在规定的频率和电压下,变压器能长期工作,而不超过规定温升的输出功率。   额定电压   指在变压器的线圈上所允许施加的电压,工作时不得大于规定值。   电压比   指变压器初级电压和次级电压的比值,有空载电压比和负载电压比的区别。   空载电流   变压器次级开路时,初级仍有一定的电流,这部分电流称为空载电流。空载电流由磁化电流(产生磁通)和铁损电流(由铁芯损耗引起)组成。对于50Hz电源变压器而言,空载电流基本上等于磁化电流。  空载损耗   指变压器次级开路时,在初级测得功率损耗。主要损耗是铁芯损耗,其次是空载电流在初级线圈铜阻上产生的损耗(铜损),这部分损耗很小。   效率   指次级功率P2与初级功率P1比值的百分比。通常变压器的额定功率愈大,效率就愈高。   绝缘电阻   表示变压器各线圈之间、各线圈与铁芯之间的绝缘性能。绝缘电阻的高低与所使用

  • 变频电源如何应对外部电磁感应干扰

    变频电源在各行业应用都非常广泛,在使用过程中,经常会出现各种各样的故障,引发其故障的其中一种就是外部的电磁感应干扰。变频电源在使用过程中,一旦周边有其他的电磁感应干扰源的话,那这些干扰源将会通过辐射(通过空间传播)或者传导(通过电源线侵入)两种方式入侵变频电源的内部系统中,从而引起电源的控制回路出现故障或者误操作,严重的时候,可能还会对电源造成损坏。华泰克(Watek)智能变频电源提醒您,一旦出现电磁感应干扰的情况,可采取以下几个方法应对: 1、可以加装一些不同功能的吸收装置在变频电源的继电器和控制线圈上,比如浪涌吸收器等,要注意的是,这些装置的接线长度不能超过20cm,防止形成其他感应电流; 2、把控制回路的一些配线和主回路区隔开来,并且这些配线的距离不要太长,越短越好;配线的绞合节的距离要控制在15毫米以上,并且这些绞合节跟主回路的距离也应大于10厘米; 3、变频电源的接地要和其他电气设备的接地分来,不能混在一起使用,条件允许的话,应在专用的接地点,按规定的要求进行接地; 4、如果变频电源和发动机之间的距离超过100m的话,那应该扩大导线截面面积,这样保证将线路的压降控制在2%以内,与此同时,应给变频电源加装一个输出电抗器,该电抗器可以用来补偿因长距离导线产生的分布电容的充电电流; 5、可在变频电源的输入端和输出端加装干扰电噪声滤波器,可减少输入端的高次谐波,并且可以降低输出端口的线路噪声。

  • 变频电源如何应对外部电磁感应干扰

    变频电源在各行业应用都非常广泛,在使用过程中,经常会出现各种各样的故障,引发其故障的其中一种就是外部的电磁感应干扰。变频电源在使用过程中,一旦周边有其他的电磁感应干扰源的话,那这些干扰源将会通过辐射(通过空间传播)或者传导(通过电源线侵入)两种方式入侵变频电源的内部系统中,从而引起电源的控制回路出现故障或者误操作,严重的时候,可能还会对电源造成损坏。华泰克(Watek)智能变频电源提醒您,一旦出现电磁感应干扰的情况,可采取以下几个方法应对: 1、可以加装一些不同功能的吸收装置在变频电源的继电器和控制线圈上,比如浪涌吸收器等,要注意的是,这些装置的接线长度不能超过20cm,防止形成其他感应电流; 2、把控制回路的一些配线和主回路区隔开来,并且这些配线的距离不要太长,越短越好;配线的绞合节的距离要控制在15毫米以上,并且这些绞合节跟主回路的距离也应大于10厘米; 3、变频电源的接地要和其他电气设备的接地分来,不能混在一起使用,条件允许的话,应在专用的接地点,按规定的要求进行接地; 4、如果变频电源和发动机之间的距离超过100m的话,那应该扩大导线截面面积,这样保证将线路的压降控制在2%以内,与此同时,应给变频电源加装一个输出电抗器,该电抗器可以用来补偿因长距离导线产生的分布电容的充电电流; 5、可在变频电源的输入端和输出端加装干扰电噪声滤波器,可减少输入端的高次谐波,并且可以降低输出端口的线路噪声。

