扫描测头

仪器信息网扫描测头专题为您提供2024年最新扫描测头价格报价、厂家品牌的相关信息, 包括扫描测头参数、型号等,不管是国产,还是进口品牌的扫描测头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合扫描测头相关的耗材配件、试剂标物,还有扫描测头相关的最新资讯、资料,以及扫描测头相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

扫描测头相关的厂商

扫描测头相关的仪器

  • 专用扫描透射显微镜HD-2700,配备了与德国CEOS GmbH公司(总经理Max Haider先生)共同开发的球差校正仪,显著提高了扫描透射电子显微镜的性能,更适合高级纳米技术研究。由于球差校正系统校正了限制电子显微镜的性能的球差,使其与标准型号显微镜相比,分辨率提高了1.5倍,同时,探针电流提高了10倍。最近,该显微镜还配备了高分辨率镜头和冷场发射电子枪,进一步提高了图像分辨率和电子束能量分辨率。同时,该型号系列还增加了一款不带球差校正的主机配置,可以以后加配球差校正进行升级。特点 高分辨率扫描透射电子显微镜成像HAADF-STEM图像0.136nm,FFT图像0.105nm(高分辨率镜头(*))HAADF-STEM图像0.144nm(标准镜头)明场扫描透射电子显微镜图像0.204nm(w/o球差校正仪)高速,高灵敏度能谱分析:探针电流× 10倍元素面分布更迅速及时低浓度元素检测操作简化自动图像对中功能从样品制备到观察分析实现无缝连接样品杆与日立聚焦离子束系统兼容配有各种选购件可执行各种评估和分析操作同时获取和显示SE&BF, SE&DF, BF&DF, DF/EDX面分布(*) 和DF/EELS面分布(*)图像。低剂量功能(*)(有效降低样品的损伤和污染)高精度放大校准和测量(*)实时衍射单元(*)(同时观察暗场-扫描透射电子显微镜图像和衍射图案)采用三维微型柱旋转样品杆(360度旋转)(*),具有自动倾斜图像获取功能。ELV-3000即时元素面分布系统(*)(同时获取暗场-扫描透射电子显微镜图像)(*) 选购件技术指标HD-2700球差校正扫描式透射电子显微镜项目描述图像分辨率w/o球差校正仪保证 0.204nm(当放大倍数为4,000,000时)w球差校正仪保证 0.144 nm(当放大倍数为7,000,000时)(标准镜头)保证 0.136nm(HAADF图像)保证0.105 nm(通过FFT)(当放大倍数为7,000,000时)(高分辨率镜头(*))放大倍数100倍 至 10,000,000倍加速电压200 kV, 120 kV (*)成像信号明场扫描透射电子显微镜:相衬图像(TE图像)暗场扫描透射电子显微镜:原子序数衬度图像(Z衬度图像)二次电子图像(SE图像)电子衍射(*)特征X射线分析和面分布(能谱分析)(*)电子能量损失谱分析和面分布(EV3000)(*)电子光学系统电子源肖特基发射电子源冷场致发射器(*)照明透镜系统2-段聚光镜镜头球差校正仪(*)六极镜头设计扫描线圈2-段式电磁感应线圈原子序数衬度收集角控制投影镜设计电磁图像位移± 1 &mu m试片镜台样品移动X/Y轴 = ± 1 mm, Z轴 = ± 0.4 mm样品倾斜单轴-倾斜样品杆:± 30° (标准镜头), ± 18° (高分辨率镜头(*))真空系统 3个离子泵,1个TMP极限真空10-8 Pa(电子枪), 10-5 Pa(样品室)图像显示个人电脑/操作系统PC/AT兼容, Windows XP监视器19-inch液晶显示器面板图像帧尺寸640 × 480, 1,280 × 960, 2,560 × 1,920 象素扫描速度快扫,慢扫(0.5至320秒/帧)自动数据显示记录序号,加速电压,下标尺,日期,时间 (*) 选购件
    留言咨询
  • iScan3D智能扫描测头 400-860-5168转0809
    iScan3D扫描智能测头 Automated Precision Inc.(API)的iScan是手持式扫描技术的突破性进步。作为Radian系列激光跟踪仪的附件,为跟踪仪提供扫描功能。API iScan3D是一款便携式激光扫描测头。其手持式的操作方式与便携式的设计理念,使得iScan3D可以非常完美地适用于在狭小工作空间内对于部件尺寸的扫描检测与逆向工程作业。整只测头符合人体工程学设计,操作者只需单手操作,即可以以舒适的方式迅速精准地获得点云。交叉式蓝色激光保障定位交叉式蓝色激光保障定位,使得iScan3D智能测头的使用灵活方便,可以以任何姿态进行高质量扫描作业,且可轻松完成反光表 面及高对比度材料的快速扫描作业。采用高集成、人体工程学设计,并集成有预编程智能按钮,使用灵活、操作方便。iScan3D 可用于各种测量应用,包括:工具,固定装置和夹具表面轮廓间隙和冲洗测量汽车车身零件夹具检查快速原型制作模具和模腔CAD对比在制品检验基于干涉仪的精度创新的iScan3D智能扫描测头具有360°偏航和360°滚动,可实现无限制的连续定位。结合Radian激光跟踪仪的大工作范围,iScan3D可以轻松自由地测量最复杂的部件。
    留言咨询
  • 数据安全存储,报告与追溯,尽在您掌握之中。iProbe Plus是最先进的,创新及易用的扫描探头。关键特征过滤器扫描报告可追溯内置数据存储通过USB轻松传输数据4.3英寸彩色大触摸屏兼容现有的2i光度计,不需要固件更新(“即插即用”)*Iprob可选密码保护关键优势支持21 CFR Part 11增强数据完整性和质量控制无需连接电脑或打印机进行实时数据输出提高效率,节省成本*2i主机必须在固件版本4.6.1或更高质量和稳健性标准测试要求IEC 60068-2-27掉落在1米高度落下10次IEC 60068-2-6震动10Hz, 100Hz和200Hz时1小时。IEC 60068-2-14温度在-20℃至+70℃测试IEC 60068-2-27热冲击设备在-20℃到+70℃之间循环iProbe Plus与iProbe比较iProbe Plus创建了每个过滤器扫描的唯一记录。每条记录包括关键标识符(ID)和重要的扫描数据,用于质量控制和泄漏扫描的追溯。扫描可追溯的标识符(ID)iProbe Plus 通过要求输入关键 ID 信息来提供过滤器泄漏扫描可追溯性。工作房间过滤器技术员用户利益:通过提供每个扫描过滤器的详细数字记录来增强质量控制。安全支持21CFR Part 11 通过加密,密码保护,和数据保护支持21CFR Par 11。保存在iProbe Plus上的过滤器检漏数据不能被更改。提供关键参数的密码保护,如日期/时间,删除/移除,和测试数据的加密。报告:能够保存大约150,000次扫描。每个保存的泄漏扫描都是以.CSV和.PDF文件格式,便于分析。文件可以通过USB-A盘移走。上游/下游/清零控制:iProbe Plus允许用户通过触摸屏操控上游/下游/清零阀(专利功能)。这提高了效率和安全性,免除了通过2i主机操控不同阀门的需要。额外的用户便利:所有固件更新安装可通过USB-A盘操作独特的10秒”倒带”按钮,可避免意外报警事件(专利申请中)符合人体工程学的手柄,手指凹槽和拇指托屏幕上显示重要信息,如最大泄漏率%;过滤器标识;已扫描时间iProbe Plus 人体工学手柄
    留言咨询

