当前位置: 仪器信息网 > 行业主题 > >

测控仪表

仪器信息网测控仪表专题为您提供2024年最新测控仪表价格报价、厂家品牌的相关信息, 包括测控仪表参数、型号等,不管是国产,还是进口品牌的测控仪表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测控仪表相关的耗材配件、试剂标物,还有测控仪表相关的最新资讯、资料,以及测控仪表相关的解决方案。

测控仪表相关的论坛

  • 汽车数字智能仪表测控系统设计

    在汽车智能数字仪表的开发过程中,数字仪表所需要采集的信息量比较多,各种车型的信息参数又差别较大,这些问题的存在给仪表的实车测试和参数标定带来了困难。为了在开发过程中能够快速有效地测试系统的各项功能,提高系统开发效率,我们设计了一套测试系统,它能够模拟产生汽车上的各种参数信息,快速地对设计仪表进行全面的测试,节约台架或实车测试时间,降低测试风险。    系统设计    汽车智能数字仪表测试系统的开发要求针对不同的车型,能够模拟产生出仪表所需的各种采集信号信息,并且能够通过CAN接口与被测仪表进行通信。本文介绍的测试系统包括以下主要功能:车速里程表的脉冲信号模拟产生;    发动机转速表的脉冲信号模拟产生;    车辆燃油表信号模拟产生;    车辆水温表信号模拟产生;    各种车灯、车窗、车门等车身开关信号模拟产生。    数字仪表具有CAN通信接口,作为一个CAN节点,可以与车上CAN网络上的其他节点进行通信。    系统硬件设计    数字仪表测试系统的硬件系统主要包括主控制器、PXI板卡、信号接线盒、数据通信转换板卡、供电电源以及被测试仪表等主要部分。NI提供的PXI模块化板卡设备具有体积小、速度快、易扩展等特点,因此在硬件设计方面我们采用了PxI板卡发生汽车仪表所需的各种信号。汽车数字仪表的里程表和发动机转速表需要采集的是数字脉冲信号,不同的车型由于采用的传感器不同,所输出的脉冲信号高电平从3V~12V不等,为了能够测试设计仪表的信号范围适用性,采用PXI一6624板卡,配合外部供电电路,能够产生仪表所需采集的数字脉冲信号。PXI一6624是工业级隔离的32位定时器/计数器:PXI接口板卡,具有8路隔离的通道,我们采用Couter0和Counterl作为车速表和转速表的脉冲信号提供通道。燃油表和水温表采集的是模拟信号,PXI一6233能够输出4路10V模拟电平信号,PXI一6713能够输出8路10V模拟电平信号,我们选择PXI一6713的2个模拟输出通道作为信号提供通道。由于仪表上的开关量信号比较多,他们之间产生的干扰随着也比较大,我们选用PXI一8528R对仪表的开关量进行控制,PXI一6528是高速隔离的数字I/O通道,输入和输出通道分别独立,有效的抑制了信号之间的干扰。    仪表参数的标定以及作为CAN节点与车上其他CAN节点的数据通信,采用一块数据通信转换卡来完成,该卡的主要功能是完成串口信号一CAN信号之间的转换功能,开发数据通信转换卡的目的一是为了节约成本,二是考虑到大多数PC没有CAN接口。通过这个板卡对被控仪表的特征参数,如车辆的特征系数、传感器的传感系数、发动机的速比以及仪表的一些标定参数等进行设定。由于目标车型不确定,仪表的一些特征参数需要实车测试才能最后标定,所以该板卡可作为以后仪表参数标定用。    系统软件设计    仪表测试系统软件采用NI公司的LabVIEW8.20平台进行设计,本系统采用LabVIEW的图形化程序语言,以一种很直观的方法建立前面板人机界面和程序框图。前面板是用户可见的,类似传统仪器的操作面板,利用工具模板从控制模板中添加输入控制器和输出指示器,控制器和指示器种类可选择。程序框图是支持虚拟仪器实现其功能的核心,对程序框图的设计涉及节点、数据端口和连线的设计。连线代表数据走向,节点则是函数、Ⅵ子程序、结构或代码接口。本测试系统考虑到仪表整体功能测试和模块功能测试的需要,整个系统主要包括界面模块和各个功能测试模块,根据信号类型将仪表功能测试分为:车速表测试模块、发动机转速表测试模块、燃油表测试模块、水温表测试模块、开关量测试模块、CAN通信测试模块以及参数设置模块等主要功能模块。    界面模块    测试平台左侧是各种模块功能测试的切换按键,可以切换到单个功能模块的测试项目。右侧主界面模拟汽车仪表板的显示界面,如车速表、转速表、水温表、燃油表、里程指示以及各种报警和开关信号等信息显示。在进行测试实验中,工作人员通过主界面即可观测到仪表测试的整体功能。    模块测试设计    车速表的测试需要预先了解设定目标车型的特征参数,如车辆特征系数、车速传感器的传感系数等,然后通过数据通信卡(cAN总线信号)将特征参数下载到被测仪表,按照测试要求产生脉冲信号,信号的幅值、频率可以通过手动/自动进行调整,车速信号具备超速报警提示功能,根据设定的超速门限值,高于该门限值时,通过主界面前面板上的超速报警灯闪烁提示。测试过程也可以手动/自动进行,测试结果存档以备查询。    车速表测试模块的设计采用状态机设计模式,主要分为开始、获取参数、手动/自动选择、采集(手动)、检查时间(自动)、输出信号和停止等状态。其中参数的获取主要是获取前面板上特征系数和传感系数的参数值,通常,这两个值在仪表参数标定的时候需要在线修改。检查时间是指按照程序规定的时间输出规定的信号,本系统中采取'V'模式阶梯状的车速变化趋势对仪表进行测试。    发动机转速表测试模块类似于车速表测试模块,区别在于它的特征参数不同,根据特定车型的情况,通过数据通信卡(CAN总线信号)将发动机转速比下载到被测仪表,然后对其进行测试。    燃油表的测试需要预先设定目标车型的燃油测试范围以及燃油门限报警值,通过数据通信卡(CAN总线信号)将参数值下载到被测仪表,然后按照测试要求开始测试跟据设定的燃油门限值,低于该门限值时,通过主界面前面板上的燃油报警灯闪烁提示。测试过程可以手动/自动进行。燃油表的测试采用状态机的设计模式,主要分为开始、获取参数、手动/自动、采集、检查报警、输出信号等状态。水温表的测试同燃油表,在此不做具体说明。    CAN通信测试模块    所有的模块测试之前首先需要对该模块的参数进行初始化,如进行特征系数、传感系数、发动机速比、超速门限、燃油门限、水温门限以及测量范围等参数的设置。数据通信采用CAN协议,鉴于成本方面考虑,我们在LabVIEW上对串口进行操作,然后通过数据转换板卡输出cAN信号,cAN信号直接与被测仪表进行数据通信,因此,需要定义一个简单的CAN通信协议。测试系统作为CAN网络上的一个节点,节点ID号可以根据需求自行设定,数据区域由命令字、数据长度、数据、校验位组成。图6和表1是仪表参数设定CAN通信简单协议。    结语    采用NI系列PxI板卡以及灵活方便的LabVIEW软件平台,使得我们在短期内构建一套汽车数字仪表产品开发、测试、评估多功能于一体的测试平台,通过对实际仪表的测试,结果表明该套测试系统能够快速准确地完成对被测仪表的各项功能测试,并且该系统具备可扩展性,可以很方便地移植到其他产品的测试方案中,为我们后续汽车电子产品的研发积累了测试经验。

  • DIY ph 测控仪表。

    DIY ph 测控仪表。

    这是我自己DIY的PH表,制作比较简陋,纯是个人爱好http://ng1.17img.cn/bbsfiles/images/2012/10/201210222019_398544_2384277_3.jpg图中各部分介绍。A:为系统供电接口:输入电压为直流:6.5~12V。B:为系统供电开关:按钮按下供电接入系统。C:BNC接头:用于接PH探头。D:液晶LCM1602接口:用于接1602液晶屏幕。E:外接扩展部分:用于外接按键,输出模块,输入模块。F:USB模块:用于与电脑连接通讯。(其实是在电路板上集成了USB转串口电路)http://ng1.17img.cn/bbsfiles/images/2012/10/201210222022_398547_2384277_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/10/201210222020_398545_2384277_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/10/201210222021_398546_2384277_3.jpg自己给养鱼的朋友做的PH表。因为养鱼在常温25度范围内,高不过28度,低不过22度,所以没有加入温度补偿。利用单片机集成的10位AD,所以精度比较低,理论上精度是0.02。PH的前端放大器使用的是CA3140,然后用uA74进行加法和反向调整后供给单片机AD管脚。由BNC接头直接引线到运放的输入管脚,不知道换成贴片的LF365行不行,DIP封装实在是占地方。使用CA3140当然还有价格问题,不少仪表放大器价格都很高,而且不容易买到。更新附件一枚,这个是我第一次看到的一个资料,一个老外发的他DIY的ph放大缓冲电路