  • 【分享】三点式振荡电路能否振荡的判别方法

    0 引言 在模拟电子技术课程中,判别振荡电路能否产生振荡的步骤的是:先看直流通路,看放大器件是否工作在放大区;再看交流通路,看是台满足振荡条件。RC振荡也好,LC振荡电路也好,振荡条件为: AF=1 此条件可分解为振幅条件和相位条件,即:1 三点式振荡器的特点 所谓三点式振荡器,是指LC振荡器中选频网络有两个电容、一个电感或者两个电感、一个电容组成的振荡器。一般LC振荡电路在直流通路正常情况下判别能否振荡时由于振幅条件不便于判别,只看相位条件即可,只要相位条件满足,我们就说它能够振荡。振荡电路中的放大器可以是运放,也可以是由晶体管或者场效应管组成。对于由运放组成的电路,相位条件相对来说比较好判别;由晶体管或者场效应管组成的放大电路,要判别相位条件对学生来说有一定的难度。要正确判别相位条件需要先分析放大电路的组态,再看反馈信号与输出信号之间的相位差,两者判断错一个也得不到正确的结果。对此,根据多年来对模拟电子技术的讲解和对大量的振荡电路的分析,先把自己的一点总结供大家讨论。 我们知道,三点式选频网络中应该有两个电容、一个电感或者两个电感、一个电容组成,如图1所示,为方更叙述,现把选频网络中每两个[URL=http://www.midiqi.com/Shop/Product.asp?ClassId=15]电抗器[/URL] [URL=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=22389]限流电抗器XD1/2[/URL] 件的结点给出一编号。在分析由晶体管或者场效应管组成的三点式振荡电路时,先看直流通路,在直流通路正常的情况下,交流通路只需要观察是否满足射同基反(或者源同栅反)。下面结合具体的电路进行说明。2 电容三点式振荡电路 如图2和图3所示,是两个电容三点式的振荡电路。我们应用射同基反判断相位条件是否满足。先看图2,图2中晶体管的发射极接的是三点式选频网络的2端,集电极接的是1端,基极在交流通路中接地,所以基极相当于接的是3端。发射极与基极问接的单个选频器件是电容C2,发射极与集电极之间接的是电容Cl,发射极与其他两个电极之间接的是电抗性质相同的电容,所以射同已经满足;基极与发射极接的电容C2,基极与集电极之间接的单个选频器件是电感L,电感与电容是两个电抗性质相反的器件,所以基反也是满足的,图2电路支流通路正常,又满足射同基反的条件,所以是可以振荡的。再看图3。放大器的组态虽然与图2不同,按射同基反分析仍然满足射同基反,直流通路正常,该电路也可以振荡。如果用相位条件判别也是满足的。 如果用相位条件来判断图2和图3中两个电路,可以得到: 注意观察图2和图3,电容二点式电路中选频网络的2端是电容与电容的结点,1和3端是电容与电感的结点,所以分析电容三点式振荡电路的相位条件时只需要看选频网络的2端是否直接或者通过一电阻与发射极(或者场效应管的源极)相连,l和3端是否直接或者通过一电阻与基极和集电极相连。图2中符去掉基极电容Cb相位条件仍然满足,电路只要振幅条件满足仍可振荡。3 电感三点式振荡电路 图4所示是一个电感三点式的振荡电路。用同样的方法观察图中的电路发现晶体管的发射极与其他两个电极之间接的是电感,而基极与发射极之间接的是电感,与集电极之间接的是电容,满足射同基反,也就是满足相位条件,直流通路正常,在幅度条件满足的情况下可以进行正弦波振荡。用相位条件来判别可得到:观察图4,电感三点式电路中选频网络的2端是电感与电感的结点,1和3端是电感与电容的结点,所以分析电感三点式振荡电路的相位条件时只需要看选频网络的2端是否直接或者通过一电阻与发射极(或者场效应管的源极)相连,1和3端是否直接或者通过一电阻与基极和集电极相连。这与电容三点式的振荡电路判别方法相同。4 总结 三点式振荡电路是正弦波发生电路的一种,它与所有的正弦波振荡电路一样要遵守正弦振荡的条件,这里只是将它的相位条件变换为学生便于接受的形式。射同基反是在长期的教学中发现的规律,用它来分析三点式振荡电路能否振荡可以回避电路的组态,对学生来说判断是否满足射同基反要比判断是否满足相位条件简单得多。不足之处是这种方法目前也只由晶体管或者场效应管组成的单级三点式振荡电路适合,对其他类型的电路还需要继续探讨。本文来自:[URL=http://www.midiqi.com/Index.asp]买电器网[/URL] [URL=http://www.midiqi.com/Knowledge/Index.asp]知识库[/URL]

  • 【分享】变压器直流电阻测试仪的使用注意规程

    变压器直流电阻测试仪可以称之为直流电阻测试仪、直阻测试仪或者感性负载直流电阻测试仪等。变压器直流电阻测试仪是测量大容量变压器直流电阻设计的新型仪器,能自动完成稳流判断、数据采集、数据处理、阻值显示及打印。  在操作变压器直流电阻测试仪的时候需要注意一些事项,同时也能延长测试仪的使用寿命,需要注意的事项如下:  1、对无载调压绕组,不允许在测试过程中或未放完电时切换无载分接开关。  2、对感抗性测试对象,在没有放完电(蜂鸣器鸣响时)情况下,不允许拆除测试线,以免遭电击。  3、在变压器直流电阻测试仪测试过程中遇到外部AC220V突然断电,测试仪将开始自动放电,此时不允许立即拆除测试线,5分钟后方可拆线。相关内容资料收集于:http://www.sute18.com/sute4-Article-132091/,希望能帮助需要这方面资料的朋友!

  • 多晶陶瓷的直流电阻比交流阻抗大很多,什么原因?

    多晶陶瓷的直流电阻比交流阻抗大很多,什么原因?

    1号,数量级在10的6次方--10的8次方 OM-cm之间, 3号的Cole-cole图是一个扁半圆,另外两个是接近半圆,低频有一点点翘起的尾巴三个样品都是电子导电型,致密度差不多。因此有两个问题,第一:为什么直流电阻要比 交流阻抗大很多?第二:为什么他们随制备条件的变化趋势相反?谢谢!http://ng1.17img.cn/bbsfiles/images/2014/07/201407170821_506979_1664587_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407170818_506975_1664587_3.jpg

  • 人员使用巡查使进行电梯巡检、维护的主要内容

    [align=left](1)曳引机是否有噪音、异味、是否烫手;[/align][align=left](2)轴承螺栓是否松动;[/align][align=left](3)减速箱的油位、油色是否正常,联轴器是否牢固可靠;[/align][align=left](4)指示仪表、指示灯、各继电器动作是否正常;[/align][align=left](5)变压器、电抗器等是否过热;[/align][align=left](6)制动器是否正常;[/align][align=left](7)曳引轮、曳引绳、限速器等是否正常;[/align][align=left](8)通信设施、标示牌、盘车手轮、开闸扳手等救援工具是否放在指定位置;[/align][align=left](9)电梯运行有无振动,开关门是否顺畅;[/align][align=left](10)底坑限速器是否正常。[/align][align=left][/align]众寻“巡查使”智能巡查安全管理系统具备完善的巡检流程,巡检设定时间、路线、地点、标准、处理方式等都系统具备详细定义和明确指示,流程规范、严谨,做到巡检有计划、有内容、有结果、有审核、有依据,流程环环相扣,高效显著地提高巡检工作的质量和效率。[align=left]巡检人员根据管理员安排的任务按顺序进行巡检,可有效避免漏检错检。巡检人员巡检工作中根据设备状态在“巡查使”上可实时上报隐患情况,支持文字、图片、语音等形式;除人工巡检以外,“巡查使”运用AI智能、传感器、物联技术等高新技术,针对工作中人、物、环境进行全方位探测监督,相关隐患可被自动并自动上传至管理端,能高效预防事故发生。[/align]

