当前位置: 仪器信息网 > 行业主题 > >

薄膜开关

仪器信息网薄膜开关专题为您提供2024年最新薄膜开关价格报价、厂家品牌的相关信息, 包括薄膜开关参数、型号等,不管是国产,还是进口品牌的薄膜开关您都可以在这里找到。 除此之外,仪器信息网还免费为您整合薄膜开关相关的耗材配件、试剂标物,还有薄膜开关相关的最新资讯、资料,以及薄膜开关相关的解决方案。

薄膜开关相关的资讯

  • 行业解决方案 | 布劳恩赋能钙钛矿薄膜制备
    钙钛矿(Perovskite)是具有特定晶体结构的材料,晶体结构中可以嵌入许多不同的阳离子,从而可以开发多种工程材料。在过去几年中,这种材料已被广泛用于钙钛矿太阳能电池(PSC)的研发。钙钛矿太阳能电池是一类以金属卤化物钙钛矿材料作为吸光层的太阳能电池。作为第三代新型太阳能电池,在过去的几年里发展极为迅速。单节钙钛矿太阳能电池的转换效率已经从 2009年的3.8%上升到2023年的26.1%。钙钛矿/晶硅叠层太阳能电池转换效率已达到33.7%,超过了单节晶硅太阳能电池所达到的最高转换效率。相比于晶硅电池,钙钛矿电池具有原料成本低、生产工艺简单,极限转换效率高、高柔性等优势,可以应用于光伏发电、LED等领域,发展前景广阔。作为光伏行业的重要参与者,MBRAUN在钙钛矿薄膜制备应用方面具备丰富的研发和产业经验。可结合客户需求,为客户提供从研发、中试到量产级别的设备,系统和半自动/自动化整体解决方案。以下是MBRAUN部分相关产品概览:01物理气相沉积钙钛矿材料具有蒸发温度低,腐蚀性强,难以共蒸等特点,从而影响工艺的可重复性和稳定性。MBRAUN专门设计了拥有专利技术的真空镀膜系统用于蒸镀低沸点钙钛矿材料。该系统的核心理念是对整个系统进行温度控制,以防止出现沉积后的二次蒸发现象。所有部件均均采用耐腐蚀材料和易于清洁维护的特殊设计,特别适用于具有腐蚀性和毒性的钙钛矿材料。目前该系统已被多个知名学府和研究机构应用,2022年12月,德国HZB使用PEROvap蒸镀系统制备的钙钛矿/晶硅叠层太阳能电池的转换效率达到32.5%。02旋涂在实验室级别的钙钛矿研究中,旋涂法是最被广泛应用的一种方法。尽管这种方法材料利用率很低,且随着基底面积增大,中心和其辐射边缘成膜不再均匀,但是对于优化薄膜厚度,研究钙钛矿结晶及其分解机理有极大的方便之处。MBRAUN提供的旋涂设备具有可编程功能,能够编辑储存包括速度、加速度和旋涂时间在内的多个参数,方便用户灵活地开展前沿研究,尤其是研究对空气敏感的材料。同时可提供各种可选配件,如半自动注液系统、脚踏开关和内衬(便于清洁)等。全系列标准的和定制的真空吸盘,带有快速更换装置,使旋涂功能变得更加全面完善。03狭缝涂布狭缝涂布机的设备造价显著低于真空镀膜设备,却可以达到很高的材料利用率(高达95%)。狭缝涂布技术广泛应用于许多前沿高科技领域,可以将液体材料涂布到刚性或柔性基板上以制备功能膜层。特别是在大尺寸大容量薄膜太阳能电池的生产制造上,狭缝涂布技术不断获得业界关注并被普遍认为具备产业化潜力。在狭缝涂布技术应用中应特别注意环境中粉尘对涂布工艺的影响。在不合格的无尘环境下进行狭缝涂布工艺,纳米级薄膜(干膜厚度)将被完全破坏。为了避免这个问题,MBRAUN开发了小型洁净系统,可以在惰性气体环境下运行,并在该环境内同时实现ISO1的洁净等级。04热板湿法制膜设备需要经过良好的固化后才能形成均匀的薄膜,以制备高效率的器件。热板是MBRAUN工艺设备系列中的最新设计之一,用于在可控条件下固化在刚性基片上沉积的有机薄膜。具有非常好的温度均匀性、温控精度、工艺稳定性、可重复性,以及高度的灵活性,应用范围覆盖基础研究到复杂的制造工艺。05自动化当用户开始关注如何消除人为失误、增加产能以及提高工艺重复性和稳定性时,就一定会需要自动化解决方案。MBRAUN作为钙钛矿电池领域的整体方案头部厂商,在超净生产环境管控(无水、无氧、无尘),自动化物流,工艺生产和检测设备集成整合,生产安全管理,生产信息记录等领域具备丰富的技术和经验储备。多年来,MBRAUN设计并交付了一系列从半自动化到全自动化范围的高度集成的系统,为客户量身定制解决方案,充分满足客户的每个特定需求,在行业内获得高度好评。如果您有相关需求,欢迎致电布劳恩!
  • 氨氮测定仪6大技术特点
    p1、a title="" target="_blank" href="http://www.instrument.com.cn/zc/320.html"氨氮测定仪/a采用国家标准:水杨酸比色法完成水质氨氮测量,采用国际标准所规范的二氯异三氰酸钠,取代常用次氯酸 钠,使试剂溶液含氯稳定性和有效性大大增强(B型)。   /pp2、氨氮测定仪可进行标准比色曲线的制作、贮存,并或根据不同水体对象进行水质氨氮比色曲线调整。   /pp3、氨氮测定仪采用独特光路比色系统,使仪器可靠、稳定性有较大的提高。   /pp4、独特的样品处理方式,在分析结果准确的前提下,缩短分析时间(B型)。   /pp技术指标/pp1、测量范围:氨氮浓度0.01mg/L~1.0mg/L直接测量 大于1.0mg/L的水质稀释测量。   /pp2、氨氮测定仪准确度:氨氮浓度为0.01mg/L~0.1mg/L,绝对误差≤± 0.01mg/L;氨氮浓度为 0.1mg/L~1.0mg/L,相对误差≤± 10%。  /pp3、氨氮测定仪重复性误差:氨氮浓度为0.01mg/L~0.1mg/L标准偏差S≤0.01mg/L;氨氮浓度为 0.1mg/L~1.0mg/L相对标准偏差Cv≤8%   /pp4、分析时间:不大于30min。/pp5、数据输入:薄膜开关键盘。  /pp6、数据输出:LCD显示,打印机打印。/ppbr//p
  • 兰光发布C630H薄膜热封仪 实验室热封仪新品
    热封材料的熔点、热稳定性、流动性及厚度不同,会表现出不同的热封性能,其封口工艺参数可能差别很大。C630H薄膜热封仪 实验室热封仪,可准确高效的测定塑料薄膜基材、软包装复合膜、涂布纸及其它热封复合膜的热封时间、热封压力,热封温度合适的性能参数。产品特点:1、创新的机构改良,精度全面升级:上下十个封头均为金属表面,可获取更真实的热封参数数字P.I.D控温技术可快速达到设定温度,有效避免温度波动自动恒压技术,无需手动调节,热封压力更稳定封头自动调平技术,保证各封头热封效果一致宽范围温度、压力和时间控制,满足用户的各种试验条件2、卓越的细节设计,高效安全:设备可一次完成五组热封试验,准确、高效的获得试样热封性能参数上下热封头均可独立控温,为用户提供了更多的试验条件组合分体式热封头,方便快速更换热封面手动和脚踏两种试验启动模式以及防烫伤安全设计,保证使用方便和安全3、高端嵌入式计算机系统平台,安全易用:大尺寸触控平板,视图清晰、 触控灵敏、易于操作全新软件系统,流程精练,操控流畅,简单易学支持成组试验数据比对分析,具有多单位转换功能内嵌USB接口和网口,方便系统的外部接入和数据传输符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的数据安全性设计,测试数据与电脑分离,避免由计算机病毒等引起的系统故障造成数据丢失兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选)参照标准:ASTM F2029、QB/T 2358、YBB 00122003测试应用:基础应用:薄膜材料光滑平面——适用于各种塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔、铝箔复合膜等膜状材料的热封试验,热封面为光滑平面,可以同时进行五种温度的热封,热封宽度可以根据用户的需求进行设计。薄膜材料花纹平面——适用于各种塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔、铝箔复合膜等膜状材料的热封试验,可以同时进行五种温度的热封,热封面可以根据用户的需求进行设计。扩展应用:塑料软管——把塑料软管的管尾放在上下封头之间,对管尾进行热封,使塑料软管成为一个包装容器。C630H薄膜热封仪 实验室热封仪技术参数:热封温度:室温~300℃热封压力:0.05MPa~0.7 MPa 压力分辨率:0.001 MPa 热封时间:0.1~999.99s时间分辨率:0.01s温度分辨率:0.1℃温度波动:±0.2℃温度准确度:±0.5℃(单点校准)温度梯度:≤20℃气源:空气(气源用户自备)气源压力:0.7 MPa 气源接口:Ф8 mm聚氨酯管热封面:40 mm × 10 mm封头数量:5组(上下共10个均可独立控温)外形尺寸:375mm(L) × 360mm(W) × 518mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:55kg 产品配置:标准配置:主机、平板电脑、脚踏开关、高温焊布、取样刀、Ф8mm聚氨酯管(2m)选购:高温焊布、空压机、GMP计算机系统要求、DataShieldTM数据盾备注:本机气源接口系Ф8mm聚氨酯管;气源用户自备创新点:1、创新的机构改良,精度全面升级;2、卓越的细节设计,高效安全;3、高端嵌入式计算机系统平台,安全易用;C630H薄膜热封仪 实验室热封仪
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3 极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2 光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 化学所等发展直写高性能原子级厚二维半导体薄膜新策略