  • 仪器仪表与测量控制向信息化方向发展

    当今,仪器仪表与测量控制发展的趋势是:面对产品的稳定性、可靠性和适应性要求不断提高;技术指标和功能不断提高;最先采用新的科学研究成果;高新技术大量采用;仪器及测控单元微小型化、智能化日趋明显;要求仪器及测控单元可独立使用、嵌入式使用和联网使用;仪器测控范围向立体化、全球化扩展;测控功能向系统化、网络化发展;便携式、手持式以至个性化仪器大量发展。 技术特点是:综合各种新技术,在研究仪器仪表相关类型传感器、元器件和材料及技术的基础上,创新开发新的微弱信号敏感、传感、检测、融合技术,物质原子、分子级检测技术,复杂组成样品的联用分析技术,生命科学的原位、在位、实时、在线、高灵敏度、高通量、高选择性检测技术,创建各类新型检测仪器仪表;结合系统论、控制论的发展,在开发工业自动化测控的在线分析和控制、原位分析及控制、高可靠性、高性能和高适应性等技术的基础上,创新发展工业自动化仪表与控制系统;结合生命科学、人体科学的发展,在开发医疗诊治的健康状况监测、早期诊治、无损诊断、无创和低创直视诊疗、精确定位治疗技术的基础上发展医疗仪器;同时跟踪新学科领域和各类应用领域的发展,开发各种专用、快捷、自动化检测和计量技术及专用仪器仪表。 工业自动化仪表与控制系统和科学仪器,在产值和市场两个方面都占据着仪器仪表与测量控制总体的一半,是仪器仪表与测量控制体系的两大支柱。由于发言时间有限,下面就让我们把主要的注意力放在这两类仪器未来的发展上。 工业自动化仪表与控制系统未来发展的关注点应当是: 1、自动化仪表与企业的信息化 自动化仪表技术包括信息采集、处理和应用。“企业信息化”实际上是企业信息的集成和整合。为此,必须用自动化和系统的信息模型“简化”、“规则”和“抽象”信息,以便最有效地利用信息。这是自动化仪表领域的一项基础工作,也是统一信息表达的重要手段。 2、自动化仪表工程项目全局信息和全生命周期信息的整合 这是实现自动化仪表系统的全面可互操作。可互操作是分层次的,实现需要一个漫长的过程。近年来IEC62424标准的出版,InTools工具软件功能的扩充以及控制系统与现场仪表层各项可互操作标准的推出是发展中一个重要标志点。 3、功能安全 近年来功能安全的重要发展是,大量经过功能安全认证的仪表推向市场。为了争取竞争中有利地位,几乎所有仪表制造商都会开展功能安全的研究。4、系统维护与仪表诊断 系统维护与仪表诊断越来越受到用户、制造商和研究者各方的关注。 它分为四个层次,生产流程的诊断、生产装备的诊断,自动化控制系统的诊断和现场仪表的诊断。 生产流程的诊断原则上不属于自动化仪表范畴,但是诊断信息的交换涉及自动化仪表系统。针对生产装备的监控,诊断仪表系统已经推出了新产品。自动控制系统的诊断通常是控制系统中设备管理软件的一个模块或一种功能,负责控制系统自身以及现场仪表的实时诊断和预测性维护。现场仪表的诊断难度较大,维护周期由智能仪表的损耗情况或固定时间确定。 5、无线通信 工业无线通信技术的快速发展是自动化仪表领域显著的亮点,它的特征是:技术方案多样化,参与者迅速增加,成立了专业组织。推出多种无线演示系统、测量仪表样机,将成为全球主要自动化仪表展览的热点。 6、控制网络 未来几年网络控测和网络仪表是自动化仪表发展的重点,发展方向是大幅提高速度、简化安装和调试的复杂性、扩展无线功能以及发展网络技术。 7、标准化 标准化在自动化仪表发展历史上发挥过重要作用,未来还会对我国仪表产品追赶世界水平发挥重大作用。在新经济时代,有大量信息接口标准的需求,它的共同特点就是在相同的技术水平上可以有很多种标准化方案。现在对高技术新产品可以先制定标准,完全改变了标准化的理念。科学仪器未来发展应当关注以下几个方面: 1、分析仪器 光学捕获(Opticaltrapping)是一种新型的光学微操作技术。它将一束光用高数值孔径的物镜聚焦成微米级的光斑,形成梯度来实现对微小粒子的捕获和移动。这项技术被广泛应用于各种微观领域的研究。 微型色谱仪将会得到很快的发展。C2V公司已经推出了世界上最小最快的手持式气相色谱仪,主机大小仅124×84×60mm,所含柱模块大小为60×100×12.5mm,可在10-30秒内完成天然气主要成份的全分析。 NMR的微型化近年来已经取得重大进展,瑞士Neuchatel大学开发成功一种高质量因子可供微流控芯片NMR全分析系统使用的射频平面微线圈,所需样品量仅为1-100纳升,并可在几秒内获得所需的信噪比。NMR微型化应当是值得关注的发展方向。 光频光梳光谱法(Opticalfrequencycombspectroscopy)是最新发展起来的另一种重要的仪器技术,采用这种技术可以在极短的时间内以很高的灵敏度检测许多不同的气体,将在临床诊断领域发挥重要作用。 2、精密检测仪器 当今时代已经进入分子、原子分析检测新阶段,微纳科技的发展直接推动了精密检测仪器的快速发展。值得特别关注是MEMS/NEMS(微电机系统/纳机电系统)测试仪器,以扫描隧道显微镜和原子力显微镜为代表的扫描探针显微镜,以及基于STM/AFM的基本原理新发展起来一系列SPM,如磁力显微镜、静电力显微镜等这些仪器的新发展。 3、光子成像仪器 一个以光子学与生命科学相互融合的新学科——生物医学光子学随着激光、电子、光谱、显微及光纤等技术的发展而迅速成长起来,应运而生出现了不少新型科学仪器。应用这些仪器不但丰富了人们对于光与生物组织体相互作用机理的认识,而且促进了各种新的生物研究仪器和医学诊断仪器的发明。光子成像技术主要包括漫射光层析成像、荧光成像、相干层析成像、光声成像等。光学相干层像(OCT)结合了共焦显微术和低相干光的外差探测技术,它是一种在一维光学低相干反射测量技术的基础上扩展而来的二维或三维成像技术。 4、光谱分析仪器 过去,光谱分析仪器主要应用在基础学科研究和矿物分析、产品质量监控等领域。值得关注一个新的发展动向是,由于人类生存和发展一些迫切的需求,同时计算机软硬件、微电子、计算数学、微型器件发展提供的新技术成果,使得光谱技术和仪器向生物、环境、医疗等领域快速拓展,无论理论研究、技术开发和仪器创新都有了明显的发展,今后还将更快发展。现在社会的测试仪器很多,但是我们需要针对作用去选择。土豆:又是你又是你,在结尾附带广告,以后不要这样了!!!!!!!

  • 【分享】现代仪器仪表发展的主要特点

    随着国外仪器仪表技术的发展,根据仪器仪表国际发展的趋势,可以十分清楚的看出现代仪器仪表发展具有以下主要特点:①单个仪器仪表装置微小型化,智能化,可独立使用,嵌入式使用和联网使用测量控制仪器仪表大量采用新的传感器、大规模和超大规模集成电路、计算机及专家系统等信息技术产品,不断向微小型化、智能化发展。②便携式、手持式以至个性化仪器仪表大量发展随着生产的发展和人民生活水平的提高,人们对自己的生活质量和健康水平日益关注,检测与人们生活密切相关的各类商品、食品质量的仪器仪表,预防和治疗疾病的各种医疗仪器,便携式、手持式仪器是今后发展的一个重要趋势。③最先应用新的仪器仪表科学研究成果,高新技术大量采用现代仪器仪表作为人类认识物质世界、改造物质世界的第一手工具,是人类进行科学研究和工程技术开发的最基本工具,比如种子发芽箱RTOP-260B发芽箱具有光照、冷热恒温、自动加湿除湿、昼夜自动切换与超温保护等功能,广泛用于种子发芽、育苗、植物周期栽培等试验。④技术指标不断提高就如奥林匹克运动的口号是更高、更快、更强一样,仪器仪表在提高检测控制技术指标上是永远的追求。比如土壤水分测量仪/土壤含水率测定仪既可直接测量土壤水分值,又可以实时存储测量的水分含量数据,并可与计算机连接将数据导出。⑤测控范围向有关工作方式立体化、全球化扩展,测量控制向系统化、网络化发展随着测量控制仪器仪表所测控的既定区域不断向立体化、全球化甚至星球化发展,仪器仪表和测控装置已不再呈单个装置形式,它必然向测控装置系统、网络化方向发展。

  • 浅谈我国煤炭仪器仪表行业发展形式

    从煤炭化验仪器科学与技术学科领域组成部分相互关系、共性问题以及我国国民经济、科学研究、国防建设、社会发展全局进行战略研究,建议学科领域科技研究方向为:新型传感器及信息获取技术;与国家重点工程相配套的过程控制系统和测控装备及其系统集成技术;精确制造中的测量控制技术及仪器仪表;微分析仪器及其关键技术;数字化医疗仪器及其关键技术;基于量子物理的计量标准系统。 1.新型传感器及信息获取、传感技术 2.传感技术不仅是检测的基础,它也是控制的基础。这不仅是因为控制必须以检测输入的信息为基础;并且是犹豫控制达到的精度和状态,必需感知,否则不明确控制效果的控制仍然是盲目的。 信息获取、传感技术是仪器科学与技术学科的基础技术;新型传感器是发展高水平测量控制仪器仪表的基础。传感技术已成为制约测量控制仪器仪表发展的瓶颈。 新型传感器及信息获取、传感技术主要是对客观世界有用信息的检测,它包括有用呗测量敏感技术、涉及各学科工作原理、遥感遥控、新材料等技术、信息融合技术;传感器制造技术等。信息融合技术设计传感器分布、微弱信号提取(增强)、传感信息融合、成像等技术、传感器制造技术涉及微加工、生物芯片、新工艺等技术。 3.与国家重点工程相配套的过程控制系统和测控装备及其系统集成技术 工业发达国家高新技术仪器仪表产品品种约占总品种的75%,而国内还不到20%。工业自动化仪表和控制系统的仪表品种国内满足率,一般性工程项目达80%,大型工程项目还不到50%,主要缺少智能化和高精度、高可靠性、大量程、耐腐蚀、全密封、防爆等有特殊要求的自动化仪表品种。 与国家重点工程相配套的过程控制系统和测控装备主要解决智能化和高精度、高可靠性、大量程、耐腐蚀、全密封、防爆等有特殊要求的自动化仪表品种。主要包括符合现场要求的各类传感器及检测仪表,实时流程分析仪器及在线分析技术,新型现场控制系统,e网控制系统,以工业控制计算机、可编程控制为基础的开放式控制系统及先进控制技术,特种测控装备和测控技术,系统成套集成技术等。 系统集成技术直接影响测量控制仪器仪表的应用广度和水平,特别是对大工程、大系统、大型装置的自动化程度和效益有决定性影响,它是系统级层次上的信息融合控制技术没包括系统的需求分析和建模技术、物理层装置技术、系统各部分信息通信转换技术、应用层控制策略实时技术等。在操作人员为多种不同岗位的操作群体情况下,还应包括各近最佳方式监控智能化工具、装备、系统以达到既定目标的技术,是直接涉及测控系统效益发挥的技术,是从信息技术向知识经济技术发展的关键。智能控制技术可以说是测控系统中最重要和最关键的软件资源。 从目前发展趋势看,在企业信息化ERS/MES/PCS三级节后的计算机测控系统中,软件的价格已超过硬件的3倍。而有关石化、冶金、电力、制药行业中自动化测控系统的先进控制软件价格就超过系统硬件价格。智能控制技术包括仿人的特征提取技术、目标自动化辨识技术、知识的自学习技术、环境的自适应技术、最佳决策技术等。

  • 【分享】现代仪器仪表发展的关键技术

    中国的仪器仪表的发展随着国际的仪器仪表的发展而前进,下面分析一下现代仪器仪表发展的关键技术。根据现代仪器仪表科学技术的发展趋势和特点,可以列出仪器仪表发展的关键技术如下。① 传感技术传感技术不仅是仪器仪表实现检测的基础,它也是仪器仪表实现控制的基础。这不仅因为控制必须以检测输入的信息为基础,并且是由于控制达到的精度和状态,必需感知,否则不明确控制效果的控制仍然是盲目的控制。广义而言传感技术必须感知三方面的信息,它们是客观世界的状态和信息,被测控系统的状态和信息以及操作人员需了解的状态信息和操控指示。窄义而言,传感技术主要是客观世界有用信息的检测,它包括有用被测量敏感技术,涉及各学科工作原理、遥感遥测、新材料等技术;信息融合技术,涉及传感器分布,微弱信号提取(增强),传感信息融合,成像等技术;传感器制造技术,涉及微加工,生物芯片,新工艺等技术,举个例子比如罗维朋比色计,是目视颜色匹配方法测定物质颜色的仪器,就是使用了传感技术。② 系统集成技术系统集成技术直接影响仪器仪表和测量控制科学技术的应用广度和水平,特别是对大工程、大系统、大型装置的自动化程度和效益有决定性影响,它是系统级层次上的信息融合控制技术,包括系统的需求分析和建模技术,物理层配置技术,系统各部份信息通信转换技术,应用层控制策略实施技术比如GPS面积测量仪等,在操作人员为多种不同岗位的操作群体情况下,还包括各级操作人员需求分析技术。③ 智能控制技术智能控制技术是人类以接近最佳方式,通过测控系统以接近最佳方式监控智能化工具、装备、系统达到既定目标的技术,是直接涉及测控系统的效益发挥的技术,是从信息技术向知识经济技术发展的关键。④ 人机界面技术人机界面技术主要为方便仪器仪表操作人员或配有仪器仪表的主设备、主系统的操作员操作仪器仪表或主设备、主系统服务。仪器仪表、甚至配有仪器仪表的主设备、主系统的可操作性、可维护性主要由人机界面技术完成。仪器仪表具有一个美观、精致、操作简单、维护方便的人机界面,比如脂肪含量仪,此外,随着仪器仪表的系统化、网络化发展,识别特定操作人员、防止非操作人员的介入技术也日益受到重视。⑤ 可靠性技术随着仪器仪表和测控系统应用领域的日益扩大,可靠性技术特别是在一些军事、航空航天、电力、核工业设施,大型工程和工业生产中起到提高战斗力和维护正常工作的重要作用。仪器仪表和测控系统的可靠性技术除了测控装置和测控系统自身的可靠性技术外,同时还要包括受测控装置和系统出现故障时的故障处理技术。测控装置和系统可靠性包括故障的自诊断、自隔离技术,故障自修复技术,容错技术,可靠性设计技术,可靠性制造技术等。