  • 实验室装修设计之接地系统详述

    文/高跃旗 华测检测实验室技术服务部因为实验室设计的特殊性与历史原因,很多实验室设计公司对实验室接地系统理解不够透彻,所以在做实验室设计的时候最容易遗漏接地系统。在此,华测实验室就实验室接地系统谈一下自己的理解、看法与经验。做实验室接地设计首先要弄清楚零线与地线的定义和特性。零线是三相交流电的相位归零点,在理论状态下三相交流电相位角之间的角度为纯正的120°。三相电流完全平衡的情况下,则其中性点对地电压应该为0伏特,而零序电流也应该为0安培。然而如果零线与大地并未连接在一起,则会因为电流的不平衡导致零序电流大于0安培,从而导致中性点漂移,所以中性点与大地之间会有一定电压存在。在发电机的中性点与大地经电抗器接地则可以避免这一情况的发生。地线是以导体敷设于大地内的一条回路,因其电阻值再设计之初就考虑其电阻一般不大于4Ω(混合接地常规为≯4Ω,弱电数据中心常规为≯0.5Ω),所以可以对其理解为在同一电位上。[b]1.接地的种类[/b]保护接地是将设备的金属外壳进行接地的一个措施,防止漏电压、防止过电压对设备和人身造成伤害;一部分特殊区域因为考虑防爆、考虑对设备的危害需要做防静电接地,防静电接地的基本原理是不让产生静电,有了静电也可以快速的导出直接泄入大地。防雷接地是将屋面避雷带直接与建筑物的接地系统连接,在架空线路中则是经过避雷器与地线连接,一旦受到雷电冲击则直接泄入大地;混合接地是一种最常见的接地,是将保护接地、设备接地、保护接地等接入同一个接地网,与变压器中性点做在同一电位。设备接地比较特殊,部分与保护接地相同,但是也有一些较为特殊,不是所有的设备接地都可以做进混合接地系统的,那么有些设备接地就需要做独立的接地网,部分设备接地的接地电阻会高于常规的混合接地电阻的要求值,也有部分设备接地只能做单点接地严禁做环形接地网如屏蔽接地,也有一些设备需要经电抗器接地,如部分UPS或发电机等。等电位接地接地是将某些设备金属外壳或管道金属构件等于接地干线连接在一起,做同一个电位。不与接地干线连接只是在局部的有限设备金属外壳群以及金属管道、构件连接在一起所形成的网则是局部等电位。[b]2.实验室的接地系统[/b]实验室装修的设备接地则比较特殊,有别于普通的设备接地,其中有一部分设备会因为谐波、高频等因素对信号采集回路干扰,形成虚假的值。常规的做法就是消谐、屏蔽、接地。因为市电里面的电源负载的不纯净,使用综合接地系统很难实避免干扰,那么久需要一套独立的接地系统。接地电阻值也要视具体情况而定,比如一般的实验室设备对接地电阻的要求是≯4Ω,然而较为严格的EMC实验室一般要求是不大于1Ω。高倍数的电镜对接地的要求最高可达0.1Ω。[b]3.一般接地极的做法[/b]做接地系统永远躲不开一项工作,即:接地极。一般的混合型接地系统的做法,是利用建筑物的地梁钢筋作为主接地极。野外设备的接地常规是在设备周边打接地桩,用一个或多个接地桩并联做环形结构,形成一个小的接地系统用于防雷接地。信号屏蔽的接地系统较为特殊,因为环形本身利于信号接收,所以,此类接地是利用多个接地极并联并留开口,形成一个C形结构的接地网。[b]4.接地桩的种类[/b]接地桩的种类多种多样从材质上分有热镀锌角钢的、有紫铜的、有铜包钢的、还有碳棒的。做法有用角钢打入地下做接地极的、也有做笼形,埋入地下做接地极的、也有做星型结构,埋入地下做接地极的。这些做法都是较为常见的做法,其特点主要是利用加大接触面降低接地电阻。在此提一下较为特殊的几种接地极,日本有一种接地的做法是挖坑,然后将挖出的土搅拌一定量的碳粉、参入部分水泥以裸铜线绕入坑中,再将搅拌均匀的土回填至坑中夯实浇水形成接地极。还有一种是打深井坠入远大于井深的裸铜线,使其弯曲增大与泥土的接触面,若地质条件不好则换土以保障接地电阻的阻值。[b]5.为什么接地无法预算投入[/b]因为地质条件的不同,其导电率也是千差万别,而规范上给出的仅仅是不同地质条件的参考值。所以没有做好接地之前谁也无法说清楚其接地电阻最终能达到多少。[b]6.特殊地质条件的不同处理方式[/b]很多时候当建设完成后,测量接地电阻时经常出现接地电阻达不到需要的值。请不要诧异,前面已经说过,不同的地质条件导电率是不一样的。那么,超过设计值或达不到设计值都很正常,这时候就需要相应的措施来弥补,使其最终的结果达到设计指标。一般的做法是在原有接地系统之外增加接地极,额外打接地桩并入原有接地系统;如果地质条件不好的话还需要换土、加降阻剂;如果地质条件极差,是岩层的话则需要由较远的地方,额外做接地极将其引来并入接地系统;如果受环境条件制约较大,比如空间不够,周围环境制约,则建议打深井并换土处理。