    二维(2D)半导体材料为将摩尔定律扩展到原子尺度提供了机会。与传统基于蒸镀和光刻技术的加工技术相比,印刷电子因成本效益、灵活性以及与不同衬底的兼容性而受到关注。目前,印刷的二维晶体管受到性能不理想、半导体层较厚和器件密度低的制约。同时,多数二维材料油墨通常使用高沸点溶剂,随之而来的问题包括器件性能退化、高材料成本和毒害性等,难以大规模应用。因此,发展简单且环保的策略对于制造低成本、大规模的打印二维材料功能器件具有重要意义。   中国科学院化学研究所绿色印刷院重点实验室宋延林课题组在二维原子级厚材料合成和图案化器件方面取得了系列进展,例如,二维MXene与纳米晶复合材料研究(J. Mater. Chem. 2022, 10, 14674-14691;Nano Res. 2022,DOI:10.1007/s12274-022-4667-x)、基于交替堆叠微电极的湿度传感微型超级电容器(Energy Environ. Mater. 2022,DOI:10.1002/eem2.12546)。   近日,化学所与清华大学、美国加州大学合作,提出了一种界面捕获效应打印策略。该策略使用低沸点水性超分散二维材料油墨,直写打印二维半导体薄膜阵列,无需添加额外表面活性剂,具体而言,通过对剥离的半导体2H-MoS2纳米片进行分级离心,获得了主要为双层厚度的窄分布纳米片;通过建立表面张力和组分比的三溶剂相图,确定了合适的油墨溶剂。印刷超薄图案(约3nm厚度)主要以单层或两层的MoS2纳米片连续均匀排列,并抑制了咖啡环,空隙率较低(约4.9%)。研究使用商用石墨烯作为电极,制备的晶体管在室温下显示出6.7 cm2V-1s-1的迁移率和2×106的开关比,超过了此前印刷MoS2薄膜晶体管的性能。基于此,科研人员制备了高密度(约47000个/cm2)印刷晶体管阵列。该界面捕获效应打印策略可应用于其他2D材料,包括NbSe2、Bi2Se3和黑磷,为印刷二维材料电子器件提供了新方法和新思路。   相关研究成果发表在Advanced Materials(DOI:10.1002/adma.202207392)上。研究工作得到国家自然科学基金、科技部、中科院、北京市科学技术协会及北京市自然科学基金的支持。界面捕获效应和超分散2D纳米片墨水打印原子级厚半导体薄膜器件
  • 新材料领域:物联无线微功耗电容感应触摸开关
    研究人员利用新型印刷技术制备了平面型薄膜电容感应芯片,并基于迷你单片机及低功耗蓝牙无线通讯技术,开发了一种低成本的新型物联无线微功耗电容感应触摸开关技术,其可以实现远程无线触摸控制开关,无须与墙面接触,使用十分方便, 本产品应用广泛,除了常见的智能家居系统,还可以在智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用。主要技术指标(或参数):   1、功耗:50-100mW;   2、最大无线操作距离:100m;   3、无线通讯设备类型:蓝牙;   4、使用寿命:大于10万次;   5、工作温度:-10℃~60℃;   6、工作湿度: 10~95%RH;   7、符合人体工学设计;   8、外观精致时尚;   9、安装方便。   应用领域:   智能家居、智能建筑、智能医院、智慧旅店、智慧养殖等系统中使用的远程无线触摸控制开关。   市场前景:   现代生活需要人性化的电工开关产品。电工开关是每个人每天都要亲密接触的,操控次数远超过其它电器。传统的机械式电工开关,从发明灯泡到现在一直都在使用,它满足了人们的基本控制需求。然而在各种智能电子设备早已实现了触摸操控功能的今天,传统机械式操控的墙壁电工开关已经远远落后时代的需求。   此外,电工开关企业竞争需要产品升级换代。当前,电工企业处在一个转型期,低端产品已经无利可图。据有关部门统计,目前国内生产传统开关(插座)的电工企业大约有2800余家,具备生产许可资格的约有1500余家。加上西蒙电气、罗格朗等一大批外资企业凭借资本、技术、品牌等优势纷纷抢滩中国,国内电工市场竞争空前激烈。目前主要集中在品牌、价格、外观、材质上恶性竞争,传统开关(插座)利润的赢利空间大幅度下滑。业内人士普遍认为,相对于几年前,现有各类开关(插座)产品利润下降了10%-18%,产品为微利经营状态。所以,整个电工行业需要提升产品档次,企业需要新的经济增长点。   拟转化的方式(或合作模式):   可采用研究所与企业通过成果转让或技术入股等方式,共同推进该成果的产业化。   相关图片:
  • ETT-01电子拉力试验机除了可以测试薄膜的拉伸强度还能测试薄膜的哪些性能
    在当今这个科技日新月异的时代,薄膜材料因其优良的物理和化学特性,在包装、医疗、电子等众多领域得到了广泛应用。然而,如何准确评估薄膜的各项性能,确保其在各种应用场景下的可靠性,成为了摆在科研人员和生产企业面前的重要课题。幸运的是,ETT-01电子拉力试验机的出现,为薄膜性能的全面检测提供了强大的支持。ETT-01电子拉力试验机,作为一款专业的力学性能测试设备,不仅可以测试薄膜的拉伸强度,更能深入探索薄膜的剥离强度、断裂伸长率、热封强度、穿刺力等多项关键性能。这些性能参数对于评估薄膜的耐用性、密封性以及在实际应用中的表现至关重要。首先,剥离强度是衡量薄膜材料间粘附力的重要指标。通过ETT-01的精确测试,我们可以了解到薄膜与不同材料之间的粘附性能,为产品设计和生产工艺提供有力依据。其次,断裂伸长率是反映薄膜材料在受到外力作用时变形能力的关键参数。ETT-01能够准确测量薄膜在拉伸过程中的伸长率,帮助我们判断薄膜的柔韧性和抗拉伸能力。此外,热封强度也是薄膜性能中不可忽视的一环。ETT-01电子拉力试验机能够模拟薄膜在实际应用中的热封过程,测量热封后的强度,确保薄膜在包装、密封等应用场景下具有良好的密封性能。值得一提的是,ETT-01电子拉力试验机还具备测试薄膜穿刺力的功能。通过模拟实际使用中可能出现的穿刺情况,我们可以评估薄膜的抗穿刺能力,为产品设计和质量控制提供重要参考。除了以上提到的性能参数外,ETT-01电子拉力试验机还能测试薄膜的压缩、折断力等多项性能,实现对薄膜性能的全面解析。这一功能的实现,得益于ETT-01的高精度测试系统和先进的位移控制技术。通过这些技术手段,ETT-01能够确保测试结果的准确性和重复性,为用户提供可靠的数据支持。在实际应用中,ETT-01电子拉力试验机已经成为了众多薄膜材料生产企业、科研机构以及质检部门的得力助手。它不仅能够帮助用户全面了解薄膜的各项性能参数,还能为产品设计和生产工艺提供改进方向,推动薄膜材料行业的持续发展和创新。总之,ETT-01电子拉力试验机以其全面的测试功能和精准的测试结果,成为了薄膜性能全面解析的利器。它不仅能够满足科研人员和生产企业对薄膜性能评估的需求,还能为产品的质量控制和工艺改进提供有力支持。在未来的发展中,我们有理由相信,ETT-01电子拉力试验机将继续在薄膜材料性能测试领域发挥重要作用,为行业的进步和发展贡献力量。
  • “曼”谈光谱 | 熟悉又陌生的金刚石薄膜
    一提到金刚石这个词想必大家都不陌生了,今天要说的也是金刚石家族的一个成员——金刚石薄膜。什么是金刚石薄膜?金刚石薄膜是20世纪80年代中后期迅速发展的一种优良的人工制备材料。通常以甲烷、乙炔等碳氢化合物为原料,用热灯丝裂解、微波等离子体气相淀积、电子束离子束轰击镀膜等技术,在硅、碳化硅、碳化钨、氧化铝、石英、玻璃、钼、钨、钽等各种基板上反应生长而成。几乎透明的金刚石薄膜(图片来源:网络)集诸多优点于一身的金刚石薄膜,它不仅具有金刚石的硬度,还有良好的导热性、良好的从紫外到红外的光学透明性以及高度的化学稳定性。在半导体、光学、航天航空工业和大规模集成电路等领域拥有广泛的应用前景。至今为止,已在硬质切削刀具、X射线窗口材料、贵重软质物质保护涂层等应用中具有出色的表现。随着金刚石薄膜的研发需求和生产规模不断壮大,是否有一套可靠的表征方法呢?当然有!拉曼光谱用于碳材料的分析已有四十多年,时至今日也形成了很多比较完善的理论。对于不同形式的碳材料,如金刚石、石墨、富勒烯等,其拉曼光谱具有明显的特征谱线差异。此外,拉曼光谱测试是非破坏性的,对样品没有太多要求,不需要前处理过程,可以直接检测片状、固体、微粉、薄膜等各种形态的样品。金刚石薄膜的应力值是非常重要的质量指标。金刚石薄膜和基体之间热膨胀的差异以及其他效应(如点阵错配、晶粒边界的成键和薄膜生长过程中的成键变化等)导致了生长后的薄膜存在残余应力。典型可见光激光激发的拉曼光谱在1000-2000cm-1包含了金刚石薄膜的应力信息。对于较小的应力,拉曼谱图表现为偏离本征频率的一个单峰,并且谱峰会变宽。在高达140GPa的压力下,拉曼位移甚至能够偏移到1650cm-1,与此同时线宽增加了2cm-1。下图是安东帕Cora5001拉曼光谱仪检测的一张典型的非有意掺杂的金刚石薄膜的拉曼谱图。图中可以发现,除了位于1332cm-1的一阶拉曼谱线以外,也能够观测到其他很多拉曼谱峰,典型谱峰的位置和指认如表1中所示。Cora 5001系列拉曼光谱仪在金刚石材料的检测中具备很大优势:碳材料分析模式:智能分析软件中的Carbon Analysis Model可以自动进行寻峰、进行峰形拟合,再计算碳材料特征拉曼峰的信息。一级激光:金刚石材料的拉曼检测多使用532nm激发,有时也需要使用785nm激光激发,Cora5001可以做到一级激光的安全性能。自动聚焦:Cora5001 (Direct)样品仓室内配置了自动聚焦调整样品台,根据仪器自带的聚焦算法可以轻松实现聚焦,使拉曼测试变得简单便捷。双波长可选:金刚石家族的拉曼光谱与入射激光波长密切相关,多一种波长选择也许会得到不同的信息,这为信息互补提供必要条件。“双波长拉曼”每个波长都配置独立的光谱系统,只需按一下按键即可从一个波长轻松切换到另一个波长,无需额外调整样品。
  • 纳米薄膜材料制备技术新进展!——牛津大学也在用的薄膜沉积系统,有什么独特之处?