  • 仪器仪表设计的核心及应用

    仪器仪表设计的核心及应用大多数学校还开设了精密(光电)仪器设计、传感器原理及应用、单片机原理反应用、光电检测技术、光学设计、计算机语言(c语言、C++等)等,其小个别的课程,根据各个学校自行安排取舍。 由于历史原团,各个学校的“测抑技术与仪器”专业,仍然保留了自己特色,在上述的主要课程之外,还安排其他与本专业关系密切的课程,如敝字信号与图像处理技术、自动技制理论、误处理论及数据处理、数据结构、通估系统原理、信号和线性系统、电子测员原理与仪器仪表、激光应用技术、CCD应用技术、计算机网络技术、计算机多媒体技术、计算机视觉技术、光纤通们、过程钟制仪表、虚拟仪器、智能仪表的设计均实践、机械货测匝、自动显示仪人、允损检验、故障诊断、电磁测量等。 上述的课程安排对将来从事测量、仪器与系统的设计、科技开发、应用研充、运行管理是必须的。 通过上述对“测柠技术与仪器”类专业本科个课程安排,学生会对“测控技术与仪器”专业的核心知识合所了解。 4年的大学学习,将使本专业学生氏合收艾的光学、精密机械、心子、汁算机学科的知识,通过光、机、电、汁算机的结合,掌握当代测控技术和实验研究能力,成为从容朽关的测量、仪器与系统的设计。科技开发、应用研究、运行管理答的专业人才。上述专业速础棵和专业课所讲授的内容可以归纳为如夏几部分: (1)模拟电路与数字电路是测使仪器和智能仪器中不可缺少的,好比是仪器的神经,它关系到仪器动作执行,。件、传感器、检测信号采集和数据处邢、显尔工作等指令的传达,这部分内容有模拟电子技术耳础、数字电子技术基础课程,这是本科生必修课程。 (2)仪器设计与机械结构部分好比是仪器的躯体和四肢骨骸,它创括屯子测量原理与仪器、自动以di仪太、过程控制仪炭、智能仪表的设计与实践、精密机械与仪器设计、精密机械制造工程、精密机械基础等课程。 (3)计算机软件、硬件好比是仪器的大脑,它包括单片机原理及应用、中片机原理及应用、计‘算机语言(c语言、〔C++等)。计算机网络技术、刘算机多媒体技术、汁算机视觉技术、虚拟仪器、数据结构等畸H算机有关的课程。 (4)传感器好比是仪器的视觉、触觉、嗅觉等感知外部世界的器官,达部分包抓捡测技术及传感器的内容、如光电检测技术、传感器原理及府用、九损检验、故降诊断、电磁测量、机械量测量、精密测控与系统、CCD)应塌技术、传感器原理及应用、光纤通信等课程 (5)误差分析与数据处理好比是仪器的思想,如信号分析i处理、数字信号与图像处理技术、误差职论从数据处5R、信号和线性系统、自动拧制理沦课程。 (6)工程光学、激光应用技术犹如仪器所使用的丁具v通过发射光(激光)信号来感知外部,这也是学生必须掌握的知识。 以上几个部分课程,合些知以是相互支又、渗透的,不司能分得很清楚,主要看各个学校对内容的取仑c学生只有全四掌握述的基础知识,刁能掌握测量与控制理论和有关测控仪器的设计方法、才能具有测拉技术仪器系统的府用及设计开发能力。来源——中国仪器仪表展览网

  • 现代仪器仪表已成为测量、控制和实现自动化必不可少的技术工具

    仪器仪表是多种科学技术的综合产物,品种繁多,使用广泛,而且不断更新,有多种分类方法。按使用目的和用途来分,主要有量具量仪、汽车仪表、拖拉机仪表、船用仪表、航空仪表、导航仪器、驾驶仪器、无线电测试仪器、载波微波测试仪器、地质勘探测试仪器、建材测试仪器、地震测试仪器、大地测绘仪器、水文仪器、计时仪器、农业测试仪器、商业测试仪器、教学仪器、医疗仪器、环保仪器等。属于机械工业产品的仪器仪表有工业自动化仪表、电工仪器仪表、光学仪器,分析仪器、实验室仪器与装置、材料试验机、气象晦洋仪器、电影机械、照相机械、复印缩微机械、仪器仪表元器件、电子磅遥控器、仪器仪表材料、仪器仪表工艺装备等十三类。它们通用性较强,批量较大,或为仪器仪表工业所必需的基础。各类仪器仪表按不同特征,例如功能、检测控制对象、结构、原理等还可再分为若干的小类或子类。如工业自动化仪表按功能可分为检测仪表、回路显示仪表、调节仪表和执行器等;其中检测仪表按被测物理量又分为温度测量仪表、压力测量仪表、流量测量仪表、物位测量仪表和机械量测量仪表等;温度测量仪表按测量方式又分为接触式测温仪表和非接触式测温仪表;接触式测温仪表又可分为热电式、膨胀式、电阻式等。其他各类仪器仪表的分类法大体类似,数字地磅遥控器主要与发展过程、使用习惯和有关产品的分类有关。仪器仪表在分类方面尚无统一的标准,仪器仪表的命名也存在类似情况。在现实实际工作中,我们经常将仪器仪表分为两个大类:自动化仪表和便携式仪器仪表,自动化仪表指需要固定安装在现场的仪表,也称现场安装仪器仪表或者表盘安装仪器仪表,这类仪表需要和其他设备配套使用,以完成某一项或几项功能;便携式仪器仪表是指单独使用,有时也叫检测仪器仪表,一般分台式和手持两种。仪器仪表还有一种分类,叫一次仪表和二次仪表,一次仪表指传感器这类直接感触被测信号的部分,二次仪表指放大、显示、传递信号部分。学技术的进步不断对仪器仪表提出更高更新的要求。仪器仪表的发展趋势是不断利用新的工作原理和采用新材料及新的元器件,例如利用超声波、微波、射线、红外线、核磁共振、超导、激光等原理和采用各种新型半导体敏感元件、集成电路、集成光路、光导纤维等元器件。其目的是实现电子称遥控器仪器仪表的小型化,减轻重量、降低生产成本和更便于使用与维修等。另一重要的趋势是通过微型计算机的使用来提高仪器仪表的性能,担高仪器仪表本身自动化、智能化程度和数据处理能力。仪器仪表不仅供单项使用,而且可能过标准接口和数据通道与电子计算机结合起来,组成各种测试控制管理综合系统,满足更高的要求。

  • 【转帖】2010仪器仪表学术、产业大会”探讨我国仪器仪表产业发展之路

    [b]2010年11月9-11日[/b],由中国仪器仪表学会主办,清华大学机械工程学院协办的“2010中国仪器仪表学术、产业大会”在北京京仪大酒店隆重举行。近五百名来自科研院所、企业界的仪器仪表产业相关人士参加了此次会议。  会议开幕式由中国仪器仪表学会副理事长吴幼华主持,中国仪器仪表学会理事长庄松林院士、清华大学金国藩院士、中国机械工业联合会执行副会长宋晓刚先生、中国科学技术协会学术部副部长朱雪芬女士、中国仪器仪表学会名誉副理事长陆廷杰先生、北京京仪集团有限责任公司党委书记王岩先生、天津大学副校长胡小唐教授等出席了开幕式。 本届大会的主题是测控技术推动战略性新兴产业。会议报告由大会报告和四个专题论坛(仪器科学与技术学科院长论坛、科学仪器论坛、自动化测控技术论坛、未来趋势论坛)组成。会议内容不仅包括物联网、新型传感器、云计算、生物芯片等诸多科学技术热门论题,与会专家还积极探讨了仪器仪表行业未来的发展趋势、目前面临的问题与挑战、仪器学科建设以及仪器人才的培养。

  • 网络电力仪表品种及选型方法

    1、概述网络电力仪表是针对电力系统、工矿企业、公共设施、智能大厦的电力监控需求而设计的。它能测量所有的常用电力参数,如三相电流、电压,有功、无功功率,电度、谐波等。由于该电力仪表还具备完善的通信联网功能,所以我们称之为网络电力仪表。它非常适合于实时电力监控系统。该表具有很高的性能价格比,可以直接取代常规电力变送器及测量仪表。作为一种先进的智能化、数字化的前端采集元件,该系列网络仪表已广泛应用于各种控制系统、SCADA系统和能源管理系统中。2、国内主要品牌及型号国内生产网络电力仪表厂家、型号品牌繁多,主要常见的产品有:雅达YD2200、YD2100、YD2110、YD2050、YD2030、YD2020智能电力检测控制仪表;溯高美DIRIS A20、A40,DIRIS CMV2;上海二工PD800H、PD800H-M13、PD800H-M14、PD800H-X13、PD800H-X14;保定华异特HYT-DN多功能电测仪;珠海派诺PMAC9900E综合电力测控仪等等。3、产品说明u 特点ACREL公司集多年电力测量产品设计之经验,采用现代微处理器技术和交流采样技术设计而成了该系列网络电力仪表。产品的设计充分考虑了成本效能化、智能性和可靠性,有以下特点:可直接从电流、电压互感器接入信号;可任意设定PT/CT变比;仪表显示可滚动设置;I/O开关量,继电器报警输出,4~20mA模拟量等功能模块化设计;多块仪表可设置不同地址;可通讯接入SCADA、PLC系统中;可与业界多种软件通讯(Intouch, Fix, Citec,组态网等);LED或蓝屏背光LCD显示,可视度高;方便安装,接线简单,工程量小;仪表采用专用失电保护电路,在失电情况下,数据保存不丢失,恢复电源后,仪表继续运行;四象限电能计量,分时计费,最大需量纪录及12个月电能统计。u 功能ACREL公司集多年的专业经验,推出了网络电力仪表。它是采用现代微处理器技术和交流采样技术设计而成。每个仪表可测量多种参数,作为远端监控系统(SCADA)的前端;可联网使用,亦可单独使用。网络电力仪表采用异步半双工RS485的通讯接口和MODBUS-RTU通讯协议,以满足您的自动化通信系统,使用低成本的屏蔽双绞线配线即可构造一可靠的通讯网络。不管是在微弱之照度下,亦或是完全漆黑的情况下高亮度发光LED显示器都会为您提供清晰的数据显示。对于该网络电力仪表的使用者来说,可以轻易地在短时间内学会本机四键式操作法,该电力仪表提供多窗口式显示功能,可让使用者同时读取多项电力参数。u 应用该系列网络电力仪表的应用领域非常广泛而且便于系统集成,凡是有电力供应的地方都有它们的用武之地,特点是在对电力品质、电力安全有较高要求的场合以及有自动化需要的场合。它适用于如下领域,并且已有众多成功应用经验。能源管理系统变电站自动化配电网自动化小区电力监控工业自动化智能建筑智能型配电盘、开关柜