  • 变电站降噪治理新闻调查:待“消音”的变电站

    “低频的嗡嗡声像是要穿透脑袋”,“严重时,能听到玻璃窗颤动的声音”,跟震颤结伴而来的,是一种声音,一种低闷的噪音———变电站噪声问题,亦是城市化前进步伐相随而来的回响,亟须环境部门、电网企业、设备制造商和相关科研机构协力面对和解决。  随着城市化进程的加快,我国三大经济圈辐射地区出现了土地资源紧缺的现象,电力走廊受到挤压,无论是城市变电站还是郊区变电站,陆续出现了选址困难、部分在役站噪声对周边产生干涉的问题。目前我国的输变电噪声影响及控制实际生产力水平如何?城市变电站噪声的系统性控制及常态化治理该如何推进?今后变电站噪声及振动控制的发展趋势是什么?12月上旬,本报记者就此进行了走访调查。  “不安静”的变电站  目前大部分城市变电站存在亟须解决的噪声问题,或面临法律法规的限值要求、或须满足群众对于生活环境的敏感诉求。这就从主客观上需要电网企业采取更为行之有效的措施解决变电站噪声问题。  初冬的北京,天黑得越来越早,车流汹涌的高架、霓虹闪烁的街角,都湮没在城市的声浪下。傍晚时分,记者跟随国网智能电网研究院的专家来到了位于朝阳区东三环的某220千伏变电站。  记者在现场看到,这座变电站一侧临街,其他三面则被居民楼房紧紧环绕。记者目测,该变电站最近处距离居民窗户仅有20米左右。“随着北京城市发展,CBD区域寸土寸金,居民楼越建越密,渐渐把变电站都环绕起来了。”该站值守人员告诉记者,变电站承担着附近商户和居民区的供电任务,建设年代远比周边小区要早得多,但后续迁入的居民并不认可。  站在该变电站楼顶的室外平台,记者看到,变压器四周和靠近冷却器的一侧都设置了5米左右高度的白色声屏障。走近细看,声屏障上面密密麻麻“布满了小点”。  “面对居民的呼声,去年变电站进行了改造。包括声屏障、支撑架和施工费用共计80余万元。”国网智能电网研究院工程师樊超说,“嗡嗡”的噪声被声屏障 “内吸外隔”,解决了困扰变电站周围居民多年的噪声问题。  目前,随着城市化进程的加快,无论是城市变电站还是郊区变电站,周边土地资源都日趋紧张,变电站周边建筑与人口密度逐步上升,变电站相邻区域声环境功能区类别迅速由3类区排放限值要求转变为2类区限值甚至1类区限值,噪声排放限值要求的提高对于变电站的噪声控制是个巨大的考验。与此同时,2014版《环境保护法》已修订通过,并将于2015年1月1日起施行。该环保法被喻为史上最严环保法,将敦促电网企业向着对环保问题零容忍的目标迈进。  国网智能电网研究院工程师聂京凯告诉记者,目前在国内,不管是在变电站的设计还是建设过程中,均以变压器、电抗器等设备的电气性能作为优先考虑因素,而变电站的噪声主要以中低频噪声为主,这种中低频噪声波长大,衰减慢,对普通居民建筑物穿透力强,再加上噪声控制工程设计、施工、应用功能材料良莠不齐,实施的降噪效果往往与预期相差甚远。此外,目前完全满足变电站服役要求的低频吸声材料选择余地很小,这也客观造成了变电站噪声控制工程无米下锅的尴尬局面。  此外,聂京凯强调,相关标准也并不是能够保证变电站和谐运行的充分准则,满足所在地居民实际感受,适度的提高排放、材料、验收等标准,排除将来超标的可能,降低二次治理的成本,才是噪声治理的关键所在。  治理的困境  我国变电站降噪治理面临材料体系不完善、降噪材料基本性能基础数据匮乏及检测能力不配套,针对地区气候特点及变电站服役特点的降噪材料匮乏,缺乏可直接应用的标准化、实用性、规范性的降噪材料、装置等。  记者在国网智能电网研究院的 “电网环境保护与安全防护新材料新技术联合实验室”中,看到了各式各样奇形怪状的“房间”,有些墙面铺满纵横排列的尖劈,有些墙面镶嵌着大大小小的半圆,有些屋子里还堆满了器械、管道和屏幕。  工程师肖伟民边带领记者参观,边向记者介绍这些“房间”的具体用途,它们分别是消声室、混响室、隔声室、振动试验平台等。“在这些实验室中,通过各类测试可以掌握必要的噪声频谱数据、变电站结构关键特征数据、典型材料的服役耐久性等。在调研基础上,确定材料开发目标,开发新型降噪材料、降噪结构,并完成材料的全面性能测试。”肖伟民说。  “一方面,电网领域没有完善的针对变电站降噪材料、构件、装置的检验和评判标准可供依据。另一方面,对于材料、装置等的后续服役耐久性关注也严重不足。随着服役时间的延长,降噪材料、装置往往由于耐候性差而逐渐失效,使得变电站面临超标的危险。”聂京凯说。目前,我国城市变电站噪声主要由变压器、电抗器、电容器、母线、风机冷却设备产生,其中主变、电抗器是主要声源之一。“主变的噪声水平差距较大,ABB、西门子等产品整体噪声较国产产品要低,而东芝、日立等产品噪声水平基本与国产产品相当,噪声排放的差距主要是由于硅钢片取向质量、制造工艺、结构设计上存在的差异造成的。”聂京凯告诉记者,随着负荷的增加以及服役时间的延长,设备噪声水平还会增高。  “国产变压器价格透明,利润微薄,且噪声要求在招标中也不是主要技术指标,没有强制的约束作为驱动,厂家也心有余而力不足,充分体现了高端电工装备制造企业的无奈。”樊超一席话,站在消声实验室里的大家愈发安静了。  降噪将成常态化  今后变电站降噪治理将从量体裁衣式的方式,逐步改变为成衣定制式的标准化设计方式,实施集约化管理,发挥规模优势,提高电网工程的建设和管理效率,使其能够满足大规模电网噪声控制的要求。  北京西南部丰台区境内永定河畔,郁树翠烟,记者走进园博园110千伏变电站看到,这座小巧整洁的小楼安然静谧,与不远处的卢沟古桥遥相呼应。  园博园变电站属于新建变电站,国网智能电网研究院通过 “系统化设计”、“多场耦合仿真模拟技术”和“微孔纤维复合吸声板”等噪声控制手段的综合运用,使该变电站建成即满足Ⅰ类声环境功能区的排放限值要求。据监测,该站昼间站界噪声排放仅为43.61分贝,是名副其实的低噪声绿色示范站。  园博园变电站噪声控制工程的主要特色就是应用了国网智能电网研究院的一项最新研究成果———微孔纤维复合吸声板。“与传统材料相比,新材料的低频吸声性能提高2~3倍以上,在强度、耐候性方面也有无可比拟的优势。此外,新材料为环境友好型材料,与目前广泛使用的岩棉、玻璃棉等降噪材料相比,不会产生无机粉尘污染环境,具有回收再利用的环保特性。”樊超一边举着一块白色的微孔纤维吸声板小样,一边向记者介绍。  谈到今后变电站降噪的发展趋势,聂京凯认为,随着近年来各网省公司噪声治理经费投入的逐年提升,城市变电站噪声的系统性控制也将成为常态化。  “具体来说,噪声问题应从新建站及在役站分别对待。新建站应从规划、选址、降噪设计、降噪材料和装置的选配、降噪方案实施等综合考虑;而在役站应从噪声评估、站点实堪、降噪设计、降噪材料和装置的选配、降噪方案实施等综合考虑。”聂京凯告诉记者,目前变电站降噪措施缺乏系统性的规划,而且在治理方案上往往不考虑综合因素,仅做到头痛医头脚痛医脚,不能综合兼顾材料选用、结构匹配,改造成本也没有达到最经济的效果。  在聂京凯看来,在变电站噪声控制领域,辅助降噪措施还将长期存在,且辅助降噪用材料、装置性能将不断得到完善和提高。而针对变电站辅助降噪的各种技术短板,变压器、电抗器等设备本体降噪材料的发展和应用将成为变电站发展的主流技术,“十三五”期间,本体降噪材料将得到充分发展和应用。于此同时,新一代有源降噪技术、基于声振信号的评估和在线监测技术、系统性降噪技术研究将逐步开展,各类降噪材料、装置相关测试、评价标准体系也会日益完善。综上所述,无论是辅助降噪、本体降噪、声振传感,均依赖材料科学的发展和进步。