扫描测头相关的资讯

  • 全球首款!海克斯康发布机床用在线激光扫描测头
    近期,海克斯康推出世界上首款用于在数控机床上激光扫描测量零件的测头,进一步完善海克斯康在测量与传感器全领域的方案能力,以突破行业零件测量和校准的瓶颈,也是海克斯康赋能行业数字化转型的重要体现。全新发布的LS-R-4.8,是第一款直接用在机床上进行在机测量的无线电激光扫描测头。它通过无线电与接收器实现安全通信,平常可以存储在机床的刀库中,无需人为干预,便可像刀具或常规测头一样快速、自动更换到机床主轴上,实现制造过程的自动化。快速出图,结果精确LS-R-4.8每秒可捕获40000个测量点,快速捕获零件整个表面完整的尺寸数据。激光三角测量技术的应用,确保其测量结果精确可靠。固定蓝色激光线的采用,使其适用于各种应用和表面类型,光滑亦或是暗的表面,都能提供精确的测量结果。 软件加持,在机测量本款解决方案配有专属分析软件NC Measure | Laserscan,可以支持Fanuc、Siemens、Heidenhain系统,结合市场领先的功能和直观的用户界面,能够在屏幕上直接设置扫描路径,并生成完整的测量报告,创建清晰的彩色映射图。LS-R-4.8集成在机床中,可在零件仍夹紧在机床上时快速可靠地获取其完整的表面数据,专属软件NC Measure | Laserscan生成测量结果,评估其是否在公差范围内。并将测量结果以彩色映射图的形式叠加在零件的数字CAD模型上。测量结果清晰直观的呈现,更加便于分析加工质量,辅助分配加工余量。过程控制,辅助修正在机床上的测量,无论是对工件的测量、温度的测量还是对刀具的控制,都是加工过程中有价值的信息来源。现代生产中,出测量结果之前制造过程往往是停止的。新型无线电激光扫描测头,可直接在机床上快速对工件进行激光扫描测量,并将测量结果发送给生产相关部门。有了这些数据,生产相关部门就可以在加工之前甚至加工过程中对工件加工进行控制,既可以保证产品质量,又可以用测量结果灵活地改进生产,从而提高生产效率,提升加工质量。 无线电激光扫描测头通过在机测量提高过程控制,有效消除传统测量方式对测量结果后知后觉的测量瓶颈。每秒获取的大量测量数据点,可快速提供整个零件有关的完整信息,方便用户评估加工质量,及早发现问题,及时改进生产流程,从而节省大量时间,并减少人力、物力、财力的投入。并可让用户深入了解整个加工过程中零件的质量,是过程质量控制甚至行业数字化转型的又一进展。
  • 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "【作者按】形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、边缘效应、电位衬度等是形成扫描电镜表面形貌像的几个重要衬度信息。对这些衬度信息的接收离不开探头。本文将就扫描电镜两种主要探头的构造、工作原理及其接收的样品信息进行详细探讨。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "一、二次电子探头/span/h1p style="text-align: justify text-indent: 2em "目前教科书的观点认为:二次电子探头接收的样品表面信息主要是二次电子。真实情况是否如此呢?/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.1二次电子图像所拥有的特性/strong/span/pp style="text-align: justify text-indent: 2em "A) 二次电子能量很低(低于50ev),从样品表面溢出的深度浅,在样品中的扩散范围小。适合用于表现样品表面形貌像的极细小细节(小于10nm)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/3edeb286-6abb-4bf7-8b3a-008c9ab1551f.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "B)二次电子能量低,在样品表面的溢出量容易受到静电场(荷电)的影响,出现图像局部或全部异常变亮、磨平、变暗并伴随图像畸变的现象,即样品图像的荷电现象。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/fb564107-ab21-4b67-9812-18699dec50be.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "C)二次电子的产额受平面斜率影响较大,边缘处产额最高,形成所谓的二次电子衬度及边缘效应。这些衬度信息会形成信息的假象,也有助于分辨某些特殊的样品信息。/pp style="text-align: justify text-indent: 0em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/51c0d3a0-49ba-412e-96ee-f789a068425d.jpg" title="3.png" alt="3.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "D) 二次电子图像的Z衬度一般表现较差。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/9d2c7e97-f6a9-4de1-b054-9b8e5101f0f5.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.2二次电子探头的组成及工作原理/strong/span/pp style="text-align: justify text-indent: 2em "二次电子能量弱(低于50ev),要想获取二次电子信息就必须采用高灵敏探头。利用敏感度极强的荧光材料接收弱信号,再以光电倍增管对弱信号做百万倍的放大,将能量极弱的二次电子信息转化为能被电子线路处理的电子信息。/pp style="text-align: justify text-indent: 2em "这种设计是目前解决这一难题的最佳方案。二次电子探头的基本构造正是以这个思路为基础来设计。/pp style="text-align: justify text-indent: 2em "strong1.2.1 Everhart-Thornley探测器的结构组成/strong/pp style="text-align: justify text-indent: 2em "由金属网收集极、闪烁体、光导管、光电倍增管和前置放大电路组成的探测器被称为Everhart-Thornley探测器。一直以来都是各厂家用于接收二次电子的主流探测器。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/2f6dd144-afab-427d-99c2-96f6565bc641.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "strong1.2.2 Everhart-Thornley探测器的工作原理/strong/pp style="text-align: justify text-indent: 2em "位于探头最前端的收集极是由金属网构成,其上加有200V的正偏压以捕获更多的二次电子。进入收集极的二次电子由加载在闪烁体金属铝膜上的10KV电压加速在闪烁体上产生一定数量的光子。由闪烁体产生的光子经过光导管的全反射进入光电倍增管阴极,在阴极上转换成电子。这些电子由打拿极的不断倍增,经阳极输出高增益低噪音的电信号。该信号由紧贴阳极的前置放大器放大后,从探测器输出。