  • 虚拟仪器技术在测控调闸系统中的应用

    摘要:本文描述了基于虚拟仪器思想在实际测控系统中的应用。通过选用多功能数据采集卡和信号调理电路组成自动测试系统,软件开发以专业测控工具LabWindows/CVI为平台,实现了数据采集、分析和处理。使整个测控系统既经济又便于操作,同时易于改进和功能扩展。同时,与基于传统的开发平台的测控系统进行了比较。   关键词:虚拟仪器;Labwindows/CVI;数据采集      1、引言      虚拟仪器是以一种全新的理念来设计和发展的仪器,它是20世纪90年代发展起来的一项新技术。虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种自动测试、过程控制、仪器设计、数据分析和自动化的应用。灵活高效的软件能帮助您创建完全自定义的用户界面,其基本思想是在仪器设计或测试系统中尽可能用软件代替硬件,即“软件就是仪器”,它是在通用计算机平台上,根据用户需求来定义和设计仪器的测试功能,其实质是充分利用计算机的最新技术来实现和扩展传统仪器的功能,这种测试仪器的硬件功能软件化,给测试仪器带来了深刻的变化,因此虚拟仪器代表了当前测试仪器发展的方向之一。      2、虚拟仪器的特点和构成      2.1虚拟仪器的特点   与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性好等明显优点。      2.2虚拟仪器的构成   虚拟仪器的构建主要从硬件电路的设计、软件开发与设计两个方面考虑。   根据目前我们所完成的测试设备,硬件电路的设计一般是选择现有的各种不同功能的板卡以及信号调理板来搭建。所选用板卡的功能包括:高速数据采集和信号转换;信号输出与控制;数据的A/D转换。将具有一种或多种功能的板卡结合信号调理板组建起来,就能构成任何一种虚拟仪器。例如使用高速数据采集板卡和高速实时数据处理就能构成1台示波器、1台数字化仪或 1台频谱分析仪;使用数字量信号输入/输出板卡和实时数据处理就能构成1台函数发生器、1台信号源或1台控制器。      3、虚拟仪器在实际测控系统中的应用      3.1虚拟仪器在航空机载电子测控系统中的应用   测控系统在航空机载成件中起着举足轻重的作用,提高和完善测控系统的精度和测试能力对于整个飞机性能分析具有重要的意义。我们主要完成了基于虚拟仪器的各型继电器盒、各型开关盒测控系统的测试。使用数字采集板及工控机并在LabWindows/CVI开发平台中实现了对整个测试的电压采集、对各型继电器盒的逻辑状态及延时时间进行输出存储和分析。  3.1.1 测试系统组成   整个测控系统由美国NI公司的LabWindows/CVI8.0,研华的1块PCI_1751 48路数字量输入/输出板,2块PCI_1754 64路数字量输入板、2块PCLD_785B 24通道继电器输出板、6块PCLD_782 24通道光电隔离数字量输入板,1块PCL_818L 16通道A/D转换板、若干信号调理板及工控机组成。   测控系统的数据采集和处理采用虚拟仪器测量平台。测控部分主要作用是参与被测产品的控制、测试数据处理和量化,驱动测试数据显示;工控机通过数字量输出板,经继电器输出板变换为被测产品的模拟控制信号;从被测产品采集来的电气逻辑信号经光电隔离数字量输入板转换为数字量信号,通过数字量输入板输至工控机;另外,利用A/D转换板来显示电压;利用系统时钟来完成被测产品的时间继电器延时时间的测试。   3.1.2 基于虚拟仪器的航空机载电子系统测控平台   该平台整体系统采用美国国家仪器公司的虚拟仪器专用开发平台LabWindows/CVI系统。由于CVI在标准C语言(Ansi C)的基础上增加了仪器控制和工具函数库的虚拟仪器开发软件,它的集成化开发平台、交互式编程方法、丰富的面板功能和库函数使其自身功能更加强大,应用更加方便,界面完全能够虚拟真实实物进行设计,使得人机对话界面直观、友好。   由于测试的产品种类多,归属性强,因此系统测控平台的用户界面采用下拉菜单式,所需测试的产品一目了然,选用方便。      3.2基于虚拟仪器的测控平台在测控系统中的应用所使用的几个关键技术   3.2.1 通过采用系统时钟的方法提高软件测时时间   在测试过程中要获得延时继电器的时间,一种方法是采用定时器/计数器板专门进行计数,另一种方法是采用系统时钟进行计数。由于所需测试的时间为秒级,要求误差为20%,采用后一种方法完全能达到,一是可以节约成本,二是选购的计算机可不必多配置一个插槽,节省了空间。在程序中使用了以下函数来获取高精度时间,它的精度可以达到毫秒级。   3.2.2 在测控系统中运用了数据库管理技术   由于Lab Windows/CVI开发平台能够方便使用NI公司开发的SQL工具包,使得大量的测试数据能够以数据库的形式存储、查询。   在测控系统中,可以通过所设置的产品名称、件号、时间、测试结果、温湿度、试验者、质控者等字段来进行保存,完成了一套产品的履历记录,通过查询产品的件号、时间等就可以调出每个产品的测试记录,这样就解脱了人工管理的诸多不便,提高了工作效率。   3.2.3 调用ActiveX自动化编程技术并打印生成了Excel表格   ActiveX自动化是一种能将单个应用程序和其他应用程序结合在一起的方法。通过Lab Windows/CVI提供的ActiveX控件可以直接调用Excel程序,并使用这些控件提供的函数对从Excel表格进行操作,从数据库中读取测试数据,转换并填入单元格,最后自动生成产品正式履历表并进行打印。      3.3 基于虚拟仪器的测控平台与一般测控平台比较   采用LabWindows/CVI开发工具使得不同的信号可以统一在同一个程序里面实现方便的采集与保存。继电器盒测试系统以前有一个运用Visual C++开发的测试平台,和基于虚拟仪器的测控平台相比,它们在本系统中功能的实现和维护都存在很大的差距。   首先运用Visual C++开发的测试平台不如使用LabWindows/CVI开发的基于虚拟仪器的测控平台简单方便[url=http://www.dttjf.c

  • 【分享】国内仪器仪表行业将发生高科技新变

    题目:国内仪器仪表行业将发生高科技新变随着科学技术的飞速发展和自动化程度的不断提高,我国仪器仪表行业也将发生新的变化并获得新的发展。 仪器仪表产品的高科技化,必将成为日后仪器仪表科技与产业的发展主流。   世界近20年来,微电子技术、计算机技术、精密机械技术、高密封技术、特种加工技术、集成技术、薄膜技术、网络技术、纳米技术、激光技术、超导技术和生物技术等高新技术得到了迅猛发展。这一背景和形势,不断地向仪器仪表提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、检测微损甚至无损、遥感遥测更远距、使用更方便、成本更低廉、无污染等,同时也为仪器仪表科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。   尤其需要指出的是:近10年来,由于包括纳米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果,以及高精密超性能特种功能材料研究成果和全球网络技术推广应用成果等在内的一大批当代最新技术成果的竞相问世,使得仪器仪表领域发生了根本性的变革。通过分析可以看出,高科技化不但是现代仪器仪表的主要特征,而且是振兴仪表工业的必由之路,也是新世纪仪器仪表及其产业的发展主流。   伴随现场总线的问世,过程测控仪表发展历程出现了重大转折和难得机遇。   目前现场总线已成为全球自动化技术的热点。现场总线是用于现场智能化仪表与控制室之间的一种开放、全数字化、双向、多站的通信系统。它的产生,既是广大用户的实际需求和制造厂商间技术竞争的结果,也是计算机技术、通信技术和控制技术在工业控制领域相结合的产物和产品升级,以及为实现进一步的高精度、高性能(特别是多参数在线实时测控与自动测控)、高稳定、高可靠、高适应性,多功能、低消耗等提供了巨大动力和发展空间。   应用领域,特别是非传统应用领域的进一步拓展,为仪器仪表工业的持续发展注入了新活力、新动力。   仪器仪表产品的总体发展趋势是“六高一长”和“二十化”。纵观历史,剖析现状,展望未来,可以提出如下结论:日后,传统的仪器仪表将仍然朝着高性能、高精度、高灵敏、高稳定、高可靠、高环保和长寿命的“六高一长”的方向发展。新型的仪器仪表与元器件将朝着小型化(微型化)、集成化、成套化、电子化、数字化、多功能化、智能化、网络化、计算机化、综合自动化、光机电一体化;在服务上专门化、简捷化、家庭化、个人化、无维护化以及组装生产自动化、无尘(或超净)化、专业化、规模化的“二十化”的方向发展。在这“二十化”中,占主导地位、起核心或关键的作用是微型化、智能化和网络化。

  • 【原创】仪器仪表发展动态1

    我的说明:公司近期要出版一本内部刊物,我通过学习,写了本文,由于知识的匮乏,无法达到预计的效果,现拿出来供大家消闲,不要见笑为是!作为一个从事仪器仪表工作的技术员,有必要知道仪器仪表的发展方向,知道仪器仪表技术之风往哪个方向吹,本文将介绍仪器仪表的发展状况及趋势。仪器仪表的发展伴随着物理、化学、数学、电子、机电、自动化和计算机等科学技术的发展而得以前进,仪器仪表主要经历了从手工仪器、传统仪器到智能仪器、虚拟仪器和网络化仪器五个发展阶段。而传统的仪器又分有三个阶段:电子管模拟仪器、晶体管模拟仪器和集成电路模拟仪器。从仪器仪表的结构上讲,仪器仪表完成三个基本功能:信号采集与控制;信号分析与处理;测得结果表达与输出。上述三个基本功能的完善程度是衡量仪器仪表发展阶段的标志。一、仪器仪表发展概况手工仪器是仪器仪表发展的原始形态,集体的体现形式为通用的量衡具器,比如各种玻璃仪器就是典型的代表。其发展轨迹多数已经无从可考,但可以断定其是17-19世纪,以及20世纪初期科学技术发展的强大动力。但无论如何,它只完成了信号采集和一些过程结果表达的基本任务,至于分析处理以及最终结果换算都得靠人工来完成。 传统仪器是伴随电子技术发展而发展起来的,在1904年,第一只电子管的出世,使仪器的发展进入另一个阶段。仪器仪表已经不仅仅具有原始仪器的功能,而且具有了基本的信号的处理和分析。但是,无论是电子管、还是晶体管仪器,都不能直接输出结果。随着数字芯片的出现于是智能仪器出现了。20世纪50年代初期,数字技术的出现使各种数字仪器得以问世,把模拟仪器仪表的精度、分辨力与测量速度提高了几个量级,仪器仪表也取得了重大突破,为实现测试自动化打下了良好的基点。而且检测技术也得到日新月异的发展,各种传感器和基本物理化学理论得到深入挖掘,也为智能仪器的发展提供强有力的支撑。20世纪60年代中期,测量技术又一次取得了进展,随着中规模和大规模集成电路的研制成功,计算机也随之诞生。计算机的引入,使仪器仪表的功能发生了质的变化,从个别电量的测量转变成测量整个系统的待征参数,从单纯的接收、显示转变为控制、分析、处理、计算与显示输出,从用单个仪器仪表进行测量转变成用测量系统进行测量。20世纪70年代,计算机技术在仪器仪表中的进一步渗透,使电子仪器在传统的时域与频域之外,又出现了数据域(Data domain)测试。在数据的处理上出现了多元化的方向发展,仪器仪表已经不再是单纯的测试测量功能。但是计算机和测试单元还是分立的单元,并没有形成一种整体。20世纪80 年代,由于微处理器被用到仪器中,仪器前面板开始朝键盘化方向发展,过去直观的用于调节时基或幅度的旋转度盘,选择电压电流等量程或功能的滑动开关,通、断开关键已经消失。测量系统的主要模式,是采用机柜形式,全部通过IEEE-488总线送到一个控制品上。测试时,可用丰富的BASIC语言程序来高速测试, 不同于传统独立仪器模式的个人仪器已经得到了发展。仪器仪表变成了智能化的整体,也就是通常所说的集成的仪器。20世纪90年代,总线技术、网络技术和计算机技术给仪器仪表打上深深的烙印,仪器仪表与测量科学进步取得重大的突破性进展。这个进展的主要标志是仪器仪表智能化程度的飞跃性提高,突出表现在以下几个方面:微电子技术的进步将更深刻地影响仪器仪表的设计;DSP芯片的大量问世, 使仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力;图像处理功能的增加十分普遍;VXI总线得到广泛的应用。虚拟仪器(NI)就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。灵活高效的软件能够创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。这也正是NI近30年来始终引领测试测量行业发展趋势的原因所在。只有同时拥有高效的软件、模块化I/O硬件和用于集成的软硬件平台这三大组成部分,才能充分发挥虚拟仪器技术性能高、扩展性强、开发时间少,以及出色的集成这四大优势。网络化仪器的应用有效地降低了测试系统的成本,实现了远程测控、资源共享、测试设备远程诊断与维护。测控网络正由原来的集中模式转变为分布模式,成为具有开放性、可互操作性、分散性、网络化、智能化的测控系统。另外,高精度测量、非接触测量和高效率测量也是测量仪器的重要发展方向。而现在的系统集成技术是网络化仪器的必经之路,也是网络化仪器的起步。从某种意义上说,基于Intenet的测控系统即网络化仪器,是测量仪器的发展趋势。

