当前位置: 仪器信息网 > 行业主题 > >

衍射光栅

仪器信息网衍射光栅专题为您提供2024年最新衍射光栅价格报价、厂家品牌的相关信息, 包括衍射光栅参数、型号等,不管是国产,还是进口品牌的衍射光栅您都可以在这里找到。 除此之外,仪器信息网还免费为您整合衍射光栅相关的耗材配件、试剂标物,还有衍射光栅相关的最新资讯、资料,以及衍射光栅相关的解决方案。

衍射光栅相关的论坛

  • 衍射光栅与闪耀光栅的原理?

    衍射光栅与闪耀光栅的原理有何不同?   现在紫外分光光度计都是用闪耀光栅吧?   有人说闪耀光栅是一种衍射光栅,也有人说是反射光栅,我觉得是属反射。   但为何有的书上在闪耀光栅上又提到衍射角?   请高手解释下。

  • 【资料】 反射式衍射光栅的色散原理

    分光计是用来把光源激发出来的复合光展开成光谱的一种仪器,这种仪器的主要作用使复合光色散。使之成为各种不同波长的光叫做光的色散或叫分光。有棱镜和光栅二种,以棱镜为色散元件做成的分光仪,有水晶、玻璃、萤石等多种分光仪。以光栅为色散元件的分光仪又有平面衍射光栅或凹面衍射光栅分光仪之分。由于光栅刻划技术和复制技术进一步的提高,光栅已广泛应用于光电直读光谱仪中。光栅与棱镜比较具有一系列优点。首先棱镜的工作光谱区受到材料透过率的限制;在小于120nm真空紫外区和大于50微米的远红外区是不能采用的,而光栅不受材料透过率的限制,它可以在整个光谱区中应用。 光栅的角色率几乎与波长无关,光栅角色散在第一级光谱中比棱镜大,不过在紫外250nm时石英角色散比光栅角色率大。光栅的分辨率比棱镜大;由于光栅具有上述优点将更进一步得到应用。

  • 一种光栅衍射性能检测系统的设计

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[b][b]黄燮晨[/b][/b][/b][*]【题名】:[b][b][b][b]一种光栅衍射性能检测系统的设计[/b][/b][/b][/b]【期刊】:[font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://gb.global.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1021876992.nh&uniplatform=OVERSEA&v=hC9l4pVFuZEGvvJ4-a9BxUY9xXN5HiosRNu8ngAS85i1zvdobSQWmBhOaYktl6yg]一种光栅衍射性能检测系统的设计 - 中国知网 (cnki.net)[/url][/b]

  • 平面光栅衍射效率的测试与分析

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[b]陈刚[/b][/b][*]【题名】:[b][b][b]平面光栅衍射效率的测试与分析[/b][/b][/b]【期刊】:[font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://gb.global.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201302&filename=1013229762.nh&uniplatform=OVERSEA&v=y8cL9QIbWUiTegZB2k3i7JQ_aacaGWymyUB0MvWafRqp4fdfQzAYxocYl3d-2mEo]平面光栅衍射效率的测试与分析 - 中国知网 (cnki.net)[/url][/b]

  • X射线衍射XRD工作原理

    X射线衍射XRD工作原理:[b]分析原理:[/b]X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。

  • 【求助】请教怎么用2100拍电子衍射

    我们学校的JEM-2100刚装好,我照着说明书做拍电子衍射,很纳闷,上了场限光栅,Screen没出现圆形的区域,调节旋钮倒是会把Screen逐渐遮掉,不知道是不是安装得有问题。

  • 【转帖】X射线衍射原理

    特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如铜靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。   当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。  X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。   X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 爱心捐助