/pp style="text-align: justify text-indent: 2em "探测器本身无法将到达探测器的高能量背散射电子从低能量的二次电子中分离,但通过改变收集极偏压可以将低能量的二次电子给阻绝在探头外面。其接收的信息特性完全取决于到达探头的信息组成,如果信息中二次电子含量大则图像偏向于二次电子的图像特性,如果背散射电子含量大则结果偏向于背散射电子的图像特性。/pp style="text-align: justify text-indent: 2em "将探头的收集极变成负偏压,则我们可以获得偏向于背散射电子的图像。但是图像信号衰减较多,图像质量较差。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "1.3二次电子探头的位置与成像特性/span/strong/pp style="text-align: justify text-indent: 2em "高分辨场发射扫描电镜中,二次电子探头(ET探头)往往被置于仪器的两个位置:镜筒及样品仓。虽然各电镜厂家探头的具体位置有差异,但其结构是基本一致。探头位置不同,获取的图像性质差异也非常大。下面就以日立冷场电镜S-4800二次电子探头的位置设计为例来加以说明。/pp style="text-align: justify text-indent: 2em "strong1.3.1 S-4800二次电子探头的位置设计/strong/pp style="text-align: justify text-indent: 2em "在冷场扫描电镜S-4800中标配了两个二次电子探头。这两个探头的结构和性能完全一致,仅仅在电镜中安装的位置有所差异。一个位于样品仓,另一个位于物镜的上方。/pp style="text-align: justify text-indent: 2em "如下图所示:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6b4fc92d-a161-48eb-938a-cdc27b8be3a5.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "strong1.3.2 上、下探头的工作过程及获取图像的特性/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.1上探头接收的样品信息/span/pp style="text-align: justify text-indent: 2em "扫描电镜EXB系统的结构是在物镜磁场(B)上方正对着上探头设计一个电场(E)。该电场的作用是将物镜磁场吸上来的背散射电子、二次电子混合信息中能量较弱的二次电子分离出来,推向上探头。这个过程如同碾米机进行米、糠分离时吹风机的作用一样。故上探头获取信息是较为纯正的二次电子。背散射电子也可以通过位于物镜内的电极板转换成二次电子被上探头接收,通过调节电极板上加载的电压来选择到达上探头的信息特性。这种间接接收的背散射电子有其一定的特点,但损耗大,大部分情况下信号量不足。/pp style="text-align: justify text-indent: 2em "下面组图为上探头接收的四种信息特性。/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/312e9fc9-364e-47b7-aa0f-f4a6759f8a69.jpg" title="7.png" alt="7.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6ccf7e3c-4ea6-4df7-a35f-702c3461675e.jpg" title="8.png" alt="8.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.2上探头的工作过程/span/pp style="text-align: justify text-indent: 2em "高能电子束轰击样品产生各种电子信息被物镜磁场吸收送往物镜上方。工作距离越小被物镜俘获的样品电子信息越多,其中二次电子和背散射电子是呈现扫描电镜表面形貌信息的主要信号源,将被拿出来单独讨论。/pp style="text-align: justify text-indent: 2em "二次电子和背散射电子混合信息被物镜磁场送到位于物镜上方的电场,能量弱的二次电子受电场影响从混合信息中被分离出来并推送到位于物镜上方的上探头,背散射电子由于能量较强,电场对其影响较小,将穿过电场轰击位于电场上方的电极板,产生间接二次电子也会被上探头接收到,但其含量较小不是主要信息。/pp style="text-align: justify text-indent: 2em "位于物镜中的电极板通过调整加载电压来选择进入物镜的信息类型。低角度(LA)背散射电子可由电极板转换成二次电子被上探头接收,形成所谓间接的LA背散射电子像。/pp style="text-align: justify text-indent: 2em "电极板加载+50V电压,将吸收低角度的二次电子和背散射电子,抑制低角度电子信息进入镜筒(U)。/pp style="text-align: justify text-indent: 2em "电极板加载0V,将由其转化成二次电子的低角度背散射电子和低角度二次电子信息都送入镜筒。上探头接收的是各种角度二次电子和低角度背散射电子的混合信息。其混合比例将随着电极板电压的降低,背散射信息逐渐增多(U,LA0)。/pp style="text-align: justify text-indent: 2em "-150V时,二次电子被全部压制,此时上探头接收到的是纯的低角度背散射电子所激发的二次电子信息(U,LA100)。/pp style="text-align: justify text-indent: 2em "位于镜筒内的能量过滤器,会将二次电子以及低角度背散射电子所形成的二次电子给抑制,此时上探头或顶探头接收的是高角度背散射电子信息(U,HA)。/pp style="text-align: justify text-indent: 2em "图像特性:Z衬度充分,其他都不足。由于高角度背散射电子产额少,对样品及束流的要求都较高。目前在束流较低的冷场扫描电镜中取消这个功能,只在束流较高的regulus8200系列冷场电镜中保留顶探头设计。但适用的样品并不多。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/54aea59e-1225-4703-a62d-324fa54bf35c.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.3下探头的位置及其图像特性/span/pp style="text-align: justify text-indent: 2em " 下探头位于场发射扫描电镜样品仓位置。示意图如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/17380253-5429-4944-af61-5caa22457c69.jpg" title="11.png" alt="11.png"//pp style="text-align: justify text-indent: 2em "下探头位于样品仓中,因此也称样品仓探头。它与样品之间没有任何阻碍物,激发出来的样品信息可以不受影响的到达该探头。下探头本身不能对到达探头的背散射电子信号加以甄别,其图像特性取决于到达探头的信息特征。二次电子居多,就偏向二次电子的图像特性;背散射电子居多,则偏向于背散射电子的图像特性。/pp style="text-align: justify text-indent: 2em " 样品仓探头接收的样品信息以低角度信息为主,背散射电子含量占主导。