    一、纳米颗粒膜制备日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。集成了纳米颗粒源的MiniLab125磁控溅射系统 传统薄膜材料的研究专注于制备表面平整、质地致密、晶格缺陷少的薄膜,很多时候更是需要制备沿衬底外延生长的薄膜。然而随着研究的深入,不同的应用方向对薄膜的需求是截然不同。在表面催化、过滤等研究方向,需要超大比表面积的纳米薄膜。在这种情况下,纳米颗粒膜具有不可比拟的优势。而传统的磁控溅射在制备纯颗粒膜方面对于粒径尺寸,颗粒均匀性方面无法实现控制。气相沉积法、电弧放电法、水热合成法等在适用性、操作便捷性、与传统样品处理的兼容性等方面不友好。在此情况下,Moorfield Nanotechnology推出了与传统磁控溅射和真空设备兼容的纳米颗粒制备系统。不同条件制备的颗粒粒径分布(厂家测试数据)不同颗粒密度样品(厂家测试数据)纳米颗粒制备技术特点:▪ 纳米颗粒的大小1 nm-20 nm可调;▪ 多可达3重金属,可共沉积,可制备纯/合金颗粒;▪ 材料范围广泛,包括Au、Ag、Cu、Pt、Ir、Ni、Ti、Zr等▪ 拥有通过控制气氛制造复合纳米粒子的可能性(类似于反应溅射)▪ 的纳米颗粒层厚度控制,从亚单层到三维纳米孔▪ 纳米颗粒结构——结晶或非晶、形状可控纳米颗粒膜的应用方向:▪ 生命科学和纳米医学: 癌症治疗、药物传输、抗菌、抗病毒、生物膜▪ 石墨烯研究方向:电子器件、能源、复合材料、传感器▪ 光电研究:光伏研究、光子俘获、表面增强拉曼▪ 催化:燃料电池、光催化、电化学、水/空气净化▪ 传感器:生物传感器、光学传感器、电学传感器、电化学传感器 二、无机无铅光伏材料下一代太阳能电池的大部分研究都与铅-卤化物钙钛矿混合材料有关。然而,人们正不断努力寻找具有类似或更好特性的替代化合物,想要消除铅对环境的影响,而迄今为止,这种化合物一直难以获得。因此寻找具有适当带隙范围的无铅材料是很重要的,如果将它们结合起来,就可以利用太阳光谱的不同波长进行发电。这将是提高未来太阳能电池效率降低成本的关键。近期,牛津大学的光电与光伏器件研究组的Henry Snaith教授与Benjamin Putland博士研究了具有A2BB’X6双钙钛矿结构的新型无机无铅光伏材料。经过计算该材料具有2 eV的带隙,可用做光伏电池的层吸光材料与传统Si基光伏材料很好的结合,使光电转换效率达到30%。与有机钙钛矿材料相比,无机钙钛矿材料具有结构稳定使用寿命更长的优势。而这种新材料的制备存在一个问题,由于前驱体组分的不溶性和复杂的结晶过程容易导致非目标性的晶体生长,因此难以通过传统的水溶液法制备均匀的薄膜。Benjamin Putland博士采用真空蒸发使这些问题得以解决。使用Moorfield Nanotechnology的高质量金属\有机物热蒸发系统,通过真空蒸发三种不同的前驱体,研究人员成功沉积制备出了所需要的薄膜。真空蒸发具有较高的控制水平和可扩展性,使得材料的工业化制备成为可能。所制备的薄膜在150℃退火后,XRD图。所制备的薄膜在150℃退火后,表面SEM图 三、Moorfield 薄膜制备与加工系统简介Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立二十多年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。高精度薄膜制备与加工系统 – MiniLab旗舰系列和nanoPVD台式系列是英国Moorfield Nanotechnology公司经过多年技术积累与改进的结晶。产品的定位是配置灵活、模块化设计的PVD系统,可用于高质量的科学研究和中试生产。设备的功能和特点:▪ 蒸发设备:热蒸发(金属)、低温热蒸发(有机物)、电子束蒸发▪ 磁控溅射:直流&射频溅射、共溅射、反应溅射▪ 兼容性:可与手套箱集成、满足特殊样品制备▪ 其他功能设备:二维材料软刻蚀、样品热处理▪ 设备的控制:触屏编程式全自动控制
  • 针对不同类型的薄膜,拉力试验机应如何选择合适的夹具?
    在进行薄膜材料的拉力试验时,选择合适的夹具是至关重要的。夹具不仅影响到测试的准确性,还直接关系到试验过程的安全性和效率。以下是根据不同类型的薄膜,拉力试验机应如何选择合适的夹具的详细分析。一、了解薄膜特性首先,需要明确待测试薄膜的材质、厚度、硬度、韧性等物理特性。这些特性将直接影响夹具的选择和设计。例如,柔软且易变形的薄膜可能需要更柔软的夹面以减少夹伤;而较硬或高韧性的薄膜则可能需要更强的夹持力来确保测试过程中的稳定性。二、夹具类型选择1. 平推夹具适用薄膜类型:柔软且不易滑动的薄膜。特点:平推夹具通过平直的夹面接触并夹持薄膜,适用于大多数常规薄膜材料的拉伸测试。其设计简单,操作方便,能够有效减少薄膜在夹持过程中的变形和损伤。2. 锯齿夹面夹具适用薄膜类型:表面较为粗糙或需要增加摩擦力的薄膜。特点:锯齿夹面能够增加与薄膜之间的摩擦力,防止在拉伸过程中薄膜滑动或脱落。这种夹具特别适用于哑铃型样条等不易断钳口的薄膜样品。3. 橡胶面夹具适用薄膜类型:软质、易变形的薄膜。特点:橡胶面夹具通过柔软的橡胶材质与薄膜接触,能够有效减少夹持过程中对薄膜的夹伤。同时,橡胶的弹性也能提供一定的缓冲作用,保护薄膜在拉伸过程中不受过度冲击。4. 气动/液压夹具适用薄膜类型:大尺寸、高强度的薄膜。特点:气动或液压夹具通过油压或气压控制夹紧力度,能够提供更加稳定和准确的夹持效果。在高强度或大尺寸薄膜的拉伸测试中,这种夹具能够确保测试过程中的稳定性和安全性。三、夹具选择注意事项夹持力度:根据薄膜的材质和厚度选择合适的夹持力度,避免过紧导致薄膜变形或破裂,过松则可能导致薄膜滑动或脱落。夹持位置:确保薄膜被夹持在夹具的中间部位,以减少因位置偏差导致的测试误差。夹具材质:选择与薄膜相似或相兼容的夹具材质,以减少对薄膜的潜在损伤。夹具保养:定期对夹具进行检查和保养,确保其处于良好的工作状态,延长使用寿命并提高测试准确性。四、结论针对不同类型的薄膜,拉力试验机应选择合适的夹具以确保测试的准确性和安全性。在选择夹具时,需要综合考虑薄膜的材质、厚度、硬度等特性以及夹具的类型、夹持力度、夹持位置等因素。通过合理的夹具选择和使用,可以获得更加准确和可靠的薄膜拉伸测试数据。
  • 薄膜拉力试验机常见的几种试验方法
    薄膜拉力试验机是一种专门用于测试薄膜材料拉伸性能的设备。它能够模拟实际生产和使用过程中的拉伸条件,以评估薄膜的力学性能和封口强度。这种试验机广泛应用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、隔膜、无纺布、橡胶等材料的力学性能检测。一、单轴拉伸试验单轴拉伸试验是评估薄膜材料拉伸性能最基本且最常用的方法。在试验过程中,薄膜样品被固定在拉力试验机的两个夹具之间,并通过施加拉力使其沿一个方向均匀伸长。通过测量拉伸过程中的应力和应变数据,可以计算出薄膜的弹性模量、抗拉强度、断裂伸长率等关键力学参数。二、双轴拉伸试验双轴拉伸试验是在两个相互垂直的方向上同时对薄膜样品施加拉力的测试方法。这种试验方法更接近于薄膜在实际应用中的受力状态,因此能更准确地反映其力学性能。双轴拉伸试验常用于评估薄膜材料在复杂应力状态下的性能,如抗皱性、抗撕裂性和尺寸稳定性等。三、循环拉伸试验循环拉伸试验是一种模拟薄膜在实际使用过程中经受反复拉伸和松弛的测试方法。在试验过程中,薄膜样品会被周期性地拉伸到一定的应变水平,然后松弛到初始状态。通过多次循环拉伸,可以评估薄膜材料的疲劳性能、弹性恢复能力和耐久性。四、撕裂试验撕裂试验是评估薄膜材料抗撕裂性能的重要方法。在试验过程中,薄膜样品会被固定在特定的夹具上,并在其一端施加撕裂力。通过测量撕裂过程中的力和位移数据,可以计算出薄膜的撕裂强度和撕裂扩展速度等参数。撕裂试验有助于了解薄膜在受到外力作用时的破坏机制和失效模式。五、剥离试验剥离试验主要用于评估薄膜与基材之间的粘附性能。在试验过程中,薄膜被粘贴在基材上,并在一定角度下施加剥离力。通过测量剥离过程中的力和位移数据,可以计算出薄膜与基材之间的粘附强度和剥离速率等参数。剥离试验有助于了解薄膜在不同基材上的粘附性能和适用范围。六、蠕变试验蠕变试验是一种评估薄膜材料在长时间恒定应力下变形行为的测试方法。在试验过程中,薄膜样品会被施加一定的拉伸应力,并保持一段时间以观察其变形情况。通过测量蠕变过程中的应变和时间数据,可以了解薄膜材料的蠕变行为和长期稳定性。蠕变试验对于评估薄膜材料在高温、高湿等恶劣环境下的性能具有重要意义。七、应力松弛试验应力松弛试验是一种评估薄膜材料在恒定应变下应力随时间变化的测试方法。在试验过程中,薄膜样品会被拉伸到一定的应变水平,并保持该应变不变以观察应力的变化情况。通过测量应力松弛过程中的应力和时间数据,可以了解薄膜材料的应力松弛行为和应力稳定性。应力松弛试验有助于了解薄膜材料在受到外力作用后的恢复能力和长期稳定性。
  • 微纳加工薄膜应力检测的国产化破局