  • 反射光栅在紫外检测器中的原理与应用

    反射光栅在紫外检测器中的原理与应用

    下图为一检测器光栅衍射分光的实拍图:http://ng1.17img.cn/bbsfiles/images/2015/01/201501280955_533330_2960432_3.png上述反射光栅的光路原理应该和下面的原理相似,但也有不同之处:http://ng1.17img.cn/bbsfiles/images/2015/01/201501281105_533343_2960432_3.png图F5-1是离轴抛物镜光学系统图。光源或照明系统发出的光均匀地照亮位于离轴抛物镜焦面上的入射狭缝S1,光经过离轴抛物镜6fl平行照射到光栅G上,经光栅衍射回到M1,经反射镜M2会聚到出射狭缝S2,最后经过滤光片M3到接收元件上。由于光栅的分光作用,从出射狭缝出来的光束为单色光。当光栅转动时.使不同波长的光束经出射狭缝S2射出。http://ng1.17img.cn/bbsfiles/images/2015/04/201504201928_542753_2960432_3.jpg简单说,光栅是将光源射出的不同波长混合在一起的复色光分开为一个扇形分布的光谱带,狭缝的作用是只让这个扇形光谱带中的某一部分波长通过。这两个部件组合起来使用才能获得检测用的“单色光”。对于单色器的详细解读下面一贴更详细:主题:【讨论】说说大家所知道的光栅单色器 昵 称:xiejun110 网址:http://bbs.instrument.com.cn/shtml/20130716/4853417/index_1.shtml file:///c:/documents and settings/aaa/application data/360se6/User Data/temp/2015013102041867.png

  • 光谱仪用光栅知识简介 !

    光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。◆如何选择光栅选择光栅主要考虑如下因素:1、光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择;2、闪耀波长,闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。如实验为可见光范围,可选择闪耀波长为500nm;3、使用范围,3、光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。◆光栅方程反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽,一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。光栅沟槽表面反射的辐射相互作用产生衍射和干涉。对某波长,在大多数方向消失,只在一定的有限方向出现,这些方向确定了衍射级次。如图所示,光栅刻槽垂直辐射入射平面,辐射与光栅法线入射角为α,衍射角为β,衍射级次为m,d为刻槽间距,在下述条件下得到干涉的极大值:Mλ=d(sinα+sinβ)定义φ 为入射光线与衍射光线夹角的一半,即φ=(α-β)/2;θ 为相对于零级光谱位置的光栅角,即θ=(α+β)/2,得到更方便的光栅方程:mλ=2dcosφsinθ从该光栅方程可看出:对一给定方向β,可以有几个波长与级次m 相对应λ 满足光栅方程。比如600nm 的一级辐射和300nm 的二级辐射、200nm 的三级辐射有相同的衍射角,这就是为什么要加消二级光谱滤光片轮的意义。衍射级次m 可正可负。对相同级次的多波长在不同的β 分布开。含多波长的辐射方向固定,旋转光栅,改变α,则在α+β 不变的方向得到不同的波长。http://ng1.17img.cn/bbsfiles/images/2017/03/201703121735_01_1841897_3.jpg

  • 全息光栅的特点

    全息光栅的特点为:(1)无鬼线,杂散光极小。(2)衍射效率较低,全息光栅的槽形通常为近似正弦波形,这种槽形不具备闪耀条件,没有明显的闪耀特性。据称,采用“离子蚀刻”技术的全息光栅,使光栅衍射效率得到较大提高。(3)分辨率高。由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度得到提高。

  • 【资料】X射线衍射原理及应用介绍

    X射线衍射原理及应用介绍特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布喇格定律: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。 当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。   X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。 X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。[color=#DC143C][size=4]希望对大家有用。[/size][/color]

  • 【资料】x射线衍射中单晶衍射与多晶衍射的区别!

    [size=4][font=楷体_GB2312]X射线衍射法因晶体的是单晶还是多晶分为x射线单晶衍射法和X射线多晶衍射法。  [b]单晶X射线衍射分析的基本方法[/b]为劳埃法、周转晶体法和四圆单晶衍射仪法。书上还会有别的方法,因不太常用在此不再啰述。现在最常用的是四圆单晶衍射仪测单晶。  [b]劳埃法[/b]改变波长、以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。  [b]周转晶体法[/b]:周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)。  [b]四圆单晶衍射仪法[/b]是转动晶体。以四个圆的转动变量φ、χ、ω和2θ进行晶体和计数器的转动,以实现倒格点与埃瓦尔德(Ewald)衍射球球面相遇产生衍射的必要条件。φ圆对应于安置晶体的测角头的自转转动,χ圆对应于测角头在其所坐落的仪器金属χ环内侧圆上的转动,ω圆对应于金属χ环绕中垂线(Z轴)进行的转动,2θ圆则对应于为保持衍射方向相对于入射X射线为2θ的角度所需进行计数器的转动。是常用的测量单晶衍射的方法[/font][/size]