  • 串联谐振在电力系统应用中的主要技术特点

    1、所需电源容量大大减小。  串联谐振电源是利用谐振电抗器和被试品电容谐振产生高电压和大电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q。  2、设备的重量和体积大大减少。  串联谐振电源中,不但省去了笨重的大功率调压装置和普通的大功率工频试验变压器,而且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积大大减少,一般为普通试验装置的1/10-1/30。  3、改善输出电压的波形。  谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波形,有效的防止了谐波峰值对试品的误击穿。  4、防止大的短路电流烧伤故障点。  在串联谐振状态,当试品的绝缘弱点被击穿时,电路立即脱谐,回路电流迅速下降为正常试验电流的1/Q。而并联谐振或者试验变压器方式做耐压试验时,击穿电流立即上升几十倍,两者相比,短路电流与击穿电流相差数百倍。所以,串联谐振能有效的找到绝缘弱点,又不存在大的短路电流烧伤故障点的忧患。  5、不会出现任何恢复过电压。  试品发生击穿时,因失去谐振条件,高电压也立即消失,电弧即刻熄灭,且恢复电压的再建立过程很长,很容易在再次达到闪络电压前断开电源,这种电压的恢复过程是一种能量积累的间歇振荡过程,其过程长,而且,不会出现任何恢复过电压。

  • GB/T17623绝缘油气相色谱分析仪可以测试哪些气体?

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析仪是依据GB/T 17623、DL/T 703标准规定的方法设计制造的,适用于分析充油电器设备中(包括变压器、电抗器、电流互感器、电压互感器、充电套管等)溶解于绝缘油中的氢、一氧化碳、甲烷、二氧化碳、乙烯、乙烷、乙炔等气体含量的分析。[font=&]得利特(北京)科技有限公司专注于油品分析仪器的研发和销售活动,我公司产品有:酸值测定仪、微量水分测定仪、凝点倾点测定仪、体积电阻率测定仪、介电强度测定仪、介质损耗测定仪、水溶性酸测定仪、界面张力测定仪、析气性测定仪、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析仪等多种绝缘油分析仪器、燃料油分析仪器、润滑油分析仪器,水质分析检测仪器、气体检测仪器,型号多,质量保证,可定制。最近新出了:泡沫特性测定仪、泡沫倾向性测定仪、泡沫稳定性测定仪、润滑油泡沫特性测定仪。[/font]

  • 【分享】什么是输入、输出阻抗?(一)

    1、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin=U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。 对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。) 2、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意。 现实中的电压源,则做不到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。 3、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。 阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{ [(R-r)2/R] + 4×r } 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。 注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。 对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变(是对于最大输出功率而言的),就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。 从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。更多技术论文请详见:[url=http://www.midiqi.com/][color=#810081]买电器网[/color][/url](MIDIQI.COM) [url=http://www.midiqi.com/Knowledge/Index.asp][color=#810081]知识库[/color][/url]