  • 【新闻】近二十年仪器仪表工业发展的四大潮

    仪器仪表产品的高科技化,必将成为日后仪器仪表科技与产业的发展主流世界近二十年来,微电子技术、计算机技术、精密机械技术、高密封技术、特种加工技术、集成技术、薄膜技术、网络技术、纳米技术、激光技术、超导技术、生物技术等高新技术获得了迅猛发展。这一背景和形势,不断地向仪器仪表提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、检测微损甚至无损、遥感遥测遥控更远距、使用更方便、成本更低廉、无污染等,同时也为仪器仪表科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。 尤其需要指出的是:近十年来,由于包括纳米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果、新型传感器技术与智能化技术研究成果,以及高精密超性能特种功能材料研究成果和全球网络技术推广应用成果等在内的一大批当代最新科技成果的竞相问世,使得仪器仪表领域发生了根本性的变革——这些新成果,不仅成了现代仪器仪表及其产业赖以生存与发展的土壤、基础、支撑与动力,而且还正在迅速改变仪器仪表的工作原理与本质特征,并使其具备和拥有了传统仪器仪表根本无法企及与实现的众多的、全新的、超高的功能。可以说,现代仪器仪表产品已成为最具典型性的高科技产品。目前,它不但已经完全突破了传统的光、机、电的框架,向着计算机化、网络化、智能化、多功能化的方向迅速发展,而且由于大量采用高新科学技术的研究成果、跨学科的综合设计、高精尖的制造技术与严格科学的实际应用,因而使得它还正朝着更高速、更灵敏、更可靠、更简捷地获取被分析、检测、控制对象全方位信息的方向阔步前进。通过以上分析可以看出,高科技化不但是现代仪器仪表的主要特征,而且是振兴仪表工业的必由之路,也是新世纪仪器仪表及其产业的发展主流。 伴随现场总线的问世,过程测控仪表发展历程出现了重大转折和难得机遇. 目前,现场总线已成为全球自动化技术的热点。现场总线是用于现场智能化仪表与控制室之间的一种开发、全数字化、双向、多站的通信系统。它的产生,既是广大用户的实际需求和制造厂商间技术竞争的结果,也是计算机技术、通信技术和控制技术在工业控制领域相结合的产物。现场总线的出现,为仪器仪表的更新换代、产品升级,以及实现进一步的高精度、高性能(特别是多参数在线实时测控与自动测控)、高稳定、高可靠、高适应性、多功能、低消耗等提供了巨大动力和发展空间。 应用领域,特别是非传统应用领域的进一步拓展,为仪器仪表工业的持续发展注入了新活力、新动力回顾仪器仪表工业的发展进程,可以清晰地看出:时至今日,仪器仪表的应用范围已经覆盖了人类活动的所有领域,并且正从传统的化学成分分析、物理量检测、机械量测量、天文地理观测、工业生产过程自动控制、产品质量测控等传统应用领域,进一步向生物医学、生物工程、生态环境等非传统应用领域扩展。同时,随着新世纪高分子化学、分子生物学、生命科学、临床医学、药学、材料、环境监测与控制等高新科技与产业的发展,仪器仪表的应用领域还将获得更为迅速的拓展。 例如,去年在匹兹堡召开的国际化学与应用光谱学学术会议上就提出了有关人体“综合形态分析”的概念,并希望尽快研制与开发出可“直接”观察人体各组成部分及其化学成分图像的仪器仪表系统。可以说,现代科技的进步,使仪器仪表的应用领域越来越广阔,越来越深入。这一切,无疑为仪器仪表的进一步发展提供了又一强大动力,并展示了光明美好的前景。

  • 【分享】仪器仪表工业正在迅猛发展

    [URL=http://www.kangtian888.com]仪器仪表[/URL]产品的高科技化,必将成为日后[URL=http://www.kangtian888.com/news.asp?id=362]仪表仪器[/URL]科技与产业的发展主流世界近二十年来,微电子技术、计算机技术、精密机械技术、高密封技术、特种加工技术、集成技术、薄膜技术、网络技术、纳米技术、激光技术、超导技术、生物技术等高新技术获得了迅猛发展。   目前,现场总线已成为全球自动化技术的热点。现场总线是用于现场[URL=http://www.kangtian888.com/product.asp?action=气体分析/检测仪器]智能化仪表[/URL]与控制室之间的一种开发、全数字化、双向、多站的通信系统。它的产生,既是广大用户的实际需求和制造厂商间技术竞争的结果,也是计算机技术、通信技术和控制技术在工业控制领域相结合的产物。现场总线的出现,为仪器仪表的更新换代、产品升级,以及实现进一步的高精度、高性能(特别是多参数在线实时测控与自动测控)、高稳定、高可靠、高适应性、多功能、低消耗等提供了巨大动力和发展空间。   应用领域,特别是非传统应用领域的进一步拓展,为[URL=http://www.kangtian888.com]仪器仪表[/URL]工业的持续发展注入了新活力、新动力回顾仪器仪表工业的发展进程,可以清晰地看出:时至今日,仪器仪表的应用范围已经覆盖了人类活动的所有领域,并且正从传统的化学成分分析、物理量检测、机械量测量、天文地理观测、工业生产过程自动控制、产品质量测控等传统应用领域,进一步向生物医学、生物工程、生态环境等非传统应用领域扩展。同时,随着新世纪高分子化学、分子生物学、生命科学、临床医学、药学、材料、环境监测与控制等高新科技与产业的发展,[URL=http://www.kangtian888.com/news.asp?id=362]仪表仪器[/URL]的应用领域还将获得更为迅速的拓展。例如,去年在匹兹堡召开的国际化学与应用光谱学学术会议上就提出了有关人体“综合形态分析”的概念,并希望尽快研制与开发出可“直接”观察人体各组成部分及其化学成分图像的仪器仪表系统。可以说,现代科技的进步,使[URL=http://www.kangtian888.com/news.asp?id=362]仪表仪器[/URL]的应用领域越来越广阔,越来越深入。这一切,无疑为[URL=http://www.kangtian888.com]仪器仪表[/URL]的进一步发展提供了又一强大动力,并展示了光明美好的前景。

  • 【转帖】国产仪器仪表要实现从低到高转变

    中国仪器仪表行业协会理事长奚家成近日在接受记者采访时表示,由于技术水平差距和准入困难等原因,我国自动化控制系统和现场仪表目前已形成中低档产品以本国企业为主,高中档产品以外资企业为主;大中型工程项目依靠国外,中小型工程项目选用国内的市场格局。在某种意义上可以说,自控系统和关键测试仪器正在成为我国装备现代化的瓶颈。因此,发展重大工程自动化控制系统和关键精 密测试仪器,满足重点建设工程及其他重大(成套)技术装备高度自动化和智能化的需要,是贯彻落实《国务院关于加快振兴装备制造业的若干意见》的重要组成部分,意义十分重大。 关系国家经济安全 奚家成指出,自控系统和关键测试仪器的重要性首先表现在,没有控制系统和关键测试仪器的国产化,就不能自主、完整地掌握和发展重大装备的核心技术。 测量和自动化控制技术是现代工业的核心技术之一,自控系统和关键测试仪器是重大装备的重要组成部分。能源、重化工等产业是工业经济的支柱产业,大型电力、石化、冶金企业的重大装备是多种技术和众多设备的集成。自控系统及测试设备监测和控制整个工艺流程及产品质量,保障重大装备的安全可靠运行和实施高效优化,是整个装备的神经中枢、运行中心和安全屏障。没有相应的测控设备,大型化、高参数化、工况复杂化的现代工业重大装备将无法运行。 现代流程工业的工艺参数、技术特点、Know-how专利绝大部分都由主设备与测控设备硬软件紧密结合予以实施。为了重大技术装备核心技术的发展,国外掌握核心技术的知名总成公司都与一流的仪控企业结成战略联盟,并签订保密协议。“在某种意义上可以说,发展重大工程自动化控制系统关系到国家的经济安全。”奚家成如是说。 奚家成指出,自控系统和关键测试仪器的重要性同时表现在,按照建立资源节约型、环境友好型社会和发展循环经济的要求,自控系统与仪器仪表是不可或缺的。 自控系统和仪器仪表是节约能源、保护环境、实现循环经济的重要手段。无论是合理利用资源还是保护环境,最首要的问题就是测量问题。离开了测量,生产成本的控制和质量保证,节约能源和环境治理都没有依据,这涉及到国民经济的各个领域。如在工业生产过程中对原材料、零部件性能的检测、试验、产成品质量的确认都需要各类测试仪器仪表;农业生产中的土壤分析、种子和作物的质量分析;环境保护工程中大江大河治理、污染源的监测也都越来越依靠精密测试仪器。 对高科技产业发展至关重要 奚家成强调说,自控系统和关键测试仪器的重要性还表现在,没有高水平、高质量的自控系统和仪器仪表,工业信息化将无从谈起。 自控系统和仪器仪表是信息化的重要设备,工业的信息化是重大装备主设备可控性、测控设备适用性及信息优化应用的综合成果。“十一五”规划强调走新型工业化的道路,坚持以信息化带动工业化、以工业化促进信息化的指导方针。工业企业的信息化必须解决信息的采集、测量、处理、应用和传输等技术及其相关设备。仪器仪表是各种复杂工况下的信息采集测量设备,控制系统是信息的实时处理应用设备。典型的信息化工业企业由过程控制系统(PCS)、生产管理系统(MES)和企业资源管理系统(ERP)三级组成。由仪器仪表和自控系统组成的PCS是工业企业信息化的第一级--基础级,没有高水平、高质量的PCS,也就不可能实施MES和ERP,无法实现工业企业的信息化。 奚家成指出,自控系统和关键测试仪器的重要性也表现在,关键精密测试仪器是高科技产业和前沿性科学研究的基础支撑。 21世纪是以现高科技带动经济和社会发展的新时代。“十一五”规划提出大力发展信息、生物、新材料、新能源、航空航天等高科技产业,并且加强信息、生命、空间、海洋、纳米及新材料等战略领域的基础研究、前沿技术研究和超前部署。关键测试设备在高科技产业和前沿科学研究中的作用至关重要,有时甚至是决定性的。“跟踪国际上的进展,坚持自主创新,逐步发展我国的关键精密仪器,打破控制和垄断,这对我国发展高科技产业和进行前沿性科学研究具有重要意义