  • 原子吸收:关于光栅的知识

    1 衍射光栅  平行、等宽而又等间距的多缝装置称为衍射光栅。它是利用光的衍射和干涉现象进行分光的一种色散元件,衍射光栅有透射式和反射式两种,光谱仪常用的是反射光栅,它的缝是不透明的反射铝膜。在一块极其平整的毛坏上镀上铝层,刻上许多平行、等宽而又等距的线槽,每条线槽起着一个“狭缝”的作用,每毫米刻线有1200条、2400条或3600条,整块光栅的刻线总数几万条到几十万条。  反射光栅从形状上可分为平面光栅,凹面光栅和阶梯光栅,  从制作方法上又可分为机刻光栅和全息光栅。  在一般的反射光栅中,由于光栅衍射中没有色散能力的零级衍射的主极大占去衍射光强的大部分(80%以上),随着主极大的级次增高,光强迅速减弱(见下图)。因此,使用这种反射光栅时,其一级较弱,二级衍射更弱。为解决这个问题,将光栅的线槽刻成锯齿形,使其具有定向“闪耀”能力,把能量集中分布在所需的波长范围。光栅复制技术的发展,大大降低了生产成本并缩短生产周期,使光栅得到广泛应用1.1平面反射光栅  1) 光栅方程  根据光的衍射和干涉原理,当平行光束以α角入射于光栅时,则在符合下述方程的角β方向上获得最大光强。  d(sinα+sinβ)=ml (m=0 ±1 ±2)  其中d-光栅常数,即相邻两缝的间距,α-入射角,β-出射角,m-衍射级次,或称为光谱级次,l-衍射光的波长。  2) 平面反射光栅的特点  a) 根据光栅方程,当光栅常数d为定值时,对于同一方向(α一定)入射的复合光在同级光谱(m一定)中,不同波长l有不同的衍射角β与之对应,因而可在不同的衍射方向获得不同波长的谱线(主极大)。这就是光栅的色散原理。  b) 对一定波长l的单色光而言,在光栅常数d和入射角α固定时,对于不同级次m(m=0 ±1 ±2……)可得到不同角β的衍射光,即同一波长可以有不同级次的谱线(主极大)。  c) 对于复合光,当m=0时,在β=-α的方向上,任何波长都可使光栅方程成立,即在此方向上,光栅的作用就象一面反射镜一样,将得到不被分光的零级光谱,入射光束中的所有波长都叠加在零级光谱中。当d和α为固定值时,对于不同波长、不同级次的光谱,只要其乘积ml等于上述定值,则都可以在同一衍射角β的方向上出现,即  m1l1=m2l2= m3l3=……  例如,一级光谱中波长为l的谱线和波长为l/2的二级谱线,波长为l/3的三级谱线…… 重叠在一起(如图)。这种现象称为光谱级次的重叠。它是光栅光谱的一个缺点,对光谱分析不利,应设法予以清除。在平面光栅光谱仪中,常用不同颜色的滤光片来消除这种级次重叠。同时为了获得足够的光能量,在ICP光谱分析中,通常选择第一级次(m=1)或第二级次(m=2)的光谱谱线。  3) 平面光栅光谱仪的主要性能  a) 色散率:光谱在空间按波长分离的程度称为色散率,其表示方法有角色散率(dβ/dl)和线色散率(dl/dl)两种,通常以线色散率倒数dl/dl表示仪器的色散能力,其单位为nm/mm。  