    1.为什么要检测薄膜应力?薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,直接影响着薄膜器件的稳定性和可靠性,薄膜应力过大会引起以下问题:1.膜裂;2.膜剥离;3.膜层皱褶;4.空隙。针对薄膜应力的定量化表征是半导体制程、MEMS微纳加工、光电薄膜制备工艺流程中品检、品控和改进工艺的有效手段。(见图一)图一、薄膜拉/压内应力示意图(PIC from STI 2020: Ultraviolet to Gamma Ray, 114444N)2.薄膜应力测试方法及工作原理目前针对薄膜应力测试方法主要有两种:X射线衍射法和基片轮廓法。前者仅适用于完全结晶薄膜,对于纳米晶或非晶薄膜无法进行准确定量表征;后者几乎可以适用于所有类型的薄膜材料。关于两种测试方法使用范围及特点,请参考表一。表一、薄膜应力测试方法及特点测试方法适用范围优点局限X射线衍射法适用于结晶薄膜1.半无损检测方法;2.测量纯弹性应变;3.可测小范围表面(φ1-2mm)。1.织构材料的测量问题;2.掠射法使射线偏转角度受限;3.X射线应力常数取决于材料的杨氏模量E;4.晶粒过大、过小影响精度。基片轮廓法几乎所有类型的薄膜材料激光曲率法:1.非接触式/ 无损;2.使用基体参数,无需薄膜特性参数;3.大面积测试范围、快速、简单。1.要求试样表面平整、反射;2.变形必须在弹性范围内;3.毫米级范围内平均应力。探针曲率法(如台阶仪):1.使用基体参数,无需薄膜特性参数;2.微米级微区到毫米级范围。1.接触式/有损;2.探针微米级定位困难导致测量数据重复性不够好。速普仪器自主研发生产的FST5000薄膜应力测量仪(见图二)的测试原理属于表一中的激光曲率法,该技术源自于中国科学院金属研究所和深圳职业技术学院相关研究成果转化(专利号:CN204854624U;CN203688116U;CN100465615C)。FST5000薄膜应力测量仪利用光杠杆测量系统测定样片的曲率半径,参见图三FST5000薄膜应力测量仪技术原理图。其中l和D分别表示试片(Sample)和光学传感器(Optical Detector)的移动距离, H1和H2分别表示试片与半透镜(Pellicle Mirror),以及半透镜与光学传感器之间的光程长。 图二、速普仪器FST5000薄膜应力测量仪示意图图三、FST5000薄膜应力测量仪技术原理图3.速普仪器FST5000薄膜应力测量仪技术特点及优势a.采用双波长激光干涉法,利用Stoney公式获得薄膜残余应力。该方法是目前市面上主流测试方法,包括美、日、德等友商均采用本方法,我们也是采用该测量方法的国内唯一供应商。并且相较于进口友商更进一步,速普仪器研发出独特的光路设计和相应的算法,进一步提高了测试精度和重复性。通过一系列的改进,使我们的仪器精度在国际上处于领先地位。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)b.自动测量晶圆样品轮廓形貌、弓高、曲率半径和薄膜应力分布。我们通过改进数据算法,采用与进口友商不同的软件算法方案,最终能够获得薄膜应力面分布数据和样片整体薄膜应力平均值双输出。(参考中国软件著作权:FST5000测量软件V1.0,登记号:2022SR0436306)c.薄膜应力测试范围:1 MPa-10 GPa,曲率半径测试范围:2-20000m。基于我们多年硬质涂层应力测试经验,以及独特的样品台设计和持续改进的算法,FST5000薄膜应力测量仪可以实现同一台机器测试得到不同应用场景样品薄膜应力。具体而言,不但可以获得常规的小应力薄膜结果(应力值<1GPa,曲率半径>20m),同时我们还能够测量非常规小曲率半径/大应力数值薄膜(应力值>1GPa,曲率半径<20m)。目前即使国外友商也只能做到小应力测试结果输出。d.样品最大尺寸:≤12英寸,向下兼容8、6、4、2英寸。FST5000薄膜应力测量仪能够实现12英寸以下样品测试,主要得益于我们独特的样品台设计,光路设计及独特的算法,能够实现样品精准定位和数据结果高度重复性。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)e.样品台:电动旋转样品台。通过独特的样品台设计,我们利用两个维度的样品运动(Y轴及360°旋转),实现12英寸以下样品表面全部位置覆盖及精准定位。(参考专利:ZL201520400999.9)f.样品基片校正:可数据处理校正原始表面不平影响(对减模式)。通过分别测量样品镀膜前后表面位形变化,利用原位对减方式获得薄膜残余应力面型分布情况。同样得益于我们独特的样品台设计和光路设计,保证镀膜前后数据点位置一一对应。4.深圳市速普仪器有限公司简介速普仪器(SuPro Instruments)成立于2012年,公司总部位于深圳市南山高新科技园片区,目前拥有北京和苏州两个办事处。速普仪器是国家高新技术企业和深圳市高新技术企业。公司拥有一群热爱产品设计与仪器开发的成员,核心团队来自中国科学院体系。致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率,以及更好的品质和使用体验。速普仪器宗旨:致力于材料表面处理和真空薄膜领域提供一流“敏捷+精益”级制备、测量和控制仪器。速普仪器核心价值观:有用有趣。
  • 国内最大薄膜光伏研发检测中心投入使用
    河北保定天威集团透露,21日,该集团“天威薄膜光伏有限公司研发检测中心”正式投入使用,该中心也成为中国技术最先进、涵盖工艺最全面的薄膜太阳能技术研发中心之一。  据了解,天威薄膜光伏有限公司研发检测中心一期投资1.5亿元,建筑面积5000平方米 。检测中心建有一条年产能为2兆瓦的薄膜硅太阳能电池中试线,以及高效率薄膜硅太阳能电池研发实验室、新型薄膜电池及组件研发实验室、组件可靠性检测中心等实验室群。  据威薄膜光伏有限公司总经理马文学介绍,中心具备完善的研发与检测设备和优秀的技术团队,可进行高效率大面积薄膜硅太阳能电池的开发与试制生产,还可进行薄膜太阳能电池的相关基础研究和新型光伏产品研发,同时可为本企业和其他企业提供符合行业相关标准的样品试制、产品检测、检验等服务。  据悉,该中心以其最先进的技术和最全面的工艺,成为中国薄膜光伏行业规模最大的研究和服务平台。
  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 薄膜光学重点实验室揭牌
    军工企业在本市首家重点实验室——天津市薄膜光学重点实验室正式揭牌。该所依托于中国航天科工集团八三五八研究所建设,在薄膜光学领域具有很强的基础研究、技术开发和工程应用能力,为航天、航空、船舶等诸多国家重大或重点工程项目研制、开发做出了重要贡献。现承担国家级重大军工项目,工艺攻关课题两项、省部级科研项目十余项。  据介绍,该实验室主要研究领域为薄膜光学理论及应用,以薄膜光学中的理论问题、前沿问题和国家需求为主要研究内容,以获取原始创新成果和自主知识产权为主要研究目标,以基础研究和高新工程应用相结合为特色,形成了激光光学薄膜、超硬光学薄膜、光电功能薄膜三大研究方向。
  • 汉能与中科院设立“先进薄膜光伏联合实验室”
    p  4月11日上午,为促进钙钛矿等先进电池技术研究和产业化发展,汉能控股集团与中国科学院半导体研究所在中科院半导体研究所举行“先进薄膜光伏联合实验室”揭牌仪式。汉能控股集团董事会主席李河君、中科院半导体所所长李树深院士等领导出席了揭牌仪式。br//pp  揭牌仪式上,李树深院士首先致欢迎词,并介绍了中科院半导体研究所的发展历程和现有科研实力,随后李河君在讲话中指出,薄膜太阳能电池技术是光伏技术的发展方向,目前已经上升为国家战略,得到中央领导和有关部委的高度关注和支持,未来薄膜太阳能电池市场前景非常广阔。汉能自2009年进入薄膜太阳能电池领域以来,投入大量资金和人力、物力用于技术研发,通过全球技术整合和自主创新,汉能薄膜太阳能发电技术已达到国际领先水平,成为全产业链整合的高科技能源企业。/pp  李河君表示,此次与中科院半导体所共建的“先进薄膜光伏联合实验室”是汉能控股集团和我国顶尖的科研院所成立的首个联合实验室,希望未来双方能在更广阔的领域开展深度合作,共同推进薄膜太阳能电池技术的发展和产业化进程。/pp  双方在愉快的气氛中签署了合作协议,并为“先进薄膜光伏联合实验室”揭牌,之后李河君还在中科院半导体研究所科研人员的陪同下参观了实验室,并仔细了解了钙钛矿电池的制作过程。/ppbr//p
  • 金刚石薄膜热导率测量的难点和TDTR解决方案