对样品信息的接收效果取决于探头与样品之间形成的固体角,样品的位置十分关键,存在一个最佳工作距离。各厂家的最佳工作距离各不相同,日立电镜是15mm。下探头位于样品的侧向,图像特性:形貌衬度好,立体感强;荷电影响小;Z衬度好;细节易受信号扩散影响,高倍清晰度不足,10纳米以下细节很难分辨。 /pp style="text-align: justify text-indent: 2em "不同厂家的样品仓探头位置不同,因此最佳工作距离以及探头、电子束、样品之间的夹角都会略有不同。形成的图像在空间感及高分辨能力上存在差异。样品仓真空度也是样品仓探头分辨力的主要影响因素之一。/pp style="text-align: justify text-indent: 2em "日立冷场扫描电镜下探头的成像实例:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/b5917c9d-9e59-41fb-82c6-4c3fd3475cab.jpg" title="12.png" alt="12.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/decfd495-8ec1-490e-b6e8-c6735f4f5ad9.jpg" title="13.png" alt="13.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.4上、下探头的图像特性对比实例/span/pp style="text-align: justify text-indent: 2em "上、下探头结构一致,仅仅由于安装位置不同导致其成像特性也不一样,充分掌握这些差异将有利于你选择正确的测试条件。下面将通过几组对照图来加以阐述:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c911ae27-5aac-4936-a791-5f3f37126870.jpg" title="14.png" alt="14.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/7388deb2-be2f-472d-9c96-52b873fb089c.jpg" title="15.png" alt="15.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/169e28be-1208-4ae4-ace5-96820e80cb8b.jpg" title="16.png" alt="16.png"//pp style="text-align: justify text-indent: 2em "从以上各组对照图可以清晰看到,上探头二次电子信息特征极为强烈,而下探头偏重背散射信息。这些特点使得该两种探头获得的样品信息差异较大,各自都有适合的样品及所表现的样品信息。在各自适用的范围内对方都无可替代。/pp style="text-align: justify text-indent: 2em "根据个人多年的测试经验,下探头获取的样品信息虽然在10纳米细节观察上有所欠缺,但获取的信息更为充分。本着初始图像以信息量是否充分为主的原则,15mm工作距离选用下探头测试,常常被用做扫描电镜测试时的初始条件。以该条件下获取的形貌像为参考,依据样品的信息需求以及对上、下探头成像特性的正确认识,再做进一步调整。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "二、背散射电子探头/span/h1p style="text-align: justify text-indent: 2em "strong2.1背散射电子的图像特性/strong/pp style="text-align: justify text-indent: 2em "高能电子束受样品原子核及核外电子云的库仑势影响,发生弹性和非弹性散射后溢出样品表面,形成样品背散射电子。其特点是:能量大(与入射电子相当),产额受样品原子序数、密度以及晶体材料的晶体结构及晶粒取向影响较大,是形成样品Z衬度和晶粒取向衬度信息的主要信号源。/pp style="text-align: justify text-indent: 2em "背散射电子按信号溢出角分为高角度和低角度两种类型。/pp style="text-align: justify text-indent: 2em "高角度背散射电子的Z衬度更为明显,但整体产额很低,仅在束流较大的场发射扫描电镜上配置了接收该信息的探头。探头位于镜筒中物镜的正上方(或称T),适用样品并不多。扫描电镜日常采集的主要是低角度背散射电子。/pp style="text-align: justify text-indent: 2em "高角度背散射电子相较于低角度背散射电子,Z衬度更为明显,但其产额较低。由于该信息最佳接收位置在样品正上方,探头、样品以及入射电子束在一条线上,故空间形貌较差。低角度背散射电子Z衬度略弱,但产额大,形貌像更好。/pp style="text-align: justify text-indent: 2em "要充分接收低角度背散射电子信息,探头需要与样品形成一定角度。相对于高角度背散射电子,低角度背散射电子形成的图像空间感好,表面形态及细节信息较充分,但Z衬度略差,不如高角度背散射电子明显。以下是分别以二次电子和高、低角度背散射电子为主所形成的形貌像比较。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/cf857ded-2b46-4cfa-b30e-df25d2f6cbcb.jpg" title="17.png" alt="17.png"//pp style="text-align: center text-indent: 0em "strong style="text-align: center text-indent: 0em "碳复合金颗粒的二次电子、高角度背散射电子、低角度背散射电子对照 /strongspan style="text-align: center text-indent: 0em " /span/pp style="text-align: justify text-indent: 2em "strong2.2背散射电子探头的构造及工作原理/strong/pp style="text-align: justify text-indent: 2em "环形半导体背散射电子探头是最经典的背散射电子探头。该探头采用环状硅基材料做成,构造形式是半导体面垒肖特基结二极管或p-n结二极管,如下图:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c6983a61-7f15-42c3-849e-c0b3f78c0f4f.jpg" title="18.png" alt="18.png"//pp style="text-align: center text-indent: 0em "strong图片节选自《微分析物理及其应用》 丁泽军/strong/pp style="text-align: justify text-indent: 2em " 背散射电子在硅基探测器中激发大量的电子-空穴对。同样加速电压下,电子-空穴对的产量和背散射电子强度形成一定的对应关系。并由此形成对应的电信号,经处理后在显示器形成样品的背散射电子图像(Z衬度像或晶粒取向衬度像)。/pp style="text-align: justify text-indent: 2em " 硅基材料形成电子-空穴对,需要信号激发源有一定的能量(肖特基结对5KV以下电子有大增益,P-N结对10KV电子才有大增益),能量较小的二次电子很难在该探头上产生信息,故探头形成的图像带有强烈的背散射电子图像特性。