光栅的角散率:dβ/dl=m/(d٠cosβ)  由此可见,角色散率与光谱级次m成正比。对于给定的波长范围,由于平面光栅的β较小(0-8°),cosβ变化不大(1-0.99),因而在同一个级次下,角色散率几乎不变;二级光谱的角色散率为一级光谱角色散率的两倍。  在Ebert装置的平面光栅仪中,焦平面与光轴垂直, β=0-8°时,cosβ»1。此时线色散率倒数为:  dλ/dl@d/(f·m) f为成像物镜的焦距。  可见,线色散率倒数与成像物镜的焦距f、衍射光谱级次m成反比,即采用长焦距和高衍射级次的光谱有利于提高线色散率。同时平面光栅光谱仪的线色散率倒数只有在β角很小的情况下才接近常数,即随波长的增加,线色散率倒数几乎不变。  b) 分辨率:仪器的分辨率又称分辩本领,是指仪器两条波长相差极小的谱线,按Rayleigh原则可分开的能力。所谓Rayleigh原则,指一条谱线的强度极大值恰好落在另一条强度相近的谱线的强度极小值处,若此时这两条谱线刚能被分开,则这两条谱线的平均波长λ与波长差Δλ之比值,称为仪器的理论分辨率 R,即R=λ/Δλ。对于平面光栅,理论分辨率R=λ/Δλ=m·N,由此表明光栅的分辨率为光谱级次m与总刻线N的乘积,不随波长改变而改变。  当级次m增加时,角色散率、线色散率及分辨率均随之增加。这时光栅偏转的角度也越大,它在衍射方向的投影也越少,因而光栅的有效孔径也随之越小,因此,光谱强度也相应减弱。  实际分辨率由于受许多客观误差因素的影响,总是比理论分辨率差,一台单色仪的分辨率是它能分辨的最小波长间距,这个波长间距不但有赖于仪器的分辨本领,而且也与狭缝的宽度、狭缝的高度及光学系统的完善性有关。在扫描式单色仪中,分辨率通常用半强度带宽值报出  1.2闪耀光栅  前面介绍的一般光栅具有色散能力。但衍射能量的80%左右集中在不分光的零级光谱中,而有用的一、二级光谱依次减弱,因而实用价值很低。为了克服这一缺点,适当地改变反射光栅的刻槽形状,使起“狭缝”作用的反射槽面和光栅平面形成一定的倾角e,如图,即可将入射光的大部分能量集中到所需衍射级次的某个衍射波长附近,该波长称为“闪耀波长”,这种现象称为光栅的闪耀作用,这种光栅称为闪耀光栅,也称小阶梯光栅,倾角e为闪耀角。  闪耀光栅的主要好处在于可使光能量集中在第一光谱级次(m=1)的λb与第二光谱级次(m=2)的λb/2附近。  a) 在“自准”条件下(a=b=e),闪耀波长与闪耀角的关系为2dSine=m·λbm,可根据需要的闪耀波长λbm来设计相应的闪耀角e。  b) 光栅的闪耀并非只限于闪耀波长,而是在该闪耀波长附近的一定范围内也有相当程度的闪耀。  c) 闪耀光栅的特性。这种光栅的一级闪耀波长λb1=560nm,有86%的光强集中在一级,而其余14%被分配在零级和其他各级中。从该图可以看出,该光栅的二级光栅光谱的闪耀波长λb2=560/2=280nm,实际上,光强的分布难与理论值完全相符,因为光栅刻线形状不可能精确