    金刚石薄膜热导率测量的难点和TDTR解决方案金刚石从4000年前,印度首次开采以来,金刚石在人类历史上一直扮演着比其他材料引人注意的角色,几个世纪以来,诚勿论加之其因稀缺而作为财富和声望象征属性。单就一系列非凡的物理特性,例如:已知最硬的材料,在室温下具有最高的热导率,宽的透光范围,最坚硬的材料,可压缩性最小,并且对大多数物质是化学惰性,就足以使得其备受推崇,所以金刚石常常被有时被称为“终极工程材料”也不那么为人惊讶了。一些金刚石的物理特性解决金刚石的稀缺性的工业方案:金刚石的化学气相沉积(CVD)高温高压但是因为大型天然钻石的成本和稀缺性,金刚石的工业化应用一致非常困难。200 年前,人们就知道钻石是仅由碳组成(Tennant 1797),并且进行了许多尝试以人工合成金刚石,作为金刚石在自然界中最常见的同素异构体之一的石墨,被尝试用于人造金刚石合成。虽然结果确被证明其过程是非常困难因为石墨和金刚石虽然标准焓仅相差 2.9 kJ mol-1 (Bundy 1980),但因为一个大的活化势垒将两相隔开,阻止了石墨和金刚石在室温和大气下相互转化。有趣的是,这种使金刚石如此稀有的巨大能量屏障也是金刚石之所以成为金刚石的原因。但是终究在1992年,一项称之为HPHT(high-pressure high-temperature)生长技术的出现,并随着通用电气发布为几十年来一直用于生产工业金刚石的标准技术。在这个过程中,石墨在液压机中被压缩到数万个大气压,在合适的金属催化剂存在下加热到 2000 K 以上,直到金刚石结晶。由此产生的金刚石晶体用于广泛的工业过程,利用金刚石的硬度和耐磨性能,例如切割和加工机械部件,以及用于光学的抛光和研磨。高温高压法的缺点是它只能生产出纳米级到毫米级的单晶金刚石,这限制了它的应用范围。直到金刚石的化学气相沉积(CVD)生产方法以及金刚石薄膜的出现,该金刚石的形式可以允许其更多的最高级特性被利用。金刚石的化学气相沉积(CVD)生产方法相比起HPHT 复制自然界金刚石产生的环境和方法,化学气相沉积选择将碳原子一次一个地添加到初始模板中,从而产生四面体键合碳网络结果。化学气相沉法,顾名思义,其主要涉及在固体表面上方发生的气相化学反应,从而导致沉积到该表面上。下图展示了一些比较常见的制备方法金刚石薄膜一旦单个金刚石微晶在表面成核,就会在三个维度上进行生长,直到晶体聚结。而形成了连续的薄膜后,生长方向就会会限定会向上生长。因此得到的薄膜是具有许多晶界和缺陷的多晶产品,并呈现出从衬底向上延伸的柱状结构。不过,随着薄膜变厚,晶体尺寸增加,而缺陷和晶界的数量减少。这意味着较厚薄膜的外层通常比初始形核层的质量要好得多。下文中会提到的在金刚石薄膜用作热管理散热器件时,通常将薄膜与其基材分离,最底部的 50-100 um 是通过机械抛光去除。尽管如此,在 CVD 过程中获得的金刚石薄膜的表面形态主要取决于各种工艺条件,导致其性能表现个不一致,相差很大。这也为作为散热应用中的一些参数测量,例如热导率等带来了很大挑战。金刚石薄膜的热管理应用金刚石薄膜在作为散热热管理材料应用时,有着出色的前景,与此同时也伴随着巨大挑战。一方面,而在热学方面,金刚石具有目前所知的天然物质中最高的热导率(1000~2000W/(mK )),比碳化硅(SiC)大4倍,比硅(Si)大13倍,比砷化稼(GaAs)大43倍,是铜和银的4~5倍,目前金刚石热沉片大有可为。下图展示了常见材料和金刚石材料的热导率参数:另一方面,但人造金刚石薄膜的性能表现,往往远远低于这一高水平。并且就日常表现而言,现代大功率电子和光电器件(5G应用,半导体芯片散热等)由于在小面积内产生大量热量而面临严重的冷却问题。为了快速制冷,往往需要一些高导热性材料制成的散热片/散热涂层发热端和冷却端(散热器,风扇,热沉等等)CVD 金刚石在很宽的温度范围内具有远优于铜的导热率,而且它还具电绝缘的优势。早在1996年沃纳等人就在可以使用导热率约为 2 W mm-1 K-1 的大面积 CVD 金刚石板用于各种热管理应用。 包括用于集成电路的基板(Boudreaux 1995),用于高功率激光二极管的散热器(Troy 1992),甚至作为多芯片模块的基板材料(Lu 1993)。从而使得器件更高的速度运行,因为设备可以更紧密地安置而不会过热。 并且设备可靠性也有望提高,因为对于给定的器件,安装在金刚石上时合流合度会更低。比起现在流行的石墨烯,金刚石也有着其独特优势。飞秒高速热反射测量(FSTR)在CVD金刚石薄膜热学测量中的应用挑战金刚石薄膜的热导率表征不是一个简单的问题,特别是在膜层厚度很薄的情况下美国国防部高级研究计划局(DARPA)的电子热管理金刚石薄膜热传输项目曾经将将来自五所大学的研究人员聚集在一起,全面描述CVD金刚石薄膜的热传输和材料特性,以便更好地进一步改善热传输特性,可见其在应用端处理优化之挑战。而这其中,用于特殊需求材料热导率测量的飞秒高速热反射测量(FSTR)(又叫飞秒时域热反射(TDTR)测试系统)发挥了极其重要的作用,它在精确测量通常具有高表面粗糙度的微米厚各向异性薄膜的热导率的研究,以及在某些情况下,CVD金刚石薄膜的热导率和热边界改善研究,使其对大功率电子器件的热管理应用根据吸引力的研究上发挥了决定性指导作用。常见的材料热学测试方法,包括闪光法(Laser Flash),3-Ω法,稳态四探针法,悬浮电加热法,拉曼热成像法,时域热反射法(TDTR)等。而对于CVD金刚石薄膜的热学测量,受限于在过程中可能需要多层解析、精细的空间分辨率、高精度分析,以及解析薄膜特性和界面的能力,飞秒高速热反射测量(FSTR)(又叫飞秒时域热反射(TDTR)测试系统)已成为为过去十年来最普遍采用的的热导率测量方法之一。飞秒高速热反射测量(FSTR)飞秒高速热反射测量(FSTR),也被称为飞秒时域热反射(TDTR)测量,被用于测量0.1 W/m-K至1000 W/m-K,甚至更到以上范围内的热导率系统适用于各种样品测量,如聚合物薄膜、超晶格、石墨烯界面、液体等。总的来说,飞秒高速热反射测量(FSTR)是一种泵-探针光热技术,使用超快激光加热样品,然后测量其在数ns内的温度响应。泵浦(加热)脉冲在一定频率的范围内进行调制,这不仅可以控制热量进入样品的深度,还可以使用锁定放大器提取具有更高信噪比的表面温度响应。探测光(温度感应)脉冲通过一个机械级,该机械级可以在0.1到数ns的范围内延迟探头相对于泵脉冲的到达,从而获取温度衰减曲线。如上文提到,因为生长特性,导致典型的金刚石样品是粗糙的、不均匀的和不同厚度特性的这就为飞秒高速热反射测量(FSTR)的CVD 金刚石薄膜热学测量带来了一些挑战。具体而言,粗糙表面会影响通过反射而来的探测光采集,且过于粗糙导致实际面型为非平面,这对理论热学传递建模分析也会引入额外误差,在某些情况下,可以对样品进行抛光以降低表面粗糙度,但仍必须处理薄膜的不均匀和各向性质差异。对于各向异性材料,存在 2D 和 3D 各向异性的精确解析解,但这使得热导率和热边界电阻的确定更加困难,并且具有额外的未知属性。即使样品中和传导层铝模之间总是存在未知的边界热阻,但是通常使用单个调制频率可以从样本中提取两个未知属性,这意味着在大多数情况下测量可以提取层热导率。然而,对于金刚石样品,样品内纵向和横向热导率是不同的,这意味着需要额外的测量来提取这两种特性;这可以通过改变一些系统参数来实现校正,参见系统参数描述(详情联系请上海昊量光电)。另一个困难是确定金刚石 CVD 的热容量,根据生长质量和样品中存在的非金刚石碳(NDC)的数量,生长出来的金刚石的热容量值相差极大。在这种情况下对于5 um的金刚石薄膜,测量将完全穿透金刚石样品,抵达样品到下面的基底材料(上图不同情况下的金刚石薄膜TDTR测量分析手段将会有很大不同)这使得测量对金刚石-基底边界电阻也很敏感。这意味着测量可能总共有五个未知参数:1)铝膜-金刚石间边界热阻,2)金刚石内横向热导率,3)金刚石内纵向热导率,4)金刚石热容量,5)金刚石-基底材料间边界热阻即使结合一定分析处理手段,见设备说明(详情联系请上海昊量光电),准确提取所有未知参数也很困难。一些常见影响样品尺寸确认 测量相对于样本尺寸的采样量很重要;飞秒高速热反射测量(FSTR)通常是基于标准体材料传热建模,而现在一些测量的块体材料样品越来越小,对于高质量的单晶半导体,基于块体材料的传热模型分析假设是有效的,但是对于更多缺陷和异质材料,例如 CVD 金刚石,这个假设就只是一个近似值。纵向均匀性通常而言,金刚石生长过程中,颗粒梯度会非常大,这也可能会导致热导率梯度非常大。此外,非金刚石碳(NDC,non-diamond carbon)含量、晶粒尺寸或表面粗糙度的局部变化也可能影响热导率的局部测量。TDTR测量中,可以 通过控制调制频率,从而实现加热深度控制,从而实现采样深度控制(详细技术讨论联系请上海昊量光电)对于不同热导率样品和不同加热频率,测量薄膜中采样 可能从1-2 um 到 20 um 不等 (相对应的,薄膜厚度超过300微米)其他更多 挑战和技术细节,受限于篇幅,将在后续更新继续讨论,如您有兴趣就相关设备和技术问题进行交流,可联系上海昊量光电获取更多信息。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 基于介质多层薄膜的光谱测量元器件