  • 仪器仪表与测量技术的发展方向分析

    相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。  20世纪70年代以来,计算机、微电子等技术迅猛发展。在它们的推动下,同时也是为适应现代化工农业生产甚至战争的新需求,测量技术与仪器不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测试系统,计算机与现代仪器设备间的界限日渐模糊,测量领域和范围不断拓宽。近10年来,以Internet为代表的网络技术的出现以及它与其他高新科技的相互结合,不仅己开始将智能互联网产品带入现代生活,而且也为测量与仪器技术带来了前所未有的发展空间和机遇,网络化测量技术与具备网络功能的新型仪器应运而生。  计算机、微电子、通信和网络等技术是网络化测量技术与仪器产生并迅速发展的强劲支撑  计算机就是仪器  自从迅猛发展的计算机技术及微电子技术渗透到测量和仪器仪表技术领域,便使该领域的面貌不断更新。相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬  件优势,从而既增加了测量功能,又提高了技术性能。由于信号被采集变换成数字形式后,更多的分析和处理工作都由计算机来完成,故很自然使人们不再去关注仪器与计算机之间的界限。近年来,新型微处理器的速度不断提高,采用流水线、RISC结构和cachE等先进技术,又极大提高了计算机的数值处理能力和速度。在数据采集方面,数据采集卡、仪器放大器、数字信号处理芯片等技术的不断升级和更新,也有效地加快了数据采集的速率和效率。与计算机技术紧密结合,已是当今仪器与测控技术发展的主潮流。对微机化仪器作一具体分析后,不难见,配以相应软件和硬件的计算机将能够完成许多仪器、仪表的功能,实质上相当于一台多功能的通用测量仪器。这样的现代仪器设备的功能已不再由按钮和开关的数量来限定,而是取决于其中存储器内装有软件的多少。从这个意义上可认为,计算机与现代仪器设备日渐趋同,两者间已表现出全局意义上的相通性。据此,有人提出了计算机就是仪器/软件就是仪器的概念。  计算机就是测控系统的中坚  总线式仪器、虚拟仪器等微机化仪器技术的应用,使组建集中和分布式测控系统变得更为容易。但集中测控越来越满足不了复杂、远程(异地)和范围较大的测控任务的需求,对此,组建网络化的测控系统就显得非常必要,而计算机软、硬件技术的不断升级与进步、给组建测控网络提供了越来越优异的技术条件。  UNIx、WindowsNT、Windows2000、Netware等网络化计算机操作系统,为组建网络化测试系统带来了方便。标准的计算机网络协议,如OSI的开放系统互连参考模型RM、Internet上使用的TCP/IP协议,在开放性、稳定性、可靠性方面均有很大优势,采用它们很容易实现测控网络的体系结构。在开发软件方面,比如NI公司的labview和LabWindows/CVI,HP公司的VEE,微软公司的的VB、VC等,都有开发网络应用项目的工具包。软件是虚拟仪器开发的关键,如Labview和LabWindows/CVI的功能都十分强大,不仅使虚拟仪器的开发变得简单方便,而且为把虚拟仪器做到网络上,提供了可靠,便利的技术支持。LabWindows/CVI中封装了TCP类库,可以开发基于TCP/Ip的网络应用。Labview的TCP/IP和UDP网络VI能够与远程应用程序建立通信,其具有的Internet工具箱还为应用系统增加了E-mail、FTP和Web能力;利用远程自动化VI,还可对控制其他设备的分散的VI进行控制。Labview5.1中还特别增加有网络功能,提高了开发网络应用程序的能力。  将计算机、高档外设和通信线路等硬件资源以及大型数据库、程序、数据、文件等软件资源纳入网络,可实现资源的共享。其次,通过组建网络化测控系统增加系统冗余度的方法能提高系统的可靠性,便于系统的扩展和变动。由计算机和工作站作为结点的网络也就相当于现代仪器的网络。计算机已成为现代测控系统的中坚。转自塑料问答

  • 仪器仪表与测量技术的发展方向解析

    相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。  20世纪70年代以来,计算机、微电子等技术迅猛发展。在它们的推动下,同时也是为适应现代化工农业生产甚至战争的新需求,测量技术与仪器不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测试系统,计算机与现代仪器设备间的界限日渐模糊,测量领域和范围不断拓宽。近10年来,以Internet为代表的网络技术的出现以及它与其他高新科技的相互结合,不仅己开始将智能互联网产品带入现代生活,而且也为测量与仪器技术带来了前所未有的发展空间和机遇,网络化测量技术与具备网络功能的新型仪器应运而生。  计算机、微电子、通信和网络等技术是网络化测量技术与仪器产生并迅速发展的强劲支撑  计算机就是仪器  自从迅猛发展的计算机技术及微电子技术渗透到测量和仪器仪表技术领域,便使该领域的面貌不断更新。相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。由于信号被采集变换成数字形式后,更多的分析和处理工作都由计算机来完成,故很自然使人们不再去关注仪器与计算机之间的界限。近年来,新型微处理器的速度不断提高,采用流水线、RISC结构和cachE等先进技术,又极大提高了计算机的数值处理能力和速度。在数据采集方面,数据采集卡、仪器放大器、数字信号处理芯片等技术的不断升级和更新,也有效地加快了数据采集的速率和效率。与计算机技术紧密结合,已是当今仪器与测控技术发展的主潮流。对微机化仪器作一具体分析后,不难见,配以相应软件和硬件的计算机将能够完成许多仪器、仪表的功能,实质上相当于一台多功能的通用测量仪器。这样的现代仪器设备的功能已不再由按钮和开关的数量来限定,而是取决于其中存储器内装有软件的多少。从这个意义上可认为,计算机与现代仪器设备日渐趋同,两者间已表现出全局意义上的相通性。据此,有人提出了计算机就是仪器/软件就是仪器的概念。  计算机就是测控系统的中坚  总线式仪器、虚拟仪器等微机化仪器技术的应用,使组建集中和分布式测控系统变得更为容易。但集中测控越来越满足不了复杂、远程(异地)和范围较大的测控任务的需求,对此,组建网络化的测控系统就显得非常必要,而计算机软、硬件技术的不断升级与进步、给组建测控网络提供了越来越优异的技术条件。  UNIx、WindowsNT、Windows2000、Netware等网络化计算机操作系统,为组建网络化测试系统带来了方便。标准的计算机网络协议,如OSI的开放系统互连参考模型RM、Internet上使用的TCP/IP协议,在开放性、稳定性、可靠性方面均有很大优势,采用它们很容易实现测控网络的体系结构。在开发软件方面,比如NI公司的labview和LabWindows/CVI,HP公司的VEE,微软公司的的VB、VC等,都有开发网络应用项目的工具包。软件是虚拟仪器开发的关键,如Labview和LabWindows/CVI的功能都十分强大,不仅使虚拟仪器的开发变得简单方便,而且为把虚拟仪器做到网络上,提供了可靠,便利的技术支持。LabWindows/CVI中封装了TCP类库,可以开发基于TCP/Ip的网络应用。Labview的TCP/IP和UDP网络VI能够与远程应用程序建立通信,其具有的Internet工具箱还为应用系统增加了E-mail、FTP和Web能力;利用远程自动化VI,还可对控制其他设备的分散的VI进行控制。Labview5.1中还特别增加有网络功能,提高了开发网络应用程序的能力。  将计算机、高档外设和通信线路等硬件资源以及大型数据库、程序、数据、文件等软件资源纳入网络,可实现资源的共享。其次,通过组建网络化测控系统增加系统冗余度的方法能提高系统的可靠性,便于系统的扩展和变动。由计算机和工作站作为结点的网络也就相当于现代仪器的网络。计算机已成为现代测控系统的中坚。

  • 【原创】仪器仪表发展动态2

    二、仪器仪表发展特点1 新技术的应用。就如奥林匹克运动的口号是更高、更快、更强一样,仪器仪表在提高检测控制技术指标上是永远的追求。而使用最新的技术是仪器仪表不变的方向,目前EDA(电子设计自动化)、CAM(计算机辅助制造 ) 、CAT(计算机辅助测试)、DSP(数字信号处理)、ASIC(专用集成电路)及SMT(表面贴装技术)等被仪器仪表广泛应用。 现代仪器仪表作为人类认识物质世界、改造物质世界的第一手工具,是人类进行科学研究和工程技术开发的最基本工具。人类很早就懂得“工欲善其事,必先利其器”的道理,新的科学研究成果和发现如信息论、控制论、系统工程理论,微观和宏观世界研究成果及大量高新技术如微弱信号提取技术,计算机软、硬件技术,网络技术,激光技术,超导技术,纳米技术等均成为仪器仪表和测量控制科学技术发展的重要动力,现代仪器仪表不仅本身已成为高技术的新产品,而且利用新原理、新概念、新技术、新材料和新工艺等最新科技术成果集成的装置和系统层出不穷。2 产品结构变化,注重性能价格化。测量控制仪器仪表大量采用新的传感器、大规模和超大规模集成电路、计算机及专家系统等信息技术产品,不断向微小型化、智能化发展,从目前出现的芯片式仪器仪表和芯片实验室等看,单个装置的微小型化和智能化将是个体产品长期发展趋势。从应用技术看,微小型化和智能化装置的嵌入式连接和联网应用技术得到重视。在重视高档仪器开发的同时,注重高新技术和量大面广,也就是通常所说“多功能,大集成”。产品的开发与生产。注重系统集成,不仅着眼于单机,更注重系统、产品软化,随着各类仪器装上了CPU,实现了数字化后,软件上投入了巨大的人力、财力, 今后的仪器归纳成一个简单的公式:仪器=AD/DA+CPU+软件,AD芯片将模拟信号变成数字信号,再经过软件处理变换后用DA输出。而软件将成为仪器仪表的另一个核心。3 产品开发准则发生了变化。从技术或市场驱动转为技术和市场共同驱动,从一味追求高精尖转为“恰到好处”。开发一项成功产品的准则是——使用最合理的技术,满足用户明确的需求;采用最直接的开机技术,能用最短的开发时间投放市场;功能与性能要恰到好处。产品开发准则的另一变化是收缩方向,集中优势。集中自己又是的技术开发出最为适用的产品,开发不再是单独社会个体的职责,而是全社会力量的结合。4 生产技术注重专业生产,不求大全。生产过程采用自动测试系统。目前多数组建自动测试系统,生产线上一个个大的测试柜,快速地进行自动测试、统计、分析、打印出结果。世界是一个大工厂,而生产也将不局限在某个生产实体的工作,而是很多优势实体的综合。这就是分工合作的优势。最终的生产是自己的设计理念,将社会上优秀的产品组合成满足用户需求的仪器仪表,并对产品进行组装。三、仪器仪表发展趋势 国际仪器仪表发展极为迅速,仅以科学仪器中的分析仪器为例,世界分析仪器市场年销售总额由2000年256亿美圆到2002年增至316亿美圆,年增长11%以上,是全球经济增长速度的3~4倍。近10几年来国际仪器仪表发展的主要趋势是:随着集成芯片的发展和计算机技术在仪器仪表中的进一步渗透,使电子仪器在传统的时域与频域之外,又出现了数据域测试。DSP芯片的大量问世,使仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力和图象处理功能;现场总线技术使仪器仪表的远程控制操作成为可能,Internet和Internet技术也将仪器仪表开发引入控制领域。 像所有的科学学科一样,现代仪器仪表产品将向着计算机化、网络化、智能化、多功能化的方向发展,跨学科的综合设计、高精尖的制造技术使它能更高速、更灵敏、更可靠、更简捷地获取被分析、检测、控制对象的全方位信息。 未来,而更高程度的智能化应包括理解、推理、判断与分析等一系列功能,是数值、逻辑与知识的结合分析结果,智能化的标志是知识的识别、表达、应用与分析。而利用高速发展信息技术、软件技术和网络技术,虚拟仪器、网络仪器将与智能仪器成为仪器仪表发展的三叉戟。利用物理学的新效应和高新技术及其成就开发新型高灵敏度、高稳定性、强抗干扰能力传感器技术和测试仪器仪表。仪器仪表正在经历一场革命性的变化,传统的光学、热学、电化学、色谱、波谱类分析技术都已从经典的化学精密机械电子结构、实验室内人工操作应用模式,转化为光、机、电、算(计算机)一体化、自动化的结构,并正向更名副其实的智能系统发展(带有自诊断自控、自调、自行判断决策等高智能功能)。 由于以信息技术为代表高新科学技术的突飞猛进,使科学仪器的工作原理,设计思想、设计方法发生了明显的变化。随着测量控制仪器仪表所测控的既定区域不断向立体化、全球化甚至星球化发展,仪器仪表和测控装置已不再呈单个装置形式,它必然向测控装置系统、网络化方向发展。仪器仪表技术虽然呈现多向发展,但其关键技术主要还是表现为:(1)微分析技术即分析仪器的微型化和微量化,其共性技术有微控技术、微加工技术、微检测技术、微光源、微分光光学系统、微传感器等,应用上述技术的微分析仪器如:微流控制芯片、芯片实验室、微[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]等。(2)生物、化学传感器包括新型传感技术在分析仪器中的应用,将生物芯片技术,新型化学传感技术,智能传感器技术应用于分析仪器的研制。(3)成像技术包括广义成像,纳米级超高分辨成像,信息处理等,具体的领域有:核磁共振技术、图像自动分析及综合技术、成像光谱技术、近场光学成像技术。(4)仪器的联用技术通过信息分离、专用软件接口技术,实现多种科学技术间的联用以实现复杂系统的痕量成份分析、结构分析、形态分析等综合分析,如:色谱-质谱联用、色谱-光谱联用等。多台仪器、多个实验室结合的综合分析管理系统(LIMS,Laboratory Information Management System)已经推广应用;仪器可以上网、制造厂商进行远距诊断、指导正确使用或提出维修指导,各同类仪器用户或相同分析工作用户直接进行数据、情报共享,仪器的远程校准和量值溯源等已指日可待。分析仪器在生物、环保、医学等有关人的生存、发展领域的应用日新月异,现代高科技军事方面的发展也促进了分析技术和分析仪器的应用拓展,灵敏、准确的现场毒物检测、生命保障任务也大大扩大了分析了仪器的应用领域。而仪器仪表已经渗透到日常生活的方方面面。