  • 中阶梯光栅的介绍

    线色散率、分辨率、集光本领是评价光谱仪性能的重要指标,而这些性能又主要取决于所采用的色散元件—光栅,制造高性能的光栅一直是光谱仪技术追求的目标。ICP分光系统中,全直谱图的很多都是采用中阶梯光栅。从光栅色散率公式可知,在自准条件下(a=b=e)dl/dλ=(m·f)/(d·cosb)提高线色散率可采用长焦距f、大衍射角b、高光谱级次m、减少两刻线间的距离d(提高每毫米刻线数)。从光栅分辨率公式可知R=λ/Dλ=m·N提高分辨率可增加光栅刻线总数N、用高衍射级次来解决。在常规的光栅设计中,都是通过增加每毫米刻线数来提高线色散率和分辨率。事实上由于制造技术及成本原因,精确、均匀地在每毫米刻制2400条线已很困难,采用全息技术制造的全息光栅最高可达10000条,但由于槽面成正弦形,使闪耀特性受影响,集光效率下降。1949年美国麻省理工学院的Harrison教授摆脱常规光栅的设计思路,从增加衍射角b,利用“短槽面”获得高衍射级次m着手,增加两刻线间距离d的方法研制成中阶梯光栅(Echelle),这种光栅刻线数目较少(8~80条),使用的光谱级次高(m=28~200),具有光谱范围宽、色散率大、分辨率好等突出优点。但由于当时无法解决光谱级次间重叠的问题,在五、六十年代未受到重视,直到七十年代由于实现了交叉色散,将一维光谱变为二维光谱,方得到实际应用。随着九十年代初二维半导体检测器(CID)和(CCD)的应用,中阶梯光栅的优点才在ICP光谱分析中充分的展现出来。光栅方程d(Sina+Sinb)=mλ 同样也适用于中阶梯光栅。在“自准”(a=b=e)时,m=2d·Sine/λ。中阶梯光栅不同于平面光栅,采用刻槽的“短边”进行衍射,即闪耀角e很大(60°- 70°);采用减少每毫米刻线数,即增大光栅常数d,因此,光谱级次m大大增加。例如IRIS Ad.全谱直读ICP的光栅刻线为52.6条/mm,闪耀角e=64°,可计算出对应λ=175nm的光谱级次m=189级,对应λ=800nm的光谱级次m=42级。对于衍射级次从42~189时,其闪耀波长分别在800~175nm光谱分析段内,且这些闪耀波长间隔较近,即形成全波长闪耀。中阶梯光栅的角散率:db/dλ=(2·tgb)/λ线色散率 dl/dλ=(2·f·tgb)/λ分辨率 R=λ/Dλ=2·W/(λ·Sinb)从上面三个公式可知,中阶梯光栅的角色散率、线色散率和分辨率都与衍射角b有关,并随着b增大而增大。因此,只要取足够大的b值(取闪耀角接近衍射角b=64°),即相当于在较高级次下工作,就能获得很大的角色散率、线色散率和分辨率。对于一般平面光栅,线色散率dl/dx =(f·m)/d,必须依靠增大仪器的焦距f,减小刻线间距d(增加刻线条数)来增加线色散率。而中阶梯光栅由于角色散率很大,不必依赖焦距的增加,就能获得较大的线散率。例如焦距1米,3600条/mm的平面光栅在200nm处,一级光谱的倒数线色散率仅为0.22nm/mm,而0.5米焦距,52.6条/mm的中阶梯光栅光谱仪在168级处同一波长的倒数线色散率可达0.14nm/mm。由于中阶梯光栅的角色散率足够大,焦距反而可缩小(如0.5米),因此,仪器光室的体积大为缩小,使相对孔径变大,光谱光强也得到提高。由于线色散率大,中阶梯光栅每一级光谱的波长范围相当小,在这个范围内各波长的衍射角基本一致,而且各级基本上是在同一角度下(闪耀角)观察整个波长范围,所以均可达到很大闪耀强度,即“全波长闪耀”。另外,这种中阶梯光栅它们相邻的衍射光谱级次之间的能量分布如上图所示,从图中可以看出,同一波长的入射光的能量多被分布在两个相邻衍射光谱的级次里,由于最佳闪耀波段两侧能量锐减,如图中虚线下方所示。故入射光强能量几乎都被集中到如图中虚线上方的闪耀波段中的该波长上,由此可知,中阶梯光栅在175~800nm全波段范围内均有很强的能量分布,中阶梯光栅其光谱图象可聚焦在200 mm2的焦面上,非常适合于半导体检测器来检测谱线。中阶梯光栅光谱仪各级之间的重叠用交叉色散棱镜的办法来解决,即棱镜的色散方向与中阶梯光栅的色散方向互相垂直,这样在仪器的焦面上形成二维光谱图象。

  • 【分享】电子衍射原理及多晶、单晶衍射的标定

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=33923]电子衍射原理及多晶、单晶衍射的标定[/url]刚接触TEM衍射,跟大家分享点资料,好像这里还没有。主要内容包括:电子衍射原理多晶电子衍射成像原理与衍射花样特征 多晶电子衍射花样的标定单晶电子衍射成像原理与衍射花样特征单晶电子衍射花样的标定复杂电子衍射花样TEM的典型应用等