    近日,南京理工大学理学院陈漪恺博士与中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授合作,提出并实现了一种基于介质多层薄膜的光谱测量元器件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。研究成果以“Planar Photonic Chips with Tailored Dispersion Relations for High-Efficiency Spectrographic Detection”为题发表在国际学术期刊ACS Photonics。光谱探测技术被广泛应用在科学研究和工业生产,在材料科学、高灵敏传感、药物诊断、遥感监测等领域具有重要应用价值。近年来,微型光谱仪的研究受到了广泛关注,其优点在于尺寸小,结构紧凑,易于集成、便携,成本低。特别是随着纳米光子学的发展,光谱探测所需的色散元件、超精细滤波元件以及光谱调谐级联元件等,都可以利用超小尺寸的微纳结构来实现。如何兼顾器件的小型化、集成化,与光谱测量分辨率、探测效率一直是该领域的重点和难点之一。截至目前,文献报道的集成化微型光谱仪大多利用线性方程求解完成反演测算,信号模式之间的非简并性(不相似性)决定了重建光谱仪的分辨能力。这种基于逆问题求解的光谱反演技术易于受到噪音的干扰,从而降低微型光谱仪的探测分辨率和效率。近期研究工作表明,通过合理设计结构参数,调控介质多层薄膜的色散曲线,同时借助介质多层薄膜负载的布洛赫表面波极低传输损耗特性,可以实现了光源波长与布洛赫表面波激发角度之间的近似一一对应关系,如图1a,1b所示。它意味着无需方程求解,即可以完成光谱的探测与分析,避免了逆问题求解过程中外界环境噪声对反演过程的干扰,节约了时间成本,提升了探测效率。该介质多层薄膜由高、低折射率介质(氮化硅和二氧化硅)薄膜交替叠加组成,可通过常规镀膜工艺(如等离子体增强化学的气相沉积法)在各种透明衬底上大面积、低成本制备,其制作难度与成本远小于基于微纳结构的光谱测量元件。图1:一种基于介质多层薄膜的光谱探测元件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。作为应用展示,该光谱探测元器件被放置于微型棱镜或者常规反射式光学显微镜上,当满足布洛赫表面波激发条件时,即可实现光谱探测。如图1c,当激光和宽带光源分别入射到介质多层薄膜上时,采集到的反射信号分别为暗线和暗带,其强度积分及对应着光源的光谱(图1d,1e所示)。钠灯的光谱测量实验结果表明,该测量器件能达到的光谱分辨率小于0.6 nm (图1f所示)。不同于常规光谱仪需要在入射端加载狭缝,该方法无需狭缝对被测光源进行限制,从而充分利用信号光源,有效提升了光谱探测的信噪比和对比度,因此器件可以应用于荧光光谱和拉曼散射光谱等极弱光信号的光谱表征,展现出其在物质成分和含量探测上的能力,如图1g,1h所示。介质多层薄膜的平面属性,使得其可以在同一基底上加载不同结构参数的介质多层薄膜,从而实现宽波段、多功能光谱探测器件。该项工作表明,借助于介质多层薄膜负载布洛赫表面波的高色散、低损耗特性,可以实现低成本、高效率、高分辨率的光谱测量,为集成化微型光谱仪的实现提供了新器件。该项工作也拓展了介质多层薄膜的应用领域,有望为薄膜光子学研究带来新的生长点。陈漪恺博士为该论文第一作者,张斗国教授为通讯作者。上述研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、合肥市科技局、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
  • 薄膜沉积工艺和设备简述
    薄膜沉积(Thin Film Deposition)是在基材上沉积一层纳米级的薄膜,再配合蚀刻和抛光等工艺的反复进行,就做出了很多堆叠起来的导电或绝缘层,而且每一层都具有设计好的线路图案。这样半导体元件和线路就被集成为具有复杂结构的芯片了。化学气相沉积(CVD)化学气相沉积(CVD)通过热分解和/或气体化合物的反应在衬底表面形成薄膜。CVD法可以制作的薄膜层材料包括碳化物、氮化物、硼化物、氧化物、硫化物、硒化物、碲化物,以及一些金属化合物、合金等。化学气相沉积是目前很重要的微观制造方法,因为它有如下的这些特点:1. 沉积物种类多: 可以沉积金属薄膜、非金属薄膜,也可以按要求制备多组分合金的薄膜,以及陶瓷或化合物层。2. CVD反应在常压或低真空进行,镀膜的绕射性好,对于形状复杂的表面或工件的深孔、细孔都能均匀镀覆。3. 能得到纯度高、致密性好、残余应力小、结晶良好的薄膜镀层。由于反应气体、反应产物和基材的相互扩散,可以得到附着力好的膜层,这对表面钝化、抗蚀及耐磨等表面增强膜是很重要的。4. 由于薄膜生长的温度比膜材料的熔点低得多,由此可以得到纯度高、结晶完全的膜层,这是有些半导体膜层所必须的。5. 利用调节沉积的参数,可以有效地控制覆层的化学成分、形貌、晶体结构和晶粒度等。6. 设备简单、操作维修方便。7. 反应温度太高,一般要850~ 1100℃下进行,许多基体材料都耐受不住CVD的高温。采用等离子或激光辅助技术可以降低沉积温度。化学气相沉积过程分为三个重要阶段:1、反应气体向基体表面扩散2、反应气体吸附于基体表面3、在基体表面发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面CVD的主要有下面几种反应过程:i). 多晶硅 PolysiliconSiH4 — Si + 2h2 (600℃)沉积速度 100 - 200 nm /min可添加磷(磷化氢)、硼(二硼烷)或砷气体。多晶硅也可以在沉积后用扩散气体掺杂。ii). 二氧化硅 DioxideSiH4 + O2→SiO2 + 2h2 (300 - 500℃)SiO2用作绝缘体或钝化层。通常添加磷是为了获得更好的电子流动性能。当硅在氧气中存在时,SiO2会热生长。氧气来自氧气或水蒸气。环境温度要求为900 ~ 1200℃。氧气和水都会通过现有的SiO2扩散,并与Si结合形成额外的SiO2。水(蒸汽)比氧气更容易扩散,因此使用蒸汽的生长速度要快得多。氧化物用于提供绝缘和钝化层,形成晶体管栅极。干氧用于形成栅极和薄氧化层。蒸汽被用来形成厚厚的氧化层。绝缘氧化层通常在1500nm左右,栅极层通常在200nm到500nm间。iii). 氮化硅 Siicon Nitride3SiH4 + 4NH3 — Si3N4 + 12H2(硅烷) (氨) (氮化物)化学气相沉积CVD 设备CVD反应器有三种基本类型:◈ 大气化学气相沉积(APCVD: Atmospheric pressure CVD)◈ 低压CVD (LPCVD:Low pressure CVD,LPCVD)◈ 超高真空化学气相沉积(UHVCVD: Ultrahigh vacuum CVD)◈ 激光化学气相沉积(LCVD: Laser CVD,)◈ 金属有机物化学气相沉积(MOCVD:Metal-organic CVD)◈ 等离子增强CVD (PECVD)物理气相沉积(PVD)在真空条件下,采用物理方法,将材料源(固体或液体) 表面材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积不仅可沉积金属膜、合金膜, 还可以沉积化合物、陶瓷、半导体、聚合物膜等。物理气相沉积技术基本原理可分三个工艺步骤:(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。(3)镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程无污染,耗材少。成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层 。物理气相沉积也有多种工艺方法:◈ 真空蒸度 Thin Film Vacuum Coating◈ 溅射镀膜 PVD-Sputtering◈ 离子镀膜 Ion-Coating
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 太阳能薄膜电池研究获得重要进展
    德国美因茨大学13日发表公报说,该校研究人员参与的太阳能薄膜电池研究项目取得重要进展,有望使太阳能薄膜电池突破目前20%光电转化率的纪录。  目前光电转化率最高的是铜铟镓硒(CIGS)太阳能薄膜电池,可达20%,但与超过30%的理论值仍相距甚远,其主要难题是材料中的铟、镓分布和比例难以达到理想值。  美因茨大学的研究人员与IBM公司德国美因茨分部以及生产特种玻璃的德国肖特公司等合作,借助电脑模拟程序发现铜铟镓硒材料的铟镓分离温度,即在稍低于正常室温的情况下,铟镓会完全分开且分布不均匀,从而导致材料的光电作用减弱。而超过这个温度后,铟镓会相互融合,且温度越高其分布得就越均匀。这表明太阳能薄膜电池生产过程需要较高的温度,只要最后的制冷步骤足够快就能使这种均匀性“定格”。  以往生产工艺受生产必需的玻璃底板的耐热性限制,无法提高温度。为此肖特公司研发了一种能够耐受超过600摄氏度的特殊玻璃材料。研究人员说,此项成果是一个重大突破。  这一成果发表在美国《物理评论快报》上。
  • 中微公司薄膜设备新品层出!