  • 直流电阻测试仪的使用说明

    一、概述ZGY直流电阻测试仪,以高速微控制器为核心,变压器直流电阻测试仪采用高频调制大功率电源、高速A/D转换器及程控电流源技术,实现了可达40A的大电流输出,达到了前所未有的测量效果及高度自动化测量功能,具有精度高,测量范围宽,数据稳定,重复性好,抗干扰能力强,保护功能完善,充放电速度快等特点。该仪器体积小、重量轻、便于携带,是变压器直流电阻测试的最新一代产品。ZGY ─ 直阻测量新观念!二、主要功能及特点:1.采用高速16位A/D转换器,测量数据稳定,重复性好。2.自动程控电流源技术,既可手动选择典型值输出电流也可由内部微控制器自动控制输出电流,电流源内部共设2000个电流档位,在自动状态下,由内部微控制器根据被测电阻自动控制,从而达到比较宽的测量范围和最佳的测量状态。3.实时动态显示,响应速度快,可在测量状态直接转换分接开关,仪器会自动提示,新的电阻值很快就会显示出来,无须重新启动。4.高度智能化设计,功能设置巧妙先进,可自动判断测试线虚接、断线等故障。5.保护功能完善,能可靠保护反电势对仪器的冲击,具有自动放电指示功能。6.可显示测量电流和测量时间。7.变压器直流电阻测试仪智能化功率管理技术,可有效减轻仪器内部发热。8.可储存250次测量数据,掉电不丢失。9.全部汉字菜单及操作提示,直观方便。10.变压器直流电阻测试仪内置微型打印机,可打印测量结果和内存记录。11.不掉电日历,时钟功能。

  • 【分享】变压器直流电阻测试仪的功能特征

    变压器直流电阻测试仪的主要功能及特点如下:  1、采用高速16位A/D转换器,测量数据稳定,重复性好。  2、自动程控电流源技术,电流源共设1000个电流档位,由内部微控制器根据被测电阻自动控制,从而达到比较宽的测量范围和最佳的测量状态,无须手动切换电流换档。  3、响应速度快,在测量状态可以直接转换分接开关,仪器会自动提示,新的电阻值很快就会显示出来。  4、高度智能化设计,功能设置巧妙先进,可自动判断测试线虚接、断线等故障。  5、智能化功率管理技术,可有效减轻仪器内部发热。  6、变压器直流电阻测试仪可储存120次测量数据,掉电不丢失。  7、全部汉字菜单及操作提示,直观方便。  8、保护功能完善,能可靠保护反电势对仪器的冲击,具有自动放电指示功能。  9、变压器直流电阻测试仪可显示测量电流和测量时间。