/pp style="text-align: justify text-indent: 2em "为了获取低能量的背散射电子信息,背散射电子探头改用YAG晶体或在探头上做一层薄膜如FEI的CBS,这些改变都对探头获取低能量背散射电子有利,形成的图像细节更丰富。但探头灵敏了,干扰也会增多,Z衬度也会减弱。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/a6b2de85-8984-486a-8940-122ff5311cf1.jpg" title="19.png" alt="19.png"//pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "2.3各种探头接收背散射电子信息的结果对比/span/strong/pp style="text-align: justify text-indent: 2em "传统硅基P- N结背散射电子探头对加速电压的要求高(10KV以上),它获取的背散射电子信息不易受低能量信息的干扰。Z衬度分明,荷电影响极小,但图像的细节呆板,表面细节信息缺失严重,较高倍时图像的清晰度差。/pp style="text-align: justify text-indent: 2em "钨灯丝扫描电镜,电子枪本征亮度差,要获得高质量形貌像所需的电子束发射亮度,加速电压必须在10KV以上。P-N结背散射电子探头正好与其互相匹配,故被广泛使用。/pp style="text-align: justify text-indent: 2em "场发射扫描电镜本征亮度大,低加速电压下进行高分辨形貌像测试是常态,P-N结背散射电子探头与其匹配度差。而CBS和YAG探头的功能和样品仓探头比起来Z衬度优势并不明显,二次电子的接收效果又不如,个人认为完全可以用样品仓探头来完美的替代背散射电子探头。/pp style="text-align: justify text-indent: 2em "如前所述,二次电子探头也能接收大量背散射电子。它所获取的图像性质取决于到达探头的信息组成,如果背散射电子信息居多,它就偏向背散射电子的图像特征,二次电子居多就偏向二次电子图像特征。二次电子探头适合在不同加速电压(几百伏到30KV)下获取背散射电子图像。/pp style="text-align: justify text-indent: 2em "低加速电压有利于取得是浅表层信息;高加速电压有利于取得较深层信息。探头的适用范围越广,测试条件的选择越充分,获取的样品信息越完整。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/de1afe4f-f593-4e4e-88d0-92b7ec8a573e.jpg" title="20.png" alt="20.png"//pp style="text-align: justify text-indent: 2em "背散射探头通过电子-空穴对的转移来传递信息,运行速度较二次电子探头(光电转换)慢很多。在进行聚焦、像散、对中操作时,图像对操作的反应滞后严重,须在慢速下调整。整个操作麻烦,精确的高倍调整更为困难。/pp style="text-align: justify text-indent: 2em "背散射电子探头往往置于样品与物镜之间,推进推出操作麻烦且易引发探头和样品间碰撞,对探头造成损伤。对该位置的占有,也会给后期分析设备安装带来麻烦。随着能谱仪、EBSD性能的突飞猛进,背散射电子探头对成分及结构组成分析的作用大大衰减,且成本不低,信息量少,使用率低。/pp style="text-align: justify text-indent: 2em "个人观点:背散射探头连鸡肋都算不上,基本可以抛弃。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px "strong结束语/strong/span/h1p style="text-align: justify text-indent: 2em "探头是扫描电镜获取样品表面形貌信息的关键部件。其性能高低对形成样品高质量、高分辨的表面形貌像至关重要。/pp style="text-align: justify text-indent: 2em "探头主要有两大类:二次电子探头、背散射电子探头。传统的观点认为:二次电子探头主要用来接收样品的二次电子信息,背散射电子探头接收的是背散射电子信息。/pp style="text-align: justify text-indent: 2em "实践经验告诉我们这个观点并不正确。二次电子探头的图像性质取决于到达探头的信息组成。到达探头的信息以背散射电子信息为主则图像倾向背散射电子图像特性,二次电子信息为主则是二次电子的图像特性。/pp style="text-align: justify text-indent: 2em "高分辨场发射扫描电镜常规设计有两个二次电子探头,分别位于样品仓和镜筒内部。不同位置的探头获取样品表面形貌信息的组成差异很大。镜筒内探头获取的基本都是二次电子信息,样品仓探头则是以背散射电子为主的混合信息。/pp style="text-align: justify text-indent: 2em "改变工作距离对探头获取样品信息的影响极大,工作距离越小越有利于上探头获取样品的二次电子信息,大工作距离有利于样品仓探头获取样品的混合信息。/pp style="text-align: justify text-indent: 2em "工作距离对样品仓探头接收样品信息的影响并不是越大越好,而是有一个最佳工作位置。最佳工作位置设计的越合理,你获取的样品信息也就会越丰富。/pp style="text-align: justify text-indent: 2em "传统的半导体背散射电子探头由于需要较大的激发能,故能量较弱的二次电子很难在探头上产生信号,该探头获取的背散射电子图像较为纯净。早期的硅基P-N结半导体背散射探头激发能要求较高(10KV)所以它形成的图像呆板,细节分辨差,表面信息少,但Z衬度强烈,不易受荷电影响。/pp style="text-align: justify text-indent: 2em "高加速电压对充分获取样品表面信息不利,为了提高探头获取表面信息的能力,出现许多低电压背散射探头(CBS\YAG)。但个人认为:低电压背散射电子探头的成像效果不如样品仓探头来的细腻,设计合理的样品仓探头完全可以替代背散射探头的功能。/pp style="text-align: justify text-indent: 2em "要掌握好仪器设备,对各功能部件的充分认识是基础。希望通过本文,能和大家一起对扫描电镜的信息接收系统有个重新认识。对探头以及工作距离的正确选择必定会为你带来更为丰富的样品信息。