    近日,中微半导体设备(上海)股份有限公司(以下简称“中微公司”,股票代码:688012)推出自主研发的12英寸高深宽比金属钨沉积设备Preforma Uniflex HW以及12英寸原子层金属钨沉积设备Preforma Uniflex AW。这是继Preforma Uniflex CW之后,中微公司为各类器件芯片中超高深宽比及复杂结构金属钨填充提供的高性价比、高性能的解决方案。中微公司深耕高端微观加工设备领域多年,持续加码创新研发,此次多款新产品的推出是公司在半导体薄膜沉积设备领域的新突破,也为公司业务多元化发展提供了强劲的增长动能。 中微公司自主研发的具备超高深宽比填充能力的12英寸Preforma Uniflex HW设备,继承了前代Preforma Uniflex CW设备的优点,可灵活配置多达五个双反应台的反应腔,每个反应腔皆能同时加工两片晶圆,在保证较低生产成本的同时,实现较高的生产效率。Preforma Uniflex HW采用拥有完全自主知识产权的生长梯度抑制工艺, 可实现表面从钝化主导到刻蚀主导的精准工艺调控。硬件上,中微公司开发的可实现钝化时间从毫秒级到千秒级的控制系统,可满足多种复杂结构的填充。此外,搭配经过优化设计的流场热场系统,使该设备具备优异的薄膜均一性和工艺调节灵活性。中微公司12英寸高深宽比金属钨设备Preforma Uniflex HW 此次中微公司还推出了自主研发的具备三维填充能力的12英寸原子层金属钨沉积设备——Preforma Uniflex AW。该设备继承了钨系列产品的特点,可配置五个双反应台反应腔,有效提高设备生产效率。此外,系统中每个反应腔均可用于形核和主体膜层生长,可根据客户实际工艺需求优化配置,进一步提高生产中的设备利用率。Preforma Uniflex AW采用拥有完全自主知识产权的高速气体切换控制系统, 可精准控制工艺过程,实现精准的原子级别生长,因此,所生长的膜层具备优异的台阶覆盖率和低杂质浓度的优点。Preforma Uniflex AW 还引入独特的气体输送系统,进一步提升性能,使该设备具备更先进技术节点的延展能力。该设备也继承了中微公司自主开发的流场热场优化设计,从而提升薄膜均一性和工艺调节灵活性。 中微公司12英寸原子层金属钨沉积设备Preforma Uniflex AW中微公司董事、集团副总裁、CVD产品部及公共工程部总经理陶珩表示:“我们很高兴可以为全球领先的逻辑和存储芯片制造商提供行业领先的薄膜设备,这两款设备优异的台阶覆盖率和低电阻特性,使其可以满足多种复杂和三维结构的金属钨填充需求。随着半导体技术的不断进步,原子层沉积技术因其卓越的三维覆盖能力和精确的薄膜厚度控制而日益受到重视,预计未来将会有更广泛的应用需求。中微公司推出的这两款新设备,进一步扩充了中微公司薄膜设备产品线,不仅展示了我们在原子层沉积领域的先进技术水平,也证明了我们拥有强大的产品开发和应用开发能力,标志着我们在半导体领域中扩展了全新的工艺应用,这将为我们公司的持续增长和长期发展提供广阔的空间。”
  • 光学薄膜的真空镀膜设备
    光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw) 光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw) 光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw) 光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw) 光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw) 光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw) 光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw)光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw)光学薄膜的真空镀膜设备 型号:BMC1100DS,带Windows软件自动控制系统(SDC)/日本 制造时间:2003年 状态:运行极好 生产厂家:Shincron (http://www.shincron.co.jp/phase1/en/top/index.html) 技术规格: 真空腔体尺寸: &phi 1100mmxH 1600mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2 EB Guns (JEOL)  JEBG-102UHO(&phi 35ccx20) JST-16F (16kw)  IAD 系统: 无 光学厚度监控器: OPM-V1 (monitor glass &phi 30x30) 石英晶体微天平监控器: 无 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 最大350℃± 10℃(36kw) 型号:RMC1100,带Windows软件自动控制系统/日本 制造时间:2003年8月 状态:运行极好 生产厂家:Rock Giken Inc (http://www.rock-giken.co.jp/vacuum/index.html) 技术规格: 真空腔体尺寸: &phi 1150mmxH 1500mm 衬底圆顶尺寸: &phi 950 (3~30rpm) 耐加热系统: &phi 20mm 4kw 蒸发源: 2EB Guns (Plasma System)  G-12100(&phi 35ccx20) D-10001 (10kw)  IAD 系统: 无 光学厚度监控器: 380~1500nm(波长) (monitor glass &phi 10x60pcs) 石英晶体微天平监控器: XTC-2(Inficon) 真空泵单元: MTR-630(Shincron) DP(HD-550 x 2sets) with Polycold (PFC-670HLL) 加热系统: 300℃± 10℃(21kw)
  • 高通量组合薄膜制备及原位表征系统
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="122"p style="line-height: 1.75em "成果名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "高通量组合薄膜制备及原位表征系统/p/td/trtrtd width="122"p style="line-height: 1.75em "单位名称/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "中科院物理研究所/p/td/trtrtd width="122"p style="line-height: 1.75em "联系人/p/tdtd width="175"p style="line-height: 1.75em "郇庆/p/tdtd width="159"p style="line-height: 1.75em "联系邮箱/p/tdtd width="192"p style="line-height: 1.75em "qhuan_uci@yahoo.com/p/td/trtrtd width="122"p style="line-height: 1.75em "成果成熟度/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√正在研发 □已有样机 □通过小试 □通过中试 □可以量产/p/td/trtrtd width="122"p style="line-height: 1.75em "合作方式/p/tdtd width="526" colspan="3"p style="line-height: 1.75em "√技术转让 √技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/981cbfad-b9ec-4aa9-875a-12197e3c1fb1.jpg" title="LIBE-STM.jpg" width="350" height="321" border="0" hspace="0" vspace="0" style="width: 350px height: 321px "//pp style="line-height: 1.75em " br//pp style="line-height: 1.75em " 随着“材料基因组计划”的兴起,人们对新的实验手段,特别是高通量高空间分辨率的材料制备和性能测试方法提出了迫切的要求。正是针对于此,我们开发了这套“高通量组合薄膜制备及原位表征系统”,基于完全自主知识产权的新型生长机理制备高通量组合薄膜。同时,通过结合特殊设计的扫描隧道显微镜,可实现对所制备薄膜的原位超高分辨表征。尚在研发中,主要技术指标待测。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 应用前景尚不明确。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 发明专利:201510446068.7、201510524841.7/p/td/tr/tbody/tablepbr//p