  • 【分享】现场仪表系统的故障分析

    现场仪表系统的故障分析,一、现场仪表系统故障的基本分析步骤现场仪表测量参数一般分为温度、压力、流量、液位四大参数。现根据测量一、现场仪表系统故障的基本分析步骤现场仪表测量参数一般分为温度、压力、流量、液位四大参数。现根据测量参数的不同,来分析不同的现场仪表故障所在。1.首先,在分析现场仪表故障前,要比较透彻地了解相关仪表系统的生产过程、生产工艺情况及条件,了解仪表系统的设计方案、设计意图,仪表系统的结构、特点、性能及参数要求等。2.在分析检查现场仪表系统故障之前,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障仪表的记录曲线,进行综合分析,以确定仪表故障原因所在。3.如果仪表记录曲线为一条死线(一点变化也没有的线称死线),或记录曲线原来为波动,现在突然变成一条直线 故障很可能在仪表系统。因为目前记录仪表大多是DCS计算机系统,灵敏度非常高,参数的变化能非常灵敏的反应出来。此时可人为地改变一下工艺参数,看曲线变化情况。如不变化,基本断定是仪表系统出了问题 如有正常变化,基本断定仪表系统没有大的问题。4.变化工艺参数时,发现记录曲线发生突变或跳到最大或最小,此时的故障也常在仪表系统。5.故障出现以前仪表记录曲线一直表现正常,出现波动后记录曲线变得毫无规律或使系统难以控制,甚至连手动操作也不能控制,此时故障可能是工艺操作系统造成的。6.当发现DCS显示仪表不正常时,可以到现场检查同一直观仪表的指示值,如果它们差别很大,则很可能是仪表系统出现故障。总之,分析现场仪表故障原因时,要特别注意被测控制对象和控制阀的特性变化,这些都可能是造成现场仪表系统故障的原因。所以,我们要从现场仪表系统和工艺操作系统两个方面综合考虑、仔细分析,检查原因所在。

  • 自动化仪表在水处理系统中的应用1

    随着我国改革开放政策的深化和国外贷款项目的不断增多,计算机测控管理系统已普遍进入净水厂自动化领域。目前,国内净水厂自控系统采用最多的是由工业计算机(IPC)+可编程序逻辑控制器(PLC)+自动化仪表组成的多级分布式计算机测控管理系统。    一 自动化仪表在水处理系统中的重要地位    在现代化的净水厂中,每一个生产过程总是与相应的仪表及自控技术有关。仪表能连续检测各工艺参数,根据这些参数的数据进行手动或自动控制,从而协调供需之间、系统各组成部分之间、各水处理工艺之间的关系,以便使各种设备与设施得到更充分、合理的使用。同时,由于检测仪表测定的数值与设定值可连续进行比较,发生偏差时,立即进行调整,从而保证水处理质量。根据仪表检测的参数,能进一步自动调节和控制药剂投加量,保证水泵机组的合理运行,使管理更加科学化,达到经济运行的目的。由于仪表具有连续检测、越限报警的功能,便于及时处理事故。仪表还是实现计算机控制的前提条件。所以在先进的水处理系统中,自动化仪表具有非常重要的作用。    二 水处理系统常用仪表的分类    给水工程所用仪表大致可分为两大类:一类属于监测生产过程物理参数的仪表,如检测温度、压力、液位、流量等。这类仪表采用国产表,其性能和质量基本能满足要求。另一类属于检测水质的分析仪表,如检测水的浊度、pH值、溶氧含量、余氯、SCD值等。这些专用仪表在我国发展比较晚,因此,通常选用国外先进产品,从长远观点看是比较经济、可靠的。    检测仪表的好坏直接关系到给水自动化的效果。在工程设计过程中,从仪表的性能、质量、价格、备件情况、售后服务等方面进行反复比较,我们一般采用进口仪表和国产仪表相结合的方法。    三 净水厂监控系统的构成模式及监测参数    1. 净水厂监控系统的构成模式    净水厂的监控系统一般由水厂管理层和现场监控层两级系统构成,按集中管理、分散控制的原则进行监控。在工程设计中,将厂级计算机系统(即主站)设在水厂中心控制室,各现场监控站(即分站)的数量和位置按工艺流程及构筑物的位置、分散程度来定。一般地表水厂现场分站的设置是:进水泵房分站、反应沉淀与加氯加药分站、过滤分站、送水泵房及变配电室分站、污泥处理分站。各监测仪表的数据均送到计算机系统,可在监控站的工控机上显示、控制并打印、记录、报警。    2. 各分站监测参数    a. 进水泵房分站监测参数    水质参数:源水浊度、pH值、水温、溶解氧等。    运行参数:调节池水位、吸水井水位、源水流量、泵机分电量、泵站总电量等。    b. 反应沉淀、加氯加药分站    水质参数:沉淀池出口浊度、滤后余氯、SCD值。    运行参数:沉淀池水位、沉淀前流量、搅拌罐液位、药池液位、药液浓度、沉淀池泥位。    c. 过滤分站    水质参数:滤后水浊度、余氯。    运行参数:滤池水位、水头损失、反冲洗水流量、冲洗水箱水位。    d. 送水泵房及变配电室分站    水质参数:出厂水流量、余氯。    运行参数:出厂水压力、流量、清水池水位、吸水井水位、交流电压、交流电流、电量等。    e. 污泥处理分站    运行参数:回流池水位、水量、浓缩池水位、回流水浊度。    四 水处理系统常用仪表在选型及设计中应注意的问题    1. 仪表选配的一般要求    (1)精确度:是指在正常使用条件下,仪表测量结果的准确程度,误差越小,精确度越高。    生产过程物理检测仪表的精确度为±1%,水质分析仪表的精确度为±2%(测高浊水的浊度仪的精确度为±5%)。    (2)响应时间:当对被测量进行测量时,仪表指示值总要经过一段时间才能显示出来,这段时间即为仪表的响应时间。一只仪表能不能尽快反应出参数变化的情况,是很重要的指标。对水质分析仪表要求的响应时间应不超过3min。    (3)输出信号:仪表的模拟输出应是4~20mA DC信号,负载能力不小于600Ω。    (4)仪表的防护等级应满足所在环境的要求,一般应不低于IP65,用于药剂投加系统的检测仪表要求能耐腐蚀。    (5)四线制的仪表电源多为220V AC、50Hz,两线制的仪表电源为24V DC。    (6)现场监测仪表宜选用数显仪。    (7)仪表的工作电源应独立,不应和计算机共用电源,以保证发生故障和检修时电源互不干扰,使各自都能稳定可靠地运行。    (8)为使计算机能检测到电压互感器和电流互感器的异常信号并报警,设计选配的电压及电流变送器的输入信号应比电流及电压互感器大,即分别为0~6A及0~120V。    (9)应选择能够提供可靠服务和有丰富经验的仪表生产厂商。