  • 二用二备高压变频方案解析

    二用二备高压变频方案解析

    一、高压变频调速系统方案1.系统切换方案http://ng1.17img.cn/bbsfiles/images/2013/12/201312031444_480482_2831619_3.jpg 注:开关QF1、QF7、QF8、QF14和电机M1、M2为现场原有设备。上图以同步电机为例。两套变频器的协调控制由独立的一台协调控制柜实现。此套系统包含同步投切电抗器+激磁涌流抑制柜、高压变频器、协调控制柜和真空开关柜。主要功能:可以实现两台风机变频调速装置的互为备用和在线切换。在互为备用的两台变频调速装置中,当一台故障时,另一台可以启动故障变频调速装置所带的电机的要求;以两台变频调速装置分别对应拖动两台风机运行,当TF1变频调速装置出现故障的工况为例,系统切换过程如下:协调控制单元向TF2发出同步切换至工频请求→TF2拖动M2提速至50Hz后实时检测对比TF2电源输入侧与变频调速装置输出侧电压幅值、相位角度、频率,经过计算并调整后当电压幅值误差≤2%;相位误差≤3°;频率误差≤0.05Hz时向协调控制单元发出同步切换合闸指令→协调控制单元控制QF14合闸,合闸完成后由TF2向协调控制单元发出同步切换分闸指令→协调控制单元控制QF8、QF12分闸,M2完全转换为工频直接拖动→协调控制单元向TF2发出的同步切换请求指令撤销,同时向QF8、QF13发合闸指令,由TF2拖动M1→协调控制单元向TF2发出同步切换至工频请求→TF2拖动M1提速至50Hz后实时检测对比TF2电源输入侧与变频调速装置输出侧电压幅值、相位角度、频率,经过计算并调整后当电压幅值误差≤2%;相位误差≤3;频率误差≤0.05Hz时向协调控制单元发出同步切换合闸指令→协调控制单元控制QF7合闸,合闸完成后由TF2向协调控制单元发出同步切换分闸指令→协调控制单元控制QF8、QF13分闸,M1完全转换为工频直接拖动。2.高压变频系统的主要构成整套变频调速系统由2套变压器柜、2套功率柜、2套控制柜、2套电抗器+激磁涌流抑制柜(含QF3/QF4/QF10/QF11)、一套协调控制柜、4高压开关柜(QF5/QF6/QF12/QF13)组成。 2.1激磁涌流抑制柜该柜内主要元器件为限流电阻和真空断路器等,可限制上电时的激磁涌流。变频器上电时充电电流可达额定电流的6~10倍,此充电电流对电网构成强烈的冲击,造成电网电压瞬间跌落,干扰其他设备的正常运行;其次高压变频器短时间内断电重新上电,虽然直流环节残电电压较高,充电电流较小,但由于变压器的剩磁与合闸时电网电压相位的不匹配,使得变压器在高压上电时激磁偏磁导致铁心饱和,进而产生2至10倍于额定电流的激磁涌流,对电网构成干扰。http://ng1.17img.cn/bbsfiles/images/2013/12/201312031445_480483_2831619_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312031445_480483_2831619_3.jpg为解决上述问题,在变频调速装置内特设激磁涌流及预充电电路,该电路能够将变频器高压上电电流限制在1倍额定电流之内,真正实现对电网的零冲击。该电路由高压真空断路器和高压限流电阻构成。高压上电前,真空断路器处于分断状态,高压上电时,电网通过高压限流电阻向变频器充电,1秒后充电完成,变频器自动闭合真空断路器切除限流电阻。2.2高压变频器调速系统:ATV1200系列高压变频调速系统本体由变压器柜、功率柜及控制柜组成。下图为高压变频调速系统示意图: http://ng1.17img.cn/bbsfiles/images/2013/12/201312031445_480484_2831619_3.jpg注:上图仅为示意,针对此项目一台变频器配一台移相变压器。ATV1200系列变频调速装置采用单元串联多电平结构,为高-高结构,10kV输入,10kV直接输出,即每相9个低压的功率单元串联实现高压输出,输入侧的变压器采用移相方式,将网侧高压变换为二次侧的多组低压,各二次绕组在绕制时采用延边三角形接法,相互之间有固定的相位差,形成多脉冲整流方式,使得变压器二次侧各绕组(即各功率单元输入)的谐波电流相互抵消,不反映到高压侧,从而大大改善了网侧的电流谐波,基本消除了对网侧的谐波污染;变压器的每个二次侧低压绕组相互独立,并单独为一个功率单元供电;而功率单元为变频器实现变压变频输出的基本单元,每个功率单元相当于一台交-直-交电压型单相输出的低压变频器,每个模块输出等幅PWM电压波形,但相互之间有确定的相位偏移,串联叠加之后,在变频器输出侧得到正弦阶梯状PWM波形,其输出为完美无谐波正弦波,高压变频器在不加任何滤波器的情况下,对电网的谐波完全符合IEEE 519 -1992 国际标准,以及GB/T14549-93《电能质量公用电网谐波》的要求。2.3 协调控制柜该柜可实现两台变频器的协调控制,所有自动切换功能均自动完成,无需人工干预,自动化程度高,避免人为频繁操作相关断路器的繁重工作,同时避免由于人为错误操作导致设备损坏或系统瘫痪。主要功能:可以实现两台风机变频调速装置的互为备用和在线切换。在互为备用的两台变频调速装置中,当一台故障时,另一台可以启动故障变频调速装置所带的电机的要求;以两台变频调速装置分别对应拖动两台风机运行,当TF1变频调速装置出现故障的工况为例,系统切换过程如下:协调控制单元向TF2发出同步切换至工频请求→TF2拖动M2提速至50Hz后实时检测对比TF2电源输入侧与变频调速装置输出侧电压幅值、相位角度、频率,经过计算并调整后当电压幅值误差≤2%;相位误差≤3°;频率误差≤0.05Hz时向协调控制单元发出同步切换合闸指令→协调控制单元控制QF14合闸,合闸完成后由TF2向协调控制单元发出同步切换分闸指令→协调控制单元控制QF8、QF12分闸,M2完全转换为工频直接拖动→协调控制单元向TF2发出的同步切换请求指令撤销,同时向QF8、QF13发合闸指令,由TF2拖动M1→协调控制单元向TF2发出同步切换至工频请求→TF2拖动M1提速至50Hz后实时检测对比TF2电源输入侧与变频调速装置输出侧电压幅值、相位角度、频率,经过计算并调整后当电压幅值误差≤2%;相位误差≤3;频率误差≤0.05Hz时向协调控制单元发出同步切换合闸指令→协调控制单元控制QF7合闸,合闸完成后由TF2向协调控制单元发出同步切换分闸指令→协调控制单元控制QF8、QF13分闸,M1完全转换为工频直接拖动。2.4 同步投切同步投切过程:http://ng1.17img.cn/bbsfiles/images/2013/12/201312031445_480485_2831619_3.jpg

  • 交直流电压电流表标准器组建标技术报告

    交直流电压电流表标准器组建标技术报告[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=22340]交直流电压电流表标准器组建标技术报告[/url]

  • 【讨论】直流电与交流电的区别

    高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw• h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整. ④直流输电发生故障的损失比交流输电小.两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流.因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关.而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样.因此不必更换两侧原有开关及载流设备. 在直流输电线路中,各级是独立调节和工作的,彼此没有影响.所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能.但在交流输电线路中,任一相发生永久性故障,必须全线停电。另外提醒一下:在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。德庆电表 仪器仪表

  • 详解谐振过电压

    电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。一、谐振过电压产生原因  电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式单相故障可引起谐振过电压;运维人员操作或事故处理方法不当亦会产生谐振过电压;另外设计选型、参数不匹配也是谐振过电压产生原因。二、谐振过电压分类1线性谐振过电压  谐振回路由不带铁芯的电感元件(如输电线路的电感、变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。2 铁磁谐振过电压  谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。3 参数谐振过电压  由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Kd~Kq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。三、谐振过电压特点1线性谐振过电压  1) 参与谐振的各电气参量均为线性。  2) 谐振发生在电网自振频率与电源频率相等或相近时。  3) 多为空载线路不对称接地故障的谐振、消弧线圈补偿网络的谐振和某些传递过电压的谐振等。2铁磁谐振过电压  1) 与电容组成谐振回路的电感参数作周期性变化,变化频率一般为电源频率的偶数倍。  2) 谐振所需能量由改变电感参数的原动机供给,它不仅可以补偿回路中电阻的损耗,并且使回路的储能愈积愈多,保证了谐振的发展。  3) 谐振过电压和电流理论上能趋于无限大。但是由于实际上常受电感磁饱和的影响,使回路自动偏离谐振条件,使过电压不致无限增大。3参数谐振过电压  1) 谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。  2) 谐振频率可以等于电源频率(基波共振),也可为其简单分数(分次谐波共振)或简单倍数(高次谐波共振)。  3) 在一定的情况下可自激产生,但大多需要有外部激发条件。回路中事先经历过足够强烈的过渡过程的冲击扰动。  4) 在一定的回路损耗电阻的情况下,其幅值主要受到非线性电感本身严重饱和的限制。四、限制谐振过电压的主要措施有  (1) 提高开关动作的同期性:由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。  (2) 在并联高压电抗器中性点加装小电抗:用这个措施可以阻断非全相运行时工频电压传递及串联谐振。  (3) 破坏发电机产生自励磁的条件,防止参数谐振过电压。  (4) 严格执行调度规程:在运行方式上和倒闸操作过程中,防止断路器断口电容器与空载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。  (5) 避免操作过电压:在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振时,应立即合上带断口电容器的断路器,切除回路电容,终止谐振,防止隐患发展形成事故。  (6) 中性接地点:增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压。  (7) 继电保护:针对具体事故发生的情况,如在变电站母线发生单相接地,母差保护动作,母联开关跳闸后,如果主变开关先于线路开关动作,将不会引发谐振。