span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日 span style="text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月 span style="text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月 span style="text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月 span style="text-indent: 2em "清华大学出版社/span/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍span style="text-indent: 2em " 高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "strong作者简介:/strong/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 115px " src="https://img1.17img.cn/17img/images/202003/uepic/741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" title="扫描电镜的探头新解-林中清.jpg" alt="扫描电镜的探头新解-林中清.jpg" width="75" height="115" border="0" vspace="0"/林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: justify text-indent: 2em "strong/strong/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200218/522167.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)/span/a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) text-decoration: underline "strong/strong/span/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/p
  • 2021年度中国市场电镜新品盘点(18款): 场发射、扫描透射成主流
    经历2020年疫情笼罩,2021年全球电镜市场规模回暖,规模再次以个位数速率增长,作为最大需求单一市场国家,中国则实现20%以上增长。电镜新品发布也迎来活跃一年,发布新品不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年在电镜新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充或邮件(yanglz@instrument.com.cn )。2021年电镜发布新品速览(按发布时间顺序)类型品牌产品名称型号描述SEM蔡司新一代Gemini场发射扫描电镜系列GeminiSEM 360GeminiSEM 460GeminiSEM 560高分辨,不挑样日本电子肖特基场发射电镜JSM-IT800(i)/(is)适用观测半导体器件聚束科技高通量(场发射)扫描电镜Navigator-100B PLUS国产高通量场发射升级款祺跃科技原位高温扫描电镜-国产原位高温日本电子新型扫描电子显微镜JSM-IT510钨灯丝电镜升级飞纳台式场发射扫描电镜Phenom Pharos G2分辨率提至1.8nm日立两款场发射扫描电子显微镜SU8600SU8700聚焦自动获取大量数据功能国仪量子场发射扫描电镜SEM5000国产场发射扫描电镜TEM日本电子新一代冷冻电镜CRYO ARMTM 300II (JEM-3300)速度、操作、通量全面升级赛默飞球差校正透射电镜Spectra Ultra适合电子束敏感材料的球差电镜赛默飞扫描透射电镜Talos F200E为半导体行业设计纳镜鼎新高通量生物扫透电镜智眸365(Smart View 365)国产高通量生物扫描透射电镜聚焦离子束显微镜赛默飞聚焦离子束扫描电子显微镜 (FIB-SEM)Helios 5 PXL Wafer DualBeam聚焦半导体领域其他日本电子超微电子衍射平台Synergy-ED电镜-x射线衍射平台赛默飞定制球差校正电镜Spectra φ定制球差电镜扫描电镜:11款齐发,9款场发射!扫描电镜方面,场发射产品成为新品主流,蔡司和日立分别发布3款、2款场发射电镜,日本电子发布场发射和钨灯丝升级产品,飞纳台式场发射电镜分辨率提升至1.8nm。国产方面,国仪量子也加入场发射产品行列,聚束科技发布高通量场发射升级产品,祺跃科技则基于其原位力学技术,发布原位高温扫描电镜。蔡司|新一代Gemini场发射扫描电镜系列【3款】Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560【发布会专题】 发布时间:3月24日参考价格:300-600万元蔡司此次发布的GeminiSEM 360,GeminiSEM 460,GeminiSEM 560是Gemini电子光学系统针对不同的应用场景衍生出的三款新型号。GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。用户可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给用户极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。日本电子|场发射电镜JSM-IT800半透镜版本(i)/(is)新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接 】 发布时间:8月31日参考价格:200-400万元JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHLs/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。聚束科技|高通量(场发射)扫描电子显微镜 Navigator-100B PLUS高通量(场发射)扫描电子显微镜 Navigator-100B PLUS【 产品链接 】 发布时间:8月参考价格:500-700万元成像速度在同等条件下是同类机型的10倍以上,可在72小时内以4nm 像素完成对10x10 mm2 区域的无遗漏采集。 新机型在硬件部分模组提升较大,配备新型电子枪,电子束落点能量范围可达30keV,涵盖绝大多数扫描电镜落点能量需求范围。分辨率可达1.0nm (15keV下), 且在1-3kV低加速电压下即可获得1.5nm高分辨率的同时,仍能保持1‰以下的低图像畸变。具备高度智能化,包括简单快捷全景光学导航、一键全自动换样、全景光学导航、实时聚焦追踪,可以实现全自动超大区域(100mm×100mm)全息地图集式拍摄,并绘制成全景地图式信息浏览。祺跃科技|原位高温扫描电镜祺跃科技原位高温扫描电镜新品【发布详情】 发布时间:10月14日新开发的扫描电镜设计理念包括样品室空间从紧凑到合理,样品台承载能力较大、成像探测器承温能力提升、保证高真空足够的抽气能力等,达到追求时序信息的目标。本次新品实现整机国产化的核心部件包括高温二次电子探测器、三维移动平台与大载荷拉伸平台、1400度原位加热器、超大结构样品腔室和超高真空系统等。保障电镜极端环境长时间稳定运行的相关模块包括冷阱、等离子清洗、极靴屏蔽、红外测温等。同时兼容EDX和EBSD等,还预留设置了多种通讯接口,为今后拓展更多原位技术留有余地。 日本电子|钨灯丝扫描电镜升级产品JSM-IT510钨灯丝扫描电子显微镜JSM-IT510【产品链接】 发布时间:11月8日参考价格:130-200万元为了满足基础研究、工业现场对更快获取结果数据等, JSM-IT510系列进一步提升了InTouchScope™ 的可操作性。借助新增的Simple SEM功能,现在可以将日常工作 “交给”仪器。主要特点包括:新型“Simple SEM”功能、最新型低真空二次电子探头 (LHSED)、 扫描电镜图像和能谱的一体化、实时立体三维图像、实时分析功能、新的导航放大功能、0 倍放大、显示X射线产生区域、SMILE VIEW™ Lab管理软件等。飞纳|第二代肖特基场发射台式扫描电镜Phenom Pharos G2飞纳台式场发射扫描电镜 Phenom Pharos G2【 产品链接 】 发布时间:11月24日参考价格:200-300万元Phenom Pharos G2, 集背散射电子成像、二次电子成像和能谱分析功能于一体。