  • 中国科学家研制出用“眨眼”开关家电的传感器
    p  想象一下,眨眨眼睛,电灯打开 再眨眨眼睛,电灯关闭......中国科学家近日报告说设计出一种新型传感器,可附在眼镜上探测眨眼动作,从而使“眨眼”之间完成开关家用电器等日常任务成为现实。/pp  “该项技术可以被认为拥有了‘第三只手’。”研究负责人之一、重庆大学胡陈果教授告诉新华社记者。她说,如果正常人的双手被占用,可使用这种新型人机交互方式控制身边的电子设备,因渐冻症等疾病而失去活动能力的患者同样能从中受益,未来还将探索把这种传感器安装在人体的不同部位,尝试以此操控智能机器人。/pp  除了胡陈果外,重庆大学蒲贤洁、郭恒宇以及中国科学院北京纳米能源所王中林教授等人参与研究,论文发表在新一期美国《科学进展》杂志上。/pp  据胡陈果介绍,传统人机交互系统在探测眨眼动作时,主要探测的是极为微弱的体表生物电信号,而他们利用近年来热门的摩擦纳米发电技术设计出新型传感器,探测的是眨眼引起的太阳穴附近皮肤的微小运动,不仅灵敏度极高,并且相对于传统探测方法还具有更好的耐久性和稳定性。/pp  她解释说,该传感器由上下两层薄膜构成,中间有一定间隔。传感器装在眼镜腿上,接触眼角附近的皮肤。当眼睛眨动,眼角周围皮肤产生微小运动,会使两层薄膜产生接触 眨完眼后眼睛睁开,两层薄膜就会分离。在薄膜背面制备一层导电层,就可产生与眨眼对应的脉冲电信号输出。/pp  测试结果表明,该脉冲电信号的输出强弱与眨眼的力度和快慢有直接关系。与有意识眨眼相比,无意识眨眼比较轻微,脉冲信号强度小,所以两者较易区分。/pp  该设计除了能够实现通过眨眼来控制电子设备的开关,还能在虚拟打字人机交互界面上进行输入,比如打出英文单词和空格符号,组成句子。由于该传感器的极高灵敏度和稳定性,完成这些任务的准确性很高。/pp  胡陈果说,今后计划进一步改进眨眼输入法系统,争取能通过这种方式输入任意语句,包括进行中英文的切换,输入数字以及标点符号,还可结合输入法自动关联常用词组,就像现在人们在普通电脑键盘上能做的那样。此外,研究人员也希望能通过两眼眨动的组合形式,实现诸如遥控智能设备等更为复杂的应用。/pp  胡陈果指出,感官控制的人机交互可以在人和外界设备之间建立新的自然交流途径,有利于提高人们的生活品质,而这项工作“使得通过眨眼来控制电子设备有希望从实验室走向我们的日常生活”。/p
  • ?国内首个薄膜材料检测实验室挂牌光谷
    本报讯(记者王大千)武汉在攻克纳米级薄膜材料检测的世界难题上再出硕果——“功能薄膜材料物理性能检测技术湖北省工程实验室”在武汉未来科技城挂牌成立,该实验室由武汉嘉仪通科技有限公司与华中科技大学共同筹建。随着新材料的发展与应用,纳米级薄膜材料在许多领域中被广泛使用,国际上却没有可直接检测薄膜热特性的设备。“1纳米仅为1根头发丝直径的六万分之一,如何检测薄膜的热特性成为国际难题。”嘉仪通公司总经理王愿兵表示,过去需要先把薄膜沉积得很厚,再把待测薄膜材料刮下来,形成一定质量的粉末后,才能进行破坏性检测。经多年技术攻坚,华中科技大学“长江学者”缪向水教授团队,率队研发出我国首台光功率热分析仪,检测薄膜厚度可至5纳米。据介绍,光功率热分析仪是将激光照射到纳米薄膜材料表面上,通过反射光功率检测薄膜的相变温度点和热膨胀系数。这项科技成果在嘉仪通成功转化,并走向产业化。作为国内首家功能薄膜材料物理性能检测技术研究基地,本次组建省级工程实验室后,将下设薄膜材料热分析、薄膜材料样品制备与加工、薄膜材料电磁分析、薄膜材料力学分析、薄膜材料光学分析5个垂直研究实验室。“薄膜材料是对全球科技进步的颠覆性技术,随着薄膜技术越做越薄,需要颠覆性的测试设备。”清华大学教授、国家重点研发计划专家组组长潘峰告诉长江日报记者,科技部已设立材料基因组重大研发专项,其中一个重要任务就是攻克高通量的表征检测技术,湖北可依托薄膜检测研发的领先优势,作出更大的科学贡献。
  • 每年3倍!宁波激智已成最大液晶光学薄膜厂商
    宁波激智一名员工在新投产的流水线上检验产品质量  宁波激智新材料科技有限公司成立于2007年3月,是一家集光学薄膜和特种薄膜研发、生产、销售为一体的高科技公司,是中国首家TFT-LCD光学膜片生产基地,也是国内唯一一家在TFT-LCD光学膜领域中拥有自主知识产权的企业。宁波激智已就关键核心技术申请了13项国家发明专利,其中7项已授权。  据悉,宁波激智产的BritNit系列光学扩散膜、增光膜和反射膜,已经成功进入国际市场,打破了美国、日本和韩国企业对此行业的垄断。宁波激智在国内的主要客户有TCL、海信、长虹、康佳、创维、海尔等国内著名家电企业,而且也成为了冠捷等液晶显示器厂商的主要供应商,并且已经进入三星、LG、夏普、菲利普、苹果等国际大公司的供应链体系。  宁波激智的销售额,2009年为1025万元,2010年为3798万元,2011年为1.01亿元,2012年达到了近3亿元。几乎每年都是前一年三倍的惊人发展速度,使其短短数年间便成为国内最大的液晶光学薄膜生产厂商。宁波激智的成功,再次凸显自主创新和知识产权对高新技术产业发展的重要性。
  • 重磅 | 国内首家薄膜材料测试服务平台在中国光谷成立
    近日,国内首家薄膜材料测试服务平台——武汉光谷薄膜测试服务有限公司在中国光谷正式批复成立! 该服务平台为嘉仪通科技的全资子公司,依托于功能薄膜材料物理性能检测技术湖北省工程实验室和武汉市工程技术研究中心,将为全国各大专院校、科研院所、材料企业、钢铁、汽车制造、航空航天、军事科研单位、第三方检测机构、出入境海关检测等单位提供专业的材料样品制备和测试服务,以及技术委托开发、培训等其他相关服务!一、样品制备和加工 众所周知,材料样品的制备和加工是一个非常复杂和繁琐的精细活。武汉光谷薄膜测试服务公司为广大客户的薄膜材料性能检测提供制样准备服务,以满足仪器的检测需要。该测试服务平台拥有薄膜制备仪器:磁控溅射镀膜仪、离子束溅射镀膜系统。可以制备各种薄膜:陶瓷氧化物、氮化物膜、金属多层膜,以及各种超晶格;同时,可合成纳米管、纳米粉末,以及量子点。精密切割机、研磨抛光机、光刻机对块体和薄膜样品表面进行微加工处理,满足不同的测样要求。 某薄膜材料的制备工艺流程二、材料物理性能的分析与检测 作为薄膜材料物理性能的领跑者,嘉仪通科技旗下的测试服务平台,不仅可以解决材料制样难的烦恼,而且可以解决没有合适的仪器测试最新研发新材料的烦恼!可测试各类新材料尤其是薄膜材料的相变温度、热膨胀系数、Seebeck系数、电导率、热导率、载流子浓度、迁移率、霍尔系数等一系列重要参数。薄膜热导率的测试实例三、产品试用与购买 除了为广大客户提供块体、薄膜等新材料的制样和分析测试,解决样品制备和实际测试的烦恼,嘉仪通还为广大材料科研机构和个人提供免费产品试用服务,进一步打消对嘉仪通产品性能的疑虑,用实际测试数据来赢得消费者的信赖!嘉仪通产品免费试用政策 此外,嘉仪通还拥有分析和测试材料热学、电学、磁学、光学、电学等方面物理性能重要参数的一系列优质产品。只要您是做材料物理性能分析领域相关研究的,总有一款好的产品适合您!嘉仪通部分序列产品
  • 1950万!武汉大学采购原子层薄膜沉积仪等
    项目编号:HBT-13210048-225732项目名称:武汉大学原子层薄膜沉积仪、三维激光扫描测振仪、原位光电热催化真空红外分析平台采购项目预算金额:1950.0000000 万元(人民币)最高限价(如有):1950.0000000 万元(人民币)采购需求:本项目为3个项目包,接受同一供应商多包投标与中标。具体内容见下表。主要技术及服务要求等详见第三章货物需求及采购要求。包号序号货物名称是否接受进口产品单位数量是否为核心产品项目包预算(万元)011原子层薄膜沉积仪是台1是350021三维激光扫描测振仪是台1是500031原位光电热催化真空红外分析平台是台1是1100 合同履行期限:交货期:01包合同签订后 270 日内;02包合同签订后 180 日内;03包合同签订后 240 日内。本项目( 不接受 )联合体投标。
  • 岛津应用:多层薄膜的可视观察的同步测定
    使用岛津红外显微镜AIM-9000及AIMsolution分析软件,可以在对扫描点进行可视观察的同时,测定该扫描点的光谱。通过可视观察的同步测定可以实时确认各扫描点的图像和光谱。另外,因为AIMsolution分析软件以相同颜色显示各扫描点及其光谱,所以不仅可视觉确认扫描信息,还可以简单地进行大气校正等数据处理和检索操作。 本文向您介绍通过可视观察的同步测定对多层薄膜进行分析的示例。使用AIM-9000、AIMsolution Measurement软件和AIMsolutin分析软件,在每一个操作步骤都可以瞬间获得准确的数据,实现了前所未有的轻松分析。 了解详情,敬请点击《可视观察的同步测定-多层薄膜的透射测定-》
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制