  • 关于ZX36直流电阻器的标示

    [em61] 各位老师: 在ZX36直流电阻器上有0 . . . 0.2 . . . 0.3W 5. . . . . .20. . . . . .35℃标示,请问是什么意思。 谢谢! 江西萍乡市计量所:刘彦刚 pxsjlslyg108@sina.com 2005.9.16

  • 【讨论】什么叫三相交流电路?

    由三相交流电源供电的电路。简称三相电路。三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,最常用的是三相交流发电机。三相发电机的各相电压的相位互差120°。它们之间各相电压超前或滞后的次序称为相序。三相电动机在正序电压供电时正转,改为负序电压供电时则反转。因此,使用三相电源时必须注意其相序。一些需要正反转的生产设备可通过改变供电相序来控制三相电动机的正反转。  三相电源连接方式 常用的有星形连接(即Y形)和三角形连接(即△形)。从电源的3个始端引出的三条线称为端线(俗称火线)。任意两根端线之间的电压称为线电压。星形连接时线电压为相电压的根号3倍;3个线电压间的相位差仍为120°,它们比3个相电压各超前30°。星形连接有一个公共点,称为中性点。三角形连接时线电压与相电压相等,且3个电源形成一个回路,只有三相电源对称且连接正确时,电源内部才没有环流。  三相负载 按三相阻抗是否相等分为对称三相负载和不对称三相负载。三相电动机、三相电炉等属前者;一些由单相电工设备接成的三相负载(如生活用电及照明用电负载),通常是取一条端线和由中性点引出的中线(俗称地线)供给一相用户,取另一端线和中线给另一相用户。这类接法三条端线上负载不可能完全相等,属不对称三相负载。三相负载的连接方式也有星形与三角形之分。  三相电路的瞬时功率(见交流电路中的功率)等于各相瞬时功率之和。即  P=PA+PB+PC  式中下标分别表示各相。对于对称电路,  此时UA=UB=UC=UP,式中UP、IP、U、I分别是相电压、相电流、线电压和线电流的有效值。对称三相电路的平均功率与其瞬时功率相等。其无功功率为UIsin,视在功率为。对称三相电路的瞬时功率为常量,因此,正常运行时带动三相发电机的原动机所受的反力矩和三相电动机的输出转矩都是平稳的。

  • 【求助】TCD检测器的桥流电流没法调整

    各位大侠你们好啊,我出现了让我头疼的问题,烦请帮出出主意啊,在此表示非常的感谢!!! 用氩气做载气,采用tcd来分析烟气,我设置的温度柱温90度,检测器50,桥流电06ma,现在出现了,当温度达到设定温度后,打开TCD温度控制板,显示12MA,就没法用旋钮调整了(旋钮不起作用),是怎么回事呢,载气流量是20 想请教一下: 可能是什么问题,怎样来解除? 另外我操作程序是,先通载气,再设温度,再升温,达到温度后,再打开的TCD温控板(此时旋钮处于最小状态),显示12mA,这时去慢调旋钮,可是对电流显示不起作用 究竟问题出在哪里呢,好头疼啊

  • 电磁辐射检测

    [font=微软雅黑][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-25375.html[/url]DC~40GHz十米法电波暗室、2Hz~44GHz测量接收机,可为信息技术类、家用电器、 音视频类、无线电及电信终端设备等消费电子产品提供全套电磁辐射和电磁抗扰度的测试及预测试、EMC整改及技术咨询。100t电液伺服万能试验机, 48m3高低温交变湿热箱等环境可靠性测试设备,为消费电子全线产品提供完整的结构强度试验、结构动力学试验、环境适应性试验、可靠性与寿命测试服务。[/color][/font]辐射测试项目如下;传导骚扰辐射骚扰场强喀呖声(断续骚扰电压)骚扰功率谐波电流电压变化、电压波动和闪烁静电放电抗扰度射频电磁场辐射抗扰度电快速瞬变脉冲群抗扰度浪涌抗扰度射频场感应的传导抗扰度工频磁场抗扰度脉冲磁场抗扰度阻尼振荡磁场抗扰度电压暂降、短时中断和电压变化抗扰度振铃波抗扰度交流电源端口谐波、谐间波及电网信号的低频抗扰度电压波动抗扰度0Hz-150kHz共模传导骚扰抗扰度直流电源输入端口纹波抗扰度阻尼振荡波抗扰度试验工频频率变化抗扰度直流电源输入端口电压暂降、短时中断和电压变化的抗扰度

  • 气相/液相色谱仪的零部件需要直流电阻焊机或电阻焊接!

    气相/液相色谱仪制造过程中,其部分零部件需要直流电阻焊机进行焊接,例如气相色谱仪中的三端子连接件,就是需要直流电阻焊机进行焊接。本人和朋友工作之余专门制造逆变中频直流电阻焊机,价格便宜,质量和功能过硬,产品已销往日本和北京航天九院。各位气相/液相色谱仪生产厂商,如果生产过程中需要用到直流电阻焊机,或者有电阻焊接的工作需要外包,可以找我,站内联系,必有回复!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制