高亮度肖特基场发射电子源,使用户可以轻松获得高分辨率图像,且低电压性能优异。Pharos G2分辨率提升至1.8nm,采用热场发射电子源,信噪比高,使用寿命长,保证长期稳定的性能。飞纳台式场发射扫描电镜能谱一体机标配背散射电子成像、二次电子电子成像和能谱分析功能,可对各种样品进行高分辨成像及元素分析。日立|全新场发射扫描电镜SU8600和SU8700全新冷场发射扫描电镜SU8600(左)和热场发射扫描电镜SU8700(右)【发布会专题】 发布时间:12月9日全新一代冷场发射扫描电镜SU8600不光保留了日立传统冷场电镜的优点,还采用了新型冷场电子枪,可选择更多种类的探测器,而且具有全新的自动数据获取功能,这些技术的加入使得SU8600的成像、分析能力以及自动化性能都有了质的飞跃。具体特点包括:强大自动化功能、成熟的电子光学系统、强大的图像显示和存储、简便的操作等。全新一代热场发射扫描电镜SU8700是一款集高分辨观察、高效率分析、自动化操作等特点于一身的扫描电镜。全新的自动数据获取功能,电子光学系统,多探头检测系统等技术的加入使得SU8700的成像和分析能力有了质的飞跃。具体特点包括:强大的自动化功能、全新的电子光学系统、高效的分析能力、丰富的样品适用性、简便的操作等。国仪量子|场发射扫描电子显微镜SEM5000场发射扫描电镜SEM5000【 发布信息 】 参考价格:200-300万元新品场发射扫描电子显微镜SEM5000,是一款高分辨的多功能扫描电镜,分辨率优于1 nm,放大倍数超过一百万倍。SEM5000的新型镜筒,优化了电子光路设计,采用高压隧道技术,在高电压和低电压下均能实现高质量成像;系统配置了无漏磁物镜,实现了无漏磁高分辨成像,适用于磁性样品分析;可选配多种探测器及其它分析仪器,能够满足用户的各种需求。将广泛应用于锂电池材料、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物等领域。透射电镜:冷冻电镜、球差电镜,国产扫描透射透射电镜方面,面向高端市场的扫描透射电镜成为新品主流。日本电子新一代冷冻电镜JEM-3300年初上市。赛默飞球差电镜新品Spectra Ultra、扫描透射电镜新品Talos F200E更加关注半导体领域。国产方面,基于生物到实验室和生物物理所合作,针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView发布。日本电子|新型冷冻电镜JEM-3300新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)【 产品链接 】 发布时间:1月22日参考价格:3000-5000万元JEM-3300新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。与之前的CRYO ARM™ 300相比,JEM-3300可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点:通过最佳电子束控制实现高速成像,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,JEM-3300吞吐量相比上一代提升两倍或更高;提高了高质量图像采集的硬件稳定性,配备了一种新型冷场发射枪(cold FEG)、新的柱内 Omega 能量过滤器;系统升级后可操作性更高等。赛默飞| 球差校正透射电镜Spectra Ultra 新一代扫描透射电镜Spectra Ultra S/TEM【产品详情】 发布时间:3月3日参考价格:2500-5000万元全新Spectra Ultra在数分钟内即可灵活优化高级成像和分析条件。出于加快材料研究进程以及高通量需求,用户现在可以以非常快的速度稳定地调节加速电压。这极大扩展了研究的样品范围,最大程度地减少了电子束损伤,并显著降低了工具的优化耗时。“配置了Ultra-X的Spectra Ultra改变了材料科学研究人员和半导体从业者的游戏规则。它可以通过迅速施加不同的加速电压来显著减少电子束损伤,并且用户将能够检测极低浓度的轻元素。”赛默飞世尔材料科学副总裁Rosy Lee表示,“此外,与其他商业化解决方案相比,用户可以以更高的分辨率快速成像快速分析,以研究新材料和改进现有材料。”赛默飞| Talos F200E扫描透射电镜Talos F200E扫描透射电镜发布时间:3月17日参考价格:600-1500万元Talos F200E (S)TEM提供原子级分辨率成像、快速EDS)分析和增强的数据可靠性,专为满足半导体行业日益增长的需求而设计。且具有成本效益,易用性高,帮助半导体实验室实现快速的样品表征,加快可以量产的速度,提高制程良率。“随着创新的步伐不断加快,半导体企业要求其分析实验室加快周转时间,并在各种设备和工艺技术上提供更可靠和可复现的(S)TEM数据,以支持他们的业务,”赛默飞半导体事业部副总裁Glyn Davies表示,“Talos F200E通过提供高质量的图像数据、快速的化学分析和行业领先的缺陷表征等特质,可以为客户提供高性价比、易用的解决方案。”纳镜鼎新|高通量生物扫描透射电子显微镜SmartView高通量生物扫透电子显微镜智眸365(Smart View 365)【产品详情】 发布时间:7月28日智眸365(Smart View 365)以其高通量、全自动、超高清图像的优越特性在降低人员工作强度的同时为专家分析和诊断病理提供更多的信息,有效提高诊断的效率与正确率。满足专业用户对超微病理诊断的需求。主要特点包括:高通量高效率,插入病理切片样品仓,选定工作模式,一次性自动连续完成多至500个样品成像等;高分辨,分辨率高达0.9nm STEM图像;高稳定运行,长寿命、超稳定的场发射电子源;使用简单等。聚焦离子束显微镜赛默飞|Helios 5 EXL晶圆聚焦离子束扫描电子显微镜Helios 5 EXL晶圆聚焦离子束扫描电子显微镜【产品详情】 发布时间:4月21日参考价格:700-1500万元Helios 5 EXL旨在满足半导体厂商随着规模化经营而不断增加的样品量以及相应的分析需求。这款产品拥有的机器学习和先进的自动化能力,可提供精确的样品制备,以支持5纳米以下节点技术和全环绕栅极半导体制程以及良率提高。赛默飞半导体事业部副总裁Glyn Davies 表示:“半导体实验室正面临着巨大的压力,在不增加成本的情况下,他们需要更快地提供TEM分析数据,以支持制程监控并提升学习曲线,Helios 5 EXL可以通过可扩展的、可复现的和高精度的TEM样品制备来应对这一挑战。”其他新品:扩展技术与定制产品日本电子|超微电子衍射平台Synergy-ED超微电子衍射平台Synergy-ED发布时间:5月31日日本电子与Rigaku公司联合开发出Synergy-ED,一个超微电子衍射平台(ED),通过将日本理学的结构分析技术和设备(如其高灵敏度检测器)与日本电子的透射电子显微镜相结合,将两者的核心技术结合起来,希望新品的技术能够应用于材料研究、化学和药物开发等领域,并为利用电子衍射进行单晶结构分析提供新的解决方案。在以前困难的亚微米范围内,结构分析成为可能。赛默飞|定制球差校正电镜Spectra φ定制的高分辨率扫描透射电子显微镜Spectra φ发布时间:5月20日定制的高分辨率扫描透射电镜Spectra φ,用以支持莫纳什大学在先进材料方面的研究。该仪器安装在澳大利亚莫纳什电子显微镜中心(MCEM)。Spectra φ提供增强的电子束灵活性,以优化复杂材料系统的高速多维成像。Spectra φ 的设计和制造符合由MCEM 和澳大利亚科学院院士Joanne Etheridge教授领导的团队的规格。通过将 Spectra φ 纳入其仪器阵容,莫纳什大学将继续推动对重要能源相关的开创性研究,包括高效光伏设备、电池、材料轻量化、低功耗电子产品和清洁发电等。