  • 我国的仪器仪表业未来需要提高稳定性和可靠性

    当今,仪器仪表与测量控制发展的趋势是:面对产品的稳定性、可靠性和适应性要求不断提高;技术指标和功能不断提高;最先采用新的科学研究成果;高新技术大量采用;仪器及测控单元微小型化、智能化日趋明显;要求仪器及测控单元可独立使用、嵌入式使用和联网使用;仪器测控范围向立体化、全球化扩展;测控功能向系统化、网络化发展;便携式、手持式以至个性化仪器大量发展。 技术特点是:综合各种新技术,在研究仪器仪表相关类型压力试验机、传感器、元器件和材料及技术的基础上,创新开发新的微弱信号敏感、传感、检测、融合技术,物质原子、分子级检测技术,复杂组成样品的联用分析技术,生命科学的原位、在位、实时、在线、高灵敏度、高通量、高选择性检测技术,创建各类新型检测仪器仪表;结合系统论、控制论的发展,在开发工业自动化测控的在线分析和控制、原位分析及控制、高可靠性、高性能和高适应性等技术的基础上,创新发展工业自动化仪表与控制系统;结合生命科学、人体科学的发展,在开发医疗诊治的健康状况监测、早期诊治、无损诊断、无创和低创直视诊疗、精确定位治疗技术的基础上发展医疗仪器;同时跟踪新学科领域和各类应用领域的发展,开发各种专用、快捷、自动化检测和计量技术及专用仪器仪表。 自动化仪表与控制系统和科学仪器,在产值和市场两个方面都占据着仪器仪表与测量控制总体的一半,是仪器仪表与测量控制体系的两大支柱。由于发言时间有限,下面就让我们把主要的注意力放在这两类仪器未来的发展上。自动化仪表与控制系统未来发展的关注点应当是:1、功能安全近年來功能安全的重要发展是,大量经过功能安全认证的仪表推向市场。为了争取竞争中有利地位,几乎所有仪表制造商都会开展功能安全的研究。2、自动化仪表与企业的信息化自动化仪表技术包括信息采集、处理和应用。“企业信息化”实际上是企业信息的集成和整合。为此,必须用自动化和系统的信息模型“简化”、“规则”和“抽象”信息,以便最有效地利用信息。这是自动化仪表领域的一项基础工作,也是统一信息表达的重要手段。3、无线通信工业无线通信技术的快速发展是自动化仪表领域显著的亮点,它的特征是:技术方案多样化,参与者迅速增加,成立了专业组织。推出多种无线演示系统、测量仪表样机,自动压力试验机、自动冲击试验机将成为全球主要自动化仪表展览的热点。4、自动化仪表工程项目全局信息和全生命周期信息的整合这是实现自动化仪表系统的全面可互操作。可互操作是分层次的,实现需要一个漫长的过程。近年来IEC62424标准的出版,InTools工具软件功能的扩充以及控制系统与现场仪表层各项可互操作标准的推出是发展中一个重要标志点。5、系统维护与仪表诊断系统维护与仪表诊断越来越受到用户、制造商和研究者各方的关注。它分为四个层次,生产流程的诊断、生产装备的诊断,自动化控制系统的诊断和现场仪表的诊断。生产流程的诊断原则上不属于自动化仪表范畴,但是诊断信息的交换涉及自动化仪表系统。针对生产装备的监控,诊断仪表系统已经推出了新产品。自动控制系统的诊断通常是控制系统中设备管理软件的一个模块或一种功能,负责控制系统自身以及现场仪表的实时诊断和预测性维护。现场仪表的诊断难度较大,维护周期由智能仪表的损耗情况或固定时间确定。6、标准化标准化在自动化仪表发展历史上发挥过重要作用,未来还会对我国仪表产品追赶世界水平发挥重大作用。在新经济时代,有大量信息接口标准的需求,它的共同特点就是在相同的技术水平上可以有很多种标准化方案。现在对高技术新产品可以先制定标准,完全改变了标准化的理念。7、控制网络未来几年网络控测和网络仪表是自动化仪表发展的重点,发展方向是大幅提高速度、简化安装和调试的复杂性、扩展无线功能以及发展网络技术。未来应当关注以下几个方面:1)精密检测仪器当今时代已经进入分子、原子分析检测新阶段,微纳科技的发展直接推动了精密检测仪器的快速发展。值得特别关注是MEMS/NEMS(微电机系统/纳机电系统)测试仪器,以扫描隧道显微镜和原子力显微镜为代表的扫描探针显微镜,以及基于STM/AFM的基本原理新发展起来一系列SPM,如磁力显微镜、静电力显微镜、微机控制压力试验机等这些仪器的新发展。2)分析仪器光学捕获(Opticaltrapping)是一种新型的光学微操作技术。它将一束光用高数值孔径的物镜聚焦成微米级的光斑,形成梯度来实现对微小粒子的捕获和移动。这项技术被广泛应用于各种微观领域的研究。微型色谱仪将会得到很快的发展。C2V公司已经推出了世界上最小最快的手持式气相色谱仪,主机大小仅124×84×60mm,所含柱模块大小为60×100×12.5mm,可在10-30秒内完成天然气主要成份的全分析。NMR的微型化近年来已经取得重大进展,瑞士Neuchatel大学开发成功一种高质量因子可供微流控芯片NMR全分析系统使用的射频平面微线圈,所需样品量仅为1-100纳升,并可在几秒内获得所需的信噪比。NMR微型化应当是值得关注的发展方向。、光频光梳光谱法(Opticalfrequencycombspectroscopy)是最新发展起来的另一种重要的仪器技术,采用这种技术可以在极短的时间内以很高的灵敏度检测许多不同的气体,将在临床诊断领域发挥重要作用。3)光谱分析仪器过去,光谱分析仪器主要应用在基础学科研究和矿物分析、产品质量监控等领域。值得关注一个新的发展动向是,由于人类生存和发展一些迫切的需求,同时计算机软硬件、微电子、计算数学、微型器件、微机控制试验机发展提供的新技术成果,使得光谱技术和仪器向生物、环境、医疗等领域快速拓展,无论理论研究、技术开发和仪器创新都有了明显的发展,今后还将更快发展。4)光子成像仪器一个以光子学与生命科学相互融合的新学科生物医学光子学随着激光、电子、光谱、显微及光纤等技术的发展而迅速成长起来,应运而生出现了不少微机控制冲击试验机等新型科学仪器。应用这些仪器不但丰富了人们对于光与生物组织体相互作用机理的认识,而且促进了各种新的生物研究仪器和医学诊断仪器的发明。光子成像技术主要包括漫射光层析成像、荧光成像、相干层析成像、光声成像等。光学相干层像(OCT)结合了共焦显微术和低相干光的外差探测技术,它是一种在一维光学低相干反射测量技术的基础上扩展而来的二维或三维成像技术。

  • 【逼迫国外仪表大卖】北京PM2.5指标将决定官员升迁

    这条新闻看到今天。不能不说,官员想升迁赶紧买装备、测控住PM2.5(监测目前来看必然是买国外仪表).如果还达不到,很可能利令智昏,激发作假、隐瞒等行为。其它各地将不乏效尤者。环保自己的标准体系恐怕更难建立了,自己的开发更得不到市场滋养了!

  • 仪器仪表分类基础知识

    仪器仪表是多种科学技术的综合产物,品种繁多,使用广泛,而且不断更新,有多种分类方法。按使用目的和用途来分,主要有量具量仪、汽车仪表、拖拉机仪表、船用仪表、航空仪表、导航仪器、驾驶仪器、无线电测试仪器、载波微波测试仪器、地质勘探测试仪器、建材测试仪器、地震测试仪器、大地测绘仪器、水文仪器、计时仪器、农业测试仪器、商业测试仪器、教学仪器、医疗仪器、环保仪器等。 属于机械工业产品的仪器仪表有工业自动化仪表、电工仪器仪表、光学仪器,分析仪器、实验室仪器与装置、材料试验机、气象晦洋仪器、电影机械、照相机械、复印缩微机械、仪器仪表元器件、仪器仪表材料、仪器仪表工艺装备等十三类。它们通用性较强,批量较大,或为仪器仪表工业所必需的基础。 各类仪器仪表按不同特征,例如功能、检测控制对象、结构、原理等还可再分为若干的小类或子类。如工业自动化仪表按功能可分为检测仪表、显示仪表、调节仪表和执行器等;其中检测仪表按被测物理量又分为温度测量仪表、压力测量仪表、流量测量仪表、物位测量仪表和机械量测量仪表等;温度测量仪表按测量方式又分为接触式测温仪表和非接触式测温仪表;接触式测温仪表又可分为热电式、膨胀式、电阻式等。 其他各类仪器仪表的分类法大体类似,主要与发展过程、使用习惯和有关产品的分类有关。仪器仪表在分类方面尚无统一的标准,仪器仪表的命名也存在类似情况。

  • 流量控制仪表系统介绍

    (1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。  (2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。  (3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数PID不合适,如果波动仍频繁,则是工艺操作方面原因造成。

  • 电力监控仪表市场发展的三大推动力

    在“十二五”的新时期,电力监控仪表市场也呈现出良好前景,发展潜力十分大。推动电力监控仪表市场发展的主要推动因素则是其在新产业、新背景下的应用。电力监控仪表目前已经覆盖电力系统的发、输、变、配、用等环节,应用范围更加宽广。 目前,新能源利用成为解决能源问题的重要途径之一,而新能源、新行业的发展需求也为电力监控仪表发展提供了推动力。新能源包括核电、水电、光能、风能等,如直流多功能电表,谐波表等电力仪表都可以应用于光伏电站等新能源产业中。此外,人员密集或重要场所都要加装剩余电流式火灾监控装置,医院洁净手术部选用IT配电系统供电时,须加装绝缘监测仪表等规范要求,也为电力监控仪表发展提供了空间。 除了新能源与新行业的推动,传统的应用领域需求提升,也极大推动着电力监测仪表市场的发展。仪器仪表供应商也在不断增加。随着智能电网建设,用户端配电智能化的普级使得市场需求扩大,电力监控仪表也会从中受益市场规模进一步扩大。而节能减排理念的兴起,使得工矿企业与建筑楼宇都开始建立能源管理体系,实施能耗监测,电力监控仪表也在该领域广泛应用。工矿企业与建筑楼宇的节能减排进一步推动了电力监控仪表市场的发展。

  • 仪器仪表行业体制存在薄弱的问题

    仪器仪表行业目前是我国经济发展中一个重要的行业,它的发展也是中国工业化道路的一部分,但是一直以来,它都没有形成好的行业规范,总得来说,还是行业体制方面有待改革。  首先,国家整体的产、学、研等有机结合体制和政策没有形成,创新成果转化率低,技术应用较差。改革开放初期,仪器仪表行业与国外差距大,企业普遍向外寻求技术来源,虽然近期有所转变,也有企业脱颖而出,但总体上企业自主创新技术成果与应用结合好的不多。大企业成长困难。  我国科研机构涉及测控技术及相关仪器的科研成果不少,但实用性较差。对相关的生产制造技术,特别是核心工艺技术研究深度和力度不够,二次开发的工作量很大。成果的转化率低。高中档仪器产品和系统涉及不同领域内具一定深度的应用技术,国外企业设有专业部门并拥有经验丰富的应用人才,而我国仪器仪表企业往往对大型工程工艺不熟悉,缺乏应用技术的集成能力。因此,生产高档产品比较困难。  其次,缺乏国家强有力的研究支援体制。仪器仪表行业品种多、批量小,需要长期的、坚持不懈的投入。但目前国家投资途径分散,难以集中重点。大的、形成一定规模的仪器仪表供应商不多。企业既不能像外国企业那样完全按照市场经济规则参与竞争,又缺乏研究资源的战略投资。同时,新技术市场化所需要的市场环境还没有完善。  由于体制机制没有理顺,自然造成我国仪器仪表行业缺乏高层次的复合型人才,缺乏熟悉、精通各学科交叉的综合型人才。仪器科学技术不仅涉及的学科范围广泛,并且只有能尽快发现、利用、集成各种新原理、新概念、新技术、新材料和新工艺等最新科技成果的人,才能设计和制造出世界一流的测量控制与仪器仪表产品。人才短缺,自然影响行业的发展。这无疑也是造成国产仪器仪表与进口产品差距的重要原因。

  • 液位控制仪表系统故障分析步骤

    (1)液位控制仪表系统指示值变化到最大或最小时,可以先检查检测仪表看是否正常,如指示正常,将液位控制改为手动遥控液位,看液位变化情况。如液位可以稳定在一定的范围,则故障在液位控制系统;如稳不住液位,一般为工艺系统造成的故障,要从工艺方面查找原因。  (2)差压式液位控制仪表指示和现场直读式指示仪表指示对不上时,首先检查现场直读式指示仪表是否正常,如指示正常,检查差压式液位仪表的负压导压管封液是否有渗漏;若有渗漏,重新灌封液,调零点;无渗漏,可能是仪表的负迁移量不对了,重新调整迁移量使仪表指示正常。  (3)液位控制仪表系统指示值变化波动频繁时,首先要分析液面控制对象的容量大小,来分析故障的原因,容量大一般是仪表故障造成。容量小的首先要分析工艺操作情况是否有变化,如有变化很可能是工艺造成的波动频繁。如没有变化可能是仪表故障造成。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制