  • 全息光栅的特点及相关内容

    随着全息激光技术的发展,出现了采用激光干涉照 相法制作的衍射光栅,这种光栅称为全息光栅。在磨制好的光栅毛坯上均匀涂布一层光敏物质,然后置于同一单色光源的两束激光干涉 场中曝光。把明暗相同的干涉条纹记录在光敏层上。将已曝光的坯基浸入一种特殊的溶液中,涂层各部分由于所接受的曝光量不同而受到不同程度 的溶蚀,从而在坯基上出现了与干涉条纹相当的槽线,最后在真空中镀上反射铝膜和保护膜就制成全息光栅。全息光栅的特点为:(1) 无鬼线,杂散光极小。(2)衍射效率较低,全息光栅的槽形通常为近似正弦波形,这种槽形不具备闪耀条件,没 有明显的闪耀特性。据称,采用“离子蚀刻”技术的全息光栅,使光栅衍射效率得到较大提高。(3)分辨率高。由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度 得到提高。

  • 【求助】关于衍射花样与衍射衬度

    为什么说晶体的衍射花样是离晶体很远处实际是无限远处的强度,而衍射衬度则是计算出晶体下表面的衍射强度分布,然后用透镜将这种分布成像呢~不太清楚这个下表面的衍射强度和后焦面上衍射强度的区别?

  • 衍射图像中衍射条纹形成的原理

    各位大神,小弟是TEM新手,最近遇上一些问题想请教下你们,问题如下:1.TEM明场相中,知道电子入射方向和沉淀相与基体的位相关系后,怎么分辨明场相中的沉淀相(同时有几个不同沉淀相)2.衍射图谱中,几乎与入射方向平行的晶面产生衍射斑点,而衍射条纹是怎么产生的?什么样的晶面产生衍射条纹3.知道沉淀相与基体的位相关系后,怎么在衍射图谱中分辨这些沉淀相(同时有多个沉淀相)

  • [活动]谁有X射线,衍射,衍射仪,衍射方法,衍射仪检定等方面相关的标准请在此回帖并上传

    衍射及X射线衍射与衍射仪等作为一个行业,一定有一些国家标准或者国际标准,不知道哪位牛人能方便弄到一些,请上传。先说一声谢谢!通过搜索,发现本论坛的资料库中已有几个标准:超细粉末粒度分布的测定 X射线小角散射法 GB8359-87高速钢中碳化物相的定量分析 X射线衍射仪法 GB8360-87金属点阵常数的测定方法 X射线衍射仪法 GB8362-87钢中残余奥氏体定量测定 X射线衍射仪法水泥X射线荧光分析通则水泥X射线荧光通则 四圆单晶X 射线衍射仪测定小分子化合物转靶多晶体X 射线衍射方法通则 发现特别缺少“X射线衍射仪检定方法的国家标准”。这个标准对于购买X射线衍射仪的单位和个人在选择合适的厂家的时候非常重要。有些国外的厂家就不认我们的标准,而我们事先可能还不知道国家有这个标准,等到东西到货了,发现有些技术指标不如意,却又没有办法。如果事先了解了这些东西,知道该怎么去看人家的宣传资料中介绍的各种技术参数,无疑对我们的使用单位和使用人是很有用的。发现还有其它的标准,如仪器辐射量的大小的标准等等,都是对大家有用的东西。有些东西本人看到过,但手头上却没有,有时候特别想看看,相信做这一行的人都有这种想法,哪位牛人能上传无疑是大功一件啊。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=22130]各种标准名称[/url]

  • 【讨论】X射线薄膜衍射和粉末衍射的区别

    最近想做X射线衍射来看聚噻吩的结构,涉及到用薄膜做衍射或粉末做衍射,我个人认为两者的区别就是:薄膜的可以看出一定的取向的,在某些衍射峰比较强,除此之外在没有任何区别了。但师兄不同意我的观点,不知道各位大侠是怎么看待这一问题的,请赐教

  • X射线衍射

    立体化合物结构确证时,经常会用到X射线衍射,但看到有的地方说单晶X射线衍射法,有的又说粉末X射线衍射法,这两者有区别吗?分别用于什么情况呢?

  • 请教:多晶衍射仪与单晶衍射仪

    有啥区别???在学校用的时候只知道是X衍射仪但是具体不知道啊学校那台可以作材料的物相分析,就是拿个块材去就可以作出很多个峰,然后标定的,不知道这个是多晶衍射仪呢还是单晶衍射仪?谢谢帮助~

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制