扫描测头相关的方案

扫描测头相关的资料

扫描测头相关的论坛

  • 【求助】请问Tapping Mode下J头扫描时的参数问题?

    刚换了个J头(125um),带加热的,Tapping模式下测形貌,测样的时候不稳定,尤其是z center position飘的比较厉害,跳线也比较严重,不知道怎么回事,请各位指点。有没有可能是头子有问题了?再请各位大虾指点,J头扫描的时候扫描频率的一般范围是多少?还有下针时scan size, rate, I gain, P gain 的初始值调到多少,和其他头子一样么?大头扫描应注意些什么问题?谢谢!

  • 【讨论】透射电镜底片扫描用什么扫描仪?

    电镜比较古老,全手工冲洗底片和照片很费时费力。有用底片扫描仪来扫描底片的吗?什么型号?效果如何?市面上的扫描仪大多只能扫描120的底片,透射电镜的底片太大扫不了。

  • 【原创】扫描电镜样品上方的探头是什么?

    做扫描电镜时,样品室里在样品正上方的那个东西是什么,是探头吗?有没有图片可以让俺们看看,是啥材料做的?为什么做扫描时要保证样品表面和它正上方的那个东西有一个距离,这个距离怎么定?要是不断缩小这个距离会有什么结果?刚入门,请多指教。

扫描测头相关的耗材

  • 布鲁克 热学/电学/磁学/光学 配件,Dimension 扫描头
    Veeco D3100 Dimension Head ( AFM Scanner )Veeco D3100 扫描头 ( AFM Scanner ) 扫描范围:90um*90umDimension 3100 SPM使用自动化的原子力显微镜和扫描隧道显微镜技术,可用来测量直径可达200毫米的半导体硅片、刻蚀掩膜、磁介质、CD/DVD、生物材料、光学材料和其它样品的表面特性。它的激光点定位系统和无需工具改变扫描技术的能力保证了仪器的适用性、易操作性和高的数据处理能力。
  • Artixscan 2500/胶片扫描仪/底片扫描仪
    胶片扫描仪用于各种底片的专业扫描仪。它是一部整合了E.D.I.T.专利技术及超高解析度/双镜头的技术的全新机种,它具备真实 42 位元的影像捕捉能力, 更有 1250dpi 及 2500dpi 超高之光学解析度, 8" x 14" 的大 A4 扫描面积, 比一般扫描仪足足多了 23% 的扫描范围;更具有高速的 SCSI II与IEEE-1394 传输界面, 不但扫的好同时扫的快。
  • 扫描电镜探测器配件
    扫描电镜探测器配件是全球领先的BSE探测器或背散射电子探测器,为扫描电子显微镜提供最佳的信噪比和超高的分辨率,是SEM探测器中的最新产品。扫描电镜探测器配件特点适合全球所有的商用扫描电镜,采用独立设计理念,具有标准的安装法兰接口,非常方便用户的安装和使用采用YAG:Ce单晶闪烁体采用闪烁晶体和光电倍增管,提供极佳的图像质量全球最佳的超低能量镀膜技术,灵敏度可到0.5Kev优异的信噪比无限的探测器寿命HV+LV+ESEM工作模式电动可回缩高精密导臂波纹管密封高真空系统完全用户订制化的SEM连接系统扫描电镜探测器配件性能YAG:Ce闪烁体探测器提供最佳效率和最小余光afterglow, decay time 衰减时间为75ns @30光子/KevYAG:Ce闪烁探测器外径15mm ,内孔6mm, 4mm, 2mm 或1.2mm任选,它限制视场大小。独特的技术确保0.5keV的超高灵敏度,高达1pA电子束外部尺寸406x100x72mm适合真空环境使用0.01mm的重复精度适合所有SEM的法兰接口部分测量结果案例
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制